]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
302e096c3ca0e163e9950df5b3915b944025ea7d
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43 int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50 unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62 unsigned long end)
63 {
64 drm_i915_private_t *dev_priv = dev->dev_private;
65
66 if (start >= end ||
67 (start & (PAGE_SIZE - 1)) != 0 ||
68 (end & (PAGE_SIZE - 1)) != 0) {
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, start,
73 end - start);
74
75 dev->gtt_total = (uint32_t) (end - start);
76
77 return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82 struct drm_file *file_priv)
83 {
84 struct drm_i915_gem_init *args = data;
85 int ret;
86
87 mutex_lock(&dev->struct_mutex);
88 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89 mutex_unlock(&dev->struct_mutex);
90
91 return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96 struct drm_file *file_priv)
97 {
98 struct drm_i915_gem_get_aperture *args = data;
99
100 if (!(dev->driver->driver_features & DRIVER_GEM))
101 return -ENODEV;
102
103 args->aper_size = dev->gtt_total;
104 args->aper_available_size = (args->aper_size -
105 atomic_read(&dev->pin_memory));
106
107 return 0;
108 }
109
110
111 /**
112 * Creates a new mm object and returns a handle to it.
113 */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116 struct drm_file *file_priv)
117 {
118 struct drm_i915_gem_create *args = data;
119 struct drm_gem_object *obj;
120 int ret;
121 u32 handle;
122
123 args->size = roundup(args->size, PAGE_SIZE);
124
125 /* Allocate the new object */
126 obj = drm_gem_object_alloc(dev, args->size);
127 if (obj == NULL)
128 return -ENOMEM;
129
130 ret = drm_gem_handle_create(file_priv, obj, &handle);
131 drm_gem_object_handle_unreference_unlocked(obj);
132
133 if (ret)
134 return ret;
135
136 args->handle = handle;
137
138 return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143 loff_t page_base, int page_offset,
144 char __user *data,
145 int length)
146 {
147 char __iomem *vaddr;
148 int unwritten;
149
150 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151 if (vaddr == NULL)
152 return -ENOMEM;
153 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154 kunmap_atomic(vaddr, KM_USER0);
155
156 if (unwritten)
157 return -EFAULT;
158
159 return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164 drm_i915_private_t *dev_priv = obj->dev->dev_private;
165 struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173 int dst_offset,
174 struct page *src_page,
175 int src_offset,
176 int length)
177 {
178 char *dst_vaddr, *src_vaddr;
179
180 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181 if (dst_vaddr == NULL)
182 return -ENOMEM;
183
184 src_vaddr = kmap_atomic(src_page, KM_USER1);
185 if (src_vaddr == NULL) {
186 kunmap_atomic(dst_vaddr, KM_USER0);
187 return -ENOMEM;
188 }
189
190 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192 kunmap_atomic(src_vaddr, KM_USER1);
193 kunmap_atomic(dst_vaddr, KM_USER0);
194
195 return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200 int gpu_offset,
201 struct page *cpu_page,
202 int cpu_offset,
203 int length,
204 int is_read)
205 {
206 char *gpu_vaddr, *cpu_vaddr;
207
208 /* Use the unswizzled path if this page isn't affected. */
209 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210 if (is_read)
211 return slow_shmem_copy(cpu_page, cpu_offset,
212 gpu_page, gpu_offset, length);
213 else
214 return slow_shmem_copy(gpu_page, gpu_offset,
215 cpu_page, cpu_offset, length);
216 }
217
218 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219 if (gpu_vaddr == NULL)
220 return -ENOMEM;
221
222 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223 if (cpu_vaddr == NULL) {
224 kunmap_atomic(gpu_vaddr, KM_USER0);
225 return -ENOMEM;
226 }
227
228 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229 * XORing with the other bits (A9 for Y, A9 and A10 for X)
230 */
231 while (length > 0) {
232 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233 int this_length = min(cacheline_end - gpu_offset, length);
234 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236 if (is_read) {
237 memcpy(cpu_vaddr + cpu_offset,
238 gpu_vaddr + swizzled_gpu_offset,
239 this_length);
240 } else {
241 memcpy(gpu_vaddr + swizzled_gpu_offset,
242 cpu_vaddr + cpu_offset,
243 this_length);
244 }
245 cpu_offset += this_length;
246 gpu_offset += this_length;
247 length -= this_length;
248 }
249
250 kunmap_atomic(cpu_vaddr, KM_USER1);
251 kunmap_atomic(gpu_vaddr, KM_USER0);
252
253 return 0;
254 }
255
256 /**
257 * This is the fast shmem pread path, which attempts to copy_from_user directly
258 * from the backing pages of the object to the user's address space. On a
259 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260 */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263 struct drm_i915_gem_pread *args,
264 struct drm_file *file_priv)
265 {
266 struct drm_i915_gem_object *obj_priv = obj->driver_private;
267 ssize_t remain;
268 loff_t offset, page_base;
269 char __user *user_data;
270 int page_offset, page_length;
271 int ret;
272
273 user_data = (char __user *) (uintptr_t) args->data_ptr;
274 remain = args->size;
275
276 mutex_lock(&dev->struct_mutex);
277
278 ret = i915_gem_object_get_pages(obj, 0);
279 if (ret != 0)
280 goto fail_unlock;
281
282 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283 args->size);
284 if (ret != 0)
285 goto fail_put_pages;
286
287 obj_priv = obj->driver_private;
288 offset = args->offset;
289
290 while (remain > 0) {
291 /* Operation in this page
292 *
293 * page_base = page offset within aperture
294 * page_offset = offset within page
295 * page_length = bytes to copy for this page
296 */
297 page_base = (offset & ~(PAGE_SIZE-1));
298 page_offset = offset & (PAGE_SIZE-1);
299 page_length = remain;
300 if ((page_offset + remain) > PAGE_SIZE)
301 page_length = PAGE_SIZE - page_offset;
302
303 ret = fast_shmem_read(obj_priv->pages,
304 page_base, page_offset,
305 user_data, page_length);
306 if (ret)
307 goto fail_put_pages;
308
309 remain -= page_length;
310 user_data += page_length;
311 offset += page_length;
312 }
313
314 fail_put_pages:
315 i915_gem_object_put_pages(obj);
316 fail_unlock:
317 mutex_unlock(&dev->struct_mutex);
318
319 return ret;
320 }
321
322 static int
323 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
324 {
325 int ret;
326
327 ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
328
329 /* If we've insufficient memory to map in the pages, attempt
330 * to make some space by throwing out some old buffers.
331 */
332 if (ret == -ENOMEM) {
333 struct drm_device *dev = obj->dev;
334
335 ret = i915_gem_evict_something(dev, obj->size);
336 if (ret)
337 return ret;
338
339 ret = i915_gem_object_get_pages(obj, 0);
340 }
341
342 return ret;
343 }
344
345 /**
346 * This is the fallback shmem pread path, which allocates temporary storage
347 * in kernel space to copy_to_user into outside of the struct_mutex, so we
348 * can copy out of the object's backing pages while holding the struct mutex
349 * and not take page faults.
350 */
351 static int
352 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
353 struct drm_i915_gem_pread *args,
354 struct drm_file *file_priv)
355 {
356 struct drm_i915_gem_object *obj_priv = obj->driver_private;
357 struct mm_struct *mm = current->mm;
358 struct page **user_pages;
359 ssize_t remain;
360 loff_t offset, pinned_pages, i;
361 loff_t first_data_page, last_data_page, num_pages;
362 int shmem_page_index, shmem_page_offset;
363 int data_page_index, data_page_offset;
364 int page_length;
365 int ret;
366 uint64_t data_ptr = args->data_ptr;
367 int do_bit17_swizzling;
368
369 remain = args->size;
370
371 /* Pin the user pages containing the data. We can't fault while
372 * holding the struct mutex, yet we want to hold it while
373 * dereferencing the user data.
374 */
375 first_data_page = data_ptr / PAGE_SIZE;
376 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
377 num_pages = last_data_page - first_data_page + 1;
378
379 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
380 if (user_pages == NULL)
381 return -ENOMEM;
382
383 down_read(&mm->mmap_sem);
384 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
385 num_pages, 1, 0, user_pages, NULL);
386 up_read(&mm->mmap_sem);
387 if (pinned_pages < num_pages) {
388 ret = -EFAULT;
389 goto fail_put_user_pages;
390 }
391
392 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
393
394 mutex_lock(&dev->struct_mutex);
395
396 ret = i915_gem_object_get_pages_or_evict(obj);
397 if (ret)
398 goto fail_unlock;
399
400 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
401 args->size);
402 if (ret != 0)
403 goto fail_put_pages;
404
405 obj_priv = obj->driver_private;
406 offset = args->offset;
407
408 while (remain > 0) {
409 /* Operation in this page
410 *
411 * shmem_page_index = page number within shmem file
412 * shmem_page_offset = offset within page in shmem file
413 * data_page_index = page number in get_user_pages return
414 * data_page_offset = offset with data_page_index page.
415 * page_length = bytes to copy for this page
416 */
417 shmem_page_index = offset / PAGE_SIZE;
418 shmem_page_offset = offset & ~PAGE_MASK;
419 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
420 data_page_offset = data_ptr & ~PAGE_MASK;
421
422 page_length = remain;
423 if ((shmem_page_offset + page_length) > PAGE_SIZE)
424 page_length = PAGE_SIZE - shmem_page_offset;
425 if ((data_page_offset + page_length) > PAGE_SIZE)
426 page_length = PAGE_SIZE - data_page_offset;
427
428 if (do_bit17_swizzling) {
429 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
430 shmem_page_offset,
431 user_pages[data_page_index],
432 data_page_offset,
433 page_length,
434 1);
435 } else {
436 ret = slow_shmem_copy(user_pages[data_page_index],
437 data_page_offset,
438 obj_priv->pages[shmem_page_index],
439 shmem_page_offset,
440 page_length);
441 }
442 if (ret)
443 goto fail_put_pages;
444
445 remain -= page_length;
446 data_ptr += page_length;
447 offset += page_length;
448 }
449
450 fail_put_pages:
451 i915_gem_object_put_pages(obj);
452 fail_unlock:
453 mutex_unlock(&dev->struct_mutex);
454 fail_put_user_pages:
455 for (i = 0; i < pinned_pages; i++) {
456 SetPageDirty(user_pages[i]);
457 page_cache_release(user_pages[i]);
458 }
459 drm_free_large(user_pages);
460
461 return ret;
462 }
463
464 /**
465 * Reads data from the object referenced by handle.
466 *
467 * On error, the contents of *data are undefined.
468 */
469 int
470 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
471 struct drm_file *file_priv)
472 {
473 struct drm_i915_gem_pread *args = data;
474 struct drm_gem_object *obj;
475 struct drm_i915_gem_object *obj_priv;
476 int ret;
477
478 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
479 if (obj == NULL)
480 return -EBADF;
481 obj_priv = obj->driver_private;
482
483 /* Bounds check source.
484 *
485 * XXX: This could use review for overflow issues...
486 */
487 if (args->offset > obj->size || args->size > obj->size ||
488 args->offset + args->size > obj->size) {
489 drm_gem_object_unreference_unlocked(obj);
490 return -EINVAL;
491 }
492
493 if (i915_gem_object_needs_bit17_swizzle(obj)) {
494 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
495 } else {
496 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
497 if (ret != 0)
498 ret = i915_gem_shmem_pread_slow(dev, obj, args,
499 file_priv);
500 }
501
502 drm_gem_object_unreference_unlocked(obj);
503
504 return ret;
505 }
506
507 /* This is the fast write path which cannot handle
508 * page faults in the source data
509 */
510
511 static inline int
512 fast_user_write(struct io_mapping *mapping,
513 loff_t page_base, int page_offset,
514 char __user *user_data,
515 int length)
516 {
517 char *vaddr_atomic;
518 unsigned long unwritten;
519
520 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
521 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
522 user_data, length);
523 io_mapping_unmap_atomic(vaddr_atomic);
524 if (unwritten)
525 return -EFAULT;
526 return 0;
527 }
528
529 /* Here's the write path which can sleep for
530 * page faults
531 */
532
533 static inline int
534 slow_kernel_write(struct io_mapping *mapping,
535 loff_t gtt_base, int gtt_offset,
536 struct page *user_page, int user_offset,
537 int length)
538 {
539 char *src_vaddr, *dst_vaddr;
540 unsigned long unwritten;
541
542 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
543 src_vaddr = kmap_atomic(user_page, KM_USER1);
544 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
545 src_vaddr + user_offset,
546 length);
547 kunmap_atomic(src_vaddr, KM_USER1);
548 io_mapping_unmap_atomic(dst_vaddr);
549 if (unwritten)
550 return -EFAULT;
551 return 0;
552 }
553
554 static inline int
555 fast_shmem_write(struct page **pages,
556 loff_t page_base, int page_offset,
557 char __user *data,
558 int length)
559 {
560 char __iomem *vaddr;
561 unsigned long unwritten;
562
563 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
564 if (vaddr == NULL)
565 return -ENOMEM;
566 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
567 kunmap_atomic(vaddr, KM_USER0);
568
569 if (unwritten)
570 return -EFAULT;
571 return 0;
572 }
573
574 /**
575 * This is the fast pwrite path, where we copy the data directly from the
576 * user into the GTT, uncached.
577 */
578 static int
579 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file_priv)
582 {
583 struct drm_i915_gem_object *obj_priv = obj->driver_private;
584 drm_i915_private_t *dev_priv = dev->dev_private;
585 ssize_t remain;
586 loff_t offset, page_base;
587 char __user *user_data;
588 int page_offset, page_length;
589 int ret;
590
591 user_data = (char __user *) (uintptr_t) args->data_ptr;
592 remain = args->size;
593 if (!access_ok(VERIFY_READ, user_data, remain))
594 return -EFAULT;
595
596
597 mutex_lock(&dev->struct_mutex);
598 ret = i915_gem_object_pin(obj, 0);
599 if (ret) {
600 mutex_unlock(&dev->struct_mutex);
601 return ret;
602 }
603 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
604 if (ret)
605 goto fail;
606
607 obj_priv = obj->driver_private;
608 offset = obj_priv->gtt_offset + args->offset;
609
610 while (remain > 0) {
611 /* Operation in this page
612 *
613 * page_base = page offset within aperture
614 * page_offset = offset within page
615 * page_length = bytes to copy for this page
616 */
617 page_base = (offset & ~(PAGE_SIZE-1));
618 page_offset = offset & (PAGE_SIZE-1);
619 page_length = remain;
620 if ((page_offset + remain) > PAGE_SIZE)
621 page_length = PAGE_SIZE - page_offset;
622
623 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length);
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (ret)
631 goto fail;
632
633 remain -= page_length;
634 user_data += page_length;
635 offset += page_length;
636 }
637
638 fail:
639 i915_gem_object_unpin(obj);
640 mutex_unlock(&dev->struct_mutex);
641
642 return ret;
643 }
644
645 /**
646 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
647 * the memory and maps it using kmap_atomic for copying.
648 *
649 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
650 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
651 */
652 static int
653 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
654 struct drm_i915_gem_pwrite *args,
655 struct drm_file *file_priv)
656 {
657 struct drm_i915_gem_object *obj_priv = obj->driver_private;
658 drm_i915_private_t *dev_priv = dev->dev_private;
659 ssize_t remain;
660 loff_t gtt_page_base, offset;
661 loff_t first_data_page, last_data_page, num_pages;
662 loff_t pinned_pages, i;
663 struct page **user_pages;
664 struct mm_struct *mm = current->mm;
665 int gtt_page_offset, data_page_offset, data_page_index, page_length;
666 int ret;
667 uint64_t data_ptr = args->data_ptr;
668
669 remain = args->size;
670
671 /* Pin the user pages containing the data. We can't fault while
672 * holding the struct mutex, and all of the pwrite implementations
673 * want to hold it while dereferencing the user data.
674 */
675 first_data_page = data_ptr / PAGE_SIZE;
676 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
677 num_pages = last_data_page - first_data_page + 1;
678
679 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
680 if (user_pages == NULL)
681 return -ENOMEM;
682
683 down_read(&mm->mmap_sem);
684 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
685 num_pages, 0, 0, user_pages, NULL);
686 up_read(&mm->mmap_sem);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 mutex_lock(&dev->struct_mutex);
693 ret = i915_gem_object_pin(obj, 0);
694 if (ret)
695 goto out_unlock;
696
697 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
698 if (ret)
699 goto out_unpin_object;
700
701 obj_priv = obj->driver_private;
702 offset = obj_priv->gtt_offset + args->offset;
703
704 while (remain > 0) {
705 /* Operation in this page
706 *
707 * gtt_page_base = page offset within aperture
708 * gtt_page_offset = offset within page in aperture
709 * data_page_index = page number in get_user_pages return
710 * data_page_offset = offset with data_page_index page.
711 * page_length = bytes to copy for this page
712 */
713 gtt_page_base = offset & PAGE_MASK;
714 gtt_page_offset = offset & ~PAGE_MASK;
715 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
716 data_page_offset = data_ptr & ~PAGE_MASK;
717
718 page_length = remain;
719 if ((gtt_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - gtt_page_offset;
721 if ((data_page_offset + page_length) > PAGE_SIZE)
722 page_length = PAGE_SIZE - data_page_offset;
723
724 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
725 gtt_page_base, gtt_page_offset,
726 user_pages[data_page_index],
727 data_page_offset,
728 page_length);
729
730 /* If we get a fault while copying data, then (presumably) our
731 * source page isn't available. Return the error and we'll
732 * retry in the slow path.
733 */
734 if (ret)
735 goto out_unpin_object;
736
737 remain -= page_length;
738 offset += page_length;
739 data_ptr += page_length;
740 }
741
742 out_unpin_object:
743 i915_gem_object_unpin(obj);
744 out_unlock:
745 mutex_unlock(&dev->struct_mutex);
746 out_unpin_pages:
747 for (i = 0; i < pinned_pages; i++)
748 page_cache_release(user_pages[i]);
749 drm_free_large(user_pages);
750
751 return ret;
752 }
753
754 /**
755 * This is the fast shmem pwrite path, which attempts to directly
756 * copy_from_user into the kmapped pages backing the object.
