]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
2aef737fa7613e696fe5d8d7d1f81d2fe7d9e24c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72 size, 0, 0, 0,
73 i915->ggtt.mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 size_t size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 size_t size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 if (!i915_reset_in_progress(error))
109 return 0;
110
111 /*
112 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113 * userspace. If it takes that long something really bad is going on and
114 * we should simply try to bail out and fail as gracefully as possible.
115 */
116 ret = wait_event_interruptible_timeout(error->reset_queue,
117 !i915_reset_in_progress(error),
118 10*HZ);
119 if (ret == 0) {
120 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121 return -EIO;
122 } else if (ret < 0) {
123 return ret;
124 } else {
125 return 0;
126 }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = to_i915(dev);
151 struct i915_ggtt *ggtt = &dev_priv->ggtt;
152 struct drm_i915_gem_get_aperture *args = data;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = ggtt->base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 put_page(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (WARN_ON(ret)) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236 }
237
238 if (obj->madv == I915_MADV_DONTNEED)
239 obj->dirty = 0;
240
241 if (obj->dirty) {
242 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
243 char *vaddr = obj->phys_handle->vaddr;
244 int i;
245
246 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247 struct page *page;
248 char *dst;
249
250 page = shmem_read_mapping_page(mapping, i);
251 if (IS_ERR(page))
252 continue;
253
254 dst = kmap_atomic(page);
255 drm_clflush_virt_range(vaddr, PAGE_SIZE);
256 memcpy(dst, vaddr, PAGE_SIZE);
257 kunmap_atomic(dst);
258
259 set_page_dirty(page);
260 if (obj->madv == I915_MADV_WILLNEED)
261 mark_page_accessed(page);
262 put_page(page);
263 vaddr += PAGE_SIZE;
264 }
265 obj->dirty = 0;
266 }
267
268 sg_free_table(obj->pages);
269 kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = u64_to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_object_create(dev, size);
406 if (IS_ERR(obj))
407 return PTR_ERR(obj);
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439 struct drm_file *file)
440 {
441 struct drm_i915_gem_create *args = data;
442
443 return i915_gem_create(file, dev,
444 args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449 const char *gpu_vaddr, int gpu_offset,
450 int length)
451 {
452 int ret, cpu_offset = 0;
453
454 while (length > 0) {
455 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456 int this_length = min(cacheline_end - gpu_offset, length);
457 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460 gpu_vaddr + swizzled_gpu_offset,
461 this_length);
462 if (ret)
463 return ret + length;
464
465 cpu_offset += this_length;
466 gpu_offset += this_length;
467 length -= this_length;
468 }
469
470 return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475 const char __user *cpu_vaddr,
476 int length)
477 {
478 int ret, cpu_offset = 0;
479
480 while (length > 0) {
481 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482 int this_length = min(cacheline_end - gpu_offset, length);
483 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486 cpu_vaddr + cpu_offset,
487 this_length);
488 if (ret)
489 return ret + length;
490
491 cpu_offset += this_length;
492 gpu_offset += this_length;
493 length -= this_length;
494 }
495
496 return 0;
497 }
498
499 /*
500 * Pins the specified object's pages and synchronizes the object with
501 * GPU accesses. Sets needs_clflush to non-zero if the caller should
502 * flush the object from the CPU cache.
503 */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505 int *needs_clflush)
506 {
507 int ret;
508
509 *needs_clflush = 0;
510
511 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512 return -EINVAL;
513
514 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515 /* If we're not in the cpu read domain, set ourself into the gtt
516 * read domain and manually flush cachelines (if required). This
517 * optimizes for the case when the gpu will dirty the data
518 * anyway again before the next pread happens. */
519 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520 obj->cache_level);
521 ret = i915_gem_object_wait_rendering(obj, true);
522 if (ret)
523 return ret;
524 }
525
526 ret = i915_gem_object_get_pages(obj);
527 if (ret)
528 return ret;
529
530 i915_gem_object_pin_pages(obj);
531
532 return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536 * Flushes invalid cachelines before reading the target if
537 * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540 char __user *user_data,
541 bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543 char *vaddr;
544 int ret;
545
546 if (unlikely(page_do_bit17_swizzling))
547 return -EINVAL;
548
549 vaddr = kmap_atomic(page);
550 if (needs_clflush)
551 drm_clflush_virt_range(vaddr + shmem_page_offset,
552 page_length);
553 ret = __copy_to_user_inatomic(user_data,
554 vaddr + shmem_page_offset,
555 page_length);
556 kunmap_atomic(vaddr);
557
558 return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563 bool swizzled)
564 {
565 if (unlikely(swizzled)) {
566 unsigned long start = (unsigned long) addr;
567 unsigned long end = (unsigned long) addr + length;
568
569 /* For swizzling simply ensure that we always flush both
570 * channels. Lame, but simple and it works. Swizzled
571 * pwrite/pread is far from a hotpath - current userspace
572 * doesn't use it at all. */
573 start = round_down(start, 128);
574 end = round_up(end, 128);
575
576 drm_clflush_virt_range((void *)start, end - start);
577 } else {
578 drm_clflush_virt_range(addr, length);
579 }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584 * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587 char __user *user_data,
588 bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590 char *vaddr;
591 int ret;
592
593 vaddr = kmap(page);
594 if (needs_clflush)
595 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596 page_length,
597 page_do_bit17_swizzling);
598
599 if (page_do_bit17_swizzling)
600 ret = __copy_to_user_swizzled(user_data,
601 vaddr, shmem_page_offset,
602 page_length);
603 else
604 ret = __copy_to_user(user_data,
605 vaddr + shmem_page_offset,
606 page_length);
607 kunmap(page);
608
609 return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614 uint64_t page_base, int page_offset,
615 char __user *user_data,
616 unsigned long length, bool pwrite)
617 {
618 void __iomem *ioaddr;
619 void *vaddr;
620 uint64_t unwritten;
621
622 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623 /* We can use the cpu mem copy function because this is X86. */
624 vaddr = (void __force *)ioaddr + page_offset;
625 if (pwrite)
626 unwritten = __copy_from_user(vaddr, user_data, length);
627 else
628 unwritten = __copy_to_user(user_data, vaddr, length);
629
630 io_mapping_unmap(ioaddr);
631 return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636 struct drm_i915_gem_object *obj, uint64_t size,
637 uint64_t data_offset, uint64_t data_ptr)
638 {
639 struct drm_i915_private *dev_priv = dev->dev_private;
640 struct i915_ggtt *ggtt = &dev_priv->ggtt;
641 struct drm_mm_node node;
642 char __user *user_data;
643 uint64_t remain;
644 uint64_t offset;
645 int ret;
646
647 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648 if (ret) {
649 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650 if (ret)
651 goto out;
652
653 ret = i915_gem_object_get_pages(obj);
654 if (ret) {
655 remove_mappable_node(&node);
656 goto out;
657 }
658
659 i915_gem_object_pin_pages(obj);
660 } else {
661 node.start = i915_gem_obj_ggtt_offset(obj);
662 node.allocated = false;
663 ret = i915_gem_object_put_fence(obj);
664 if (ret)
665 goto out_unpin;
666 }
667
668 ret = i915_gem_object_set_to_gtt_domain(obj, false);
669 if (ret)
670 goto out_unpin;
671
672 user_data = u64_to_user_ptr(data_ptr);
673 remain = size;
674 offset = data_offset;
675
676 mutex_unlock(&dev->struct_mutex);
677 if (likely(!i915.prefault_disable)) {
678 ret = fault_in_multipages_writeable(user_data, remain);
679 if (ret) {
680 mutex_lock(&dev->struct_mutex);
681 goto out_unpin;
682 }
683 }
684
685 while (remain > 0) {
686 /* Operation in this page
687 *
688 * page_base = page offset within aperture
689 * page_offset = offset within page
690 * page_length = bytes to copy for this page
691 */
692 u32 page_base = node.start;
693 unsigned page_offset = offset_in_page(offset);
694 unsigned page_length = PAGE_SIZE - page_offset;
695 page_length = remain < page_length ? remain : page_length;
696 if (node.allocated) {
697 wmb();
698 ggtt->base.insert_page(&ggtt->base,
699 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700 node.start,
701 I915_CACHE_NONE, 0);
702 wmb();
703 } else {
704 page_base += offset & PAGE_MASK;
705 }
706 /* This is a slow read/write as it tries to read from
707 * and write to user memory which may result into page
708 * faults, and so we cannot perform this under struct_mutex.
709 */
710 if (slow_user_access(ggtt->mappable, page_base,
711 page_offset, user_data,
712 page_length, false)) {
713 ret = -EFAULT;
714 break;
715 }
716
717 remain -= page_length;
718 user_data += page_length;
719 offset += page_length;
720 }
721
722 mutex_lock(&dev->struct_mutex);
723 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724 /* The user has modified the object whilst we tried
725 * reading from it, and we now have no idea what domain
726 * the pages should be in. As we have just been touching
727 * them directly, flush everything back to the GTT
728 * domain.
729 */
730 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731 }
732
733 out_unpin:
734 if (node.allocated) {
735 wmb();
736 ggtt->base.clear_range(&ggtt->base,
737 node.start, node.size,
738 true);
739 i915_gem_object_unpin_pages(obj);
740 remove_mappable_node(&node);
741 } else {
742 i915_gem_object_ggtt_unpin(obj);
743 }
744 out:
745 return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750 struct drm_i915_gem_object *obj,
751 struct drm_i915_gem_pread *args,
752 struct drm_file *file)
753 {
754 char __user *user_data;
755 ssize_t remain;
756 loff_t offset;
757 int shmem_page_offset, page_length, ret = 0;
758 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759 int prefaulted = 0;
760 int needs_clflush = 0;
761 struct sg_page_iter sg_iter;
762
763 if (!i915_gem_object_has_struct_page(obj))
764 return -ENODEV;
765
766 user_data = u64_to_user_ptr(args->data_ptr);
767 remain = args->size;
768
769 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772 if (ret)
773 return ret;
774
775 offset = args->offset;
776
777 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778 offset >> PAGE_SHIFT) {
779 struct page *page = sg_page_iter_page(&sg_iter);
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795 (page_to_phys(page) & (1 << 17)) != 0;
796
797 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798 user_data, page_do_bit17_swizzling,
799 needs_clflush);
800 if (ret == 0)
801 goto next_page;
802
803 mutex_unlock(&dev->struct_mutex);
804
805 if (likely(!i915.prefault_disable) && !prefaulted) {
806 ret = fault_in_multipages_writeable(user_data, remain);
807 /* Userspace is tricking us, but we've already clobbered
808 * its pages with the prefault and promised to write the
809 * data up to the first fault. Hence ignore any errors
810 * and just continue. */
811 (void)ret;
812 prefaulted = 1;
813 }
814
815 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 needs_clflush);
818
819 mutex_lock(&dev->struct_mutex);
820
821 if (ret)
822 goto out;
823
824 next_page:
825 remain -= page_length;
826 user_data += page_length;
827 offset += page_length;
828 }
829
830 out:
831 i915_gem_object_unpin_pages(obj);
832
833 return ret;
834 }
835
836 /**
837 * Reads data from the object referenced by handle.
838 * @dev: drm device pointer
839 * @data: ioctl data blob
840 * @file: drm file pointer
841 *
842 * On error, the contents of *data are undefined.
843 */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846 struct drm_file *file)
847 {
848 struct drm_i915_gem_pread *args = data;
849 struct drm_i915_gem_object *obj;
850 int ret = 0;
851
852 if (args->size == 0)
853 return 0;
854
855 if (!access_ok(VERIFY_WRITE,
856 u64_to_user_ptr(args->data_ptr),
857 args->size))
858 return -EFAULT;
859
860 ret = i915_mutex_lock_interruptible(dev);
861 if (ret)
862 return ret;
863
864 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865 if (&obj->base == NULL) {
866 ret = -ENOENT;
867 goto unlock;
868 }
869
870 /* Bounds check source. */
871 if (args->offset > obj->base.size ||
872 args->size > obj->base.size - args->offset) {
873 ret = -EINVAL;
874 goto out;
875 }
876
877 trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879 ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881 /* pread for non shmem backed objects */
882 if (ret == -EFAULT || ret == -ENODEV)
883 ret = i915_gem_gtt_pread(dev, obj, args->size,
884 args->offset, args->data_ptr);
885
886 out:
887 drm_gem_object_unreference(&obj->base);
888 unlock:
889 mutex_unlock(&dev->struct_mutex);
890 return ret;
891 }
892
893 /* This is the fast write path which cannot handle
894 * page faults in the source data
895 */
896
897 static inline int
898 fast_user_write(struct io_mapping *mapping,
899 loff_t page_base, int page_offset,
900 char __user *user_data,
901 int length)
902 {
903 void __iomem *vaddr_atomic;
904 void *vaddr;
905 unsigned long unwritten;
906
907 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
908 /* We can use the cpu mem copy function because this is X86. */
909 vaddr = (void __force*)vaddr_atomic + page_offset;
910 unwritten = __copy_from_user_inatomic_nocache(vaddr,
911 user_data, length);
912 io_mapping_unmap_atomic(vaddr_atomic);
913 return unwritten;
914 }
915
916 /**
917 * This is the fast pwrite path, where we copy the data directly from the
918 * user into the GTT, uncached.
919 * @dev: drm device pointer
920 * @obj: i915 gem object
921 * @args: pwrite arguments structure
922 * @file: drm file pointer
923 */
924 static int
925 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
926 struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pwrite *args,
928 struct drm_file *file)
929 {
930 struct i915_ggtt *ggtt = &i915->ggtt;
931 struct drm_device *dev = obj->base.dev;
932 struct drm_mm_node node;
933 uint64_t remain, offset;
934 char __user *user_data;
935 int ret;
936 bool hit_slow_path = false;
937
938 if (obj->tiling_mode != I915_TILING_NONE)
939 return -EFAULT;
940
941 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
942 if (ret) {
943 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
944 if (ret)
945 goto out;
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret) {
949 remove_mappable_node(&node);
950 goto out;
951 }
952
953 i915_gem_object_pin_pages(obj);
954 } else {
955 node.start = i915_gem_obj_ggtt_offset(obj);
956 node.allocated = false;
957 ret = i915_gem_object_put_fence(obj);
958 if (ret)
959 goto out_unpin;
960 }
961
962 ret = i915_gem_object_set_to_gtt_domain(obj, true);
963 if (ret)
964 goto out_unpin;
965
966 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
967 obj->dirty = true;
968
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = args->offset;
971 remain = args->size;
972 while (remain) {
973 /* Operation in this page
974 *
975 * page_base = page offset within aperture
976 * page_offset = offset within page
977 * page_length = bytes to copy for this page
978 */
979 u32 page_base = node.start;
980 unsigned page_offset = offset_in_page(offset);
981 unsigned page_length = PAGE_SIZE - page_offset;
982 page_length = remain < page_length ? remain : page_length;
983 if (node.allocated) {
984 wmb(); /* flush the write before we modify the GGTT */
985 ggtt->base.insert_page(&ggtt->base,
986 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
987 node.start, I915_CACHE_NONE, 0);
988 wmb(); /* flush modifications to the GGTT (insert_page) */
989 } else {
990 page_base += offset & PAGE_MASK;
991 }
992 /* If we get a fault while copying data, then (presumably) our
993 * source page isn't available. Return the error and we'll
994 * retry in the slow path.
995 * If the object is non-shmem backed, we retry again with the
996 * path that handles page fault.
997 */
998 if (fast_user_write(ggtt->mappable, page_base,
999 page_offset, user_data, page_length)) {
1000 hit_slow_path = true;
1001 mutex_unlock(&dev->struct_mutex);
1002 if (slow_user_access(ggtt->mappable,
1003 page_base,
1004 page_offset, user_data,
1005 page_length, true)) {
1006 ret = -EFAULT;
1007 mutex_lock(&dev->struct_mutex);
1008 goto out_flush;
1009 }
1010
1011 mutex_lock(&dev->struct_mutex);
1012 }
1013
1014 remain -= page_length;
1015 user_data += page_length;
1016 offset += page_length;
1017 }
1018
1019 out_flush:
1020 if (hit_slow_path) {
1021 if (ret == 0 &&
1022 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1023 /* The user has modified the object whilst we tried
1024 * reading from it, and we now have no idea what domain
1025 * the pages should be in. As we have just been touching
1026 * them directly, flush everything back to the GTT
1027 * domain.
1028 */
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 }
1031 }
1032
1033 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1034 out_unpin:
1035 if (node.allocated) {
1036 wmb();
1037 ggtt->base.clear_range(&ggtt->base,
1038 node.start, node.size,
1039 true);
1040 i915_gem_object_unpin_pages(obj);
1041 remove_mappable_node(&node);
1042 } else {
1043 i915_gem_object_ggtt_unpin(obj);
1044 }
1045 out:
1046 return ret;
1047 }
1048
1049 /* Per-page copy function for the shmem pwrite fastpath.
