]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
HID: sony: Remove the size check for the Dualshock 4 HID Descriptor
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 i915_gem_chipset_flush(dev);
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014
1015 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1016 return ret;
1017 }
1018
1019 /**
1020 * Writes data to the object referenced by handle.
1021 *
1022 * On error, the contents of the buffer that were to be modified are undefined.
1023 */
1024 int
1025 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1026 struct drm_file *file)
1027 {
1028 struct drm_i915_private *dev_priv = dev->dev_private;
1029 struct drm_i915_gem_pwrite *args = data;
1030 struct drm_i915_gem_object *obj;
1031 int ret;
1032
1033 if (args->size == 0)
1034 return 0;
1035
1036 if (!access_ok(VERIFY_READ,
1037 to_user_ptr(args->data_ptr),
1038 args->size))
1039 return -EFAULT;
1040
1041 if (likely(!i915.prefault_disable)) {
1042 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1043 args->size);
1044 if (ret)
1045 return -EFAULT;
1046 }
1047
1048 intel_runtime_pm_get(dev_priv);
1049
1050 ret = i915_mutex_lock_interruptible(dev);
1051 if (ret)
1052 goto put_rpm;
1053
1054 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1055 if (&obj->base == NULL) {
1056 ret = -ENOENT;
1057 goto unlock;
1058 }
1059
1060 /* Bounds check destination. */
1061 if (args->offset > obj->base.size ||
1062 args->size > obj->base.size - args->offset) {
1063 ret = -EINVAL;
1064 goto out;
1065 }
1066
1067 /* prime objects have no backing filp to GEM pread/pwrite
1068 * pages from.
1069 */
1070 if (!obj->base.filp) {
1071 ret = -EINVAL;
1072 goto out;
1073 }
1074
1075 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1076
1077 ret = -EFAULT;
1078 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1079 * it would end up going through the fenced access, and we'll get
1080 * different detiling behavior between reading and writing.
1081 * pread/pwrite currently are reading and writing from the CPU
1082 * perspective, requiring manual detiling by the client.
1083 */
1084 if (obj->tiling_mode == I915_TILING_NONE &&
1085 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1086 cpu_write_needs_clflush(obj)) {
1087 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1088 /* Note that the gtt paths might fail with non-page-backed user
1089 * pointers (e.g. gtt mappings when moving data between
1090 * textures). Fallback to the shmem path in that case. */
1091 }
1092
1093 if (ret == -EFAULT || ret == -ENOSPC) {
1094 if (obj->phys_handle)
1095 ret = i915_gem_phys_pwrite(obj, args, file);
1096 else
1097 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1098 }
1099
1100 out:
1101 drm_gem_object_unreference(&obj->base);
1102 unlock:
1103 mutex_unlock(&dev->struct_mutex);
1104 put_rpm:
1105 intel_runtime_pm_put(dev_priv);
1106
1107 return ret;
1108 }
1109
1110 int
1111 i915_gem_check_wedge(struct i915_gpu_error *error,
1112 bool interruptible)
1113 {
1114 if (i915_reset_in_progress(error)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 /* Recovery complete, but the reset failed ... */
1121 if (i915_terminally_wedged(error))
1122 return -EIO;
1123
1124 /*
1125 * Check if GPU Reset is in progress - we need intel_ring_begin
1126 * to work properly to reinit the hw state while the gpu is
1127 * still marked as reset-in-progress. Handle this with a flag.
1128 */
1129 if (!error->reload_in_reset)
1130 return -EAGAIN;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static void fake_irq(unsigned long data)
1137 {
1138 wake_up_process((struct task_struct *)data);
1139 }
1140
1141 static bool missed_irq(struct drm_i915_private *dev_priv,
1142 struct intel_engine_cs *ring)
1143 {
1144 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1145 }
1146
1147 static int __i915_spin_request(struct drm_i915_gem_request *req)
1148 {
1149 unsigned long timeout;
1150
1151 if (i915_gem_request_get_ring(req)->irq_refcount)
1152 return -EBUSY;
1153
1154 timeout = jiffies + 1;
1155 while (!need_resched()) {
1156 if (i915_gem_request_completed(req, true))
1157 return 0;
1158
1159 if (time_after_eq(jiffies, timeout))
1160 break;
1161
1162 cpu_relax_lowlatency();
1163 }
1164 if (i915_gem_request_completed(req, false))
1165 return 0;
1166
1167 return -EAGAIN;
1168 }
1169
1170 /**
1171 * __i915_wait_request - wait until execution of request has finished
1172 * @req: duh!