757 */
758 static int
759 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file_priv)
762 {
763 struct drm_i915_gem_object *obj_priv = obj->driver_private;
764 ssize_t remain;
765 loff_t offset, page_base;
766 char __user *user_data;
767 int page_offset, page_length;
768 int ret;
769
770 user_data = (char __user *) (uintptr_t) args->data_ptr;
771 remain = args->size;
772
773 mutex_lock(&dev->struct_mutex);
774
775 ret = i915_gem_object_get_pages(obj, 0);
776 if (ret != 0)
777 goto fail_unlock;
778
779 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
780 if (ret != 0)
781 goto fail_put_pages;
782
783 obj_priv = obj->driver_private;
784 offset = args->offset;
785 obj_priv->dirty = 1;
786
787 while (remain > 0) {
788 /* Operation in this page
789 *
790 * page_base = page offset within aperture
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
793 */
794 page_base = (offset & ~(PAGE_SIZE-1));
795 page_offset = offset & (PAGE_SIZE-1);
796 page_length = remain;
797 if ((page_offset + remain) > PAGE_SIZE)
798 page_length = PAGE_SIZE - page_offset;
799
800 ret = fast_shmem_write(obj_priv->pages,
801 page_base, page_offset,
802 user_data, page_length);
803 if (ret)
804 goto fail_put_pages;
805
806 remain -= page_length;
807 user_data += page_length;
808 offset += page_length;
809 }
810
811 fail_put_pages:
812 i915_gem_object_put_pages(obj);
813 fail_unlock:
814 mutex_unlock(&dev->struct_mutex);
815
816 return ret;
817 }
818
819 /**
820 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
821 * the memory and maps it using kmap_atomic for copying.
822 *
823 * This avoids taking mmap_sem for faulting on the user's address while the
824 * struct_mutex is held.
825 */
826 static int
827 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
828 struct drm_i915_gem_pwrite *args,
829 struct drm_file *file_priv)
830 {
831 struct drm_i915_gem_object *obj_priv = obj->driver_private;
832 struct mm_struct *mm = current->mm;
833 struct page **user_pages;
834 ssize_t remain;
835 loff_t offset, pinned_pages, i;
836 loff_t first_data_page, last_data_page, num_pages;
837 int shmem_page_index, shmem_page_offset;
838 int data_page_index, data_page_offset;
839 int page_length;
840 int ret;
841 uint64_t data_ptr = args->data_ptr;
842 int do_bit17_swizzling;
843
844 remain = args->size;
845
846 /* Pin the user pages containing the data. We can't fault while
847 * holding the struct mutex, and all of the pwrite implementations
848 * want to hold it while dereferencing the user data.
849 */
850 first_data_page = data_ptr / PAGE_SIZE;
851 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
852 num_pages = last_data_page - first_data_page + 1;
853
854 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
855 if (user_pages == NULL)
856 return -ENOMEM;
857
858 down_read(&mm->mmap_sem);
859 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
860 num_pages, 0, 0, user_pages, NULL);
861 up_read(&mm->mmap_sem);
862 if (pinned_pages < num_pages) {
863 ret = -EFAULT;
864 goto fail_put_user_pages;
865 }
866
867 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
868
869 mutex_lock(&dev->struct_mutex);
870
871 ret = i915_gem_object_get_pages_or_evict(obj);
872 if (ret)
873 goto fail_unlock;
874
875 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
876 if (ret != 0)
877 goto fail_put_pages;
878
879 obj_priv = obj->driver_private;
880 offset = args->offset;
881 obj_priv->dirty = 1;
882
883 while (remain > 0) {
884 /* Operation in this page
885 *
886 * shmem_page_index = page number within shmem file
887 * shmem_page_offset = offset within page in shmem file
888 * data_page_index = page number in get_user_pages return
889 * data_page_offset = offset with data_page_index page.
890 * page_length = bytes to copy for this page
891 */
892 shmem_page_index = offset / PAGE_SIZE;
893 shmem_page_offset = offset & ~PAGE_MASK;
894 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
895 data_page_offset = data_ptr & ~PAGE_MASK;
896
897 page_length = remain;
898 if ((shmem_page_offset + page_length) > PAGE_SIZE)
899 page_length = PAGE_SIZE - shmem_page_offset;
900 if ((data_page_offset + page_length) > PAGE_SIZE)
901 page_length = PAGE_SIZE - data_page_offset;
902
903 if (do_bit17_swizzling) {
904 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
905 shmem_page_offset,
906 user_pages[data_page_index],
907 data_page_offset,
908 page_length,
909 0);
910 } else {
911 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
912 shmem_page_offset,
913 user_pages[data_page_index],
914 data_page_offset,
915 page_length);
916 }
917 if (ret)
918 goto fail_put_pages;
919
920 remain -= page_length;
921 data_ptr += page_length;
922 offset += page_length;
923 }
924
925 fail_put_pages:
926 i915_gem_object_put_pages(obj);
927 fail_unlock:
928 mutex_unlock(&dev->struct_mutex);
929 fail_put_user_pages:
930 for (i = 0; i < pinned_pages; i++)
931 page_cache_release(user_pages[i]);
932 drm_free_large(user_pages);
933
934 return ret;
935 }
936
937 /**
938 * Writes data to the object referenced by handle.
939 *
940 * On error, the contents of the buffer that were to be modified are undefined.
941 */
942 int
943 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
944 struct drm_file *file_priv)
945 {
946 struct drm_i915_gem_pwrite *args = data;
947 struct drm_gem_object *obj;
948 struct drm_i915_gem_object *obj_priv;
949 int ret = 0;
950
951 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
952 if (obj == NULL)
953 return -EBADF;
954 obj_priv = obj->driver_private;
955
956 /* Bounds check destination.
957 *
958 * XXX: This could use review for overflow issues...
959 */
960 if (args->offset > obj->size || args->size > obj->size ||
961 args->offset + args->size > obj->size) {
962 drm_gem_object_unreference_unlocked(obj);
963 return -EINVAL;
964 }
965
966 /* We can only do the GTT pwrite on untiled buffers, as otherwise
967 * it would end up going through the fenced access, and we'll get
968 * different detiling behavior between reading and writing.
969 * pread/pwrite currently are reading and writing from the CPU
970 * perspective, requiring manual detiling by the client.
971 */
972 if (obj_priv->phys_obj)
973 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
974 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
975 dev->gtt_total != 0) {
976 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977 if (ret == -EFAULT) {
978 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979 file_priv);
980 }
981 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983 } else {
984 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985 if (ret == -EFAULT) {
986 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987 file_priv);
988 }
989 }
990
991 #if WATCH_PWRITE
992 if (ret)
993 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996 drm_gem_object_unreference_unlocked(obj);
997
998 return ret;
999 }
1000
1001 /**
1002 * Called when user space prepares to use an object with the CPU, either
1003 * through the mmap ioctl's mapping or a GTT mapping.
1004 */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007 struct drm_file *file_priv)
1008 {
1009 struct drm_i915_private *dev_priv = dev->dev_private;
1010 struct drm_i915_gem_set_domain *args = data;
1011 struct drm_gem_object *obj;
1012 struct drm_i915_gem_object *obj_priv;
1013 uint32_t read_domains = args->read_domains;
1014 uint32_t write_domain = args->write_domain;
1015 int ret;
1016
1017 if (!(dev->driver->driver_features & DRIVER_GEM))
1018 return -ENODEV;
1019
1020 /* Only handle setting domains to types used by the CPU. */
1021 if (write_domain & I915_GEM_GPU_DOMAINS)
1022 return -EINVAL;
1023
1024 if (read_domains & I915_GEM_GPU_DOMAINS)
1025 return -EINVAL;
1026
1027 /* Having something in the write domain implies it's in the read
1028 * domain, and only that read domain. Enforce that in the request.
1029 */
1030 if (write_domain != 0 && read_domains != write_domain)
1031 return -EINVAL;
1032
1033 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034 if (obj == NULL)
1035 return -EBADF;
1036 obj_priv = obj->driver_private;
1037
1038 mutex_lock(&dev->struct_mutex);
1039
1040 intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044 obj, obj->size, read_domains, write_domain);
1045 #endif
1046 if (read_domains & I915_GEM_DOMAIN_GTT) {
1047 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049 /* Update the LRU on the fence for the CPU access that's
1050 * about to occur.
1051 */
1052 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053 list_move_tail(&obj_priv->fence_list,
1054 &dev_priv->mm.fence_list);
1055 }
1056
1057 /* Silently promote "you're not bound, there was nothing to do"
1058 * to success, since the client was just asking us to
1059 * make sure everything was done.
1060 */
1061 if (ret == -EINVAL)
1062 ret = 0;
1063 } else {
1064 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1065 }
1066
1067 drm_gem_object_unreference(obj);
1068 mutex_unlock(&dev->struct_mutex);
1069 return ret;
1070 }
1071
1072 /**
1073 * Called when user space has done writes to this buffer
1074 */
1075 int
1076 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_sw_finish *args = data;
1080 struct drm_gem_object *obj;
1081 struct drm_i915_gem_object *obj_priv;
1082 int ret = 0;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 mutex_lock(&dev->struct_mutex);
1088 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1089 if (obj == NULL) {
1090 mutex_unlock(&dev->struct_mutex);
1091 return -EBADF;
1092 }
1093
1094 #if WATCH_BUF
1095 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1096 __func__, args->handle, obj, obj->size);
1097 #endif
1098 obj_priv = obj->driver_private;
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj_priv->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(obj);
1105 mutex_unlock(&dev->struct_mutex);
1106 return ret;
1107 }
1108
1109 /**
1110 * Maps the contents of an object, returning the address it is mapped
1111 * into.
1112 *
1113 * While the mapping holds a reference on the contents of the object, it doesn't
1114 * imply a ref on the object itself.
1115 */
1116 int
1117 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1118 struct drm_file *file_priv)
1119 {
1120 struct drm_i915_gem_mmap *args = data;
1121 struct drm_gem_object *obj;
1122 loff_t offset;
1123 unsigned long addr;
1124
1125 if (!(dev->driver->driver_features & DRIVER_GEM))
1126 return -ENODEV;
1127
1128 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1129 if (obj == NULL)
1130 return -EBADF;
1131
1132 offset = args->offset;
1133
1134 down_write(&current->mm->mmap_sem);
1135 addr = do_mmap(obj->filp, 0, args->size,
1136 PROT_READ | PROT_WRITE, MAP_SHARED,
1137 args->offset);
1138 up_write(&current->mm->mmap_sem);
1139 drm_gem_object_unreference_unlocked(obj);
1140 if (IS_ERR((void *)addr))
1141 return addr;
1142
1143 args->addr_ptr = (uint64_t) addr;
1144
1145 return 0;
1146 }
1147
1148 /**
1149 * i915_gem_fault - fault a page into the GTT
1150 * vma: VMA in question
1151 * vmf: fault info
1152 *
1153 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1154 * from userspace. The fault handler takes care of binding the object to
1155 * the GTT (if needed), allocating and programming a fence register (again,
1156 * only if needed based on whether the old reg is still valid or the object
1157 * is tiled) and inserting a new PTE into the faulting process.
1158 *
1159 * Note that the faulting process may involve evicting existing objects
1160 * from the GTT and/or fence registers to make room. So performance may
1161 * suffer if the GTT working set is large or there are few fence registers
1162 * left.
1163 */
1164 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1165 {
1166 struct drm_gem_object *obj = vma->vm_private_data;
1167 struct drm_device *dev = obj->dev;
1168 struct drm_i915_private *dev_priv = dev->dev_private;
1169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1170 pgoff_t page_offset;
1171 unsigned long pfn;
1172 int ret = 0;
1173 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1174
1175 /* We don't use vmf->pgoff since that has the fake offset */
1176 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1177 PAGE_SHIFT;
1178
1179 /* Now bind it into the GTT if needed */
1180 mutex_lock(&dev->struct_mutex);
1181 if (!obj_priv->gtt_space) {
1182 ret = i915_gem_object_bind_to_gtt(obj, 0);
1183 if (ret)
1184 goto unlock;
1185
1186 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1187
1188 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1189 if (ret)
1190 goto unlock;
1191 }
1192
1193 /* Need a new fence register? */
1194 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1195 ret = i915_gem_object_get_fence_reg(obj);
1196 if (ret)
1197 goto unlock;
1198 }
1199
1200 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1201 page_offset;
1202
1203 /* Finally, remap it using the new GTT offset */
1204 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1205 unlock:
1206 mutex_unlock(&dev->struct_mutex);
1207
1208 switch (ret) {
1209 case 0:
1210 case -ERESTARTSYS:
1211 return VM_FAULT_NOPAGE;
1212 case -ENOMEM:
1213 case -EAGAIN:
1214 return VM_FAULT_OOM;
1215 default:
1216 return VM_FAULT_SIGBUS;
1217 }
1218 }
1219
1220 /**
1221 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1222 * @obj: obj in question
1223 *
1224 * GEM memory mapping works by handing back to userspace a fake mmap offset
1225 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1226 * up the object based on the offset and sets up the various memory mapping
1227 * structures.
1228 *
1229 * This routine allocates and attaches a fake offset for @obj.
1230 */
1231 static int
1232 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1233 {
1234 struct drm_device *dev = obj->dev;
1235 struct drm_gem_mm *mm = dev->mm_private;
1236 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1237 struct drm_map_list *list;
1238 struct drm_local_map *map;
1239 int ret = 0;
1240
1241 /* Set the object up for mmap'ing */
1242 list = &obj->map_list;
1243 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1244 if (!list->map)
1245 return -ENOMEM;
1246
1247 map = list->map;
1248 map->type = _DRM_GEM;
1249 map->size = obj->size;
1250 map->handle = obj;
1251
1252 /* Get a DRM GEM mmap offset allocated... */
1253 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1254 obj->size / PAGE_SIZE, 0, 0);
1255 if (!list->file_offset_node) {
1256 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1257 ret = -ENOMEM;
1258 goto out_free_list;
1259 }
1260
1261 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1262 obj->size / PAGE_SIZE, 0);
1263 if (!list->file_offset_node) {
1264 ret = -ENOMEM;
1265 goto out_free_list;
1266 }
1267
1268 list->hash.key = list->file_offset_node->start;
1269 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1270 DRM_ERROR("failed to add to map hash\n");
1271 ret = -ENOMEM;
1272 goto out_free_mm;
1273 }
1274
1275 /* By now we should be all set, any drm_mmap request on the offset
1276 * below will get to our mmap & fault handler */
1277 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1278
1279 return 0;
1280
1281 out_free_mm:
1282 drm_mm_put_block(list->file_offset_node);
1283 out_free_list:
1284 kfree(list->map);
1285
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_gem_release_mmap - remove physical page mappings
1291 * @obj: obj in question
1292 *
1293 * Preserve the reservation of the mmapping with the DRM core code, but
1294 * relinquish ownership of the pages back to the system.
1295 *
1296 * It is vital that we remove the page mapping if we have mapped a tiled
1297 * object through the GTT and then lose the fence register due to
1298 * resource pressure. Similarly if the object has been moved out of the
1299 * aperture, than pages mapped into userspace must be revoked. Removing the
1300 * mapping will then trigger a page fault on the next user access, allowing
1301 * fixup by i915_gem_fault().
1302 */
1303 void
1304 i915_gem_release_mmap(struct drm_gem_object *obj)
1305 {
1306 struct drm_device *dev = obj->dev;
1307 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1308
1309 if (dev->dev_mapping)
1310 unmap_mapping_range(dev->dev_mapping,
1311 obj_priv->mmap_offset, obj->size, 1);
1312 }
1313
1314 static void
1315 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1316 {
1317 struct drm_device *dev = obj->dev;
1318 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1319 struct drm_gem_mm *mm = dev->mm_private;
1320 struct drm_map_list *list;
1321
1322 list = &obj->map_list;
1323 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1324
1325 if (list->file_offset_node) {
1326 drm_mm_put_block(list->file_offset_node);
1327 list->file_offset_node = NULL;
1328 }
1329
1330 if (list->map) {
1331 kfree(list->map);
1332 list->map = NULL;
1333 }
1334
1335 obj_priv->mmap_offset = 0;
1336 }
1337
1338 /**
1339 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1340 * @obj: object to check
1341 *
1342 * Return the required GTT alignment for an object, taking into account
1343 * potential fence register mapping if needed.
1344 */
1345 static uint32_t
1346 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1347 {
1348 struct drm_device *dev = obj->dev;
1349 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1350 int start, i;
1351
1352 /*
1353 * Minimum alignment is 4k (GTT page size), but might be greater
1354 * if a fence register is needed for the object.
1355 */
1356 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1357 return 4096;
1358
1359 /*
1360 * Previous chips need to be aligned to the size of the smallest
1361 * fence register that can contain the object.
1362 */
1363 if (IS_I9XX(dev))
1364 start = 1024*1024;
1365 else
1366 start = 512*1024;
1367
1368 for (i = start; i < obj->size; i <<= 1)
1369 ;
1370
1371 return i;
1372 }
1373
1374 /**
1375 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1376 * @dev: DRM device
1377 * @data: GTT mapping ioctl data
1378 * @file_priv: GEM object info
1379 *
1380 * Simply returns the fake offset to userspace so it can mmap it.
1381 * The mmap call will end up in drm_gem_mmap(), which will set things
1382 * up so we can get faults in the handler above.
1383 *
1384 * The fault handler will take care of binding the object into the GTT
1385 * (since it may have been evicted to make room for something), allocating
1386 * a fence register, and mapping the appropriate aperture address into
1387 * userspace.
1388 */
1389 int
1390 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1391 struct drm_file *file_priv)
1392 {
1393 struct drm_i915_gem_mmap_gtt *args = data;
1394 struct drm_i915_private *dev_priv = dev->dev_private;
1395 struct drm_gem_object *obj;
1396 struct drm_i915_gem_object *obj_priv;
1397 int ret;
1398
1399 if (!(dev->driver->driver_features & DRIVER_GEM))
1400 return -ENODEV;
1401
1402 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1403 if (obj == NULL)
1404 return -EBADF;
1405
1406 mutex_lock(&dev->struct_mutex);
1407
1408 obj_priv = obj->driver_private;
1409
1410 if (obj_priv->madv != I915_MADV_WILLNEED) {
1411 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1412 drm_gem_object_unreference(obj);
1413 mutex_unlock(&dev->struct_mutex);
1414 return -EINVAL;
1415 }
1416
1417
1418 if (!obj_priv->mmap_offset) {
1419 ret = i915_gem_create_mmap_offset(obj);
1420 if (ret) {
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423 return ret;
1424 }
1425 }
1426
1427 args->offset = obj_priv->mmap_offset;
1428
1429 /*
1430 * Pull it into the GTT so that we have a page list (makes the
1431 * initial fault faster and any subsequent flushing possible).