1050 * Flushes invalid cachelines before writing to the target if
1051 * needs_clflush_before is set and flushes out any written cachelines after
1052 * writing if needs_clflush is set. */
1053 static int
1054 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1055 char __user *user_data,
1056 bool page_do_bit17_swizzling,
1057 bool needs_clflush_before,
1058 bool needs_clflush_after)
1059 {
1060 char *vaddr;
1061 int ret;
1062
1063 if (unlikely(page_do_bit17_swizzling))
1064 return -EINVAL;
1065
1066 vaddr = kmap_atomic(page);
1067 if (needs_clflush_before)
1068 drm_clflush_virt_range(vaddr + shmem_page_offset,
1069 page_length);
1070 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1071 user_data, page_length);
1072 if (needs_clflush_after)
1073 drm_clflush_virt_range(vaddr + shmem_page_offset,
1074 page_length);
1075 kunmap_atomic(vaddr);
1076
1077 return ret ? -EFAULT : 0;
1078 }
1079
1080 /* Only difference to the fast-path function is that this can handle bit17
1081 * and uses non-atomic copy and kmap functions. */
1082 static int
1083 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1084 char __user *user_data,
1085 bool page_do_bit17_swizzling,
1086 bool needs_clflush_before,
1087 bool needs_clflush_after)
1088 {
1089 char *vaddr;
1090 int ret;
1091
1092 vaddr = kmap(page);
1093 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1094 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1095 page_length,
1096 page_do_bit17_swizzling);
1097 if (page_do_bit17_swizzling)
1098 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1099 user_data,
1100 page_length);
1101 else
1102 ret = __copy_from_user(vaddr + shmem_page_offset,
1103 user_data,
1104 page_length);
1105 if (needs_clflush_after)
1106 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1107 page_length,
1108 page_do_bit17_swizzling);
1109 kunmap(page);
1110
1111 return ret ? -EFAULT : 0;
1112 }
1113
1114 static int
1115 i915_gem_shmem_pwrite(struct drm_device *dev,
1116 struct drm_i915_gem_object *obj,
1117 struct drm_i915_gem_pwrite *args,
1118 struct drm_file *file)
1119 {
1120 ssize_t remain;
1121 loff_t offset;
1122 char __user *user_data;
1123 int shmem_page_offset, page_length, ret = 0;
1124 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1125 int hit_slowpath = 0;
1126 int needs_clflush_after = 0;
1127 int needs_clflush_before = 0;
1128 struct sg_page_iter sg_iter;
1129
1130 user_data = u64_to_user_ptr(args->data_ptr);
1131 remain = args->size;
1132
1133 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1134
1135 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1136 /* If we're not in the cpu write domain, set ourself into the gtt
1137 * write domain and manually flush cachelines (if required). This
1138 * optimizes for the case when the gpu will use the data
1139 * right away and we therefore have to clflush anyway. */
1140 needs_clflush_after = cpu_write_needs_clflush(obj);
1141 ret = i915_gem_object_wait_rendering(obj, false);
1142 if (ret)
1143 return ret;
1144 }
1145 /* Same trick applies to invalidate partially written cachelines read
1146 * before writing. */
1147 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1148 needs_clflush_before =
1149 !cpu_cache_is_coherent(dev, obj->cache_level);
1150
1151 ret = i915_gem_object_get_pages(obj);
1152 if (ret)
1153 return ret;
1154
1155 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1156
1157 i915_gem_object_pin_pages(obj);
1158
1159 offset = args->offset;
1160 obj->dirty = 1;
1161
1162 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1163 offset >> PAGE_SHIFT) {
1164 struct page *page = sg_page_iter_page(&sg_iter);
1165 int partial_cacheline_write;
1166
1167 if (remain <= 0)
1168 break;
1169
1170 /* Operation in this page
1171 *
1172 * shmem_page_offset = offset within page in shmem file
1173 * page_length = bytes to copy for this page
1174 */
1175 shmem_page_offset = offset_in_page(offset);
1176
1177 page_length = remain;
1178 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1179 page_length = PAGE_SIZE - shmem_page_offset;
1180
1181 /* If we don't overwrite a cacheline completely we need to be
1182 * careful to have up-to-date data by first clflushing. Don't
1183 * overcomplicate things and flush the entire patch. */
1184 partial_cacheline_write = needs_clflush_before &&
1185 ((shmem_page_offset | page_length)
1186 & (boot_cpu_data.x86_clflush_size - 1));
1187
1188 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1189 (page_to_phys(page) & (1 << 17)) != 0;
1190
1191 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1192 user_data, page_do_bit17_swizzling,
1193 partial_cacheline_write,
1194 needs_clflush_after);
1195 if (ret == 0)
1196 goto next_page;
1197
1198 hit_slowpath = 1;
1199 mutex_unlock(&dev->struct_mutex);
1200 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1201 user_data, page_do_bit17_swizzling,
1202 partial_cacheline_write,
1203 needs_clflush_after);
1204
1205 mutex_lock(&dev->struct_mutex);
1206
1207 if (ret)
1208 goto out;
1209
1210 next_page:
1211 remain -= page_length;
1212 user_data += page_length;
1213 offset += page_length;
1214 }
1215
1216 out:
1217 i915_gem_object_unpin_pages(obj);
1218
1219 if (hit_slowpath) {
1220 /*
1221 * Fixup: Flush cpu caches in case we didn't flush the dirty
1222 * cachelines in-line while writing and the object moved
1223 * out of the cpu write domain while we've dropped the lock.
1224 */
1225 if (!needs_clflush_after &&
1226 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1227 if (i915_gem_clflush_object(obj, obj->pin_display))
1228 needs_clflush_after = true;
1229 }
1230 }
1231
1232 if (needs_clflush_after)
1233 i915_gem_chipset_flush(to_i915(dev));
1234 else
1235 obj->cache_dirty = true;
1236
1237 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1238 return ret;
1239 }
1240
1241 /**
1242 * Writes data to the object referenced by handle.
1243 * @dev: drm device
1244 * @data: ioctl data blob
1245 * @file: drm file
1246 *
1247 * On error, the contents of the buffer that were to be modified are undefined.
1248 */
1249 int
1250 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1251 struct drm_file *file)
1252 {
1253 struct drm_i915_private *dev_priv = dev->dev_private;
1254 struct drm_i915_gem_pwrite *args = data;
1255 struct drm_i915_gem_object *obj;
1256 int ret;
1257
1258 if (args->size == 0)
1259 return 0;
1260
1261 if (!access_ok(VERIFY_READ,
1262 u64_to_user_ptr(args->data_ptr),
1263 args->size))
1264 return -EFAULT;
1265
1266 if (likely(!i915.prefault_disable)) {
1267 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1268 args->size);
1269 if (ret)
1270 return -EFAULT;
1271 }
1272
1273 intel_runtime_pm_get(dev_priv);
1274
1275 ret = i915_mutex_lock_interruptible(dev);
1276 if (ret)
1277 goto put_rpm;
1278
1279 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1280 if (&obj->base == NULL) {
1281 ret = -ENOENT;
1282 goto unlock;
1283 }
1284
1285 /* Bounds check destination. */
1286 if (args->offset > obj->base.size ||
1287 args->size > obj->base.size - args->offset) {
1288 ret = -EINVAL;
1289 goto out;
1290 }
1291
1292 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1293
1294 ret = -EFAULT;
1295 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1296 * it would end up going through the fenced access, and we'll get
1297 * different detiling behavior between reading and writing.
1298 * pread/pwrite currently are reading and writing from the CPU
1299 * perspective, requiring manual detiling by the client.
1300 */
1301 if (!i915_gem_object_has_struct_page(obj) ||
1302 cpu_write_needs_clflush(obj)) {
1303 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1304 /* Note that the gtt paths might fail with non-page-backed user
1305 * pointers (e.g. gtt mappings when moving data between
1306 * textures). Fallback to the shmem path in that case. */
1307 }
1308
1309 if (ret == -EFAULT) {
1310 if (obj->phys_handle)
1311 ret = i915_gem_phys_pwrite(obj, args, file);
1312 else if (i915_gem_object_has_struct_page(obj))
1313 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1314 else
1315 ret = -ENODEV;
1316 }
1317
1318 out:
1319 drm_gem_object_unreference(&obj->base);
1320 unlock:
1321 mutex_unlock(&dev->struct_mutex);
1322 put_rpm:
1323 intel_runtime_pm_put(dev_priv);
1324
1325 return ret;
1326 }
1327
1328 static int
1329 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1330 {
1331 if (__i915_terminally_wedged(reset_counter))
1332 return -EIO;
1333
1334 if (__i915_reset_in_progress(reset_counter)) {
1335 /* Non-interruptible callers can't handle -EAGAIN, hence return
1336 * -EIO unconditionally for these. */
1337 if (!interruptible)
1338 return -EIO;
1339
1340 return -EAGAIN;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static unsigned long local_clock_us(unsigned *cpu)
1347 {
1348 unsigned long t;
1349
1350 /* Cheaply and approximately convert from nanoseconds to microseconds.
1351 * The result and subsequent calculations are also defined in the same
1352 * approximate microseconds units. The principal source of timing
1353 * error here is from the simple truncation.
1354 *
1355 * Note that local_clock() is only defined wrt to the current CPU;
1356 * the comparisons are no longer valid if we switch CPUs. Instead of
1357 * blocking preemption for the entire busywait, we can detect the CPU
1358 * switch and use that as indicator of system load and a reason to
1359 * stop busywaiting, see busywait_stop().
1360 */
1361 *cpu = get_cpu();
1362 t = local_clock() >> 10;
1363 put_cpu();
1364
1365 return t;
1366 }
1367
1368 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1369 {
1370 unsigned this_cpu;
1371
1372 if (time_after(local_clock_us(&this_cpu), timeout))
1373 return true;
1374
1375 return this_cpu != cpu;
1376 }
1377
1378 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1379 int state, unsigned long timeout_us)
1380 {
1381 unsigned cpu;
1382
1383 /* When waiting for high frequency requests, e.g. during synchronous
1384 * rendering split between the CPU and GPU, the finite amount of time
1385 * required to set up the irq and wait upon it limits the response
1386 * rate. By busywaiting on the request completion for a short while we
1387 * can service the high frequency waits as quick as possible. However,
1388 * if it is a slow request, we want to sleep as quickly as possible.
1389 * The tradeoff between waiting and sleeping is roughly the time it
1390 * takes to sleep on a request, on the order of a microsecond.
1391 */
1392
1393 timeout_us += local_clock_us(&cpu);
1394 do {
1395 if (i915_gem_request_completed(req))
1396 return true;
1397
1398 if (signal_pending_state(state, current))
1399 break;
1400
1401 if (busywait_stop(timeout_us, cpu))
1402 break;
1403
1404 cpu_relax_lowlatency();
1405 } while (!need_resched());
1406
1407 return false;
1408 }
1409
1410 /**
1411 * __i915_wait_request - wait until execution of request has finished
1412 * @req: duh!
1413 * @interruptible: do an interruptible wait (normally yes)
1414 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1415 * @rps: RPS client
1416 *
1417 * Note: It is of utmost importance that the passed in seqno and reset_counter
1418 * values have been read by the caller in an smp safe manner. Where read-side
1419 * locks are involved, it is sufficient to read the reset_counter before
1420 * unlocking the lock that protects the seqno. For lockless tricks, the
1421 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1422 * inserted.
1423 *
1424 * Returns 0 if the request was found within the alloted time. Else returns the
1425 * errno with remaining time filled in timeout argument.
1426 */
1427 int __i915_wait_request(struct drm_i915_gem_request *req,
1428 bool interruptible,
1429 s64 *timeout,
1430 struct intel_rps_client *rps)
1431 {
1432 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1433 DEFINE_WAIT(reset);
1434 struct intel_wait wait;
1435 unsigned long timeout_remain;
1436 s64 before = 0; /* Only to silence a compiler warning. */
1437 int ret = 0;
1438
1439 might_sleep();
1440
1441 if (list_empty(&req->list))
1442 return 0;
1443
1444 if (i915_gem_request_completed(req))
1445 return 0;
1446
1447 timeout_remain = MAX_SCHEDULE_TIMEOUT;
1448 if (timeout) {
1449 if (WARN_ON(*timeout < 0))
1450 return -EINVAL;
1451
1452 if (*timeout == 0)
1453 return -ETIME;
1454
1455 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1456
1457 /*
1458 * Record current time in case interrupted by signal, or wedged.
1459 */
1460 before = ktime_get_raw_ns();
1461 }
1462
1463 trace_i915_gem_request_wait_begin(req);
1464
1465 if (INTEL_INFO(req->i915)->gen >= 6)
1466 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1467
1468 /* Optimistic spin for the next ~jiffie before touching IRQs */
1469 if (i915_spin_request(req, state, 5))
1470 goto complete;
1471
1472 set_current_state(state);
1473 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1474
1475 intel_wait_init(&wait, req->seqno);
1476 if (intel_engine_add_wait(req->engine, &wait))
1477 /* In order to check that we haven't missed the interrupt
1478 * as we enabled it, we need to kick ourselves to do a
1479 * coherent check on the seqno before we sleep.
1480 */
1481 goto wakeup;
1482
1483 for (;;) {
1484 if (signal_pending_state(state, current)) {
1485 ret = -ERESTARTSYS;
1486 break;
1487 }
1488
1489 /* Ensure that even if the GPU hangs, we get woken up.
1490 *
1491 * However, note that if no one is waiting, we never notice
1492 * a gpu hang. Eventually, we will have to wait for a resource
1493 * held by the GPU and so trigger a hangcheck. In the most
1494 * pathological case, this will be upon memory starvation!
1495 */
1496 i915_queue_hangcheck(req->i915);
1497
1498 timeout_remain = io_schedule_timeout(timeout_remain);
1499 if (timeout_remain == 0) {
1500 ret = -ETIME;
1501 break;
1502 }
1503
1504 if (intel_wait_complete(&wait))
1505 break;
1506
1507 set_current_state(state);
1508
1509 wakeup:
1510 /* Carefully check if the request is complete, giving time
1511 * for the seqno to be visible following the interrupt.
1512 * We also have to check in case we are kicked by the GPU
1513 * reset in order to drop the struct_mutex.
1514 */
1515 if (__i915_request_irq_complete(req))
1516 break;
1517
1518 /* Only spin if we know the GPU is processing this request */
1519 if (i915_spin_request(req, state, 2))
1520 break;
1521 }
1522 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1523
1524 intel_engine_remove_wait(req->engine, &wait);
1525 __set_current_state(TASK_RUNNING);
1526 complete:
1527 trace_i915_gem_request_wait_end(req);
1528
1529 if (timeout) {
1530 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1531
1532 *timeout = tres < 0 ? 0 : tres;
1533
1534 /*
1535 * Apparently ktime isn't accurate enough and occasionally has a
1536 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1537 * things up to make the test happy. We allow up to 1 jiffy.
1538 *
1539 * This is a regrssion from the timespec->ktime conversion.
1540 */
1541 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1542 *timeout = 0;
1543 }
1544
1545 return ret;
1546 }
1547
1548 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1549 struct drm_file *file)
1550 {
1551 struct drm_i915_file_private *file_priv;
1552
1553 WARN_ON(!req || !file || req->file_priv);
1554
1555 if (!req || !file)
1556 return -EINVAL;
1557
1558 if (req->file_priv)
1559 return -EINVAL;
1560
1561 file_priv = file->driver_priv;
1562
1563 spin_lock(&file_priv->mm.lock);
1564 req->file_priv = file_priv;
1565 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1566 spin_unlock(&file_priv->mm.lock);
1567
1568 req->pid = get_pid(task_pid(current));
1569
1570 return 0;
1571 }
1572
1573 static inline void
1574 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1575 {
1576 struct drm_i915_file_private *file_priv = request->file_priv;
1577
1578 if (!file_priv)
1579 return;
1580
1581 spin_lock(&file_priv->mm.lock);
1582 list_del(&request->client_list);
1583 request->file_priv = NULL;
1584 spin_unlock(&file_priv->mm.lock);
1585
1586 put_pid(request->pid);
1587 request->pid = NULL;
1588 }
1589
1590 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1591 {
1592 trace_i915_gem_request_retire(request);
1593
1594 /* We know the GPU must have read the request to have
1595 * sent us the seqno + interrupt, so use the position
1596 * of tail of the request to update the last known position
1597 * of the GPU head.
1598 *
1599 * Note this requires that we are always called in request
1600 * completion order.
1601 */
1602 request->ringbuf->last_retired_head = request->postfix;
1603
1604 list_del_init(&request->list);
1605 i915_gem_request_remove_from_client(request);
1606
1607 if (request->previous_context) {
1608 if (i915.enable_execlists)
1609 intel_lr_context_unpin(request->previous_context,
1610 request->engine);
1611 }
1612
1613 i915_gem_context_unreference(request->ctx);
1614 i915_gem_request_unreference(request);
1615 }
1616
1617 static void
1618 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1619 {
1620 struct intel_engine_cs *engine = req->engine;
1621 struct drm_i915_gem_request *tmp;
1622
1623 lockdep_assert_held(&engine->i915->dev->struct_mutex);
1624
1625 if (list_empty(&req->list))
1626 return;
1627
1628 do {
1629 tmp = list_first_entry(&engine->request_list,
1630 typeof(*tmp), list);
1631
1632 i915_gem_request_retire(tmp);
1633 } while (tmp != req);
1634
1635 WARN_ON(i915_verify_lists(engine->dev));
1636 }
1637
1638 /**
1639 * Waits for a request to be signaled, and cleans up the
1640 * request and object lists appropriately for that event.
1641 * @req: request to wait on
1642 */
1643 int
1644 i915_wait_request(struct drm_i915_gem_request *req)
1645 {
1646 struct drm_i915_private *dev_priv = req->i915;
1647 bool interruptible;
1648 int ret;
1649
1650 interruptible = dev_priv->mm.interruptible;
1651
1652 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1653
1654 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1655 if (ret)
1656 return ret;
1657
1658 /* If the GPU hung, we want to keep the requests to find the guilty. */
1659 if (!i915_reset_in_progress(&dev_priv->gpu_error))
1660 __i915_gem_request_retire__upto(req);
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * Ensures that all rendering to the object has completed and the object is
1667 * safe to unbind from the GTT or access from the CPU.
1668 * @obj: i915 gem object
1669 * @readonly: waiting for read access or write
1670 */
1671 int
1672 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1673 bool readonly)
1674 {
1675 int ret, i;
1676
1677 if (!obj->active)
1678 return 0;
1679
1680 if (readonly) {
1681 if (obj->last_write_req != NULL) {
1682 ret = i915_wait_request(obj->last_write_req);
1683 if (ret)
1684 return ret;
1685
1686 i = obj->last_write_req->engine->id;
1687 if (obj->last_read_req[i] == obj->last_write_req)
1688 i915_gem_object_retire__read(obj, i);
1689 else
1690 i915_gem_object_retire__write(obj);
1691 }
1692 } else {
1693 for (i = 0; i < I915_NUM_ENGINES; i++) {
1694 if (obj->last_read_req[i] == NULL)
1695 continue;
1696
1697 ret = i915_wait_request(obj->last_read_req[i]);
1698 if (ret)
1699 return ret;
1700
1701 i915_gem_object_retire__read(obj, i);
1702 }
1703 GEM_BUG_ON(obj->active);
1704 }
1705
1706 return 0;
1707 }
1708
1709 static void
1710 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1711 struct drm_i915_gem_request *req)
1712 {
1713 int ring = req->engine->id;
1714
1715 if (obj->last_read_req[ring] == req)
1716 i915_gem_object_retire__read(obj, ring);
1717 else if (obj->last_write_req == req)
1718 i915_gem_object_retire__write(obj);
1719
1720 if (!i915_reset_in_progress(&req->i915->gpu_error))
1721 __i915_gem_request_retire__upto(req);
1722 }
1723
1724 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1725 * as the object state may change during this call.
