]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
32e857dc507cf9b1a9247f3bab497616d82e60a9
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 if (obj->cache_dirty)
53 return false;
54
55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 return true;
57
58 return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
64 {
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 u64 size)
81 {
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 u64 size)
90 {
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 int ret;
101
102 might_sleep();
103
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
111 I915_RESET_TIMEOUT);
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
116 return ret;
117 } else {
118 return 0;
119 }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = to_i915(dev);
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
146 u64 pinned;
147
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
157
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
160
161 return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
176
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 put_page(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
224
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
227
228 obj->phys_handle = phys;
229 return st;
230
231 err_phys:
232 drm_pci_free(obj->base.dev, phys);
233 return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
247 bool needs_clflush)
248 {
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
253
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 drm_clflush_sg(pages);
258
259 __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265 {
266 __i915_gem_object_release_shmem(obj, pages, false);
267
268 if (obj->mm.dirty) {
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
289 put_page(page);
290 vaddr += PAGE_SIZE;
291 }
292 obj->mm.dirty = false;
293 }
294
295 sg_free_table(pages);
296 kfree(pages);
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq, rps);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410 {
411 unsigned int seq = __read_seqcount_begin(&resv->seq);
412 struct dma_fence *excl;
413 bool prune_fences = false;
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
418 int ret;
419
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
422 if (ret)
423 return ret;
424
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
429 if (timeout < 0)
430 break;
431
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
438
439 prune_fences = count && timeout >= 0;
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
442 }
443
444 if (excl && timeout >= 0) {
445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 prune_fences = timeout >= 0;
447 }
448
449 dma_fence_put(excl);
450
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
461 }
462
463 return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500 {
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528 }
529
530 /**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
536 */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
542 {
543 might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548 #endif
549 GEM_BUG_ON(timeout < 0);
550
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file)
568 {
569 void *vaddr = obj->phys_handle->vaddr + args->offset;
570 char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572 /* We manually control the domain here and pretend that it
573 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 */
575 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 if (copy_from_user(vaddr, user_data, args->size))
577 return -EFAULT;
578
579 drm_clflush_virt_range(vaddr, args->size);
580 i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582 intel_fb_obj_flush(obj, ORIGIN_CPU);
583 return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599 struct drm_i915_private *dev_priv,
600 uint64_t size,
601 uint32_t *handle_p)
602 {
603 struct drm_i915_gem_object *obj;
604 int ret;
605 u32 handle;
606
607 size = roundup(size, PAGE_SIZE);
608 if (size == 0)
609 return -EINVAL;
610
611 /* Allocate the new object */
612 obj = i915_gem_object_create(dev_priv, size);
613 if (IS_ERR(obj))
614 return PTR_ERR(obj);
615
616 ret = drm_gem_handle_create(file, &obj->base, &handle);
617 /* drop reference from allocate - handle holds it now */
618 i915_gem_object_put(obj);
619 if (ret)
620 return ret;
621
622 *handle_p = handle;
623 return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628 struct drm_device *dev,
629 struct drm_mode_create_dumb *args)
630 {
631 /* have to work out size/pitch and return them */
632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 args->size = args->pitch * args->height;
634 return i915_gem_create(file, to_i915(dev),
635 args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640 return !(obj->cache_level == I915_CACHE_NONE ||
641 obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645 * Creates a new mm object and returns a handle to it.
646 * @dev: drm device pointer
647 * @data: ioctl data blob
648 * @file: drm file pointer
649 */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 struct drm_file *file)
653 {
654 struct drm_i915_private *dev_priv = to_i915(dev);
655 struct drm_i915_gem_create *args = data;
656
657 i915_gem_flush_free_objects(dev_priv);
658
659 return i915_gem_create(file, dev_priv,
660 args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666 return (domain == I915_GEM_DOMAIN_GTT ?
667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675 if (!(obj->base.write_domain & flush_domains))
676 return;
677
678 /* No actual flushing is required for the GTT write domain. Writes
679 * to it "immediately" go to main memory as far as we know, so there's
680 * no chipset flush. It also doesn't land in render cache.
681 *
682 * However, we do have to enforce the order so that all writes through
683 * the GTT land before any writes to the device, such as updates to
684 * the GATT itself.
685 *
686 * We also have to wait a bit for the writes to land from the GTT.
687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 * timing. This issue has only been observed when switching quickly
689 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 * system agents we cannot reproduce this behaviour).
692 */
693 wmb();
694
695 switch (obj->base.write_domain) {
696 case I915_GEM_DOMAIN_GTT:
697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 intel_runtime_pm_get(dev_priv);
699 spin_lock_irq(&dev_priv->uncore.lock);
700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 spin_unlock_irq(&dev_priv->uncore.lock);
702 intel_runtime_pm_put(dev_priv);
703 }
704
705 intel_fb_obj_flush(obj,
706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707 break;
708
709 case I915_GEM_DOMAIN_CPU:
710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711 break;
712
713 case I915_GEM_DOMAIN_RENDER:
714 if (gpu_write_needs_clflush(obj))
715 obj->cache_dirty = true;
716 break;
717 }
718
719 obj->base.write_domain = 0;
720 }
721
722 static inline int
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724 const char *gpu_vaddr, int gpu_offset,
725 int length)
726 {
727 int ret, cpu_offset = 0;
728
729 while (length > 0) {
730 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 int this_length = min(cacheline_end - gpu_offset, length);
732 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 gpu_vaddr + swizzled_gpu_offset,
736 this_length);
737 if (ret)
738 return ret + length;
739
740 cpu_offset += this_length;
741 gpu_offset += this_length;
742 length -= this_length;
743 }
744
745 return 0;
746 }
747
748 static inline int
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 const char __user *cpu_vaddr,
751 int length)
752 {
753 int ret, cpu_offset = 0;
754
755 while (length > 0) {
756 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 int this_length = min(cacheline_end - gpu_offset, length);
758 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 cpu_vaddr + cpu_offset,
762 this_length);
763 if (ret)
764 return ret + length;
765
766 cpu_offset += this_length;
767 gpu_offset += this_length;
768 length -= this_length;
769 }
770
771 return 0;
772 }
773
774 /*
775 * Pins the specified object's pages and synchronizes the object with
776 * GPU accesses. Sets needs_clflush to non-zero if the caller should
777 * flush the object from the CPU cache.
778 */
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780 unsigned int *needs_clflush)
781 {
782 int ret;
783
784 lockdep_assert_held(&obj->base.dev->struct_mutex);
785
786 *needs_clflush = 0;
787 if (!i915_gem_object_has_struct_page(obj))
788 return -ENODEV;
789
790 ret = i915_gem_object_wait(obj,
791 I915_WAIT_INTERRUPTIBLE |
792 I915_WAIT_LOCKED,
793 MAX_SCHEDULE_TIMEOUT,
794 NULL);
795 if (ret)
796 return ret;
797
798 ret = i915_gem_object_pin_pages(obj);
799 if (ret)
800 return ret;
801
802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807 else
808 goto out;
809 }
810
811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812
813 /* If we're not in the cpu read domain, set ourself into the gtt
814 * read domain and manually flush cachelines (if required). This
815 * optimizes for the case when the gpu will dirty the data
816 * anyway again before the next pread happens.
817 */
818 if (!obj->cache_dirty &&
819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820 *needs_clflush = CLFLUSH_BEFORE;
821
822 out:
823 /* return with the pages pinned */
824 return 0;
825
826 err_unpin:
827 i915_gem_object_unpin_pages(obj);
828 return ret;
829 }
830
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 unsigned int *needs_clflush)
833 {
834 int ret;
835
836 lockdep_assert_held(&obj->base.dev->struct_mutex);
837
838 *needs_clflush = 0;
839 if (!i915_gem_object_has_struct_page(obj))
840 return -ENODEV;
841
842 ret = i915_gem_object_wait(obj,
843 I915_WAIT_INTERRUPTIBLE |
844 I915_WAIT_LOCKED |
845 I915_WAIT_ALL,
846 MAX_SCHEDULE_TIMEOUT,
847 NULL);
848 if (ret)
849 return ret;
850
851 ret = i915_gem_object_pin_pages(obj);
852 if (ret)
853 return ret;
854
855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858 if (ret)
859 goto err_unpin;
860 else
861 goto out;
862 }
863
864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865
866 /* If we're not in the cpu write domain, set ourself into the
867 * gtt write domain and manually flush cachelines (as required).
868 * This optimizes for the case when the gpu will use the data
869 * right away and we therefore have to clflush anyway.
870 */
871 if (!obj->cache_dirty) {
872 *needs_clflush |= CLFLUSH_AFTER;
873
874 /*
875 * Same trick applies to invalidate partially written
876 * cachelines read before writing.
877 */
878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 *needs_clflush |= CLFLUSH_BEFORE;
880 }
881
882 out:
883 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884 obj->mm.dirty = true;
885 /* return with the pages pinned */
886 return 0;
887
888 err_unpin:
889 i915_gem_object_unpin_pages(obj);
890 return ret;
891 }
892
893 static void
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
895 bool swizzled)
896 {
897 if (unlikely(swizzled)) {
898 unsigned long start = (unsigned long) addr;
899 unsigned long end = (unsigned long) addr + length;
900
901 /* For swizzling simply ensure that we always flush both
902 * channels. Lame, but simple and it works. Swizzled
903 * pwrite/pread is far from a hotpath - current userspace
904 * doesn't use it at all. */
905 start = round_down(start, 128);
906 end = round_up(end, 128);
907
908 drm_clflush_virt_range((void *)start, end - start);
909 } else {
910 drm_clflush_virt_range(addr, length);
911 }
912
913 }
914
915 /* Only difference to the fast-path function is that this can handle bit17
916 * and uses non-atomic copy and kmap functions. */
917 static int
918 shmem_pread_slow(struct page *page, int offset, int length,
919 char __user *user_data,
920 bool page_do_bit17_swizzling, bool needs_clflush)
921 {
922 char *vaddr;
923 int ret;
924
925 vaddr = kmap(page);
926 if (needs_clflush)
927 shmem_clflush_swizzled_range(vaddr + offset, length,
928 page_do_bit17_swizzling);
929
930 if (page_do_bit17_swizzling)
931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932 else
933 ret = __copy_to_user(user_data, vaddr + offset, length);
934 kunmap(page);
935
936 return ret ? - EFAULT : 0;
937 }
938
939 static int
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 bool page_do_bit17_swizzling, bool needs_clflush)
942 {
943 int ret;
944
945 ret = -ENODEV;
946 if (!page_do_bit17_swizzling) {
947 char *vaddr = kmap_atomic(page);
948
949 if (needs_clflush)
950 drm_clflush_virt_range(vaddr + offset, length);
951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 kunmap_atomic(vaddr);
953 }
954 if (ret == 0)
955 return 0;
956
957 return shmem_pread_slow(page, offset, length, user_data,
958 page_do_bit17_swizzling, needs_clflush);
959 }
960
961 static int
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 struct drm_i915_gem_pread *args)
964 {
965 char __user *user_data;
966 u64 remain;
967 unsigned int obj_do_bit17_swizzling;
968 unsigned int needs_clflush;
969 unsigned int idx, offset;
970 int ret;
971
972 obj_do_bit17_swizzling = 0;
973 if (i915_gem_object_needs_bit17_swizzle(obj))
974 obj_do_bit17_swizzling = BIT(17);
975
976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977 if (ret)
978 return ret;
979
980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 mutex_unlock(&obj->base.dev->struct_mutex);
982 if (ret)
983 return ret;
984
985 remain = args->size;
986 user_data = u64_to_user_ptr(args->data_ptr);
987 offset = offset_in_page(args->offset);
988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 struct page *page = i915_gem_object_get_page(obj, idx);
990 int length;
991
992 length = remain;
993 if (offset + length > PAGE_SIZE)
994 length = PAGE_SIZE - offset;
995
996 ret = shmem_pread(page, offset, length, user_data,
997 page_to_phys(page) & obj_do_bit17_swizzling,
998 needs_clflush);
999 if (ret)
1000 break;
1001
1002 remain -= length;
1003 user_data += length;
1004 offset = 0;
1005 }
1006
1007 i915_gem_obj_finish_shmem_access(obj);
1008 return ret;
1009 }
1010
1011 static inline bool
1012 gtt_user_read(struct io_mapping *mapping,
1013 loff_t base, int offset,
1014 char __user *user_data, int length)
1015 {
1016 void *vaddr;
1017 unsigned long unwritten;
1018
1019 /* We can use the cpu mem copy function because this is X86. */
1020 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022 io_mapping_unmap_atomic(vaddr);
1023 if (unwritten) {
1024 vaddr = (void __force *)
1025 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027 io_mapping_unmap(vaddr);
1028 }
1029 return unwritten;
1030 }
1031
1032 static int
1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034 const struct drm_i915_gem_pread *args)
1035 {
1036 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037 struct i915_ggtt *ggtt = &i915->ggtt;
1038 struct drm_mm_node node;
1039 struct i915_vma *vma;
1040 void __user *user_data;
1041 u64 remain, offset;
1042 int ret;
1043
1044 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045 if (ret)
1046 return ret;
1047
1048 intel_runtime_pm_get(i915);
1049 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050 PIN_MAPPABLE | PIN_NONBLOCK);
1051 if (!IS_ERR(vma)) {
1052 node.start = i915_ggtt_offset(vma);
1053 node.allocated = false;
1054 ret = i915_vma_put_fence(vma);
1055 if (ret) {
1056 i915_vma_unpin(vma);
1057 vma = ERR_PTR(ret);
1058 }
1059 }
1060 if (IS_ERR(vma)) {
1061 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062 if (ret)
1063 goto out_unlock;
1064 GEM_BUG_ON(!node.allocated);
1065 }
1066
1067 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068 if (ret)
1069 goto out_unpin;
1070
1071 mutex_unlock(&i915->drm.struct_mutex);
1072
1073 user_data = u64_to_user_ptr(args->data_ptr);
1074 remain = args->size;
1075 offset = args->offset;
1076
1077 while (remain > 0) {
1078 /* Operation in this page
1079 *
1080 * page_base = page offset within aperture
1081 * page_offset = offset within page
1082 * page_length = bytes to copy for this page
1083 */
1084 u32 page_base = node.start;
1085 unsigned page_offset = offset_in_page(offset);
1086 unsigned page_length = PAGE_SIZE - page_offset;
1087 page_length = remain < page_length ? remain : page_length;
1088 if (node.allocated) {
1089 wmb();
1090 ggtt->base.insert_page(&ggtt->base,
1091 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092 node.start, I915_CACHE_NONE, 0);
1093 wmb();
1094 } else {
1095 page_base += offset & PAGE_MASK;
1096 }
1097
1098 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099 user_data, page_length)) {
1100 ret = -EFAULT;
1101 break;
1102 }
1103
1104 remain -= page_length;
1105 user_data += page_length;
1106 offset += page_length;
1107 }
1108
1109 mutex_lock(&i915->drm.struct_mutex);
1110 out_unpin:
1111 if (node.allocated) {
1112 wmb();
1113 ggtt->base.clear_range(&ggtt->base,
1114 node.start, node.size);
1115 remove_mappable_node(&node);
1116 } else {
1117 i915_vma_unpin(vma);
1118 }
1119 out_unlock:
1120 intel_runtime_pm_put(i915);
1121 mutex_unlock(&i915->drm.struct_mutex);
1122
1123 return ret;
1124 }
1125
1126 /**
1127 * Reads data from the object referenced by handle.
1128 * @dev: drm device pointer
1129 * @data: ioctl data blob
1130 * @file: drm file pointer
1131 *
1132 * On error, the contents of *data are undefined.
1133 */
1134 int
1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136 struct drm_file *file)
1137 {
1138 struct drm_i915_gem_pread *args = data;
1139 struct drm_i915_gem_object *obj;
1140 int ret;
1141
1142 if (args->size == 0)
1143 return 0;
1144
1145 if (!access_ok(VERIFY_WRITE,
1146 u64_to_user_ptr(args->data_ptr),
1147 args->size))
1148 return -EFAULT;
1149
1150 obj = i915_gem_object_lookup(file, args->handle);
1151 if (!obj)
1152 return -ENOENT;
1153
1154 /* Bounds check source. */
1155 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1156 ret = -EINVAL;
1157 goto out;
1158 }
1159
1160 trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
1162 ret = i915_gem_object_wait(obj,
1163 I915_WAIT_INTERRUPTIBLE,
1164 MAX_SCHEDULE_TIMEOUT,
1165 to_rps_client(file));
1166 if (ret)
1167 goto out;
1168
1169 ret = i915_gem_object_pin_pages(obj);
1170 if (ret)
1171 goto out;
1172
1173 ret = i915_gem_shmem_pread(obj, args);
1174 if (ret == -EFAULT || ret == -ENODEV)
1175 ret = i915_gem_gtt_pread(obj, args);
1176
1177 i915_gem_object_unpin_pages(obj);
1178 out:
1179 i915_gem_object_put(obj);
1180 return ret;
1181 }
1182
1183 /* This is the fast write path which cannot handle
1184 * page faults in the source data
1185 */
1186
1187 static inline bool
1188 ggtt_write(struct io_mapping *mapping,
1189 loff_t base, int offset,
1190 char __user *user_data, int length)
1191 {
1192 void *vaddr;
1193 unsigned long unwritten;
1194
1195 /* We can use the cpu mem copy function because this is X86. */
1196 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198 user_data, length);
1199 io_mapping_unmap_atomic(vaddr);
1200 if (unwritten) {
1201 vaddr = (void __force *)
1202 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204 io_mapping_unmap(vaddr);
1205 }
1206
1207 return unwritten;
1208 }
1209
1210 /**
1211 * This is the fast pwrite path, where we copy the data directly from the
1212 * user into the GTT, uncached.