1432 */
1433 if (!obj_priv->agp_mem) {
1434 ret = i915_gem_object_bind_to_gtt(obj, 0);
1435 if (ret) {
1436 drm_gem_object_unreference(obj);
1437 mutex_unlock(&dev->struct_mutex);
1438 return ret;
1439 }
1440 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1441 }
1442
1443 drm_gem_object_unreference(obj);
1444 mutex_unlock(&dev->struct_mutex);
1445
1446 return 0;
1447 }
1448
1449 void
1450 i915_gem_object_put_pages(struct drm_gem_object *obj)
1451 {
1452 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1453 int page_count = obj->size / PAGE_SIZE;
1454 int i;
1455
1456 BUG_ON(obj_priv->pages_refcount == 0);
1457 BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1458
1459 if (--obj_priv->pages_refcount != 0)
1460 return;
1461
1462 if (obj_priv->tiling_mode != I915_TILING_NONE)
1463 i915_gem_object_save_bit_17_swizzle(obj);
1464
1465 if (obj_priv->madv == I915_MADV_DONTNEED)
1466 obj_priv->dirty = 0;
1467
1468 for (i = 0; i < page_count; i++) {
1469 if (obj_priv->pages[i] == NULL)
1470 break;
1471
1472 if (obj_priv->dirty)
1473 set_page_dirty(obj_priv->pages[i]);
1474
1475 if (obj_priv->madv == I915_MADV_WILLNEED)
1476 mark_page_accessed(obj_priv->pages[i]);
1477
1478 page_cache_release(obj_priv->pages[i]);
1479 }
1480 obj_priv->dirty = 0;
1481
1482 drm_free_large(obj_priv->pages);
1483 obj_priv->pages = NULL;
1484 }
1485
1486 static void
1487 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1488 {
1489 struct drm_device *dev = obj->dev;
1490 drm_i915_private_t *dev_priv = dev->dev_private;
1491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1492
1493 /* Add a reference if we're newly entering the active list. */
1494 if (!obj_priv->active) {
1495 drm_gem_object_reference(obj);
1496 obj_priv->active = 1;
1497 }
1498 /* Move from whatever list we were on to the tail of execution. */
1499 spin_lock(&dev_priv->mm.active_list_lock);
1500 list_move_tail(&obj_priv->list,
1501 &dev_priv->mm.active_list);
1502 spin_unlock(&dev_priv->mm.active_list_lock);
1503 obj_priv->last_rendering_seqno = seqno;
1504 }
1505
1506 static void
1507 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1508 {
1509 struct drm_device *dev = obj->dev;
1510 drm_i915_private_t *dev_priv = dev->dev_private;
1511 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1512
1513 BUG_ON(!obj_priv->active);
1514 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1515 obj_priv->last_rendering_seqno = 0;
1516 }
1517
1518 /* Immediately discard the backing storage */
1519 static void
1520 i915_gem_object_truncate(struct drm_gem_object *obj)
1521 {
1522 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1523 struct inode *inode;
1524
1525 inode = obj->filp->f_path.dentry->d_inode;
1526 if (inode->i_op->truncate)
1527 inode->i_op->truncate (inode);
1528
1529 obj_priv->madv = __I915_MADV_PURGED;
1530 }
1531
1532 static inline int
1533 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1534 {
1535 return obj_priv->madv == I915_MADV_DONTNEED;
1536 }
1537
1538 static void
1539 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1540 {
1541 struct drm_device *dev = obj->dev;
1542 drm_i915_private_t *dev_priv = dev->dev_private;
1543 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1544
1545 i915_verify_inactive(dev, __FILE__, __LINE__);
1546 if (obj_priv->pin_count != 0)
1547 list_del_init(&obj_priv->list);
1548 else
1549 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1550
1551 BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1552
1553 obj_priv->last_rendering_seqno = 0;
1554 if (obj_priv->active) {
1555 obj_priv->active = 0;
1556 drm_gem_object_unreference(obj);
1557 }
1558 i915_verify_inactive(dev, __FILE__, __LINE__);
1559 }
1560
1561 /**
1562 * Creates a new sequence number, emitting a write of it to the status page
1563 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1564 *
1565 * Must be called with struct_lock held.
1566 *
1567 * Returned sequence numbers are nonzero on success.
1568 */
1569 uint32_t
1570 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1571 uint32_t flush_domains)
1572 {
1573 drm_i915_private_t *dev_priv = dev->dev_private;
1574 struct drm_i915_file_private *i915_file_priv = NULL;
1575 struct drm_i915_gem_request *request;
1576 uint32_t seqno;
1577 int was_empty;
1578 RING_LOCALS;
1579
1580 if (file_priv != NULL)
1581 i915_file_priv = file_priv->driver_priv;
1582
1583 request = kzalloc(sizeof(*request), GFP_KERNEL);
1584 if (request == NULL)
1585 return 0;
1586
1587 /* Grab the seqno we're going to make this request be, and bump the
1588 * next (skipping 0 so it can be the reserved no-seqno value).
1589 */
1590 seqno = dev_priv->mm.next_gem_seqno;
1591 dev_priv->mm.next_gem_seqno++;
1592 if (dev_priv->mm.next_gem_seqno == 0)
1593 dev_priv->mm.next_gem_seqno++;
1594
1595 BEGIN_LP_RING(4);
1596 OUT_RING(MI_STORE_DWORD_INDEX);
1597 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1598 OUT_RING(seqno);
1599
1600 OUT_RING(MI_USER_INTERRUPT);
1601 ADVANCE_LP_RING();
1602
1603 DRM_DEBUG_DRIVER("%d\n", seqno);
1604
1605 request->seqno = seqno;
1606 request->emitted_jiffies = jiffies;
1607 was_empty = list_empty(&dev_priv->mm.request_list);
1608 list_add_tail(&request->list, &dev_priv->mm.request_list);
1609 if (i915_file_priv) {
1610 list_add_tail(&request->client_list,
1611 &i915_file_priv->mm.request_list);
1612 } else {
1613 INIT_LIST_HEAD(&request->client_list);
1614 }
1615
1616 /* Associate any objects on the flushing list matching the write
1617 * domain we're flushing with our flush.
1618 */
1619 if (flush_domains != 0) {
1620 struct drm_i915_gem_object *obj_priv, *next;
1621
1622 list_for_each_entry_safe(obj_priv, next,
1623 &dev_priv->mm.gpu_write_list,
1624 gpu_write_list) {
1625 struct drm_gem_object *obj = obj_priv->obj;
1626
1627 if ((obj->write_domain & flush_domains) ==
1628 obj->write_domain) {
1629 uint32_t old_write_domain = obj->write_domain;
1630
1631 obj->write_domain = 0;
1632 list_del_init(&obj_priv->gpu_write_list);
1633 i915_gem_object_move_to_active(obj, seqno);
1634
1635 trace_i915_gem_object_change_domain(obj,
1636 obj->read_domains,
1637 old_write_domain);
1638 }
1639 }
1640
1641 }
1642
1643 if (!dev_priv->mm.suspended) {
1644 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1645 if (was_empty)
1646 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1647 }
1648 return seqno;
1649 }
1650
1651 /**
1652 * Command execution barrier
1653 *
1654 * Ensures that all commands in the ring are finished
1655 * before signalling the CPU
1656 */
1657 static uint32_t
1658 i915_retire_commands(struct drm_device *dev)
1659 {
1660 drm_i915_private_t *dev_priv = dev->dev_private;
1661 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1662 uint32_t flush_domains = 0;
1663 RING_LOCALS;
1664
1665 /* The sampler always gets flushed on i965 (sigh) */
1666 if (IS_I965G(dev))
1667 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1668 BEGIN_LP_RING(2);
1669 OUT_RING(cmd);
1670 OUT_RING(0); /* noop */
1671 ADVANCE_LP_RING();
1672 return flush_domains;
1673 }
1674
1675 /**
1676 * Moves buffers associated only with the given active seqno from the active
1677 * to inactive list, potentially freeing them.
1678 */
1679 static void
1680 i915_gem_retire_request(struct drm_device *dev,
1681 struct drm_i915_gem_request *request)
1682 {
1683 drm_i915_private_t *dev_priv = dev->dev_private;
1684
1685 trace_i915_gem_request_retire(dev, request->seqno);
1686
1687 /* Move any buffers on the active list that are no longer referenced
1688 * by the ringbuffer to the flushing/inactive lists as appropriate.
1689 */
1690 spin_lock(&dev_priv->mm.active_list_lock);
1691 while (!list_empty(&dev_priv->mm.active_list)) {
1692 struct drm_gem_object *obj;
1693 struct drm_i915_gem_object *obj_priv;
1694
1695 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1696 struct drm_i915_gem_object,
1697 list);
1698 obj = obj_priv->obj;
1699
1700 /* If the seqno being retired doesn't match the oldest in the
1701 * list, then the oldest in the list must still be newer than
1702 * this seqno.
1703 */
1704 if (obj_priv->last_rendering_seqno != request->seqno)
1705 goto out;
1706
1707 #if WATCH_LRU
1708 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1709 __func__, request->seqno, obj);
1710 #endif
1711
1712 if (obj->write_domain != 0)
1713 i915_gem_object_move_to_flushing(obj);
1714 else {
1715 /* Take a reference on the object so it won't be
1716 * freed while the spinlock is held. The list
1717 * protection for this spinlock is safe when breaking
1718 * the lock like this since the next thing we do
1719 * is just get the head of the list again.
1720 */
1721 drm_gem_object_reference(obj);
1722 i915_gem_object_move_to_inactive(obj);
1723 spin_unlock(&dev_priv->mm.active_list_lock);
1724 drm_gem_object_unreference(obj);
1725 spin_lock(&dev_priv->mm.active_list_lock);
1726 }
1727 }
1728 out:
1729 spin_unlock(&dev_priv->mm.active_list_lock);
1730 }
1731
1732 /**
1733 * Returns true if seq1 is later than seq2.
1734 */
1735 bool
1736 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1737 {
1738 return (int32_t)(seq1 - seq2) >= 0;
1739 }
1740
1741 uint32_t
1742 i915_get_gem_seqno(struct drm_device *dev)
1743 {
1744 drm_i915_private_t *dev_priv = dev->dev_private;
1745
1746 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1747 }
1748
1749 /**
1750 * This function clears the request list as sequence numbers are passed.
1751 */
1752 void
1753 i915_gem_retire_requests(struct drm_device *dev)
1754 {
1755 drm_i915_private_t *dev_priv = dev->dev_private;
1756 uint32_t seqno;
1757
1758 if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1759 return;
1760
1761 seqno = i915_get_gem_seqno(dev);
1762
1763 while (!list_empty(&dev_priv->mm.request_list)) {
1764 struct drm_i915_gem_request *request;
1765 uint32_t retiring_seqno;
1766
1767 request = list_first_entry(&dev_priv->mm.request_list,
1768 struct drm_i915_gem_request,
1769 list);
1770 retiring_seqno = request->seqno;
1771
1772 if (i915_seqno_passed(seqno, retiring_seqno) ||
1773 atomic_read(&dev_priv->mm.wedged)) {
1774 i915_gem_retire_request(dev, request);
1775
1776 list_del(&request->list);
1777 list_del(&request->client_list);
1778 kfree(request);
1779 } else
1780 break;
1781 }
1782
1783 if (unlikely (dev_priv->trace_irq_seqno &&
1784 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1785 i915_user_irq_put(dev);
1786 dev_priv->trace_irq_seqno = 0;
1787 }
1788 }
1789
1790 void
1791 i915_gem_retire_work_handler(struct work_struct *work)
1792 {
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
1795
1796 dev_priv = container_of(work, drm_i915_private_t,
1797 mm.retire_work.work);
1798 dev = dev_priv->dev;
1799
1800 mutex_lock(&dev->struct_mutex);
1801 i915_gem_retire_requests(dev);
1802 if (!dev_priv->mm.suspended &&
1803 !list_empty(&dev_priv->mm.request_list))
1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805 mutex_unlock(&dev->struct_mutex);
1806 }
1807
1808 int
1809 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1810 {
1811 drm_i915_private_t *dev_priv = dev->dev_private;
1812 u32 ier;
1813 int ret = 0;
1814
1815 BUG_ON(seqno == 0);
1816
1817 if (atomic_read(&dev_priv->mm.wedged))
1818 return -EIO;
1819
1820 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1821 if (HAS_PCH_SPLIT(dev))
1822 ier = I915_READ(DEIER) | I915_READ(GTIER);
1823 else
1824 ier = I915_READ(IER);
1825 if (!ier) {
1826 DRM_ERROR("something (likely vbetool) disabled "
1827 "interrupts, re-enabling\n");
1828 i915_driver_irq_preinstall(dev);
1829 i915_driver_irq_postinstall(dev);
1830 }
1831
1832 trace_i915_gem_request_wait_begin(dev, seqno);
1833
1834 dev_priv->mm.waiting_gem_seqno = seqno;
1835 i915_user_irq_get(dev);
1836 if (interruptible)
1837 ret = wait_event_interruptible(dev_priv->irq_queue,
1838 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1839 atomic_read(&dev_priv->mm.wedged));
1840 else
1841 wait_event(dev_priv->irq_queue,
1842 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1843 atomic_read(&dev_priv->mm.wedged));
1844
1845 i915_user_irq_put(dev);
1846 dev_priv->mm.waiting_gem_seqno = 0;
1847
1848 trace_i915_gem_request_wait_end(dev, seqno);
1849 }
1850 if (atomic_read(&dev_priv->mm.wedged))
1851 ret = -EIO;
1852
1853 if (ret && ret != -ERESTARTSYS)
1854 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1855 __func__, ret, seqno, i915_get_gem_seqno(dev));
1856
1857 /* Directly dispatch request retiring. While we have the work queue
1858 * to handle this, the waiter on a request often wants an associated
1859 * buffer to have made it to the inactive list, and we would need
1860 * a separate wait queue to handle that.
1861 */
1862 if (ret == 0)
1863 i915_gem_retire_requests(dev);
1864
1865 return ret;
1866 }
1867
1868 /**
1869 * Waits for a sequence number to be signaled, and cleans up the
1870 * request and object lists appropriately for that event.
1871 */
1872 static int
1873 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1874 {
1875 return i915_do_wait_request(dev, seqno, 1);
1876 }
1877
1878 static void
1879 i915_gem_flush(struct drm_device *dev,
1880 uint32_t invalidate_domains,
1881 uint32_t flush_domains)
1882 {
1883 drm_i915_private_t *dev_priv = dev->dev_private;
1884 uint32_t cmd;
1885 RING_LOCALS;
1886
1887 #if WATCH_EXEC
1888 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1889 invalidate_domains, flush_domains);
1890 #endif
1891 trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1892 invalidate_domains, flush_domains);
1893
1894 if (flush_domains & I915_GEM_DOMAIN_CPU)
1895 drm_agp_chipset_flush(dev);
1896
1897 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1898 /*
1899 * read/write caches:
1900 *
1901 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1902 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1903 * also flushed at 2d versus 3d pipeline switches.
1904 *
1905 * read-only caches:
1906 *
1907 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1908 * MI_READ_FLUSH is set, and is always flushed on 965.
1909 *
1910 * I915_GEM_DOMAIN_COMMAND may not exist?
1911 *
1912 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1913 * invalidated when MI_EXE_FLUSH is set.
1914 *
1915 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1916 * invalidated with every MI_FLUSH.
1917 *
1918 * TLBs:
1919 *
1920 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1921 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1922 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1923 * are flushed at any MI_FLUSH.
1924 */
1925
1926 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1927 if ((invalidate_domains|flush_domains) &
1928 I915_GEM_DOMAIN_RENDER)
1929 cmd &= ~MI_NO_WRITE_FLUSH;
1930 if (!IS_I965G(dev)) {
1931 /*
1932 * On the 965, the sampler cache always gets flushed
1933 * and this bit is reserved.
1934 */
1935 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1936 cmd |= MI_READ_FLUSH;
1937 }
1938 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1939 cmd |= MI_EXE_FLUSH;
1940
1941 #if WATCH_EXEC
1942 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1943 #endif
1944 BEGIN_LP_RING(2);
1945 OUT_RING(cmd);
1946 OUT_RING(MI_NOOP);
1947 ADVANCE_LP_RING();
1948 }
1949 }
1950
1951 /**
1952 * Ensures that all rendering to the object has completed and the object is
1953 * safe to unbind from the GTT or access from the CPU.
1954 */
1955 static int
1956 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1957 {
1958 struct drm_device *dev = obj->dev;
1959 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1960 int ret;
1961
1962 /* This function only exists to support waiting for existing rendering,
1963 * not for emitting required flushes.
1964 */
1965 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1966
1967 /* If there is rendering queued on the buffer being evicted, wait for
1968 * it.
1969 */
1970 if (obj_priv->active) {
1971 #if WATCH_BUF
1972 DRM_INFO("%s: object %p wait for seqno %08x\n",
1973 __func__, obj, obj_priv->last_rendering_seqno);
1974 #endif
1975 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1976 if (ret != 0)
1977 return ret;
1978 }
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * Unbinds an object from the GTT aperture.
1985 */
1986 int
1987 i915_gem_object_unbind(struct drm_gem_object *obj)
1988 {
1989 struct drm_device *dev = obj->dev;
1990 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1991 int ret = 0;
1992
1993 #if WATCH_BUF
1994 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1995 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1996 #endif
1997 if (obj_priv->gtt_space == NULL)
1998 return 0;
1999
2000 if (obj_priv->pin_count != 0) {
2001 DRM_ERROR("Attempting to unbind pinned buffer\n");
2002 return -EINVAL;
2003 }
2004
2005 /* blow away mappings if mapped through GTT */
2006 i915_gem_release_mmap(obj);
2007
2008 /* Move the object to the CPU domain to ensure that
2009 * any possible CPU writes while it's not in the GTT
2010 * are flushed when we go to remap it. This will
2011 * also ensure that all pending GPU writes are finished
2012 * before we unbind.
2013 */
2014 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2015 if (ret) {
2016 if (ret != -ERESTARTSYS)
2017 DRM_ERROR("set_domain failed: %d\n", ret);
2018 return ret;
2019 }
2020
2021 BUG_ON(obj_priv->active);
2022
2023 /* release the fence reg _after_ flushing */
2024 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2025 i915_gem_clear_fence_reg(obj);
2026
2027 if (obj_priv->agp_mem != NULL) {
2028 drm_unbind_agp(obj_priv->agp_mem);
2029 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2030 obj_priv->agp_mem = NULL;
2031 }
2032
2033 i915_gem_object_put_pages(obj);
2034 BUG_ON(obj_priv->pages_refcount);
2035
2036 if (obj_priv->gtt_space) {
2037 atomic_dec(&dev->gtt_count);
2038 atomic_sub(obj->size, &dev->gtt_memory);
2039
2040 drm_mm_put_block(obj_priv->gtt_space);
2041 obj_priv->gtt_space = NULL;
2042 }
2043
2044 /* Remove ourselves from the LRU list if present. */
2045 if (!list_empty(&obj_priv->list))
2046 list_del_init(&obj_priv->list);
2047
2048 if (i915_gem_object_is_purgeable(obj_priv))
2049 i915_gem_object_truncate(obj);
2050
2051 trace_i915_gem_object_unbind(obj);
2052
2053 return 0;
2054 }
2055
2056 static struct drm_gem_object *
2057 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2058 {
2059 drm_i915_private_t *dev_priv = dev->dev_private;
2060 struct drm_i915_gem_object *obj_priv;
2061 struct drm_gem_object *best = NULL;
2062 struct drm_gem_object *first = NULL;
2063
2064 /* Try to find the smallest clean object */
2065 list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2066 struct drm_gem_object *obj = obj_priv->obj;
2067 if (obj->size >= min_size) {
2068 if ((!obj_priv->dirty ||
2069 i915_gem_object_is_purgeable(obj_priv)) &&
2070 (!best || obj->size < best->size)) {
2071 best = obj;
2072 if (best->size == min_size)
2073 return best;
2074 }
2075 if (!first)
2076 first = obj;
2077 }
2078 }
2079
2080 return best ? best : first;
2081 }
2082
2083 static int
2084 i915_gem_evict_everything(struct drm_device *dev)
2085 {
2086 drm_i915_private_t *dev_priv = dev->dev_private;
2087 int ret;
2088 uint32_t seqno;
2089 bool lists_empty;
2090
2091 spin_lock(&dev_priv->mm.active_list_lock);
2092 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2093 list_empty(&dev_priv->mm.flushing_list) &&
2094 list_empty(&dev_priv->mm.active_list));
2095 spin_unlock(&dev_priv->mm.active_list_lock);
2096
2097 if (lists_empty)
2098 return -ENOSPC;
2099
2100 /* Flush everything (on to the inactive lists) and evict */
2101 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2102 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2103 if (seqno == 0)
2104 return -ENOMEM;
2105
2106 ret = i915_wait_request(dev, seqno);
2107 if (ret)
2108 return ret;
2109
2110 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2111
2112 ret = i915_gem_evict_from_inactive_list(dev);
2113 if (ret)
2114 return ret;
2115
2116 spin_lock(&dev_priv->mm.active_list_lock);
2117 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2118 list_empty(&dev_priv->mm.flushing_list) &&
2119 list_empty(&dev_priv->mm.active_list));
2120 spin_unlock(&dev_priv->mm.active_list_lock);
2121 BUG_ON(!lists_empty);
2122
2123 return 0;
2124 }
2125
2126 static int
2127 i915_gem_evict_something(struct drm_device *dev, int min_size)
2128 {
2129 drm_i915_private_t *dev_priv = dev->dev_private;
2130 struct drm_gem_object *obj;
2131 int ret;
2132
2133 for (;;) {
2134 i915_gem_retire_requests(dev);
2135
2136 /* If there's an inactive buffer available now, grab it
2137 * and be done.