1726 */
1727 static __must_check int
1728 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1729 struct intel_rps_client *rps,
1730 bool readonly)
1731 {
1732 struct drm_device *dev = obj->base.dev;
1733 struct drm_i915_private *dev_priv = dev->dev_private;
1734 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1735 int ret, i, n = 0;
1736
1737 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1738 BUG_ON(!dev_priv->mm.interruptible);
1739
1740 if (!obj->active)
1741 return 0;
1742
1743 if (readonly) {
1744 struct drm_i915_gem_request *req;
1745
1746 req = obj->last_write_req;
1747 if (req == NULL)
1748 return 0;
1749
1750 requests[n++] = i915_gem_request_reference(req);
1751 } else {
1752 for (i = 0; i < I915_NUM_ENGINES; i++) {
1753 struct drm_i915_gem_request *req;
1754
1755 req = obj->last_read_req[i];
1756 if (req == NULL)
1757 continue;
1758
1759 requests[n++] = i915_gem_request_reference(req);
1760 }
1761 }
1762
1763 mutex_unlock(&dev->struct_mutex);
1764 ret = 0;
1765 for (i = 0; ret == 0 && i < n; i++)
1766 ret = __i915_wait_request(requests[i], true, NULL, rps);
1767 mutex_lock(&dev->struct_mutex);
1768
1769 for (i = 0; i < n; i++) {
1770 if (ret == 0)
1771 i915_gem_object_retire_request(obj, requests[i]);
1772 i915_gem_request_unreference(requests[i]);
1773 }
1774
1775 return ret;
1776 }
1777
1778 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1779 {
1780 struct drm_i915_file_private *fpriv = file->driver_priv;
1781 return &fpriv->rps;
1782 }
1783
1784 static enum fb_op_origin
1785 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1786 {
1787 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1788 ORIGIN_GTT : ORIGIN_CPU;
1789 }
1790
1791 /**
1792 * Called when user space prepares to use an object with the CPU, either
1793 * through the mmap ioctl's mapping or a GTT mapping.
1794 * @dev: drm device
1795 * @data: ioctl data blob
1796 * @file: drm file
1797 */
1798 int
1799 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1800 struct drm_file *file)
1801 {
1802 struct drm_i915_gem_set_domain *args = data;
1803 struct drm_i915_gem_object *obj;
1804 uint32_t read_domains = args->read_domains;
1805 uint32_t write_domain = args->write_domain;
1806 int ret;
1807
1808 /* Only handle setting domains to types used by the CPU. */
1809 if (write_domain & I915_GEM_GPU_DOMAINS)
1810 return -EINVAL;
1811
1812 if (read_domains & I915_GEM_GPU_DOMAINS)
1813 return -EINVAL;
1814
1815 /* Having something in the write domain implies it's in the read
1816 * domain, and only that read domain. Enforce that in the request.
1817 */
1818 if (write_domain != 0 && read_domains != write_domain)
1819 return -EINVAL;
1820
1821 ret = i915_mutex_lock_interruptible(dev);
1822 if (ret)
1823 return ret;
1824
1825 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1826 if (&obj->base == NULL) {
1827 ret = -ENOENT;
1828 goto unlock;
1829 }
1830
1831 /* Try to flush the object off the GPU without holding the lock.
1832 * We will repeat the flush holding the lock in the normal manner
1833 * to catch cases where we are gazumped.
1834 */
1835 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1836 to_rps_client(file),
1837 !write_domain);
1838 if (ret)
1839 goto unref;
1840
1841 if (read_domains & I915_GEM_DOMAIN_GTT)
1842 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1843 else
1844 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1845
1846 if (write_domain != 0)
1847 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1848
1849 unref:
1850 drm_gem_object_unreference(&obj->base);
1851 unlock:
1852 mutex_unlock(&dev->struct_mutex);
1853 return ret;
1854 }
1855
1856 /**
1857 * Called when user space has done writes to this buffer
1858 * @dev: drm device
1859 * @data: ioctl data blob
1860 * @file: drm file
1861 */
1862 int
1863 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1864 struct drm_file *file)
1865 {
1866 struct drm_i915_gem_sw_finish *args = data;
1867 struct drm_i915_gem_object *obj;
1868 int ret = 0;
1869
1870 ret = i915_mutex_lock_interruptible(dev);
1871 if (ret)
1872 return ret;
1873
1874 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1875 if (&obj->base == NULL) {
1876 ret = -ENOENT;
1877 goto unlock;
1878 }
1879
1880 /* Pinned buffers may be scanout, so flush the cache */
1881 if (obj->pin_display)
1882 i915_gem_object_flush_cpu_write_domain(obj);
1883
1884 drm_gem_object_unreference(&obj->base);
1885 unlock:
1886 mutex_unlock(&dev->struct_mutex);
1887 return ret;
1888 }
1889
1890 /**
1891 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1892 * it is mapped to.
1893 * @dev: drm device
1894 * @data: ioctl data blob
1895 * @file: drm file
1896 *
1897 * While the mapping holds a reference on the contents of the object, it doesn't
1898 * imply a ref on the object itself.
1899 *
1900 * IMPORTANT:
1901 *
1902 * DRM driver writers who look a this function as an example for how to do GEM
1903 * mmap support, please don't implement mmap support like here. The modern way
1904 * to implement DRM mmap support is with an mmap offset ioctl (like
1905 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1906 * That way debug tooling like valgrind will understand what's going on, hiding
1907 * the mmap call in a driver private ioctl will break that. The i915 driver only
1908 * does cpu mmaps this way because we didn't know better.
1909 */
1910 int
1911 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1912 struct drm_file *file)
1913 {
1914 struct drm_i915_gem_mmap *args = data;
1915 struct drm_gem_object *obj;
1916 unsigned long addr;
1917
1918 if (args->flags & ~(I915_MMAP_WC))
1919 return -EINVAL;
1920
1921 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1922 return -ENODEV;
1923
1924 obj = drm_gem_object_lookup(file, args->handle);
1925 if (obj == NULL)
1926 return -ENOENT;
1927
1928 /* prime objects have no backing filp to GEM mmap
1929 * pages from.
1930 */
1931 if (!obj->filp) {
1932 drm_gem_object_unreference_unlocked(obj);
1933 return -EINVAL;
1934 }
1935
1936 addr = vm_mmap(obj->filp, 0, args->size,
1937 PROT_READ | PROT_WRITE, MAP_SHARED,
1938 args->offset);
1939 if (args->flags & I915_MMAP_WC) {
1940 struct mm_struct *mm = current->mm;
1941 struct vm_area_struct *vma;
1942
1943 if (down_write_killable(&mm->mmap_sem)) {
1944 drm_gem_object_unreference_unlocked(obj);
1945 return -EINTR;
1946 }
1947 vma = find_vma(mm, addr);
1948 if (vma)
1949 vma->vm_page_prot =
1950 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1951 else
1952 addr = -ENOMEM;
1953 up_write(&mm->mmap_sem);
1954
1955 /* This may race, but that's ok, it only gets set */
1956 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1957 }
1958 drm_gem_object_unreference_unlocked(obj);
1959 if (IS_ERR((void *)addr))
1960 return addr;
1961
1962 args->addr_ptr = (uint64_t) addr;
1963
1964 return 0;
1965 }
1966
1967 /**
1968 * i915_gem_fault - fault a page into the GTT
1969 * @vma: VMA in question
1970 * @vmf: fault info
1971 *
1972 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1973 * from userspace. The fault handler takes care of binding the object to
1974 * the GTT (if needed), allocating and programming a fence register (again,
1975 * only if needed based on whether the old reg is still valid or the object
1976 * is tiled) and inserting a new PTE into the faulting process.
1977 *
1978 * Note that the faulting process may involve evicting existing objects
1979 * from the GTT and/or fence registers to make room. So performance may
1980 * suffer if the GTT working set is large or there are few fence registers
1981 * left.
1982 */
1983 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1984 {
1985 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1986 struct drm_device *dev = obj->base.dev;
1987 struct drm_i915_private *dev_priv = to_i915(dev);
1988 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1989 struct i915_ggtt_view view = i915_ggtt_view_normal;
1990 pgoff_t page_offset;
1991 unsigned long pfn;
1992 int ret = 0;
1993 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1994
1995 intel_runtime_pm_get(dev_priv);
1996
1997 /* We don't use vmf->pgoff since that has the fake offset */
1998 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1999 PAGE_SHIFT;
2000
2001 ret = i915_mutex_lock_interruptible(dev);
2002 if (ret)
2003 goto out;
2004
2005 trace_i915_gem_object_fault(obj, page_offset, true, write);
2006
2007 /* Try to flush the object off the GPU first without holding the lock.
2008 * Upon reacquiring the lock, we will perform our sanity checks and then
2009 * repeat the flush holding the lock in the normal manner to catch cases
2010 * where we are gazumped.
2011 */
2012 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2013 if (ret)
2014 goto unlock;
2015
2016 /* Access to snoopable pages through the GTT is incoherent. */
2017 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2018 ret = -EFAULT;
2019 goto unlock;
2020 }
2021
2022 /* Use a partial view if the object is bigger than the aperture. */
2023 if (obj->base.size >= ggtt->mappable_end &&
2024 obj->tiling_mode == I915_TILING_NONE) {
2025 static const unsigned int chunk_size = 256; // 1 MiB
2026
2027 memset(&view, 0, sizeof(view));
2028 view.type = I915_GGTT_VIEW_PARTIAL;
2029 view.params.partial.offset = rounddown(page_offset, chunk_size);
2030 view.params.partial.size =
2031 min_t(unsigned int,
2032 chunk_size,
2033 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2034 view.params.partial.offset);
2035 }
2036
2037 /* Now pin it into the GTT if needed */
2038 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2039 if (ret)
2040 goto unlock;
2041
2042 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2043 if (ret)
2044 goto unpin;
2045
2046 ret = i915_gem_object_get_fence(obj);
2047 if (ret)
2048 goto unpin;
2049
2050 /* Finally, remap it using the new GTT offset */
2051 pfn = ggtt->mappable_base +
2052 i915_gem_obj_ggtt_offset_view(obj, &view);
2053 pfn >>= PAGE_SHIFT;
2054
2055 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2056 /* Overriding existing pages in partial view does not cause
2057 * us any trouble as TLBs are still valid because the fault
2058 * is due to userspace losing part of the mapping or never
2059 * having accessed it before (at this partials' range).
2060 */
2061 unsigned long base = vma->vm_start +
2062 (view.params.partial.offset << PAGE_SHIFT);
2063 unsigned int i;
2064
2065 for (i = 0; i < view.params.partial.size; i++) {
2066 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2067 if (ret)
2068 break;
2069 }
2070
2071 obj->fault_mappable = true;
2072 } else {
2073 if (!obj->fault_mappable) {
2074 unsigned long size = min_t(unsigned long,
2075 vma->vm_end - vma->vm_start,
2076 obj->base.size);
2077 int i;
2078
2079 for (i = 0; i < size >> PAGE_SHIFT; i++) {
2080 ret = vm_insert_pfn(vma,
2081 (unsigned long)vma->vm_start + i * PAGE_SIZE,
2082 pfn + i);
2083 if (ret)
2084 break;
2085 }
2086
2087 obj->fault_mappable = true;
2088 } else
2089 ret = vm_insert_pfn(vma,
2090 (unsigned long)vmf->virtual_address,
2091 pfn + page_offset);
2092 }
2093 unpin:
2094 i915_gem_object_ggtt_unpin_view(obj, &view);
2095 unlock:
2096 mutex_unlock(&dev->struct_mutex);
2097 out:
2098 switch (ret) {
2099 case -EIO:
2100 /*
2101 * We eat errors when the gpu is terminally wedged to avoid
2102 * userspace unduly crashing (gl has no provisions for mmaps to
2103 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2104 * and so needs to be reported.
2105 */
2106 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2107 ret = VM_FAULT_SIGBUS;
2108 break;
2109 }
2110 case -EAGAIN:
2111 /*
2112 * EAGAIN means the gpu is hung and we'll wait for the error
2113 * handler to reset everything when re-faulting in
2114 * i915_mutex_lock_interruptible.
2115 */
2116 case 0:
2117 case -ERESTARTSYS:
2118 case -EINTR:
2119 case -EBUSY:
2120 /*
2121 * EBUSY is ok: this just means that another thread
2122 * already did the job.
2123 */
2124 ret = VM_FAULT_NOPAGE;
2125 break;
2126 case -ENOMEM:
2127 ret = VM_FAULT_OOM;
2128 break;
2129 case -ENOSPC:
2130 case -EFAULT:
2131 ret = VM_FAULT_SIGBUS;
2132 break;
2133 default:
2134 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2135 ret = VM_FAULT_SIGBUS;
2136 break;
2137 }
2138
2139 intel_runtime_pm_put(dev_priv);
2140 return ret;
2141 }
2142
2143 /**
2144 * i915_gem_release_mmap - remove physical page mappings
2145 * @obj: obj in question
2146 *
2147 * Preserve the reservation of the mmapping with the DRM core code, but
2148 * relinquish ownership of the pages back to the system.
2149 *
2150 * It is vital that we remove the page mapping if we have mapped a tiled
2151 * object through the GTT and then lose the fence register due to
2152 * resource pressure. Similarly if the object has been moved out of the
2153 * aperture, than pages mapped into userspace must be revoked. Removing the
2154 * mapping will then trigger a page fault on the next user access, allowing
2155 * fixup by i915_gem_fault().
2156 */
2157 void
2158 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2159 {
2160 /* Serialisation between user GTT access and our code depends upon
2161 * revoking the CPU's PTE whilst the mutex is held. The next user
2162 * pagefault then has to wait until we release the mutex.
2163 */
2164 lockdep_assert_held(&obj->base.dev->struct_mutex);
2165
2166 if (!obj->fault_mappable)
2167 return;
2168
2169 drm_vma_node_unmap(&obj->base.vma_node,
2170 obj->base.dev->anon_inode->i_mapping);
2171
2172 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2173 * memory transactions from userspace before we return. The TLB
2174 * flushing implied above by changing the PTE above *should* be
2175 * sufficient, an extra barrier here just provides us with a bit
2176 * of paranoid documentation about our requirement to serialise
2177 * memory writes before touching registers / GSM.
2178 */
2179 wmb();
2180
2181 obj->fault_mappable = false;
2182 }
2183
2184 void
2185 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2186 {
2187 struct drm_i915_gem_object *obj;
2188
2189 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2190 i915_gem_release_mmap(obj);
2191 }
2192
2193 uint32_t
2194 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2195 {
2196 uint32_t gtt_size;
2197
2198 if (INTEL_INFO(dev)->gen >= 4 ||
2199 tiling_mode == I915_TILING_NONE)
2200 return size;
2201
2202 /* Previous chips need a power-of-two fence region when tiling */
2203 if (IS_GEN3(dev))
2204 gtt_size = 1024*1024;
2205 else
2206 gtt_size = 512*1024;
2207
2208 while (gtt_size < size)
2209 gtt_size <<= 1;
2210
2211 return gtt_size;
2212 }
2213
2214 /**
2215 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2216 * @dev: drm device
2217 * @size: object size
2218 * @tiling_mode: tiling mode
2219 * @fenced: is fenced alignemned required or not
2220 *
2221 * Return the required GTT alignment for an object, taking into account
2222 * potential fence register mapping.
2223 */
2224 uint32_t
2225 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2226 int tiling_mode, bool fenced)
2227 {
2228 /*
2229 * Minimum alignment is 4k (GTT page size), but might be greater
2230 * if a fence register is needed for the object.
2231 */
2232 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2233 tiling_mode == I915_TILING_NONE)
2234 return 4096;
2235
2236 /*
2237 * Previous chips need to be aligned to the size of the smallest
2238 * fence register that can contain the object.
2239 */
2240 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2241 }
2242
2243 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2244 {
2245 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2246 int ret;
2247
2248 dev_priv->mm.shrinker_no_lock_stealing = true;
2249
2250 ret = drm_gem_create_mmap_offset(&obj->base);
2251 if (ret != -ENOSPC)
2252 goto out;
2253
2254 /* Badly fragmented mmap space? The only way we can recover
2255 * space is by destroying unwanted objects. We can't randomly release
2256 * mmap_offsets as userspace expects them to be persistent for the
2257 * lifetime of the objects. The closest we can is to release the
2258 * offsets on purgeable objects by truncating it and marking it purged,
2259 * which prevents userspace from ever using that object again.
2260 */
2261 i915_gem_shrink(dev_priv,
2262 obj->base.size >> PAGE_SHIFT,
2263 I915_SHRINK_BOUND |
2264 I915_SHRINK_UNBOUND |
2265 I915_SHRINK_PURGEABLE);
2266 ret = drm_gem_create_mmap_offset(&obj->base);
2267 if (ret != -ENOSPC)
2268 goto out;
2269
2270 i915_gem_shrink_all(dev_priv);
2271 ret = drm_gem_create_mmap_offset(&obj->base);
2272 out:
2273 dev_priv->mm.shrinker_no_lock_stealing = false;
2274
2275 return ret;
2276 }
2277
2278 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2279 {
2280 drm_gem_free_mmap_offset(&obj->base);
2281 }
2282
2283 int
2284 i915_gem_mmap_gtt(struct drm_file *file,
2285 struct drm_device *dev,
2286 uint32_t handle,
2287 uint64_t *offset)
2288 {
2289 struct drm_i915_gem_object *obj;
2290 int ret;
2291
2292 ret = i915_mutex_lock_interruptible(dev);
2293 if (ret)
2294 return ret;
2295
2296 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2297 if (&obj->base == NULL) {
2298 ret = -ENOENT;
2299 goto unlock;
2300 }
2301
2302 if (obj->madv != I915_MADV_WILLNEED) {
2303 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2304 ret = -EFAULT;
2305 goto out;
2306 }
2307
2308 ret = i915_gem_object_create_mmap_offset(obj);
2309 if (ret)
2310 goto out;
2311
2312 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2313
2314 out:
2315 drm_gem_object_unreference(&obj->base);
2316 unlock:
2317 mutex_unlock(&dev->struct_mutex);
2318 return ret;
2319 }
2320
2321 /**
2322 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2323 * @dev: DRM device
2324 * @data: GTT mapping ioctl data
2325 * @file: GEM object info
2326 *
2327 * Simply returns the fake offset to userspace so it can mmap it.
2328 * The mmap call will end up in drm_gem_mmap(), which will set things
2329 * up so we can get faults in the handler above.
2330 *
2331 * The fault handler will take care of binding the object into the GTT
2332 * (since it may have been evicted to make room for something), allocating
2333 * a fence register, and mapping the appropriate aperture address into
2334 * userspace.
2335 */
2336 int
2337 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2338 struct drm_file *file)
2339 {
2340 struct drm_i915_gem_mmap_gtt *args = data;
2341
2342 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2343 }
2344
2345 /* Immediately discard the backing storage */
2346 static void
2347 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2348 {
2349 i915_gem_object_free_mmap_offset(obj);
2350
2351 if (obj->base.filp == NULL)
2352 return;
2353
2354 /* Our goal here is to return as much of the memory as
2355 * is possible back to the system as we are called from OOM.
2356 * To do this we must instruct the shmfs to drop all of its
2357 * backing pages, *now*.
