]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
3601b8b6e45f31e3284567340100071f99000ac3
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
47 static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
49 struct drm_i915_gem_pwrite *args,
50 struct drm_file *file);
51 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
52
53 static void i915_gem_write_fence(struct drm_device *dev, int reg,
54 struct drm_i915_gem_object *obj);
55 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
56 struct drm_i915_fence_reg *fence,
57 bool enable);
58
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
61 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
62
63 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
64 {
65 if (obj->tiling_mode)
66 i915_gem_release_mmap(obj);
67
68 /* As we do not have an associated fence register, we will force
69 * a tiling change if we ever need to acquire one.
70 */
71 obj->tiling_changed = false;
72 obj->fence_reg = I915_FENCE_REG_NONE;
73 }
74
75 /* some bookkeeping */
76 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
77 size_t size)
78 {
79 dev_priv->mm.object_count++;
80 dev_priv->mm.object_memory += size;
81 }
82
83 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
84 size_t size)
85 {
86 dev_priv->mm.object_count--;
87 dev_priv->mm.object_memory -= size;
88 }
89
90 static int
91 i915_gem_wait_for_error(struct drm_device *dev)
92 {
93 struct drm_i915_private *dev_priv = dev->dev_private;
94 struct completion *x = &dev_priv->error_completion;
95 unsigned long flags;
96 int ret;
97
98 if (!atomic_read(&dev_priv->mm.wedged))
99 return 0;
100
101 ret = wait_for_completion_interruptible(x);
102 if (ret)
103 return ret;
104
105 if (atomic_read(&dev_priv->mm.wedged)) {
106 /* GPU is hung, bump the completion count to account for
107 * the token we just consumed so that we never hit zero and
108 * end up waiting upon a subsequent completion event that
109 * will never happen.
110 */
111 spin_lock_irqsave(&x->wait.lock, flags);
112 x->done++;
113 spin_unlock_irqrestore(&x->wait.lock, flags);
114 }
115 return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120 int ret;
121
122 ret = i915_gem_wait_for_error(dev);
123 if (ret)
124 return ret;
125
126 ret = mutex_lock_interruptible(&dev->struct_mutex);
127 if (ret)
128 return ret;
129
130 WARN_ON(i915_verify_lists(dev));
131 return 0;
132 }
133
134 static inline bool
135 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
136 {
137 return obj->gtt_space && !obj->active && obj->pin_count == 0;
138 }
139
140 int
141 i915_gem_init_ioctl(struct drm_device *dev, void *data,
142 struct drm_file *file)
143 {
144 struct drm_i915_gem_init *args = data;
145
146 if (args->gtt_start >= args->gtt_end ||
147 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
148 return -EINVAL;
149
150 /* GEM with user mode setting was never supported on ilk and later. */
151 if (INTEL_INFO(dev)->gen >= 5)
152 return -ENODEV;
153
154 mutex_lock(&dev->struct_mutex);
155 i915_gem_init_global_gtt(dev, args->gtt_start,
156 args->gtt_end, args->gtt_end);
157 mutex_unlock(&dev->struct_mutex);
158
159 return 0;
160 }
161
162 int
163 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_get_aperture *args = data;
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
170
171 if (!(dev->driver->driver_features & DRIVER_GEM))
172 return -ENODEV;
173
174 pinned = 0;
175 mutex_lock(&dev->struct_mutex);
176 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
177 pinned += obj->gtt_space->size;
178 mutex_unlock(&dev->struct_mutex);
179
180 args->aper_size = dev_priv->mm.gtt_total;
181 args->aper_available_size = args->aper_size - pinned;
182
183 return 0;
184 }
185
186 static int
187 i915_gem_create(struct drm_file *file,
188 struct drm_device *dev,
189 uint64_t size,
190 uint32_t *handle_p)
191 {
192 struct drm_i915_gem_object *obj;
193 int ret;
194 u32 handle;
195
196 size = roundup(size, PAGE_SIZE);
197 if (size == 0)
198 return -EINVAL;
199
200 /* Allocate the new object */
201 obj = i915_gem_alloc_object(dev, size);
202 if (obj == NULL)
203 return -ENOMEM;
204
205 ret = drm_gem_handle_create(file, &obj->base, &handle);
206 if (ret) {
207 drm_gem_object_release(&obj->base);
208 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
209 kfree(obj);
210 return ret;
211 }
212
213 /* drop reference from allocate - handle holds it now */
214 drm_gem_object_unreference(&obj->base);
215 trace_i915_gem_object_create(obj);
216
217 *handle_p = handle;
218 return 0;
219 }
220
221 int
222 i915_gem_dumb_create(struct drm_file *file,
223 struct drm_device *dev,
224 struct drm_mode_create_dumb *args)
225 {
226 /* have to work out size/pitch and return them */
227 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
228 args->size = args->pitch * args->height;
229 return i915_gem_create(file, dev,
230 args->size, &args->handle);
231 }
232
233 int i915_gem_dumb_destroy(struct drm_file *file,
234 struct drm_device *dev,
235 uint32_t handle)
236 {
237 return drm_gem_handle_delete(file, handle);
238 }
239
240 /**
241 * Creates a new mm object and returns a handle to it.
242 */
243 int
244 i915_gem_create_ioctl(struct drm_device *dev, void *data,
245 struct drm_file *file)
246 {
247 struct drm_i915_gem_create *args = data;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 {
254 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255
256 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
257 obj->tiling_mode != I915_TILING_NONE;
258 }
259
260 static inline int
261 __copy_to_user_swizzled(char __user *cpu_vaddr,
262 const char *gpu_vaddr, int gpu_offset,
263 int length)
264 {
265 int ret, cpu_offset = 0;
266
267 while (length > 0) {
268 int cacheline_end = ALIGN(gpu_offset + 1, 64);
269 int this_length = min(cacheline_end - gpu_offset, length);
270 int swizzled_gpu_offset = gpu_offset ^ 64;
271
272 ret = __copy_to_user(cpu_vaddr + cpu_offset,
273 gpu_vaddr + swizzled_gpu_offset,
274 this_length);
275 if (ret)
276 return ret + length;
277
278 cpu_offset += this_length;
279 gpu_offset += this_length;
280 length -= this_length;
281 }
282
283 return 0;
284 }
285
286 static inline int
287 __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
288 const char *cpu_vaddr,
289 int length)
290 {
291 int ret, cpu_offset = 0;
292
293 while (length > 0) {
294 int cacheline_end = ALIGN(gpu_offset + 1, 64);
295 int this_length = min(cacheline_end - gpu_offset, length);
296 int swizzled_gpu_offset = gpu_offset ^ 64;
297
298 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
299 cpu_vaddr + cpu_offset,
300 this_length);
301 if (ret)
302 return ret + length;
303
304 cpu_offset += this_length;
305 gpu_offset += this_length;
306 length -= this_length;
307 }
308
309 return 0;
310 }
311
312 /* Per-page copy function for the shmem pread fastpath.
313 * Flushes invalid cachelines before reading the target if
314 * needs_clflush is set. */
315 static int
316 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
317 char __user *user_data,
318 bool page_do_bit17_swizzling, bool needs_clflush)
319 {
320 char *vaddr;
321 int ret;
322
323 if (unlikely(page_do_bit17_swizzling))
324 return -EINVAL;
325
326 vaddr = kmap_atomic(page);
327 if (needs_clflush)
328 drm_clflush_virt_range(vaddr + shmem_page_offset,
329 page_length);
330 ret = __copy_to_user_inatomic(user_data,
331 vaddr + shmem_page_offset,
332 page_length);
333 kunmap_atomic(vaddr);
334
335 return ret;
336 }
337
338 static void
339 shmem_clflush_swizzled_range(char *addr, unsigned long length,
340 bool swizzled)
341 {
342 if (unlikely(swizzled)) {
343 unsigned long start = (unsigned long) addr;
344 unsigned long end = (unsigned long) addr + length;
345
346 /* For swizzling simply ensure that we always flush both
347 * channels. Lame, but simple and it works. Swizzled
348 * pwrite/pread is far from a hotpath - current userspace
349 * doesn't use it at all. */
350 start = round_down(start, 128);
351 end = round_up(end, 128);
352
353 drm_clflush_virt_range((void *)start, end - start);
354 } else {
355 drm_clflush_virt_range(addr, length);
356 }
357
358 }
359
360 /* Only difference to the fast-path function is that this can handle bit17
361 * and uses non-atomic copy and kmap functions. */
362 static int
363 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
364 char __user *user_data,
365 bool page_do_bit17_swizzling, bool needs_clflush)
366 {
367 char *vaddr;
368 int ret;
369
370 vaddr = kmap(page);
371 if (needs_clflush)
372 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
373 page_length,
374 page_do_bit17_swizzling);
375
376 if (page_do_bit17_swizzling)
377 ret = __copy_to_user_swizzled(user_data,
378 vaddr, shmem_page_offset,
379 page_length);
380 else
381 ret = __copy_to_user(user_data,
382 vaddr + shmem_page_offset,
383 page_length);
384 kunmap(page);
385
386 return ret;
387 }
388
389 static int
390 i915_gem_shmem_pread(struct drm_device *dev,
391 struct drm_i915_gem_object *obj,
392 struct drm_i915_gem_pread *args,
393 struct drm_file *file)
394 {
395 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
396 char __user *user_data;
397 ssize_t remain;
398 loff_t offset;
399 int shmem_page_offset, page_length, ret = 0;
400 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
401 int hit_slowpath = 0;
402 int prefaulted = 0;
403 int needs_clflush = 0;
404 int release_page;
405
406 user_data = (char __user *) (uintptr_t) args->data_ptr;
407 remain = args->size;
408
409 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
410
411 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
412 /* If we're not in the cpu read domain, set ourself into the gtt
413 * read domain and manually flush cachelines (if required). This
414 * optimizes for the case when the gpu will dirty the data
415 * anyway again before the next pread happens. */
416 if (obj->cache_level == I915_CACHE_NONE)
417 needs_clflush = 1;
418 ret = i915_gem_object_set_to_gtt_domain(obj, false);
419 if (ret)
420 return ret;
421 }
422
423 offset = args->offset;
424
425 while (remain > 0) {
426 struct page *page;
427
428 /* Operation in this page
429 *
430 * shmem_page_offset = offset within page in shmem file
431 * page_length = bytes to copy for this page
432 */
433 shmem_page_offset = offset_in_page(offset);
434 page_length = remain;
435 if ((shmem_page_offset + page_length) > PAGE_SIZE)
436 page_length = PAGE_SIZE - shmem_page_offset;
437
438 if (obj->pages) {
439 page = obj->pages[offset >> PAGE_SHIFT];
440 release_page = 0;
441 } else {
442 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
443 if (IS_ERR(page)) {
444 ret = PTR_ERR(page);
445 goto out;
446 }
447 release_page = 1;
448 }
449
450 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
451 (page_to_phys(page) & (1 << 17)) != 0;
452
453 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
454 user_data, page_do_bit17_swizzling,
455 needs_clflush);
456 if (ret == 0)
457 goto next_page;
458
459 hit_slowpath = 1;
460 page_cache_get(page);
461 mutex_unlock(&dev->struct_mutex);
462
463 if (!prefaulted) {
464 ret = fault_in_multipages_writeable(user_data, remain);
465 /* Userspace is tricking us, but we've already clobbered
466 * its pages with the prefault and promised to write the
467 * data up to the first fault. Hence ignore any errors
468 * and just continue. */
469 (void)ret;
470 prefaulted = 1;
471 }
472
473 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
474 user_data, page_do_bit17_swizzling,
475 needs_clflush);
476
477 mutex_lock(&dev->struct_mutex);
478 page_cache_release(page);
479 next_page:
480 mark_page_accessed(page);
481 if (release_page)
482 page_cache_release(page);
483
484 if (ret) {
485 ret = -EFAULT;
486 goto out;
487 }
488
489 remain -= page_length;
490 user_data += page_length;
491 offset += page_length;
492 }
493
494 out:
495 if (hit_slowpath) {
496 /* Fixup: Kill any reinstated backing storage pages */
497 if (obj->madv == __I915_MADV_PURGED)
498 i915_gem_object_truncate(obj);
499 }
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 (char __user *)(uintptr_t)args->data_ptr,
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 trace_i915_gem_object_pread(obj, args->offset, args->size);
543
544 ret = i915_gem_shmem_pread(dev, obj, args, file);
545
546 out:
547 drm_gem_object_unreference(&obj->base);
548 unlock:
549 mutex_unlock(&dev->struct_mutex);
550 return ret;
551 }
552
553 /* This is the fast write path which cannot handle
554 * page faults in the source data
555 */
556
557 static inline int
558 fast_user_write(struct io_mapping *mapping,
559 loff_t page_base, int page_offset,
560 char __user *user_data,
561 int length)
562 {
563 char *vaddr_atomic;
564 unsigned long unwritten;
565
566 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
567 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
568 user_data, length);
569 io_mapping_unmap_atomic(vaddr_atomic);
570 return unwritten;
571 }
572
573 /**
574 * This is the fast pwrite path, where we copy the data directly from the
575 * user into the GTT, uncached.
576 */
577 static int
578 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
579 struct drm_i915_gem_object *obj,
580 struct drm_i915_gem_pwrite *args,
581 struct drm_file *file)
582 {
583 drm_i915_private_t *dev_priv = dev->dev_private;
584 ssize_t remain;
585 loff_t offset, page_base;
586 char __user *user_data;
587 int page_offset, page_length, ret;
588
589 ret = i915_gem_object_pin(obj, 0, true);
590 if (ret)
591 goto out;
592
593 ret = i915_gem_object_set_to_gtt_domain(obj, true);
594 if (ret)
595 goto out_unpin;
596
597 ret = i915_gem_object_put_fence(obj);
598 if (ret)
599 goto out_unpin;
600
601 user_data = (char __user *) (uintptr_t) args->data_ptr;
602 remain = args->size;
603
604 offset = obj->gtt_offset + args->offset;
605
606 while (remain > 0) {
607 /* Operation in this page
608 *
609 * page_base = page offset within aperture
610 * page_offset = offset within page
611 * page_length = bytes to copy for this page
612 */
613 page_base = offset & PAGE_MASK;
614 page_offset = offset_in_page(offset);
615 page_length = remain;
616 if ((page_offset + remain) > PAGE_SIZE)
617 page_length = PAGE_SIZE - page_offset;
618
619 /* If we get a fault while copying data, then (presumably) our
620 * source page isn't available. Return the error and we'll
621 * retry in the slow path.