1173 * @reset_counter: reset sequence associated with the given request
1174 * @interruptible: do an interruptible wait (normally yes)
1175 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1176 *
1177 * Note: It is of utmost importance that the passed in seqno and reset_counter
1178 * values have been read by the caller in an smp safe manner. Where read-side
1179 * locks are involved, it is sufficient to read the reset_counter before
1180 * unlocking the lock that protects the seqno. For lockless tricks, the
1181 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1182 * inserted.
1183 *
1184 * Returns 0 if the request was found within the alloted time. Else returns the
1185 * errno with remaining time filled in timeout argument.
1186 */
1187 int __i915_wait_request(struct drm_i915_gem_request *req,
1188 unsigned reset_counter,
1189 bool interruptible,
1190 s64 *timeout,
1191 struct intel_rps_client *rps)
1192 {
1193 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1194 struct drm_device *dev = ring->dev;
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 const bool irq_test_in_progress =
1197 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1198 DEFINE_WAIT(wait);
1199 unsigned long timeout_expire;
1200 s64 before, now;
1201 int ret;
1202
1203 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1204
1205 if (list_empty(&req->list))
1206 return 0;
1207
1208 if (i915_gem_request_completed(req, true))
1209 return 0;
1210
1211 timeout_expire = timeout ?
1212 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1213
1214 if (INTEL_INFO(dev_priv)->gen >= 6)
1215 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1216
1217 /* Record current time in case interrupted by signal, or wedged */
1218 trace_i915_gem_request_wait_begin(req);
1219 before = ktime_get_raw_ns();
1220
1221 /* Optimistic spin for the next jiffie before touching IRQs */
1222 ret = __i915_spin_request(req);
1223 if (ret == 0)
1224 goto out;
1225
1226 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1227 ret = -ENODEV;
1228 goto out;
1229 }
1230
1231 for (;;) {
1232 struct timer_list timer;
1233
1234 prepare_to_wait(&ring->irq_queue, &wait,
1235 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1236
1237 /* We need to check whether any gpu reset happened in between
1238 * the caller grabbing the seqno and now ... */
1239 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1240 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1241 * is truely gone. */
1242 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1243 if (ret == 0)
1244 ret = -EAGAIN;
1245 break;
1246 }
1247
1248 if (i915_gem_request_completed(req, false)) {
1249 ret = 0;
1250 break;
1251 }
1252
1253 if (interruptible && signal_pending(current)) {
1254 ret = -ERESTARTSYS;
1255 break;
1256 }
1257
1258 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1259 ret = -ETIME;
1260 break;
1261 }
1262
1263 timer.function = NULL;
1264 if (timeout || missed_irq(dev_priv, ring)) {
1265 unsigned long expire;
1266
1267 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1268 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1269 mod_timer(&timer, expire);
1270 }
1271
1272 io_schedule();
1273
1274 if (timer.function) {
1275 del_singleshot_timer_sync(&timer);
1276 destroy_timer_on_stack(&timer);
1277 }
1278 }
1279 if (!irq_test_in_progress)
1280 ring->irq_put(ring);
1281
1282 finish_wait(&ring->irq_queue, &wait);
1283
1284 out:
1285 now = ktime_get_raw_ns();
1286 trace_i915_gem_request_wait_end(req);
1287
1288 if (timeout) {
1289 s64 tres = *timeout - (now - before);
1290
1291 *timeout = tres < 0 ? 0 : tres;
1292
1293 /*
1294 * Apparently ktime isn't accurate enough and occasionally has a
1295 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1296 * things up to make the test happy. We allow up to 1 jiffy.