1213 * @obj: i915 GEM object
1214 * @args: pwrite arguments structure
1215 */
1216 static int
1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218 const struct drm_i915_gem_pwrite *args)
1219 {
1220 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221 struct i915_ggtt *ggtt = &i915->ggtt;
1222 struct drm_mm_node node;
1223 struct i915_vma *vma;
1224 u64 remain, offset;
1225 void __user *user_data;
1226 int ret;
1227
1228 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229 if (ret)
1230 return ret;
1231
1232 intel_runtime_pm_get(i915);
1233 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234 PIN_MAPPABLE | PIN_NONBLOCK);
1235 if (!IS_ERR(vma)) {
1236 node.start = i915_ggtt_offset(vma);
1237 node.allocated = false;
1238 ret = i915_vma_put_fence(vma);
1239 if (ret) {
1240 i915_vma_unpin(vma);
1241 vma = ERR_PTR(ret);
1242 }
1243 }
1244 if (IS_ERR(vma)) {
1245 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246 if (ret)
1247 goto out_unlock;
1248 GEM_BUG_ON(!node.allocated);
1249 }
1250
1251 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252 if (ret)
1253 goto out_unpin;
1254
1255 mutex_unlock(&i915->drm.struct_mutex);
1256
1257 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258
1259 user_data = u64_to_user_ptr(args->data_ptr);
1260 offset = args->offset;
1261 remain = args->size;
1262 while (remain) {
1263 /* Operation in this page
1264 *
1265 * page_base = page offset within aperture
1266 * page_offset = offset within page
1267 * page_length = bytes to copy for this page
1268 */
1269 u32 page_base = node.start;
1270 unsigned int page_offset = offset_in_page(offset);
1271 unsigned int page_length = PAGE_SIZE - page_offset;
1272 page_length = remain < page_length ? remain : page_length;
1273 if (node.allocated) {
1274 wmb(); /* flush the write before we modify the GGTT */
1275 ggtt->base.insert_page(&ggtt->base,
1276 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277 node.start, I915_CACHE_NONE, 0);
1278 wmb(); /* flush modifications to the GGTT (insert_page) */
1279 } else {
1280 page_base += offset & PAGE_MASK;
1281 }
1282 /* If we get a fault while copying data, then (presumably) our
1283 * source page isn't available. Return the error and we'll
1284 * retry in the slow path.
1285 * If the object is non-shmem backed, we retry again with the
1286 * path that handles page fault.
1287 */
1288 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289 user_data, page_length)) {
1290 ret = -EFAULT;
1291 break;
1292 }
1293
1294 remain -= page_length;
1295 user_data += page_length;
1296 offset += page_length;
1297 }
1298 intel_fb_obj_flush(obj, ORIGIN_CPU);
1299
1300 mutex_lock(&i915->drm.struct_mutex);
1301 out_unpin:
1302 if (node.allocated) {
1303 wmb();
1304 ggtt->base.clear_range(&ggtt->base,
1305 node.start, node.size);
1306 remove_mappable_node(&node);
1307 } else {
1308 i915_vma_unpin(vma);
1309 }
1310 out_unlock:
1311 intel_runtime_pm_put(i915);
1312 mutex_unlock(&i915->drm.struct_mutex);
1313 return ret;
1314 }
1315
1316 static int
1317 shmem_pwrite_slow(struct page *page, int offset, int length,
1318 char __user *user_data,
1319 bool page_do_bit17_swizzling,
1320 bool needs_clflush_before,
1321 bool needs_clflush_after)
1322 {
1323 char *vaddr;
1324 int ret;
1325
1326 vaddr = kmap(page);
1327 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328 shmem_clflush_swizzled_range(vaddr + offset, length,
1329 page_do_bit17_swizzling);
1330 if (page_do_bit17_swizzling)
1331 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332 length);
1333 else
1334 ret = __copy_from_user(vaddr + offset, user_data, length);
1335 if (needs_clflush_after)
1336 shmem_clflush_swizzled_range(vaddr + offset, length,
1337 page_do_bit17_swizzling);
1338 kunmap(page);
1339
1340 return ret ? -EFAULT : 0;
1341 }
1342
1343 /* Per-page copy function for the shmem pwrite fastpath.
1344 * Flushes invalid cachelines before writing to the target if
1345 * needs_clflush_before is set and flushes out any written cachelines after
1346 * writing if needs_clflush is set.
1347 */
1348 static int
1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350 bool page_do_bit17_swizzling,
1351 bool needs_clflush_before,
1352 bool needs_clflush_after)
1353 {
1354 int ret;
1355
1356 ret = -ENODEV;
1357 if (!page_do_bit17_swizzling) {
1358 char *vaddr = kmap_atomic(page);
1359
1360 if (needs_clflush_before)
1361 drm_clflush_virt_range(vaddr + offset, len);
1362 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363 if (needs_clflush_after)
1364 drm_clflush_virt_range(vaddr + offset, len);
1365
1366 kunmap_atomic(vaddr);
1367 }
1368 if (ret == 0)
1369 return ret;
1370
1371 return shmem_pwrite_slow(page, offset, len, user_data,
1372 page_do_bit17_swizzling,
1373 needs_clflush_before,
1374 needs_clflush_after);
1375 }
1376
1377 static int
1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379 const struct drm_i915_gem_pwrite *args)
1380 {
1381 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382 void __user *user_data;
1383 u64 remain;
1384 unsigned int obj_do_bit17_swizzling;
1385 unsigned int partial_cacheline_write;
1386 unsigned int needs_clflush;
1387 unsigned int offset, idx;
1388 int ret;
1389
1390 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391 if (ret)
1392 return ret;
1393
1394 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395 mutex_unlock(&i915->drm.struct_mutex);
1396 if (ret)
1397 return ret;
1398
1399 obj_do_bit17_swizzling = 0;
1400 if (i915_gem_object_needs_bit17_swizzle(obj))
1401 obj_do_bit17_swizzling = BIT(17);
1402
1403 /* If we don't overwrite a cacheline completely we need to be
1404 * careful to have up-to-date data by first clflushing. Don't
1405 * overcomplicate things and flush the entire patch.
1406 */
1407 partial_cacheline_write = 0;
1408 if (needs_clflush & CLFLUSH_BEFORE)
1409 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410
1411 user_data = u64_to_user_ptr(args->data_ptr);
1412 remain = args->size;
1413 offset = offset_in_page(args->offset);
1414 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415 struct page *page = i915_gem_object_get_page(obj, idx);
1416 int length;
1417
1418 length = remain;
1419 if (offset + length > PAGE_SIZE)
1420 length = PAGE_SIZE - offset;
1421
1422 ret = shmem_pwrite(page, offset, length, user_data,
1423 page_to_phys(page) & obj_do_bit17_swizzling,
1424 (offset | length) & partial_cacheline_write,
1425 needs_clflush & CLFLUSH_AFTER);
1426 if (ret)
1427 break;
1428
1429 remain -= length;
1430 user_data += length;
1431 offset = 0;
1432 }
1433
1434 intel_fb_obj_flush(obj, ORIGIN_CPU);
1435 i915_gem_obj_finish_shmem_access(obj);
1436 return ret;
1437 }
1438
1439 /**
1440 * Writes data to the object referenced by handle.
1441 * @dev: drm device
1442 * @data: ioctl data blob
1443 * @file: drm file
1444 *
1445 * On error, the contents of the buffer that were to be modified are undefined.
1446 */
1447 int
1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449 struct drm_file *file)
1450 {
1451 struct drm_i915_gem_pwrite *args = data;
1452 struct drm_i915_gem_object *obj;
1453 int ret;
1454
1455 if (args->size == 0)
1456 return 0;
1457
1458 if (!access_ok(VERIFY_READ,
1459 u64_to_user_ptr(args->data_ptr),
1460 args->size))
1461 return -EFAULT;
1462
1463 obj = i915_gem_object_lookup(file, args->handle);
1464 if (!obj)
1465 return -ENOENT;
1466
1467 /* Bounds check destination. */
1468 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1469 ret = -EINVAL;
1470 goto err;
1471 }
1472
1473 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474
1475 ret = -ENODEV;
1476 if (obj->ops->pwrite)
1477 ret = obj->ops->pwrite(obj, args);
1478 if (ret != -ENODEV)
1479 goto err;
1480
1481 ret = i915_gem_object_wait(obj,
1482 I915_WAIT_INTERRUPTIBLE |
1483 I915_WAIT_ALL,
1484 MAX_SCHEDULE_TIMEOUT,
1485 to_rps_client(file));
1486 if (ret)
1487 goto err;
1488
1489 ret = i915_gem_object_pin_pages(obj);
1490 if (ret)
1491 goto err;
1492
1493 ret = -EFAULT;
1494 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495 * it would end up going through the fenced access, and we'll get
1496 * different detiling behavior between reading and writing.
1497 * pread/pwrite currently are reading and writing from the CPU
1498 * perspective, requiring manual detiling by the client.
1499 */
1500 if (!i915_gem_object_has_struct_page(obj) ||
1501 cpu_write_needs_clflush(obj))
1502 /* Note that the gtt paths might fail with non-page-backed user
1503 * pointers (e.g. gtt mappings when moving data between
1504 * textures). Fallback to the shmem path in that case.
1505 */
1506 ret = i915_gem_gtt_pwrite_fast(obj, args);
1507
1508 if (ret == -EFAULT || ret == -ENOSPC) {
1509 if (obj->phys_handle)
1510 ret = i915_gem_phys_pwrite(obj, args, file);
1511 else
1512 ret = i915_gem_shmem_pwrite(obj, args);
1513 }
1514
1515 i915_gem_object_unpin_pages(obj);
1516 err:
1517 i915_gem_object_put(obj);
1518 return ret;
1519 }
1520
1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522 {
1523 struct drm_i915_private *i915;
1524 struct list_head *list;
1525 struct i915_vma *vma;
1526
1527 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528 if (!i915_vma_is_ggtt(vma))
1529 break;
1530
1531 if (i915_vma_is_active(vma))
1532 continue;
1533
1534 if (!drm_mm_node_allocated(&vma->node))
1535 continue;
1536
1537 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538 }
1539
1540 i915 = to_i915(obj->base.dev);
1541 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542 list_move_tail(&obj->global_link, list);
1543 }
1544
1545 /**
1546 * Called when user space prepares to use an object with the CPU, either
1547 * through the mmap ioctl's mapping or a GTT mapping.
1548 * @dev: drm device
1549 * @data: ioctl data blob
1550 * @file: drm file
1551 */
1552 int
1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554 struct drm_file *file)
1555 {
1556 struct drm_i915_gem_set_domain *args = data;
1557 struct drm_i915_gem_object *obj;
1558 uint32_t read_domains = args->read_domains;
1559 uint32_t write_domain = args->write_domain;
1560 int err;
1561
1562 /* Only handle setting domains to types used by the CPU. */
1563 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564 return -EINVAL;
1565
1566 /* Having something in the write domain implies it's in the read
1567 * domain, and only that read domain. Enforce that in the request.
1568 */
1569 if (write_domain != 0 && read_domains != write_domain)
1570 return -EINVAL;
1571
1572 obj = i915_gem_object_lookup(file, args->handle);
1573 if (!obj)
1574 return -ENOENT;
1575
1576 /* Try to flush the object off the GPU without holding the lock.
1577 * We will repeat the flush holding the lock in the normal manner
1578 * to catch cases where we are gazumped.
1579 */
1580 err = i915_gem_object_wait(obj,
1581 I915_WAIT_INTERRUPTIBLE |
1582 (write_domain ? I915_WAIT_ALL : 0),
1583 MAX_SCHEDULE_TIMEOUT,
1584 to_rps_client(file));
1585 if (err)
1586 goto out;
1587
1588 /* Flush and acquire obj->pages so that we are coherent through
1589 * direct access in memory with previous cached writes through
1590 * shmemfs and that our cache domain tracking remains valid.
1591 * For example, if the obj->filp was moved to swap without us
1592 * being notified and releasing the pages, we would mistakenly
1593 * continue to assume that the obj remained out of the CPU cached
1594 * domain.
1595 */
1596 err = i915_gem_object_pin_pages(obj);
1597 if (err)
1598 goto out;
1599
1600 err = i915_mutex_lock_interruptible(dev);
1601 if (err)
1602 goto out_unpin;
1603
1604 if (read_domains & I915_GEM_DOMAIN_WC)
1605 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606 else if (read_domains & I915_GEM_DOMAIN_GTT)
1607 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608 else
1609 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610
1611 /* And bump the LRU for this access */
1612 i915_gem_object_bump_inactive_ggtt(obj);
1613
1614 mutex_unlock(&dev->struct_mutex);
1615
1616 if (write_domain != 0)
1617 intel_fb_obj_invalidate(obj,
1618 fb_write_origin(obj, write_domain));
1619
1620 out_unpin:
1621 i915_gem_object_unpin_pages(obj);
1622 out:
1623 i915_gem_object_put(obj);
1624 return err;
1625 }
1626
1627 /**
1628 * Called when user space has done writes to this buffer
1629 * @dev: drm device
1630 * @data: ioctl data blob
1631 * @file: drm file
1632 */
1633 int
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635 struct drm_file *file)
1636 {
1637 struct drm_i915_gem_sw_finish *args = data;
1638 struct drm_i915_gem_object *obj;
1639
1640 obj = i915_gem_object_lookup(file, args->handle);
1641 if (!obj)
1642 return -ENOENT;
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 i915_gem_object_flush_if_display(obj);
1646 i915_gem_object_put(obj);
1647
1648 return 0;
1649 }
1650
1651 /**
1652 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653 * it is mapped to.
1654 * @dev: drm device
1655 * @data: ioctl data blob
1656 * @file: drm file
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674 {
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_i915_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683 return -ENODEV;
1684
1685 obj = i915_gem_object_lookup(file, args->handle);
1686 if (!obj)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->base.filp) {
1693 i915_gem_object_put(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->base.filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 if (down_write_killable(&mm->mmap_sem)) {
1705 i915_gem_object_put(obj);
1706 return -EINTR;
1707 }
1708 vma = find_vma(mm, addr);
1709 if (vma)
1710 vma->vm_page_prot =
1711 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712 else
1713 addr = -ENOMEM;
1714 up_write(&mm->mmap_sem);
1715
1716 /* This may race, but that's ok, it only gets set */
1717 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718 }
1719 i915_gem_object_put(obj);
1720 if (IS_ERR((void *)addr))
1721 return addr;
1722
1723 args->addr_ptr = (uint64_t) addr;
1724
1725 return 0;
1726 }
1727
1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729 {
1730 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731 }
1732
1733 /**
1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735 *
1736 * A history of the GTT mmap interface:
1737 *
1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739 * aligned and suitable for fencing, and still fit into the available
1740 * mappable space left by the pinned display objects. A classic problem
1741 * we called the page-fault-of-doom where we would ping-pong between
1742 * two objects that could not fit inside the GTT and so the memcpy
1743 * would page one object in at the expense of the other between every
1744 * single byte.
1745 *
1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748 * object is too large for the available space (or simply too large
1749 * for the mappable aperture!), a view is created instead and faulted
1750 * into userspace. (This view is aligned and sized appropriately for
1751 * fenced access.)
1752 *
1753 * 2 - Recognise WC as a separate cache domain so that we can flush the
1754 * delayed writes via GTT before performing direct access via WC.
1755 *
1756 * Restrictions:
1757 *
1758 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1759 * hangs on some architectures, corruption on others. An attempt to service
1760 * a GTT page fault from a snoopable object will generate a SIGBUS.
1761 *
1762 * * the object must be able to fit into RAM (physical memory, though no
1763 * limited to the mappable aperture).
1764 *
1765 *
1766 * Caveats:
1767 *
1768 * * a new GTT page fault will synchronize rendering from the GPU and flush
1769 * all data to system memory. Subsequent access will not be synchronized.
1770 *
1771 * * all mappings are revoked on runtime device suspend.
1772 *
1773 * * there are only 8, 16 or 32 fence registers to share between all users
1774 * (older machines require fence register for display and blitter access
1775 * as well). Contention of the fence registers will cause the previous users
1776 * to be unmapped and any new access will generate new page faults.
1777 *
1778 * * running out of memory while servicing a fault may generate a SIGBUS,
1779 * rather than the expected SIGSEGV.
1780 */
1781 int i915_gem_mmap_gtt_version(void)
1782 {
1783 return 2;
1784 }
1785
1786 static inline struct i915_ggtt_view
1787 compute_partial_view(struct drm_i915_gem_object *obj,
1788 pgoff_t page_offset,
1789 unsigned int chunk)
1790 {
1791 struct i915_ggtt_view view;
1792
1793 if (i915_gem_object_is_tiled(obj))
1794 chunk = roundup(chunk, tile_row_pages(obj));
1795
1796 view.type = I915_GGTT_VIEW_PARTIAL;
1797 view.partial.offset = rounddown(page_offset, chunk);
1798 view.partial.size =
1799 min_t(unsigned int, chunk,
1800 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801
1802 /* If the partial covers the entire object, just create a normal VMA. */
1803 if (chunk >= obj->base.size >> PAGE_SHIFT)
1804 view.type = I915_GGTT_VIEW_NORMAL;
1805
1806 return view;
1807 }
1808
1809 /**
1810 * i915_gem_fault - fault a page into the GTT
1811 * @vmf: fault info
1812 *
1813 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814 * from userspace. The fault handler takes care of binding the object to
1815 * the GTT (if needed), allocating and programming a fence register (again,
1816 * only if needed based on whether the old reg is still valid or the object
1817 * is tiled) and inserting a new PTE into the faulting process.
1818 *
1819 * Note that the faulting process may involve evicting existing objects
1820 * from the GTT and/or fence registers to make room. So performance may
1821 * suffer if the GTT working set is large or there are few fence registers
1822 * left.
1823 *
1824 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826 */
1827 int i915_gem_fault(struct vm_fault *vmf)
1828 {
1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830 struct vm_area_struct *area = vmf->vma;
1831 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832 struct drm_device *dev = obj->base.dev;
1833 struct drm_i915_private *dev_priv = to_i915(dev);
1834 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836 struct i915_vma *vma;
1837 pgoff_t page_offset;
1838 unsigned int flags;
1839 int ret;
1840
1841 /* We don't use vmf->pgoff since that has the fake offset */
1842 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843
1844 trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
1846 /* Try to flush the object off the GPU first without holding the lock.