622 */
623 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
624 page_offset, user_data, page_length)) {
625 ret = -EFAULT;
626 goto out_unpin;
627 }
628
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
632 }
633
634 out_unpin:
635 i915_gem_object_unpin(obj);
636 out:
637 return ret;
638 }
639
640 /* Per-page copy function for the shmem pwrite fastpath.
641 * Flushes invalid cachelines before writing to the target if
642 * needs_clflush_before is set and flushes out any written cachelines after
643 * writing if needs_clflush is set. */
644 static int
645 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
646 char __user *user_data,
647 bool page_do_bit17_swizzling,
648 bool needs_clflush_before,
649 bool needs_clflush_after)
650 {
651 char *vaddr;
652 int ret;
653
654 if (unlikely(page_do_bit17_swizzling))
655 return -EINVAL;
656
657 vaddr = kmap_atomic(page);
658 if (needs_clflush_before)
659 drm_clflush_virt_range(vaddr + shmem_page_offset,
660 page_length);
661 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
662 user_data,
663 page_length);
664 if (needs_clflush_after)
665 drm_clflush_virt_range(vaddr + shmem_page_offset,
666 page_length);
667 kunmap_atomic(vaddr);
668
669 return ret;
670 }
671
672 /* Only difference to the fast-path function is that this can handle bit17
673 * and uses non-atomic copy and kmap functions. */
674 static int
675 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
676 char __user *user_data,
677 bool page_do_bit17_swizzling,
678 bool needs_clflush_before,
679 bool needs_clflush_after)
680 {
681 char *vaddr;
682 int ret;
683
684 vaddr = kmap(page);
685 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
686 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
687 page_length,
688 page_do_bit17_swizzling);
689 if (page_do_bit17_swizzling)
690 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
691 user_data,
692 page_length);
693 else
694 ret = __copy_from_user(vaddr + shmem_page_offset,
695 user_data,
696 page_length);
697 if (needs_clflush_after)
698 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
699 page_length,
700 page_do_bit17_swizzling);
701 kunmap(page);
702
703 return ret;
704 }
705
706 static int
707 i915_gem_shmem_pwrite(struct drm_device *dev,
708 struct drm_i915_gem_object *obj,
709 struct drm_i915_gem_pwrite *args,
710 struct drm_file *file)
711 {
712 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
713 ssize_t remain;
714 loff_t offset;
715 char __user *user_data;
716 int shmem_page_offset, page_length, ret = 0;
717 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
718 int hit_slowpath = 0;
719 int needs_clflush_after = 0;
720 int needs_clflush_before = 0;
721 int release_page;
722
723 user_data = (char __user *) (uintptr_t) args->data_ptr;
724 remain = args->size;
725
726 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
727
728 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
729 /* If we're not in the cpu write domain, set ourself into the gtt
730 * write domain and manually flush cachelines (if required). This
731 * optimizes for the case when the gpu will use the data
732 * right away and we therefore have to clflush anyway. */
733 if (obj->cache_level == I915_CACHE_NONE)
734 needs_clflush_after = 1;
735 ret = i915_gem_object_set_to_gtt_domain(obj, true);
736 if (ret)
737 return ret;
738 }
739 /* Same trick applies for invalidate partially written cachelines before
740 * writing. */
741 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
742 && obj->cache_level == I915_CACHE_NONE)
743 needs_clflush_before = 1;
744
745 offset = args->offset;
746 obj->dirty = 1;
747
748 while (remain > 0) {
749 struct page *page;
750 int partial_cacheline_write;
751
752 /* Operation in this page
753 *
754 * shmem_page_offset = offset within page in shmem file
755 * page_length = bytes to copy for this page
756 */
757 shmem_page_offset = offset_in_page(offset);
758
759 page_length = remain;
760 if ((shmem_page_offset + page_length) > PAGE_SIZE)
761 page_length = PAGE_SIZE - shmem_page_offset;
762
763 /* If we don't overwrite a cacheline completely we need to be
764 * careful to have up-to-date data by first clflushing. Don't
765 * overcomplicate things and flush the entire patch. */
766 partial_cacheline_write = needs_clflush_before &&
767 ((shmem_page_offset | page_length)
768 & (boot_cpu_data.x86_clflush_size - 1));
769
770 if (obj->pages) {
771 page = obj->pages[offset >> PAGE_SHIFT];
772 release_page = 0;
773 } else {
774 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
775 if (IS_ERR(page)) {
776 ret = PTR_ERR(page);
777 goto out;
778 }
779 release_page = 1;
780 }
781
782 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
783 (page_to_phys(page) & (1 << 17)) != 0;
784
785 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
786 user_data, page_do_bit17_swizzling,
787 partial_cacheline_write,
788 needs_clflush_after);
789 if (ret == 0)
790 goto next_page;
791
792 hit_slowpath = 1;
793 page_cache_get(page);
794 mutex_unlock(&dev->struct_mutex);
795
796 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
797 user_data, page_do_bit17_swizzling,
798 partial_cacheline_write,
799 needs_clflush_after);
800
801 mutex_lock(&dev->struct_mutex);
802 page_cache_release(page);
803 next_page:
804 set_page_dirty(page);
805 mark_page_accessed(page);
806 if (release_page)
807 page_cache_release(page);
808
809 if (ret) {
810 ret = -EFAULT;
811 goto out;
812 }
813
814 remain -= page_length;
815 user_data += page_length;
816 offset += page_length;
817 }
818
819 out:
820 if (hit_slowpath) {
821 /* Fixup: Kill any reinstated backing storage pages */
822 if (obj->madv == __I915_MADV_PURGED)
823 i915_gem_object_truncate(obj);
824 /* and flush dirty cachelines in case the object isn't in the cpu write
825 * domain anymore. */
826 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
827 i915_gem_clflush_object(obj);
828 intel_gtt_chipset_flush();
829 }
830 }
831
832 if (needs_clflush_after)
833 intel_gtt_chipset_flush();
834
835 return ret;
836 }
837
838 /**
839 * Writes data to the object referenced by handle.
840 *
841 * On error, the contents of the buffer that were to be modified are undefined.
842 */
843 int
844 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
845 struct drm_file *file)
846 {
847 struct drm_i915_gem_pwrite *args = data;
848 struct drm_i915_gem_object *obj;
849 int ret;
850
851 if (args->size == 0)
852 return 0;
853
854 if (!access_ok(VERIFY_READ,
855 (char __user *)(uintptr_t)args->data_ptr,
856 args->size))
857 return -EFAULT;
858
859 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
860 args->size);
861 if (ret)
862 return -EFAULT;
863
864 ret = i915_mutex_lock_interruptible(dev);
865 if (ret)
866 return ret;
867
868 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
869 if (&obj->base == NULL) {
870 ret = -ENOENT;
871 goto unlock;
872 }
873
874 /* Bounds check destination. */
875 if (args->offset > obj->base.size ||
876 args->size > obj->base.size - args->offset) {
877 ret = -EINVAL;
878 goto out;
879 }
880
881 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
882
883 ret = -EFAULT;
884 /* We can only do the GTT pwrite on untiled buffers, as otherwise
885 * it would end up going through the fenced access, and we'll get
886 * different detiling behavior between reading and writing.
887 * pread/pwrite currently are reading and writing from the CPU
888 * perspective, requiring manual detiling by the client.
889 */
890 if (obj->phys_obj) {
891 ret = i915_gem_phys_pwrite(dev, obj, args, file);
892 goto out;
893 }
894
895 if (obj->gtt_space &&
896 obj->cache_level == I915_CACHE_NONE &&
897 obj->tiling_mode == I915_TILING_NONE &&
898 obj->map_and_fenceable &&
899 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
900 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
901 /* Note that the gtt paths might fail with non-page-backed user
902 * pointers (e.g. gtt mappings when moving data between
903 * textures). Fallback to the shmem path in that case. */
904 }
905
906 if (ret == -EFAULT)
907 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
908
909 out:
910 drm_gem_object_unreference(&obj->base);
911 unlock:
912 mutex_unlock(&dev->struct_mutex);
913 return ret;
914 }
915
916 /**
917 * Called when user space prepares to use an object with the CPU, either
918 * through the mmap ioctl's mapping or a GTT mapping.
919 */
920 int
921 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
922 struct drm_file *file)
923 {
924 struct drm_i915_gem_set_domain *args = data;
925 struct drm_i915_gem_object *obj;
926 uint32_t read_domains = args->read_domains;
927 uint32_t write_domain = args->write_domain;
928 int ret;
929
930 if (!(dev->driver->driver_features & DRIVER_GEM))
931 return -ENODEV;
932
933 /* Only handle setting domains to types used by the CPU. */
934 if (write_domain & I915_GEM_GPU_DOMAINS)
935 return -EINVAL;
936
937 if (read_domains & I915_GEM_GPU_DOMAINS)
938 return -EINVAL;
939
940 /* Having something in the write domain implies it's in the read
941 * domain, and only that read domain. Enforce that in the request.
942 */
943 if (write_domain != 0 && read_domains != write_domain)
944 return -EINVAL;
945
946 ret = i915_mutex_lock_interruptible(dev);
947 if (ret)
948 return ret;
949
950 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
951 if (&obj->base == NULL) {
952 ret = -ENOENT;
953 goto unlock;
954 }
955
956 if (read_domains & I915_GEM_DOMAIN_GTT) {
957 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
958
959 /* Silently promote "you're not bound, there was nothing to do"
960 * to success, since the client was just asking us to
961 * make sure everything was done.
962 */
963 if (ret == -EINVAL)
964 ret = 0;
965 } else {
966 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
967 }
968
969 drm_gem_object_unreference(&obj->base);
970 unlock:
971 mutex_unlock(&dev->struct_mutex);
972 return ret;
973 }
974
975 /**
976 * Called when user space has done writes to this buffer
977 */
978 int
979 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file)
981 {
982 struct drm_i915_gem_sw_finish *args = data;
983 struct drm_i915_gem_object *obj;
984 int ret = 0;
985
986 if (!(dev->driver->driver_features & DRIVER_GEM))
987 return -ENODEV;
988
989 ret = i915_mutex_lock_interruptible(dev);
990 if (ret)
991 return ret;
992
993 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
994 if (&obj->base == NULL) {
995 ret = -ENOENT;
996 goto unlock;
997 }
998
999 /* Pinned buffers may be scanout, so flush the cache */
1000 if (obj->pin_count)
1001 i915_gem_object_flush_cpu_write_domain(obj);
1002
1003 drm_gem_object_unreference(&obj->base);
1004 unlock:
1005 mutex_unlock(&dev->struct_mutex);
1006 return ret;
1007 }
1008
1009 /**
1010 * Maps the contents of an object, returning the address it is mapped
1011 * into.
1012 *
1013 * While the mapping holds a reference on the contents of the object, it doesn't
1014 * imply a ref on the object itself.
1015 */
1016 int
1017 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1018 struct drm_file *file)
1019 {
1020 struct drm_i915_gem_mmap *args = data;
1021 struct drm_gem_object *obj;
1022 unsigned long addr;
1023
1024 if (!(dev->driver->driver_features & DRIVER_GEM))
1025 return -ENODEV;
1026
1027 obj = drm_gem_object_lookup(dev, file, args->handle);
1028 if (obj == NULL)
1029 return -ENOENT;
1030
1031 down_write(&current->mm->mmap_sem);
1032 addr = do_mmap(obj->filp, 0, args->size,
1033 PROT_READ | PROT_WRITE, MAP_SHARED,
1034 args->offset);
1035 up_write(&current->mm->mmap_sem);
1036 drm_gem_object_unreference_unlocked(obj);
1037 if (IS_ERR((void *)addr))
1038 return addr;
1039
1040 args->addr_ptr = (uint64_t) addr;
1041
1042 return 0;
1043 }
1044
1045 /**
1046 * i915_gem_fault - fault a page into the GTT
1047 * vma: VMA in question
1048 * vmf: fault info
1049 *
1050 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1051 * from userspace. The fault handler takes care of binding the object to
1052 * the GTT (if needed), allocating and programming a fence register (again,
1053 * only if needed based on whether the old reg is still valid or the object
1054 * is tiled) and inserting a new PTE into the faulting process.
1055 *
1056 * Note that the faulting process may involve evicting existing objects
1057 * from the GTT and/or fence registers to make room. So performance may
1058 * suffer if the GTT working set is large or there are few fence registers
1059 * left.
1060 */
1061 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1062 {
1063 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1064 struct drm_device *dev = obj->base.dev;
1065 drm_i915_private_t *dev_priv = dev->dev_private;
1066 pgoff_t page_offset;
1067 unsigned long pfn;
1068 int ret = 0;
1069 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1070
1071 /* We don't use vmf->pgoff since that has the fake offset */
1072 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1073 PAGE_SHIFT;
1074
1075 ret = i915_mutex_lock_interruptible(dev);
1076 if (ret)
1077 goto out;
1078
1079 trace_i915_gem_object_fault(obj, page_offset, true, write);
1080
1081 /* Now bind it into the GTT if needed */
1082 if (!obj->map_and_fenceable) {
1083 ret = i915_gem_object_unbind(obj);
1084 if (ret)
1085 goto unlock;
1086 }
1087 if (!obj->gtt_space) {
1088 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1089 if (ret)
1090 goto unlock;
1091
1092 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1093 if (ret)
1094 goto unlock;
1095 }
1096
1097 if (!obj->has_global_gtt_mapping)
1098 i915_gem_gtt_bind_object(obj, obj->cache_level);
1099
1100 ret = i915_gem_object_get_fence(obj);
1101 if (ret)
1102 goto unlock;
1103
1104 if (i915_gem_object_is_inactive(obj))
1105 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1106
1107 obj->fault_mappable = true;
1108
1109 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1110 page_offset;
1111
1112 /* Finally, remap it using the new GTT offset */
1113 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1114 unlock:
1115 mutex_unlock(&dev->struct_mutex);
1116 out:
1117 switch (ret) {
1118 case -EIO:
1119 case -EAGAIN:
1120 /* Give the error handler a chance to run and move the
1121 * objects off the GPU active list. Next time we service the
1122 * fault, we should be able to transition the page into the
1123 * GTT without touching the GPU (and so avoid further
1124 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1125 * with coherency, just lost writes.