1297 *
1298 * This is a regrssion from the timespec->ktime conversion.
1299 */
1300 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1301 *timeout = 0;
1302 }
1303
1304 return ret;
1305 }
1306
1307 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1308 struct drm_file *file)
1309 {
1310 struct drm_i915_private *dev_private;
1311 struct drm_i915_file_private *file_priv;
1312
1313 WARN_ON(!req || !file || req->file_priv);
1314
1315 if (!req || !file)
1316 return -EINVAL;
1317
1318 if (req->file_priv)
1319 return -EINVAL;
1320
1321 dev_private = req->ring->dev->dev_private;
1322 file_priv = file->driver_priv;
1323
1324 spin_lock(&file_priv->mm.lock);
1325 req->file_priv = file_priv;
1326 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1327 spin_unlock(&file_priv->mm.lock);
1328
1329 req->pid = get_pid(task_pid(current));
1330
1331 return 0;
1332 }
1333
1334 static inline void
1335 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1336 {
1337 struct drm_i915_file_private *file_priv = request->file_priv;
1338
1339 if (!file_priv)
1340 return;
1341
1342 spin_lock(&file_priv->mm.lock);
1343 list_del(&request->client_list);
1344 request->file_priv = NULL;
1345 spin_unlock(&file_priv->mm.lock);
1346
1347 put_pid(request->pid);
1348 request->pid = NULL;
1349 }
1350
1351 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352 {
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 i915_gem_request_unreference(request);
1369 }
1370
1371 static void
1372 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1373 {
1374 struct intel_engine_cs *engine = req->ring;
1375 struct drm_i915_gem_request *tmp;
1376
1377 lockdep_assert_held(&engine->dev->struct_mutex);
1378
1379 if (list_empty(&req->list))
1380 return;
1381
1382 do {
1383 tmp = list_first_entry(&engine->request_list,
1384 typeof(*tmp), list);
1385
1386 i915_gem_request_retire(tmp);
1387 } while (tmp != req);
1388
1389 WARN_ON(i915_verify_lists(engine->dev));
1390 }
1391
1392 /**
1393 * Waits for a request to be signaled, and cleans up the
1394 * request and object lists appropriately for that event.
1395 */
1396 int
1397 i915_wait_request(struct drm_i915_gem_request *req)
1398 {
1399 struct drm_device *dev;
1400 struct drm_i915_private *dev_priv;
1401 bool interruptible;
1402 int ret;
1403
1404 BUG_ON(req == NULL);
1405
1406 dev = req->ring->dev;
1407 dev_priv = dev->dev_private;
1408 interruptible = dev_priv->mm.interruptible;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411
1412 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1413 if (ret)
1414 return ret;
1415
1416 ret = __i915_wait_request(req,
1417 atomic_read(&dev_priv->gpu_error.reset_counter),
1418 interruptible, NULL, NULL);
1419 if (ret)
1420 return ret;
1421
1422 __i915_gem_request_retire__upto(req);
1423 return 0;
1424 }
1425
1426 /**
1427 * Ensures that all rendering to the object has completed and the object is
1428 * safe to unbind from the GTT or access from the CPU.
1429 */
1430 int
1431 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1432 bool readonly)
1433 {
1434 int ret, i;
1435
1436 if (!obj->active)
1437 return 0;
1438
1439 if (readonly) {
1440 if (obj->last_write_req != NULL) {
1441 ret = i915_wait_request(obj->last_write_req);
1442 if (ret)
1443 return ret;
1444
1445 i = obj->last_write_req->ring->id;
1446 if (obj->last_read_req[i] == obj->last_write_req)
1447 i915_gem_object_retire__read(obj, i);
1448 else
1449 i915_gem_object_retire__write(obj);
1450 }
1451 } else {
1452 for (i = 0; i < I915_NUM_RINGS; i++) {
1453 if (obj->last_read_req[i] == NULL)
1454 continue;
1455
1456 ret = i915_wait_request(obj->last_read_req[i]);
1457 if (ret)
1458 return ret;
1459
1460 i915_gem_object_retire__read(obj, i);
1461 }
1462 RQ_BUG_ON(obj->active);
1463 }
1464
1465 return 0;
1466 }
1467
1468 static void
1469 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1470 struct drm_i915_gem_request *req)
1471 {
1472 int ring = req->ring->id;
1473
1474 if (obj->last_read_req[ring] == req)
1475 i915_gem_object_retire__read(obj, ring);
1476 else if (obj->last_write_req == req)
1477 i915_gem_object_retire__write(obj);
1478
1479 __i915_gem_request_retire__upto(req);
1480 }
1481
1482 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1483 * as the object state may change during this call.