1847 * Upon acquiring the lock, we will perform our sanity checks and then
1848 * repeat the flush holding the lock in the normal manner to catch cases
1849 * where we are gazumped.
1850 */
1851 ret = i915_gem_object_wait(obj,
1852 I915_WAIT_INTERRUPTIBLE,
1853 MAX_SCHEDULE_TIMEOUT,
1854 NULL);
1855 if (ret)
1856 goto err;
1857
1858 ret = i915_gem_object_pin_pages(obj);
1859 if (ret)
1860 goto err;
1861
1862 intel_runtime_pm_get(dev_priv);
1863
1864 ret = i915_mutex_lock_interruptible(dev);
1865 if (ret)
1866 goto err_rpm;
1867
1868 /* Access to snoopable pages through the GTT is incoherent. */
1869 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870 ret = -EFAULT;
1871 goto err_unlock;
1872 }
1873
1874 /* If the object is smaller than a couple of partial vma, it is
1875 * not worth only creating a single partial vma - we may as well
1876 * clear enough space for the full object.
1877 */
1878 flags = PIN_MAPPABLE;
1879 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
1882 /* Now pin it into the GTT as needed */
1883 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 if (IS_ERR(vma)) {
1885 /* Use a partial view if it is bigger than available space */
1886 struct i915_ggtt_view view =
1887 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888
1889 /* Userspace is now writing through an untracked VMA, abandon
1890 * all hope that the hardware is able to track future writes.
1891 */
1892 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
1894 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895 }
1896 if (IS_ERR(vma)) {
1897 ret = PTR_ERR(vma);
1898 goto err_unlock;
1899 }
1900
1901 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902 if (ret)
1903 goto err_unpin;
1904
1905 ret = i915_vma_get_fence(vma);
1906 if (ret)
1907 goto err_unpin;
1908
1909 /* Mark as being mmapped into userspace for later revocation */
1910 assert_rpm_wakelock_held(dev_priv);
1911 if (list_empty(&obj->userfault_link))
1912 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913
1914 /* Finally, remap it using the new GTT offset */
1915 ret = remap_io_mapping(area,
1916 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918 min_t(u64, vma->size, area->vm_end - area->vm_start),
1919 &ggtt->mappable);
1920
1921 err_unpin:
1922 __i915_vma_unpin(vma);
1923 err_unlock:
1924 mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926 intel_runtime_pm_put(dev_priv);
1927 i915_gem_object_unpin_pages(obj);
1928 err:
1929 switch (ret) {
1930 case -EIO:
1931 /*
1932 * We eat errors when the gpu is terminally wedged to avoid
1933 * userspace unduly crashing (gl has no provisions for mmaps to
1934 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935 * and so needs to be reported.
1936 */
1937 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 }
1941 case -EAGAIN:
1942 /*
1943 * EAGAIN means the gpu is hung and we'll wait for the error
1944 * handler to reset everything when re-faulting in
1945 * i915_mutex_lock_interruptible.
1946 */
1947 case 0:
1948 case -ERESTARTSYS:
1949 case -EINTR:
1950 case -EBUSY:
1951 /*
1952 * EBUSY is ok: this just means that another thread
1953 * already did the job.
1954 */
1955 ret = VM_FAULT_NOPAGE;
1956 break;
1957 case -ENOMEM:
1958 ret = VM_FAULT_OOM;
1959 break;
1960 case -ENOSPC:
1961 case -EFAULT:
1962 ret = VM_FAULT_SIGBUS;
1963 break;
1964 default:
1965 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 ret = VM_FAULT_SIGBUS;
1967 break;
1968 }
1969 return ret;
1970 }
1971
1972 /**
1973 * i915_gem_release_mmap - remove physical page mappings
1974 * @obj: obj in question
1975 *
1976 * Preserve the reservation of the mmapping with the DRM core code, but
1977 * relinquish ownership of the pages back to the system.
1978 *
1979 * It is vital that we remove the page mapping if we have mapped a tiled
1980 * object through the GTT and then lose the fence register due to
1981 * resource pressure. Similarly if the object has been moved out of the
1982 * aperture, than pages mapped into userspace must be revoked. Removing the
1983 * mapping will then trigger a page fault on the next user access, allowing
1984 * fixup by i915_gem_fault().
1985 */
1986 void
1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990
1991 /* Serialisation between user GTT access and our code depends upon
1992 * revoking the CPU's PTE whilst the mutex is held. The next user
1993 * pagefault then has to wait until we release the mutex.
1994 *
1995 * Note that RPM complicates somewhat by adding an additional
1996 * requirement that operations to the GGTT be made holding the RPM
1997 * wakeref.
1998 */
1999 lockdep_assert_held(&i915->drm.struct_mutex);
2000 intel_runtime_pm_get(i915);
2001
2002 if (list_empty(&obj->userfault_link))
2003 goto out;
2004
2005 list_del_init(&obj->userfault_link);
2006 drm_vma_node_unmap(&obj->base.vma_node,
2007 obj->base.dev->anon_inode->i_mapping);
2008
2009 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010 * memory transactions from userspace before we return. The TLB
2011 * flushing implied above by changing the PTE above *should* be
2012 * sufficient, an extra barrier here just provides us with a bit
2013 * of paranoid documentation about our requirement to serialise
2014 * memory writes before touching registers / GSM.
2015 */
2016 wmb();
2017
2018 out:
2019 intel_runtime_pm_put(i915);
2020 }
2021
2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024 struct drm_i915_gem_object *obj, *on;
2025 int i;
2026
2027 /*
2028 * Only called during RPM suspend. All users of the userfault_list
2029 * must be holding an RPM wakeref to ensure that this can not
2030 * run concurrently with themselves (and use the struct_mutex for
2031 * protection between themselves).
2032 */
2033
2034 list_for_each_entry_safe(obj, on,
2035 &dev_priv->mm.userfault_list, userfault_link) {
2036 list_del_init(&obj->userfault_link);
2037 drm_vma_node_unmap(&obj->base.vma_node,
2038 obj->base.dev->anon_inode->i_mapping);
2039 }
2040
2041 /* The fence will be lost when the device powers down. If any were
2042 * in use by hardware (i.e. they are pinned), we should not be powering
2043 * down! All other fences will be reacquired by the user upon waking.
2044 */
2045 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
2048 /* Ideally we want to assert that the fence register is not
2049 * live at this point (i.e. that no piece of code will be
2050 * trying to write through fence + GTT, as that both violates
2051 * our tracking of activity and associated locking/barriers,
2052 * but also is illegal given that the hw is powered down).
2053 *
2054 * Previously we used reg->pin_count as a "liveness" indicator.
2055 * That is not sufficient, and we need a more fine-grained
2056 * tool if we want to have a sanity check here.
2057 */
2058
2059 if (!reg->vma)
2060 continue;
2061
2062 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063 reg->dirty = true;
2064 }
2065 }
2066
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070 int err;
2071
2072 err = drm_gem_create_mmap_offset(&obj->base);
2073 if (likely(!err))
2074 return 0;
2075
2076 /* Attempt to reap some mmap space from dead objects */
2077 do {
2078 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079 if (err)
2080 break;
2081
2082 i915_gem_drain_freed_objects(dev_priv);
2083 err = drm_gem_create_mmap_offset(&obj->base);
2084 if (!err)
2085 break;
2086
2087 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2088
2089 return err;
2090 }
2091
2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094 drm_gem_free_mmap_offset(&obj->base);
2095 }
2096
2097 int
2098 i915_gem_mmap_gtt(struct drm_file *file,
2099 struct drm_device *dev,
2100 uint32_t handle,
2101 uint64_t *offset)
2102 {
2103 struct drm_i915_gem_object *obj;
2104 int ret;
2105
2106 obj = i915_gem_object_lookup(file, handle);
2107 if (!obj)
2108 return -ENOENT;
2109
2110 ret = i915_gem_object_create_mmap_offset(obj);
2111 if (ret == 0)
2112 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113
2114 i915_gem_object_put(obj);
2115 return ret;
2116 }
2117
2118 /**
2119 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120 * @dev: DRM device
2121 * @data: GTT mapping ioctl data
2122 * @file: GEM object info
2123 *
2124 * Simply returns the fake offset to userspace so it can mmap it.
2125 * The mmap call will end up in drm_gem_mmap(), which will set things
2126 * up so we can get faults in the handler above.
2127 *
2128 * The fault handler will take care of binding the object into the GTT
2129 * (since it may have been evicted to make room for something), allocating
2130 * a fence register, and mapping the appropriate aperture address into
2131 * userspace.
2132 */
2133 int
2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135 struct drm_file *file)
2136 {
2137 struct drm_i915_gem_mmap_gtt *args = data;
2138
2139 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141
2142 /* Immediately discard the backing storage */
2143 static void
2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146 i915_gem_object_free_mmap_offset(obj);
2147
2148 if (obj->base.filp == NULL)
2149 return;
2150
2151 /* Our goal here is to return as much of the memory as
2152 * is possible back to the system as we are called from OOM.
2153 * To do this we must instruct the shmfs to drop all of its
2154 * backing pages, *now*.
2155 */
2156 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157 obj->mm.madv = __I915_MADV_PURGED;
2158 obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160
2161 /* Try to discard unwanted pages */
2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164 struct address_space *mapping;
2165
2166 lockdep_assert_held(&obj->mm.lock);
2167 GEM_BUG_ON(obj->mm.pages);
2168
2169 switch (obj->mm.madv) {
2170 case I915_MADV_DONTNEED:
2171 i915_gem_object_truncate(obj);
2172 case __I915_MADV_PURGED:
2173 return;
2174 }
2175
2176 if (obj->base.filp == NULL)
2177 return;
2178
2179 mapping = obj->base.filp->f_mapping,
2180 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182
2183 static void
2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185 struct sg_table *pages)
2186 {
2187 struct sgt_iter sgt_iter;
2188 struct page *page;
2189
2190 __i915_gem_object_release_shmem(obj, pages, true);
2191
2192 i915_gem_gtt_finish_pages(obj, pages);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj, pages);
2196
2197 for_each_sgt_page(page, sgt_iter, pages) {
2198 if (obj->mm.dirty)
2199 set_page_dirty(page);
2200
2201 if (obj->mm.madv == I915_MADV_WILLNEED)
2202 mark_page_accessed(page);
2203
2204 put_page(page);
2205 }
2206 obj->mm.dirty = false;
2207
2208 sg_free_table(pages);
2209 kfree(pages);
2210 }
2211
2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214 struct radix_tree_iter iter;
2215 void __rcu **slot;
2216
2217 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2218 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2219 }
2220
2221 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2222 enum i915_mm_subclass subclass)
2223 {
2224 struct sg_table *pages;
2225
2226 if (i915_gem_object_has_pinned_pages(obj))
2227 return;
2228
2229 GEM_BUG_ON(obj->bind_count);
2230 if (!READ_ONCE(obj->mm.pages))
2231 return;
2232
2233 /* May be called by shrinker from within get_pages() (on another bo) */
2234 mutex_lock_nested(&obj->mm.lock, subclass);
2235 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2236 goto unlock;
2237
2238 /* ->put_pages might need to allocate memory for the bit17 swizzle
2239 * array, hence protect them from being reaped by removing them from gtt
2240 * lists early. */
2241 pages = fetch_and_zero(&obj->mm.pages);
2242 GEM_BUG_ON(!pages);
2243
2244 if (obj->mm.mapping) {
2245 void *ptr;
2246
2247 ptr = page_mask_bits(obj->mm.mapping);
2248 if (is_vmalloc_addr(ptr))
2249 vunmap(ptr);
2250 else
2251 kunmap(kmap_to_page(ptr));
2252
2253 obj->mm.mapping = NULL;
2254 }
2255
2256 __i915_gem_object_reset_page_iter(obj);
2257
2258 if (!IS_ERR(pages))
2259 obj->ops->put_pages(obj, pages);
2260
2261 unlock:
2262 mutex_unlock(&obj->mm.lock);
2263 }
2264
2265 static bool i915_sg_trim(struct sg_table *orig_st)
2266 {
2267 struct sg_table new_st;
2268 struct scatterlist *sg, *new_sg;
2269 unsigned int i;
2270
2271 if (orig_st->nents == orig_st->orig_nents)
2272 return false;
2273
2274 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2275 return false;
2276
2277 new_sg = new_st.sgl;
2278 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2279 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2280 /* called before being DMA mapped, no need to copy sg->dma_* */
2281 new_sg = sg_next(new_sg);
2282 }
2283 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2284
2285 sg_free_table(orig_st);
2286
2287 *orig_st = new_st;
2288 return true;
2289 }
2290
2291 static struct sg_table *
2292 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2293 {
2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2296 unsigned long i;
2297 struct address_space *mapping;
2298 struct sg_table *st;
2299 struct scatterlist *sg;
2300 struct sgt_iter sgt_iter;
2301 struct page *page;
2302 unsigned long last_pfn = 0; /* suppress gcc warning */
2303 unsigned int max_segment;
2304 gfp_t noreclaim;
2305 int ret;
2306
2307 /* Assert that the object is not currently in any GPU domain. As it
2308 * wasn't in the GTT, there shouldn't be any way it could have been in
2309 * a GPU cache
2310 */
2311 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2312 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2313
2314 max_segment = swiotlb_max_segment();
2315 if (!max_segment)
2316 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2317
2318 st = kmalloc(sizeof(*st), GFP_KERNEL);
2319 if (st == NULL)
2320 return ERR_PTR(-ENOMEM);
2321
2322 rebuild_st:
2323 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2324 kfree(st);
2325 return ERR_PTR(-ENOMEM);
2326 }
2327
2328 /* Get the list of pages out of our struct file. They'll be pinned
2329 * at this point until we release them.
2330 *
2331 * Fail silently without starting the shrinker
2332 */
2333 mapping = obj->base.filp->f_mapping;
2334 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2336
2337 sg = st->sgl;
2338 st->nents = 0;
2339 for (i = 0; i < page_count; i++) {
2340 const unsigned int shrink[] = {
2341 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2342 0,
2343 }, *s = shrink;
2344 gfp_t gfp = noreclaim;
2345
2346 do {
2347 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348 if (likely(!IS_ERR(page)))
2349 break;
2350
2351 if (!*s) {
2352 ret = PTR_ERR(page);
2353 goto err_sg;
2354 }
2355
2356 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2357 cond_resched();
2358
2359 /* We've tried hard to allocate the memory by reaping
2360 * our own buffer, now let the real VM do its job and
2361 * go down in flames if truly OOM.
2362 *
2363 * However, since graphics tend to be disposable,
2364 * defer the oom here by reporting the ENOMEM back
2365 * to userspace.
2366 */
2367 if (!*s) {
2368 /* reclaim and warn, but no oom */
2369 gfp = mapping_gfp_mask(mapping);
2370
2371 /* Our bo are always dirty and so we require
2372 * kswapd to reclaim our pages (direct reclaim
2373 * does not effectively begin pageout of our
2374 * buffers on its own). However, direct reclaim
2375 * only waits for kswapd when under allocation
2376 * congestion. So as a result __GFP_RECLAIM is
2377 * unreliable and fails to actually reclaim our
2378 * dirty pages -- unless you try over and over
2379 * again with !__GFP_NORETRY. However, we still
2380 * want to fail this allocation rather than
2381 * trigger the out-of-memory killer and for
2382 * this we want __GFP_RETRY_MAYFAIL.
2383 */
2384 gfp |= __GFP_RETRY_MAYFAIL;
2385 }
2386 } while (1);
2387
2388 if (!i ||
2389 sg->length >= max_segment ||
2390 page_to_pfn(page) != last_pfn + 1) {
2391 if (i)
2392 sg = sg_next(sg);
2393 st->nents++;
2394 sg_set_page(sg, page, PAGE_SIZE, 0);
2395 } else {
2396 sg->length += PAGE_SIZE;
2397 }
2398 last_pfn = page_to_pfn(page);
2399
2400 /* Check that the i965g/gm workaround works. */
2401 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2402 }
2403 if (sg) /* loop terminated early; short sg table */
2404 sg_mark_end(sg);
2405
2406 /* Trim unused sg entries to avoid wasting memory. */
2407 i915_sg_trim(st);
2408
2409 ret = i915_gem_gtt_prepare_pages(obj, st);
2410 if (ret) {
2411 /* DMA remapping failed? One possible cause is that
2412 * it could not reserve enough large entries, asking
2413 * for PAGE_SIZE chunks instead may be helpful.
2414 */
2415 if (max_segment > PAGE_SIZE) {
2416 for_each_sgt_page(page, sgt_iter, st)
2417 put_page(page);
2418 sg_free_table(st);
2419
2420 max_segment = PAGE_SIZE;
2421 goto rebuild_st;
2422 } else {
2423 dev_warn(&dev_priv->drm.pdev->dev,
2424 "Failed to DMA remap %lu pages\n",
2425 page_count);
2426 goto err_pages;
2427 }
2428 }
2429
2430 if (i915_gem_object_needs_bit17_swizzle(obj))
2431 i915_gem_object_do_bit_17_swizzle(obj, st);
2432
2433 return st;
2434
2435 err_sg:
2436 sg_mark_end(sg);
2437 err_pages:
2438 for_each_sgt_page(page, sgt_iter, st)
2439 put_page(page);
2440 sg_free_table(st);
2441 kfree(st);
2442
2443 /* shmemfs first checks if there is enough memory to allocate the page
2444 * and reports ENOSPC should there be insufficient, along with the usual
2445 * ENOMEM for a genuine allocation failure.
2446 *
2447 * We use ENOSPC in our driver to mean that we have run out of aperture
2448 * space and so want to translate the error from shmemfs back to our
2449 * usual understanding of ENOMEM.