1126 */
1127 set_need_resched();
1128 case 0:
1129 case -ERESTARTSYS:
1130 case -EINTR:
1131 return VM_FAULT_NOPAGE;
1132 case -ENOMEM:
1133 return VM_FAULT_OOM;
1134 default:
1135 return VM_FAULT_SIGBUS;
1136 }
1137 }
1138
1139 /**
1140 * i915_gem_release_mmap - remove physical page mappings
1141 * @obj: obj in question
1142 *
1143 * Preserve the reservation of the mmapping with the DRM core code, but
1144 * relinquish ownership of the pages back to the system.
1145 *
1146 * It is vital that we remove the page mapping if we have mapped a tiled
1147 * object through the GTT and then lose the fence register due to
1148 * resource pressure. Similarly if the object has been moved out of the
1149 * aperture, than pages mapped into userspace must be revoked. Removing the
1150 * mapping will then trigger a page fault on the next user access, allowing
1151 * fixup by i915_gem_fault().
1152 */
1153 void
1154 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1155 {
1156 if (!obj->fault_mappable)
1157 return;
1158
1159 if (obj->base.dev->dev_mapping)
1160 unmap_mapping_range(obj->base.dev->dev_mapping,
1161 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1162 obj->base.size, 1);
1163
1164 obj->fault_mappable = false;
1165 }
1166
1167 static uint32_t
1168 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1169 {
1170 uint32_t gtt_size;
1171
1172 if (INTEL_INFO(dev)->gen >= 4 ||
1173 tiling_mode == I915_TILING_NONE)
1174 return size;
1175
1176 /* Previous chips need a power-of-two fence region when tiling */
1177 if (INTEL_INFO(dev)->gen == 3)
1178 gtt_size = 1024*1024;
1179 else
1180 gtt_size = 512*1024;
1181
1182 while (gtt_size < size)
1183 gtt_size <<= 1;
1184
1185 return gtt_size;
1186 }
1187
1188 /**
1189 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1190 * @obj: object to check
1191 *
1192 * Return the required GTT alignment for an object, taking into account
1193 * potential fence register mapping.
1194 */
1195 static uint32_t
1196 i915_gem_get_gtt_alignment(struct drm_device *dev,
1197 uint32_t size,
1198 int tiling_mode)
1199 {
1200 /*
1201 * Minimum alignment is 4k (GTT page size), but might be greater
1202 * if a fence register is needed for the object.
1203 */
1204 if (INTEL_INFO(dev)->gen >= 4 ||
1205 tiling_mode == I915_TILING_NONE)
1206 return 4096;
1207
1208 /*
1209 * Previous chips need to be aligned to the size of the smallest
1210 * fence register that can contain the object.
1211 */
1212 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1213 }
1214
1215 /**
1216 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1217 * unfenced object
1218 * @dev: the device
1219 * @size: size of the object
1220 * @tiling_mode: tiling mode of the object
1221 *
1222 * Return the required GTT alignment for an object, only taking into account
1223 * unfenced tiled surface requirements.
1224 */
1225 uint32_t
1226 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1227 uint32_t size,
1228 int tiling_mode)
1229 {
1230 /*
1231 * Minimum alignment is 4k (GTT page size) for sane hw.
1232 */
1233 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1234 tiling_mode == I915_TILING_NONE)
1235 return 4096;
1236
1237 /* Previous hardware however needs to be aligned to a power-of-two
1238 * tile height. The simplest method for determining this is to reuse
1239 * the power-of-tile object size.
1240 */
1241 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1242 }
1243
1244 int
1245 i915_gem_mmap_gtt(struct drm_file *file,
1246 struct drm_device *dev,
1247 uint32_t handle,
1248 uint64_t *offset)
1249 {
1250 struct drm_i915_private *dev_priv = dev->dev_private;
1251 struct drm_i915_gem_object *obj;
1252 int ret;
1253
1254 if (!(dev->driver->driver_features & DRIVER_GEM))
1255 return -ENODEV;
1256
1257 ret = i915_mutex_lock_interruptible(dev);
1258 if (ret)
1259 return ret;
1260
1261 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1262 if (&obj->base == NULL) {
1263 ret = -ENOENT;
1264 goto unlock;
1265 }
1266
1267 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1268 ret = -E2BIG;
1269 goto out;
1270 }
1271
1272 if (obj->madv != I915_MADV_WILLNEED) {
1273 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1274 ret = -EINVAL;
1275 goto out;
1276 }
1277
1278 if (!obj->base.map_list.map) {
1279 ret = drm_gem_create_mmap_offset(&obj->base);
1280 if (ret)
1281 goto out;
1282 }
1283
1284 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1285
1286 out:
1287 drm_gem_object_unreference(&obj->base);
1288 unlock:
1289 mutex_unlock(&dev->struct_mutex);
1290 return ret;
1291 }
1292
1293 /**
1294 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1295 * @dev: DRM device
1296 * @data: GTT mapping ioctl data
1297 * @file: GEM object info
1298 *
1299 * Simply returns the fake offset to userspace so it can mmap it.
1300 * The mmap call will end up in drm_gem_mmap(), which will set things
1301 * up so we can get faults in the handler above.
1302 *
1303 * The fault handler will take care of binding the object into the GTT
1304 * (since it may have been evicted to make room for something), allocating
1305 * a fence register, and mapping the appropriate aperture address into
1306 * userspace.
1307 */
1308 int
1309 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1310 struct drm_file *file)
1311 {
1312 struct drm_i915_gem_mmap_gtt *args = data;
1313
1314 if (!(dev->driver->driver_features & DRIVER_GEM))
1315 return -ENODEV;
1316
1317 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1318 }
1319
1320
1321 static int
1322 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1323 gfp_t gfpmask)
1324 {
1325 int page_count, i;
1326 struct address_space *mapping;
1327 struct inode *inode;
1328 struct page *page;
1329
1330 /* Get the list of pages out of our struct file. They'll be pinned
1331 * at this point until we release them.
1332 */
1333 page_count = obj->base.size / PAGE_SIZE;
1334 BUG_ON(obj->pages != NULL);
1335 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1336 if (obj->pages == NULL)
1337 return -ENOMEM;
1338
1339 inode = obj->base.filp->f_path.dentry->d_inode;
1340 mapping = inode->i_mapping;
1341 gfpmask |= mapping_gfp_mask(mapping);
1342
1343 for (i = 0; i < page_count; i++) {
1344 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1345 if (IS_ERR(page))
1346 goto err_pages;
1347
1348 obj->pages[i] = page;
1349 }
1350
1351 if (i915_gem_object_needs_bit17_swizzle(obj))
1352 i915_gem_object_do_bit_17_swizzle(obj);
1353
1354 return 0;
1355
1356 err_pages:
1357 while (i--)
1358 page_cache_release(obj->pages[i]);
1359
1360 drm_free_large(obj->pages);
1361 obj->pages = NULL;
1362 return PTR_ERR(page);
1363 }
1364
1365 static void
1366 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1367 {
1368 int page_count = obj->base.size / PAGE_SIZE;
1369 int i;
1370
1371 BUG_ON(obj->madv == __I915_MADV_PURGED);
1372
1373 if (i915_gem_object_needs_bit17_swizzle(obj))
1374 i915_gem_object_save_bit_17_swizzle(obj);
1375
1376 if (obj->madv == I915_MADV_DONTNEED)
1377 obj->dirty = 0;
1378
1379 for (i = 0; i < page_count; i++) {
1380 if (obj->dirty)
1381 set_page_dirty(obj->pages[i]);
1382
1383 if (obj->madv == I915_MADV_WILLNEED)
1384 mark_page_accessed(obj->pages[i]);
1385
1386 page_cache_release(obj->pages[i]);
1387 }
1388 obj->dirty = 0;
1389
1390 drm_free_large(obj->pages);
1391 obj->pages = NULL;
1392 }
1393
1394 void
1395 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1396 struct intel_ring_buffer *ring,
1397 u32 seqno)
1398 {
1399 struct drm_device *dev = obj->base.dev;
1400 struct drm_i915_private *dev_priv = dev->dev_private;
1401
1402 BUG_ON(ring == NULL);
1403 obj->ring = ring;
1404
1405 /* Add a reference if we're newly entering the active list. */
1406 if (!obj->active) {
1407 drm_gem_object_reference(&obj->base);
1408 obj->active = 1;
1409 }
1410
1411 /* Move from whatever list we were on to the tail of execution. */
1412 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1413 list_move_tail(&obj->ring_list, &ring->active_list);
1414
1415 obj->last_rendering_seqno = seqno;
1416
1417 if (obj->fenced_gpu_access) {
1418 obj->last_fenced_seqno = seqno;
1419
1420 /* Bump MRU to take account of the delayed flush */
1421 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1422 struct drm_i915_fence_reg *reg;
1423
1424 reg = &dev_priv->fence_regs[obj->fence_reg];
1425 list_move_tail(&reg->lru_list,
1426 &dev_priv->mm.fence_list);
1427 }
1428 }
1429 }
1430
1431 static void
1432 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1433 {
1434 list_del_init(&obj->ring_list);
1435 obj->last_rendering_seqno = 0;
1436 obj->last_fenced_seqno = 0;
1437 }
1438
1439 static void
1440 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1441 {
1442 struct drm_device *dev = obj->base.dev;
1443 drm_i915_private_t *dev_priv = dev->dev_private;
1444
1445 BUG_ON(!obj->active);
1446 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1447
1448 i915_gem_object_move_off_active(obj);
1449 }
1450
1451 static void
1452 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1453 {
1454 struct drm_device *dev = obj->base.dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456
1457 if (obj->pin_count != 0)
1458 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1459 else
1460 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1461
1462 BUG_ON(!list_empty(&obj->gpu_write_list));
1463 BUG_ON(!obj->active);
1464 obj->ring = NULL;
1465
1466 i915_gem_object_move_off_active(obj);
1467 obj->fenced_gpu_access = false;
1468
1469 obj->active = 0;
1470 obj->pending_gpu_write = false;
1471 drm_gem_object_unreference(&obj->base);
1472
1473 WARN_ON(i915_verify_lists(dev));
1474 }
1475
1476 /* Immediately discard the backing storage */
1477 static void
1478 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1479 {
1480 struct inode *inode;
1481
1482 /* Our goal here is to return as much of the memory as
1483 * is possible back to the system as we are called from OOM.
1484 * To do this we must instruct the shmfs to drop all of its
1485 * backing pages, *now*.
1486 */
1487 inode = obj->base.filp->f_path.dentry->d_inode;
1488 shmem_truncate_range(inode, 0, (loff_t)-1);
1489
1490 if (obj->base.map_list.map)
1491 drm_gem_free_mmap_offset(&obj->base);
1492
1493 obj->madv = __I915_MADV_PURGED;
1494 }
1495
1496 static inline int
1497 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1498 {
1499 return obj->madv == I915_MADV_DONTNEED;
1500 }
1501
1502 static void
1503 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1504 uint32_t flush_domains)
1505 {
1506 struct drm_i915_gem_object *obj, *next;
1507
1508 list_for_each_entry_safe(obj, next,
1509 &ring->gpu_write_list,
1510 gpu_write_list) {
1511 if (obj->base.write_domain & flush_domains) {
1512 uint32_t old_write_domain = obj->base.write_domain;
1513
1514 obj->base.write_domain = 0;
1515 list_del_init(&obj->gpu_write_list);
1516 i915_gem_object_move_to_active(obj, ring,
1517 i915_gem_next_request_seqno(ring));
1518
1519 trace_i915_gem_object_change_domain(obj,
1520 obj->base.read_domains,
1521 old_write_domain);
1522 }
1523 }
1524 }
1525
1526 static u32
1527 i915_gem_get_seqno(struct drm_device *dev)
1528 {
1529 drm_i915_private_t *dev_priv = dev->dev_private;
1530 u32 seqno = dev_priv->next_seqno;
1531
1532 /* reserve 0 for non-seqno */
1533 if (++dev_priv->next_seqno == 0)
1534 dev_priv->next_seqno = 1;
1535
1536 return seqno;
1537 }
1538
1539 u32
1540 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1541 {
1542 if (ring->outstanding_lazy_request == 0)
1543 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1544
1545 return ring->outstanding_lazy_request;
1546 }
1547
1548 int
1549 i915_add_request(struct intel_ring_buffer *ring,
1550 struct drm_file *file,
1551 struct drm_i915_gem_request *request)
1552 {
1553 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1554 uint32_t seqno;
1555 u32 request_ring_position;
1556 int was_empty;
1557 int ret;
1558
1559 BUG_ON(request == NULL);
1560 seqno = i915_gem_next_request_seqno(ring);
1561
1562 /* Record the position of the start of the request so that
1563 * should we detect the updated seqno part-way through the
1564 * GPU processing the request, we never over-estimate the
1565 * position of the head.