1484 */
1485 static __must_check int
1486 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1487 struct intel_rps_client *rps,
1488 bool readonly)
1489 {
1490 struct drm_device *dev = obj->base.dev;
1491 struct drm_i915_private *dev_priv = dev->dev_private;
1492 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1493 unsigned reset_counter;
1494 int ret, i, n = 0;
1495
1496 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1497 BUG_ON(!dev_priv->mm.interruptible);
1498
1499 if (!obj->active)
1500 return 0;
1501
1502 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1503 if (ret)
1504 return ret;
1505
1506 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1507
1508 if (readonly) {
1509 struct drm_i915_gem_request *req;
1510
1511 req = obj->last_write_req;
1512 if (req == NULL)
1513 return 0;
1514
1515 requests[n++] = i915_gem_request_reference(req);
1516 } else {
1517 for (i = 0; i < I915_NUM_RINGS; i++) {
1518 struct drm_i915_gem_request *req;
1519
1520 req = obj->last_read_req[i];
1521 if (req == NULL)
1522 continue;
1523
1524 requests[n++] = i915_gem_request_reference(req);
1525 }
1526 }
1527
1528 mutex_unlock(&dev->struct_mutex);
1529 for (i = 0; ret == 0 && i < n; i++)
1530 ret = __i915_wait_request(requests[i], reset_counter, true,
1531 NULL, rps);
1532 mutex_lock(&dev->struct_mutex);
1533
1534 for (i = 0; i < n; i++) {
1535 if (ret == 0)
1536 i915_gem_object_retire_request(obj, requests[i]);
1537 i915_gem_request_unreference(requests[i]);
1538 }
1539
1540 return ret;
1541 }
1542
1543 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1544 {
1545 struct drm_i915_file_private *fpriv = file->driver_priv;
1546 return &fpriv->rps;
1547 }
1548
1549 /**
1550 * Called when user space prepares to use an object with the CPU, either
1551 * through the mmap ioctl's mapping or a GTT mapping.
1552 */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555 struct drm_file *file)
1556 {
1557 struct drm_i915_gem_set_domain *args = data;
1558 struct drm_i915_gem_object *obj;
1559 uint32_t read_domains = args->read_domains;
1560 uint32_t write_domain = args->write_domain;
1561 int ret;
1562
1563 /* Only handle setting domains to types used by the CPU. */
1564 if (write_domain & I915_GEM_GPU_DOMAINS)
1565 return -EINVAL;
1566
1567 if (read_domains & I915_GEM_GPU_DOMAINS)
1568 return -EINVAL;
1569
1570 /* Having something in the write domain implies it's in the read
1571 * domain, and only that read domain. Enforce that in the request.
1572 */
1573 if (write_domain != 0 && read_domains != write_domain)
1574 return -EINVAL;
1575
1576 ret = i915_mutex_lock_interruptible(dev);
1577 if (ret)
1578 return ret;
1579
1580 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1581 if (&obj->base == NULL) {
1582 ret = -ENOENT;
1583 goto unlock;
1584 }
1585
1586 /* Try to flush the object off the GPU without holding the lock.
1587 * We will repeat the flush holding the lock in the normal manner
1588 * to catch cases where we are gazumped.
1589 */
1590 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1591 to_rps_client(file),
1592 !write_domain);
1593 if (ret)
1594 goto unref;
1595
1596 if (read_domains & I915_GEM_DOMAIN_GTT)
1597 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1598 else
1599 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1600
1601 if (write_domain != 0)
1602 intel_fb_obj_invalidate(obj,
1603 write_domain == I915_GEM_DOMAIN_GTT ?