2138 */
2139 obj = i915_gem_find_inactive_object(dev, min_size);
2140 if (obj) {
2141 struct drm_i915_gem_object *obj_priv;
2142
2143 #if WATCH_LRU
2144 DRM_INFO("%s: evicting %p\n", __func__, obj);
2145 #endif
2146 obj_priv = obj->driver_private;
2147 BUG_ON(obj_priv->pin_count != 0);
2148 BUG_ON(obj_priv->active);
2149
2150 /* Wait on the rendering and unbind the buffer. */
2151 return i915_gem_object_unbind(obj);
2152 }
2153
2154 /* If we didn't get anything, but the ring is still processing
2155 * things, wait for the next to finish and hopefully leave us
2156 * a buffer to evict.
2157 */
2158 if (!list_empty(&dev_priv->mm.request_list)) {
2159 struct drm_i915_gem_request *request;
2160
2161 request = list_first_entry(&dev_priv->mm.request_list,
2162 struct drm_i915_gem_request,
2163 list);
2164
2165 ret = i915_wait_request(dev, request->seqno);
2166 if (ret)
2167 return ret;
2168
2169 continue;
2170 }
2171
2172 /* If we didn't have anything on the request list but there
2173 * are buffers awaiting a flush, emit one and try again.
2174 * When we wait on it, those buffers waiting for that flush
2175 * will get moved to inactive.
2176 */
2177 if (!list_empty(&dev_priv->mm.flushing_list)) {
2178 struct drm_i915_gem_object *obj_priv;
2179
2180 /* Find an object that we can immediately reuse */
2181 list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2182 obj = obj_priv->obj;
2183 if (obj->size >= min_size)
2184 break;
2185
2186 obj = NULL;
2187 }
2188
2189 if (obj != NULL) {
2190 uint32_t seqno;
2191
2192 i915_gem_flush(dev,
2193 obj->write_domain,
2194 obj->write_domain);
2195 seqno = i915_add_request(dev, NULL, obj->write_domain);
2196 if (seqno == 0)
2197 return -ENOMEM;
2198
2199 ret = i915_wait_request(dev, seqno);
2200 if (ret)
2201 return ret;
2202
2203 continue;
2204 }
2205 }
2206
2207 /* If we didn't do any of the above, there's no single buffer
2208 * large enough to swap out for the new one, so just evict
2209 * everything and start again. (This should be rare.)
2210 */
2211 if (!list_empty (&dev_priv->mm.inactive_list))
2212 return i915_gem_evict_from_inactive_list(dev);
2213 else
2214 return i915_gem_evict_everything(dev);
2215 }
2216 }
2217
2218 int
2219 i915_gem_object_get_pages(struct drm_gem_object *obj,
2220 gfp_t gfpmask)
2221 {
2222 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2223 int page_count, i;
2224 struct address_space *mapping;
2225 struct inode *inode;
2226 struct page *page;
2227 int ret;
2228
2229 if (obj_priv->pages_refcount++ != 0)
2230 return 0;
2231
2232 /* Get the list of pages out of our struct file. They'll be pinned
2233 * at this point until we release them.
2234 */
2235 page_count = obj->size / PAGE_SIZE;
2236 BUG_ON(obj_priv->pages != NULL);
2237 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2238 if (obj_priv->pages == NULL) {
2239 obj_priv->pages_refcount--;
2240 return -ENOMEM;
2241 }
2242
2243 inode = obj->filp->f_path.dentry->d_inode;
2244 mapping = inode->i_mapping;
2245 for (i = 0; i < page_count; i++) {
2246 page = read_cache_page_gfp(mapping, i,
2247 mapping_gfp_mask (mapping) |
2248 __GFP_COLD |
2249 gfpmask);
2250 if (IS_ERR(page)) {
2251 ret = PTR_ERR(page);
2252 i915_gem_object_put_pages(obj);
2253 return ret;
2254 }
2255 obj_priv->pages[i] = page;
2256 }
2257
2258 if (obj_priv->tiling_mode != I915_TILING_NONE)
2259 i915_gem_object_do_bit_17_swizzle(obj);
2260
2261 return 0;
2262 }
2263
2264 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2265 {
2266 struct drm_gem_object *obj = reg->obj;
2267 struct drm_device *dev = obj->dev;
2268 drm_i915_private_t *dev_priv = dev->dev_private;
2269 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2270 int regnum = obj_priv->fence_reg;
2271 uint64_t val;
2272
2273 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2274 0xfffff000) << 32;
2275 val |= obj_priv->gtt_offset & 0xfffff000;
2276 val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2277 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2278
2279 if (obj_priv->tiling_mode == I915_TILING_Y)
2280 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2281 val |= I965_FENCE_REG_VALID;
2282
2283 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2284 }
2285
2286 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2287 {
2288 struct drm_gem_object *obj = reg->obj;
2289 struct drm_device *dev = obj->dev;
2290 drm_i915_private_t *dev_priv = dev->dev_private;
2291 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2292 int regnum = obj_priv->fence_reg;
2293 uint64_t val;
2294
2295 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2296 0xfffff000) << 32;
2297 val |= obj_priv->gtt_offset & 0xfffff000;
2298 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2299 if (obj_priv->tiling_mode == I915_TILING_Y)
2300 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2301 val |= I965_FENCE_REG_VALID;
2302
2303 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2304 }
2305
2306 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2307 {
2308 struct drm_gem_object *obj = reg->obj;
2309 struct drm_device *dev = obj->dev;
2310 drm_i915_private_t *dev_priv = dev->dev_private;
2311 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2312 int regnum = obj_priv->fence_reg;
2313 int tile_width;
2314 uint32_t fence_reg, val;
2315 uint32_t pitch_val;
2316
2317 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2318 (obj_priv->gtt_offset & (obj->size - 1))) {
2319 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2320 __func__, obj_priv->gtt_offset, obj->size);
2321 return;
2322 }
2323
2324 if (obj_priv->tiling_mode == I915_TILING_Y &&
2325 HAS_128_BYTE_Y_TILING(dev))
2326 tile_width = 128;
2327 else
2328 tile_width = 512;
2329
2330 /* Note: pitch better be a power of two tile widths */
2331 pitch_val = obj_priv->stride / tile_width;
2332 pitch_val = ffs(pitch_val) - 1;
2333
2334 val = obj_priv->gtt_offset;
2335 if (obj_priv->tiling_mode == I915_TILING_Y)
2336 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2337 val |= I915_FENCE_SIZE_BITS(obj->size);
2338 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2339 val |= I830_FENCE_REG_VALID;
2340
2341 if (regnum < 8)
2342 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2343 else
2344 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2345 I915_WRITE(fence_reg, val);
2346 }
2347
2348 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2349 {
2350 struct drm_gem_object *obj = reg->obj;
2351 struct drm_device *dev = obj->dev;
2352 drm_i915_private_t *dev_priv = dev->dev_private;
2353 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2354 int regnum = obj_priv->fence_reg;
2355 uint32_t val;
2356 uint32_t pitch_val;
2357 uint32_t fence_size_bits;
2358
2359 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2360 (obj_priv->gtt_offset & (obj->size - 1))) {
2361 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2362 __func__, obj_priv->gtt_offset);
2363 return;
2364 }
2365
2366 pitch_val = obj_priv->stride / 128;
2367 pitch_val = ffs(pitch_val) - 1;
2368 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2369
2370 val = obj_priv->gtt_offset;
2371 if (obj_priv->tiling_mode == I915_TILING_Y)
2372 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2373 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2374 WARN_ON(fence_size_bits & ~0x00000f00);
2375 val |= fence_size_bits;
2376 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2377 val |= I830_FENCE_REG_VALID;
2378
2379 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2380 }
2381
2382 /**
2383 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2384 * @obj: object to map through a fence reg
2385 *
2386 * When mapping objects through the GTT, userspace wants to be able to write
2387 * to them without having to worry about swizzling if the object is tiled.
2388 *
2389 * This function walks the fence regs looking for a free one for @obj,
2390 * stealing one if it can't find any.
2391 *
2392 * It then sets up the reg based on the object's properties: address, pitch
2393 * and tiling format.
2394 */
2395 int
2396 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2397 {
2398 struct drm_device *dev = obj->dev;
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2401 struct drm_i915_fence_reg *reg = NULL;
2402 struct drm_i915_gem_object *old_obj_priv = NULL;
2403 int i, ret, avail;
2404
2405 /* Just update our place in the LRU if our fence is getting used. */
2406 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2407 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2408 return 0;
2409 }
2410
2411 switch (obj_priv->tiling_mode) {
2412 case I915_TILING_NONE:
2413 WARN(1, "allocating a fence for non-tiled object?\n");
2414 break;
2415 case I915_TILING_X:
2416 if (!obj_priv->stride)
2417 return -EINVAL;
2418 WARN((obj_priv->stride & (512 - 1)),
2419 "object 0x%08x is X tiled but has non-512B pitch\n",
2420 obj_priv->gtt_offset);
2421 break;
2422 case I915_TILING_Y:
2423 if (!obj_priv->stride)
2424 return -EINVAL;
2425 WARN((obj_priv->stride & (128 - 1)),
2426 "object 0x%08x is Y tiled but has non-128B pitch\n",
2427 obj_priv->gtt_offset);
2428 break;
2429 }
2430
2431 /* First try to find a free reg */
2432 avail = 0;
2433 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2434 reg = &dev_priv->fence_regs[i];
2435 if (!reg->obj)
2436 break;
2437
2438 old_obj_priv = reg->obj->driver_private;
2439 if (!old_obj_priv->pin_count)
2440 avail++;
2441 }
2442
2443 /* None available, try to steal one or wait for a user to finish */
2444 if (i == dev_priv->num_fence_regs) {
2445 struct drm_gem_object *old_obj = NULL;
2446
2447 if (avail == 0)
2448 return -ENOSPC;
2449
2450 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2451 fence_list) {
2452 old_obj = old_obj_priv->obj;
2453
2454 if (old_obj_priv->pin_count)
2455 continue;
2456
2457 /* Take a reference, as otherwise the wait_rendering
2458 * below may cause the object to get freed out from
2459 * under us.
2460 */
2461 drm_gem_object_reference(old_obj);
2462
2463 break;
2464 }
2465
2466 i = old_obj_priv->fence_reg;
2467 reg = &dev_priv->fence_regs[i];
2468
2469 ret = i915_gem_object_put_fence_reg(old_obj);
2470 drm_gem_object_unreference(old_obj);
2471 if (ret != 0)
2472 return ret;
2473 }
2474
2475 obj_priv->fence_reg = i;
2476 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2477
2478 reg->obj = obj;
2479
2480 if (IS_GEN6(dev))
2481 sandybridge_write_fence_reg(reg);
2482 else if (IS_I965G(dev))
2483 i965_write_fence_reg(reg);
2484 else if (IS_I9XX(dev))
2485 i915_write_fence_reg(reg);
2486 else
2487 i830_write_fence_reg(reg);
2488
2489 trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2490
2491 return 0;
2492 }
2493
2494 /**
2495 * i915_gem_clear_fence_reg - clear out fence register info
2496 * @obj: object to clear
2497 *
2498 * Zeroes out the fence register itself and clears out the associated
2499 * data structures in dev_priv and obj_priv.
2500 */
2501 static void
2502 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2503 {
2504 struct drm_device *dev = obj->dev;
2505 drm_i915_private_t *dev_priv = dev->dev_private;
2506 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2507
2508 if (IS_GEN6(dev)) {
2509 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2510 (obj_priv->fence_reg * 8), 0);
2511 } else if (IS_I965G(dev)) {
2512 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2513 } else {
2514 uint32_t fence_reg;
2515
2516 if (obj_priv->fence_reg < 8)
2517 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2518 else
2519 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2520 8) * 4;
2521
2522 I915_WRITE(fence_reg, 0);
2523 }
2524
2525 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2526 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2527 list_del_init(&obj_priv->fence_list);
2528 }
2529
2530 /**
2531 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2532 * to the buffer to finish, and then resets the fence register.
2533 * @obj: tiled object holding a fence register.
2534 *
2535 * Zeroes out the fence register itself and clears out the associated
2536 * data structures in dev_priv and obj_priv.
2537 */
2538 int
2539 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2540 {
2541 struct drm_device *dev = obj->dev;
2542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2543
2544 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2545 return 0;
2546
2547 /* If we've changed tiling, GTT-mappings of the object
2548 * need to re-fault to ensure that the correct fence register
2549 * setup is in place.
2550 */
2551 i915_gem_release_mmap(obj);
2552
2553 /* On the i915, GPU access to tiled buffers is via a fence,
2554 * therefore we must wait for any outstanding access to complete
2555 * before clearing the fence.
2556 */
2557 if (!IS_I965G(dev)) {
2558 int ret;
2559
2560 i915_gem_object_flush_gpu_write_domain(obj);
2561 ret = i915_gem_object_wait_rendering(obj);
2562 if (ret != 0)
2563 return ret;
2564 }
2565
2566 i915_gem_object_flush_gtt_write_domain(obj);
2567 i915_gem_clear_fence_reg (obj);
2568
2569 return 0;
2570 }
2571
2572 /**
2573 * Finds free space in the GTT aperture and binds the object there.
2574 */
2575 static int
2576 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2577 {
2578 struct drm_device *dev = obj->dev;
2579 drm_i915_private_t *dev_priv = dev->dev_private;
2580 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2581 struct drm_mm_node *free_space;
2582 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2583 int ret;
2584
2585 if (obj_priv->madv != I915_MADV_WILLNEED) {
2586 DRM_ERROR("Attempting to bind a purgeable object\n");
2587 return -EINVAL;
2588 }
2589
2590 if (alignment == 0)
2591 alignment = i915_gem_get_gtt_alignment(obj);
2592 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2593 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2594 return -EINVAL;
2595 }
2596
2597 search_free:
2598 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2599 obj->size, alignment, 0);
2600 if (free_space != NULL) {
2601 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2602 alignment);
2603 if (obj_priv->gtt_space != NULL) {
2604 obj_priv->gtt_space->private = obj;
2605 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2606 }
2607 }
2608 if (obj_priv->gtt_space == NULL) {
2609 /* If the gtt is empty and we're still having trouble
2610 * fitting our object in, we're out of memory.
2611 */
2612 #if WATCH_LRU
2613 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2614 #endif
2615 ret = i915_gem_evict_something(dev, obj->size);
2616 if (ret)
2617 return ret;
2618
2619 goto search_free;
2620 }
2621
2622 #if WATCH_BUF
2623 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2624 obj->size, obj_priv->gtt_offset);
2625 #endif
2626 ret = i915_gem_object_get_pages(obj, gfpmask);
2627 if (ret) {
2628 drm_mm_put_block(obj_priv->gtt_space);
2629 obj_priv->gtt_space = NULL;
2630
2631 if (ret == -ENOMEM) {
2632 /* first try to clear up some space from the GTT */
2633 ret = i915_gem_evict_something(dev, obj->size);
2634 if (ret) {
2635 /* now try to shrink everyone else */
2636 if (gfpmask) {
2637 gfpmask = 0;
2638 goto search_free;
2639 }
2640
2641 return ret;
2642 }
2643
2644 goto search_free;
2645 }
2646
2647 return ret;
2648 }
2649
2650 /* Create an AGP memory structure pointing at our pages, and bind it
2651 * into the GTT.
2652 */
2653 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2654 obj_priv->pages,
2655 obj->size >> PAGE_SHIFT,
2656 obj_priv->gtt_offset,
2657 obj_priv->agp_type);
2658 if (obj_priv->agp_mem == NULL) {
2659 i915_gem_object_put_pages(obj);
2660 drm_mm_put_block(obj_priv->gtt_space);
2661 obj_priv->gtt_space = NULL;
2662
2663 ret = i915_gem_evict_something(dev, obj->size);
2664 if (ret)
2665 return ret;
2666
2667 goto search_free;
2668 }
2669 atomic_inc(&dev->gtt_count);
2670 atomic_add(obj->size, &dev->gtt_memory);
2671
2672 /* Assert that the object is not currently in any GPU domain. As it
2673 * wasn't in the GTT, there shouldn't be any way it could have been in
2674 * a GPU cache
2675 */
2676 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2677 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2678
2679 trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2680
2681 return 0;
2682 }
2683
2684 void
2685 i915_gem_clflush_object(struct drm_gem_object *obj)
2686 {
2687 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2688
2689 /* If we don't have a page list set up, then we're not pinned
2690 * to GPU, and we can ignore the cache flush because it'll happen
2691 * again at bind time.
2692 */
2693 if (obj_priv->pages == NULL)
2694 return;
2695
2696 trace_i915_gem_object_clflush(obj);
2697
2698 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2699 }
2700
2701 /** Flushes any GPU write domain for the object if it's dirty. */
2702 static void
2703 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2704 {
2705 struct drm_device *dev = obj->dev;
2706 uint32_t seqno;
2707 uint32_t old_write_domain;
2708
2709 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2710 return;
2711
2712 /* Queue the GPU write cache flushing we need. */
2713 old_write_domain = obj->write_domain;
2714 i915_gem_flush(dev, 0, obj->write_domain);
2715 seqno = i915_add_request(dev, NULL, obj->write_domain);
2716 BUG_ON(obj->write_domain);
2717 i915_gem_object_move_to_active(obj, seqno);
2718
2719 trace_i915_gem_object_change_domain(obj,
2720 obj->read_domains,
2721 old_write_domain);
2722 }
2723
2724 /** Flushes the GTT write domain for the object if it's dirty. */
2725 static void
2726 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2727 {
2728 uint32_t old_write_domain;
2729
2730 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2731 return;
2732
2733 /* No actual flushing is required for the GTT write domain. Writes
2734 * to it immediately go to main memory as far as we know, so there's
2735 * no chipset flush. It also doesn't land in render cache.