1566 */
1567 request_ring_position = intel_ring_get_tail(ring);
1568
1569 ret = ring->add_request(ring, &seqno);
1570 if (ret)
1571 return ret;
1572
1573 trace_i915_gem_request_add(ring, seqno);
1574
1575 request->seqno = seqno;
1576 request->ring = ring;
1577 request->tail = request_ring_position;
1578 request->emitted_jiffies = jiffies;
1579 was_empty = list_empty(&ring->request_list);
1580 list_add_tail(&request->list, &ring->request_list);
1581
1582 if (file) {
1583 struct drm_i915_file_private *file_priv = file->driver_priv;
1584
1585 spin_lock(&file_priv->mm.lock);
1586 request->file_priv = file_priv;
1587 list_add_tail(&request->client_list,
1588 &file_priv->mm.request_list);
1589 spin_unlock(&file_priv->mm.lock);
1590 }
1591
1592 ring->outstanding_lazy_request = 0;
1593
1594 if (!dev_priv->mm.suspended) {
1595 if (i915_enable_hangcheck) {
1596 mod_timer(&dev_priv->hangcheck_timer,
1597 jiffies +
1598 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1599 }
1600 if (was_empty)
1601 queue_delayed_work(dev_priv->wq,
1602 &dev_priv->mm.retire_work, HZ);
1603 }
1604 return 0;
1605 }
1606
1607 static inline void
1608 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1609 {
1610 struct drm_i915_file_private *file_priv = request->file_priv;
1611
1612 if (!file_priv)
1613 return;
1614
1615 spin_lock(&file_priv->mm.lock);
1616 if (request->file_priv) {
1617 list_del(&request->client_list);
1618 request->file_priv = NULL;
1619 }
1620 spin_unlock(&file_priv->mm.lock);
1621 }
1622
1623 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1624 struct intel_ring_buffer *ring)
1625 {
1626 while (!list_empty(&ring->request_list)) {
1627 struct drm_i915_gem_request *request;
1628
1629 request = list_first_entry(&ring->request_list,
1630 struct drm_i915_gem_request,
1631 list);
1632
1633 list_del(&request->list);
1634 i915_gem_request_remove_from_client(request);
1635 kfree(request);
1636 }
1637
1638 while (!list_empty(&ring->active_list)) {
1639 struct drm_i915_gem_object *obj;
1640
1641 obj = list_first_entry(&ring->active_list,
1642 struct drm_i915_gem_object,
1643 ring_list);
1644
1645 obj->base.write_domain = 0;
1646 list_del_init(&obj->gpu_write_list);
1647 i915_gem_object_move_to_inactive(obj);
1648 }
1649 }
1650
1651 static void i915_gem_reset_fences(struct drm_device *dev)
1652 {
1653 struct drm_i915_private *dev_priv = dev->dev_private;
1654 int i;
1655
1656 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1657 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1658 struct drm_i915_gem_object *obj = reg->obj;
1659
1660 if (!obj)
1661 continue;
1662
1663 if (obj->tiling_mode)
1664 i915_gem_release_mmap(obj);
1665
1666 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1667 reg->obj->fenced_gpu_access = false;
1668 reg->obj->last_fenced_seqno = 0;
1669 i915_gem_clear_fence_reg(dev, reg);
1670 }
1671 }
1672
1673 void i915_gem_reset(struct drm_device *dev)
1674 {
1675 struct drm_i915_private *dev_priv = dev->dev_private;
1676 struct drm_i915_gem_object *obj;
1677 int i;
1678
1679 for (i = 0; i < I915_NUM_RINGS; i++)
1680 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1681
1682 /* Remove anything from the flushing lists. The GPU cache is likely
1683 * to be lost on reset along with the data, so simply move the
1684 * lost bo to the inactive list.
1685 */
1686 while (!list_empty(&dev_priv->mm.flushing_list)) {
1687 obj = list_first_entry(&dev_priv->mm.flushing_list,
1688 struct drm_i915_gem_object,
1689 mm_list);
1690
1691 obj->base.write_domain = 0;
1692 list_del_init(&obj->gpu_write_list);
1693 i915_gem_object_move_to_inactive(obj);
1694 }
1695
1696 /* Move everything out of the GPU domains to ensure we do any
1697 * necessary invalidation upon reuse.
1698 */
1699 list_for_each_entry(obj,
1700 &dev_priv->mm.inactive_list,
1701 mm_list)
1702 {
1703 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1704 }
1705
1706 /* The fence registers are invalidated so clear them out */
1707 i915_gem_reset_fences(dev);
1708 }
1709
1710 /**
1711 * This function clears the request list as sequence numbers are passed.
1712 */
1713 void
1714 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1715 {
1716 uint32_t seqno;
1717 int i;
1718
1719 if (list_empty(&ring->request_list))
1720 return;
1721
1722 WARN_ON(i915_verify_lists(ring->dev));
1723
1724 seqno = ring->get_seqno(ring);
1725
1726 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1727 if (seqno >= ring->sync_seqno[i])
1728 ring->sync_seqno[i] = 0;
1729
1730 while (!list_empty(&ring->request_list)) {
1731 struct drm_i915_gem_request *request;
1732
1733 request = list_first_entry(&ring->request_list,
1734 struct drm_i915_gem_request,
1735 list);
1736
1737 if (!i915_seqno_passed(seqno, request->seqno))
1738 break;
1739
1740 trace_i915_gem_request_retire(ring, request->seqno);
1741 /* We know the GPU must have read the request to have
1742 * sent us the seqno + interrupt, so use the position
1743 * of tail of the request to update the last known position
1744 * of the GPU head.
1745 */
1746 ring->last_retired_head = request->tail;
1747
1748 list_del(&request->list);
1749 i915_gem_request_remove_from_client(request);
1750 kfree(request);
1751 }
1752
1753 /* Move any buffers on the active list that are no longer referenced
1754 * by the ringbuffer to the flushing/inactive lists as appropriate.
1755 */
1756 while (!list_empty(&ring->active_list)) {
1757 struct drm_i915_gem_object *obj;
1758
1759 obj = list_first_entry(&ring->active_list,
1760 struct drm_i915_gem_object,
1761 ring_list);
1762
1763 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1764 break;
1765
1766 if (obj->base.write_domain != 0)
1767 i915_gem_object_move_to_flushing(obj);
1768 else
1769 i915_gem_object_move_to_inactive(obj);
1770 }
1771
1772 if (unlikely(ring->trace_irq_seqno &&
1773 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1774 ring->irq_put(ring);
1775 ring->trace_irq_seqno = 0;
1776 }
1777
1778 WARN_ON(i915_verify_lists(ring->dev));
1779 }
1780
1781 void
1782 i915_gem_retire_requests(struct drm_device *dev)
1783 {
1784 drm_i915_private_t *dev_priv = dev->dev_private;
1785 int i;
1786
1787 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1788 struct drm_i915_gem_object *obj, *next;
1789
1790 /* We must be careful that during unbind() we do not
1791 * accidentally infinitely recurse into retire requests.
1792 * Currently:
1793 * retire -> free -> unbind -> wait -> retire_ring
1794 */
1795 list_for_each_entry_safe(obj, next,
1796 &dev_priv->mm.deferred_free_list,
1797 mm_list)
1798 i915_gem_free_object_tail(obj);
1799 }
1800
1801 for (i = 0; i < I915_NUM_RINGS; i++)
1802 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1803 }
1804
1805 static void
1806 i915_gem_retire_work_handler(struct work_struct *work)
1807 {
1808 drm_i915_private_t *dev_priv;
1809 struct drm_device *dev;
1810 bool idle;
1811 int i;
1812
1813 dev_priv = container_of(work, drm_i915_private_t,
1814 mm.retire_work.work);
1815 dev = dev_priv->dev;
1816
1817 /* Come back later if the device is busy... */
1818 if (!mutex_trylock(&dev->struct_mutex)) {
1819 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820 return;
1821 }
1822
1823 i915_gem_retire_requests(dev);
1824
1825 /* Send a periodic flush down the ring so we don't hold onto GEM
1826 * objects indefinitely.
1827 */
1828 idle = true;
1829 for (i = 0; i < I915_NUM_RINGS; i++) {
1830 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1831
1832 if (!list_empty(&ring->gpu_write_list)) {
1833 struct drm_i915_gem_request *request;
1834 int ret;
1835
1836 ret = i915_gem_flush_ring(ring,
1837 0, I915_GEM_GPU_DOMAINS);
1838 request = kzalloc(sizeof(*request), GFP_KERNEL);
1839 if (ret || request == NULL ||
1840 i915_add_request(ring, NULL, request))
1841 kfree(request);
1842 }
1843
1844 idle &= list_empty(&ring->request_list);
1845 }
1846
1847 if (!dev_priv->mm.suspended && !idle)
1848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1849
1850 mutex_unlock(&dev->struct_mutex);
1851 }
1852
1853 /**
1854 * Waits for a sequence number to be signaled, and cleans up the
1855 * request and object lists appropriately for that event.
1856 */
1857 int
1858 i915_wait_request(struct intel_ring_buffer *ring,
1859 uint32_t seqno,
1860 bool do_retire)
1861 {
1862 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1863 u32 ier;
1864 int ret = 0;
1865
1866 BUG_ON(seqno == 0);
1867
1868 if (atomic_read(&dev_priv->mm.wedged)) {
1869 struct completion *x = &dev_priv->error_completion;
1870 bool recovery_complete;
1871 unsigned long flags;
1872
1873 /* Give the error handler a chance to run. */
1874 spin_lock_irqsave(&x->wait.lock, flags);
1875 recovery_complete = x->done > 0;
1876 spin_unlock_irqrestore(&x->wait.lock, flags);
1877
1878 return recovery_complete ? -EIO : -EAGAIN;
1879 }
1880
1881 if (seqno == ring->outstanding_lazy_request) {
1882 struct drm_i915_gem_request *request;
1883
1884 request = kzalloc(sizeof(*request), GFP_KERNEL);
1885 if (request == NULL)
1886 return -ENOMEM;
1887
1888 ret = i915_add_request(ring, NULL, request);
1889 if (ret) {
1890 kfree(request);
1891 return ret;
1892 }
1893
1894 seqno = request->seqno;
1895 }
1896
1897 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1898 if (HAS_PCH_SPLIT(ring->dev))
1899 ier = I915_READ(DEIER) | I915_READ(GTIER);
1900 else if (IS_VALLEYVIEW(ring->dev))
1901 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1902 else
1903 ier = I915_READ(IER);
1904 if (!ier) {
1905 DRM_ERROR("something (likely vbetool) disabled "
1906 "interrupts, re-enabling\n");
1907 ring->dev->driver->irq_preinstall(ring->dev);
1908 ring->dev->driver->irq_postinstall(ring->dev);
1909 }
1910
1911 trace_i915_gem_request_wait_begin(ring, seqno);
1912
1913 ring->waiting_seqno = seqno;
1914 if (ring->irq_get(ring)) {
1915 if (dev_priv->mm.interruptible)
1916 ret = wait_event_interruptible(ring->irq_queue,
1917 i915_seqno_passed(ring->get_seqno(ring), seqno)
1918 || atomic_read(&dev_priv->mm.wedged));
1919 else
1920 wait_event(ring->irq_queue,
1921 i915_seqno_passed(ring->get_seqno(ring), seqno)
1922 || atomic_read(&dev_priv->mm.wedged));
1923
1924 ring->irq_put(ring);
1925 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1926 seqno) ||
1927 atomic_read(&dev_priv->mm.wedged), 3000))
1928 ret = -EBUSY;
1929 ring->waiting_seqno = 0;
1930
1931 trace_i915_gem_request_wait_end(ring, seqno);
1932 }
1933 if (atomic_read(&dev_priv->mm.wedged))
1934 ret = -EAGAIN;
1935
1936 /* Directly dispatch request retiring. While we have the work queue
1937 * to handle this, the waiter on a request often wants an associated
1938 * buffer to have made it to the inactive list, and we would need
1939 * a separate wait queue to handle that.
1940 */
1941 if (ret == 0 && do_retire)
1942 i915_gem_retire_requests_ring(ring);
1943
1944 return ret;
1945 }
1946
1947 /**
1948 * Ensures that all rendering to the object has completed and the object is
1949 * safe to unbind from the GTT or access from the CPU.
1950 */
1951 int
1952 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1953 {
1954 int ret;
1955
1956 /* This function only exists to support waiting for existing rendering,
1957 * not for emitting required flushes.
1958 */
1959 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1960
1961 /* If there is rendering queued on the buffer being evicted, wait for
1962 * it.
1963 */
1964 if (obj->active) {
1965 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1966 true);
1967 if (ret)
1968 return ret;
1969 }
1970
1971 return 0;
1972 }
1973
1974 /**
1975 * i915_gem_object_sync - sync an object to a ring.
1976 *
1977 * @obj: object which may be in use on another ring.
1978 * @to: ring we wish to use the object on. May be NULL.
1979 *
1980 * This code is meant to abstract object synchronization with the GPU.
1981 * Calling with NULL implies synchronizing the object with the CPU
1982 * rather than a particular GPU ring.
1983 *
1984 * Returns 0 if successful, else propagates up the lower layer error.
1985 */
1986 int
1987 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1988 struct intel_ring_buffer *to)
1989 {
1990 struct intel_ring_buffer *from = obj->ring;
1991 u32 seqno;
1992 int ret, idx;
1993
1994 if (from == NULL || to == from)
1995 return 0;
1996
1997 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1998 return i915_gem_object_wait_rendering(obj);
1999
2000 idx = intel_ring_sync_index(from, to);
2001
2002 seqno = obj->last_rendering_seqno;
2003 if (seqno <= from->sync_seqno[idx])
2004 return 0;
2005
2006 if (seqno == from->outstanding_lazy_request) {
2007 struct drm_i915_gem_request *request;
2008
2009 request = kzalloc(sizeof(*request), GFP_KERNEL);
2010 if (request == NULL)
2011 return -ENOMEM;
2012
2013 ret = i915_add_request(from, NULL, request);
2014 if (ret) {
2015 kfree(request);
2016 return ret;
2017 }
2018
2019 seqno = request->seqno;
2020 }
2021
2022
2023 ret = to->sync_to(to, from, seqno);
2024 if (!ret)
2025 from->sync_seqno[idx] = seqno;
2026
2027 return ret;
2028 }
2029
2030 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2031 {
2032 u32 old_write_domain, old_read_domains;
2033
2034 /* Act a barrier for all accesses through the GTT */
2035 mb();
2036
2037 /* Force a pagefault for domain tracking on next user access */
2038 i915_gem_release_mmap(obj);
2039
2040 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2041 return;
2042
2043 old_read_domains = obj->base.read_domains;
2044 old_write_domain = obj->base.write_domain;
2045
2046 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2047 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2048
2049 trace_i915_gem_object_change_domain(obj,
2050 old_read_domains,
2051 old_write_domain);
2052 }
2053
2054 /**
2055 * Unbinds an object from the GTT aperture.
2056 */
2057 int
2058 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2059 {
2060 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2061 int ret = 0;
2062
2063 if (obj->gtt_space == NULL)
2064 return 0;
2065
2066 if (obj->pin_count != 0) {
2067 DRM_ERROR("Attempting to unbind pinned buffer\n");
2068 return -EINVAL;
2069 }
2070
2071 ret = i915_gem_object_finish_gpu(obj);
2072 if (ret == -ERESTARTSYS)
2073 return ret;
2074 /* Continue on if we fail due to EIO, the GPU is hung so we
2075 * should be safe and we need to cleanup or else we might
2076 * cause memory corruption through use-after-free.
2077 */
2078
2079 i915_gem_object_finish_gtt(obj);
2080
2081 /* Move the object to the CPU domain to ensure that
2082 * any possible CPU writes while it's not in the GTT
2083 * are flushed when we go to remap it.