2450 */
2451 if (ret == -ENOSPC)
2452 ret = -ENOMEM;
2453
2454 return ERR_PTR(ret);
2455 }
2456
2457 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2458 struct sg_table *pages)
2459 {
2460 lockdep_assert_held(&obj->mm.lock);
2461
2462 obj->mm.get_page.sg_pos = pages->sgl;
2463 obj->mm.get_page.sg_idx = 0;
2464
2465 obj->mm.pages = pages;
2466
2467 if (i915_gem_object_is_tiled(obj) &&
2468 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2469 GEM_BUG_ON(obj->mm.quirked);
2470 __i915_gem_object_pin_pages(obj);
2471 obj->mm.quirked = true;
2472 }
2473 }
2474
2475 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2476 {
2477 struct sg_table *pages;
2478
2479 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2480
2481 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2482 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2483 return -EFAULT;
2484 }
2485
2486 pages = obj->ops->get_pages(obj);
2487 if (unlikely(IS_ERR(pages)))
2488 return PTR_ERR(pages);
2489
2490 __i915_gem_object_set_pages(obj, pages);
2491 return 0;
2492 }
2493
2494 /* Ensure that the associated pages are gathered from the backing storage
2495 * and pinned into our object. i915_gem_object_pin_pages() may be called
2496 * multiple times before they are released by a single call to
2497 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2498 * either as a result of memory pressure (reaping pages under the shrinker)
2499 * or as the object is itself released.
2500 */
2501 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2502 {
2503 int err;
2504
2505 err = mutex_lock_interruptible(&obj->mm.lock);
2506 if (err)
2507 return err;
2508
2509 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2510 err = ____i915_gem_object_get_pages(obj);
2511 if (err)
2512 goto unlock;
2513
2514 smp_mb__before_atomic();
2515 }
2516 atomic_inc(&obj->mm.pages_pin_count);
2517
2518 unlock:
2519 mutex_unlock(&obj->mm.lock);
2520 return err;
2521 }
2522
2523 /* The 'mapping' part of i915_gem_object_pin_map() below */
2524 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2525 enum i915_map_type type)
2526 {
2527 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2528 struct sg_table *sgt = obj->mm.pages;
2529 struct sgt_iter sgt_iter;
2530 struct page *page;
2531 struct page *stack_pages[32];
2532 struct page **pages = stack_pages;
2533 unsigned long i = 0;
2534 pgprot_t pgprot;
2535 void *addr;
2536
2537 /* A single page can always be kmapped */
2538 if (n_pages == 1 && type == I915_MAP_WB)
2539 return kmap(sg_page(sgt->sgl));
2540
2541 if (n_pages > ARRAY_SIZE(stack_pages)) {
2542 /* Too big for stack -- allocate temporary array instead */
2543 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2544 if (!pages)
2545 return NULL;
2546 }
2547
2548 for_each_sgt_page(page, sgt_iter, sgt)
2549 pages[i++] = page;
2550
2551 /* Check that we have the expected number of pages */
2552 GEM_BUG_ON(i != n_pages);
2553
2554 switch (type) {
2555 default:
2556 MISSING_CASE(type);
2557 /* fallthrough to use PAGE_KERNEL anyway */
2558 case I915_MAP_WB:
2559 pgprot = PAGE_KERNEL;
2560 break;
2561 case I915_MAP_WC:
2562 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2563 break;
2564 }
2565 addr = vmap(pages, n_pages, 0, pgprot);
2566
2567 if (pages != stack_pages)
2568 kvfree(pages);
2569
2570 return addr;
2571 }
2572
2573 /* get, pin, and map the pages of the object into kernel space */
2574 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2575 enum i915_map_type type)
2576 {
2577 enum i915_map_type has_type;
2578 bool pinned;
2579 void *ptr;
2580 int ret;
2581
2582 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2583
2584 ret = mutex_lock_interruptible(&obj->mm.lock);
2585 if (ret)
2586 return ERR_PTR(ret);
2587
2588 pinned = !(type & I915_MAP_OVERRIDE);
2589 type &= ~I915_MAP_OVERRIDE;
2590
2591 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593 ret = ____i915_gem_object_get_pages(obj);
2594 if (ret)
2595 goto err_unlock;
2596
2597 smp_mb__before_atomic();
2598 }
2599 atomic_inc(&obj->mm.pages_pin_count);
2600 pinned = false;
2601 }
2602 GEM_BUG_ON(!obj->mm.pages);
2603
2604 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2605 if (ptr && has_type != type) {
2606 if (pinned) {
2607 ret = -EBUSY;
2608 goto err_unpin;
2609 }
2610
2611 if (is_vmalloc_addr(ptr))
2612 vunmap(ptr);
2613 else
2614 kunmap(kmap_to_page(ptr));
2615
2616 ptr = obj->mm.mapping = NULL;
2617 }
2618
2619 if (!ptr) {
2620 ptr = i915_gem_object_map(obj, type);
2621 if (!ptr) {
2622 ret = -ENOMEM;
2623 goto err_unpin;
2624 }
2625
2626 obj->mm.mapping = page_pack_bits(ptr, type);
2627 }
2628
2629 out_unlock:
2630 mutex_unlock(&obj->mm.lock);
2631 return ptr;
2632
2633 err_unpin:
2634 atomic_dec(&obj->mm.pages_pin_count);
2635 err_unlock:
2636 ptr = ERR_PTR(ret);
2637 goto out_unlock;
2638 }
2639
2640 static int
2641 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2642 const struct drm_i915_gem_pwrite *arg)
2643 {
2644 struct address_space *mapping = obj->base.filp->f_mapping;
2645 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2646 u64 remain, offset;
2647 unsigned int pg;
2648
2649 /* Before we instantiate/pin the backing store for our use, we
2650 * can prepopulate the shmemfs filp efficiently using a write into
2651 * the pagecache. We avoid the penalty of instantiating all the
2652 * pages, important if the user is just writing to a few and never
2653 * uses the object on the GPU, and using a direct write into shmemfs
2654 * allows it to avoid the cost of retrieving a page (either swapin
2655 * or clearing-before-use) before it is overwritten.
2656 */
2657 if (READ_ONCE(obj->mm.pages))
2658 return -ENODEV;
2659
2660 if (obj->mm.madv != I915_MADV_WILLNEED)
2661 return -EFAULT;
2662
2663 /* Before the pages are instantiated the object is treated as being
2664 * in the CPU domain. The pages will be clflushed as required before
2665 * use, and we can freely write into the pages directly. If userspace
2666 * races pwrite with any other operation; corruption will ensue -
2667 * that is userspace's prerogative!
2668 */
2669
2670 remain = arg->size;
2671 offset = arg->offset;
2672 pg = offset_in_page(offset);
2673
2674 do {
2675 unsigned int len, unwritten;
2676 struct page *page;
2677 void *data, *vaddr;
2678 int err;
2679
2680 len = PAGE_SIZE - pg;
2681 if (len > remain)
2682 len = remain;
2683
2684 err = pagecache_write_begin(obj->base.filp, mapping,
2685 offset, len, 0,
2686 &page, &data);
2687 if (err < 0)
2688 return err;
2689
2690 vaddr = kmap(page);
2691 unwritten = copy_from_user(vaddr + pg, user_data, len);
2692 kunmap(page);
2693
2694 err = pagecache_write_end(obj->base.filp, mapping,
2695 offset, len, len - unwritten,
2696 page, data);
2697 if (err < 0)
2698 return err;
2699
2700 if (unwritten)
2701 return -EFAULT;
2702
2703 remain -= len;
2704 user_data += len;
2705 offset += len;
2706 pg = 0;
2707 } while (remain);
2708
2709 return 0;
2710 }
2711
2712 static bool ban_context(const struct i915_gem_context *ctx,
2713 unsigned int score)
2714 {
2715 return (i915_gem_context_is_bannable(ctx) &&
2716 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2717 }
2718
2719 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2720 {
2721 unsigned int score;
2722 bool banned;
2723
2724 atomic_inc(&ctx->guilty_count);
2725
2726 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2727 banned = ban_context(ctx, score);
2728 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2729 ctx->name, score, yesno(banned));
2730 if (!banned)
2731 return;
2732
2733 i915_gem_context_set_banned(ctx);
2734 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2735 atomic_inc(&ctx->file_priv->context_bans);
2736 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2737 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2738 }
2739 }
2740
2741 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2742 {
2743 atomic_inc(&ctx->active_count);
2744 }
2745
2746 struct drm_i915_gem_request *
2747 i915_gem_find_active_request(struct intel_engine_cs *engine)
2748 {
2749 struct drm_i915_gem_request *request, *active = NULL;
2750 unsigned long flags;
2751
2752 /* We are called by the error capture and reset at a random
2753 * point in time. In particular, note that neither is crucially
2754 * ordered with an interrupt. After a hang, the GPU is dead and we
2755 * assume that no more writes can happen (we waited long enough for
2756 * all writes that were in transaction to be flushed) - adding an
2757 * extra delay for a recent interrupt is pointless. Hence, we do
2758 * not need an engine->irq_seqno_barrier() before the seqno reads.
2759 */
2760 spin_lock_irqsave(&engine->timeline->lock, flags);
2761 list_for_each_entry(request, &engine->timeline->requests, link) {
2762 if (__i915_gem_request_completed(request,
2763 request->global_seqno))
2764 continue;
2765
2766 GEM_BUG_ON(request->engine != engine);
2767 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2768 &request->fence.flags));
2769
2770 active = request;
2771 break;
2772 }
2773 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2774
2775 return active;
2776 }
2777
2778 static bool engine_stalled(struct intel_engine_cs *engine)
2779 {
2780 if (!engine->hangcheck.stalled)
2781 return false;
2782
2783 /* Check for possible seqno movement after hang declaration */
2784 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2785 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2786 return false;
2787 }
2788
2789 return true;
2790 }
2791
2792 /*
2793 * Ensure irq handler finishes, and not run again.
2794 * Also return the active request so that we only search for it once.
2795 */
2796 struct drm_i915_gem_request *
2797 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2798 {
2799 struct drm_i915_gem_request *request = NULL;
2800
2801 /* Prevent the signaler thread from updating the request
2802 * state (by calling dma_fence_signal) as we are processing
2803 * the reset. The write from the GPU of the seqno is
2804 * asynchronous and the signaler thread may see a different
2805 * value to us and declare the request complete, even though
2806 * the reset routine have picked that request as the active
2807 * (incomplete) request. This conflict is not handled
2808 * gracefully!
2809 */
2810 kthread_park(engine->breadcrumbs.signaler);
2811
2812 /* Prevent request submission to the hardware until we have
2813 * completed the reset in i915_gem_reset_finish(). If a request
2814 * is completed by one engine, it may then queue a request
2815 * to a second via its engine->irq_tasklet *just* as we are
2816 * calling engine->init_hw() and also writing the ELSP.
2817 * Turning off the engine->irq_tasklet until the reset is over
2818 * prevents the race.
2819 */
2820 tasklet_kill(&engine->irq_tasklet);
2821 tasklet_disable(&engine->irq_tasklet);
2822
2823 if (engine->irq_seqno_barrier)
2824 engine->irq_seqno_barrier(engine);
2825
2826 request = i915_gem_find_active_request(engine);
2827 if (request && request->fence.error == -EIO)
2828 request = ERR_PTR(-EIO); /* Previous reset failed! */
2829
2830 return request;
2831 }
2832
2833 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2834 {
2835 struct intel_engine_cs *engine;
2836 struct drm_i915_gem_request *request;
2837 enum intel_engine_id id;
2838 int err = 0;
2839
2840 for_each_engine(engine, dev_priv, id) {
2841 request = i915_gem_reset_prepare_engine(engine);
2842 if (IS_ERR(request)) {
2843 err = PTR_ERR(request);
2844 continue;
2845 }
2846
2847 engine->hangcheck.active_request = request;
2848 }
2849
2850 i915_gem_revoke_fences(dev_priv);
2851
2852 return err;
2853 }
2854
2855 static void skip_request(struct drm_i915_gem_request *request)
2856 {
2857 void *vaddr = request->ring->vaddr;
2858 u32 head;
2859
2860 /* As this request likely depends on state from the lost
2861 * context, clear out all the user operations leaving the
2862 * breadcrumb at the end (so we get the fence notifications).
2863 */
2864 head = request->head;
2865 if (request->postfix < head) {
2866 memset(vaddr + head, 0, request->ring->size - head);
2867 head = 0;
2868 }
2869 memset(vaddr + head, 0, request->postfix - head);
2870
2871 dma_fence_set_error(&request->fence, -EIO);
2872 }
2873
2874 static void engine_skip_context(struct drm_i915_gem_request *request)
2875 {
2876 struct intel_engine_cs *engine = request->engine;
2877 struct i915_gem_context *hung_ctx = request->ctx;
2878 struct intel_timeline *timeline;
2879 unsigned long flags;
2880
2881 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2882
2883 spin_lock_irqsave(&engine->timeline->lock, flags);
2884 spin_lock(&timeline->lock);
2885
2886 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2887 if (request->ctx == hung_ctx)
2888 skip_request(request);
2889
2890 list_for_each_entry(request, &timeline->requests, link)
2891 skip_request(request);
2892
2893 spin_unlock(&timeline->lock);
2894 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2895 }
2896
2897 /* Returns the request if it was guilty of the hang */
2898 static struct drm_i915_gem_request *
2899 i915_gem_reset_request(struct intel_engine_cs *engine,
2900 struct drm_i915_gem_request *request)
2901 {
2902 /* The guilty request will get skipped on a hung engine.
2903 *
2904 * Users of client default contexts do not rely on logical
2905 * state preserved between batches so it is safe to execute
2906 * queued requests following the hang. Non default contexts
2907 * rely on preserved state, so skipping a batch loses the
2908 * evolution of the state and it needs to be considered corrupted.
2909 * Executing more queued batches on top of corrupted state is
2910 * risky. But we take the risk by trying to advance through
2911 * the queued requests in order to make the client behaviour
2912 * more predictable around resets, by not throwing away random
2913 * amount of batches it has prepared for execution. Sophisticated
2914 * clients can use gem_reset_stats_ioctl and dma fence status
2915 * (exported via sync_file info ioctl on explicit fences) to observe
2916 * when it loses the context state and should rebuild accordingly.
2917 *
2918 * The context ban, and ultimately the client ban, mechanism are safety
2919 * valves if client submission ends up resulting in nothing more than
2920 * subsequent hangs.
2921 */
2922
2923 if (engine_stalled(engine)) {
2924 i915_gem_context_mark_guilty(request->ctx);
2925 skip_request(request);
2926
2927 /* If this context is now banned, skip all pending requests. */
2928 if (i915_gem_context_is_banned(request->ctx))
2929 engine_skip_context(request);
2930 } else {
2931 /*
2932 * Since this is not the hung engine, it may have advanced
2933 * since the hang declaration. Double check by refinding
2934 * the active request at the time of the reset.
2935 */
2936 request = i915_gem_find_active_request(engine);
2937 if (request) {
2938 i915_gem_context_mark_innocent(request->ctx);
2939 dma_fence_set_error(&request->fence, -EAGAIN);
2940
2941 /* Rewind the engine to replay the incomplete rq */
2942 spin_lock_irq(&engine->timeline->lock);
2943 request = list_prev_entry(request, link);
2944 if (&request->link == &engine->timeline->requests)
2945 request = NULL;
2946 spin_unlock_irq(&engine->timeline->lock);
2947 }
2948 }
2949
2950 return request;
2951 }
2952
2953 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2954 struct drm_i915_gem_request *request)
2955 {
2956 engine->irq_posted = 0;
2957
2958 if (request)
2959 request = i915_gem_reset_request(engine, request);
2960
2961 if (request) {
2962 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2963 engine->name, request->global_seqno);
2964 }
2965
2966 /* Setup the CS to resume from the breadcrumb of the hung request */
2967 engine->reset_hw(engine, request);
2968 }
2969
2970 void i915_gem_reset(struct drm_i915_private *dev_priv)
2971 {
2972 struct intel_engine_cs *engine;
2973 enum intel_engine_id id;
2974
2975 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2976
2977 i915_gem_retire_requests(dev_priv);
2978
2979 for_each_engine(engine, dev_priv, id) {
2980 struct i915_gem_context *ctx;
2981
2982 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2983 ctx = fetch_and_zero(&engine->last_retired_context);
2984 if (ctx)
2985 engine->context_unpin(engine, ctx);
2986 }
2987
2988 i915_gem_restore_fences(dev_priv);
2989
2990 if (dev_priv->gt.awake) {
2991 intel_sanitize_gt_powersave(dev_priv);
2992 intel_enable_gt_powersave(dev_priv);
2993 if (INTEL_GEN(dev_priv) >= 6)
2994 gen6_rps_busy(dev_priv);
2995 }
2996 }
2997
2998 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2999 {
3000 tasklet_enable(&engine->irq_tasklet);
3001 kthread_unpark(engine->breadcrumbs.signaler);
3002 }
3003
3004 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3005 {
3006 struct intel_engine_cs *engine;
3007 enum intel_engine_id id;
3008
3009 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3010
3011 for_each_engine(engine, dev_priv, id) {
3012 engine->hangcheck.active_request = NULL;
3013 i915_gem_reset_finish_engine(engine);
3014 }
3015 }
3016
3017 static void nop_submit_request(struct drm_i915_gem_request *request)
3018 {
3019 unsigned long flags;
3020
3021 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3022 dma_fence_set_error(&request->fence, -EIO);
3023
3024 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3025 __i915_gem_request_submit(request);
3026 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3027 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3028 }
3029
3030 static void engine_set_wedged(struct intel_engine_cs *engine)
3031 {
3032 struct drm_i915_gem_request *request;
3033 unsigned long flags;
3034
3035 /* We need to be sure that no thread is running the old callback as
3036 * we install the nop handler (otherwise we would submit a request
3037 * to hardware that will never complete). In order to prevent this
3038 * race, we wait until the machine is idle before making the swap
3039 * (using stop_machine()).