2358 */
2359 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2360 obj->madv = __I915_MADV_PURGED;
2361 }
2362
2363 /* Try to discard unwanted pages */
2364 static void
2365 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2366 {
2367 struct address_space *mapping;
2368
2369 switch (obj->madv) {
2370 case I915_MADV_DONTNEED:
2371 i915_gem_object_truncate(obj);
2372 case __I915_MADV_PURGED:
2373 return;
2374 }
2375
2376 if (obj->base.filp == NULL)
2377 return;
2378
2379 mapping = file_inode(obj->base.filp)->i_mapping,
2380 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2381 }
2382
2383 static void
2384 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2385 {
2386 struct sgt_iter sgt_iter;
2387 struct page *page;
2388 int ret;
2389
2390 BUG_ON(obj->madv == __I915_MADV_PURGED);
2391
2392 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2393 if (WARN_ON(ret)) {
2394 /* In the event of a disaster, abandon all caches and
2395 * hope for the best.
2396 */
2397 i915_gem_clflush_object(obj, true);
2398 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2399 }
2400
2401 i915_gem_gtt_finish_object(obj);
2402
2403 if (i915_gem_object_needs_bit17_swizzle(obj))
2404 i915_gem_object_save_bit_17_swizzle(obj);
2405
2406 if (obj->madv == I915_MADV_DONTNEED)
2407 obj->dirty = 0;
2408
2409 for_each_sgt_page(page, sgt_iter, obj->pages) {
2410 if (obj->dirty)
2411 set_page_dirty(page);
2412
2413 if (obj->madv == I915_MADV_WILLNEED)
2414 mark_page_accessed(page);
2415
2416 put_page(page);
2417 }
2418 obj->dirty = 0;
2419
2420 sg_free_table(obj->pages);
2421 kfree(obj->pages);
2422 }
2423
2424 int
2425 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2426 {
2427 const struct drm_i915_gem_object_ops *ops = obj->ops;
2428
2429 if (obj->pages == NULL)
2430 return 0;
2431
2432 if (obj->pages_pin_count)
2433 return -EBUSY;
2434
2435 BUG_ON(i915_gem_obj_bound_any(obj));
2436
2437 /* ->put_pages might need to allocate memory for the bit17 swizzle
2438 * array, hence protect them from being reaped by removing them from gtt
2439 * lists early. */
2440 list_del(&obj->global_list);
2441
2442 if (obj->mapping) {
2443 if (is_vmalloc_addr(obj->mapping))
2444 vunmap(obj->mapping);
2445 else
2446 kunmap(kmap_to_page(obj->mapping));
2447 obj->mapping = NULL;
2448 }
2449
2450 ops->put_pages(obj);
2451 obj->pages = NULL;
2452
2453 i915_gem_object_invalidate(obj);
2454
2455 return 0;
2456 }
2457
2458 static int
2459 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2460 {
2461 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2462 int page_count, i;
2463 struct address_space *mapping;
2464 struct sg_table *st;
2465 struct scatterlist *sg;
2466 struct sgt_iter sgt_iter;
2467 struct page *page;
2468 unsigned long last_pfn = 0; /* suppress gcc warning */
2469 int ret;
2470 gfp_t gfp;
2471
2472 /* Assert that the object is not currently in any GPU domain. As it
2473 * wasn't in the GTT, there shouldn't be any way it could have been in
2474 * a GPU cache
2475 */
2476 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2477 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2478
2479 st = kmalloc(sizeof(*st), GFP_KERNEL);
2480 if (st == NULL)
2481 return -ENOMEM;
2482
2483 page_count = obj->base.size / PAGE_SIZE;
2484 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2485 kfree(st);
2486 return -ENOMEM;
2487 }
2488
2489 /* Get the list of pages out of our struct file. They'll be pinned
2490 * at this point until we release them.
2491 *
2492 * Fail silently without starting the shrinker
2493 */
2494 mapping = file_inode(obj->base.filp)->i_mapping;
2495 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2496 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2497 sg = st->sgl;
2498 st->nents = 0;
2499 for (i = 0; i < page_count; i++) {
2500 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2501 if (IS_ERR(page)) {
2502 i915_gem_shrink(dev_priv,
2503 page_count,
2504 I915_SHRINK_BOUND |
2505 I915_SHRINK_UNBOUND |
2506 I915_SHRINK_PURGEABLE);
2507 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2508 }
2509 if (IS_ERR(page)) {
2510 /* We've tried hard to allocate the memory by reaping
2511 * our own buffer, now let the real VM do its job and
2512 * go down in flames if truly OOM.
2513 */
2514 i915_gem_shrink_all(dev_priv);
2515 page = shmem_read_mapping_page(mapping, i);
2516 if (IS_ERR(page)) {
2517 ret = PTR_ERR(page);
2518 goto err_pages;
2519 }
2520 }
2521 #ifdef CONFIG_SWIOTLB
2522 if (swiotlb_nr_tbl()) {
2523 st->nents++;
2524 sg_set_page(sg, page, PAGE_SIZE, 0);
2525 sg = sg_next(sg);
2526 continue;
2527 }
2528 #endif
2529 if (!i || page_to_pfn(page) != last_pfn + 1) {
2530 if (i)
2531 sg = sg_next(sg);
2532 st->nents++;
2533 sg_set_page(sg, page, PAGE_SIZE, 0);
2534 } else {
2535 sg->length += PAGE_SIZE;
2536 }
2537 last_pfn = page_to_pfn(page);
2538
2539 /* Check that the i965g/gm workaround works. */
2540 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2541 }
2542 #ifdef CONFIG_SWIOTLB
2543 if (!swiotlb_nr_tbl())
2544 #endif
2545 sg_mark_end(sg);
2546 obj->pages = st;
2547
2548 ret = i915_gem_gtt_prepare_object(obj);
2549 if (ret)
2550 goto err_pages;
2551
2552 if (i915_gem_object_needs_bit17_swizzle(obj))
2553 i915_gem_object_do_bit_17_swizzle(obj);
2554
2555 if (obj->tiling_mode != I915_TILING_NONE &&
2556 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2557 i915_gem_object_pin_pages(obj);
2558
2559 return 0;
2560
2561 err_pages:
2562 sg_mark_end(sg);
2563 for_each_sgt_page(page, sgt_iter, st)
2564 put_page(page);
2565 sg_free_table(st);
2566 kfree(st);
2567
2568 /* shmemfs first checks if there is enough memory to allocate the page
2569 * and reports ENOSPC should there be insufficient, along with the usual
2570 * ENOMEM for a genuine allocation failure.
2571 *
2572 * We use ENOSPC in our driver to mean that we have run out of aperture
2573 * space and so want to translate the error from shmemfs back to our
2574 * usual understanding of ENOMEM.
2575 */
2576 if (ret == -ENOSPC)
2577 ret = -ENOMEM;
2578
2579 return ret;
2580 }
2581
2582 /* Ensure that the associated pages are gathered from the backing storage
2583 * and pinned into our object. i915_gem_object_get_pages() may be called
2584 * multiple times before they are released by a single call to
2585 * i915_gem_object_put_pages() - once the pages are no longer referenced
2586 * either as a result of memory pressure (reaping pages under the shrinker)
2587 * or as the object is itself released.
2588 */
2589 int
2590 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2591 {
2592 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2593 const struct drm_i915_gem_object_ops *ops = obj->ops;
2594 int ret;
2595
2596 if (obj->pages)
2597 return 0;
2598
2599 if (obj->madv != I915_MADV_WILLNEED) {
2600 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2601 return -EFAULT;
2602 }
2603
2604 BUG_ON(obj->pages_pin_count);
2605
2606 ret = ops->get_pages(obj);
2607 if (ret)
2608 return ret;
2609
2610 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2611
2612 obj->get_page.sg = obj->pages->sgl;
2613 obj->get_page.last = 0;
2614
2615 return 0;
2616 }
2617
2618 /* The 'mapping' part of i915_gem_object_pin_map() below */
2619 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2620 {
2621 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2622 struct sg_table *sgt = obj->pages;
2623 struct sgt_iter sgt_iter;
2624 struct page *page;
2625 struct page *stack_pages[32];
2626 struct page **pages = stack_pages;
2627 unsigned long i = 0;
2628 void *addr;
2629
2630 /* A single page can always be kmapped */
2631 if (n_pages == 1)
2632 return kmap(sg_page(sgt->sgl));
2633
2634 if (n_pages > ARRAY_SIZE(stack_pages)) {
2635 /* Too big for stack -- allocate temporary array instead */
2636 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2637 if (!pages)
2638 return NULL;
2639 }
2640
2641 for_each_sgt_page(page, sgt_iter, sgt)
2642 pages[i++] = page;
2643
2644 /* Check that we have the expected number of pages */
2645 GEM_BUG_ON(i != n_pages);
2646
2647 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2648
2649 if (pages != stack_pages)
2650 drm_free_large(pages);
2651
2652 return addr;
2653 }
2654
2655 /* get, pin, and map the pages of the object into kernel space */
2656 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2657 {
2658 int ret;
2659
2660 lockdep_assert_held(&obj->base.dev->struct_mutex);
2661
2662 ret = i915_gem_object_get_pages(obj);
2663 if (ret)
2664 return ERR_PTR(ret);
2665
2666 i915_gem_object_pin_pages(obj);
2667
2668 if (!obj->mapping) {
2669 obj->mapping = i915_gem_object_map(obj);
2670 if (!obj->mapping) {
2671 i915_gem_object_unpin_pages(obj);
2672 return ERR_PTR(-ENOMEM);
2673 }
2674 }
2675
2676 return obj->mapping;
2677 }
2678
2679 void i915_vma_move_to_active(struct i915_vma *vma,
2680 struct drm_i915_gem_request *req)
2681 {
2682 struct drm_i915_gem_object *obj = vma->obj;
2683 struct intel_engine_cs *engine;
2684
2685 engine = i915_gem_request_get_engine(req);
2686
2687 /* Add a reference if we're newly entering the active list. */
2688 if (obj->active == 0)
2689 drm_gem_object_reference(&obj->base);
2690 obj->active |= intel_engine_flag(engine);
2691
2692 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2693 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2694
2695 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2696 }
2697
2698 static void
2699 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2700 {
2701 GEM_BUG_ON(obj->last_write_req == NULL);
2702 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2703
2704 i915_gem_request_assign(&obj->last_write_req, NULL);
2705 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2706 }
2707
2708 static void
2709 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2710 {
2711 struct i915_vma *vma;
2712
2713 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2714 GEM_BUG_ON(!(obj->active & (1 << ring)));
2715
2716 list_del_init(&obj->engine_list[ring]);
2717 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2718
2719 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2720 i915_gem_object_retire__write(obj);
2721
2722 obj->active &= ~(1 << ring);
2723 if (obj->active)
2724 return;
2725
2726 /* Bump our place on the bound list to keep it roughly in LRU order
2727 * so that we don't steal from recently used but inactive objects
2728 * (unless we are forced to ofc!)
2729 */
2730 list_move_tail(&obj->global_list,
2731 &to_i915(obj->base.dev)->mm.bound_list);
2732
2733 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2734 if (!list_empty(&vma->vm_link))
2735 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2736 }
2737
2738 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2739 drm_gem_object_unreference(&obj->base);
2740 }
2741
2742 static int
2743 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2744 {
2745 struct intel_engine_cs *engine;
2746 int ret;
2747
2748 /* Carefully retire all requests without writing to the rings */
2749 for_each_engine(engine, dev_priv) {
2750 ret = intel_engine_idle(engine);
2751 if (ret)
2752 return ret;
2753 }
2754 i915_gem_retire_requests(dev_priv);
2755
2756 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2757 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2758 while (intel_kick_waiters(dev_priv))
2759 yield();
2760 }
2761
2762 /* Finally reset hw state */
2763 for_each_engine(engine, dev_priv)
2764 intel_ring_init_seqno(engine, seqno);
2765
2766 return 0;
2767 }
2768
2769 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2770 {
2771 struct drm_i915_private *dev_priv = dev->dev_private;
2772 int ret;
2773
2774 if (seqno == 0)
2775 return -EINVAL;
2776
2777 /* HWS page needs to be set less than what we
2778 * will inject to ring
2779 */
2780 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2781 if (ret)
2782 return ret;
2783
2784 /* Carefully set the last_seqno value so that wrap
2785 * detection still works
2786 */
2787 dev_priv->next_seqno = seqno;
2788 dev_priv->last_seqno = seqno - 1;
2789 if (dev_priv->last_seqno == 0)
2790 dev_priv->last_seqno--;
2791
2792 return 0;
2793 }
2794
2795 int
2796 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2797 {
2798 /* reserve 0 for non-seqno */
2799 if (dev_priv->next_seqno == 0) {
2800 int ret = i915_gem_init_seqno(dev_priv, 0);
2801 if (ret)
2802 return ret;
2803
2804 dev_priv->next_seqno = 1;
2805 }
2806
2807 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2808 return 0;
2809 }
2810
2811 /*
2812 * NB: This function is not allowed to fail. Doing so would mean the the
2813 * request is not being tracked for completion but the work itself is
2814 * going to happen on the hardware. This would be a Bad Thing(tm).
2815 */
2816 void __i915_add_request(struct drm_i915_gem_request *request,
2817 struct drm_i915_gem_object *obj,
2818 bool flush_caches)
2819 {
2820 struct intel_engine_cs *engine;
2821 struct drm_i915_private *dev_priv;
2822 struct intel_ringbuffer *ringbuf;
2823 u32 request_start;
2824 u32 reserved_tail;
2825 int ret;
2826
2827 if (WARN_ON(request == NULL))
2828 return;
2829
2830 engine = request->engine;
2831 dev_priv = request->i915;
2832 ringbuf = request->ringbuf;
2833
2834 /*
2835 * To ensure that this call will not fail, space for its emissions
2836 * should already have been reserved in the ring buffer. Let the ring
2837 * know that it is time to use that space up.
2838 */
2839 request_start = intel_ring_get_tail(ringbuf);
2840 reserved_tail = request->reserved_space;
2841 request->reserved_space = 0;
2842
2843 /*
2844 * Emit any outstanding flushes - execbuf can fail to emit the flush
2845 * after having emitted the batchbuffer command. Hence we need to fix
2846 * things up similar to emitting the lazy request. The difference here
2847 * is that the flush _must_ happen before the next request, no matter
2848 * what.
2849 */
2850 if (flush_caches) {
2851 if (i915.enable_execlists)
2852 ret = logical_ring_flush_all_caches(request);
2853 else
2854 ret = intel_ring_flush_all_caches(request);
2855 /* Not allowed to fail! */
2856 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2857 }
2858
2859 trace_i915_gem_request_add(request);
2860
2861 request->head = request_start;
2862
2863 /* Whilst this request exists, batch_obj will be on the
2864 * active_list, and so will hold the active reference. Only when this
2865 * request is retired will the the batch_obj be moved onto the
2866 * inactive_list and lose its active reference. Hence we do not need
2867 * to explicitly hold another reference here.
2868 */
2869 request->batch_obj = obj;
2870
2871 /* Seal the request and mark it as pending execution. Note that
2872 * we may inspect this state, without holding any locks, during
2873 * hangcheck. Hence we apply the barrier to ensure that we do not
2874 * see a more recent value in the hws than we are tracking.
2875 */
2876 request->emitted_jiffies = jiffies;
2877 request->previous_seqno = engine->last_submitted_seqno;
2878 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2879 list_add_tail(&request->list, &engine->request_list);
2880
2881 /* Record the position of the start of the request so that
2882 * should we detect the updated seqno part-way through the
2883 * GPU processing the request, we never over-estimate the
2884 * position of the head.
2885 */
2886 request->postfix = intel_ring_get_tail(ringbuf);
2887
2888 if (i915.enable_execlists)
2889 ret = engine->emit_request(request);
2890 else {
2891 ret = engine->add_request(request);
2892
2893 request->tail = intel_ring_get_tail(ringbuf);
2894 }
2895 /* Not allowed to fail! */
2896 WARN(ret, "emit|add_request failed: %d!\n", ret);
2897
2898 queue_delayed_work(dev_priv->wq,
2899 &dev_priv->mm.retire_work,
2900 round_jiffies_up_relative(HZ));
2901 intel_mark_busy(dev_priv);
2902
2903 /* Sanity check that the reserved size was large enough. */
2904 ret = intel_ring_get_tail(ringbuf) - request_start;
2905 if (ret < 0)
2906 ret += ringbuf->size;
2907 WARN_ONCE(ret > reserved_tail,
2908 "Not enough space reserved (%d bytes) "
2909 "for adding the request (%d bytes)\n",
2910 reserved_tail, ret);
2911 }
2912
2913 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2914 const struct i915_gem_context *ctx)
2915 {
2916 unsigned long elapsed;
2917
2918 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2919
2920 if (ctx->hang_stats.banned)
2921 return true;
2922
2923 if (ctx->hang_stats.ban_period_seconds &&
2924 elapsed <= ctx->hang_stats.ban_period_seconds) {
2925 if (!i915_gem_context_is_default(ctx)) {
2926 DRM_DEBUG("context hanging too fast, banning!\n");
2927 return true;
2928 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2929 if (i915_stop_ring_allow_warn(dev_priv))
2930 DRM_ERROR("gpu hanging too fast, banning!\n");
2931 return true;
2932 }
2933 }
2934
2935 return false;
2936 }
2937
2938 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2939 struct i915_gem_context *ctx,
2940 const bool guilty)
2941 {
2942 struct i915_ctx_hang_stats *hs;
2943
2944 if (WARN_ON(!ctx))
2945 return;
2946
2947 hs = &ctx->hang_stats;
2948
2949 if (guilty) {
2950 hs->banned = i915_context_is_banned(dev_priv, ctx);
2951 hs->batch_active++;
2952 hs->guilty_ts = get_seconds();
2953 } else {
2954 hs->batch_pending++;
2955 }
2956 }
2957
2958 void i915_gem_request_free(struct kref *req_ref)
2959 {
2960 struct drm_i915_gem_request *req = container_of(req_ref,
2961 typeof(*req), ref);
2962 kmem_cache_free(req->i915->requests, req);
2963 }
2964
2965 static inline int
2966 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2967 struct i915_gem_context *ctx,
2968 struct drm_i915_gem_request **req_out)
2969 {
2970 struct drm_i915_private *dev_priv = engine->i915;
2971 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2972 struct drm_i915_gem_request *req;
2973 int ret;
2974
2975 if (!req_out)
2976 return -EINVAL;
2977
2978 *req_out = NULL;
2979
2980 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2981 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2982 * and restart.
2983 */
2984 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2985 if (ret)
2986 return ret;
2987
2988 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2989 if (req == NULL)
2990 return -ENOMEM;
2991
2992 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2993 if (ret)
2994 goto err;
2995
2996 kref_init(&req->ref);
2997 req->i915 = dev_priv;
2998 req->engine = engine;
2999 req->ctx = ctx;
3000 i915_gem_context_reference(req->ctx);
3001
3002 /*
3003 * Reserve space in the ring buffer for all the commands required to
3004 * eventually emit this request. This is to guarantee that the
3005 * i915_add_request() call can't fail. Note that the reserve may need
3006 * to be redone if the request is not actually submitted straight
3007 * away, e.g. because a GPU scheduler has deferred it.