2084 */
2085 if (ret == 0)
2086 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2087 if (ret == -ERESTARTSYS)
2088 return ret;
2089 if (ret) {
2090 /* In the event of a disaster, abandon all caches and
2091 * hope for the best.
2092 */
2093 i915_gem_clflush_object(obj);
2094 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2095 }
2096
2097 /* release the fence reg _after_ flushing */
2098 ret = i915_gem_object_put_fence(obj);
2099 if (ret == -ERESTARTSYS)
2100 return ret;
2101
2102 trace_i915_gem_object_unbind(obj);
2103
2104 if (obj->has_global_gtt_mapping)
2105 i915_gem_gtt_unbind_object(obj);
2106 if (obj->has_aliasing_ppgtt_mapping) {
2107 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2108 obj->has_aliasing_ppgtt_mapping = 0;
2109 }
2110 i915_gem_gtt_finish_object(obj);
2111
2112 i915_gem_object_put_pages_gtt(obj);
2113
2114 list_del_init(&obj->gtt_list);
2115 list_del_init(&obj->mm_list);
2116 /* Avoid an unnecessary call to unbind on rebind. */
2117 obj->map_and_fenceable = true;
2118
2119 drm_mm_put_block(obj->gtt_space);
2120 obj->gtt_space = NULL;
2121 obj->gtt_offset = 0;
2122
2123 if (i915_gem_object_is_purgeable(obj))
2124 i915_gem_object_truncate(obj);
2125
2126 return ret;
2127 }
2128
2129 int
2130 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2131 uint32_t invalidate_domains,
2132 uint32_t flush_domains)
2133 {
2134 int ret;
2135
2136 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2137 return 0;
2138
2139 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2140
2141 ret = ring->flush(ring, invalidate_domains, flush_domains);
2142 if (ret)
2143 return ret;
2144
2145 if (flush_domains & I915_GEM_GPU_DOMAINS)
2146 i915_gem_process_flushing_list(ring, flush_domains);
2147
2148 return 0;
2149 }
2150
2151 static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2152 {
2153 int ret;
2154
2155 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2156 return 0;
2157
2158 if (!list_empty(&ring->gpu_write_list)) {
2159 ret = i915_gem_flush_ring(ring,
2160 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2161 if (ret)
2162 return ret;
2163 }
2164
2165 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2166 do_retire);
2167 }
2168
2169 int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2170 {
2171 drm_i915_private_t *dev_priv = dev->dev_private;
2172 int ret, i;
2173
2174 /* Flush everything onto the inactive list. */
2175 for (i = 0; i < I915_NUM_RINGS; i++) {
2176 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2177 if (ret)
2178 return ret;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2185 struct drm_i915_gem_object *obj)
2186 {
2187 drm_i915_private_t *dev_priv = dev->dev_private;
2188 uint64_t val;
2189
2190 if (obj) {
2191 u32 size = obj->gtt_space->size;
2192
2193 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2194 0xfffff000) << 32;
2195 val |= obj->gtt_offset & 0xfffff000;
2196 val |= (uint64_t)((obj->stride / 128) - 1) <<
2197 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2198
2199 if (obj->tiling_mode == I915_TILING_Y)
2200 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2201 val |= I965_FENCE_REG_VALID;
2202 } else
2203 val = 0;
2204
2205 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2206 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2207 }
2208
2209 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2210 struct drm_i915_gem_object *obj)
2211 {
2212 drm_i915_private_t *dev_priv = dev->dev_private;
2213 uint64_t val;
2214
2215 if (obj) {
2216 u32 size = obj->gtt_space->size;
2217
2218 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2219 0xfffff000) << 32;
2220 val |= obj->gtt_offset & 0xfffff000;
2221 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2222 if (obj->tiling_mode == I915_TILING_Y)
2223 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2224 val |= I965_FENCE_REG_VALID;
2225 } else
2226 val = 0;
2227
2228 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2229 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2230 }
2231
2232 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2233 struct drm_i915_gem_object *obj)
2234 {
2235 drm_i915_private_t *dev_priv = dev->dev_private;
2236 u32 val;
2237
2238 if (obj) {
2239 u32 size = obj->gtt_space->size;
2240 int pitch_val;
2241 int tile_width;
2242
2243 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2244 (size & -size) != size ||
2245 (obj->gtt_offset & (size - 1)),
2246 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2247 obj->gtt_offset, obj->map_and_fenceable, size);
2248
2249 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2250 tile_width = 128;
2251 else
2252 tile_width = 512;
2253
2254 /* Note: pitch better be a power of two tile widths */
2255 pitch_val = obj->stride / tile_width;
2256 pitch_val = ffs(pitch_val) - 1;
2257
2258 val = obj->gtt_offset;
2259 if (obj->tiling_mode == I915_TILING_Y)
2260 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2261 val |= I915_FENCE_SIZE_BITS(size);
2262 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2263 val |= I830_FENCE_REG_VALID;
2264 } else
2265 val = 0;
2266
2267 if (reg < 8)
2268 reg = FENCE_REG_830_0 + reg * 4;
2269 else
2270 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2271
2272 I915_WRITE(reg, val);
2273 POSTING_READ(reg);
2274 }
2275
2276 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2277 struct drm_i915_gem_object *obj)
2278 {
2279 drm_i915_private_t *dev_priv = dev->dev_private;
2280 uint32_t val;
2281
2282 if (obj) {
2283 u32 size = obj->gtt_space->size;
2284 uint32_t pitch_val;
2285
2286 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2287 (size & -size) != size ||
2288 (obj->gtt_offset & (size - 1)),
2289 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2290 obj->gtt_offset, size);
2291
2292 pitch_val = obj->stride / 128;
2293 pitch_val = ffs(pitch_val) - 1;
2294
2295 val = obj->gtt_offset;
2296 if (obj->tiling_mode == I915_TILING_Y)
2297 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2298 val |= I830_FENCE_SIZE_BITS(size);
2299 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2300 val |= I830_FENCE_REG_VALID;
2301 } else
2302 val = 0;
2303
2304 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2305 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2306 }
2307
2308 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2309 struct drm_i915_gem_object *obj)
2310 {
2311 switch (INTEL_INFO(dev)->gen) {
2312 case 7:
2313 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2314 case 5:
2315 case 4: i965_write_fence_reg(dev, reg, obj); break;
2316 case 3: i915_write_fence_reg(dev, reg, obj); break;
2317 case 2: i830_write_fence_reg(dev, reg, obj); break;
2318 default: break;
2319 }
2320 }
2321
2322 static inline int fence_number(struct drm_i915_private *dev_priv,
2323 struct drm_i915_fence_reg *fence)
2324 {
2325 return fence - dev_priv->fence_regs;
2326 }
2327
2328 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2329 struct drm_i915_fence_reg *fence,
2330 bool enable)
2331 {
2332 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2333 int reg = fence_number(dev_priv, fence);
2334
2335 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2336
2337 if (enable) {
2338 obj->fence_reg = reg;
2339 fence->obj = obj;
2340 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2341 } else {
2342 obj->fence_reg = I915_FENCE_REG_NONE;
2343 fence->obj = NULL;
2344 list_del_init(&fence->lru_list);
2345 }
2346 }
2347
2348 static int
2349 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2350 {
2351 int ret;
2352
2353 if (obj->fenced_gpu_access) {
2354 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2355 ret = i915_gem_flush_ring(obj->ring,
2356 0, obj->base.write_domain);
2357 if (ret)
2358 return ret;
2359 }
2360
2361 obj->fenced_gpu_access = false;
2362 }
2363
2364 if (obj->last_fenced_seqno) {
2365 ret = i915_wait_request(obj->ring,
2366 obj->last_fenced_seqno,
2367 true);
2368 if (ret)
2369 return ret;
2370
2371 obj->last_fenced_seqno = 0;
2372 }
2373
2374 /* Ensure that all CPU reads are completed before installing a fence
2375 * and all writes before removing the fence.
2376 */
2377 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2378 mb();
2379
2380 return 0;
2381 }
2382
2383 int
2384 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2385 {
2386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2387 int ret;
2388
2389 ret = i915_gem_object_flush_fence(obj);
2390 if (ret)
2391 return ret;
2392
2393 if (obj->fence_reg == I915_FENCE_REG_NONE)
2394 return 0;
2395
2396 i915_gem_object_update_fence(obj,
2397 &dev_priv->fence_regs[obj->fence_reg],
2398 false);
2399 i915_gem_object_fence_lost(obj);
2400
2401 return 0;
2402 }
2403
2404 static struct drm_i915_fence_reg *
2405 i915_find_fence_reg(struct drm_device *dev)
2406 {
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct drm_i915_fence_reg *reg, *avail;
2409 int i;
2410
2411 /* First try to find a free reg */
2412 avail = NULL;
2413 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2414 reg = &dev_priv->fence_regs[i];
2415 if (!reg->obj)
2416 return reg;
2417
2418 if (!reg->pin_count)
2419 avail = reg;
2420 }
2421
2422 if (avail == NULL)
2423 return NULL;
2424
2425 /* None available, try to steal one or wait for a user to finish */
2426 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2427 if (reg->pin_count)
2428 continue;
2429
2430 return reg;
2431 }
2432
2433 return NULL;
2434 }
2435
2436 /**
2437 * i915_gem_object_get_fence - set up fencing for an object
2438 * @obj: object to map through a fence reg
2439 *
2440 * When mapping objects through the GTT, userspace wants to be able to write
2441 * to them without having to worry about swizzling if the object is tiled.
2442 * This function walks the fence regs looking for a free one for @obj,
2443 * stealing one if it can't find any.
2444 *
2445 * It then sets up the reg based on the object's properties: address, pitch
2446 * and tiling format.
2447 *
2448 * For an untiled surface, this removes any existing fence.
2449 */
2450 int
2451 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2452 {
2453 struct drm_device *dev = obj->base.dev;
2454 struct drm_i915_private *dev_priv = dev->dev_private;
2455 struct drm_i915_fence_reg *reg;
2456 int ret;
2457
2458 if (obj->tiling_mode == I915_TILING_NONE)
2459 return i915_gem_object_put_fence(obj);
2460
2461 /* Just update our place in the LRU if our fence is getting reused. */
2462 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2463 reg = &dev_priv->fence_regs[obj->fence_reg];
2464 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2465
2466 if (obj->tiling_changed) {
2467 ret = i915_gem_object_flush_fence(obj);
2468 if (ret)
2469 return ret;
2470
2471 goto update;
2472 }
2473
2474 return 0;
2475 }
2476
2477 reg = i915_find_fence_reg(dev);
2478 if (reg == NULL)
2479 return -EDEADLK;
2480
2481 ret = i915_gem_object_flush_fence(obj);
2482 if (ret)
2483 return ret;
2484
2485 if (reg->obj) {
2486 struct drm_i915_gem_object *old = reg->obj;
2487
2488 drm_gem_object_reference(&old->base);
2489
2490 if (old->tiling_mode)
2491 i915_gem_release_mmap(old);
2492
2493 ret = i915_gem_object_flush_fence(old);
2494 if (ret) {
2495 drm_gem_object_unreference(&old->base);
2496 return ret;
2497 }
2498
2499 old->fence_reg = I915_FENCE_REG_NONE;
2500 old->last_fenced_seqno = 0;
2501
2502 drm_gem_object_unreference(&old->base);
2503 }
2504
2505 reg->obj = obj;
2506 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2507 obj->fence_reg = reg - dev_priv->fence_regs;
2508
2509 update:
2510 obj->tiling_changed = false;
2511 i915_gem_write_fence(dev, reg - dev_priv->fence_regs, obj);
2512 return 0;
2513 }
2514
2515 /**
2516 * i915_gem_clear_fence_reg - clear out fence register info
2517 * @obj: object to clear
2518 *
2519 * Zeroes out the fence register itself and clears out the associated
2520 * data structures in dev_priv and obj.
2521 */
2522 static void
2523 i915_gem_clear_fence_reg(struct drm_device *dev,
2524 struct drm_i915_fence_reg *reg)
2525 {
2526 drm_i915_private_t *dev_priv = dev->dev_private;
2527 uint32_t fence_reg = reg - dev_priv->fence_regs;
2528
2529 switch (INTEL_INFO(dev)->gen) {
2530 case 7:
2531 case 6:
2532 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2533 break;
2534 case 5:
2535 case 4:
2536 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2537 break;
2538 case 3:
2539 if (fence_reg >= 8)
2540 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2541 else
2542 case 2:
2543 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2544
2545 I915_WRITE(fence_reg, 0);
2546 break;
2547 }
2548
2549 list_del_init(&reg->lru_list);
2550 reg->obj = NULL;
2551 reg->pin_count = 0;
2552 }
2553
2554 /**
2555 * Finds free space in the GTT aperture and binds the object there.
2556 */
2557 static int
2558 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2559 unsigned alignment,
2560 bool map_and_fenceable)
2561 {
2562 struct drm_device *dev = obj->base.dev;
2563 drm_i915_private_t *dev_priv = dev->dev_private;
2564 struct drm_mm_node *free_space;
2565 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2566 u32 size, fence_size, fence_alignment, unfenced_alignment;
2567 bool mappable, fenceable;
2568 int ret;
2569
2570 if (obj->madv != I915_MADV_WILLNEED) {
2571 DRM_ERROR("Attempting to bind a purgeable object\n");
2572 return -EINVAL;
2573 }
2574
2575 fence_size = i915_gem_get_gtt_size(dev,
2576 obj->base.size,
2577 obj->tiling_mode);
2578 fence_alignment = i915_gem_get_gtt_alignment(dev,
2579 obj->base.size,
2580 obj->tiling_mode);
2581 unfenced_alignment =
2582 i915_gem_get_unfenced_gtt_alignment(dev,
2583 obj->base.size,
2584 obj->tiling_mode);
2585
2586 if (alignment == 0)
2587 alignment = map_and_fenceable ? fence_alignment :
2588 unfenced_alignment;
2589 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2590 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2591 return -EINVAL;
2592 }
2593
2594 size = map_and_fenceable ? fence_size : obj->base.size;
2595
2596 /* If the object is bigger than the entire aperture, reject it early
2597 * before evicting everything in a vain attempt to find space.