3040 */
3041 engine->submit_request = nop_submit_request;
3042
3043 /* Mark all executing requests as skipped */
3044 spin_lock_irqsave(&engine->timeline->lock, flags);
3045 list_for_each_entry(request, &engine->timeline->requests, link)
3046 if (!i915_gem_request_completed(request))
3047 dma_fence_set_error(&request->fence, -EIO);
3048 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3049
3050 /*
3051 * Clear the execlists queue up before freeing the requests, as those
3052 * are the ones that keep the context and ringbuffer backing objects
3053 * pinned in place.
3054 */
3055
3056 if (i915.enable_execlists) {
3057 struct execlist_port *port = engine->execlist_port;
3058 unsigned long flags;
3059 unsigned int n;
3060
3061 spin_lock_irqsave(&engine->timeline->lock, flags);
3062
3063 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3064 i915_gem_request_put(port_request(&port[n]));
3065 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3066 engine->execlist_queue = RB_ROOT;
3067 engine->execlist_first = NULL;
3068
3069 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3070
3071 /* The port is checked prior to scheduling a tasklet, but
3072 * just in case we have suspended the tasklet to do the
3073 * wedging make sure that when it wakes, it decides there
3074 * is no work to do by clearing the irq_posted bit.
3075 */
3076 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3077 }
3078
3079 /* Mark all pending requests as complete so that any concurrent
3080 * (lockless) lookup doesn't try and wait upon the request as we
3081 * reset it.
3082 */
3083 intel_engine_init_global_seqno(engine,
3084 intel_engine_last_submit(engine));
3085 }
3086
3087 static int __i915_gem_set_wedged_BKL(void *data)
3088 {
3089 struct drm_i915_private *i915 = data;
3090 struct intel_engine_cs *engine;
3091 enum intel_engine_id id;
3092
3093 for_each_engine(engine, i915, id)
3094 engine_set_wedged(engine);
3095
3096 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3097 wake_up_all(&i915->gpu_error.reset_queue);
3098
3099 return 0;
3100 }
3101
3102 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3103 {
3104 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3105 }
3106
3107 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3108 {
3109 struct i915_gem_timeline *tl;
3110 int i;
3111
3112 lockdep_assert_held(&i915->drm.struct_mutex);
3113 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3114 return true;
3115
3116 /* Before unwedging, make sure that all pending operations
3117 * are flushed and errored out - we may have requests waiting upon
3118 * third party fences. We marked all inflight requests as EIO, and
3119 * every execbuf since returned EIO, for consistency we want all
3120 * the currently pending requests to also be marked as EIO, which
3121 * is done inside our nop_submit_request - and so we must wait.
3122 *
3123 * No more can be submitted until we reset the wedged bit.
3124 */
3125 list_for_each_entry(tl, &i915->gt.timelines, link) {
3126 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3127 struct drm_i915_gem_request *rq;
3128
3129 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3130 &i915->drm.struct_mutex);
3131 if (!rq)
3132 continue;
3133
3134 /* We can't use our normal waiter as we want to
3135 * avoid recursively trying to handle the current
3136 * reset. The basic dma_fence_default_wait() installs
3137 * a callback for dma_fence_signal(), which is
3138 * triggered by our nop handler (indirectly, the
3139 * callback enables the signaler thread which is
3140 * woken by the nop_submit_request() advancing the seqno
3141 * and when the seqno passes the fence, the signaler
3142 * then signals the fence waking us up).
3143 */
3144 if (dma_fence_default_wait(&rq->fence, true,
3145 MAX_SCHEDULE_TIMEOUT) < 0)
3146 return false;
3147 }
3148 }
3149
3150 /* Undo nop_submit_request. We prevent all new i915 requests from
3151 * being queued (by disallowing execbuf whilst wedged) so having
3152 * waited for all active requests above, we know the system is idle
3153 * and do not have to worry about a thread being inside
3154 * engine->submit_request() as we swap over. So unlike installing
3155 * the nop_submit_request on reset, we can do this from normal
3156 * context and do not require stop_machine().
3157 */
3158 intel_engines_reset_default_submission(i915);
3159 i915_gem_contexts_lost(i915);
3160
3161 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3162 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3163
3164 return true;
3165 }
3166
3167 static void
3168 i915_gem_retire_work_handler(struct work_struct *work)
3169 {
3170 struct drm_i915_private *dev_priv =
3171 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3172 struct drm_device *dev = &dev_priv->drm;
3173
3174 /* Come back later if the device is busy... */
3175 if (mutex_trylock(&dev->struct_mutex)) {
3176 i915_gem_retire_requests(dev_priv);
3177 mutex_unlock(&dev->struct_mutex);
3178 }
3179
3180 /* Keep the retire handler running until we are finally idle.
3181 * We do not need to do this test under locking as in the worst-case
3182 * we queue the retire worker once too often.
3183 */
3184 if (READ_ONCE(dev_priv->gt.awake)) {
3185 i915_queue_hangcheck(dev_priv);
3186 queue_delayed_work(dev_priv->wq,
3187 &dev_priv->gt.retire_work,
3188 round_jiffies_up_relative(HZ));
3189 }
3190 }
3191
3192 static void
3193 i915_gem_idle_work_handler(struct work_struct *work)
3194 {
3195 struct drm_i915_private *dev_priv =
3196 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3197 struct drm_device *dev = &dev_priv->drm;
3198 bool rearm_hangcheck;
3199
3200 if (!READ_ONCE(dev_priv->gt.awake))
3201 return;
3202
3203 /*
3204 * Wait for last execlists context complete, but bail out in case a
3205 * new request is submitted.
3206 */
3207 wait_for(intel_engines_are_idle(dev_priv), 10);
3208 if (READ_ONCE(dev_priv->gt.active_requests))
3209 return;
3210
3211 rearm_hangcheck =
3212 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3213
3214 if (!mutex_trylock(&dev->struct_mutex)) {
3215 /* Currently busy, come back later */
3216 mod_delayed_work(dev_priv->wq,
3217 &dev_priv->gt.idle_work,
3218 msecs_to_jiffies(50));
3219 goto out_rearm;
3220 }
3221
3222 /*
3223 * New request retired after this work handler started, extend active
3224 * period until next instance of the work.
3225 */
3226 if (work_pending(work))
3227 goto out_unlock;
3228
3229 if (dev_priv->gt.active_requests)
3230 goto out_unlock;
3231
3232 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3233 DRM_ERROR("Timeout waiting for engines to idle\n");
3234
3235 intel_engines_mark_idle(dev_priv);
3236 i915_gem_timelines_mark_idle(dev_priv);
3237
3238 GEM_BUG_ON(!dev_priv->gt.awake);
3239 dev_priv->gt.awake = false;
3240 rearm_hangcheck = false;
3241
3242 if (INTEL_GEN(dev_priv) >= 6)
3243 gen6_rps_idle(dev_priv);
3244 intel_runtime_pm_put(dev_priv);
3245 out_unlock:
3246 mutex_unlock(&dev->struct_mutex);
3247
3248 out_rearm:
3249 if (rearm_hangcheck) {
3250 GEM_BUG_ON(!dev_priv->gt.awake);
3251 i915_queue_hangcheck(dev_priv);
3252 }
3253 }
3254
3255 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3256 {
3257 struct drm_i915_private *i915 = to_i915(gem->dev);
3258 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3259 struct drm_i915_file_private *fpriv = file->driver_priv;
3260 struct i915_lut_handle *lut, *ln;
3261
3262 mutex_lock(&i915->drm.struct_mutex);
3263
3264 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3265 struct i915_gem_context *ctx = lut->ctx;
3266 struct i915_vma *vma;
3267
3268 if (ctx->file_priv != fpriv)
3269 continue;
3270
3271 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3272
3273 GEM_BUG_ON(vma->obj != obj);
3274
3275 /* We allow the process to have multiple handles to the same
3276 * vma, in the same fd namespace, by virtue of flink/open.
3277 */
3278 GEM_BUG_ON(!vma->open_count);
3279 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3280 i915_vma_close(vma);
3281
3282 list_del(&lut->obj_link);
3283 list_del(&lut->ctx_link);
3284
3285 kmem_cache_free(i915->luts, lut);
3286 __i915_gem_object_release_unless_active(obj);
3287 }
3288
3289 mutex_unlock(&i915->drm.struct_mutex);
3290 }
3291
3292 static unsigned long to_wait_timeout(s64 timeout_ns)
3293 {
3294 if (timeout_ns < 0)
3295 return MAX_SCHEDULE_TIMEOUT;
3296
3297 if (timeout_ns == 0)
3298 return 0;
3299
3300 return nsecs_to_jiffies_timeout(timeout_ns);
3301 }
3302
3303 /**
3304 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3305 * @dev: drm device pointer
3306 * @data: ioctl data blob
3307 * @file: drm file pointer
3308 *
3309 * Returns 0 if successful, else an error is returned with the remaining time in
3310 * the timeout parameter.
3311 * -ETIME: object is still busy after timeout
3312 * -ERESTARTSYS: signal interrupted the wait
3313 * -ENONENT: object doesn't exist
3314 * Also possible, but rare:
3315 * -EAGAIN: incomplete, restart syscall
3316 * -ENOMEM: damn
3317 * -ENODEV: Internal IRQ fail
3318 * -E?: The add request failed
3319 *
3320 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3321 * non-zero timeout parameter the wait ioctl will wait for the given number of
3322 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3323 * without holding struct_mutex the object may become re-busied before this
3324 * function completes. A similar but shorter * race condition exists in the busy
3325 * ioctl
3326 */
3327 int
3328 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3329 {
3330 struct drm_i915_gem_wait *args = data;
3331 struct drm_i915_gem_object *obj;
3332 ktime_t start;
3333 long ret;
3334
3335 if (args->flags != 0)
3336 return -EINVAL;
3337
3338 obj = i915_gem_object_lookup(file, args->bo_handle);
3339 if (!obj)
3340 return -ENOENT;
3341
3342 start = ktime_get();
3343
3344 ret = i915_gem_object_wait(obj,
3345 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3346 to_wait_timeout(args->timeout_ns),
3347 to_rps_client(file));
3348
3349 if (args->timeout_ns > 0) {
3350 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3351 if (args->timeout_ns < 0)
3352 args->timeout_ns = 0;
3353
3354 /*
3355 * Apparently ktime isn't accurate enough and occasionally has a
3356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3357 * things up to make the test happy. We allow up to 1 jiffy.
3358 *
3359 * This is a regression from the timespec->ktime conversion.
3360 */
3361 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3362 args->timeout_ns = 0;
3363
3364 /* Asked to wait beyond the jiffie/scheduler precision? */
3365 if (ret == -ETIME && args->timeout_ns)
3366 ret = -EAGAIN;
3367 }
3368
3369 i915_gem_object_put(obj);
3370 return ret;
3371 }
3372
3373 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3374 {
3375 int ret, i;
3376
3377 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3378 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3379 if (ret)
3380 return ret;
3381 }
3382
3383 return 0;
3384 }
3385
3386 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3387 {
3388 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3389 }
3390
3391 static int wait_for_engines(struct drm_i915_private *i915)
3392 {
3393 struct intel_engine_cs *engine;
3394 enum intel_engine_id id;
3395
3396 for_each_engine(engine, i915, id) {
3397 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3398 i915_gem_set_wedged(i915);
3399 return -EIO;
3400 }
3401
3402 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3403 intel_engine_last_submit(engine));
3404 }
3405
3406 return 0;
3407 }
3408
3409 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3410 {
3411 int ret;
3412
3413 /* If the device is asleep, we have no requests outstanding */
3414 if (!READ_ONCE(i915->gt.awake))
3415 return 0;
3416
3417 if (flags & I915_WAIT_LOCKED) {
3418 struct i915_gem_timeline *tl;
3419
3420 lockdep_assert_held(&i915->drm.struct_mutex);
3421
3422 list_for_each_entry(tl, &i915->gt.timelines, link) {
3423 ret = wait_for_timeline(tl, flags);
3424 if (ret)
3425 return ret;
3426 }
3427
3428 i915_gem_retire_requests(i915);
3429 GEM_BUG_ON(i915->gt.active_requests);
3430
3431 ret = wait_for_engines(i915);
3432 } else {
3433 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3434 }
3435
3436 return ret;
3437 }
3438
3439 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3440 {
3441 /*
3442 * We manually flush the CPU domain so that we can override and
3443 * force the flush for the display, and perform it asyncrhonously.
3444 */
3445 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3446 if (obj->cache_dirty)
3447 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3448 obj->base.write_domain = 0;
3449 }
3450
3451 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3452 {
3453 if (!READ_ONCE(obj->pin_display))
3454 return;
3455
3456 mutex_lock(&obj->base.dev->struct_mutex);
3457 __i915_gem_object_flush_for_display(obj);
3458 mutex_unlock(&obj->base.dev->struct_mutex);
3459 }
3460
3461 /**
3462 * Moves a single object to the WC read, and possibly write domain.
3463 * @obj: object to act on
3464 * @write: ask for write access or read only
3465 *
3466 * This function returns when the move is complete, including waiting on
3467 * flushes to occur.
3468 */
3469 int
3470 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3471 {
3472 int ret;
3473
3474 lockdep_assert_held(&obj->base.dev->struct_mutex);
3475
3476 ret = i915_gem_object_wait(obj,
3477 I915_WAIT_INTERRUPTIBLE |
3478 I915_WAIT_LOCKED |
3479 (write ? I915_WAIT_ALL : 0),
3480 MAX_SCHEDULE_TIMEOUT,
3481 NULL);
3482 if (ret)
3483 return ret;
3484
3485 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3486 return 0;
3487
3488 /* Flush and acquire obj->pages so that we are coherent through
3489 * direct access in memory with previous cached writes through
3490 * shmemfs and that our cache domain tracking remains valid.
3491 * For example, if the obj->filp was moved to swap without us
3492 * being notified and releasing the pages, we would mistakenly
3493 * continue to assume that the obj remained out of the CPU cached
3494 * domain.
3495 */
3496 ret = i915_gem_object_pin_pages(obj);
3497 if (ret)
3498 return ret;
3499
3500 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3501
3502 /* Serialise direct access to this object with the barriers for
3503 * coherent writes from the GPU, by effectively invalidating the
3504 * WC domain upon first access.
3505 */
3506 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3507 mb();
3508
3509 /* It should now be out of any other write domains, and we can update
3510 * the domain values for our changes.
3511 */
3512 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3513 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3514 if (write) {
3515 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3516 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3517 obj->mm.dirty = true;
3518 }
3519
3520 i915_gem_object_unpin_pages(obj);
3521 return 0;
3522 }
3523
3524 /**
3525 * Moves a single object to the GTT read, and possibly write domain.
3526 * @obj: object to act on
3527 * @write: ask for write access or read only
3528 *
3529 * This function returns when the move is complete, including waiting on
3530 * flushes to occur.
3531 */
3532 int
3533 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3534 {
3535 int ret;
3536
3537 lockdep_assert_held(&obj->base.dev->struct_mutex);
3538
3539 ret = i915_gem_object_wait(obj,
3540 I915_WAIT_INTERRUPTIBLE |
3541 I915_WAIT_LOCKED |
3542 (write ? I915_WAIT_ALL : 0),
3543 MAX_SCHEDULE_TIMEOUT,
3544 NULL);
3545 if (ret)
3546 return ret;
3547
3548 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3549 return 0;
3550
3551 /* Flush and acquire obj->pages so that we are coherent through
3552 * direct access in memory with previous cached writes through
3553 * shmemfs and that our cache domain tracking remains valid.
3554 * For example, if the obj->filp was moved to swap without us
3555 * being notified and releasing the pages, we would mistakenly
3556 * continue to assume that the obj remained out of the CPU cached
3557 * domain.
3558 */
3559 ret = i915_gem_object_pin_pages(obj);
3560 if (ret)
3561 return ret;
3562
3563 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3564
3565 /* Serialise direct access to this object with the barriers for
3566 * coherent writes from the GPU, by effectively invalidating the
3567 * GTT domain upon first access.
3568 */
3569 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3570 mb();
3571
3572 /* It should now be out of any other write domains, and we can update
3573 * the domain values for our changes.
3574 */
3575 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3576 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3577 if (write) {
3578 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3579 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3580 obj->mm.dirty = true;
3581 }
3582
3583 i915_gem_object_unpin_pages(obj);
3584 return 0;
3585 }
3586
3587 /**
3588 * Changes the cache-level of an object across all VMA.
3589 * @obj: object to act on
3590 * @cache_level: new cache level to set for the object
3591 *
3592 * After this function returns, the object will be in the new cache-level
3593 * across all GTT and the contents of the backing storage will be coherent,
3594 * with respect to the new cache-level. In order to keep the backing storage
3595 * coherent for all users, we only allow a single cache level to be set
3596 * globally on the object and prevent it from being changed whilst the
3597 * hardware is reading from the object. That is if the object is currently
3598 * on the scanout it will be set to uncached (or equivalent display
3599 * cache coherency) and all non-MOCS GPU access will also be uncached so
3600 * that all direct access to the scanout remains coherent.
3601 */
3602 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3603 enum i915_cache_level cache_level)
3604 {
3605 struct i915_vma *vma;
3606 int ret;
3607
3608 lockdep_assert_held(&obj->base.dev->struct_mutex);
3609
3610 if (obj->cache_level == cache_level)
3611 return 0;
3612
3613 /* Inspect the list of currently bound VMA and unbind any that would
3614 * be invalid given the new cache-level. This is principally to
3615 * catch the issue of the CS prefetch crossing page boundaries and
3616 * reading an invalid PTE on older architectures.
3617 */
3618 restart:
3619 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3620 if (!drm_mm_node_allocated(&vma->node))
3621 continue;
3622
3623 if (i915_vma_is_pinned(vma)) {
3624 DRM_DEBUG("can not change the cache level of pinned objects\n");
3625 return -EBUSY;
3626 }
3627
3628 if (i915_gem_valid_gtt_space(vma, cache_level))
3629 continue;
3630
3631 ret = i915_vma_unbind(vma);
3632 if (ret)
3633 return ret;
3634
3635 /* As unbinding may affect other elements in the
3636 * obj->vma_list (due to side-effects from retiring
3637 * an active vma), play safe and restart the iterator.