3008 */
3009 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3010
3011 if (i915.enable_execlists)
3012 ret = intel_logical_ring_alloc_request_extras(req);
3013 else
3014 ret = intel_ring_alloc_request_extras(req);
3015 if (ret)
3016 goto err_ctx;
3017
3018 *req_out = req;
3019 return 0;
3020
3021 err_ctx:
3022 i915_gem_context_unreference(ctx);
3023 err:
3024 kmem_cache_free(dev_priv->requests, req);
3025 return ret;
3026 }
3027
3028 /**
3029 * i915_gem_request_alloc - allocate a request structure
3030 *
3031 * @engine: engine that we wish to issue the request on.
3032 * @ctx: context that the request will be associated with.
3033 * This can be NULL if the request is not directly related to
3034 * any specific user context, in which case this function will
3035 * choose an appropriate context to use.
3036 *
3037 * Returns a pointer to the allocated request if successful,
3038 * or an error code if not.
3039 */
3040 struct drm_i915_gem_request *
3041 i915_gem_request_alloc(struct intel_engine_cs *engine,
3042 struct i915_gem_context *ctx)
3043 {
3044 struct drm_i915_gem_request *req;
3045 int err;
3046
3047 if (ctx == NULL)
3048 ctx = engine->i915->kernel_context;
3049 err = __i915_gem_request_alloc(engine, ctx, &req);
3050 return err ? ERR_PTR(err) : req;
3051 }
3052
3053 struct drm_i915_gem_request *
3054 i915_gem_find_active_request(struct intel_engine_cs *engine)
3055 {
3056 struct drm_i915_gem_request *request;
3057
3058 /* We are called by the error capture and reset at a random
3059 * point in time. In particular, note that neither is crucially
3060 * ordered with an interrupt. After a hang, the GPU is dead and we
3061 * assume that no more writes can happen (we waited long enough for
3062 * all writes that were in transaction to be flushed) - adding an
3063 * extra delay for a recent interrupt is pointless. Hence, we do
3064 * not need an engine->irq_seqno_barrier() before the seqno reads.
3065 */
3066 list_for_each_entry(request, &engine->request_list, list) {
3067 if (i915_gem_request_completed(request))
3068 continue;
3069
3070 return request;
3071 }
3072
3073 return NULL;
3074 }
3075
3076 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
3077 struct intel_engine_cs *engine)
3078 {
3079 struct drm_i915_gem_request *request;
3080 bool ring_hung;
3081
3082 request = i915_gem_find_active_request(engine);
3083
3084 if (request == NULL)
3085 return;
3086
3087 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3088
3089 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
3090
3091 list_for_each_entry_continue(request, &engine->request_list, list)
3092 i915_set_reset_status(dev_priv, request->ctx, false);
3093 }
3094
3095 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
3096 struct intel_engine_cs *engine)
3097 {
3098 struct intel_ringbuffer *buffer;
3099
3100 while (!list_empty(&engine->active_list)) {
3101 struct drm_i915_gem_object *obj;
3102
3103 obj = list_first_entry(&engine->active_list,
3104 struct drm_i915_gem_object,
3105 engine_list[engine->id]);
3106
3107 i915_gem_object_retire__read(obj, engine->id);
3108 }
3109
3110 /*
3111 * Clear the execlists queue up before freeing the requests, as those
3112 * are the ones that keep the context and ringbuffer backing objects
3113 * pinned in place.
3114 */
3115
3116 if (i915.enable_execlists) {
3117 /* Ensure irq handler finishes or is cancelled. */
3118 tasklet_kill(&engine->irq_tasklet);
3119
3120 intel_execlists_cancel_requests(engine);
3121 }
3122
3123 /*
3124 * We must free the requests after all the corresponding objects have
3125 * been moved off active lists. Which is the same order as the normal
3126 * retire_requests function does. This is important if object hold
3127 * implicit references on things like e.g. ppgtt address spaces through
3128 * the request.
3129 */
3130 while (!list_empty(&engine->request_list)) {
3131 struct drm_i915_gem_request *request;
3132
3133 request = list_first_entry(&engine->request_list,
3134 struct drm_i915_gem_request,
3135 list);
3136
3137 i915_gem_request_retire(request);
3138 }
3139
3140 /* Having flushed all requests from all queues, we know that all
3141 * ringbuffers must now be empty. However, since we do not reclaim
3142 * all space when retiring the request (to prevent HEADs colliding
3143 * with rapid ringbuffer wraparound) the amount of available space
3144 * upon reset is less than when we start. Do one more pass over
3145 * all the ringbuffers to reset last_retired_head.
3146 */
3147 list_for_each_entry(buffer, &engine->buffers, link) {
3148 buffer->last_retired_head = buffer->tail;
3149 intel_ring_update_space(buffer);
3150 }
3151
3152 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3153 }
3154
3155 void i915_gem_reset(struct drm_device *dev)
3156 {
3157 struct drm_i915_private *dev_priv = dev->dev_private;
3158 struct intel_engine_cs *engine;
3159
3160 /*
3161 * Before we free the objects from the requests, we need to inspect
3162 * them for finding the guilty party. As the requests only borrow
3163 * their reference to the objects, the inspection must be done first.
3164 */
3165 for_each_engine(engine, dev_priv)
3166 i915_gem_reset_engine_status(dev_priv, engine);
3167
3168 for_each_engine(engine, dev_priv)
3169 i915_gem_reset_engine_cleanup(dev_priv, engine);
3170
3171 i915_gem_context_reset(dev);
3172
3173 i915_gem_restore_fences(dev);
3174
3175 WARN_ON(i915_verify_lists(dev));
3176 }
3177
3178 /**
3179 * This function clears the request list as sequence numbers are passed.
3180 * @engine: engine to retire requests on
3181 */
3182 void
3183 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3184 {
3185 WARN_ON(i915_verify_lists(engine->dev));
3186
3187 /* Retire requests first as we use it above for the early return.
3188 * If we retire requests last, we may use a later seqno and so clear
3189 * the requests lists without clearing the active list, leading to
3190 * confusion.
3191 */
3192 while (!list_empty(&engine->request_list)) {
3193 struct drm_i915_gem_request *request;
3194
3195 request = list_first_entry(&engine->request_list,
3196 struct drm_i915_gem_request,
3197 list);
3198
3199 if (!i915_gem_request_completed(request))
3200 break;
3201
3202 i915_gem_request_retire(request);
3203 }
3204
3205 /* Move any buffers on the active list that are no longer referenced
3206 * by the ringbuffer to the flushing/inactive lists as appropriate,
3207 * before we free the context associated with the requests.
3208 */
3209 while (!list_empty(&engine->active_list)) {
3210 struct drm_i915_gem_object *obj;
3211
3212 obj = list_first_entry(&engine->active_list,
3213 struct drm_i915_gem_object,
3214 engine_list[engine->id]);
3215
3216 if (!list_empty(&obj->last_read_req[engine->id]->list))
3217 break;
3218
3219 i915_gem_object_retire__read(obj, engine->id);
3220 }
3221
3222 if (unlikely(engine->trace_irq_req &&
3223 i915_gem_request_completed(engine->trace_irq_req))) {
3224 engine->irq_put(engine);
3225 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3226 }
3227
3228 WARN_ON(i915_verify_lists(engine->dev));
3229 }
3230
3231 bool
3232 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3233 {
3234 struct intel_engine_cs *engine;
3235 bool idle = true;
3236
3237 for_each_engine(engine, dev_priv) {
3238 i915_gem_retire_requests_ring(engine);
3239 idle &= list_empty(&engine->request_list);
3240 if (i915.enable_execlists) {
3241 spin_lock_bh(&engine->execlist_lock);
3242 idle &= list_empty(&engine->execlist_queue);
3243 spin_unlock_bh(&engine->execlist_lock);
3244 }
3245 }
3246
3247 if (idle)
3248 mod_delayed_work(dev_priv->wq,
3249 &dev_priv->mm.idle_work,
3250 msecs_to_jiffies(100));
3251
3252 return idle;
3253 }
3254
3255 static void
3256 i915_gem_retire_work_handler(struct work_struct *work)
3257 {
3258 struct drm_i915_private *dev_priv =
3259 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3260 struct drm_device *dev = dev_priv->dev;
3261 bool idle;
3262
3263 /* Come back later if the device is busy... */
3264 idle = false;
3265 if (mutex_trylock(&dev->struct_mutex)) {
3266 idle = i915_gem_retire_requests(dev_priv);
3267 mutex_unlock(&dev->struct_mutex);
3268 }
3269 if (!idle)
3270 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3271 round_jiffies_up_relative(HZ));
3272 }
3273
3274 static void
3275 i915_gem_idle_work_handler(struct work_struct *work)
3276 {
3277 struct drm_i915_private *dev_priv =
3278 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3279 struct drm_device *dev = dev_priv->dev;
3280 struct intel_engine_cs *engine;
3281
3282 for_each_engine(engine, dev_priv)
3283 if (!list_empty(&engine->request_list))
3284 return;
3285
3286 /* we probably should sync with hangcheck here, using cancel_work_sync.
3287 * Also locking seems to be fubar here, engine->request_list is protected
3288 * by dev->struct_mutex. */
3289
3290 intel_mark_idle(dev_priv);
3291
3292 if (mutex_trylock(&dev->struct_mutex)) {
3293 for_each_engine(engine, dev_priv)
3294 i915_gem_batch_pool_fini(&engine->batch_pool);
3295
3296 mutex_unlock(&dev->struct_mutex);
3297 }
3298 }
3299
3300 /**
3301 * Ensures that an object will eventually get non-busy by flushing any required
3302 * write domains, emitting any outstanding lazy request and retiring and
3303 * completed requests.
3304 * @obj: object to flush
3305 */
3306 static int
3307 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3308 {
3309 int i;
3310
3311 if (!obj->active)
3312 return 0;
3313
3314 for (i = 0; i < I915_NUM_ENGINES; i++) {
3315 struct drm_i915_gem_request *req;
3316
3317 req = obj->last_read_req[i];
3318 if (req == NULL)
3319 continue;
3320
3321 if (i915_gem_request_completed(req))
3322 i915_gem_object_retire__read(obj, i);
3323 }
3324
3325 return 0;
3326 }
3327
3328 /**
3329 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3330 * @dev: drm device pointer
3331 * @data: ioctl data blob
3332 * @file: drm file pointer
3333 *
3334 * Returns 0 if successful, else an error is returned with the remaining time in
3335 * the timeout parameter.
3336 * -ETIME: object is still busy after timeout
3337 * -ERESTARTSYS: signal interrupted the wait
3338 * -ENONENT: object doesn't exist
3339 * Also possible, but rare:
3340 * -EAGAIN: GPU wedged
3341 * -ENOMEM: damn
3342 * -ENODEV: Internal IRQ fail
3343 * -E?: The add request failed
3344 *
3345 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3346 * non-zero timeout parameter the wait ioctl will wait for the given number of
3347 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3348 * without holding struct_mutex the object may become re-busied before this
3349 * function completes. A similar but shorter * race condition exists in the busy
3350 * ioctl
3351 */
3352 int
3353 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3354 {
3355 struct drm_i915_gem_wait *args = data;
3356 struct drm_i915_gem_object *obj;
3357 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3358 int i, n = 0;
3359 int ret;
3360
3361 if (args->flags != 0)
3362 return -EINVAL;
3363
3364 ret = i915_mutex_lock_interruptible(dev);
3365 if (ret)
3366 return ret;
3367
3368 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3369 if (&obj->base == NULL) {
3370 mutex_unlock(&dev->struct_mutex);
3371 return -ENOENT;
3372 }
3373
3374 /* Need to make sure the object gets inactive eventually. */
3375 ret = i915_gem_object_flush_active(obj);
3376 if (ret)
3377 goto out;
3378
3379 if (!obj->active)
3380 goto out;
3381
3382 /* Do this after OLR check to make sure we make forward progress polling
3383 * on this IOCTL with a timeout == 0 (like busy ioctl)
3384 */
3385 if (args->timeout_ns == 0) {
3386 ret = -ETIME;
3387 goto out;
3388 }
3389
3390 drm_gem_object_unreference(&obj->base);
3391
3392 for (i = 0; i < I915_NUM_ENGINES; i++) {
3393 if (obj->last_read_req[i] == NULL)
3394 continue;
3395
3396 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3397 }
3398
3399 mutex_unlock(&dev->struct_mutex);
3400
3401 for (i = 0; i < n; i++) {
3402 if (ret == 0)
3403 ret = __i915_wait_request(req[i], true,
3404 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3405 to_rps_client(file));
3406 i915_gem_request_unreference(req[i]);
3407 }
3408 return ret;
3409
3410 out:
3411 drm_gem_object_unreference(&obj->base);
3412 mutex_unlock(&dev->struct_mutex);
3413 return ret;
3414 }
3415
3416 static int
3417 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3418 struct intel_engine_cs *to,
3419 struct drm_i915_gem_request *from_req,
3420 struct drm_i915_gem_request **to_req)
3421 {
3422 struct intel_engine_cs *from;
3423 int ret;
3424
3425 from = i915_gem_request_get_engine(from_req);
3426 if (to == from)
3427 return 0;
3428
3429 if (i915_gem_request_completed(from_req))
3430 return 0;
3431
3432 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3433 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3434 ret = __i915_wait_request(from_req,
3435 i915->mm.interruptible,
3436 NULL,
3437 &i915->rps.semaphores);
3438 if (ret)
3439 return ret;
3440
3441 i915_gem_object_retire_request(obj, from_req);
3442 } else {
3443 int idx = intel_ring_sync_index(from, to);
3444 u32 seqno = i915_gem_request_get_seqno(from_req);
3445
3446 WARN_ON(!to_req);
3447
3448 if (seqno <= from->semaphore.sync_seqno[idx])
3449 return 0;
3450
3451 if (*to_req == NULL) {
3452 struct drm_i915_gem_request *req;
3453
3454 req = i915_gem_request_alloc(to, NULL);
3455 if (IS_ERR(req))
3456 return PTR_ERR(req);
3457
3458 *to_req = req;
3459 }
3460
3461 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3462 ret = to->semaphore.sync_to(*to_req, from, seqno);
3463 if (ret)
3464 return ret;
3465
3466 /* We use last_read_req because sync_to()
3467 * might have just caused seqno wrap under
3468 * the radar.
3469 */
3470 from->semaphore.sync_seqno[idx] =
3471 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3472 }
3473
3474 return 0;
3475 }
3476
3477 /**
3478 * i915_gem_object_sync - sync an object to a ring.
3479 *
3480 * @obj: object which may be in use on another ring.
3481 * @to: ring we wish to use the object on. May be NULL.
3482 * @to_req: request we wish to use the object for. See below.
3483 * This will be allocated and returned if a request is
3484 * required but not passed in.
3485 *
3486 * This code is meant to abstract object synchronization with the GPU.
3487 * Calling with NULL implies synchronizing the object with the CPU
3488 * rather than a particular GPU ring. Conceptually we serialise writes
3489 * between engines inside the GPU. We only allow one engine to write
3490 * into a buffer at any time, but multiple readers. To ensure each has
3491 * a coherent view of memory, we must:
3492 *
3493 * - If there is an outstanding write request to the object, the new
3494 * request must wait for it to complete (either CPU or in hw, requests
3495 * on the same ring will be naturally ordered).
3496 *
3497 * - If we are a write request (pending_write_domain is set), the new
3498 * request must wait for outstanding read requests to complete.
3499 *
3500 * For CPU synchronisation (NULL to) no request is required. For syncing with
3501 * rings to_req must be non-NULL. However, a request does not have to be
3502 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3503 * request will be allocated automatically and returned through *to_req. Note
3504 * that it is not guaranteed that commands will be emitted (because the system
3505 * might already be idle). Hence there is no need to create a request that
3506 * might never have any work submitted. Note further that if a request is
3507 * returned in *to_req, it is the responsibility of the caller to submit
3508 * that request (after potentially adding more work to it).
3509 *
3510 * Returns 0 if successful, else propagates up the lower layer error.
3511 */
3512 int
3513 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3514 struct intel_engine_cs *to,
3515 struct drm_i915_gem_request **to_req)
3516 {
3517 const bool readonly = obj->base.pending_write_domain == 0;
3518 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3519 int ret, i, n;
3520
3521 if (!obj->active)
3522 return 0;
3523
3524 if (to == NULL)
3525 return i915_gem_object_wait_rendering(obj, readonly);
3526
3527 n = 0;
3528 if (readonly) {
3529 if (obj->last_write_req)
3530 req[n++] = obj->last_write_req;
3531 } else {
3532 for (i = 0; i < I915_NUM_ENGINES; i++)
3533 if (obj->last_read_req[i])
3534 req[n++] = obj->last_read_req[i];
3535 }
3536 for (i = 0; i < n; i++) {
3537 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3538 if (ret)
3539 return ret;
3540 }
3541
3542 return 0;
3543 }
3544
3545 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3546 {
3547 u32 old_write_domain, old_read_domains;
3548
3549 /* Force a pagefault for domain tracking on next user access */
3550 i915_gem_release_mmap(obj);
3551
3552 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3553 return;
3554
3555 old_read_domains = obj->base.read_domains;
3556 old_write_domain = obj->base.write_domain;
3557
3558 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3559 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3560
3561 trace_i915_gem_object_change_domain(obj,
3562 old_read_domains,
3563 old_write_domain);
3564 }
3565
3566 static void __i915_vma_iounmap(struct i915_vma *vma)
3567 {
3568 GEM_BUG_ON(vma->pin_count);
3569
3570 if (vma->iomap == NULL)
3571 return;
3572
3573 io_mapping_unmap(vma->iomap);
3574 vma->iomap = NULL;
3575 }
3576
3577 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3578 {
3579 struct drm_i915_gem_object *obj = vma->obj;
3580 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3581 int ret;
3582
3583 if (list_empty(&vma->obj_link))
3584 return 0;
3585
3586 if (!drm_mm_node_allocated(&vma->node)) {
3587 i915_gem_vma_destroy(vma);
3588 return 0;
3589 }
3590
3591 if (vma->pin_count)
3592 return -EBUSY;
3593
3594 BUG_ON(obj->pages == NULL);
3595
3596 if (wait) {
3597 ret = i915_gem_object_wait_rendering(obj, false);
3598 if (ret)
3599 return ret;
3600 }
3601
3602 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3603 i915_gem_object_finish_gtt(obj);
3604
3605 /* release the fence reg _after_ flushing */
3606 ret = i915_gem_object_put_fence(obj);
3607 if (ret)
3608 return ret;
3609
3610 __i915_vma_iounmap(vma);
3611 }
3612
3613 trace_i915_vma_unbind(vma);
3614
3615 vma->vm->unbind_vma(vma);
3616 vma->bound = 0;
3617
3618 list_del_init(&vma->vm_link);
3619 if (vma->is_ggtt) {
3620 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3621 obj->map_and_fenceable = false;
3622 } else if (vma->ggtt_view.pages) {
3623 sg_free_table(vma->ggtt_view.pages);
3624 kfree(vma->ggtt_view.pages);
3625 }
3626 vma->ggtt_view.pages = NULL;
3627 }
3628
3629 drm_mm_remove_node(&vma->node);
3630 i915_gem_vma_destroy(vma);
3631
3632 /* Since the unbound list is global, only move to that list if
3633 * no more VMAs exist. */
3634 if (list_empty(&obj->vma_list))
3635 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3636
3637 /* And finally now the object is completely decoupled from this vma,
3638 * we can drop its hold on the backing storage and allow it to be
3639 * reaped by the shrinker.