2598 */
2599 if (obj->base.size >
2600 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2601 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2602 return -E2BIG;
2603 }
2604
2605 search_free:
2606 if (map_and_fenceable)
2607 free_space =
2608 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2609 size, alignment, 0,
2610 dev_priv->mm.gtt_mappable_end,
2611 0);
2612 else
2613 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2614 size, alignment, 0);
2615
2616 if (free_space != NULL) {
2617 if (map_and_fenceable)
2618 obj->gtt_space =
2619 drm_mm_get_block_range_generic(free_space,
2620 size, alignment, 0,
2621 dev_priv->mm.gtt_mappable_end,
2622 0);
2623 else
2624 obj->gtt_space =
2625 drm_mm_get_block(free_space, size, alignment);
2626 }
2627 if (obj->gtt_space == NULL) {
2628 /* If the gtt is empty and we're still having trouble
2629 * fitting our object in, we're out of memory.
2630 */
2631 ret = i915_gem_evict_something(dev, size, alignment,
2632 map_and_fenceable);
2633 if (ret)
2634 return ret;
2635
2636 goto search_free;
2637 }
2638
2639 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2640 if (ret) {
2641 drm_mm_put_block(obj->gtt_space);
2642 obj->gtt_space = NULL;
2643
2644 if (ret == -ENOMEM) {
2645 /* first try to reclaim some memory by clearing the GTT */
2646 ret = i915_gem_evict_everything(dev, false);
2647 if (ret) {
2648 /* now try to shrink everyone else */
2649 if (gfpmask) {
2650 gfpmask = 0;
2651 goto search_free;
2652 }
2653
2654 return -ENOMEM;
2655 }
2656
2657 goto search_free;
2658 }
2659
2660 return ret;
2661 }
2662
2663 ret = i915_gem_gtt_prepare_object(obj);
2664 if (ret) {
2665 i915_gem_object_put_pages_gtt(obj);
2666 drm_mm_put_block(obj->gtt_space);
2667 obj->gtt_space = NULL;
2668
2669 if (i915_gem_evict_everything(dev, false))
2670 return ret;
2671
2672 goto search_free;
2673 }
2674
2675 if (!dev_priv->mm.aliasing_ppgtt)
2676 i915_gem_gtt_bind_object(obj, obj->cache_level);
2677
2678 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2679 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2680
2681 /* Assert that the object is not currently in any GPU domain. As it
2682 * wasn't in the GTT, there shouldn't be any way it could have been in
2683 * a GPU cache
2684 */
2685 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2686 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2687
2688 obj->gtt_offset = obj->gtt_space->start;
2689
2690 fenceable =
2691 obj->gtt_space->size == fence_size &&
2692 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2693
2694 mappable =
2695 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2696
2697 obj->map_and_fenceable = mappable && fenceable;
2698
2699 trace_i915_gem_object_bind(obj, map_and_fenceable);
2700 return 0;
2701 }
2702
2703 void
2704 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2705 {
2706 /* If we don't have a page list set up, then we're not pinned
2707 * to GPU, and we can ignore the cache flush because it'll happen
2708 * again at bind time.
2709 */
2710 if (obj->pages == NULL)
2711 return;
2712
2713 /* If the GPU is snooping the contents of the CPU cache,
2714 * we do not need to manually clear the CPU cache lines. However,
2715 * the caches are only snooped when the render cache is
2716 * flushed/invalidated. As we always have to emit invalidations
2717 * and flushes when moving into and out of the RENDER domain, correct
2718 * snooping behaviour occurs naturally as the result of our domain
2719 * tracking.
2720 */
2721 if (obj->cache_level != I915_CACHE_NONE)
2722 return;
2723
2724 trace_i915_gem_object_clflush(obj);
2725
2726 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2727 }
2728
2729 /** Flushes any GPU write domain for the object if it's dirty. */
2730 static int
2731 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2732 {
2733 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2734 return 0;
2735
2736 /* Queue the GPU write cache flushing we need. */
2737 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2738 }
2739
2740 /** Flushes the GTT write domain for the object if it's dirty. */
2741 static void
2742 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2743 {
2744 uint32_t old_write_domain;
2745
2746 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2747 return;
2748
2749 /* No actual flushing is required for the GTT write domain. Writes
2750 * to it immediately go to main memory as far as we know, so there's
2751 * no chipset flush. It also doesn't land in render cache.
2752 *
2753 * However, we do have to enforce the order so that all writes through
2754 * the GTT land before any writes to the device, such as updates to
2755 * the GATT itself.
2756 */
2757 wmb();
2758
2759 old_write_domain = obj->base.write_domain;
2760 obj->base.write_domain = 0;
2761
2762 trace_i915_gem_object_change_domain(obj,
2763 obj->base.read_domains,
2764 old_write_domain);
2765 }
2766
2767 /** Flushes the CPU write domain for the object if it's dirty. */
2768 static void
2769 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2770 {
2771 uint32_t old_write_domain;
2772
2773 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2774 return;
2775
2776 i915_gem_clflush_object(obj);
2777 intel_gtt_chipset_flush();
2778 old_write_domain = obj->base.write_domain;
2779 obj->base.write_domain = 0;
2780
2781 trace_i915_gem_object_change_domain(obj,
2782 obj->base.read_domains,
2783 old_write_domain);
2784 }
2785
2786 /**
2787 * Moves a single object to the GTT read, and possibly write domain.
2788 *
2789 * This function returns when the move is complete, including waiting on
2790 * flushes to occur.
2791 */
2792 int
2793 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2794 {
2795 uint32_t old_write_domain, old_read_domains;
2796 int ret;
2797
2798 /* Not valid to be called on unbound objects. */
2799 if (obj->gtt_space == NULL)
2800 return -EINVAL;
2801
2802 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2803 return 0;
2804
2805 ret = i915_gem_object_flush_gpu_write_domain(obj);
2806 if (ret)
2807 return ret;
2808
2809 if (obj->pending_gpu_write || write) {
2810 ret = i915_gem_object_wait_rendering(obj);
2811 if (ret)
2812 return ret;
2813 }
2814
2815 i915_gem_object_flush_cpu_write_domain(obj);
2816
2817 old_write_domain = obj->base.write_domain;
2818 old_read_domains = obj->base.read_domains;
2819
2820 /* It should now be out of any other write domains, and we can update
2821 * the domain values for our changes.
2822 */
2823 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2824 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2825 if (write) {
2826 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2827 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2828 obj->dirty = 1;
2829 }
2830
2831 trace_i915_gem_object_change_domain(obj,
2832 old_read_domains,
2833 old_write_domain);
2834
2835 return 0;
2836 }
2837
2838 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2839 enum i915_cache_level cache_level)
2840 {
2841 struct drm_device *dev = obj->base.dev;
2842 drm_i915_private_t *dev_priv = dev->dev_private;
2843 int ret;
2844
2845 if (obj->cache_level == cache_level)
2846 return 0;
2847
2848 if (obj->pin_count) {
2849 DRM_DEBUG("can not change the cache level of pinned objects\n");
2850 return -EBUSY;
2851 }
2852
2853 if (obj->gtt_space) {
2854 ret = i915_gem_object_finish_gpu(obj);
2855 if (ret)
2856 return ret;
2857
2858 i915_gem_object_finish_gtt(obj);
2859
2860 /* Before SandyBridge, you could not use tiling or fence
2861 * registers with snooped memory, so relinquish any fences
2862 * currently pointing to our region in the aperture.
2863 */
2864 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2865 ret = i915_gem_object_put_fence(obj);
2866 if (ret)
2867 return ret;
2868 }
2869
2870 if (obj->has_global_gtt_mapping)
2871 i915_gem_gtt_bind_object(obj, cache_level);
2872 if (obj->has_aliasing_ppgtt_mapping)
2873 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2874 obj, cache_level);
2875 }
2876
2877 if (cache_level == I915_CACHE_NONE) {
2878 u32 old_read_domains, old_write_domain;
2879
2880 /* If we're coming from LLC cached, then we haven't
2881 * actually been tracking whether the data is in the
2882 * CPU cache or not, since we only allow one bit set
2883 * in obj->write_domain and have been skipping the clflushes.
2884 * Just set it to the CPU cache for now.
2885 */
2886 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2887 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2888
2889 old_read_domains = obj->base.read_domains;
2890 old_write_domain = obj->base.write_domain;
2891
2892 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2893 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2894
2895 trace_i915_gem_object_change_domain(obj,
2896 old_read_domains,
2897 old_write_domain);
2898 }
2899
2900 obj->cache_level = cache_level;
2901 return 0;
2902 }
2903
2904 /*
2905 * Prepare buffer for display plane (scanout, cursors, etc).
2906 * Can be called from an uninterruptible phase (modesetting) and allows
2907 * any flushes to be pipelined (for pageflips).
2908 */
2909 int
2910 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2911 u32 alignment,
2912 struct intel_ring_buffer *pipelined)
2913 {
2914 u32 old_read_domains, old_write_domain;
2915 int ret;
2916
2917 ret = i915_gem_object_flush_gpu_write_domain(obj);
2918 if (ret)
2919 return ret;
2920
2921 if (pipelined != obj->ring) {
2922 ret = i915_gem_object_sync(obj, pipelined);
2923 if (ret)
2924 return ret;
2925 }
2926
2927 /* The display engine is not coherent with the LLC cache on gen6. As
2928 * a result, we make sure that the pinning that is about to occur is
2929 * done with uncached PTEs. This is lowest common denominator for all
2930 * chipsets.
2931 *
2932 * However for gen6+, we could do better by using the GFDT bit instead
2933 * of uncaching, which would allow us to flush all the LLC-cached data
2934 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2935 */
2936 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2937 if (ret)
2938 return ret;
2939
2940 /* As the user may map the buffer once pinned in the display plane
2941 * (e.g. libkms for the bootup splash), we have to ensure that we
2942 * always use map_and_fenceable for all scanout buffers.
2943 */
2944 ret = i915_gem_object_pin(obj, alignment, true);
2945 if (ret)
2946 return ret;
2947
2948 i915_gem_object_flush_cpu_write_domain(obj);
2949
2950 old_write_domain = obj->base.write_domain;
2951 old_read_domains = obj->base.read_domains;
2952
2953 /* It should now be out of any other write domains, and we can update
2954 * the domain values for our changes.
2955 */
2956 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2957 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2958
2959 trace_i915_gem_object_change_domain(obj,
2960 old_read_domains,
2961 old_write_domain);
2962
2963 return 0;
2964 }
2965
2966 int
2967 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2968 {
2969 int ret;
2970
2971 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2972 return 0;
2973
2974 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2975 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2976 if (ret)
2977 return ret;
2978 }
2979
2980 ret = i915_gem_object_wait_rendering(obj);
2981 if (ret)
2982 return ret;
2983
2984 /* Ensure that we invalidate the GPU's caches and TLBs. */
2985 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2986 return 0;
2987 }
2988
2989 /**
2990 * Moves a single object to the CPU read, and possibly write domain.
2991 *
2992 * This function returns when the move is complete, including waiting on
2993 * flushes to occur.
2994 */
2995 int
2996 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2997 {
2998 uint32_t old_write_domain, old_read_domains;
2999 int ret;
3000
3001 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3002 return 0;
3003
3004 ret = i915_gem_object_flush_gpu_write_domain(obj);
3005 if (ret)
3006 return ret;
3007
3008 if (write || obj->pending_gpu_write) {
3009 ret = i915_gem_object_wait_rendering(obj);
3010 if (ret)
3011 return ret;
3012 }
3013
3014 i915_gem_object_flush_gtt_write_domain(obj);
3015
3016 old_write_domain = obj->base.write_domain;
3017 old_read_domains = obj->base.read_domains;
3018
3019 /* Flush the CPU cache if it's still invalid. */
3020 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3021 i915_gem_clflush_object(obj);
3022
3023 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3024 }
3025
3026 /* It should now be out of any other write domains, and we can update
3027 * the domain values for our changes.
3028 */
3029 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3030
3031 /* If we're writing through the CPU, then the GPU read domains will
3032 * need to be invalidated at next use.
3033 */
3034 if (write) {
3035 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3036 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3037 }
3038
3039 trace_i915_gem_object_change_domain(obj,
3040 old_read_domains,
3041 old_write_domain);
3042
3043 return 0;
3044 }
3045
3046 /* Throttle our rendering by waiting until the ring has completed our requests
3047 * emitted over 20 msec ago.
3048 *
3049 * Note that if we were to use the current jiffies each time around the loop,
3050 * we wouldn't escape the function with any frames outstanding if the time to
3051 * render a frame was over 20ms.
3052 *
3053 * This should get us reasonable parallelism between CPU and GPU but also
3054 * relatively low latency when blocking on a particular request to finish.
3055 */
3056 static int
3057 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3058 {
3059 struct drm_i915_private *dev_priv = dev->dev_private;
3060 struct drm_i915_file_private *file_priv = file->driver_priv;
3061 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3062 struct drm_i915_gem_request *request;
3063 struct intel_ring_buffer *ring = NULL;
3064 u32 seqno = 0;
3065 int ret;
3066
3067 if (atomic_read(&dev_priv->mm.wedged))
3068 return -EIO;
3069
3070 spin_lock(&file_priv->mm.lock);
3071 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3072 if (time_after_eq(request->emitted_jiffies, recent_enough))
3073 break;
3074
3075 ring = request->ring;
3076 seqno = request->seqno;
3077 }
3078 spin_unlock(&file_priv->mm.lock);
3079
3080 if (seqno == 0)
3081 return 0;
3082
3083 ret = 0;
3084 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3085 /* And wait for the seqno passing without holding any locks and
3086 * causing extra latency for others. This is safe as the irq
3087 * generation is designed to be run atomically and so is
3088 * lockless.