3638 */
3639 goto restart;
3640 }
3641
3642 /* We can reuse the existing drm_mm nodes but need to change the
3643 * cache-level on the PTE. We could simply unbind them all and
3644 * rebind with the correct cache-level on next use. However since
3645 * we already have a valid slot, dma mapping, pages etc, we may as
3646 * rewrite the PTE in the belief that doing so tramples upon less
3647 * state and so involves less work.
3648 */
3649 if (obj->bind_count) {
3650 /* Before we change the PTE, the GPU must not be accessing it.
3651 * If we wait upon the object, we know that all the bound
3652 * VMA are no longer active.
3653 */
3654 ret = i915_gem_object_wait(obj,
3655 I915_WAIT_INTERRUPTIBLE |
3656 I915_WAIT_LOCKED |
3657 I915_WAIT_ALL,
3658 MAX_SCHEDULE_TIMEOUT,
3659 NULL);
3660 if (ret)
3661 return ret;
3662
3663 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3664 cache_level != I915_CACHE_NONE) {
3665 /* Access to snoopable pages through the GTT is
3666 * incoherent and on some machines causes a hard
3667 * lockup. Relinquish the CPU mmaping to force
3668 * userspace to refault in the pages and we can
3669 * then double check if the GTT mapping is still
3670 * valid for that pointer access.
3671 */
3672 i915_gem_release_mmap(obj);
3673
3674 /* As we no longer need a fence for GTT access,
3675 * we can relinquish it now (and so prevent having
3676 * to steal a fence from someone else on the next
3677 * fence request). Note GPU activity would have
3678 * dropped the fence as all snoopable access is
3679 * supposed to be linear.
3680 */
3681 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3682 ret = i915_vma_put_fence(vma);
3683 if (ret)
3684 return ret;
3685 }
3686 } else {
3687 /* We either have incoherent backing store and
3688 * so no GTT access or the architecture is fully
3689 * coherent. In such cases, existing GTT mmaps
3690 * ignore the cache bit in the PTE and we can
3691 * rewrite it without confusing the GPU or having
3692 * to force userspace to fault back in its mmaps.
3693 */
3694 }
3695
3696 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3697 if (!drm_mm_node_allocated(&vma->node))
3698 continue;
3699
3700 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3701 if (ret)
3702 return ret;
3703 }
3704 }
3705
3706 list_for_each_entry(vma, &obj->vma_list, obj_link)
3707 vma->node.color = cache_level;
3708 i915_gem_object_set_cache_coherency(obj, cache_level);
3709 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3710
3711 return 0;
3712 }
3713
3714 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3715 struct drm_file *file)
3716 {
3717 struct drm_i915_gem_caching *args = data;
3718 struct drm_i915_gem_object *obj;
3719 int err = 0;
3720
3721 rcu_read_lock();
3722 obj = i915_gem_object_lookup_rcu(file, args->handle);
3723 if (!obj) {
3724 err = -ENOENT;
3725 goto out;
3726 }
3727
3728 switch (obj->cache_level) {
3729 case I915_CACHE_LLC:
3730 case I915_CACHE_L3_LLC:
3731 args->caching = I915_CACHING_CACHED;
3732 break;
3733
3734 case I915_CACHE_WT:
3735 args->caching = I915_CACHING_DISPLAY;
3736 break;
3737
3738 default:
3739 args->caching = I915_CACHING_NONE;
3740 break;
3741 }
3742 out:
3743 rcu_read_unlock();
3744 return err;
3745 }
3746
3747 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3748 struct drm_file *file)
3749 {
3750 struct drm_i915_private *i915 = to_i915(dev);
3751 struct drm_i915_gem_caching *args = data;
3752 struct drm_i915_gem_object *obj;
3753 enum i915_cache_level level;
3754 int ret = 0;
3755
3756 switch (args->caching) {
3757 case I915_CACHING_NONE:
3758 level = I915_CACHE_NONE;
3759 break;
3760 case I915_CACHING_CACHED:
3761 /*
3762 * Due to a HW issue on BXT A stepping, GPU stores via a
3763 * snooped mapping may leave stale data in a corresponding CPU
3764 * cacheline, whereas normally such cachelines would get
3765 * invalidated.
3766 */
3767 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3768 return -ENODEV;
3769
3770 level = I915_CACHE_LLC;
3771 break;
3772 case I915_CACHING_DISPLAY:
3773 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3774 break;
3775 default:
3776 return -EINVAL;
3777 }
3778
3779 obj = i915_gem_object_lookup(file, args->handle);
3780 if (!obj)
3781 return -ENOENT;
3782
3783 if (obj->cache_level == level)
3784 goto out;
3785
3786 ret = i915_gem_object_wait(obj,
3787 I915_WAIT_INTERRUPTIBLE,
3788 MAX_SCHEDULE_TIMEOUT,
3789 to_rps_client(file));
3790 if (ret)
3791 goto out;
3792
3793 ret = i915_mutex_lock_interruptible(dev);
3794 if (ret)
3795 goto out;
3796
3797 ret = i915_gem_object_set_cache_level(obj, level);
3798 mutex_unlock(&dev->struct_mutex);
3799
3800 out:
3801 i915_gem_object_put(obj);
3802 return ret;
3803 }
3804
3805 /*
3806 * Prepare buffer for display plane (scanout, cursors, etc).
3807 * Can be called from an uninterruptible phase (modesetting) and allows
3808 * any flushes to be pipelined (for pageflips).
3809 */
3810 struct i915_vma *
3811 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3812 u32 alignment,
3813 const struct i915_ggtt_view *view)
3814 {
3815 struct i915_vma *vma;
3816 int ret;
3817
3818 lockdep_assert_held(&obj->base.dev->struct_mutex);
3819
3820 /* Mark the pin_display early so that we account for the
3821 * display coherency whilst setting up the cache domains.
3822 */
3823 obj->pin_display++;
3824
3825 /* The display engine is not coherent with the LLC cache on gen6. As
3826 * a result, we make sure that the pinning that is about to occur is
3827 * done with uncached PTEs. This is lowest common denominator for all
3828 * chipsets.
3829 *
3830 * However for gen6+, we could do better by using the GFDT bit instead
3831 * of uncaching, which would allow us to flush all the LLC-cached data
3832 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3833 */
3834 ret = i915_gem_object_set_cache_level(obj,
3835 HAS_WT(to_i915(obj->base.dev)) ?
3836 I915_CACHE_WT : I915_CACHE_NONE);
3837 if (ret) {
3838 vma = ERR_PTR(ret);
3839 goto err_unpin_display;
3840 }
3841
3842 /* As the user may map the buffer once pinned in the display plane
3843 * (e.g. libkms for the bootup splash), we have to ensure that we
3844 * always use map_and_fenceable for all scanout buffers. However,
3845 * it may simply be too big to fit into mappable, in which case
3846 * put it anyway and hope that userspace can cope (but always first
3847 * try to preserve the existing ABI).
3848 */
3849 vma = ERR_PTR(-ENOSPC);
3850 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3851 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3852 PIN_MAPPABLE | PIN_NONBLOCK);
3853 if (IS_ERR(vma)) {
3854 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3855 unsigned int flags;
3856
3857 /* Valleyview is definitely limited to scanning out the first
3858 * 512MiB. Lets presume this behaviour was inherited from the
3859 * g4x display engine and that all earlier gen are similarly
3860 * limited. Testing suggests that it is a little more
3861 * complicated than this. For example, Cherryview appears quite
3862 * happy to scanout from anywhere within its global aperture.
3863 */
3864 flags = 0;
3865 if (HAS_GMCH_DISPLAY(i915))
3866 flags = PIN_MAPPABLE;
3867 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3868 }
3869 if (IS_ERR(vma))
3870 goto err_unpin_display;
3871
3872 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3873
3874 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3875 __i915_gem_object_flush_for_display(obj);
3876 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3877
3878 /* It should now be out of any other write domains, and we can update
3879 * the domain values for our changes.
3880 */
3881 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3882
3883 return vma;
3884
3885 err_unpin_display:
3886 obj->pin_display--;
3887 return vma;
3888 }
3889
3890 void
3891 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3892 {
3893 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3894
3895 if (WARN_ON(vma->obj->pin_display == 0))
3896 return;
3897
3898 if (--vma->obj->pin_display == 0)
3899 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3900
3901 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3902 i915_gem_object_bump_inactive_ggtt(vma->obj);
3903
3904 i915_vma_unpin(vma);
3905 }
3906
3907 /**
3908 * Moves a single object to the CPU read, and possibly write domain.
3909 * @obj: object to act on
3910 * @write: requesting write or read-only access
3911 *
3912 * This function returns when the move is complete, including waiting on
3913 * flushes to occur.
3914 */
3915 int
3916 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3917 {
3918 int ret;
3919
3920 lockdep_assert_held(&obj->base.dev->struct_mutex);
3921
3922 ret = i915_gem_object_wait(obj,
3923 I915_WAIT_INTERRUPTIBLE |
3924 I915_WAIT_LOCKED |
3925 (write ? I915_WAIT_ALL : 0),
3926 MAX_SCHEDULE_TIMEOUT,
3927 NULL);
3928 if (ret)
3929 return ret;
3930
3931 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3932
3933 /* Flush the CPU cache if it's still invalid. */
3934 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3935 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3936 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3937 }
3938
3939 /* It should now be out of any other write domains, and we can update
3940 * the domain values for our changes.
3941 */
3942 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3943
3944 /* If we're writing through the CPU, then the GPU read domains will
3945 * need to be invalidated at next use.
3946 */
3947 if (write)
3948 __start_cpu_write(obj);
3949
3950 return 0;
3951 }
3952
3953 /* Throttle our rendering by waiting until the ring has completed our requests
3954 * emitted over 20 msec ago.
3955 *
3956 * Note that if we were to use the current jiffies each time around the loop,
3957 * we wouldn't escape the function with any frames outstanding if the time to
3958 * render a frame was over 20ms.
3959 *
3960 * This should get us reasonable parallelism between CPU and GPU but also
3961 * relatively low latency when blocking on a particular request to finish.
3962 */
3963 static int
3964 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3965 {
3966 struct drm_i915_private *dev_priv = to_i915(dev);
3967 struct drm_i915_file_private *file_priv = file->driver_priv;
3968 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3969 struct drm_i915_gem_request *request, *target = NULL;
3970 long ret;
3971
3972 /* ABI: return -EIO if already wedged */
3973 if (i915_terminally_wedged(&dev_priv->gpu_error))
3974 return -EIO;
3975
3976 spin_lock(&file_priv->mm.lock);
3977 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3978 if (time_after_eq(request->emitted_jiffies, recent_enough))
3979 break;
3980
3981 if (target) {
3982 list_del(&target->client_link);
3983 target->file_priv = NULL;
3984 }
3985
3986 target = request;
3987 }
3988 if (target)
3989 i915_gem_request_get(target);
3990 spin_unlock(&file_priv->mm.lock);
3991
3992 if (target == NULL)
3993 return 0;
3994
3995 ret = i915_wait_request(target,
3996 I915_WAIT_INTERRUPTIBLE,
3997 MAX_SCHEDULE_TIMEOUT);
3998 i915_gem_request_put(target);
3999
4000 return ret < 0 ? ret : 0;
4001 }
4002
4003 struct i915_vma *
4004 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4005 const struct i915_ggtt_view *view,
4006 u64 size,
4007 u64 alignment,
4008 u64 flags)
4009 {
4010 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4011 struct i915_address_space *vm = &dev_priv->ggtt.base;
4012 struct i915_vma *vma;
4013 int ret;
4014
4015 lockdep_assert_held(&obj->base.dev->struct_mutex);
4016
4017 vma = i915_vma_instance(obj, vm, view);
4018 if (unlikely(IS_ERR(vma)))
4019 return vma;
4020
4021 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4022 if (flags & PIN_NONBLOCK &&
4023 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4024 return ERR_PTR(-ENOSPC);
4025
4026 if (flags & PIN_MAPPABLE) {
4027 /* If the required space is larger than the available
4028 * aperture, we will not able to find a slot for the
4029 * object and unbinding the object now will be in
4030 * vain. Worse, doing so may cause us to ping-pong
4031 * the object in and out of the Global GTT and
4032 * waste a lot of cycles under the mutex.
4033 */
4034 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4035 return ERR_PTR(-E2BIG);
4036
4037 /* If NONBLOCK is set the caller is optimistically
4038 * trying to cache the full object within the mappable
4039 * aperture, and *must* have a fallback in place for
4040 * situations where we cannot bind the object. We
4041 * can be a little more lax here and use the fallback
4042 * more often to avoid costly migrations of ourselves
4043 * and other objects within the aperture.
4044 *
4045 * Half-the-aperture is used as a simple heuristic.
4046 * More interesting would to do search for a free
4047 * block prior to making the commitment to unbind.
4048 * That caters for the self-harm case, and with a
4049 * little more heuristics (e.g. NOFAULT, NOEVICT)
4050 * we could try to minimise harm to others.
4051 */
4052 if (flags & PIN_NONBLOCK &&
4053 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4054 return ERR_PTR(-ENOSPC);
4055 }
4056
4057 WARN(i915_vma_is_pinned(vma),
4058 "bo is already pinned in ggtt with incorrect alignment:"
4059 " offset=%08x, req.alignment=%llx,"
4060 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4061 i915_ggtt_offset(vma), alignment,
4062 !!(flags & PIN_MAPPABLE),
4063 i915_vma_is_map_and_fenceable(vma));
4064 ret = i915_vma_unbind(vma);
4065 if (ret)
4066 return ERR_PTR(ret);
4067 }
4068
4069 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4070 if (ret)
4071 return ERR_PTR(ret);
4072
4073 return vma;
4074 }
4075
4076 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4077 {
4078 /* Note that we could alias engines in the execbuf API, but
4079 * that would be very unwise as it prevents userspace from
4080 * fine control over engine selection. Ahem.
4081 *
4082 * This should be something like EXEC_MAX_ENGINE instead of
4083 * I915_NUM_ENGINES.
4084 */
4085 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4086 return 0x10000 << id;
4087 }
4088
4089 static __always_inline unsigned int __busy_write_id(unsigned int id)
4090 {
4091 /* The uABI guarantees an active writer is also amongst the read
4092 * engines. This would be true if we accessed the activity tracking
4093 * under the lock, but as we perform the lookup of the object and
4094 * its activity locklessly we can not guarantee that the last_write
4095 * being active implies that we have set the same engine flag from
4096 * last_read - hence we always set both read and write busy for
4097 * last_write.
4098 */
4099 return id | __busy_read_flag(id);
4100 }
4101
4102 static __always_inline unsigned int
4103 __busy_set_if_active(const struct dma_fence *fence,
4104 unsigned int (*flag)(unsigned int id))
4105 {
4106 struct drm_i915_gem_request *rq;
4107
4108 /* We have to check the current hw status of the fence as the uABI
4109 * guarantees forward progress. We could rely on the idle worker
4110 * to eventually flush us, but to minimise latency just ask the
4111 * hardware.
4112 *
4113 * Note we only report on the status of native fences.
4114 */
4115 if (!dma_fence_is_i915(fence))
4116 return 0;
4117
4118 /* opencode to_request() in order to avoid const warnings */
4119 rq = container_of(fence, struct drm_i915_gem_request, fence);
4120 if (i915_gem_request_completed(rq))
4121 return 0;
4122
4123 return flag(rq->engine->uabi_id);
4124 }
4125
4126 static __always_inline unsigned int
4127 busy_check_reader(const struct dma_fence *fence)
4128 {
4129 return __busy_set_if_active(fence, __busy_read_flag);
4130 }
4131
4132 static __always_inline unsigned int
4133 busy_check_writer(const struct dma_fence *fence)
4134 {
4135 if (!fence)
4136 return 0;
4137
4138 return __busy_set_if_active(fence, __busy_write_id);
4139 }
4140
4141 int
4142 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4143 struct drm_file *file)
4144 {
4145 struct drm_i915_gem_busy *args = data;
4146 struct drm_i915_gem_object *obj;
4147 struct reservation_object_list *list;
4148 unsigned int seq;
4149 int err;
4150
4151 err = -ENOENT;
4152 rcu_read_lock();
4153 obj = i915_gem_object_lookup_rcu(file, args->handle);
4154 if (!obj)
4155 goto out;
4156
4157 /* A discrepancy here is that we do not report the status of
4158 * non-i915 fences, i.e. even though we may report the object as idle,
4159 * a call to set-domain may still stall waiting for foreign rendering.
4160 * This also means that wait-ioctl may report an object as busy,
4161 * where busy-ioctl considers it idle.
4162 *
4163 * We trade the ability to warn of foreign fences to report on which
4164 * i915 engines are active for the object.
4165 *
4166 * Alternatively, we can trade that extra information on read/write
4167 * activity with
4168 * args->busy =
4169 * !reservation_object_test_signaled_rcu(obj->resv, true);
4170 * to report the overall busyness. This is what the wait-ioctl does.