1604 ORIGIN_GTT : ORIGIN_CPU);
1605
1606 unref:
1607 drm_gem_object_unreference(&obj->base);
1608 unlock:
1609 mutex_unlock(&dev->struct_mutex);
1610 return ret;
1611 }
1612
1613 /**
1614 * Called when user space has done writes to this buffer
1615 */
1616 int
1617 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1618 struct drm_file *file)
1619 {
1620 struct drm_i915_gem_sw_finish *args = data;
1621 struct drm_i915_gem_object *obj;
1622 int ret = 0;
1623
1624 ret = i915_mutex_lock_interruptible(dev);
1625 if (ret)
1626 return ret;
1627
1628 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1629 if (&obj->base == NULL) {
1630 ret = -ENOENT;
1631 goto unlock;
1632 }
1633
1634 /* Pinned buffers may be scanout, so flush the cache */
1635 if (obj->pin_display)
1636 i915_gem_object_flush_cpu_write_domain(obj);
1637
1638 drm_gem_object_unreference(&obj->base);
1639 unlock:
1640 mutex_unlock(&dev->struct_mutex);
1641 return ret;
1642 }
1643
1644 /**
1645 * Maps the contents of an object, returning the address it is mapped
1646 * into.
1647 *
1648 * While the mapping holds a reference on the contents of the object, it doesn't
1649 * imply a ref on the object itself.
1650 *
1651 * IMPORTANT:
1652 *
1653 * DRM driver writers who look a this function as an example for how to do GEM
1654 * mmap support, please don't implement mmap support like here. The modern way
1655 * to implement DRM mmap support is with an mmap offset ioctl (like
1656 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1657 * That way debug tooling like valgrind will understand what's going on, hiding
1658 * the mmap call in a driver private ioctl will break that. The i915 driver only
1659 * does cpu mmaps this way because we didn't know better.
1660 */
1661 int
1662 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1663 struct drm_file *file)
1664 {
1665 struct drm_i915_gem_mmap *args = data;
1666 struct drm_gem_object *obj;
1667 unsigned long addr;
1668
1669 if (args->flags & ~(I915_MMAP_WC))
1670 return -EINVAL;
1671
1672 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1673 return -ENODEV;
1674
1675 obj = drm_gem_object_lookup(dev, file, args->handle);
1676 if (obj == NULL)
1677 return -ENOENT;
1678
1679 /* prime objects have no backing filp to GEM mmap
1680 * pages from.
1681 */
1682 if (!obj->filp) {
1683 drm_gem_object_unreference_unlocked(obj);
1684 return -EINVAL;
1685 }
1686
1687 addr = vm_mmap(obj->filp, 0, args->size,
1688 PROT_READ | PROT_WRITE, MAP_SHARED,
1689 args->offset);
1690 if (args->flags & I915_MMAP_WC) {
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma;
1693
1694 down_write(&mm->mmap_sem);
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
1702 }
1703 drm_gem_object_unreference_unlocked(obj);
1704 if (IS_ERR((void *)addr))
1705 return addr;
1706
1707 args->addr_ptr = (uint64_t) addr;
1708
1709 return 0;
1710 }
1711
1712 /**
1713 * i915_gem_fault - fault a page into the GTT
1714 * vma: VMA in question
1715 * vmf: fault info
1716 *
1717 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1718 * from userspace. The fault handler takes care of binding the object to
1719 * the GTT (if needed), allocating and programming a fence register (again,
1720 * only if needed based on whether the old reg is still valid or the object
1721 * is tiled) and inserting a new PTE into the faulting process.
1722 *
1723 * Note that the faulting process may involve evicting existing objects
1724 * from the GTT and/or fence registers to make room. So performance may
1725 * suffer if the GTT working set is large or there are few fence registers
1726 * left.