2736 */
2737 old_write_domain = obj->write_domain;
2738 obj->write_domain = 0;
2739
2740 trace_i915_gem_object_change_domain(obj,
2741 obj->read_domains,
2742 old_write_domain);
2743 }
2744
2745 /** Flushes the CPU write domain for the object if it's dirty. */
2746 static void
2747 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2748 {
2749 struct drm_device *dev = obj->dev;
2750 uint32_t old_write_domain;
2751
2752 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2753 return;
2754
2755 i915_gem_clflush_object(obj);
2756 drm_agp_chipset_flush(dev);
2757 old_write_domain = obj->write_domain;
2758 obj->write_domain = 0;
2759
2760 trace_i915_gem_object_change_domain(obj,
2761 obj->read_domains,
2762 old_write_domain);
2763 }
2764
2765 void
2766 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2767 {
2768 switch (obj->write_domain) {
2769 case I915_GEM_DOMAIN_GTT:
2770 i915_gem_object_flush_gtt_write_domain(obj);
2771 break;
2772 case I915_GEM_DOMAIN_CPU:
2773 i915_gem_object_flush_cpu_write_domain(obj);
2774 break;
2775 default:
2776 i915_gem_object_flush_gpu_write_domain(obj);
2777 break;
2778 }
2779 }
2780
2781 /**
2782 * Moves a single object to the GTT read, and possibly write domain.
2783 *
2784 * This function returns when the move is complete, including waiting on
2785 * flushes to occur.
2786 */
2787 int
2788 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2789 {
2790 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2791 uint32_t old_write_domain, old_read_domains;
2792 int ret;
2793
2794 /* Not valid to be called on unbound objects. */
2795 if (obj_priv->gtt_space == NULL)
2796 return -EINVAL;
2797
2798 i915_gem_object_flush_gpu_write_domain(obj);
2799 /* Wait on any GPU rendering and flushing to occur. */
2800 ret = i915_gem_object_wait_rendering(obj);
2801 if (ret != 0)
2802 return ret;
2803
2804 old_write_domain = obj->write_domain;
2805 old_read_domains = obj->read_domains;
2806
2807 /* If we're writing through the GTT domain, then CPU and GPU caches
2808 * will need to be invalidated at next use.
2809 */
2810 if (write)
2811 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2812
2813 i915_gem_object_flush_cpu_write_domain(obj);
2814
2815 /* It should now be out of any other write domains, and we can update
2816 * the domain values for our changes.
2817 */
2818 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2819 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2820 if (write) {
2821 obj->write_domain = I915_GEM_DOMAIN_GTT;
2822 obj_priv->dirty = 1;
2823 }
2824
2825 trace_i915_gem_object_change_domain(obj,
2826 old_read_domains,
2827 old_write_domain);
2828
2829 return 0;
2830 }
2831
2832 /*
2833 * Prepare buffer for display plane. Use uninterruptible for possible flush
2834 * wait, as in modesetting process we're not supposed to be interrupted.
2835 */
2836 int
2837 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2838 {
2839 struct drm_device *dev = obj->dev;
2840 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2841 uint32_t old_write_domain, old_read_domains;
2842 int ret;
2843
2844 /* Not valid to be called on unbound objects. */
2845 if (obj_priv->gtt_space == NULL)
2846 return -EINVAL;
2847
2848 i915_gem_object_flush_gpu_write_domain(obj);
2849
2850 /* Wait on any GPU rendering and flushing to occur. */
2851 if (obj_priv->active) {
2852 #if WATCH_BUF
2853 DRM_INFO("%s: object %p wait for seqno %08x\n",
2854 __func__, obj, obj_priv->last_rendering_seqno);
2855 #endif
2856 ret = i915_do_wait_request(dev, obj_priv->last_rendering_seqno, 0);
2857 if (ret != 0)
2858 return ret;
2859 }
2860
2861 old_write_domain = obj->write_domain;
2862 old_read_domains = obj->read_domains;
2863
2864 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2865
2866 i915_gem_object_flush_cpu_write_domain(obj);
2867
2868 /* It should now be out of any other write domains, and we can update
2869 * the domain values for our changes.
2870 */
2871 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2872 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2873 obj->write_domain = I915_GEM_DOMAIN_GTT;
2874 obj_priv->dirty = 1;
2875
2876 trace_i915_gem_object_change_domain(obj,
2877 old_read_domains,
2878 old_write_domain);
2879
2880 return 0;
2881 }
2882
2883 /**
2884 * Moves a single object to the CPU read, and possibly write domain.
2885 *
2886 * This function returns when the move is complete, including waiting on
2887 * flushes to occur.
2888 */
2889 static int
2890 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2891 {
2892 uint32_t old_write_domain, old_read_domains;
2893 int ret;
2894
2895 i915_gem_object_flush_gpu_write_domain(obj);
2896 /* Wait on any GPU rendering and flushing to occur. */
2897 ret = i915_gem_object_wait_rendering(obj);
2898 if (ret != 0)
2899 return ret;
2900
2901 i915_gem_object_flush_gtt_write_domain(obj);
2902
2903 /* If we have a partially-valid cache of the object in the CPU,
2904 * finish invalidating it and free the per-page flags.
2905 */
2906 i915_gem_object_set_to_full_cpu_read_domain(obj);
2907
2908 old_write_domain = obj->write_domain;
2909 old_read_domains = obj->read_domains;
2910
2911 /* Flush the CPU cache if it's still invalid. */
2912 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2913 i915_gem_clflush_object(obj);
2914
2915 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2916 }
2917
2918 /* It should now be out of any other write domains, and we can update
2919 * the domain values for our changes.
2920 */
2921 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2922
2923 /* If we're writing through the CPU, then the GPU read domains will
2924 * need to be invalidated at next use.
2925 */
2926 if (write) {
2927 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2928 obj->write_domain = I915_GEM_DOMAIN_CPU;
2929 }
2930
2931 trace_i915_gem_object_change_domain(obj,
2932 old_read_domains,
2933 old_write_domain);
2934
2935 return 0;
2936 }
2937
2938 /*
2939 * Set the next domain for the specified object. This
2940 * may not actually perform the necessary flushing/invaliding though,
2941 * as that may want to be batched with other set_domain operations
2942 *
2943 * This is (we hope) the only really tricky part of gem. The goal
2944 * is fairly simple -- track which caches hold bits of the object
2945 * and make sure they remain coherent. A few concrete examples may
2946 * help to explain how it works. For shorthand, we use the notation
2947 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2948 * a pair of read and write domain masks.
2949 *
2950 * Case 1: the batch buffer
2951 *
2952 * 1. Allocated
2953 * 2. Written by CPU
2954 * 3. Mapped to GTT
2955 * 4. Read by GPU
2956 * 5. Unmapped from GTT
2957 * 6. Freed
2958 *
2959 * Let's take these a step at a time
2960 *
2961 * 1. Allocated
2962 * Pages allocated from the kernel may still have
2963 * cache contents, so we set them to (CPU, CPU) always.
2964 * 2. Written by CPU (using pwrite)
2965 * The pwrite function calls set_domain (CPU, CPU) and
2966 * this function does nothing (as nothing changes)
2967 * 3. Mapped by GTT
2968 * This function asserts that the object is not
2969 * currently in any GPU-based read or write domains
2970 * 4. Read by GPU
2971 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2972 * As write_domain is zero, this function adds in the
2973 * current read domains (CPU+COMMAND, 0).
2974 * flush_domains is set to CPU.
2975 * invalidate_domains is set to COMMAND
2976 * clflush is run to get data out of the CPU caches
2977 * then i915_dev_set_domain calls i915_gem_flush to
2978 * emit an MI_FLUSH and drm_agp_chipset_flush
2979 * 5. Unmapped from GTT
2980 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2981 * flush_domains and invalidate_domains end up both zero
2982 * so no flushing/invalidating happens
2983 * 6. Freed
2984 * yay, done
2985 *
2986 * Case 2: The shared render buffer
2987 *
2988 * 1. Allocated
2989 * 2. Mapped to GTT
2990 * 3. Read/written by GPU
2991 * 4. set_domain to (CPU,CPU)
2992 * 5. Read/written by CPU
2993 * 6. Read/written by GPU
2994 *
2995 * 1. Allocated
2996 * Same as last example, (CPU, CPU)
2997 * 2. Mapped to GTT
2998 * Nothing changes (assertions find that it is not in the GPU)
2999 * 3. Read/written by GPU
3000 * execbuffer calls set_domain (RENDER, RENDER)
3001 * flush_domains gets CPU
3002 * invalidate_domains gets GPU
3003 * clflush (obj)
3004 * MI_FLUSH and drm_agp_chipset_flush
3005 * 4. set_domain (CPU, CPU)
3006 * flush_domains gets GPU
3007 * invalidate_domains gets CPU
3008 * wait_rendering (obj) to make sure all drawing is complete.
3009 * This will include an MI_FLUSH to get the data from GPU
3010 * to memory
3011 * clflush (obj) to invalidate the CPU cache
3012 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3013 * 5. Read/written by CPU
3014 * cache lines are loaded and dirtied
3015 * 6. Read written by GPU
3016 * Same as last GPU access
3017 *
3018 * Case 3: The constant buffer
3019 *
3020 * 1. Allocated
3021 * 2. Written by CPU
3022 * 3. Read by GPU
3023 * 4. Updated (written) by CPU again
3024 * 5. Read by GPU
3025 *
3026 * 1. Allocated
3027 * (CPU, CPU)
3028 * 2. Written by CPU
3029 * (CPU, CPU)
3030 * 3. Read by GPU
3031 * (CPU+RENDER, 0)
3032 * flush_domains = CPU
3033 * invalidate_domains = RENDER
3034 * clflush (obj)
3035 * MI_FLUSH
3036 * drm_agp_chipset_flush
3037 * 4. Updated (written) by CPU again
3038 * (CPU, CPU)
3039 * flush_domains = 0 (no previous write domain)
3040 * invalidate_domains = 0 (no new read domains)
3041 * 5. Read by GPU
3042 * (CPU+RENDER, 0)
3043 * flush_domains = CPU
3044 * invalidate_domains = RENDER
3045 * clflush (obj)
3046 * MI_FLUSH
3047 * drm_agp_chipset_flush
3048 */
3049 static void
3050 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3051 {
3052 struct drm_device *dev = obj->dev;
3053 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3054 uint32_t invalidate_domains = 0;
3055 uint32_t flush_domains = 0;
3056 uint32_t old_read_domains;
3057
3058 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3059 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3060
3061 intel_mark_busy(dev, obj);
3062
3063 #if WATCH_BUF
3064 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3065 __func__, obj,
3066 obj->read_domains, obj->pending_read_domains,
3067 obj->write_domain, obj->pending_write_domain);
3068 #endif
3069 /*
3070 * If the object isn't moving to a new write domain,
3071 * let the object stay in multiple read domains
3072 */
3073 if (obj->pending_write_domain == 0)
3074 obj->pending_read_domains |= obj->read_domains;
3075 else
3076 obj_priv->dirty = 1;
3077
3078 /*
3079 * Flush the current write domain if
3080 * the new read domains don't match. Invalidate
3081 * any read domains which differ from the old
3082 * write domain
3083 */
3084 if (obj->write_domain &&
3085 obj->write_domain != obj->pending_read_domains) {
3086 flush_domains |= obj->write_domain;
3087 invalidate_domains |=
3088 obj->pending_read_domains & ~obj->write_domain;
3089 }
3090 /*
3091 * Invalidate any read caches which may have
3092 * stale data. That is, any new read domains.
3093 */
3094 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3095 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3096 #if WATCH_BUF
3097 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3098 __func__, flush_domains, invalidate_domains);
3099 #endif
3100 i915_gem_clflush_object(obj);
3101 }
3102
3103 old_read_domains = obj->read_domains;
3104
3105 /* The actual obj->write_domain will be updated with
3106 * pending_write_domain after we emit the accumulated flush for all
3107 * of our domain changes in execbuffers (which clears objects'
3108 * write_domains). So if we have a current write domain that we
3109 * aren't changing, set pending_write_domain to that.
3110 */
3111 if (flush_domains == 0 && obj->pending_write_domain == 0)
3112 obj->pending_write_domain = obj->write_domain;
3113 obj->read_domains = obj->pending_read_domains;
3114
3115 dev->invalidate_domains |= invalidate_domains;
3116 dev->flush_domains |= flush_domains;
3117 #if WATCH_BUF
3118 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3119 __func__,
3120 obj->read_domains, obj->write_domain,
3121 dev->invalidate_domains, dev->flush_domains);
3122 #endif
3123
3124 trace_i915_gem_object_change_domain(obj,
3125 old_read_domains,
3126 obj->write_domain);
3127 }
3128
3129 /**
3130 * Moves the object from a partially CPU read to a full one.
3131 *
3132 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3133 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3134 */
3135 static void
3136 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3137 {
3138 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3139
3140 if (!obj_priv->page_cpu_valid)
3141 return;
3142
3143 /* If we're partially in the CPU read domain, finish moving it in.
3144 */
3145 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3146 int i;
3147
3148 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3149 if (obj_priv->page_cpu_valid[i])
3150 continue;
3151 drm_clflush_pages(obj_priv->pages + i, 1);
3152 }
3153 }
3154
3155 /* Free the page_cpu_valid mappings which are now stale, whether
3156 * or not we've got I915_GEM_DOMAIN_CPU.
3157 */
3158 kfree(obj_priv->page_cpu_valid);
3159 obj_priv->page_cpu_valid = NULL;
3160 }
3161
3162 /**
3163 * Set the CPU read domain on a range of the object.
3164 *
3165 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3166 * not entirely valid. The page_cpu_valid member of the object flags which
3167 * pages have been flushed, and will be respected by
3168 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3169 * of the whole object.
3170 *
3171 * This function returns when the move is complete, including waiting on
3172 * flushes to occur.
3173 */
3174 static int
3175 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3176 uint64_t offset, uint64_t size)
3177 {
3178 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3179 uint32_t old_read_domains;
3180 int i, ret;
3181
3182 if (offset == 0 && size == obj->size)
3183 return i915_gem_object_set_to_cpu_domain(obj, 0);
3184
3185 i915_gem_object_flush_gpu_write_domain(obj);
3186 /* Wait on any GPU rendering and flushing to occur. */
3187 ret = i915_gem_object_wait_rendering(obj);
3188 if (ret != 0)
3189 return ret;
3190 i915_gem_object_flush_gtt_write_domain(obj);
3191
3192 /* If we're already fully in the CPU read domain, we're done. */
3193 if (obj_priv->page_cpu_valid == NULL &&
3194 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3195 return 0;
3196
3197 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3198 * newly adding I915_GEM_DOMAIN_CPU
3199 */
3200 if (obj_priv->page_cpu_valid == NULL) {
3201 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3202 GFP_KERNEL);
3203 if (obj_priv->page_cpu_valid == NULL)
3204 return -ENOMEM;
3205 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3206 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3207
3208 /* Flush the cache on any pages that are still invalid from the CPU's
3209 * perspective.
3210 */
3211 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3212 i++) {
3213 if (obj_priv->page_cpu_valid[i])
3214 continue;
3215
3216 drm_clflush_pages(obj_priv->pages + i, 1);
3217
3218 obj_priv->page_cpu_valid[i] = 1;
3219 }
3220
3221 /* It should now be out of any other write domains, and we can update
3222 * the domain values for our changes.
3223 */
3224 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3225
3226 old_read_domains = obj->read_domains;
3227 obj->read_domains |= I915_GEM_DOMAIN_CPU;
3228
3229 trace_i915_gem_object_change_domain(obj,
3230 old_read_domains,
3231 obj->write_domain);
3232
3233 return 0;
3234 }
3235
3236 /**
3237 * Pin an object to the GTT and evaluate the relocations landing in it.
3238 */
3239 static int
3240 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3241 struct drm_file *file_priv,
3242 struct drm_i915_gem_exec_object2 *entry,
3243 struct drm_i915_gem_relocation_entry *relocs)
3244 {
3245 struct drm_device *dev = obj->dev;
3246 drm_i915_private_t *dev_priv = dev->dev_private;
3247 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3248 int i, ret;
3249 void __iomem *reloc_page;
3250 bool need_fence;
3251
3252 need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3253 obj_priv->tiling_mode != I915_TILING_NONE;
3254
3255 /* Check fence reg constraints and rebind if necessary */
3256 if (need_fence && !i915_gem_object_fence_offset_ok(obj,
3257 obj_priv->tiling_mode))
3258 i915_gem_object_unbind(obj);
3259
3260 /* Choose the GTT offset for our buffer and put it there. */
3261 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3262 if (ret)
3263 return ret;
3264
3265 /*
3266 * Pre-965 chips need a fence register set up in order to
3267 * properly handle blits to/from tiled surfaces.
3268 */
3269 if (need_fence) {
3270 ret = i915_gem_object_get_fence_reg(obj);
3271 if (ret != 0) {
3272 if (ret != -EBUSY && ret != -ERESTARTSYS)
3273 DRM_ERROR("Failure to install fence: %d\n",
3274 ret);
3275 i915_gem_object_unpin(obj);
3276 return ret;
3277 }
3278 }
3279
3280 entry->offset = obj_priv->gtt_offset;
3281
3282 /* Apply the relocations, using the GTT aperture to avoid cache
3283 * flushing requirements.
3284 */
3285 for (i = 0; i < entry->relocation_count; i++) {
3286 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3287 struct drm_gem_object *target_obj;
3288 struct drm_i915_gem_object *target_obj_priv;
3289 uint32_t reloc_val, reloc_offset;
3290 uint32_t __iomem *reloc_entry;
3291
3292 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3293 reloc->target_handle);
3294 if (target_obj == NULL) {
3295 i915_gem_object_unpin(obj);
3296 return -EBADF;
3297 }
3298 target_obj_priv = target_obj->driver_private;
3299
3300 #if WATCH_RELOC
3301 DRM_INFO("%s: obj %p offset %08x target %d "
3302 "read %08x write %08x gtt %08x "
3303 "presumed %08x delta %08x\n",
3304 __func__,
3305 obj,
3306 (int) reloc->offset,
3307 (int) reloc->target_handle,
3308 (int) reloc->read_domains,
3309 (int) reloc->write_domain,
3310 (int) target_obj_priv->gtt_offset,
3311 (int) reloc->presumed_offset,
3312 reloc->delta);
3313 #endif
3314
3315 /* The target buffer should have appeared before us in the
3316 * exec_object list, so it should have a GTT space bound by now.