3640 */
3641 i915_gem_object_unpin_pages(obj);
3642
3643 return 0;
3644 }
3645
3646 int i915_vma_unbind(struct i915_vma *vma)
3647 {
3648 return __i915_vma_unbind(vma, true);
3649 }
3650
3651 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3652 {
3653 return __i915_vma_unbind(vma, false);
3654 }
3655
3656 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3657 {
3658 struct intel_engine_cs *engine;
3659 int ret;
3660
3661 lockdep_assert_held(&dev_priv->dev->struct_mutex);
3662
3663 for_each_engine(engine, dev_priv) {
3664 if (engine->last_context == NULL)
3665 continue;
3666
3667 ret = intel_engine_idle(engine);
3668 if (ret)
3669 return ret;
3670 }
3671
3672 WARN_ON(i915_verify_lists(dev));
3673 return 0;
3674 }
3675
3676 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3677 unsigned long cache_level)
3678 {
3679 struct drm_mm_node *gtt_space = &vma->node;
3680 struct drm_mm_node *other;
3681
3682 /*
3683 * On some machines we have to be careful when putting differing types
3684 * of snoopable memory together to avoid the prefetcher crossing memory
3685 * domains and dying. During vm initialisation, we decide whether or not
3686 * these constraints apply and set the drm_mm.color_adjust
3687 * appropriately.
3688 */
3689 if (vma->vm->mm.color_adjust == NULL)
3690 return true;
3691
3692 if (!drm_mm_node_allocated(gtt_space))
3693 return true;
3694
3695 if (list_empty(&gtt_space->node_list))
3696 return true;
3697
3698 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3699 if (other->allocated && !other->hole_follows && other->color != cache_level)
3700 return false;
3701
3702 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3703 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3704 return false;
3705
3706 return true;
3707 }
3708
3709 /**
3710 * Finds free space in the GTT aperture and binds the object or a view of it
3711 * there.
3712 * @obj: object to bind
3713 * @vm: address space to bind into
3714 * @ggtt_view: global gtt view if applicable
3715 * @alignment: requested alignment
3716 * @flags: mask of PIN_* flags to use
3717 */
3718 static struct i915_vma *
3719 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3720 struct i915_address_space *vm,
3721 const struct i915_ggtt_view *ggtt_view,
3722 unsigned alignment,
3723 uint64_t flags)
3724 {
3725 struct drm_device *dev = obj->base.dev;
3726 struct drm_i915_private *dev_priv = to_i915(dev);
3727 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3728 u32 fence_alignment, unfenced_alignment;
3729 u32 search_flag, alloc_flag;
3730 u64 start, end;
3731 u64 size, fence_size;
3732 struct i915_vma *vma;
3733 int ret;
3734
3735 if (i915_is_ggtt(vm)) {
3736 u32 view_size;
3737
3738 if (WARN_ON(!ggtt_view))
3739 return ERR_PTR(-EINVAL);
3740
3741 view_size = i915_ggtt_view_size(obj, ggtt_view);
3742
3743 fence_size = i915_gem_get_gtt_size(dev,
3744 view_size,
3745 obj->tiling_mode);
3746 fence_alignment = i915_gem_get_gtt_alignment(dev,
3747 view_size,
3748 obj->tiling_mode,
3749 true);
3750 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3751 view_size,
3752 obj->tiling_mode,
3753 false);
3754 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3755 } else {
3756 fence_size = i915_gem_get_gtt_size(dev,
3757 obj->base.size,
3758 obj->tiling_mode);
3759 fence_alignment = i915_gem_get_gtt_alignment(dev,
3760 obj->base.size,
3761 obj->tiling_mode,
3762 true);
3763 unfenced_alignment =
3764 i915_gem_get_gtt_alignment(dev,
3765 obj->base.size,
3766 obj->tiling_mode,
3767 false);
3768 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3769 }
3770
3771 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3772 end = vm->total;
3773 if (flags & PIN_MAPPABLE)
3774 end = min_t(u64, end, ggtt->mappable_end);
3775 if (flags & PIN_ZONE_4G)
3776 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3777
3778 if (alignment == 0)
3779 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3780 unfenced_alignment;
3781 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3782 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3783 ggtt_view ? ggtt_view->type : 0,
3784 alignment);
3785 return ERR_PTR(-EINVAL);
3786 }
3787
3788 /* If binding the object/GGTT view requires more space than the entire
3789 * aperture has, reject it early before evicting everything in a vain
3790 * attempt to find space.
3791 */
3792 if (size > end) {
3793 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3794 ggtt_view ? ggtt_view->type : 0,
3795 size,
3796 flags & PIN_MAPPABLE ? "mappable" : "total",
3797 end);
3798 return ERR_PTR(-E2BIG);
3799 }
3800
3801 ret = i915_gem_object_get_pages(obj);
3802 if (ret)
3803 return ERR_PTR(ret);
3804
3805 i915_gem_object_pin_pages(obj);
3806
3807 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3808 i915_gem_obj_lookup_or_create_vma(obj, vm);
3809
3810 if (IS_ERR(vma))
3811 goto err_unpin;
3812
3813 if (flags & PIN_OFFSET_FIXED) {
3814 uint64_t offset = flags & PIN_OFFSET_MASK;
3815
3816 if (offset & (alignment - 1) || offset + size > end) {
3817 ret = -EINVAL;
3818 goto err_free_vma;
3819 }
3820 vma->node.start = offset;
3821 vma->node.size = size;
3822 vma->node.color = obj->cache_level;
3823 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3824 if (ret) {
3825 ret = i915_gem_evict_for_vma(vma);
3826 if (ret == 0)
3827 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3828 }
3829 if (ret)
3830 goto err_free_vma;
3831 } else {
3832 if (flags & PIN_HIGH) {
3833 search_flag = DRM_MM_SEARCH_BELOW;
3834 alloc_flag = DRM_MM_CREATE_TOP;
3835 } else {
3836 search_flag = DRM_MM_SEARCH_DEFAULT;
3837 alloc_flag = DRM_MM_CREATE_DEFAULT;
3838 }
3839
3840 search_free:
3841 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3842 size, alignment,
3843 obj->cache_level,
3844 start, end,
3845 search_flag,
3846 alloc_flag);
3847 if (ret) {
3848 ret = i915_gem_evict_something(dev, vm, size, alignment,
3849 obj->cache_level,
3850 start, end,
3851 flags);
3852 if (ret == 0)
3853 goto search_free;
3854
3855 goto err_free_vma;
3856 }
3857 }
3858 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3859 ret = -EINVAL;
3860 goto err_remove_node;
3861 }
3862
3863 trace_i915_vma_bind(vma, flags);
3864 ret = i915_vma_bind(vma, obj->cache_level, flags);
3865 if (ret)
3866 goto err_remove_node;
3867
3868 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3869 list_add_tail(&vma->vm_link, &vm->inactive_list);
3870
3871 return vma;
3872
3873 err_remove_node:
3874 drm_mm_remove_node(&vma->node);
3875 err_free_vma:
3876 i915_gem_vma_destroy(vma);
3877 vma = ERR_PTR(ret);
3878 err_unpin:
3879 i915_gem_object_unpin_pages(obj);
3880 return vma;
3881 }
3882
3883 bool
3884 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3885 bool force)
3886 {
3887 /* If we don't have a page list set up, then we're not pinned
3888 * to GPU, and we can ignore the cache flush because it'll happen
3889 * again at bind time.
3890 */
3891 if (obj->pages == NULL)
3892 return false;
3893
3894 /*
3895 * Stolen memory is always coherent with the GPU as it is explicitly
3896 * marked as wc by the system, or the system is cache-coherent.
3897 */
3898 if (obj->stolen || obj->phys_handle)
3899 return false;
3900
3901 /* If the GPU is snooping the contents of the CPU cache,
3902 * we do not need to manually clear the CPU cache lines. However,
3903 * the caches are only snooped when the render cache is
3904 * flushed/invalidated. As we always have to emit invalidations
3905 * and flushes when moving into and out of the RENDER domain, correct
3906 * snooping behaviour occurs naturally as the result of our domain
3907 * tracking.
3908 */
3909 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3910 obj->cache_dirty = true;
3911 return false;
3912 }
3913
3914 trace_i915_gem_object_clflush(obj);
3915 drm_clflush_sg(obj->pages);
3916 obj->cache_dirty = false;
3917
3918 return true;
3919 }
3920
3921 /** Flushes the GTT write domain for the object if it's dirty. */
3922 static void
3923 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3924 {
3925 uint32_t old_write_domain;
3926
3927 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3928 return;
3929
3930 /* No actual flushing is required for the GTT write domain. Writes
3931 * to it immediately go to main memory as far as we know, so there's
3932 * no chipset flush. It also doesn't land in render cache.
3933 *
3934 * However, we do have to enforce the order so that all writes through
3935 * the GTT land before any writes to the device, such as updates to
3936 * the GATT itself.
3937 */
3938 wmb();
3939
3940 old_write_domain = obj->base.write_domain;
3941 obj->base.write_domain = 0;
3942
3943 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3944
3945 trace_i915_gem_object_change_domain(obj,
3946 obj->base.read_domains,
3947 old_write_domain);
3948 }
3949
3950 /** Flushes the CPU write domain for the object if it's dirty. */
3951 static void
3952 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3953 {
3954 uint32_t old_write_domain;
3955
3956 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3957 return;
3958
3959 if (i915_gem_clflush_object(obj, obj->pin_display))
3960 i915_gem_chipset_flush(to_i915(obj->base.dev));
3961
3962 old_write_domain = obj->base.write_domain;
3963 obj->base.write_domain = 0;
3964
3965 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3966
3967 trace_i915_gem_object_change_domain(obj,
3968 obj->base.read_domains,
3969 old_write_domain);
3970 }
3971
3972 /**
3973 * Moves a single object to the GTT read, and possibly write domain.
3974 * @obj: object to act on
3975 * @write: ask for write access or read only
3976 *
3977 * This function returns when the move is complete, including waiting on
3978 * flushes to occur.
3979 */
3980 int
3981 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3982 {
3983 struct drm_device *dev = obj->base.dev;
3984 struct drm_i915_private *dev_priv = to_i915(dev);
3985 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3986 uint32_t old_write_domain, old_read_domains;
3987 struct i915_vma *vma;
3988 int ret;
3989
3990 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3991 return 0;
3992
3993 ret = i915_gem_object_wait_rendering(obj, !write);
3994 if (ret)
3995 return ret;
3996
3997 /* Flush and acquire obj->pages so that we are coherent through
3998 * direct access in memory with previous cached writes through
3999 * shmemfs and that our cache domain tracking remains valid.
4000 * For example, if the obj->filp was moved to swap without us
4001 * being notified and releasing the pages, we would mistakenly
4002 * continue to assume that the obj remained out of the CPU cached
4003 * domain.
4004 */
4005 ret = i915_gem_object_get_pages(obj);
4006 if (ret)
4007 return ret;
4008
4009 i915_gem_object_flush_cpu_write_domain(obj);
4010
4011 /* Serialise direct access to this object with the barriers for
4012 * coherent writes from the GPU, by effectively invalidating the
4013 * GTT domain upon first access.
4014 */
4015 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4016 mb();
4017
4018 old_write_domain = obj->base.write_domain;
4019 old_read_domains = obj->base.read_domains;
4020
4021 /* It should now be out of any other write domains, and we can update
4022 * the domain values for our changes.
4023 */
4024 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4025 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4026 if (write) {
4027 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4028 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4029 obj->dirty = 1;
4030 }
4031
4032 trace_i915_gem_object_change_domain(obj,
4033 old_read_domains,
4034 old_write_domain);
4035
4036 /* And bump the LRU for this access */
4037 vma = i915_gem_obj_to_ggtt(obj);
4038 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4039 list_move_tail(&vma->vm_link,
4040 &ggtt->base.inactive_list);
4041
4042 return 0;
4043 }
4044
4045 /**
4046 * Changes the cache-level of an object across all VMA.
4047 * @obj: object to act on
4048 * @cache_level: new cache level to set for the object
4049 *
4050 * After this function returns, the object will be in the new cache-level
4051 * across all GTT and the contents of the backing storage will be coherent,
4052 * with respect to the new cache-level. In order to keep the backing storage
4053 * coherent for all users, we only allow a single cache level to be set
4054 * globally on the object and prevent it from being changed whilst the
4055 * hardware is reading from the object. That is if the object is currently
4056 * on the scanout it will be set to uncached (or equivalent display
4057 * cache coherency) and all non-MOCS GPU access will also be uncached so
4058 * that all direct access to the scanout remains coherent.
4059 */
4060 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4061 enum i915_cache_level cache_level)
4062 {
4063 struct drm_device *dev = obj->base.dev;
4064 struct i915_vma *vma, *next;
4065 bool bound = false;
4066 int ret = 0;
4067
4068 if (obj->cache_level == cache_level)
4069 goto out;
4070
4071 /* Inspect the list of currently bound VMA and unbind any that would
4072 * be invalid given the new cache-level. This is principally to
4073 * catch the issue of the CS prefetch crossing page boundaries and
4074 * reading an invalid PTE on older architectures.
4075 */
4076 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4077 if (!drm_mm_node_allocated(&vma->node))
4078 continue;
4079
4080 if (vma->pin_count) {
4081 DRM_DEBUG("can not change the cache level of pinned objects\n");
4082 return -EBUSY;
4083 }
4084
4085 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4086 ret = i915_vma_unbind(vma);
4087 if (ret)
4088 return ret;
4089 } else
4090 bound = true;
4091 }
4092
4093 /* We can reuse the existing drm_mm nodes but need to change the
4094 * cache-level on the PTE. We could simply unbind them all and
4095 * rebind with the correct cache-level on next use. However since
4096 * we already have a valid slot, dma mapping, pages etc, we may as
4097 * rewrite the PTE in the belief that doing so tramples upon less
4098 * state and so involves less work.
4099 */
4100 if (bound) {
4101 /* Before we change the PTE, the GPU must not be accessing it.
4102 * If we wait upon the object, we know that all the bound
4103 * VMA are no longer active.
4104 */
4105 ret = i915_gem_object_wait_rendering(obj, false);
4106 if (ret)
4107 return ret;
4108
4109 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4110 /* Access to snoopable pages through the GTT is
4111 * incoherent and on some machines causes a hard
4112 * lockup. Relinquish the CPU mmaping to force
4113 * userspace to refault in the pages and we can
4114 * then double check if the GTT mapping is still
4115 * valid for that pointer access.
4116 */
4117 i915_gem_release_mmap(obj);
4118
4119 /* As we no longer need a fence for GTT access,
4120 * we can relinquish it now (and so prevent having
4121 * to steal a fence from someone else on the next
4122 * fence request). Note GPU activity would have
4123 * dropped the fence as all snoopable access is
4124 * supposed to be linear.
4125 */
4126 ret = i915_gem_object_put_fence(obj);
4127 if (ret)
4128 return ret;
4129 } else {
4130 /* We either have incoherent backing store and
4131 * so no GTT access or the architecture is fully
4132 * coherent. In such cases, existing GTT mmaps
4133 * ignore the cache bit in the PTE and we can
4134 * rewrite it without confusing the GPU or having
4135 * to force userspace to fault back in its mmaps.
4136 */
4137 }
4138
4139 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4140 if (!drm_mm_node_allocated(&vma->node))
4141 continue;
4142
4143 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4144 if (ret)
4145 return ret;
4146 }
4147 }
4148
4149 list_for_each_entry(vma, &obj->vma_list, obj_link)
4150 vma->node.color = cache_level;
4151 obj->cache_level = cache_level;
4152
4153 out:
4154 /* Flush the dirty CPU caches to the backing storage so that the
4155 * object is now coherent at its new cache level (with respect
4156 * to the access domain).
4157 */
4158 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4159 if (i915_gem_clflush_object(obj, true))
4160 i915_gem_chipset_flush(to_i915(obj->base.dev));
4161 }
4162
4163 return 0;
4164 }
4165
4166 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4167 struct drm_file *file)
4168 {
4169 struct drm_i915_gem_caching *args = data;
4170 struct drm_i915_gem_object *obj;
4171
4172 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4173 if (&obj->base == NULL)
4174 return -ENOENT;
4175
4176 switch (obj->cache_level) {
4177 case I915_CACHE_LLC:
4178 case I915_CACHE_L3_LLC:
4179 args->caching = I915_CACHING_CACHED;
4180 break;
4181
4182 case I915_CACHE_WT:
4183 args->caching = I915_CACHING_DISPLAY;
4184 break;
4185
4186 default:
4187 args->caching = I915_CACHING_NONE;
4188 break;
4189 }
4190
4191 drm_gem_object_unreference_unlocked(&obj->base);
4192 return 0;
4193 }
4194
4195 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4196 struct drm_file *file)
4197 {
4198 struct drm_i915_private *dev_priv = dev->dev_private;
4199 struct drm_i915_gem_caching *args = data;
4200 struct drm_i915_gem_object *obj;
4201 enum i915_cache_level level;
4202 int ret;
4203
4204 switch (args->caching) {
4205 case I915_CACHING_NONE:
4206 level = I915_CACHE_NONE;
4207 break;
4208 case I915_CACHING_CACHED:
4209 /*
4210 * Due to a HW issue on BXT A stepping, GPU stores via a
4211 * snooped mapping may leave stale data in a corresponding CPU
4212 * cacheline, whereas normally such cachelines would get
4213 * invalidated.
4214 */
4215 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4216 return -ENODEV;
4217
4218 level = I915_CACHE_LLC;
4219 break;
4220 case I915_CACHING_DISPLAY:
4221 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4222 break;
4223 default:
4224 return -EINVAL;
4225 }
4226
4227 intel_runtime_pm_get(dev_priv);
4228
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 goto rpm_put;
4232
4233 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4234 if (&obj->base == NULL) {
4235 ret = -ENOENT;
4236 goto unlock;
4237 }
4238
4239 ret = i915_gem_object_set_cache_level(obj, level);
4240
4241 drm_gem_object_unreference(&obj->base);
4242 unlock:
4243 mutex_unlock(&dev->struct_mutex);
4244 rpm_put:
4245 intel_runtime_pm_put(dev_priv);
4246
4247 return ret;
4248 }
4249
4250 /*
4251 * Prepare buffer for display plane (scanout, cursors, etc).