3089 */
3090 if (ring->irq_get(ring)) {
3091 ret = wait_event_interruptible(ring->irq_queue,
3092 i915_seqno_passed(ring->get_seqno(ring), seqno)
3093 || atomic_read(&dev_priv->mm.wedged));
3094 ring->irq_put(ring);
3095
3096 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3097 ret = -EIO;
3098 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3099 seqno) ||
3100 atomic_read(&dev_priv->mm.wedged), 3000)) {
3101 ret = -EBUSY;
3102 }
3103 }
3104
3105 if (ret == 0)
3106 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3107
3108 return ret;
3109 }
3110
3111 int
3112 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3113 uint32_t alignment,
3114 bool map_and_fenceable)
3115 {
3116 struct drm_device *dev = obj->base.dev;
3117 struct drm_i915_private *dev_priv = dev->dev_private;
3118 int ret;
3119
3120 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3121 WARN_ON(i915_verify_lists(dev));
3122
3123 if (obj->gtt_space != NULL) {
3124 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3125 (map_and_fenceable && !obj->map_and_fenceable)) {
3126 WARN(obj->pin_count,
3127 "bo is already pinned with incorrect alignment:"
3128 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3129 " obj->map_and_fenceable=%d\n",
3130 obj->gtt_offset, alignment,
3131 map_and_fenceable,
3132 obj->map_and_fenceable);
3133 ret = i915_gem_object_unbind(obj);
3134 if (ret)
3135 return ret;
3136 }
3137 }
3138
3139 if (obj->gtt_space == NULL) {
3140 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3141 map_and_fenceable);
3142 if (ret)
3143 return ret;
3144 }
3145
3146 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3147 i915_gem_gtt_bind_object(obj, obj->cache_level);
3148
3149 if (obj->pin_count++ == 0) {
3150 if (!obj->active)
3151 list_move_tail(&obj->mm_list,
3152 &dev_priv->mm.pinned_list);
3153 }
3154 obj->pin_mappable |= map_and_fenceable;
3155
3156 WARN_ON(i915_verify_lists(dev));
3157 return 0;
3158 }
3159
3160 void
3161 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3162 {
3163 struct drm_device *dev = obj->base.dev;
3164 drm_i915_private_t *dev_priv = dev->dev_private;
3165
3166 WARN_ON(i915_verify_lists(dev));
3167 BUG_ON(obj->pin_count == 0);
3168 BUG_ON(obj->gtt_space == NULL);
3169
3170 if (--obj->pin_count == 0) {
3171 if (!obj->active)
3172 list_move_tail(&obj->mm_list,
3173 &dev_priv->mm.inactive_list);
3174 obj->pin_mappable = false;
3175 }
3176 WARN_ON(i915_verify_lists(dev));
3177 }
3178
3179 int
3180 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3181 struct drm_file *file)
3182 {
3183 struct drm_i915_gem_pin *args = data;
3184 struct drm_i915_gem_object *obj;
3185 int ret;
3186
3187 ret = i915_mutex_lock_interruptible(dev);
3188 if (ret)
3189 return ret;
3190
3191 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3192 if (&obj->base == NULL) {
3193 ret = -ENOENT;
3194 goto unlock;
3195 }
3196
3197 if (obj->madv != I915_MADV_WILLNEED) {
3198 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3199 ret = -EINVAL;
3200 goto out;
3201 }
3202
3203 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3204 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3205 args->handle);
3206 ret = -EINVAL;
3207 goto out;
3208 }
3209
3210 obj->user_pin_count++;
3211 obj->pin_filp = file;
3212 if (obj->user_pin_count == 1) {
3213 ret = i915_gem_object_pin(obj, args->alignment, true);
3214 if (ret)
3215 goto out;
3216 }
3217
3218 /* XXX - flush the CPU caches for pinned objects
3219 * as the X server doesn't manage domains yet
3220 */
3221 i915_gem_object_flush_cpu_write_domain(obj);
3222 args->offset = obj->gtt_offset;
3223 out:
3224 drm_gem_object_unreference(&obj->base);
3225 unlock:
3226 mutex_unlock(&dev->struct_mutex);
3227 return ret;
3228 }
3229
3230 int
3231 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3232 struct drm_file *file)
3233 {
3234 struct drm_i915_gem_pin *args = data;
3235 struct drm_i915_gem_object *obj;
3236 int ret;
3237
3238 ret = i915_mutex_lock_interruptible(dev);
3239 if (ret)
3240 return ret;
3241
3242 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3243 if (&obj->base == NULL) {
3244 ret = -ENOENT;
3245 goto unlock;
3246 }
3247
3248 if (obj->pin_filp != file) {
3249 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3250 args->handle);
3251 ret = -EINVAL;
3252 goto out;
3253 }
3254 obj->user_pin_count--;
3255 if (obj->user_pin_count == 0) {
3256 obj->pin_filp = NULL;
3257 i915_gem_object_unpin(obj);
3258 }
3259
3260 out:
3261 drm_gem_object_unreference(&obj->base);
3262 unlock:
3263 mutex_unlock(&dev->struct_mutex);
3264 return ret;
3265 }
3266
3267 int
3268 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3269 struct drm_file *file)
3270 {
3271 struct drm_i915_gem_busy *args = data;
3272 struct drm_i915_gem_object *obj;
3273 int ret;
3274
3275 ret = i915_mutex_lock_interruptible(dev);
3276 if (ret)
3277 return ret;
3278
3279 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3280 if (&obj->base == NULL) {
3281 ret = -ENOENT;
3282 goto unlock;
3283 }
3284
3285 /* Count all active objects as busy, even if they are currently not used
3286 * by the gpu. Users of this interface expect objects to eventually
3287 * become non-busy without any further actions, therefore emit any
3288 * necessary flushes here.
3289 */
3290 args->busy = obj->active;
3291 if (args->busy) {
3292 /* Unconditionally flush objects, even when the gpu still uses this
3293 * object. Userspace calling this function indicates that it wants to
3294 * use this buffer rather sooner than later, so issuing the required
3295 * flush earlier is beneficial.
3296 */
3297 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3298 ret = i915_gem_flush_ring(obj->ring,
3299 0, obj->base.write_domain);
3300 } else if (obj->ring->outstanding_lazy_request ==
3301 obj->last_rendering_seqno) {
3302 struct drm_i915_gem_request *request;
3303
3304 /* This ring is not being cleared by active usage,
3305 * so emit a request to do so.
3306 */
3307 request = kzalloc(sizeof(*request), GFP_KERNEL);
3308 if (request) {
3309 ret = i915_add_request(obj->ring, NULL, request);
3310 if (ret)
3311 kfree(request);
3312 } else
3313 ret = -ENOMEM;
3314 }
3315
3316 /* Update the active list for the hardware's current position.
3317 * Otherwise this only updates on a delayed timer or when irqs
3318 * are actually unmasked, and our working set ends up being
3319 * larger than required.
3320 */
3321 i915_gem_retire_requests_ring(obj->ring);
3322
3323 args->busy = obj->active;
3324 }
3325
3326 drm_gem_object_unreference(&obj->base);
3327 unlock:
3328 mutex_unlock(&dev->struct_mutex);
3329 return ret;
3330 }
3331
3332 int
3333 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3334 struct drm_file *file_priv)
3335 {
3336 return i915_gem_ring_throttle(dev, file_priv);
3337 }
3338
3339 int
3340 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3341 struct drm_file *file_priv)
3342 {
3343 struct drm_i915_gem_madvise *args = data;
3344 struct drm_i915_gem_object *obj;
3345 int ret;
3346
3347 switch (args->madv) {
3348 case I915_MADV_DONTNEED:
3349 case I915_MADV_WILLNEED:
3350 break;
3351 default:
3352 return -EINVAL;
3353 }
3354
3355 ret = i915_mutex_lock_interruptible(dev);
3356 if (ret)
3357 return ret;
3358
3359 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3360 if (&obj->base == NULL) {
3361 ret = -ENOENT;
3362 goto unlock;
3363 }
3364
3365 if (obj->pin_count) {
3366 ret = -EINVAL;
3367 goto out;
3368 }
3369
3370 if (obj->madv != __I915_MADV_PURGED)
3371 obj->madv = args->madv;
3372
3373 /* if the object is no longer bound, discard its backing storage */
3374 if (i915_gem_object_is_purgeable(obj) &&
3375 obj->gtt_space == NULL)
3376 i915_gem_object_truncate(obj);
3377
3378 args->retained = obj->madv != __I915_MADV_PURGED;
3379
3380 out:
3381 drm_gem_object_unreference(&obj->base);
3382 unlock:
3383 mutex_unlock(&dev->struct_mutex);
3384 return ret;
3385 }
3386
3387 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3388 size_t size)
3389 {
3390 struct drm_i915_private *dev_priv = dev->dev_private;
3391 struct drm_i915_gem_object *obj;
3392 struct address_space *mapping;
3393
3394 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3395 if (obj == NULL)
3396 return NULL;
3397
3398 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3399 kfree(obj);
3400 return NULL;
3401 }
3402
3403 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3404 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3405
3406 i915_gem_info_add_obj(dev_priv, size);
3407
3408 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3409 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3410
3411 if (HAS_LLC(dev)) {
3412 /* On some devices, we can have the GPU use the LLC (the CPU
3413 * cache) for about a 10% performance improvement
3414 * compared to uncached. Graphics requests other than
3415 * display scanout are coherent with the CPU in
3416 * accessing this cache. This means in this mode we
3417 * don't need to clflush on the CPU side, and on the
3418 * GPU side we only need to flush internal caches to
3419 * get data visible to the CPU.
3420 *
3421 * However, we maintain the display planes as UC, and so
3422 * need to rebind when first used as such.
3423 */
3424 obj->cache_level = I915_CACHE_LLC;
3425 } else
3426 obj->cache_level = I915_CACHE_NONE;
3427
3428 obj->base.driver_private = NULL;
3429 obj->fence_reg = I915_FENCE_REG_NONE;
3430 INIT_LIST_HEAD(&obj->mm_list);
3431 INIT_LIST_HEAD(&obj->gtt_list);
3432 INIT_LIST_HEAD(&obj->ring_list);
3433 INIT_LIST_HEAD(&obj->exec_list);
3434 INIT_LIST_HEAD(&obj->gpu_write_list);
3435 obj->madv = I915_MADV_WILLNEED;
3436 /* Avoid an unnecessary call to unbind on the first bind. */
3437 obj->map_and_fenceable = true;
3438
3439 return obj;
3440 }
3441
3442 int i915_gem_init_object(struct drm_gem_object *obj)
3443 {
3444 BUG();
3445
3446 return 0;
3447 }
3448
3449 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3450 {
3451 struct drm_device *dev = obj->base.dev;
3452 drm_i915_private_t *dev_priv = dev->dev_private;
3453 int ret;
3454
3455 ret = i915_gem_object_unbind(obj);
3456 if (ret == -ERESTARTSYS) {
3457 list_move(&obj->mm_list,
3458 &dev_priv->mm.deferred_free_list);
3459 return;
3460 }
3461
3462 trace_i915_gem_object_destroy(obj);
3463
3464 if (obj->base.map_list.map)
3465 drm_gem_free_mmap_offset(&obj->base);
3466
3467 drm_gem_object_release(&obj->base);
3468 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3469
3470 kfree(obj->bit_17);
3471 kfree(obj);
3472 }
3473
3474 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3475 {
3476 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3477 struct drm_device *dev = obj->base.dev;
3478
3479 while (obj->pin_count > 0)
3480 i915_gem_object_unpin(obj);
3481
3482 if (obj->phys_obj)
3483 i915_gem_detach_phys_object(dev, obj);
3484
3485 i915_gem_free_object_tail(obj);
3486 }
3487
3488 int
3489 i915_gem_idle(struct drm_device *dev)
3490 {
3491 drm_i915_private_t *dev_priv = dev->dev_private;
3492 int ret;
3493
3494 mutex_lock(&dev->struct_mutex);
3495
3496 if (dev_priv->mm.suspended) {
3497 mutex_unlock(&dev->struct_mutex);
3498 return 0;
3499 }
3500
3501 ret = i915_gpu_idle(dev, true);
3502 if (ret) {
3503 mutex_unlock(&dev->struct_mutex);
3504 return ret;
3505 }
3506
3507 /* Under UMS, be paranoid and evict. */
3508 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3509 ret = i915_gem_evict_inactive(dev, false);
3510 if (ret) {
3511 mutex_unlock(&dev->struct_mutex);
3512 return ret;
3513 }
3514 }
3515
3516 i915_gem_reset_fences(dev);
3517
3518 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3519 * We need to replace this with a semaphore, or something.
3520 * And not confound mm.suspended!