3317 */
3318 if (target_obj_priv->gtt_space == NULL) {
3319 DRM_ERROR("No GTT space found for object %d\n",
3320 reloc->target_handle);
3321 drm_gem_object_unreference(target_obj);
3322 i915_gem_object_unpin(obj);
3323 return -EINVAL;
3324 }
3325
3326 /* Validate that the target is in a valid r/w GPU domain */
3327 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3328 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3329 DRM_ERROR("reloc with read/write CPU domains: "
3330 "obj %p target %d offset %d "
3331 "read %08x write %08x",
3332 obj, reloc->target_handle,
3333 (int) reloc->offset,
3334 reloc->read_domains,
3335 reloc->write_domain);
3336 drm_gem_object_unreference(target_obj);
3337 i915_gem_object_unpin(obj);
3338 return -EINVAL;
3339 }
3340 if (reloc->write_domain && target_obj->pending_write_domain &&
3341 reloc->write_domain != target_obj->pending_write_domain) {
3342 DRM_ERROR("Write domain conflict: "
3343 "obj %p target %d offset %d "
3344 "new %08x old %08x\n",
3345 obj, reloc->target_handle,
3346 (int) reloc->offset,
3347 reloc->write_domain,
3348 target_obj->pending_write_domain);
3349 drm_gem_object_unreference(target_obj);
3350 i915_gem_object_unpin(obj);
3351 return -EINVAL;
3352 }
3353
3354 target_obj->pending_read_domains |= reloc->read_domains;
3355 target_obj->pending_write_domain |= reloc->write_domain;
3356
3357 /* If the relocation already has the right value in it, no
3358 * more work needs to be done.
3359 */
3360 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3361 drm_gem_object_unreference(target_obj);
3362 continue;
3363 }
3364
3365 /* Check that the relocation address is valid... */
3366 if (reloc->offset > obj->size - 4) {
3367 DRM_ERROR("Relocation beyond object bounds: "
3368 "obj %p target %d offset %d size %d.\n",
3369 obj, reloc->target_handle,
3370 (int) reloc->offset, (int) obj->size);
3371 drm_gem_object_unreference(target_obj);
3372 i915_gem_object_unpin(obj);
3373 return -EINVAL;
3374 }
3375 if (reloc->offset & 3) {
3376 DRM_ERROR("Relocation not 4-byte aligned: "
3377 "obj %p target %d offset %d.\n",
3378 obj, reloc->target_handle,
3379 (int) reloc->offset);
3380 drm_gem_object_unreference(target_obj);
3381 i915_gem_object_unpin(obj);
3382 return -EINVAL;
3383 }
3384
3385 /* and points to somewhere within the target object. */
3386 if (reloc->delta >= target_obj->size) {
3387 DRM_ERROR("Relocation beyond target object bounds: "
3388 "obj %p target %d delta %d size %d.\n",
3389 obj, reloc->target_handle,
3390 (int) reloc->delta, (int) target_obj->size);
3391 drm_gem_object_unreference(target_obj);
3392 i915_gem_object_unpin(obj);
3393 return -EINVAL;
3394 }
3395
3396 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3397 if (ret != 0) {
3398 drm_gem_object_unreference(target_obj);
3399 i915_gem_object_unpin(obj);
3400 return -EINVAL;
3401 }
3402
3403 /* Map the page containing the relocation we're going to
3404 * perform.
3405 */
3406 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3407 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3408 (reloc_offset &
3409 ~(PAGE_SIZE - 1)));
3410 reloc_entry = (uint32_t __iomem *)(reloc_page +
3411 (reloc_offset & (PAGE_SIZE - 1)));
3412 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3413
3414 #if WATCH_BUF
3415 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3416 obj, (unsigned int) reloc->offset,
3417 readl(reloc_entry), reloc_val);
3418 #endif
3419 writel(reloc_val, reloc_entry);
3420 io_mapping_unmap_atomic(reloc_page);
3421
3422 /* The updated presumed offset for this entry will be
3423 * copied back out to the user.
3424 */
3425 reloc->presumed_offset = target_obj_priv->gtt_offset;
3426
3427 drm_gem_object_unreference(target_obj);
3428 }
3429
3430 #if WATCH_BUF
3431 if (0)
3432 i915_gem_dump_object(obj, 128, __func__, ~0);
3433 #endif
3434 return 0;
3435 }
3436
3437 /** Dispatch a batchbuffer to the ring
3438 */
3439 static int
3440 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3441 struct drm_i915_gem_execbuffer2 *exec,
3442 struct drm_clip_rect *cliprects,
3443 uint64_t exec_offset)
3444 {
3445 drm_i915_private_t *dev_priv = dev->dev_private;
3446 int nbox = exec->num_cliprects;
3447 int i = 0, count;
3448 uint32_t exec_start, exec_len;
3449 RING_LOCALS;
3450
3451 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3452 exec_len = (uint32_t) exec->batch_len;
3453
3454 trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3455
3456 count = nbox ? nbox : 1;
3457
3458 for (i = 0; i < count; i++) {
3459 if (i < nbox) {
3460 int ret = i915_emit_box(dev, cliprects, i,
3461 exec->DR1, exec->DR4);
3462 if (ret)
3463 return ret;
3464 }
3465
3466 if (IS_I830(dev) || IS_845G(dev)) {
3467 BEGIN_LP_RING(4);
3468 OUT_RING(MI_BATCH_BUFFER);
3469 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3470 OUT_RING(exec_start + exec_len - 4);
3471 OUT_RING(0);
3472 ADVANCE_LP_RING();
3473 } else {
3474 BEGIN_LP_RING(2);
3475 if (IS_I965G(dev)) {
3476 OUT_RING(MI_BATCH_BUFFER_START |
3477 (2 << 6) |
3478 MI_BATCH_NON_SECURE_I965);
3479 OUT_RING(exec_start);
3480 } else {
3481 OUT_RING(MI_BATCH_BUFFER_START |
3482 (2 << 6));
3483 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3484 }
3485 ADVANCE_LP_RING();
3486 }
3487 }
3488
3489 /* XXX breadcrumb */
3490 return 0;
3491 }
3492
3493 /* Throttle our rendering by waiting until the ring has completed our requests
3494 * emitted over 20 msec ago.
3495 *
3496 * Note that if we were to use the current jiffies each time around the loop,
3497 * we wouldn't escape the function with any frames outstanding if the time to
3498 * render a frame was over 20ms.
3499 *
3500 * This should get us reasonable parallelism between CPU and GPU but also
3501 * relatively low latency when blocking on a particular request to finish.
3502 */
3503 static int
3504 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3505 {
3506 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3507 int ret = 0;
3508 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3509
3510 mutex_lock(&dev->struct_mutex);
3511 while (!list_empty(&i915_file_priv->mm.request_list)) {
3512 struct drm_i915_gem_request *request;
3513
3514 request = list_first_entry(&i915_file_priv->mm.request_list,
3515 struct drm_i915_gem_request,
3516 client_list);
3517
3518 if (time_after_eq(request->emitted_jiffies, recent_enough))
3519 break;
3520
3521 ret = i915_wait_request(dev, request->seqno);
3522 if (ret != 0)
3523 break;
3524 }
3525 mutex_unlock(&dev->struct_mutex);
3526
3527 return ret;
3528 }
3529
3530 static int
3531 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3532 uint32_t buffer_count,
3533 struct drm_i915_gem_relocation_entry **relocs)
3534 {
3535 uint32_t reloc_count = 0, reloc_index = 0, i;
3536 int ret;
3537
3538 *relocs = NULL;
3539 for (i = 0; i < buffer_count; i++) {
3540 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3541 return -EINVAL;
3542 reloc_count += exec_list[i].relocation_count;
3543 }
3544
3545 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3546 if (*relocs == NULL) {
3547 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3548 return -ENOMEM;
3549 }
3550
3551 for (i = 0; i < buffer_count; i++) {
3552 struct drm_i915_gem_relocation_entry __user *user_relocs;
3553
3554 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3555
3556 ret = copy_from_user(&(*relocs)[reloc_index],
3557 user_relocs,
3558 exec_list[i].relocation_count *
3559 sizeof(**relocs));
3560 if (ret != 0) {
3561 drm_free_large(*relocs);
3562 *relocs = NULL;
3563 return -EFAULT;
3564 }
3565
3566 reloc_index += exec_list[i].relocation_count;
3567 }
3568
3569 return 0;
3570 }
3571
3572 static int
3573 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3574 uint32_t buffer_count,
3575 struct drm_i915_gem_relocation_entry *relocs)
3576 {
3577 uint32_t reloc_count = 0, i;
3578 int ret = 0;
3579
3580 if (relocs == NULL)
3581 return 0;
3582
3583 for (i = 0; i < buffer_count; i++) {
3584 struct drm_i915_gem_relocation_entry __user *user_relocs;
3585 int unwritten;
3586
3587 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3588
3589 unwritten = copy_to_user(user_relocs,
3590 &relocs[reloc_count],
3591 exec_list[i].relocation_count *
3592 sizeof(*relocs));
3593
3594 if (unwritten) {
3595 ret = -EFAULT;
3596 goto err;
3597 }
3598
3599 reloc_count += exec_list[i].relocation_count;
3600 }
3601
3602 err:
3603 drm_free_large(relocs);
3604
3605 return ret;
3606 }
3607
3608 static int
3609 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3610 uint64_t exec_offset)
3611 {
3612 uint32_t exec_start, exec_len;
3613
3614 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3615 exec_len = (uint32_t) exec->batch_len;
3616
3617 if ((exec_start | exec_len) & 0x7)
3618 return -EINVAL;
3619
3620 if (!exec_start)
3621 return -EINVAL;
3622
3623 return 0;
3624 }
3625
3626 static int
3627 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3628 struct drm_gem_object **object_list,
3629 int count)
3630 {
3631 drm_i915_private_t *dev_priv = dev->dev_private;
3632 struct drm_i915_gem_object *obj_priv;
3633 DEFINE_WAIT(wait);
3634 int i, ret = 0;
3635
3636 for (;;) {
3637 prepare_to_wait(&dev_priv->pending_flip_queue,
3638 &wait, TASK_INTERRUPTIBLE);
3639 for (i = 0; i < count; i++) {
3640 obj_priv = object_list[i]->driver_private;
3641 if (atomic_read(&obj_priv->pending_flip) > 0)
3642 break;
3643 }
3644 if (i == count)
3645 break;
3646
3647 if (!signal_pending(current)) {
3648 mutex_unlock(&dev->struct_mutex);
3649 schedule();
3650 mutex_lock(&dev->struct_mutex);
3651 continue;
3652 }
3653 ret = -ERESTARTSYS;
3654 break;
3655 }
3656 finish_wait(&dev_priv->pending_flip_queue, &wait);
3657
3658 return ret;
3659 }
3660
3661 int
3662 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3663 struct drm_file *file_priv,
3664 struct drm_i915_gem_execbuffer2 *args,
3665 struct drm_i915_gem_exec_object2 *exec_list)
3666 {
3667 drm_i915_private_t *dev_priv = dev->dev_private;
3668 struct drm_gem_object **object_list = NULL;
3669 struct drm_gem_object *batch_obj;
3670 struct drm_i915_gem_object *obj_priv;
3671 struct drm_clip_rect *cliprects = NULL;
3672 struct drm_i915_gem_relocation_entry *relocs = NULL;
3673 int ret = 0, ret2, i, pinned = 0;
3674 uint64_t exec_offset;
3675 uint32_t seqno, flush_domains, reloc_index;
3676 int pin_tries, flips;
3677
3678 #if WATCH_EXEC
3679 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3680 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3681 #endif
3682
3683 if (args->buffer_count < 1) {
3684 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3685 return -EINVAL;
3686 }
3687 object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3688 if (object_list == NULL) {
3689 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3690 args->buffer_count);
3691 ret = -ENOMEM;
3692 goto pre_mutex_err;
3693 }
3694
3695 if (args->num_cliprects != 0) {
3696 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3697 GFP_KERNEL);
3698 if (cliprects == NULL) {
3699 ret = -ENOMEM;
3700 goto pre_mutex_err;
3701 }
3702
3703 ret = copy_from_user(cliprects,
3704 (struct drm_clip_rect __user *)
3705 (uintptr_t) args->cliprects_ptr,
3706 sizeof(*cliprects) * args->num_cliprects);
3707 if (ret != 0) {
3708 DRM_ERROR("copy %d cliprects failed: %d\n",
3709 args->num_cliprects, ret);
3710 goto pre_mutex_err;
3711 }
3712 }
3713
3714 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3715 &relocs);
3716 if (ret != 0)
3717 goto pre_mutex_err;
3718
3719 mutex_lock(&dev->struct_mutex);
3720
3721 i915_verify_inactive(dev, __FILE__, __LINE__);
3722
3723 if (atomic_read(&dev_priv->mm.wedged)) {
3724 mutex_unlock(&dev->struct_mutex);
3725 ret = -EIO;
3726 goto pre_mutex_err;
3727 }
3728
3729 if (dev_priv->mm.suspended) {
3730 mutex_unlock(&dev->struct_mutex);
3731 ret = -EBUSY;
3732 goto pre_mutex_err;
3733 }
3734
3735 /* Look up object handles */
3736 flips = 0;
3737 for (i = 0; i < args->buffer_count; i++) {
3738 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3739 exec_list[i].handle);
3740 if (object_list[i] == NULL) {
3741 DRM_ERROR("Invalid object handle %d at index %d\n",
3742 exec_list[i].handle, i);
3743 /* prevent error path from reading uninitialized data */
3744 args->buffer_count = i + 1;
3745 ret = -EBADF;
3746 goto err;
3747 }
3748
3749 obj_priv = object_list[i]->driver_private;
3750 if (obj_priv->in_execbuffer) {
3751 DRM_ERROR("Object %p appears more than once in object list\n",
3752 object_list[i]);
3753 /* prevent error path from reading uninitialized data */
3754 args->buffer_count = i + 1;
3755 ret = -EBADF;
3756 goto err;
3757 }
3758 obj_priv->in_execbuffer = true;
3759 flips += atomic_read(&obj_priv->pending_flip);
3760 }
3761
3762 if (flips > 0) {
3763 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3764 args->buffer_count);
3765 if (ret)
3766 goto err;
3767 }
3768
3769 /* Pin and relocate */
3770 for (pin_tries = 0; ; pin_tries++) {
3771 ret = 0;
3772 reloc_index = 0;
3773
3774 for (i = 0; i < args->buffer_count; i++) {
3775 object_list[i]->pending_read_domains = 0;
3776 object_list[i]->pending_write_domain = 0;
3777 ret = i915_gem_object_pin_and_relocate(object_list[i],
3778 file_priv,
3779 &exec_list[i],
3780 &relocs[reloc_index]);
3781 if (ret)
3782 break;
3783 pinned = i + 1;
3784 reloc_index += exec_list[i].relocation_count;
3785 }
3786 /* success */
3787 if (ret == 0)
3788 break;
3789
3790 /* error other than GTT full, or we've already tried again */
3791 if (ret != -ENOSPC || pin_tries >= 1) {
3792 if (ret != -ERESTARTSYS) {
3793 unsigned long long total_size = 0;
3794 for (i = 0; i < args->buffer_count; i++)
3795 total_size += object_list[i]->size;
3796 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3797 pinned+1, args->buffer_count,
3798 total_size, ret);
3799 DRM_ERROR("%d objects [%d pinned], "
3800 "%d object bytes [%d pinned], "
3801 "%d/%d gtt bytes\n",
3802 atomic_read(&dev->object_count),
3803 atomic_read(&dev->pin_count),
3804 atomic_read(&dev->object_memory),
3805 atomic_read(&dev->pin_memory),
3806 atomic_read(&dev->gtt_memory),
3807 dev->gtt_total);
3808 }
3809 goto err;
3810 }
3811
3812 /* unpin all of our buffers */
3813 for (i = 0; i < pinned; i++)
3814 i915_gem_object_unpin(object_list[i]);
3815 pinned = 0;
3816
3817 /* evict everyone we can from the aperture */
3818 ret = i915_gem_evict_everything(dev);
3819 if (ret && ret != -ENOSPC)
3820 goto err;
3821 }
3822
3823 /* Set the pending read domains for the batch buffer to COMMAND */
3824 batch_obj = object_list[args->buffer_count-1];
3825 if (batch_obj->pending_write_domain) {
3826 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3827 ret = -EINVAL;
3828 goto err;
3829 }
3830 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3831
3832 /* Sanity check the batch buffer, prior to moving objects */
3833 exec_offset = exec_list[args->buffer_count - 1].offset;
3834 ret = i915_gem_check_execbuffer (args, exec_offset);
3835 if (ret != 0) {
3836 DRM_ERROR("execbuf with invalid offset/length\n");
3837 goto err;
3838 }
3839
3840 i915_verify_inactive(dev, __FILE__, __LINE__);
3841
3842 /* Zero the global flush/invalidate flags. These
3843 * will be modified as new domains are computed
3844 * for each object
3845 */
3846 dev->invalidate_domains = 0;
3847 dev->flush_domains = 0;
3848
3849 for (i = 0; i < args->buffer_count; i++) {
3850 struct drm_gem_object *obj = object_list[i];
3851
3852 /* Compute new gpu domains and update invalidate/flush */
3853 i915_gem_object_set_to_gpu_domain(obj);
3854 }
3855
3856 i915_verify_inactive(dev, __FILE__, __LINE__);
3857
3858 if (dev->invalidate_domains | dev->flush_domains) {
3859 #if WATCH_EXEC
3860 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3861 __func__,
3862 dev->invalidate_domains,
3863 dev->flush_domains);
3864 #endif
3865 i915_gem_flush(dev,
3866 dev->invalidate_domains,
3867 dev->flush_domains);
3868 if (dev->flush_domains & I915_GEM_GPU_DOMAINS)
3869 (void)i915_add_request(dev, file_priv,
3870 dev->flush_domains);
3871 }
3872
3873 for (i = 0; i < args->buffer_count; i++) {
3874 struct drm_gem_object *obj = object_list[i];
3875 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3876 uint32_t old_write_domain = obj->write_domain;
3877
3878 obj->write_domain = obj->pending_write_domain;
3879 if (obj->write_domain)
3880 list_move_tail(&obj_priv->gpu_write_list,
3881 &dev_priv->mm.gpu_write_list);
3882 else
3883 list_del_init(&obj_priv->gpu_write_list);
3884
3885 trace_i915_gem_object_change_domain(obj,
3886 obj->read_domains,
3887 old_write_domain);
3888 }
3889
3890 i915_verify_inactive(dev, __FILE__, __LINE__);
3891
3892 #if WATCH_COHERENCY
3893 for (i = 0; i < args->buffer_count; i++) {
3894 i915_gem_object_check_coherency(object_list[i],
3895 exec_list[i].handle);
3896 }
3897 #endif
3898
3899 #if WATCH_EXEC
3900 i915_gem_dump_object(batch_obj,
3901 args->batch_len,
3902 __func__,
3903 ~0);
3904 #endif
3905
3906 /* Exec the batchbuffer */
3907 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3908 if (ret) {
3909 DRM_ERROR("dispatch failed %d\n", ret);
3910 goto err;
3911 }
3912
3913 /*
3914 * Ensure that the commands in the batch buffer are
3915 * finished before the interrupt fires
3916 */
3917 flush_domains = i915_retire_commands(dev);
3918
3919 i915_verify_inactive(dev, __FILE__, __LINE__);
3920
3921 /*
3922 * Get a seqno representing the execution of the current buffer,
3923 * which we can wait on. We would like to mitigate these interrupts,
3924 * likely by only creating seqnos occasionally (so that we have
3925 * *some* interrupts representing completion of buffers that we can
3926 * wait on when trying to clear up gtt space).