4252 * Can be called from an uninterruptible phase (modesetting) and allows
4253 * any flushes to be pipelined (for pageflips).
4254 */
4255 int
4256 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4257 u32 alignment,
4258 const struct i915_ggtt_view *view)
4259 {
4260 u32 old_read_domains, old_write_domain;
4261 int ret;
4262
4263 /* Mark the pin_display early so that we account for the
4264 * display coherency whilst setting up the cache domains.
4265 */
4266 obj->pin_display++;
4267
4268 /* The display engine is not coherent with the LLC cache on gen6. As
4269 * a result, we make sure that the pinning that is about to occur is
4270 * done with uncached PTEs. This is lowest common denominator for all
4271 * chipsets.
4272 *
4273 * However for gen6+, we could do better by using the GFDT bit instead
4274 * of uncaching, which would allow us to flush all the LLC-cached data
4275 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4276 */
4277 ret = i915_gem_object_set_cache_level(obj,
4278 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4279 if (ret)
4280 goto err_unpin_display;
4281
4282 /* As the user may map the buffer once pinned in the display plane
4283 * (e.g. libkms for the bootup splash), we have to ensure that we
4284 * always use map_and_fenceable for all scanout buffers.
4285 */
4286 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4287 view->type == I915_GGTT_VIEW_NORMAL ?
4288 PIN_MAPPABLE : 0);
4289 if (ret)
4290 goto err_unpin_display;
4291
4292 i915_gem_object_flush_cpu_write_domain(obj);
4293
4294 old_write_domain = obj->base.write_domain;
4295 old_read_domains = obj->base.read_domains;
4296
4297 /* It should now be out of any other write domains, and we can update
4298 * the domain values for our changes.
4299 */
4300 obj->base.write_domain = 0;
4301 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4302
4303 trace_i915_gem_object_change_domain(obj,
4304 old_read_domains,
4305 old_write_domain);
4306
4307 return 0;
4308
4309 err_unpin_display:
4310 obj->pin_display--;
4311 return ret;
4312 }
4313
4314 void
4315 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4316 const struct i915_ggtt_view *view)
4317 {
4318 if (WARN_ON(obj->pin_display == 0))
4319 return;
4320
4321 i915_gem_object_ggtt_unpin_view(obj, view);
4322
4323 obj->pin_display--;
4324 }
4325
4326 /**
4327 * Moves a single object to the CPU read, and possibly write domain.
4328 * @obj: object to act on
4329 * @write: requesting write or read-only access
4330 *
4331 * This function returns when the move is complete, including waiting on
4332 * flushes to occur.
4333 */
4334 int
4335 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4336 {
4337 uint32_t old_write_domain, old_read_domains;
4338 int ret;
4339
4340 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4341 return 0;
4342
4343 ret = i915_gem_object_wait_rendering(obj, !write);
4344 if (ret)
4345 return ret;
4346
4347 i915_gem_object_flush_gtt_write_domain(obj);
4348
4349 old_write_domain = obj->base.write_domain;
4350 old_read_domains = obj->base.read_domains;
4351
4352 /* Flush the CPU cache if it's still invalid. */
4353 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4354 i915_gem_clflush_object(obj, false);
4355
4356 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4357 }
4358
4359 /* It should now be out of any other write domains, and we can update
4360 * the domain values for our changes.
4361 */
4362 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4363
4364 /* If we're writing through the CPU, then the GPU read domains will
4365 * need to be invalidated at next use.
4366 */
4367 if (write) {
4368 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4369 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370 }
4371
4372 trace_i915_gem_object_change_domain(obj,
4373 old_read_domains,
4374 old_write_domain);
4375
4376 return 0;
4377 }
4378
4379 /* Throttle our rendering by waiting until the ring has completed our requests
4380 * emitted over 20 msec ago.
4381 *
4382 * Note that if we were to use the current jiffies each time around the loop,
4383 * we wouldn't escape the function with any frames outstanding if the time to
4384 * render a frame was over 20ms.
4385 *
4386 * This should get us reasonable parallelism between CPU and GPU but also
4387 * relatively low latency when blocking on a particular request to finish.
4388 */
4389 static int
4390 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4391 {
4392 struct drm_i915_private *dev_priv = dev->dev_private;
4393 struct drm_i915_file_private *file_priv = file->driver_priv;
4394 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4395 struct drm_i915_gem_request *request, *target = NULL;
4396 int ret;
4397
4398 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4399 if (ret)
4400 return ret;
4401
4402 /* ABI: return -EIO if already wedged */
4403 if (i915_terminally_wedged(&dev_priv->gpu_error))
4404 return -EIO;
4405
4406 spin_lock(&file_priv->mm.lock);
4407 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4408 if (time_after_eq(request->emitted_jiffies, recent_enough))
4409 break;
4410
4411 /*
4412 * Note that the request might not have been submitted yet.
4413 * In which case emitted_jiffies will be zero.
4414 */
4415 if (!request->emitted_jiffies)
4416 continue;
4417
4418 target = request;
4419 }
4420 if (target)
4421 i915_gem_request_reference(target);
4422 spin_unlock(&file_priv->mm.lock);
4423
4424 if (target == NULL)
4425 return 0;
4426
4427 ret = __i915_wait_request(target, true, NULL, NULL);
4428 if (ret == 0)
4429 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4430
4431 i915_gem_request_unreference(target);
4432
4433 return ret;
4434 }
4435
4436 static bool
4437 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4438 {
4439 struct drm_i915_gem_object *obj = vma->obj;
4440
4441 if (alignment &&
4442 vma->node.start & (alignment - 1))
4443 return true;
4444
4445 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4446 return true;
4447
4448 if (flags & PIN_OFFSET_BIAS &&
4449 vma->node.start < (flags & PIN_OFFSET_MASK))
4450 return true;
4451
4452 if (flags & PIN_OFFSET_FIXED &&
4453 vma->node.start != (flags & PIN_OFFSET_MASK))
4454 return true;
4455
4456 return false;
4457 }
4458
4459 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4460 {
4461 struct drm_i915_gem_object *obj = vma->obj;
4462 bool mappable, fenceable;
4463 u32 fence_size, fence_alignment;
4464
4465 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4466 obj->base.size,
4467 obj->tiling_mode);
4468 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4469 obj->base.size,
4470 obj->tiling_mode,
4471 true);
4472
4473 fenceable = (vma->node.size == fence_size &&
4474 (vma->node.start & (fence_alignment - 1)) == 0);
4475
4476 mappable = (vma->node.start + fence_size <=
4477 to_i915(obj->base.dev)->ggtt.mappable_end);
4478
4479 obj->map_and_fenceable = mappable && fenceable;
4480 }
4481
4482 static int
4483 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4484 struct i915_address_space *vm,
4485 const struct i915_ggtt_view *ggtt_view,
4486 uint32_t alignment,
4487 uint64_t flags)
4488 {
4489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4490 struct i915_vma *vma;
4491 unsigned bound;
4492 int ret;
4493
4494 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4495 return -ENODEV;
4496
4497 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4498 return -EINVAL;
4499
4500 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4501 return -EINVAL;
4502
4503 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4504 return -EINVAL;
4505
4506 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4507 i915_gem_obj_to_vma(obj, vm);
4508
4509 if (vma) {
4510 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4511 return -EBUSY;
4512
4513 if (i915_vma_misplaced(vma, alignment, flags)) {
4514 WARN(vma->pin_count,
4515 "bo is already pinned in %s with incorrect alignment:"
4516 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4517 " obj->map_and_fenceable=%d\n",
4518 ggtt_view ? "ggtt" : "ppgtt",
4519 upper_32_bits(vma->node.start),
4520 lower_32_bits(vma->node.start),
4521 alignment,
4522 !!(flags & PIN_MAPPABLE),
4523 obj->map_and_fenceable);
4524 ret = i915_vma_unbind(vma);
4525 if (ret)
4526 return ret;
4527
4528 vma = NULL;
4529 }
4530 }
4531
4532 bound = vma ? vma->bound : 0;
4533 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4534 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4535 flags);
4536 if (IS_ERR(vma))
4537 return PTR_ERR(vma);
4538 } else {
4539 ret = i915_vma_bind(vma, obj->cache_level, flags);
4540 if (ret)
4541 return ret;
4542 }
4543
4544 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4545 (bound ^ vma->bound) & GLOBAL_BIND) {
4546 __i915_vma_set_map_and_fenceable(vma);
4547 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4548 }
4549
4550 vma->pin_count++;
4551 return 0;
4552 }
4553
4554 int
4555 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4556 struct i915_address_space *vm,
4557 uint32_t alignment,
4558 uint64_t flags)
4559 {
4560 return i915_gem_object_do_pin(obj, vm,
4561 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4562 alignment, flags);
4563 }
4564
4565 int
4566 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4567 const struct i915_ggtt_view *view,
4568 uint32_t alignment,
4569 uint64_t flags)
4570 {
4571 struct drm_device *dev = obj->base.dev;
4572 struct drm_i915_private *dev_priv = to_i915(dev);
4573 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4574
4575 BUG_ON(!view);
4576
4577 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4578 alignment, flags | PIN_GLOBAL);
4579 }
4580
4581 void
4582 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4583 const struct i915_ggtt_view *view)
4584 {
4585 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4586
4587 WARN_ON(vma->pin_count == 0);
4588 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4589
4590 --vma->pin_count;
4591 }
4592
4593 int
4594 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4595 struct drm_file *file)
4596 {
4597 struct drm_i915_gem_busy *args = data;
4598 struct drm_i915_gem_object *obj;
4599 int ret;
4600
4601 ret = i915_mutex_lock_interruptible(dev);
4602 if (ret)
4603 return ret;
4604
4605 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4606 if (&obj->base == NULL) {
4607 ret = -ENOENT;
4608 goto unlock;
4609 }
4610
4611 /* Count all active objects as busy, even if they are currently not used
4612 * by the gpu. Users of this interface expect objects to eventually
4613 * become non-busy without any further actions, therefore emit any
4614 * necessary flushes here.
4615 */
4616 ret = i915_gem_object_flush_active(obj);
4617 if (ret)
4618 goto unref;
4619
4620 args->busy = 0;
4621 if (obj->active) {
4622 int i;
4623
4624 for (i = 0; i < I915_NUM_ENGINES; i++) {
4625 struct drm_i915_gem_request *req;
4626
4627 req = obj->last_read_req[i];
4628 if (req)
4629 args->busy |= 1 << (16 + req->engine->exec_id);
4630 }
4631 if (obj->last_write_req)
4632 args->busy |= obj->last_write_req->engine->exec_id;
4633 }
4634
4635 unref:
4636 drm_gem_object_unreference(&obj->base);
4637 unlock:
4638 mutex_unlock(&dev->struct_mutex);
4639 return ret;
4640 }
4641
4642 int
4643 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4644 struct drm_file *file_priv)
4645 {
4646 return i915_gem_ring_throttle(dev, file_priv);
4647 }
4648
4649 int
4650 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4651 struct drm_file *file_priv)
4652 {
4653 struct drm_i915_private *dev_priv = dev->dev_private;
4654 struct drm_i915_gem_madvise *args = data;
4655 struct drm_i915_gem_object *obj;
4656 int ret;
4657
4658 switch (args->madv) {
4659 case I915_MADV_DONTNEED:
4660 case I915_MADV_WILLNEED:
4661 break;
4662 default:
4663 return -EINVAL;
4664 }
4665
4666 ret = i915_mutex_lock_interruptible(dev);
4667 if (ret)
4668 return ret;
4669
4670 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4671 if (&obj->base == NULL) {
4672 ret = -ENOENT;
4673 goto unlock;
4674 }
4675
4676 if (i915_gem_obj_is_pinned(obj)) {
4677 ret = -EINVAL;
4678 goto out;
4679 }
4680
4681 if (obj->pages &&
4682 obj->tiling_mode != I915_TILING_NONE &&
4683 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4684 if (obj->madv == I915_MADV_WILLNEED)
4685 i915_gem_object_unpin_pages(obj);
4686 if (args->madv == I915_MADV_WILLNEED)
4687 i915_gem_object_pin_pages(obj);
4688 }
4689
4690 if (obj->madv != __I915_MADV_PURGED)
4691 obj->madv = args->madv;
4692
4693 /* if the object is no longer attached, discard its backing storage */
4694 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4695 i915_gem_object_truncate(obj);
4696
4697 args->retained = obj->madv != __I915_MADV_PURGED;
4698
4699 out:
4700 drm_gem_object_unreference(&obj->base);
4701 unlock:
4702 mutex_unlock(&dev->struct_mutex);
4703 return ret;
4704 }
4705
4706 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4707 const struct drm_i915_gem_object_ops *ops)
4708 {
4709 int i;
4710
4711 INIT_LIST_HEAD(&obj->global_list);
4712 for (i = 0; i < I915_NUM_ENGINES; i++)
4713 INIT_LIST_HEAD(&obj->engine_list[i]);
4714 INIT_LIST_HEAD(&obj->obj_exec_link);
4715 INIT_LIST_HEAD(&obj->vma_list);
4716 INIT_LIST_HEAD(&obj->batch_pool_link);
4717
4718 obj->ops = ops;
4719
4720 obj->fence_reg = I915_FENCE_REG_NONE;
4721 obj->madv = I915_MADV_WILLNEED;
4722
4723 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4724 }
4725
4726 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4727 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4728 .get_pages = i915_gem_object_get_pages_gtt,
4729 .put_pages = i915_gem_object_put_pages_gtt,
4730 };
4731
4732 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4733 size_t size)
4734 {
4735 struct drm_i915_gem_object *obj;
4736 struct address_space *mapping;
4737 gfp_t mask;
4738 int ret;
4739
4740 obj = i915_gem_object_alloc(dev);
4741 if (obj == NULL)
4742 return ERR_PTR(-ENOMEM);
4743
4744 ret = drm_gem_object_init(dev, &obj->base, size);
4745 if (ret)
4746 goto fail;
4747
4748 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4749 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4750 /* 965gm cannot relocate objects above 4GiB. */
4751 mask &= ~__GFP_HIGHMEM;
4752 mask |= __GFP_DMA32;
4753 }
4754
4755 mapping = file_inode(obj->base.filp)->i_mapping;
4756 mapping_set_gfp_mask(mapping, mask);
4757
4758 i915_gem_object_init(obj, &i915_gem_object_ops);
4759
4760 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4761 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4762
4763 if (HAS_LLC(dev)) {
4764 /* On some devices, we can have the GPU use the LLC (the CPU
4765 * cache) for about a 10% performance improvement
4766 * compared to uncached. Graphics requests other than
4767 * display scanout are coherent with the CPU in
4768 * accessing this cache. This means in this mode we
4769 * don't need to clflush on the CPU side, and on the
4770 * GPU side we only need to flush internal caches to
4771 * get data visible to the CPU.
4772 *
4773 * However, we maintain the display planes as UC, and so
4774 * need to rebind when first used as such.
4775 */
4776 obj->cache_level = I915_CACHE_LLC;
4777 } else
4778 obj->cache_level = I915_CACHE_NONE;
4779
4780 trace_i915_gem_object_create(obj);
4781
4782 return obj;
4783
4784 fail:
4785 i915_gem_object_free(obj);
4786
4787 return ERR_PTR(ret);
4788 }
4789
4790 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4791 {
4792 /* If we are the last user of the backing storage (be it shmemfs
4793 * pages or stolen etc), we know that the pages are going to be
4794 * immediately released. In this case, we can then skip copying
4795 * back the contents from the GPU.
4796 */
4797
4798 if (obj->madv != I915_MADV_WILLNEED)
4799 return false;
4800
4801 if (obj->base.filp == NULL)
4802 return true;
4803
4804 /* At first glance, this looks racy, but then again so would be
4805 * userspace racing mmap against close. However, the first external
4806 * reference to the filp can only be obtained through the
4807 * i915_gem_mmap_ioctl() which safeguards us against the user
4808 * acquiring such a reference whilst we are in the middle of
4809 * freeing the object.
4810 */
4811 return atomic_long_read(&obj->base.filp->f_count) == 1;
4812 }
4813
4814 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4815 {
4816 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4817 struct drm_device *dev = obj->base.dev;
4818 struct drm_i915_private *dev_priv = dev->dev_private;
4819 struct i915_vma *vma, *next;
4820
4821 intel_runtime_pm_get(dev_priv);
4822
4823 trace_i915_gem_object_destroy(obj);
4824
4825 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4826 int ret;
4827
4828 vma->pin_count = 0;
4829 ret = i915_vma_unbind(vma);
4830 if (WARN_ON(ret == -ERESTARTSYS)) {
4831 bool was_interruptible;
4832
4833 was_interruptible = dev_priv->mm.interruptible;
4834 dev_priv->mm.interruptible = false;
4835
4836 WARN_ON(i915_vma_unbind(vma));
4837
4838 dev_priv->mm.interruptible = was_interruptible;
4839 }
4840 }
4841
4842 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4843 * before progressing. */
4844 if (obj->stolen)
4845 i915_gem_object_unpin_pages(obj);
4846
4847 WARN_ON(obj->frontbuffer_bits);
4848
4849 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4850 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4851 obj->tiling_mode != I915_TILING_NONE)
4852 i915_gem_object_unpin_pages(obj);
4853
4854 if (WARN_ON(obj->pages_pin_count))
4855 obj->pages_pin_count = 0;
4856 if (discard_backing_storage(obj))
4857 obj->madv = I915_MADV_DONTNEED;
4858 i915_gem_object_put_pages(obj);
4859 i915_gem_object_free_mmap_offset(obj);
4860
4861 BUG_ON(obj->pages);
4862
4863 if (obj->base.import_attach)
4864 drm_prime_gem_destroy(&obj->base, NULL);
4865
4866 if (obj->ops->release)
4867 obj->ops->release(obj);
4868
4869 drm_gem_object_release(&obj->base);
4870 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4871
4872 kfree(obj->bit_17);
4873 i915_gem_object_free(obj);
4874
4875 intel_runtime_pm_put(dev_priv);
4876 }
4877
4878 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4879 struct i915_address_space *vm)
4880 {
4881 struct i915_vma *vma;
4882 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4883 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4884 vma->vm == vm)
4885 return vma;
4886 }
4887 return NULL;
4888 }
4889
4890 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4891 const struct i915_ggtt_view *view)
4892 {
4893 struct i915_vma *vma;
4894
4895 GEM_BUG_ON(!view);
4896
4897 list_for_each_entry(vma, &obj->vma_list, obj_link)
4898 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4899 return vma;
4900 return NULL;
4901 }
4902
4903 void i915_gem_vma_destroy(struct i915_vma *vma)
4904 {
4905 WARN_ON(vma->node.allocated);
4906
4907 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4908 if (!list_empty(&vma->exec_list))
4909 return;
4910
4911 if (!vma->is_ggtt)
4912 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4913
4914 list_del(&vma->obj_link);
4915
4916 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4917 }
4918
4919 static void
4920 i915_gem_stop_engines(struct drm_device *dev)
4921 {
4922 struct drm_i915_private *dev_priv = dev->dev_private;
4923 struct intel_engine_cs *engine;
4924
4925 for_each_engine(engine, dev_priv)
4926 dev_priv->gt.stop_engine(engine);
4927 }
4928
4929 int
4930 i915_gem_suspend(struct drm_device *dev)
4931 {
4932 struct drm_i915_private *dev_priv = dev->dev_private;
4933 int ret = 0;
4934
4935 mutex_lock(&dev->struct_mutex);
4936 ret = i915_gem_wait_for_idle(dev_priv);
4937 if (ret)
4938 goto err;
4939
4940 i915_gem_retire_requests(dev_priv);
4941
4942 i915_gem_stop_engines(dev);
4943 i915_gem_context_lost(dev_priv);
4944 mutex_unlock(&dev->struct_mutex);
4945
4946 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4947 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4948 flush_delayed_work(&dev_priv->mm.idle_work);
4949
4950 /* Assert that we sucessfully flushed all the work and
4951 * reset the GPU back to its idle, low power state.