1727 */
1728 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1729 {
1730 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1731 struct drm_device *dev = obj->base.dev;
1732 struct drm_i915_private *dev_priv = dev->dev_private;
1733 struct i915_ggtt_view view = i915_ggtt_view_normal;
1734 pgoff_t page_offset;
1735 unsigned long pfn;
1736 int ret = 0;
1737 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1738
1739 intel_runtime_pm_get(dev_priv);
1740
1741 /* We don't use vmf->pgoff since that has the fake offset */
1742 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1743 PAGE_SHIFT;
1744
1745 ret = i915_mutex_lock_interruptible(dev);
1746 if (ret)
1747 goto out;
1748
1749 trace_i915_gem_object_fault(obj, page_offset, true, write);
1750
1751 /* Try to flush the object off the GPU first without holding the lock.
1752 * Upon reacquiring the lock, we will perform our sanity checks and then
1753 * repeat the flush holding the lock in the normal manner to catch cases
1754 * where we are gazumped.
1755 */
1756 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1757 if (ret)
1758 goto unlock;
1759
1760 /* Access to snoopable pages through the GTT is incoherent. */
1761 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1762 ret = -EFAULT;
1763 goto unlock;
1764 }
1765
1766 /* Use a partial view if the object is bigger than the aperture. */
1767 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1768 obj->tiling_mode == I915_TILING_NONE) {
1769 static const unsigned int chunk_size = 256; // 1 MiB
1770
1771 memset(&view, 0, sizeof(view));
1772 view.type = I915_GGTT_VIEW_PARTIAL;
1773 view.params.partial.offset = rounddown(page_offset, chunk_size);
1774 view.params.partial.size =
1775 min_t(unsigned int,
1776 chunk_size,
1777 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1778 view.params.partial.offset);
1779 }
1780
1781 /* Now pin it into the GTT if needed */
1782 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1783 if (ret)
1784 goto unlock;
1785
1786 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1787 if (ret)
1788 goto unpin;
1789
1790 ret = i915_gem_object_get_fence(obj);
1791 if (ret)
1792 goto unpin;
1793
1794 /* Finally, remap it using the new GTT offset */
1795 pfn = dev_priv->gtt.mappable_base +
1796 i915_gem_obj_ggtt_offset_view(obj, &view);
1797 pfn >>= PAGE_SHIFT;
1798
1799 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1800 /* Overriding existing pages in partial view does not cause
1801 * us any trouble as TLBs are still valid because the fault
1802 * is due to userspace losing part of the mapping or never
1803 * having accessed it before (at this partials' range).
1804 */
1805 unsigned long base = vma->vm_start +
1806 (view.params.partial.offset << PAGE_SHIFT);
1807 unsigned int i;
1808
1809 for (i = 0; i < view.params.partial.size; i++) {
1810 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1811 if (ret)
1812 break;
1813 }
1814
1815 obj->fault_mappable = true;
1816 } else {
1817 if (!obj->fault_mappable) {
1818 unsigned long size = min_t(unsigned long,
1819 vma->vm_end - vma->vm_start,
1820 obj->base.size);
1821 int i;
1822
1823 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1824 ret = vm_insert_pfn(vma,
1825 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1826 pfn + i);
1827 if (ret)
1828 break;
1829 }
1830
1831 obj->fault_mappable = true;
1832 } else
1833 ret = vm_insert_pfn(vma,
1834 (unsigned long)vmf->virtual_address,
1835 pfn + page_offset);
1836 }
1837 unpin:
1838 i915_gem_object_ggtt_unpin_view(obj, &view);
1839 unlock:
1840 mutex_unlock(&dev->struct_mutex);
1841 out:
1842 switch (ret) {
1843 case -EIO:
1844 /*
1845 * We eat errors when the gpu is terminally wedged to avoid
1846 * userspace unduly crashing (gl has no provisions for mmaps to
1847 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1848 * and so needs to be reported.
1849 */
1850 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1851 ret = VM_FAULT_SIGBUS;
1852 break;
1853 }
1854 case -EAGAIN:
1855 /*
1856 * EAGAIN means the gpu is hung and we'll wait for the error
1857 * handler to reset everything when re-faulting in
1858 * i915_mutex_lock_interruptible.