4171 *
4172 */
4173 retry:
4174 seq = raw_read_seqcount(&obj->resv->seq);
4175
4176 /* Translate the exclusive fence to the READ *and* WRITE engine */
4177 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4178
4179 /* Translate shared fences to READ set of engines */
4180 list = rcu_dereference(obj->resv->fence);
4181 if (list) {
4182 unsigned int shared_count = list->shared_count, i;
4183
4184 for (i = 0; i < shared_count; ++i) {
4185 struct dma_fence *fence =
4186 rcu_dereference(list->shared[i]);
4187
4188 args->busy |= busy_check_reader(fence);
4189 }
4190 }
4191
4192 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4193 goto retry;
4194
4195 err = 0;
4196 out:
4197 rcu_read_unlock();
4198 return err;
4199 }
4200
4201 int
4202 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4203 struct drm_file *file_priv)
4204 {
4205 return i915_gem_ring_throttle(dev, file_priv);
4206 }
4207
4208 int
4209 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4210 struct drm_file *file_priv)
4211 {
4212 struct drm_i915_private *dev_priv = to_i915(dev);
4213 struct drm_i915_gem_madvise *args = data;
4214 struct drm_i915_gem_object *obj;
4215 int err;
4216
4217 switch (args->madv) {
4218 case I915_MADV_DONTNEED:
4219 case I915_MADV_WILLNEED:
4220 break;
4221 default:
4222 return -EINVAL;
4223 }
4224
4225 obj = i915_gem_object_lookup(file_priv, args->handle);
4226 if (!obj)
4227 return -ENOENT;
4228
4229 err = mutex_lock_interruptible(&obj->mm.lock);
4230 if (err)
4231 goto out;
4232
4233 if (obj->mm.pages &&
4234 i915_gem_object_is_tiled(obj) &&
4235 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4236 if (obj->mm.madv == I915_MADV_WILLNEED) {
4237 GEM_BUG_ON(!obj->mm.quirked);
4238 __i915_gem_object_unpin_pages(obj);
4239 obj->mm.quirked = false;
4240 }
4241 if (args->madv == I915_MADV_WILLNEED) {
4242 GEM_BUG_ON(obj->mm.quirked);
4243 __i915_gem_object_pin_pages(obj);
4244 obj->mm.quirked = true;
4245 }
4246 }
4247
4248 if (obj->mm.madv != __I915_MADV_PURGED)
4249 obj->mm.madv = args->madv;
4250
4251 /* if the object is no longer attached, discard its backing storage */
4252 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4253 i915_gem_object_truncate(obj);
4254
4255 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4256 mutex_unlock(&obj->mm.lock);
4257
4258 out:
4259 i915_gem_object_put(obj);
4260 return err;
4261 }
4262
4263 static void
4264 frontbuffer_retire(struct i915_gem_active *active,
4265 struct drm_i915_gem_request *request)
4266 {
4267 struct drm_i915_gem_object *obj =
4268 container_of(active, typeof(*obj), frontbuffer_write);
4269
4270 intel_fb_obj_flush(obj, ORIGIN_CS);
4271 }
4272
4273 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4274 const struct drm_i915_gem_object_ops *ops)
4275 {
4276 mutex_init(&obj->mm.lock);
4277
4278 INIT_LIST_HEAD(&obj->global_link);
4279 INIT_LIST_HEAD(&obj->userfault_link);
4280 INIT_LIST_HEAD(&obj->vma_list);
4281 INIT_LIST_HEAD(&obj->lut_list);
4282 INIT_LIST_HEAD(&obj->batch_pool_link);
4283
4284 obj->ops = ops;
4285
4286 reservation_object_init(&obj->__builtin_resv);
4287 obj->resv = &obj->__builtin_resv;
4288
4289 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4290 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4291
4292 obj->mm.madv = I915_MADV_WILLNEED;
4293 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4294 mutex_init(&obj->mm.get_page.lock);
4295
4296 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4297 }
4298
4299 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4300 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4301 I915_GEM_OBJECT_IS_SHRINKABLE,
4302
4303 .get_pages = i915_gem_object_get_pages_gtt,
4304 .put_pages = i915_gem_object_put_pages_gtt,
4305
4306 .pwrite = i915_gem_object_pwrite_gtt,
4307 };
4308
4309 struct drm_i915_gem_object *
4310 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4311 {
4312 struct drm_i915_gem_object *obj;
4313 struct address_space *mapping;
4314 unsigned int cache_level;
4315 gfp_t mask;
4316 int ret;
4317
4318 /* There is a prevalence of the assumption that we fit the object's
4319 * page count inside a 32bit _signed_ variable. Let's document this and
4320 * catch if we ever need to fix it. In the meantime, if you do spot
4321 * such a local variable, please consider fixing!
4322 */
4323 if (size >> PAGE_SHIFT > INT_MAX)
4324 return ERR_PTR(-E2BIG);
4325
4326 if (overflows_type(size, obj->base.size))
4327 return ERR_PTR(-E2BIG);
4328
4329 obj = i915_gem_object_alloc(dev_priv);
4330 if (obj == NULL)
4331 return ERR_PTR(-ENOMEM);
4332
4333 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4334 if (ret)
4335 goto fail;
4336
4337 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4338 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4339 /* 965gm cannot relocate objects above 4GiB. */
4340 mask &= ~__GFP_HIGHMEM;
4341 mask |= __GFP_DMA32;
4342 }
4343
4344 mapping = obj->base.filp->f_mapping;
4345 mapping_set_gfp_mask(mapping, mask);
4346 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4347
4348 i915_gem_object_init(obj, &i915_gem_object_ops);
4349
4350 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4351 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4352
4353 if (HAS_LLC(dev_priv))
4354 /* On some devices, we can have the GPU use the LLC (the CPU
4355 * cache) for about a 10% performance improvement
4356 * compared to uncached. Graphics requests other than
4357 * display scanout are coherent with the CPU in
4358 * accessing this cache. This means in this mode we
4359 * don't need to clflush on the CPU side, and on the
4360 * GPU side we only need to flush internal caches to
4361 * get data visible to the CPU.
4362 *
4363 * However, we maintain the display planes as UC, and so
4364 * need to rebind when first used as such.
4365 */
4366 cache_level = I915_CACHE_LLC;
4367 else
4368 cache_level = I915_CACHE_NONE;
4369
4370 i915_gem_object_set_cache_coherency(obj, cache_level);
4371
4372 trace_i915_gem_object_create(obj);
4373
4374 return obj;
4375
4376 fail:
4377 i915_gem_object_free(obj);
4378 return ERR_PTR(ret);
4379 }
4380
4381 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382 {
4383 /* If we are the last user of the backing storage (be it shmemfs
4384 * pages or stolen etc), we know that the pages are going to be
4385 * immediately released. In this case, we can then skip copying
4386 * back the contents from the GPU.
4387 */
4388
4389 if (obj->mm.madv != I915_MADV_WILLNEED)
4390 return false;
4391
4392 if (obj->base.filp == NULL)
4393 return true;
4394
4395 /* At first glance, this looks racy, but then again so would be
4396 * userspace racing mmap against close. However, the first external
4397 * reference to the filp can only be obtained through the
4398 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 * acquiring such a reference whilst we are in the middle of
4400 * freeing the object.
4401 */
4402 return atomic_long_read(&obj->base.filp->f_count) == 1;
4403 }
4404
4405 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4406 struct llist_node *freed)
4407 {
4408 struct drm_i915_gem_object *obj, *on;
4409
4410 mutex_lock(&i915->drm.struct_mutex);
4411 intel_runtime_pm_get(i915);
4412 llist_for_each_entry(obj, freed, freed) {
4413 struct i915_vma *vma, *vn;
4414
4415 trace_i915_gem_object_destroy(obj);
4416
4417 GEM_BUG_ON(i915_gem_object_is_active(obj));
4418 list_for_each_entry_safe(vma, vn,
4419 &obj->vma_list, obj_link) {
4420 GEM_BUG_ON(i915_vma_is_active(vma));
4421 vma->flags &= ~I915_VMA_PIN_MASK;
4422 i915_vma_close(vma);
4423 }
4424 GEM_BUG_ON(!list_empty(&obj->vma_list));
4425 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4426
4427 list_del(&obj->global_link);
4428 }
4429 intel_runtime_pm_put(i915);
4430 mutex_unlock(&i915->drm.struct_mutex);
4431
4432 cond_resched();
4433
4434 llist_for_each_entry_safe(obj, on, freed, freed) {
4435 GEM_BUG_ON(obj->bind_count);
4436 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4437
4438 if (obj->ops->release)
4439 obj->ops->release(obj);
4440
4441 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4442 atomic_set(&obj->mm.pages_pin_count, 0);
4443 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4444 GEM_BUG_ON(obj->mm.pages);
4445
4446 if (obj->base.import_attach)
4447 drm_prime_gem_destroy(&obj->base, NULL);
4448
4449 reservation_object_fini(&obj->__builtin_resv);
4450 drm_gem_object_release(&obj->base);
4451 i915_gem_info_remove_obj(i915, obj->base.size);
4452
4453 kfree(obj->bit_17);
4454 i915_gem_object_free(obj);
4455 }
4456 }
4457
4458 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4459 {
4460 struct llist_node *freed;
4461
4462 freed = llist_del_all(&i915->mm.free_list);
4463 if (unlikely(freed))
4464 __i915_gem_free_objects(i915, freed);
4465 }
4466
4467 static void __i915_gem_free_work(struct work_struct *work)
4468 {
4469 struct drm_i915_private *i915 =
4470 container_of(work, struct drm_i915_private, mm.free_work);
4471 struct llist_node *freed;
4472
4473 /* All file-owned VMA should have been released by this point through
4474 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4475 * However, the object may also be bound into the global GTT (e.g.
4476 * older GPUs without per-process support, or for direct access through
4477 * the GTT either for the user or for scanout). Those VMA still need to
4478 * unbound now.
4479 */
4480
4481 while ((freed = llist_del_all(&i915->mm.free_list))) {
4482 __i915_gem_free_objects(i915, freed);
4483 if (need_resched())
4484 break;
4485 }
4486 }
4487
4488 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4489 {
4490 struct drm_i915_gem_object *obj =
4491 container_of(head, typeof(*obj), rcu);
4492 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4493
4494 /* We can't simply use call_rcu() from i915_gem_free_object()
4495 * as we need to block whilst unbinding, and the call_rcu
4496 * task may be called from softirq context. So we take a
4497 * detour through a worker.
4498 */
4499 if (llist_add(&obj->freed, &i915->mm.free_list))
4500 schedule_work(&i915->mm.free_work);
4501 }
4502
4503 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4504 {
4505 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4506
4507 if (obj->mm.quirked)
4508 __i915_gem_object_unpin_pages(obj);
4509
4510 if (discard_backing_storage(obj))
4511 obj->mm.madv = I915_MADV_DONTNEED;
4512
4513 /* Before we free the object, make sure any pure RCU-only
4514 * read-side critical sections are complete, e.g.
4515 * i915_gem_busy_ioctl(). For the corresponding synchronized
4516 * lookup see i915_gem_object_lookup_rcu().
4517 */
4518 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4519 }
4520
4521 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4522 {
4523 lockdep_assert_held(&obj->base.dev->struct_mutex);
4524
4525 if (!i915_gem_object_has_active_reference(obj) &&
4526 i915_gem_object_is_active(obj))
4527 i915_gem_object_set_active_reference(obj);
4528 else
4529 i915_gem_object_put(obj);
4530 }
4531
4532 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4533 {
4534 struct intel_engine_cs *engine;
4535 enum intel_engine_id id;
4536
4537 for_each_engine(engine, dev_priv, id)
4538 GEM_BUG_ON(engine->last_retired_context &&
4539 !i915_gem_context_is_kernel(engine->last_retired_context));
4540 }
4541
4542 void i915_gem_sanitize(struct drm_i915_private *i915)
4543 {
4544 /*
4545 * If we inherit context state from the BIOS or earlier occupants
4546 * of the GPU, the GPU may be in an inconsistent state when we
4547 * try to take over. The only way to remove the earlier state
4548 * is by resetting. However, resetting on earlier gen is tricky as
4549 * it may impact the display and we are uncertain about the stability
4550 * of the reset, so this could be applied to even earlier gen.
4551 */
4552 if (INTEL_GEN(i915) >= 5) {
4553 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4554 WARN_ON(reset && reset != -ENODEV);
4555 }
4556 }
4557
4558 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4559 {
4560 struct drm_device *dev = &dev_priv->drm;
4561 int ret;
4562
4563 intel_runtime_pm_get(dev_priv);
4564 intel_suspend_gt_powersave(dev_priv);
4565
4566 mutex_lock(&dev->struct_mutex);
4567
4568 /* We have to flush all the executing contexts to main memory so
4569 * that they can saved in the hibernation image. To ensure the last
4570 * context image is coherent, we have to switch away from it. That
4571 * leaves the dev_priv->kernel_context still active when
4572 * we actually suspend, and its image in memory may not match the GPU
4573 * state. Fortunately, the kernel_context is disposable and we do
4574 * not rely on its state.
4575 */
4576 ret = i915_gem_switch_to_kernel_context(dev_priv);
4577 if (ret)
4578 goto err_unlock;
4579
4580 ret = i915_gem_wait_for_idle(dev_priv,
4581 I915_WAIT_INTERRUPTIBLE |
4582 I915_WAIT_LOCKED);
4583 if (ret)
4584 goto err_unlock;
4585
4586 assert_kernel_context_is_current(dev_priv);
4587 i915_gem_contexts_lost(dev_priv);
4588 mutex_unlock(&dev->struct_mutex);
4589
4590 intel_guc_suspend(dev_priv);
4591
4592 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4593 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4594
4595 /* As the idle_work is rearming if it detects a race, play safe and
4596 * repeat the flush until it is definitely idle.
4597 */
4598 while (flush_delayed_work(&dev_priv->gt.idle_work))
4599 ;
4600
4601 /* Assert that we sucessfully flushed all the work and
4602 * reset the GPU back to its idle, low power state.
4603 */
4604 WARN_ON(dev_priv->gt.awake);
4605 WARN_ON(!intel_engines_are_idle(dev_priv));
4606
4607 /*
4608 * Neither the BIOS, ourselves or any other kernel
4609 * expects the system to be in execlists mode on startup,
4610 * so we need to reset the GPU back to legacy mode. And the only
4611 * known way to disable logical contexts is through a GPU reset.
4612 *
4613 * So in order to leave the system in a known default configuration,
4614 * always reset the GPU upon unload and suspend. Afterwards we then
4615 * clean up the GEM state tracking, flushing off the requests and
4616 * leaving the system in a known idle state.
4617 *
4618 * Note that is of the upmost importance that the GPU is idle and
4619 * all stray writes are flushed *before* we dismantle the backing
4620 * storage for the pinned objects.
4621 *
4622 * However, since we are uncertain that resetting the GPU on older
4623 * machines is a good idea, we don't - just in case it leaves the
4624 * machine in an unusable condition.
4625 */
4626 i915_gem_sanitize(dev_priv);
4627 goto out_rpm_put;
4628
4629 err_unlock:
4630 mutex_unlock(&dev->struct_mutex);
4631 out_rpm_put:
4632 intel_runtime_pm_put(dev_priv);
4633 return ret;
4634 }
4635
4636 void i915_gem_resume(struct drm_i915_private *dev_priv)
4637 {
4638 struct drm_device *dev = &dev_priv->drm;
4639
4640 WARN_ON(dev_priv->gt.awake);
4641
4642 mutex_lock(&dev->struct_mutex);
4643 i915_gem_restore_gtt_mappings(dev_priv);
4644
4645 /* As we didn't flush the kernel context before suspend, we cannot
4646 * guarantee that the context image is complete. So let's just reset
4647 * it and start again.
4648 */
4649 dev_priv->gt.resume(dev_priv);
4650
4651 mutex_unlock(&dev->struct_mutex);
4652 }
4653
4654 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4655 {
4656 if (INTEL_GEN(dev_priv) < 5 ||
4657 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4658 return;
4659
4660 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4661 DISP_TILE_SURFACE_SWIZZLING);
4662
4663 if (IS_GEN5(dev_priv))
4664 return;
4665
4666 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4667 if (IS_GEN6(dev_priv))
4668 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4669 else if (IS_GEN7(dev_priv))
4670 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4671 else if (IS_GEN8(dev_priv))
4672 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4673 else
4674 BUG();
4675 }
4676
4677 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4678 {
4679 I915_WRITE(RING_CTL(base), 0);
4680 I915_WRITE(RING_HEAD(base), 0);
4681 I915_WRITE(RING_TAIL(base), 0);
4682 I915_WRITE(RING_START(base), 0);
4683 }
4684
4685 static void init_unused_rings(struct drm_i915_private *dev_priv)
4686 {
4687 if (IS_I830(dev_priv)) {
4688 init_unused_ring(dev_priv, PRB1_BASE);
4689 init_unused_ring(dev_priv, SRB0_BASE);
4690 init_unused_ring(dev_priv, SRB1_BASE);
4691 init_unused_ring(dev_priv, SRB2_BASE);
4692 init_unused_ring(dev_priv, SRB3_BASE);
4693 } else if (IS_GEN2(dev_priv)) {
4694 init_unused_ring(dev_priv, SRB0_BASE);
4695 init_unused_ring(dev_priv, SRB1_BASE);
4696 } else if (IS_GEN3(dev_priv)) {
4697 init_unused_ring(dev_priv, PRB1_BASE);
4698 init_unused_ring(dev_priv, PRB2_BASE);
4699 }
4700 }
4701
4702 static int __i915_gem_restart_engines(void *data)
4703 {
4704 struct drm_i915_private *i915 = data;
4705 struct intel_engine_cs *engine;
4706 enum intel_engine_id id;
4707 int err;
4708
4709 for_each_engine(engine, i915, id) {
4710 err = engine->init_hw(engine);
4711 if (err)
4712 return err;
4713 }
4714
4715 return 0;
4716 }
4717
4718 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4719 {
4720 int ret;
4721
4722 dev_priv->gt.last_init_time = ktime_get();
4723
4724 /* Double layer security blanket, see i915_gem_init() */
4725 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4726
4727 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4728 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4729
4730 if (IS_HASWELL(dev_priv))
4731 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4732 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4733
4734 if (HAS_PCH_NOP(dev_priv)) {
4735 if (IS_IVYBRIDGE(dev_priv)) {
4736 u32 temp = I915_READ(GEN7_MSG_CTL);
4737 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4738 I915_WRITE(GEN7_MSG_CTL, temp);
4739 } else if (INTEL_GEN(dev_priv) >= 7) {
4740 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4741 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4742 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4743 }
4744 }
4745
4746 i915_gem_init_swizzling(dev_priv);
4747
4748 /*
4749 * At least 830 can leave some of the unused rings
4750 * "active" (ie. head != tail) after resume which
4751 * will prevent c3 entry. Makes sure all unused rings
4752 * are totally idle.