4952 */
4953 WARN_ON(dev_priv->mm.busy);
4954
4955 return 0;
4956
4957 err:
4958 mutex_unlock(&dev->struct_mutex);
4959 return ret;
4960 }
4961
4962 void i915_gem_init_swizzling(struct drm_device *dev)
4963 {
4964 struct drm_i915_private *dev_priv = dev->dev_private;
4965
4966 if (INTEL_INFO(dev)->gen < 5 ||
4967 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4968 return;
4969
4970 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4971 DISP_TILE_SURFACE_SWIZZLING);
4972
4973 if (IS_GEN5(dev))
4974 return;
4975
4976 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4977 if (IS_GEN6(dev))
4978 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4979 else if (IS_GEN7(dev))
4980 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4981 else if (IS_GEN8(dev))
4982 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4983 else
4984 BUG();
4985 }
4986
4987 static void init_unused_ring(struct drm_device *dev, u32 base)
4988 {
4989 struct drm_i915_private *dev_priv = dev->dev_private;
4990
4991 I915_WRITE(RING_CTL(base), 0);
4992 I915_WRITE(RING_HEAD(base), 0);
4993 I915_WRITE(RING_TAIL(base), 0);
4994 I915_WRITE(RING_START(base), 0);
4995 }
4996
4997 static void init_unused_rings(struct drm_device *dev)
4998 {
4999 if (IS_I830(dev)) {
5000 init_unused_ring(dev, PRB1_BASE);
5001 init_unused_ring(dev, SRB0_BASE);
5002 init_unused_ring(dev, SRB1_BASE);
5003 init_unused_ring(dev, SRB2_BASE);
5004 init_unused_ring(dev, SRB3_BASE);
5005 } else if (IS_GEN2(dev)) {
5006 init_unused_ring(dev, SRB0_BASE);
5007 init_unused_ring(dev, SRB1_BASE);
5008 } else if (IS_GEN3(dev)) {
5009 init_unused_ring(dev, PRB1_BASE);
5010 init_unused_ring(dev, PRB2_BASE);
5011 }
5012 }
5013
5014 int i915_gem_init_engines(struct drm_device *dev)
5015 {
5016 struct drm_i915_private *dev_priv = dev->dev_private;
5017 int ret;
5018
5019 ret = intel_init_render_ring_buffer(dev);
5020 if (ret)
5021 return ret;
5022
5023 if (HAS_BSD(dev)) {
5024 ret = intel_init_bsd_ring_buffer(dev);
5025 if (ret)
5026 goto cleanup_render_ring;
5027 }
5028
5029 if (HAS_BLT(dev)) {
5030 ret = intel_init_blt_ring_buffer(dev);
5031 if (ret)
5032 goto cleanup_bsd_ring;
5033 }
5034
5035 if (HAS_VEBOX(dev)) {
5036 ret = intel_init_vebox_ring_buffer(dev);
5037 if (ret)
5038 goto cleanup_blt_ring;
5039 }
5040
5041 if (HAS_BSD2(dev)) {
5042 ret = intel_init_bsd2_ring_buffer(dev);
5043 if (ret)
5044 goto cleanup_vebox_ring;
5045 }
5046
5047 return 0;
5048
5049 cleanup_vebox_ring:
5050 intel_cleanup_engine(&dev_priv->engine[VECS]);
5051 cleanup_blt_ring:
5052 intel_cleanup_engine(&dev_priv->engine[BCS]);
5053 cleanup_bsd_ring:
5054 intel_cleanup_engine(&dev_priv->engine[VCS]);
5055 cleanup_render_ring:
5056 intel_cleanup_engine(&dev_priv->engine[RCS]);
5057
5058 return ret;
5059 }
5060
5061 int
5062 i915_gem_init_hw(struct drm_device *dev)
5063 {
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 struct intel_engine_cs *engine;
5066 int ret;
5067
5068 /* Double layer security blanket, see i915_gem_init() */
5069 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5070
5071 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5072 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5073
5074 if (IS_HASWELL(dev))
5075 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5076 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5077
5078 if (HAS_PCH_NOP(dev)) {
5079 if (IS_IVYBRIDGE(dev)) {
5080 u32 temp = I915_READ(GEN7_MSG_CTL);
5081 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5082 I915_WRITE(GEN7_MSG_CTL, temp);
5083 } else if (INTEL_INFO(dev)->gen >= 7) {
5084 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5085 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5086 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5087 }
5088 }
5089
5090 i915_gem_init_swizzling(dev);
5091
5092 /*
5093 * At least 830 can leave some of the unused rings
5094 * "active" (ie. head != tail) after resume which
5095 * will prevent c3 entry. Makes sure all unused rings
5096 * are totally idle.
5097 */
5098 init_unused_rings(dev);
5099
5100 BUG_ON(!dev_priv->kernel_context);
5101
5102 ret = i915_ppgtt_init_hw(dev);
5103 if (ret) {
5104 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5105 goto out;
5106 }
5107
5108 /* Need to do basic initialisation of all rings first: */
5109 for_each_engine(engine, dev_priv) {
5110 ret = engine->init_hw(engine);
5111 if (ret)
5112 goto out;
5113 }
5114
5115 intel_mocs_init_l3cc_table(dev);
5116
5117 /* We can't enable contexts until all firmware is loaded */
5118 ret = intel_guc_setup(dev);
5119 if (ret)
5120 goto out;
5121
5122 /*
5123 * Increment the next seqno by 0x100 so we have a visible break
5124 * on re-initialisation
5125 */
5126 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
5127
5128 out:
5129 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5130 return ret;
5131 }
5132
5133 int i915_gem_init(struct drm_device *dev)
5134 {
5135 struct drm_i915_private *dev_priv = dev->dev_private;
5136 int ret;
5137
5138 mutex_lock(&dev->struct_mutex);
5139
5140 if (!i915.enable_execlists) {
5141 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5142 dev_priv->gt.init_engines = i915_gem_init_engines;
5143 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5144 dev_priv->gt.stop_engine = intel_stop_engine;
5145 } else {
5146 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5147 dev_priv->gt.init_engines = intel_logical_rings_init;
5148 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5149 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5150 }
5151
5152 /* This is just a security blanket to placate dragons.
5153 * On some systems, we very sporadically observe that the first TLBs
5154 * used by the CS may be stale, despite us poking the TLB reset. If
5155 * we hold the forcewake during initialisation these problems
5156 * just magically go away.
5157 */
5158 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5159
5160 i915_gem_init_userptr(dev_priv);
5161 i915_gem_init_ggtt(dev);
5162
5163 ret = i915_gem_context_init(dev);
5164 if (ret)
5165 goto out_unlock;
5166
5167 ret = dev_priv->gt.init_engines(dev);
5168 if (ret)
5169 goto out_unlock;
5170
5171 ret = i915_gem_init_hw(dev);
5172 if (ret == -EIO) {
5173 /* Allow ring initialisation to fail by marking the GPU as
5174 * wedged. But we only want to do this where the GPU is angry,
5175 * for all other failure, such as an allocation failure, bail.
5176 */
5177 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5178 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5179 ret = 0;
5180 }
5181
5182 out_unlock:
5183 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5184 mutex_unlock(&dev->struct_mutex);
5185
5186 return ret;
5187 }
5188
5189 void
5190 i915_gem_cleanup_engines(struct drm_device *dev)
5191 {
5192 struct drm_i915_private *dev_priv = dev->dev_private;
5193 struct intel_engine_cs *engine;
5194
5195 for_each_engine(engine, dev_priv)
5196 dev_priv->gt.cleanup_engine(engine);
5197 }
5198
5199 static void
5200 init_engine_lists(struct intel_engine_cs *engine)
5201 {
5202 INIT_LIST_HEAD(&engine->active_list);
5203 INIT_LIST_HEAD(&engine->request_list);
5204 }
5205
5206 void
5207 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5208 {
5209 struct drm_device *dev = dev_priv->dev;
5210
5211 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5212 !IS_CHERRYVIEW(dev_priv))
5213 dev_priv->num_fence_regs = 32;
5214 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5215 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5216 dev_priv->num_fence_regs = 16;
5217 else
5218 dev_priv->num_fence_regs = 8;
5219
5220 if (intel_vgpu_active(dev_priv))
5221 dev_priv->num_fence_regs =
5222 I915_READ(vgtif_reg(avail_rs.fence_num));
5223
5224 /* Initialize fence registers to zero */
5225 i915_gem_restore_fences(dev);
5226
5227 i915_gem_detect_bit_6_swizzle(dev);
5228 }
5229
5230 void
5231 i915_gem_load_init(struct drm_device *dev)
5232 {
5233 struct drm_i915_private *dev_priv = dev->dev_private;
5234 int i;
5235
5236 dev_priv->objects =
5237 kmem_cache_create("i915_gem_object",
5238 sizeof(struct drm_i915_gem_object), 0,
5239 SLAB_HWCACHE_ALIGN,
5240 NULL);
5241 dev_priv->vmas =
5242 kmem_cache_create("i915_gem_vma",
5243 sizeof(struct i915_vma), 0,
5244 SLAB_HWCACHE_ALIGN,
5245 NULL);
5246 dev_priv->requests =
5247 kmem_cache_create("i915_gem_request",
5248 sizeof(struct drm_i915_gem_request), 0,
5249 SLAB_HWCACHE_ALIGN,
5250 NULL);
5251
5252 INIT_LIST_HEAD(&dev_priv->vm_list);
5253 INIT_LIST_HEAD(&dev_priv->context_list);
5254 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5255 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5256 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5257 for (i = 0; i < I915_NUM_ENGINES; i++)
5258 init_engine_lists(&dev_priv->engine[i]);
5259 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5260 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5261 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5262 i915_gem_retire_work_handler);
5263 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5264 i915_gem_idle_work_handler);
5265 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5266 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5267
5268 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5269
5270 /*
5271 * Set initial sequence number for requests.
5272 * Using this number allows the wraparound to happen early,
5273 * catching any obvious problems.
5274 */
5275 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5276 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5277
5278 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5279
5280 init_waitqueue_head(&dev_priv->pending_flip_queue);
5281
5282 dev_priv->mm.interruptible = true;
5283
5284 mutex_init(&dev_priv->fb_tracking.lock);
5285 }
5286
5287 void i915_gem_load_cleanup(struct drm_device *dev)
5288 {
5289 struct drm_i915_private *dev_priv = to_i915(dev);
5290
5291 kmem_cache_destroy(dev_priv->requests);
5292 kmem_cache_destroy(dev_priv->vmas);
5293 kmem_cache_destroy(dev_priv->objects);
5294 }
5295
5296 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5297 {
5298 struct drm_i915_gem_object *obj;
5299
5300 /* Called just before we write the hibernation image.
5301 *
5302 * We need to update the domain tracking to reflect that the CPU
5303 * will be accessing all the pages to create and restore from the
5304 * hibernation, and so upon restoration those pages will be in the
5305 * CPU domain.
5306 *
5307 * To make sure the hibernation image contains the latest state,
5308 * we update that state just before writing out the image.
5309 */
5310
5311 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5312 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5313 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5314 }
5315
5316 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5317 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5318 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5319 }
5320
5321 return 0;
5322 }
5323
5324 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5325 {
5326 struct drm_i915_file_private *file_priv = file->driver_priv;
5327
5328 /* Clean up our request list when the client is going away, so that
5329 * later retire_requests won't dereference our soon-to-be-gone
5330 * file_priv.
5331 */
5332 spin_lock(&file_priv->mm.lock);
5333 while (!list_empty(&file_priv->mm.request_list)) {
5334 struct drm_i915_gem_request *request;
5335
5336 request = list_first_entry(&file_priv->mm.request_list,
5337 struct drm_i915_gem_request,
5338 client_list);
5339 list_del(&request->client_list);
5340 request->file_priv = NULL;
5341 }
5342 spin_unlock(&file_priv->mm.lock);
5343
5344 if (!list_empty(&file_priv->rps.link)) {
5345 spin_lock(&to_i915(dev)->rps.client_lock);
5346 list_del(&file_priv->rps.link);
5347 spin_unlock(&to_i915(dev)->rps.client_lock);
5348 }
5349 }
5350
5351 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5352 {
5353 struct drm_i915_file_private *file_priv;
5354 int ret;
5355
5356 DRM_DEBUG_DRIVER("\n");
5357
5358 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5359 if (!file_priv)
5360 return -ENOMEM;
5361
5362 file->driver_priv = file_priv;
5363 file_priv->dev_priv = dev->dev_private;
5364 file_priv->file = file;
5365 INIT_LIST_HEAD(&file_priv->rps.link);
5366
5367 spin_lock_init(&file_priv->mm.lock);
5368 INIT_LIST_HEAD(&file_priv->mm.request_list);
5369
5370 file_priv->bsd_ring = -1;
5371
5372 ret = i915_gem_context_open(dev, file);
5373 if (ret)
5374 kfree(file_priv);
5375
5376 return ret;
5377 }
5378
5379 /**
5380 * i915_gem_track_fb - update frontbuffer tracking
5381 * @old: current GEM buffer for the frontbuffer slots
5382 * @new: new GEM buffer for the frontbuffer slots
5383 * @frontbuffer_bits: bitmask of frontbuffer slots
5384 *
5385 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5386 * from @old and setting them in @new. Both @old and @new can be NULL.
5387 */
5388 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5389 struct drm_i915_gem_object *new,
5390 unsigned frontbuffer_bits)
5391 {
5392 if (old) {
5393 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5394 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5395 old->frontbuffer_bits &= ~frontbuffer_bits;
5396 }
5397
5398 if (new) {
5399 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5400 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5401 new->frontbuffer_bits |= frontbuffer_bits;
5402 }
5403 }
5404
5405 /* All the new VM stuff */
5406 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5407 struct i915_address_space *vm)
5408 {
5409 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5410 struct i915_vma *vma;
5411
5412 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5413
5414 list_for_each_entry(vma, &o->vma_list, obj_link) {
5415 if (vma->is_ggtt &&
5416 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5417 continue;
5418 if (vma->vm == vm)
5419 return vma->node.start;
5420 }
5421
5422 WARN(1, "%s vma for this object not found.\n",
5423 i915_is_ggtt(vm) ? "global" : "ppgtt");
5424 return -1;
5425 }
5426
5427 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5428 const struct i915_ggtt_view *view)
5429 {
5430 struct i915_vma *vma;
5431
5432 list_for_each_entry(vma, &o->vma_list, obj_link)
5433 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5434 return vma->node.start;
5435
5436 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5437 return -1;
5438 }
5439
5440 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5441 struct i915_address_space *vm)
5442 {
5443 struct i915_vma *vma;
5444
5445 list_for_each_entry(vma, &o->vma_list, obj_link) {
5446 if (vma->is_ggtt &&
5447 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5448 continue;
5449 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5450 return true;
5451 }
5452
5453 return false;
5454 }
5455
5456 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5457 const struct i915_ggtt_view *view)
5458 {
5459 struct i915_vma *vma;
5460
5461 list_for_each_entry(vma, &o->vma_list, obj_link)
5462 if (vma->is_ggtt &&
5463 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5464 drm_mm_node_allocated(&vma->node))
5465 return true;
5466
5467 return false;
5468 }
5469
5470 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5471 {
5472 struct i915_vma *vma;
5473
5474 list_for_each_entry(vma, &o->vma_list, obj_link)
5475 if (drm_mm_node_allocated(&vma->node))
5476 return true;
5477
5478 return false;
5479 }
5480
5481 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5482 {
5483 struct i915_vma *vma;
5484
5485 GEM_BUG_ON(list_empty(&o->vma_list));
5486
5487 list_for_each_entry(vma, &o->vma_list, obj_link) {
5488 if (vma->is_ggtt &&
5489 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5490 return vma->node.size;
5491 }
5492
5493 return 0;
5494 }
5495
5496 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5497 {
5498 struct i915_vma *vma;
5499 list_for_each_entry(vma, &obj->vma_list, obj_link)
5500 if (vma->pin_count > 0)
5501 return true;
5502
5503 return false;
5504 }
5505
5506 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5507 struct page *
5508 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5509 {
5510 struct page *page;
5511
5512 /* Only default objects have per-page dirty tracking */
5513 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5514 return NULL;
5515
5516 page = i915_gem_object_get_page(obj, n);
5517 set_page_dirty(page);
5518 return page;
5519 }
5520
5521 /* Allocate a new GEM object and fill it with the supplied data */
5522 struct drm_i915_gem_object *
5523 i915_gem_object_create_from_data(struct drm_device *dev,
5524 const void *data, size_t size)
5525 {
5526 struct drm_i915_gem_object *obj;
5527 struct sg_table *sg;
5528 size_t bytes;
5529 int ret;
5530
5531 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5532 if (IS_ERR(obj))
5533 return obj;
5534
5535 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5536 if (ret)
5537 goto fail;
5538
5539 ret = i915_gem_object_get_pages(obj);
5540 if (ret)
5541 goto fail;
5542
5543 i915_gem_object_pin_pages(obj);
5544 sg = obj->pages;
5545 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5546 obj->dirty = 1; /* Backing store is now out of date */
5547 i915_gem_object_unpin_pages(obj);
5548
5549 if (WARN_ON(bytes != size)) {
5550 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5551 ret = -EFAULT;
5552 goto fail;
5553 }
5554
5555 return obj;
5556
5557 fail:
5558 drm_gem_object_unreference(&obj->base);
5559 return ERR_PTR(ret);
5560 }