3927 */
3928 seqno = i915_add_request(dev, file_priv, flush_domains);
3929 BUG_ON(seqno == 0);
3930 for (i = 0; i < args->buffer_count; i++) {
3931 struct drm_gem_object *obj = object_list[i];
3932
3933 i915_gem_object_move_to_active(obj, seqno);
3934 #if WATCH_LRU
3935 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3936 #endif
3937 }
3938 #if WATCH_LRU
3939 i915_dump_lru(dev, __func__);
3940 #endif
3941
3942 i915_verify_inactive(dev, __FILE__, __LINE__);
3943
3944 err:
3945 for (i = 0; i < pinned; i++)
3946 i915_gem_object_unpin(object_list[i]);
3947
3948 for (i = 0; i < args->buffer_count; i++) {
3949 if (object_list[i]) {
3950 obj_priv = object_list[i]->driver_private;
3951 obj_priv->in_execbuffer = false;
3952 }
3953 drm_gem_object_unreference(object_list[i]);
3954 }
3955
3956 mutex_unlock(&dev->struct_mutex);
3957
3958 pre_mutex_err:
3959 /* Copy the updated relocations out regardless of current error
3960 * state. Failure to update the relocs would mean that the next
3961 * time userland calls execbuf, it would do so with presumed offset
3962 * state that didn't match the actual object state.
3963 */
3964 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3965 relocs);
3966 if (ret2 != 0) {
3967 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3968
3969 if (ret == 0)
3970 ret = ret2;
3971 }
3972
3973 drm_free_large(object_list);
3974 kfree(cliprects);
3975
3976 return ret;
3977 }
3978
3979 /*
3980 * Legacy execbuffer just creates an exec2 list from the original exec object
3981 * list array and passes it to the real function.
3982 */
3983 int
3984 i915_gem_execbuffer(struct drm_device *dev, void *data,
3985 struct drm_file *file_priv)
3986 {
3987 struct drm_i915_gem_execbuffer *args = data;
3988 struct drm_i915_gem_execbuffer2 exec2;
3989 struct drm_i915_gem_exec_object *exec_list = NULL;
3990 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3991 int ret, i;
3992
3993 #if WATCH_EXEC
3994 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3995 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3996 #endif
3997
3998 if (args->buffer_count < 1) {
3999 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4000 return -EINVAL;
4001 }
4002
4003 /* Copy in the exec list from userland */
4004 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4005 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4006 if (exec_list == NULL || exec2_list == NULL) {
4007 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4008 args->buffer_count);
4009 drm_free_large(exec_list);
4010 drm_free_large(exec2_list);
4011 return -ENOMEM;
4012 }
4013 ret = copy_from_user(exec_list,
4014 (struct drm_i915_relocation_entry __user *)
4015 (uintptr_t) args->buffers_ptr,
4016 sizeof(*exec_list) * args->buffer_count);
4017 if (ret != 0) {
4018 DRM_ERROR("copy %d exec entries failed %d\n",
4019 args->buffer_count, ret);
4020 drm_free_large(exec_list);
4021 drm_free_large(exec2_list);
4022 return -EFAULT;
4023 }
4024
4025 for (i = 0; i < args->buffer_count; i++) {
4026 exec2_list[i].handle = exec_list[i].handle;
4027 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4028 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4029 exec2_list[i].alignment = exec_list[i].alignment;
4030 exec2_list[i].offset = exec_list[i].offset;
4031 if (!IS_I965G(dev))
4032 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4033 else
4034 exec2_list[i].flags = 0;
4035 }
4036
4037 exec2.buffers_ptr = args->buffers_ptr;
4038 exec2.buffer_count = args->buffer_count;
4039 exec2.batch_start_offset = args->batch_start_offset;
4040 exec2.batch_len = args->batch_len;
4041 exec2.DR1 = args->DR1;
4042 exec2.DR4 = args->DR4;
4043 exec2.num_cliprects = args->num_cliprects;
4044 exec2.cliprects_ptr = args->cliprects_ptr;
4045 exec2.flags = 0;
4046
4047 ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4048 if (!ret) {
4049 /* Copy the new buffer offsets back to the user's exec list. */
4050 for (i = 0; i < args->buffer_count; i++)
4051 exec_list[i].offset = exec2_list[i].offset;
4052 /* ... and back out to userspace */
4053 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4054 (uintptr_t) args->buffers_ptr,
4055 exec_list,
4056 sizeof(*exec_list) * args->buffer_count);
4057 if (ret) {
4058 ret = -EFAULT;
4059 DRM_ERROR("failed to copy %d exec entries "
4060 "back to user (%d)\n",
4061 args->buffer_count, ret);
4062 }
4063 }
4064
4065 drm_free_large(exec_list);
4066 drm_free_large(exec2_list);
4067 return ret;
4068 }
4069
4070 int
4071 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4072 struct drm_file *file_priv)
4073 {
4074 struct drm_i915_gem_execbuffer2 *args = data;
4075 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4076 int ret;
4077
4078 #if WATCH_EXEC
4079 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4080 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4081 #endif
4082
4083 if (args->buffer_count < 1) {
4084 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4085 return -EINVAL;
4086 }
4087
4088 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4089 if (exec2_list == NULL) {
4090 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4091 args->buffer_count);
4092 return -ENOMEM;
4093 }
4094 ret = copy_from_user(exec2_list,
4095 (struct drm_i915_relocation_entry __user *)
4096 (uintptr_t) args->buffers_ptr,
4097 sizeof(*exec2_list) * args->buffer_count);
4098 if (ret != 0) {
4099 DRM_ERROR("copy %d exec entries failed %d\n",
4100 args->buffer_count, ret);
4101 drm_free_large(exec2_list);
4102 return -EFAULT;
4103 }
4104
4105 ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4106 if (!ret) {
4107 /* Copy the new buffer offsets back to the user's exec list. */
4108 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4109 (uintptr_t) args->buffers_ptr,
4110 exec2_list,
4111 sizeof(*exec2_list) * args->buffer_count);
4112 if (ret) {
4113 ret = -EFAULT;
4114 DRM_ERROR("failed to copy %d exec entries "
4115 "back to user (%d)\n",
4116 args->buffer_count, ret);
4117 }
4118 }
4119
4120 drm_free_large(exec2_list);
4121 return ret;
4122 }
4123
4124 int
4125 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4126 {
4127 struct drm_device *dev = obj->dev;
4128 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4129 int ret;
4130
4131 i915_verify_inactive(dev, __FILE__, __LINE__);
4132 if (obj_priv->gtt_space == NULL) {
4133 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4134 if (ret)
4135 return ret;
4136 }
4137
4138 obj_priv->pin_count++;
4139
4140 /* If the object is not active and not pending a flush,
4141 * remove it from the inactive list
4142 */
4143 if (obj_priv->pin_count == 1) {
4144 atomic_inc(&dev->pin_count);
4145 atomic_add(obj->size, &dev->pin_memory);
4146 if (!obj_priv->active &&
4147 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4148 !list_empty(&obj_priv->list))
4149 list_del_init(&obj_priv->list);
4150 }
4151 i915_verify_inactive(dev, __FILE__, __LINE__);
4152
4153 return 0;
4154 }
4155
4156 void
4157 i915_gem_object_unpin(struct drm_gem_object *obj)
4158 {
4159 struct drm_device *dev = obj->dev;
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4162
4163 i915_verify_inactive(dev, __FILE__, __LINE__);
4164 obj_priv->pin_count--;
4165 BUG_ON(obj_priv->pin_count < 0);
4166 BUG_ON(obj_priv->gtt_space == NULL);
4167
4168 /* If the object is no longer pinned, and is
4169 * neither active nor being flushed, then stick it on
4170 * the inactive list
4171 */
4172 if (obj_priv->pin_count == 0) {
4173 if (!obj_priv->active &&
4174 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4175 list_move_tail(&obj_priv->list,
4176 &dev_priv->mm.inactive_list);
4177 atomic_dec(&dev->pin_count);
4178 atomic_sub(obj->size, &dev->pin_memory);
4179 }
4180 i915_verify_inactive(dev, __FILE__, __LINE__);
4181 }
4182
4183 int
4184 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4185 struct drm_file *file_priv)
4186 {
4187 struct drm_i915_gem_pin *args = data;
4188 struct drm_gem_object *obj;
4189 struct drm_i915_gem_object *obj_priv;
4190 int ret;
4191
4192 mutex_lock(&dev->struct_mutex);
4193
4194 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4195 if (obj == NULL) {
4196 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4197 args->handle);
4198 mutex_unlock(&dev->struct_mutex);
4199 return -EBADF;
4200 }
4201 obj_priv = obj->driver_private;
4202
4203 if (obj_priv->madv != I915_MADV_WILLNEED) {
4204 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4205 drm_gem_object_unreference(obj);
4206 mutex_unlock(&dev->struct_mutex);
4207 return -EINVAL;
4208 }
4209
4210 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4211 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4212 args->handle);
4213 drm_gem_object_unreference(obj);
4214 mutex_unlock(&dev->struct_mutex);
4215 return -EINVAL;
4216 }
4217
4218 obj_priv->user_pin_count++;
4219 obj_priv->pin_filp = file_priv;
4220 if (obj_priv->user_pin_count == 1) {
4221 ret = i915_gem_object_pin(obj, args->alignment);
4222 if (ret != 0) {
4223 drm_gem_object_unreference(obj);
4224 mutex_unlock(&dev->struct_mutex);
4225 return ret;
4226 }
4227 }
4228
4229 /* XXX - flush the CPU caches for pinned objects
4230 * as the X server doesn't manage domains yet
4231 */
4232 i915_gem_object_flush_cpu_write_domain(obj);
4233 args->offset = obj_priv->gtt_offset;
4234 drm_gem_object_unreference(obj);
4235 mutex_unlock(&dev->struct_mutex);
4236
4237 return 0;
4238 }
4239
4240 int
4241 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4242 struct drm_file *file_priv)
4243 {
4244 struct drm_i915_gem_pin *args = data;
4245 struct drm_gem_object *obj;
4246 struct drm_i915_gem_object *obj_priv;
4247
4248 mutex_lock(&dev->struct_mutex);
4249
4250 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4251 if (obj == NULL) {
4252 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4253 args->handle);
4254 mutex_unlock(&dev->struct_mutex);
4255 return -EBADF;
4256 }
4257
4258 obj_priv = obj->driver_private;
4259 if (obj_priv->pin_filp != file_priv) {
4260 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4261 args->handle);
4262 drm_gem_object_unreference(obj);
4263 mutex_unlock(&dev->struct_mutex);
4264 return -EINVAL;
4265 }
4266 obj_priv->user_pin_count--;
4267 if (obj_priv->user_pin_count == 0) {
4268 obj_priv->pin_filp = NULL;
4269 i915_gem_object_unpin(obj);
4270 }
4271
4272 drm_gem_object_unreference(obj);
4273 mutex_unlock(&dev->struct_mutex);
4274 return 0;
4275 }
4276
4277 int
4278 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4279 struct drm_file *file_priv)
4280 {
4281 struct drm_i915_gem_busy *args = data;
4282 struct drm_gem_object *obj;
4283 struct drm_i915_gem_object *obj_priv;
4284
4285 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4286 if (obj == NULL) {
4287 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4288 args->handle);
4289 return -EBADF;
4290 }
4291
4292 mutex_lock(&dev->struct_mutex);
4293 /* Update the active list for the hardware's current position.
4294 * Otherwise this only updates on a delayed timer or when irqs are
4295 * actually unmasked, and our working set ends up being larger than
4296 * required.
4297 */
4298 i915_gem_retire_requests(dev);
4299
4300 obj_priv = obj->driver_private;
4301 /* Don't count being on the flushing list against the object being
4302 * done. Otherwise, a buffer left on the flushing list but not getting
4303 * flushed (because nobody's flushing that domain) won't ever return
4304 * unbusy and get reused by libdrm's bo cache. The other expected
4305 * consumer of this interface, OpenGL's occlusion queries, also specs
4306 * that the objects get unbusy "eventually" without any interference.
4307 */
4308 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4309
4310 drm_gem_object_unreference(obj);
4311 mutex_unlock(&dev->struct_mutex);
4312 return 0;
4313 }
4314
4315 int
4316 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file_priv)
4318 {
4319 return i915_gem_ring_throttle(dev, file_priv);
4320 }
4321
4322 int
4323 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4324 struct drm_file *file_priv)
4325 {
4326 struct drm_i915_gem_madvise *args = data;
4327 struct drm_gem_object *obj;
4328 struct drm_i915_gem_object *obj_priv;
4329
4330 switch (args->madv) {
4331 case I915_MADV_DONTNEED:
4332 case I915_MADV_WILLNEED:
4333 break;
4334 default:
4335 return -EINVAL;
4336 }
4337
4338 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4339 if (obj == NULL) {
4340 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4341 args->handle);
4342 return -EBADF;
4343 }
4344
4345 mutex_lock(&dev->struct_mutex);
4346 obj_priv = obj->driver_private;
4347
4348 if (obj_priv->pin_count) {
4349 drm_gem_object_unreference(obj);
4350 mutex_unlock(&dev->struct_mutex);
4351
4352 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4353 return -EINVAL;
4354 }
4355
4356 if (obj_priv->madv != __I915_MADV_PURGED)
4357 obj_priv->madv = args->madv;
4358
4359 /* if the object is no longer bound, discard its backing storage */
4360 if (i915_gem_object_is_purgeable(obj_priv) &&
4361 obj_priv->gtt_space == NULL)
4362 i915_gem_object_truncate(obj);
4363
4364 args->retained = obj_priv->madv != __I915_MADV_PURGED;
4365
4366 drm_gem_object_unreference(obj);
4367 mutex_unlock(&dev->struct_mutex);
4368
4369 return 0;
4370 }
4371
4372 int i915_gem_init_object(struct drm_gem_object *obj)
4373 {
4374 struct drm_i915_gem_object *obj_priv;
4375
4376 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4377 if (obj_priv == NULL)
4378 return -ENOMEM;
4379
4380 /*
4381 * We've just allocated pages from the kernel,
4382 * so they've just been written by the CPU with
4383 * zeros. They'll need to be clflushed before we
4384 * use them with the GPU.
4385 */
4386 obj->write_domain = I915_GEM_DOMAIN_CPU;
4387 obj->read_domains = I915_GEM_DOMAIN_CPU;
4388
4389 obj_priv->agp_type = AGP_USER_MEMORY;
4390
4391 obj->driver_private = obj_priv;
4392 obj_priv->obj = obj;
4393 obj_priv->fence_reg = I915_FENCE_REG_NONE;
4394 INIT_LIST_HEAD(&obj_priv->list);
4395 INIT_LIST_HEAD(&obj_priv->gpu_write_list);
4396 INIT_LIST_HEAD(&obj_priv->fence_list);
4397 obj_priv->madv = I915_MADV_WILLNEED;
4398
4399 trace_i915_gem_object_create(obj);
4400
4401 return 0;
4402 }
4403
4404 void i915_gem_free_object(struct drm_gem_object *obj)
4405 {
4406 struct drm_device *dev = obj->dev;
4407 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4408
4409 trace_i915_gem_object_destroy(obj);
4410
4411 while (obj_priv->pin_count > 0)
4412 i915_gem_object_unpin(obj);
4413
4414 if (obj_priv->phys_obj)
4415 i915_gem_detach_phys_object(dev, obj);
4416
4417 i915_gem_object_unbind(obj);
4418
4419 if (obj_priv->mmap_offset)
4420 i915_gem_free_mmap_offset(obj);
4421
4422 kfree(obj_priv->page_cpu_valid);
4423 kfree(obj_priv->bit_17);
4424 kfree(obj->driver_private);
4425 }
4426
4427 /** Unbinds all inactive objects. */
4428 static int
4429 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4430 {
4431 drm_i915_private_t *dev_priv = dev->dev_private;
4432
4433 while (!list_empty(&dev_priv->mm.inactive_list)) {
4434 struct drm_gem_object *obj;
4435 int ret;
4436
4437 obj = list_first_entry(&dev_priv->mm.inactive_list,
4438 struct drm_i915_gem_object,
4439 list)->obj;
4440
4441 ret = i915_gem_object_unbind(obj);
4442 if (ret != 0) {
4443 DRM_ERROR("Error unbinding object: %d\n", ret);
4444 return ret;
4445 }
4446 }
4447
4448 return 0;
4449 }
4450
4451 static int
4452 i915_gpu_idle(struct drm_device *dev)
4453 {
4454 drm_i915_private_t *dev_priv = dev->dev_private;
4455 bool lists_empty;
4456 uint32_t seqno;
4457
4458 spin_lock(&dev_priv->mm.active_list_lock);
4459 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4460 list_empty(&dev_priv->mm.active_list);
4461 spin_unlock(&dev_priv->mm.active_list_lock);
4462
4463 if (lists_empty)
4464 return 0;
4465
4466 /* Flush everything onto the inactive list. */
4467 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4468 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4469 if (seqno == 0)
4470 return -ENOMEM;
4471
4472 return i915_wait_request(dev, seqno);
4473 }
4474
4475 int
4476 i915_gem_idle(struct drm_device *dev)
4477 {
4478 drm_i915_private_t *dev_priv = dev->dev_private;
4479 int ret;
4480
4481 mutex_lock(&dev->struct_mutex);
4482
4483 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4484 mutex_unlock(&dev->struct_mutex);
4485 return 0;
4486 }
4487
4488 ret = i915_gpu_idle(dev);
4489 if (ret) {
4490 mutex_unlock(&dev->struct_mutex);
4491 return ret;
4492 }
4493
4494 /* Under UMS, be paranoid and evict. */
4495 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4496 ret = i915_gem_evict_from_inactive_list(dev);
4497 if (ret) {
4498 mutex_unlock(&dev->struct_mutex);
4499 return ret;
4500 }
4501 }
4502
4503 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4504 * We need to replace this with a semaphore, or something.
4505 * And not confound mm.suspended!