4753 */
4754 init_unused_rings(dev_priv);
4755
4756 BUG_ON(!dev_priv->kernel_context);
4757
4758 ret = i915_ppgtt_init_hw(dev_priv);
4759 if (ret) {
4760 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4761 goto out;
4762 }
4763
4764 /* Need to do basic initialisation of all rings first: */
4765 ret = __i915_gem_restart_engines(dev_priv);
4766 if (ret)
4767 goto out;
4768
4769 intel_mocs_init_l3cc_table(dev_priv);
4770
4771 /* We can't enable contexts until all firmware is loaded */
4772 ret = intel_uc_init_hw(dev_priv);
4773 if (ret)
4774 goto out;
4775
4776 out:
4777 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4778 return ret;
4779 }
4780
4781 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4782 {
4783 if (INTEL_INFO(dev_priv)->gen < 6)
4784 return false;
4785
4786 /* TODO: make semaphores and Execlists play nicely together */
4787 if (i915.enable_execlists)
4788 return false;
4789
4790 if (value >= 0)
4791 return value;
4792
4793 /* Enable semaphores on SNB when IO remapping is off */
4794 if (IS_GEN6(dev_priv) && intel_vtd_active())
4795 return false;
4796
4797 return true;
4798 }
4799
4800 int i915_gem_init(struct drm_i915_private *dev_priv)
4801 {
4802 int ret;
4803
4804 mutex_lock(&dev_priv->drm.struct_mutex);
4805
4806 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4807
4808 if (!i915.enable_execlists) {
4809 dev_priv->gt.resume = intel_legacy_submission_resume;
4810 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4811 } else {
4812 dev_priv->gt.resume = intel_lr_context_resume;
4813 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4814 }
4815
4816 /* This is just a security blanket to placate dragons.
4817 * On some systems, we very sporadically observe that the first TLBs
4818 * used by the CS may be stale, despite us poking the TLB reset. If
4819 * we hold the forcewake during initialisation these problems
4820 * just magically go away.
4821 */
4822 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4823
4824 ret = i915_gem_init_userptr(dev_priv);
4825 if (ret)
4826 goto out_unlock;
4827
4828 ret = i915_gem_init_ggtt(dev_priv);
4829 if (ret)
4830 goto out_unlock;
4831
4832 ret = i915_gem_contexts_init(dev_priv);
4833 if (ret)
4834 goto out_unlock;
4835
4836 ret = intel_engines_init(dev_priv);
4837 if (ret)
4838 goto out_unlock;
4839
4840 ret = i915_gem_init_hw(dev_priv);
4841 if (ret == -EIO) {
4842 /* Allow engine initialisation to fail by marking the GPU as
4843 * wedged. But we only want to do this where the GPU is angry,
4844 * for all other failure, such as an allocation failure, bail.
4845 */
4846 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4847 i915_gem_set_wedged(dev_priv);
4848 ret = 0;
4849 }
4850
4851 out_unlock:
4852 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4853 mutex_unlock(&dev_priv->drm.struct_mutex);
4854
4855 return ret;
4856 }
4857
4858 void i915_gem_init_mmio(struct drm_i915_private *i915)
4859 {
4860 i915_gem_sanitize(i915);
4861 }
4862
4863 void
4864 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4865 {
4866 struct intel_engine_cs *engine;
4867 enum intel_engine_id id;
4868
4869 for_each_engine(engine, dev_priv, id)
4870 dev_priv->gt.cleanup_engine(engine);
4871 }
4872
4873 void
4874 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4875 {
4876 int i;
4877
4878 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4879 !IS_CHERRYVIEW(dev_priv))
4880 dev_priv->num_fence_regs = 32;
4881 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4882 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4883 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4884 dev_priv->num_fence_regs = 16;
4885 else
4886 dev_priv->num_fence_regs = 8;
4887
4888 if (intel_vgpu_active(dev_priv))
4889 dev_priv->num_fence_regs =
4890 I915_READ(vgtif_reg(avail_rs.fence_num));
4891
4892 /* Initialize fence registers to zero */
4893 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4894 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4895
4896 fence->i915 = dev_priv;
4897 fence->id = i;
4898 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4899 }
4900 i915_gem_restore_fences(dev_priv);
4901
4902 i915_gem_detect_bit_6_swizzle(dev_priv);
4903 }
4904
4905 int
4906 i915_gem_load_init(struct drm_i915_private *dev_priv)
4907 {
4908 int err = -ENOMEM;
4909
4910 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4911 if (!dev_priv->objects)
4912 goto err_out;
4913
4914 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4915 if (!dev_priv->vmas)
4916 goto err_objects;
4917
4918 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4919 if (!dev_priv->luts)
4920 goto err_vmas;
4921
4922 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4923 SLAB_HWCACHE_ALIGN |
4924 SLAB_RECLAIM_ACCOUNT |
4925 SLAB_TYPESAFE_BY_RCU);
4926 if (!dev_priv->requests)
4927 goto err_luts;
4928
4929 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4930 SLAB_HWCACHE_ALIGN |
4931 SLAB_RECLAIM_ACCOUNT);
4932 if (!dev_priv->dependencies)
4933 goto err_requests;
4934
4935 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4936 if (!dev_priv->priorities)
4937 goto err_dependencies;
4938
4939 mutex_lock(&dev_priv->drm.struct_mutex);
4940 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4941 err = i915_gem_timeline_init__global(dev_priv);
4942 mutex_unlock(&dev_priv->drm.struct_mutex);
4943 if (err)
4944 goto err_priorities;
4945
4946 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4947 init_llist_head(&dev_priv->mm.free_list);
4948 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4949 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4950 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4951 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4952 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4953 i915_gem_retire_work_handler);
4954 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4955 i915_gem_idle_work_handler);
4956 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4957 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4958
4959 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4960
4961 spin_lock_init(&dev_priv->fb_tracking.lock);
4962
4963 return 0;
4964
4965 err_priorities:
4966 kmem_cache_destroy(dev_priv->priorities);
4967 err_dependencies:
4968 kmem_cache_destroy(dev_priv->dependencies);
4969 err_requests:
4970 kmem_cache_destroy(dev_priv->requests);
4971 err_luts:
4972 kmem_cache_destroy(dev_priv->luts);
4973 err_vmas:
4974 kmem_cache_destroy(dev_priv->vmas);
4975 err_objects:
4976 kmem_cache_destroy(dev_priv->objects);
4977 err_out:
4978 return err;
4979 }
4980
4981 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4982 {
4983 i915_gem_drain_freed_objects(dev_priv);
4984 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4985 WARN_ON(dev_priv->mm.object_count);
4986
4987 mutex_lock(&dev_priv->drm.struct_mutex);
4988 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4989 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4990 mutex_unlock(&dev_priv->drm.struct_mutex);
4991
4992 kmem_cache_destroy(dev_priv->priorities);
4993 kmem_cache_destroy(dev_priv->dependencies);
4994 kmem_cache_destroy(dev_priv->requests);
4995 kmem_cache_destroy(dev_priv->luts);
4996 kmem_cache_destroy(dev_priv->vmas);
4997 kmem_cache_destroy(dev_priv->objects);
4998
4999 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5000 rcu_barrier();
5001 }
5002
5003 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5004 {
5005 /* Discard all purgeable objects, let userspace recover those as
5006 * required after resuming.
5007 */
5008 i915_gem_shrink_all(dev_priv);
5009
5010 return 0;
5011 }
5012
5013 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5014 {
5015 struct drm_i915_gem_object *obj;
5016 struct list_head *phases[] = {
5017 &dev_priv->mm.unbound_list,
5018 &dev_priv->mm.bound_list,
5019 NULL
5020 }, **p;
5021
5022 /* Called just before we write the hibernation image.
5023 *
5024 * We need to update the domain tracking to reflect that the CPU
5025 * will be accessing all the pages to create and restore from the
5026 * hibernation, and so upon restoration those pages will be in the
5027 * CPU domain.
5028 *
5029 * To make sure the hibernation image contains the latest state,
5030 * we update that state just before writing out the image.
5031 *
5032 * To try and reduce the hibernation image, we manually shrink
5033 * the objects as well, see i915_gem_freeze()
5034 */
5035
5036 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5037 i915_gem_drain_freed_objects(dev_priv);
5038
5039 mutex_lock(&dev_priv->drm.struct_mutex);
5040 for (p = phases; *p; p++) {
5041 list_for_each_entry(obj, *p, global_link)
5042 __start_cpu_write(obj);
5043 }
5044 mutex_unlock(&dev_priv->drm.struct_mutex);
5045
5046 return 0;
5047 }
5048
5049 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5050 {
5051 struct drm_i915_file_private *file_priv = file->driver_priv;
5052 struct drm_i915_gem_request *request;
5053
5054 /* Clean up our request list when the client is going away, so that
5055 * later retire_requests won't dereference our soon-to-be-gone
5056 * file_priv.
5057 */
5058 spin_lock(&file_priv->mm.lock);
5059 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5060 request->file_priv = NULL;
5061 spin_unlock(&file_priv->mm.lock);
5062 }
5063
5064 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5065 {
5066 struct drm_i915_file_private *file_priv;
5067 int ret;
5068
5069 DRM_DEBUG("\n");
5070
5071 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5072 if (!file_priv)
5073 return -ENOMEM;
5074
5075 file->driver_priv = file_priv;
5076 file_priv->dev_priv = i915;
5077 file_priv->file = file;
5078
5079 spin_lock_init(&file_priv->mm.lock);
5080 INIT_LIST_HEAD(&file_priv->mm.request_list);
5081
5082 file_priv->bsd_engine = -1;
5083
5084 ret = i915_gem_context_open(i915, file);
5085 if (ret)
5086 kfree(file_priv);
5087
5088 return ret;
5089 }
5090
5091 /**
5092 * i915_gem_track_fb - update frontbuffer tracking
5093 * @old: current GEM buffer for the frontbuffer slots
5094 * @new: new GEM buffer for the frontbuffer slots
5095 * @frontbuffer_bits: bitmask of frontbuffer slots
5096 *
5097 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5098 * from @old and setting them in @new. Both @old and @new can be NULL.
5099 */
5100 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5101 struct drm_i915_gem_object *new,
5102 unsigned frontbuffer_bits)
5103 {
5104 /* Control of individual bits within the mask are guarded by
5105 * the owning plane->mutex, i.e. we can never see concurrent
5106 * manipulation of individual bits. But since the bitfield as a whole
5107 * is updated using RMW, we need to use atomics in order to update
5108 * the bits.
5109 */
5110 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5111 sizeof(atomic_t) * BITS_PER_BYTE);
5112
5113 if (old) {
5114 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5115 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5116 }
5117
5118 if (new) {
5119 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5120 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5121 }
5122 }
5123
5124 /* Allocate a new GEM object and fill it with the supplied data */
5125 struct drm_i915_gem_object *
5126 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5127 const void *data, size_t size)
5128 {
5129 struct drm_i915_gem_object *obj;
5130 struct file *file;
5131 size_t offset;
5132 int err;
5133
5134 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5135 if (IS_ERR(obj))
5136 return obj;
5137
5138 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5139
5140 file = obj->base.filp;
5141 offset = 0;
5142 do {
5143 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5144 struct page *page;
5145 void *pgdata, *vaddr;
5146
5147 err = pagecache_write_begin(file, file->f_mapping,
5148 offset, len, 0,
5149 &page, &pgdata);
5150 if (err < 0)
5151 goto fail;
5152
5153 vaddr = kmap(page);
5154 memcpy(vaddr, data, len);
5155 kunmap(page);
5156
5157 err = pagecache_write_end(file, file->f_mapping,
5158 offset, len, len,
5159 page, pgdata);
5160 if (err < 0)
5161 goto fail;
5162
5163 size -= len;
5164 data += len;
5165 offset += len;
5166 } while (size);
5167
5168 return obj;
5169
5170 fail:
5171 i915_gem_object_put(obj);
5172 return ERR_PTR(err);
5173 }
5174
5175 struct scatterlist *
5176 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5177 unsigned int n,
5178 unsigned int *offset)
5179 {
5180 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5181 struct scatterlist *sg;
5182 unsigned int idx, count;
5183
5184 might_sleep();
5185 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5186 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5187
5188 /* As we iterate forward through the sg, we record each entry in a
5189 * radixtree for quick repeated (backwards) lookups. If we have seen
5190 * this index previously, we will have an entry for it.
5191 *
5192 * Initial lookup is O(N), but this is amortized to O(1) for
5193 * sequential page access (where each new request is consecutive
5194 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5195 * i.e. O(1) with a large constant!
5196 */
5197 if (n < READ_ONCE(iter->sg_idx))
5198 goto lookup;
5199
5200 mutex_lock(&iter->lock);
5201
5202 /* We prefer to reuse the last sg so that repeated lookup of this
5203 * (or the subsequent) sg are fast - comparing against the last
5204 * sg is faster than going through the radixtree.
5205 */
5206
5207 sg = iter->sg_pos;
5208 idx = iter->sg_idx;
5209 count = __sg_page_count(sg);
5210
5211 while (idx + count <= n) {
5212 unsigned long exception, i;
5213 int ret;
5214
5215 /* If we cannot allocate and insert this entry, or the
5216 * individual pages from this range, cancel updating the
5217 * sg_idx so that on this lookup we are forced to linearly
5218 * scan onwards, but on future lookups we will try the
5219 * insertion again (in which case we need to be careful of
5220 * the error return reporting that we have already inserted
5221 * this index).
5222 */
5223 ret = radix_tree_insert(&iter->radix, idx, sg);
5224 if (ret && ret != -EEXIST)
5225 goto scan;
5226
5227 exception =
5228 RADIX_TREE_EXCEPTIONAL_ENTRY |
5229 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5230 for (i = 1; i < count; i++) {
5231 ret = radix_tree_insert(&iter->radix, idx + i,
5232 (void *)exception);
5233 if (ret && ret != -EEXIST)
5234 goto scan;
5235 }
5236
5237 idx += count;
5238 sg = ____sg_next(sg);
5239 count = __sg_page_count(sg);
5240 }
5241
5242 scan:
5243 iter->sg_pos = sg;
5244 iter->sg_idx = idx;
5245
5246 mutex_unlock(&iter->lock);
5247
5248 if (unlikely(n < idx)) /* insertion completed by another thread */
5249 goto lookup;
5250
5251 /* In case we failed to insert the entry into the radixtree, we need
5252 * to look beyond the current sg.
5253 */
5254 while (idx + count <= n) {
5255 idx += count;
5256 sg = ____sg_next(sg);
5257 count = __sg_page_count(sg);
5258 }
5259
5260 *offset = n - idx;
5261 return sg;
5262
5263 lookup:
5264 rcu_read_lock();
5265
5266 sg = radix_tree_lookup(&iter->radix, n);
5267 GEM_BUG_ON(!sg);
5268
5269 /* If this index is in the middle of multi-page sg entry,
5270 * the radixtree will contain an exceptional entry that points
5271 * to the start of that range. We will return the pointer to
5272 * the base page and the offset of this page within the
5273 * sg entry's range.
5274 */
5275 *offset = 0;
5276 if (unlikely(radix_tree_exception(sg))) {
5277 unsigned long base =
5278 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5279
5280 sg = radix_tree_lookup(&iter->radix, base);
5281 GEM_BUG_ON(!sg);
5282
5283 *offset = n - base;
5284 }
5285
5286 rcu_read_unlock();
5287
5288 return sg;
5289 }
5290
5291 struct page *
5292 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5293 {
5294 struct scatterlist *sg;
5295 unsigned int offset;
5296
5297 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5298
5299 sg = i915_gem_object_get_sg(obj, n, &offset);
5300 return nth_page(sg_page(sg), offset);
5301 }
5302
5303 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5304 struct page *
5305 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5306 unsigned int n)
5307 {
5308 struct page *page;
5309
5310 page = i915_gem_object_get_page(obj, n);
5311 if (!obj->mm.dirty)
5312 set_page_dirty(page);
5313
5314 return page;
5315 }
5316
5317 dma_addr_t
5318 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5319 unsigned long n)
5320 {
5321 struct scatterlist *sg;
5322 unsigned int offset;
5323
5324 sg = i915_gem_object_get_sg(obj, n, &offset);
5325 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5326 }
5327
5328 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5329 {
5330 struct sg_table *pages;
5331 int err;
5332
5333 if (align > obj->base.size)
5334 return -EINVAL;
5335
5336 if (obj->ops == &i915_gem_phys_ops)
5337 return 0;
5338
5339 if (obj->ops != &i915_gem_object_ops)
5340 return -EINVAL;
5341
5342 err = i915_gem_object_unbind(obj);
5343 if (err)
5344 return err;
5345
5346 mutex_lock(&obj->mm.lock);
5347
5348 if (obj->mm.madv != I915_MADV_WILLNEED) {
5349 err = -EFAULT;
5350 goto err_unlock;
5351 }
5352
5353 if (obj->mm.quirked) {
5354 err = -EFAULT;
5355 goto err_unlock;
5356 }
5357
5358 if (obj->mm.mapping) {
5359 err = -EBUSY;
5360 goto err_unlock;
5361 }
5362
5363 pages = obj->mm.pages;
5364 obj->ops = &i915_gem_phys_ops;
5365
5366 err = ____i915_gem_object_get_pages(obj);
5367 if (err)
5368 goto err_xfer;
5369
5370 /* Perma-pin (until release) the physical set of pages */
5371 __i915_gem_object_pin_pages(obj);
5372
5373 if (!IS_ERR_OR_NULL(pages))
5374 i915_gem_object_ops.put_pages(obj, pages);
5375 mutex_unlock(&obj->mm.lock);
5376 return 0;
5377
5378 err_xfer:
5379 obj->ops = &i915_gem_object_ops;
5380 obj->mm.pages = pages;
5381 err_unlock:
5382 mutex_unlock(&obj->mm.lock);
5383 return err;
5384 }
5385
5386 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5387 #include "selftests/scatterlist.c"
5388 #include "selftests/mock_gem_device.c"
5389 #include "selftests/huge_gem_object.c"
5390 #include "selftests/i915_gem_object.c"
5391 #include "selftests/i915_gem_coherency.c"
5392 #endif