3521 */
3522 dev_priv->mm.suspended = 1;
3523 del_timer_sync(&dev_priv->hangcheck_timer);
3524
3525 i915_kernel_lost_context(dev);
3526 i915_gem_cleanup_ringbuffer(dev);
3527
3528 mutex_unlock(&dev->struct_mutex);
3529
3530 /* Cancel the retire work handler, which should be idle now. */
3531 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3532
3533 return 0;
3534 }
3535
3536 void i915_gem_init_swizzling(struct drm_device *dev)
3537 {
3538 drm_i915_private_t *dev_priv = dev->dev_private;
3539
3540 if (INTEL_INFO(dev)->gen < 5 ||
3541 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3542 return;
3543
3544 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3545 DISP_TILE_SURFACE_SWIZZLING);
3546
3547 if (IS_GEN5(dev))
3548 return;
3549
3550 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3551 if (IS_GEN6(dev))
3552 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3553 else
3554 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3555 }
3556
3557 void i915_gem_init_ppgtt(struct drm_device *dev)
3558 {
3559 drm_i915_private_t *dev_priv = dev->dev_private;
3560 uint32_t pd_offset;
3561 struct intel_ring_buffer *ring;
3562 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3563 uint32_t __iomem *pd_addr;
3564 uint32_t pd_entry;
3565 int i;
3566
3567 if (!dev_priv->mm.aliasing_ppgtt)
3568 return;
3569
3570
3571 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3572 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3573 dma_addr_t pt_addr;
3574
3575 if (dev_priv->mm.gtt->needs_dmar)
3576 pt_addr = ppgtt->pt_dma_addr[i];
3577 else
3578 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3579
3580 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3581 pd_entry |= GEN6_PDE_VALID;
3582
3583 writel(pd_entry, pd_addr + i);
3584 }
3585 readl(pd_addr);
3586
3587 pd_offset = ppgtt->pd_offset;
3588 pd_offset /= 64; /* in cachelines, */
3589 pd_offset <<= 16;
3590
3591 if (INTEL_INFO(dev)->gen == 6) {
3592 uint32_t ecochk, gab_ctl, ecobits;
3593
3594 ecobits = I915_READ(GAC_ECO_BITS);
3595 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3596
3597 gab_ctl = I915_READ(GAB_CTL);
3598 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3599
3600 ecochk = I915_READ(GAM_ECOCHK);
3601 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3602 ECOCHK_PPGTT_CACHE64B);
3603 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3604 } else if (INTEL_INFO(dev)->gen >= 7) {
3605 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3606 /* GFX_MODE is per-ring on gen7+ */
3607 }
3608
3609 for (i = 0; i < I915_NUM_RINGS; i++) {
3610 ring = &dev_priv->ring[i];
3611
3612 if (INTEL_INFO(dev)->gen >= 7)
3613 I915_WRITE(RING_MODE_GEN7(ring),
3614 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3615
3616 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3617 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3618 }
3619 }
3620
3621 int
3622 i915_gem_init_hw(struct drm_device *dev)
3623 {
3624 drm_i915_private_t *dev_priv = dev->dev_private;
3625 int ret;
3626
3627 i915_gem_init_swizzling(dev);
3628
3629 ret = intel_init_render_ring_buffer(dev);
3630 if (ret)
3631 return ret;
3632
3633 if (HAS_BSD(dev)) {
3634 ret = intel_init_bsd_ring_buffer(dev);
3635 if (ret)
3636 goto cleanup_render_ring;
3637 }
3638
3639 if (HAS_BLT(dev)) {
3640 ret = intel_init_blt_ring_buffer(dev);
3641 if (ret)
3642 goto cleanup_bsd_ring;
3643 }
3644
3645 dev_priv->next_seqno = 1;
3646
3647 i915_gem_init_ppgtt(dev);
3648
3649 return 0;
3650
3651 cleanup_bsd_ring:
3652 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3653 cleanup_render_ring:
3654 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3655 return ret;
3656 }
3657
3658 void
3659 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3660 {
3661 drm_i915_private_t *dev_priv = dev->dev_private;
3662 int i;
3663
3664 for (i = 0; i < I915_NUM_RINGS; i++)
3665 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3666 }
3667
3668 int
3669 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3670 struct drm_file *file_priv)
3671 {
3672 drm_i915_private_t *dev_priv = dev->dev_private;
3673 int ret, i;
3674
3675 if (drm_core_check_feature(dev, DRIVER_MODESET))
3676 return 0;
3677
3678 if (atomic_read(&dev_priv->mm.wedged)) {
3679 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3680 atomic_set(&dev_priv->mm.wedged, 0);
3681 }
3682
3683 mutex_lock(&dev->struct_mutex);
3684 dev_priv->mm.suspended = 0;
3685
3686 ret = i915_gem_init_hw(dev);
3687 if (ret != 0) {
3688 mutex_unlock(&dev->struct_mutex);
3689 return ret;
3690 }
3691
3692 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3693 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3694 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3695 for (i = 0; i < I915_NUM_RINGS; i++) {
3696 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3697 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3698 }
3699 mutex_unlock(&dev->struct_mutex);
3700
3701 ret = drm_irq_install(dev);
3702 if (ret)
3703 goto cleanup_ringbuffer;
3704
3705 return 0;
3706
3707 cleanup_ringbuffer:
3708 mutex_lock(&dev->struct_mutex);
3709 i915_gem_cleanup_ringbuffer(dev);
3710 dev_priv->mm.suspended = 1;
3711 mutex_unlock(&dev->struct_mutex);
3712
3713 return ret;
3714 }
3715
3716 int
3717 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3718 struct drm_file *file_priv)
3719 {
3720 if (drm_core_check_feature(dev, DRIVER_MODESET))
3721 return 0;
3722
3723 drm_irq_uninstall(dev);
3724 return i915_gem_idle(dev);
3725 }
3726
3727 void
3728 i915_gem_lastclose(struct drm_device *dev)
3729 {
3730 int ret;
3731
3732 if (drm_core_check_feature(dev, DRIVER_MODESET))
3733 return;
3734
3735 ret = i915_gem_idle(dev);
3736 if (ret)
3737 DRM_ERROR("failed to idle hardware: %d\n", ret);
3738 }
3739
3740 static void
3741 init_ring_lists(struct intel_ring_buffer *ring)
3742 {
3743 INIT_LIST_HEAD(&ring->active_list);
3744 INIT_LIST_HEAD(&ring->request_list);
3745 INIT_LIST_HEAD(&ring->gpu_write_list);
3746 }
3747
3748 void
3749 i915_gem_load(struct drm_device *dev)
3750 {
3751 int i;
3752 drm_i915_private_t *dev_priv = dev->dev_private;
3753
3754 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3755 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3756 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3757 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3758 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3759 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3760 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3761 for (i = 0; i < I915_NUM_RINGS; i++)
3762 init_ring_lists(&dev_priv->ring[i]);
3763 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3764 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3765 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3766 i915_gem_retire_work_handler);
3767 init_completion(&dev_priv->error_completion);
3768
3769 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3770 if (IS_GEN3(dev)) {
3771 u32 tmp = I915_READ(MI_ARB_STATE);
3772 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3773 /* arb state is a masked write, so set bit + bit in mask */
3774 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3775 I915_WRITE(MI_ARB_STATE, tmp);
3776 }
3777 }
3778
3779 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3780
3781 /* Old X drivers will take 0-2 for front, back, depth buffers */
3782 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3783 dev_priv->fence_reg_start = 3;
3784
3785 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3786 dev_priv->num_fence_regs = 16;
3787 else
3788 dev_priv->num_fence_regs = 8;
3789
3790 /* Initialize fence registers to zero */
3791 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3792 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3793 }
3794
3795 i915_gem_detect_bit_6_swizzle(dev);
3796 init_waitqueue_head(&dev_priv->pending_flip_queue);
3797
3798 dev_priv->mm.interruptible = true;
3799
3800 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3801 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3802 register_shrinker(&dev_priv->mm.inactive_shrinker);
3803 }
3804
3805 /*
3806 * Create a physically contiguous memory object for this object
3807 * e.g. for cursor + overlay regs
3808 */
3809 static int i915_gem_init_phys_object(struct drm_device *dev,
3810 int id, int size, int align)
3811 {
3812 drm_i915_private_t *dev_priv = dev->dev_private;
3813 struct drm_i915_gem_phys_object *phys_obj;
3814 int ret;
3815
3816 if (dev_priv->mm.phys_objs[id - 1] || !size)
3817 return 0;
3818
3819 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3820 if (!phys_obj)
3821 return -ENOMEM;
3822
3823 phys_obj->id = id;
3824
3825 phys_obj->handle = drm_pci_alloc(dev, size, align);
3826 if (!phys_obj->handle) {
3827 ret = -ENOMEM;
3828 goto kfree_obj;
3829 }
3830 #ifdef CONFIG_X86
3831 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3832 #endif
3833
3834 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3835
3836 return 0;
3837 kfree_obj:
3838 kfree(phys_obj);
3839 return ret;
3840 }
3841
3842 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3843 {
3844 drm_i915_private_t *dev_priv = dev->dev_private;
3845 struct drm_i915_gem_phys_object *phys_obj;
3846
3847 if (!dev_priv->mm.phys_objs[id - 1])
3848 return;
3849
3850 phys_obj = dev_priv->mm.phys_objs[id - 1];
3851 if (phys_obj->cur_obj) {
3852 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3853 }
3854
3855 #ifdef CONFIG_X86
3856 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3857 #endif
3858 drm_pci_free(dev, phys_obj->handle);
3859 kfree(phys_obj);
3860 dev_priv->mm.phys_objs[id - 1] = NULL;
3861 }
3862
3863 void i915_gem_free_all_phys_object(struct drm_device *dev)
3864 {
3865 int i;
3866
3867 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3868 i915_gem_free_phys_object(dev, i);
3869 }
3870
3871 void i915_gem_detach_phys_object(struct drm_device *dev,
3872 struct drm_i915_gem_object *obj)
3873 {
3874 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3875 char *vaddr;
3876 int i;
3877 int page_count;
3878
3879 if (!obj->phys_obj)
3880 return;
3881 vaddr = obj->phys_obj->handle->vaddr;
3882
3883 page_count = obj->base.size / PAGE_SIZE;
3884 for (i = 0; i < page_count; i++) {
3885 struct page *page = shmem_read_mapping_page(mapping, i);
3886 if (!IS_ERR(page)) {
3887 char *dst = kmap_atomic(page);
3888 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3889 kunmap_atomic(dst);
3890
3891 drm_clflush_pages(&page, 1);
3892
3893 set_page_dirty(page);
3894 mark_page_accessed(page);
3895 page_cache_release(page);
3896 }
3897 }
3898 intel_gtt_chipset_flush();
3899
3900 obj->phys_obj->cur_obj = NULL;
3901 obj->phys_obj = NULL;
3902 }
3903
3904 int
3905 i915_gem_attach_phys_object(struct drm_device *dev,
3906 struct drm_i915_gem_object *obj,
3907 int id,
3908 int align)
3909 {
3910 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3911 drm_i915_private_t *dev_priv = dev->dev_private;
3912 int ret = 0;
3913 int page_count;
3914 int i;
3915
3916 if (id > I915_MAX_PHYS_OBJECT)
3917 return -EINVAL;
3918
3919 if (obj->phys_obj) {
3920 if (obj->phys_obj->id == id)
3921 return 0;
3922 i915_gem_detach_phys_object(dev, obj);
3923 }
3924
3925 /* create a new object */
3926 if (!dev_priv->mm.phys_objs[id - 1]) {
3927 ret = i915_gem_init_phys_object(dev, id,
3928 obj->base.size, align);
3929 if (ret) {
3930 DRM_ERROR("failed to init phys object %d size: %zu\n",
3931 id, obj->base.size);
3932 return ret;
3933 }
3934 }
3935
3936 /* bind to the object */
3937 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3938 obj->phys_obj->cur_obj = obj;
3939
3940 page_count = obj->base.size / PAGE_SIZE;
3941
3942 for (i = 0; i < page_count; i++) {
3943 struct page *page;
3944 char *dst, *src;
3945
3946 page = shmem_read_mapping_page(mapping, i);
3947 if (IS_ERR(page))
3948 return PTR_ERR(page);
3949
3950 src = kmap_atomic(page);
3951 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3952 memcpy(dst, src, PAGE_SIZE);
3953 kunmap_atomic(src);
3954
3955 mark_page_accessed(page);
3956 page_cache_release(page);
3957 }
3958
3959 return 0;
3960 }
3961
3962 static int
3963 i915_gem_phys_pwrite(struct drm_device *dev,
3964 struct drm_i915_gem_object *obj,
3965 struct drm_i915_gem_pwrite *args,
3966 struct drm_file *file_priv)
3967 {
3968 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3969 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3970
3971 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3972 unsigned long unwritten;
3973
3974 /* The physical object once assigned is fixed for the lifetime
3975 * of the obj, so we can safely drop the lock and continue
3976 * to access vaddr.
3977 */
3978 mutex_unlock(&dev->struct_mutex);
3979 unwritten = copy_from_user(vaddr, user_data, args->size);
3980 mutex_lock(&dev->struct_mutex);
3981 if (unwritten)
3982 return -EFAULT;
3983 }
3984
3985 intel_gtt_chipset_flush();
3986 return 0;
3987 }
3988
3989 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3990 {
3991 struct drm_i915_file_private *file_priv = file->driver_priv;
3992
3993 /* Clean up our request list when the client is going away, so that
3994 * later retire_requests won't dereference our soon-to-be-gone
3995 * file_priv.
3996 */
3997 spin_lock(&file_priv->mm.lock);
3998 while (!list_empty(&file_priv->mm.request_list)) {
3999 struct drm_i915_gem_request *request;
4000
4001 request = list_first_entry(&file_priv->mm.request_list,
4002 struct drm_i915_gem_request,
4003 client_list);
4004 list_del(&request->client_list);
4005 request->file_priv = NULL;
4006 }
4007 spin_unlock(&file_priv->mm.lock);
4008 }
4009
4010 static int
4011 i915_gpu_is_active(struct drm_device *dev)
4012 {
4013 drm_i915_private_t *dev_priv = dev->dev_private;
4014 int lists_empty;
4015
4016 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4017 list_empty(&dev_priv->mm.active_list);
4018
4019 return !lists_empty;
4020 }
4021
4022 static int
4023 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4024 {
4025 struct drm_i915_private *dev_priv =
4026 container_of(shrinker,
4027 struct drm_i915_private,
4028 mm.inactive_shrinker);
4029 struct drm_device *dev = dev_priv->dev;
4030 struct drm_i915_gem_object *obj, *next;
4031 int nr_to_scan = sc->nr_to_scan;
4032 int cnt;
4033
4034 if (!mutex_trylock(&dev->struct_mutex))
4035 return 0;
4036
4037 /* "fast-path" to count number of available objects */
4038 if (nr_to_scan == 0) {
4039 cnt = 0;
4040 list_for_each_entry(obj,
4041 &dev_priv->mm.inactive_list,
4042 mm_list)
4043 cnt++;
4044 mutex_unlock(&dev->struct_mutex);
4045 return cnt / 100 * sysctl_vfs_cache_pressure;
4046 }
4047
4048 rescan:
4049 /* first scan for clean buffers */
4050 i915_gem_retire_requests(dev);
4051
4052 list_for_each_entry_safe(obj, next,
4053 &dev_priv->mm.inactive_list,
4054 mm_list) {
4055 if (i915_gem_object_is_purgeable(obj)) {
4056 if (i915_gem_object_unbind(obj) == 0 &&
4057 --nr_to_scan == 0)
4058 break;
4059 }
4060 }
4061
4062 /* second pass, evict/count anything still on the inactive list */
4063 cnt = 0;
4064 list_for_each_entry_safe(obj, next,
4065 &dev_priv->mm.inactive_list,
4066 mm_list) {
4067 if (nr_to_scan &&
4068 i915_gem_object_unbind(obj) == 0)
4069 nr_to_scan--;
4070 else
4071 cnt++;
4072 }
4073
4074 if (nr_to_scan && i915_gpu_is_active(dev)) {
4075 /*
4076 * We are desperate for pages, so as a last resort, wait
4077 * for the GPU to finish and discard whatever we can.
4078 * This has a dramatic impact to reduce the number of
4079 * OOM-killer events whilst running the GPU aggressively.
4080 */
4081 if (i915_gpu_idle(dev, true) == 0)
4082 goto rescan;
4083 }
4084 mutex_unlock(&dev->struct_mutex);
4085 return cnt / 100 * sysctl_vfs_cache_pressure;
4086 }