4506 */
4507 dev_priv->mm.suspended = 1;
4508 del_timer(&dev_priv->hangcheck_timer);
4509
4510 i915_kernel_lost_context(dev);
4511 i915_gem_cleanup_ringbuffer(dev);
4512
4513 mutex_unlock(&dev->struct_mutex);
4514
4515 /* Cancel the retire work handler, which should be idle now. */
4516 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4517
4518 return 0;
4519 }
4520
4521 static int
4522 i915_gem_init_hws(struct drm_device *dev)
4523 {
4524 drm_i915_private_t *dev_priv = dev->dev_private;
4525 struct drm_gem_object *obj;
4526 struct drm_i915_gem_object *obj_priv;
4527 int ret;
4528
4529 /* If we need a physical address for the status page, it's already
4530 * initialized at driver load time.
4531 */
4532 if (!I915_NEED_GFX_HWS(dev))
4533 return 0;
4534
4535 obj = drm_gem_object_alloc(dev, 4096);
4536 if (obj == NULL) {
4537 DRM_ERROR("Failed to allocate status page\n");
4538 return -ENOMEM;
4539 }
4540 obj_priv = obj->driver_private;
4541 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4542
4543 ret = i915_gem_object_pin(obj, 4096);
4544 if (ret != 0) {
4545 drm_gem_object_unreference(obj);
4546 return ret;
4547 }
4548
4549 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4550
4551 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4552 if (dev_priv->hw_status_page == NULL) {
4553 DRM_ERROR("Failed to map status page.\n");
4554 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4555 i915_gem_object_unpin(obj);
4556 drm_gem_object_unreference(obj);
4557 return -EINVAL;
4558 }
4559 dev_priv->hws_obj = obj;
4560 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4561 if (IS_GEN6(dev)) {
4562 I915_WRITE(HWS_PGA_GEN6, dev_priv->status_gfx_addr);
4563 I915_READ(HWS_PGA_GEN6); /* posting read */
4564 } else {
4565 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4566 I915_READ(HWS_PGA); /* posting read */
4567 }
4568 DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4569
4570 return 0;
4571 }
4572
4573 static void
4574 i915_gem_cleanup_hws(struct drm_device *dev)
4575 {
4576 drm_i915_private_t *dev_priv = dev->dev_private;
4577 struct drm_gem_object *obj;
4578 struct drm_i915_gem_object *obj_priv;
4579
4580 if (dev_priv->hws_obj == NULL)
4581 return;
4582
4583 obj = dev_priv->hws_obj;
4584 obj_priv = obj->driver_private;
4585
4586 kunmap(obj_priv->pages[0]);
4587 i915_gem_object_unpin(obj);
4588 drm_gem_object_unreference(obj);
4589 dev_priv->hws_obj = NULL;
4590
4591 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4592 dev_priv->hw_status_page = NULL;
4593
4594 /* Write high address into HWS_PGA when disabling. */
4595 I915_WRITE(HWS_PGA, 0x1ffff000);
4596 }
4597
4598 int
4599 i915_gem_init_ringbuffer(struct drm_device *dev)
4600 {
4601 drm_i915_private_t *dev_priv = dev->dev_private;
4602 struct drm_gem_object *obj;
4603 struct drm_i915_gem_object *obj_priv;
4604 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4605 int ret;
4606 u32 head;
4607
4608 ret = i915_gem_init_hws(dev);
4609 if (ret != 0)
4610 return ret;
4611
4612 obj = drm_gem_object_alloc(dev, 128 * 1024);
4613 if (obj == NULL) {
4614 DRM_ERROR("Failed to allocate ringbuffer\n");
4615 i915_gem_cleanup_hws(dev);
4616 return -ENOMEM;
4617 }
4618 obj_priv = obj->driver_private;
4619
4620 ret = i915_gem_object_pin(obj, 4096);
4621 if (ret != 0) {
4622 drm_gem_object_unreference(obj);
4623 i915_gem_cleanup_hws(dev);
4624 return ret;
4625 }
4626
4627 /* Set up the kernel mapping for the ring. */
4628 ring->Size = obj->size;
4629
4630 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4631 ring->map.size = obj->size;
4632 ring->map.type = 0;
4633 ring->map.flags = 0;
4634 ring->map.mtrr = 0;
4635
4636 drm_core_ioremap_wc(&ring->map, dev);
4637 if (ring->map.handle == NULL) {
4638 DRM_ERROR("Failed to map ringbuffer.\n");
4639 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4640 i915_gem_object_unpin(obj);
4641 drm_gem_object_unreference(obj);
4642 i915_gem_cleanup_hws(dev);
4643 return -EINVAL;
4644 }
4645 ring->ring_obj = obj;
4646 ring->virtual_start = ring->map.handle;
4647
4648 /* Stop the ring if it's running. */
4649 I915_WRITE(PRB0_CTL, 0);
4650 I915_WRITE(PRB0_TAIL, 0);
4651 I915_WRITE(PRB0_HEAD, 0);
4652
4653 /* Initialize the ring. */
4654 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4655 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4656
4657 /* G45 ring initialization fails to reset head to zero */
4658 if (head != 0) {
4659 DRM_ERROR("Ring head not reset to zero "
4660 "ctl %08x head %08x tail %08x start %08x\n",
4661 I915_READ(PRB0_CTL),
4662 I915_READ(PRB0_HEAD),
4663 I915_READ(PRB0_TAIL),
4664 I915_READ(PRB0_START));
4665 I915_WRITE(PRB0_HEAD, 0);
4666
4667 DRM_ERROR("Ring head forced to zero "
4668 "ctl %08x head %08x tail %08x start %08x\n",
4669 I915_READ(PRB0_CTL),
4670 I915_READ(PRB0_HEAD),
4671 I915_READ(PRB0_TAIL),
4672 I915_READ(PRB0_START));
4673 }
4674
4675 I915_WRITE(PRB0_CTL,
4676 ((obj->size - 4096) & RING_NR_PAGES) |
4677 RING_NO_REPORT |
4678 RING_VALID);
4679
4680 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4681
4682 /* If the head is still not zero, the ring is dead */
4683 if (head != 0) {
4684 DRM_ERROR("Ring initialization failed "
4685 "ctl %08x head %08x tail %08x start %08x\n",
4686 I915_READ(PRB0_CTL),
4687 I915_READ(PRB0_HEAD),
4688 I915_READ(PRB0_TAIL),
4689 I915_READ(PRB0_START));
4690 return -EIO;
4691 }
4692
4693 /* Update our cache of the ring state */
4694 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4695 i915_kernel_lost_context(dev);
4696 else {
4697 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4698 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4699 ring->space = ring->head - (ring->tail + 8);
4700 if (ring->space < 0)
4701 ring->space += ring->Size;
4702 }
4703
4704 return 0;
4705 }
4706
4707 void
4708 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4709 {
4710 drm_i915_private_t *dev_priv = dev->dev_private;
4711
4712 if (dev_priv->ring.ring_obj == NULL)
4713 return;
4714
4715 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4716
4717 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4718 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4719 dev_priv->ring.ring_obj = NULL;
4720 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4721
4722 i915_gem_cleanup_hws(dev);
4723 }
4724
4725 int
4726 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4727 struct drm_file *file_priv)
4728 {
4729 drm_i915_private_t *dev_priv = dev->dev_private;
4730 int ret;
4731
4732 if (drm_core_check_feature(dev, DRIVER_MODESET))
4733 return 0;
4734
4735 if (atomic_read(&dev_priv->mm.wedged)) {
4736 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4737 atomic_set(&dev_priv->mm.wedged, 0);
4738 }
4739
4740 mutex_lock(&dev->struct_mutex);
4741 dev_priv->mm.suspended = 0;
4742
4743 ret = i915_gem_init_ringbuffer(dev);
4744 if (ret != 0) {
4745 mutex_unlock(&dev->struct_mutex);
4746 return ret;
4747 }
4748
4749 spin_lock(&dev_priv->mm.active_list_lock);
4750 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4751 spin_unlock(&dev_priv->mm.active_list_lock);
4752
4753 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4754 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4755 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4756 mutex_unlock(&dev->struct_mutex);
4757
4758 drm_irq_install(dev);
4759
4760 return 0;
4761 }
4762
4763 int
4764 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4765 struct drm_file *file_priv)
4766 {
4767 if (drm_core_check_feature(dev, DRIVER_MODESET))
4768 return 0;
4769
4770 drm_irq_uninstall(dev);
4771 return i915_gem_idle(dev);
4772 }
4773
4774 void
4775 i915_gem_lastclose(struct drm_device *dev)
4776 {
4777 int ret;
4778
4779 if (drm_core_check_feature(dev, DRIVER_MODESET))
4780 return;
4781
4782 ret = i915_gem_idle(dev);
4783 if (ret)
4784 DRM_ERROR("failed to idle hardware: %d\n", ret);
4785 }
4786
4787 void
4788 i915_gem_load(struct drm_device *dev)
4789 {
4790 int i;
4791 drm_i915_private_t *dev_priv = dev->dev_private;
4792
4793 spin_lock_init(&dev_priv->mm.active_list_lock);
4794 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4795 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4796 INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4797 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4798 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4799 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4800 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4801 i915_gem_retire_work_handler);
4802 dev_priv->mm.next_gem_seqno = 1;
4803
4804 spin_lock(&shrink_list_lock);
4805 list_add(&dev_priv->mm.shrink_list, &shrink_list);
4806 spin_unlock(&shrink_list_lock);
4807
4808 /* Old X drivers will take 0-2 for front, back, depth buffers */
4809 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4810 dev_priv->fence_reg_start = 3;
4811
4812 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4813 dev_priv->num_fence_regs = 16;
4814 else
4815 dev_priv->num_fence_regs = 8;
4816
4817 /* Initialize fence registers to zero */
4818 if (IS_I965G(dev)) {
4819 for (i = 0; i < 16; i++)
4820 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4821 } else {
4822 for (i = 0; i < 8; i++)
4823 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4824 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4825 for (i = 0; i < 8; i++)
4826 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4827 }
4828 i915_gem_detect_bit_6_swizzle(dev);
4829 init_waitqueue_head(&dev_priv->pending_flip_queue);
4830 }
4831
4832 /*
4833 * Create a physically contiguous memory object for this object
4834 * e.g. for cursor + overlay regs
4835 */
4836 int i915_gem_init_phys_object(struct drm_device *dev,
4837 int id, int size)
4838 {
4839 drm_i915_private_t *dev_priv = dev->dev_private;
4840 struct drm_i915_gem_phys_object *phys_obj;
4841 int ret;
4842
4843 if (dev_priv->mm.phys_objs[id - 1] || !size)
4844 return 0;
4845
4846 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4847 if (!phys_obj)
4848 return -ENOMEM;
4849
4850 phys_obj->id = id;
4851
4852 phys_obj->handle = drm_pci_alloc(dev, size, 0);
4853 if (!phys_obj->handle) {
4854 ret = -ENOMEM;
4855 goto kfree_obj;
4856 }
4857 #ifdef CONFIG_X86
4858 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4859 #endif
4860
4861 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4862
4863 return 0;
4864 kfree_obj:
4865 kfree(phys_obj);
4866 return ret;
4867 }
4868
4869 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4870 {
4871 drm_i915_private_t *dev_priv = dev->dev_private;
4872 struct drm_i915_gem_phys_object *phys_obj;
4873
4874 if (!dev_priv->mm.phys_objs[id - 1])
4875 return;
4876
4877 phys_obj = dev_priv->mm.phys_objs[id - 1];
4878 if (phys_obj->cur_obj) {
4879 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4880 }
4881
4882 #ifdef CONFIG_X86
4883 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4884 #endif
4885 drm_pci_free(dev, phys_obj->handle);
4886 kfree(phys_obj);
4887 dev_priv->mm.phys_objs[id - 1] = NULL;
4888 }
4889
4890 void i915_gem_free_all_phys_object(struct drm_device *dev)
4891 {
4892 int i;
4893
4894 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4895 i915_gem_free_phys_object(dev, i);
4896 }
4897
4898 void i915_gem_detach_phys_object(struct drm_device *dev,
4899 struct drm_gem_object *obj)
4900 {
4901 struct drm_i915_gem_object *obj_priv;
4902 int i;
4903 int ret;
4904 int page_count;
4905
4906 obj_priv = obj->driver_private;
4907 if (!obj_priv->phys_obj)
4908 return;
4909
4910 ret = i915_gem_object_get_pages(obj, 0);
4911 if (ret)
4912 goto out;
4913
4914 page_count = obj->size / PAGE_SIZE;
4915
4916 for (i = 0; i < page_count; i++) {
4917 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4918 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4919
4920 memcpy(dst, src, PAGE_SIZE);
4921 kunmap_atomic(dst, KM_USER0);
4922 }
4923 drm_clflush_pages(obj_priv->pages, page_count);
4924 drm_agp_chipset_flush(dev);
4925
4926 i915_gem_object_put_pages(obj);
4927 out:
4928 obj_priv->phys_obj->cur_obj = NULL;
4929 obj_priv->phys_obj = NULL;
4930 }
4931
4932 int
4933 i915_gem_attach_phys_object(struct drm_device *dev,
4934 struct drm_gem_object *obj, int id)
4935 {
4936 drm_i915_private_t *dev_priv = dev->dev_private;
4937 struct drm_i915_gem_object *obj_priv;
4938 int ret = 0;
4939 int page_count;
4940 int i;
4941
4942 if (id > I915_MAX_PHYS_OBJECT)
4943 return -EINVAL;
4944
4945 obj_priv = obj->driver_private;
4946
4947 if (obj_priv->phys_obj) {
4948 if (obj_priv->phys_obj->id == id)
4949 return 0;
4950 i915_gem_detach_phys_object(dev, obj);
4951 }
4952
4953
4954 /* create a new object */
4955 if (!dev_priv->mm.phys_objs[id - 1]) {
4956 ret = i915_gem_init_phys_object(dev, id,
4957 obj->size);
4958 if (ret) {
4959 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4960 goto out;
4961 }
4962 }
4963
4964 /* bind to the object */
4965 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4966 obj_priv->phys_obj->cur_obj = obj;
4967
4968 ret = i915_gem_object_get_pages(obj, 0);
4969 if (ret) {
4970 DRM_ERROR("failed to get page list\n");
4971 goto out;
4972 }
4973
4974 page_count = obj->size / PAGE_SIZE;
4975
4976 for (i = 0; i < page_count; i++) {
4977 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4978 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4979
4980 memcpy(dst, src, PAGE_SIZE);
4981 kunmap_atomic(src, KM_USER0);
4982 }
4983
4984 i915_gem_object_put_pages(obj);
4985
4986 return 0;
4987 out:
4988 return ret;
4989 }
4990
4991 static int
4992 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4993 struct drm_i915_gem_pwrite *args,
4994 struct drm_file *file_priv)
4995 {
4996 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4997 void *obj_addr;
4998 int ret;
4999 char __user *user_data;
5000
5001 user_data = (char __user *) (uintptr_t) args->data_ptr;
5002 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
5003
5004 DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
5005 ret = copy_from_user(obj_addr, user_data, args->size);
5006 if (ret)
5007 return -EFAULT;
5008
5009 drm_agp_chipset_flush(dev);
5010 return 0;
5011 }
5012
5013 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
5014 {
5015 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
5016
5017 /* Clean up our request list when the client is going away, so that
5018 * later retire_requests won't dereference our soon-to-be-gone
5019 * file_priv.
5020 */
5021 mutex_lock(&dev->struct_mutex);
5022 while (!list_empty(&i915_file_priv->mm.request_list))
5023 list_del_init(i915_file_priv->mm.request_list.next);
5024 mutex_unlock(&dev->struct_mutex);
5025 }
5026
5027 static int
5028 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5029 {
5030 drm_i915_private_t *dev_priv, *next_dev;
5031 struct drm_i915_gem_object *obj_priv, *next_obj;
5032 int cnt = 0;
5033 int would_deadlock = 1;
5034
5035 /* "fast-path" to count number of available objects */
5036 if (nr_to_scan == 0) {
5037 spin_lock(&shrink_list_lock);
5038 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5039 struct drm_device *dev = dev_priv->dev;
5040
5041 if (mutex_trylock(&dev->struct_mutex)) {
5042 list_for_each_entry(obj_priv,
5043 &dev_priv->mm.inactive_list,
5044 list)
5045 cnt++;
5046 mutex_unlock(&dev->struct_mutex);
5047 }
5048 }
5049 spin_unlock(&shrink_list_lock);
5050
5051 return (cnt / 100) * sysctl_vfs_cache_pressure;
5052 }
5053
5054 spin_lock(&shrink_list_lock);
5055
5056 /* first scan for clean buffers */
5057 list_for_each_entry_safe(dev_priv, next_dev,
5058 &shrink_list, mm.shrink_list) {
5059 struct drm_device *dev = dev_priv->dev;
5060
5061 if (! mutex_trylock(&dev->struct_mutex))
5062 continue;
5063
5064 spin_unlock(&shrink_list_lock);
5065
5066 i915_gem_retire_requests(dev);
5067
5068 list_for_each_entry_safe(obj_priv, next_obj,
5069 &dev_priv->mm.inactive_list,
5070 list) {
5071 if (i915_gem_object_is_purgeable(obj_priv)) {
5072 i915_gem_object_unbind(obj_priv->obj);
5073 if (--nr_to_scan <= 0)
5074 break;
5075 }
5076 }
5077
5078 spin_lock(&shrink_list_lock);
5079 mutex_unlock(&dev->struct_mutex);
5080
5081 would_deadlock = 0;
5082
5083 if (nr_to_scan <= 0)
5084 break;
5085 }
5086
5087 /* second pass, evict/count anything still on the inactive list */
5088 list_for_each_entry_safe(dev_priv, next_dev,
5089 &shrink_list, mm.shrink_list) {
5090 struct drm_device *dev = dev_priv->dev;
5091
5092 if (! mutex_trylock(&dev->struct_mutex))
5093 continue;
5094
5095 spin_unlock(&shrink_list_lock);
5096
5097 list_for_each_entry_safe(obj_priv, next_obj,
5098 &dev_priv->mm.inactive_list,
5099 list) {
5100 if (nr_to_scan > 0) {
5101 i915_gem_object_unbind(obj_priv->obj);
5102 nr_to_scan--;
5103 } else
5104 cnt++;
5105 }
5106
5107 spin_lock(&shrink_list_lock);
5108 mutex_unlock(&dev->struct_mutex);
5109
5110 would_deadlock = 0;
5111 }
5112
5113 spin_unlock(&shrink_list_lock);
5114
5115 if (would_deadlock)
5116 return -1;
5117 else if (cnt > 0)
5118 return (cnt / 100) * sysctl_vfs_cache_pressure;
5119 else
5120 return 0;
5121 }
5122
5123 static struct shrinker shrinker = {
5124 .shrink = i915_gem_shrink,
5125 .seeks = DEFAULT_SEEKS,
5126 };
5127
5128 __init void
5129 i915_gem_shrinker_init(void)
5130 {
5131 register_shrinker(&shrinker);
5132 }
5133
5134 __exit void
5135 i915_gem_shrinker_exit(void)
5136 {
5137 unregister_shrinker(&shrinker);
5138 }