1859 */
1860 case 0:
1861 case -ERESTARTSYS:
1862 case -EINTR:
1863 case -EBUSY:
1864 /*
1865 * EBUSY is ok: this just means that another thread
1866 * already did the job.
1867 */
1868 ret = VM_FAULT_NOPAGE;
1869 break;
1870 case -ENOMEM:
1871 ret = VM_FAULT_OOM;
1872 break;
1873 case -ENOSPC:
1874 case -EFAULT:
1875 ret = VM_FAULT_SIGBUS;
1876 break;
1877 default:
1878 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1879 ret = VM_FAULT_SIGBUS;
1880 break;
1881 }
1882
1883 intel_runtime_pm_put(dev_priv);
1884 return ret;
1885 }
1886
1887 /**
1888 * i915_gem_release_mmap - remove physical page mappings
1889 * @obj: obj in question
1890 *
1891 * Preserve the reservation of the mmapping with the DRM core code, but
1892 * relinquish ownership of the pages back to the system.
1893 *
1894 * It is vital that we remove the page mapping if we have mapped a tiled
1895 * object through the GTT and then lose the fence register due to
1896 * resource pressure. Similarly if the object has been moved out of the
1897 * aperture, than pages mapped into userspace must be revoked. Removing the
1898 * mapping will then trigger a page fault on the next user access, allowing
1899 * fixup by i915_gem_fault().
1900 */
1901 void
1902 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1903 {
1904 if (!obj->fault_mappable)
1905 return;
1906
1907 drm_vma_node_unmap(&obj->base.vma_node,
1908 obj->base.dev->anon_inode->i_mapping);
1909 obj->fault_mappable = false;
1910 }
1911
1912 void
1913 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1914 {
1915 struct drm_i915_gem_object *obj;
1916
1917 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1918 i915_gem_release_mmap(obj);
1919 }
1920
1921 uint32_t
1922 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1923 {
1924 uint32_t gtt_size;
1925
1926 if (INTEL_INFO(dev)->gen >= 4 ||
1927 tiling_mode == I915_TILING_NONE)
1928 return size;
1929
1930 /* Previous chips need a power-of-two fence region when tiling */
1931 if (INTEL_INFO(dev)->gen == 3)
1932 gtt_size = 1024*1024;
1933 else
1934 gtt_size = 512*1024;
1935
1936 while (gtt_size < size)
1937 gtt_size <<= 1;
1938
1939 return gtt_size;
1940 }
1941
1942 /**
1943 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1944 * @obj: object to check
1945 *
1946 * Return the required GTT alignment for an object, taking into account
1947 * potential fence register mapping.
1948 */
1949 uint32_t
1950 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1951 int tiling_mode, bool fenced)
1952 {
1953 /*
1954 * Minimum alignment is 4k (GTT page size), but might be greater
1955 * if a fence register is needed for the object.
1956 */
1957 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1958 tiling_mode == I915_TILING_NONE)
1959 return 4096;
1960
1961 /*
1962 * Previous chips need to be aligned to the size of the smallest
1963 * fence register that can contain the object.
1964 */
1965 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1966 }
1967
1968 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1969 {
1970 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1971 int ret;
1972
1973 if (drm_vma_node_has_offset(&obj->base.vma_node))
1974 return 0;
1975
1976 dev_priv->mm.shrinker_no_lock_stealing = true;
1977
1978 ret = drm_gem_create_mmap_offset(&obj->base);
1979 if (ret != -ENOSPC)
1980 goto out;
1981
1982 /* Badly fragmented mmap space? The only way we can recover
1983 * space is by destroying unwanted objects. We can't randomly release
1984 * mmap_offsets as userspace expects them to be persistent for the
1985 * lifetime of the objects. The closest we can is to release the
1986 * offsets on purgeable objects by truncating it and marking it purged,
1987 * which prevents userspace from ever using that object again.
1988 */
1989 i915_gem_shrink(dev_priv,
1990 obj->base.size >> PAGE_SHIFT,
1991 I915_SHRINK_BOUND |
1992 I915_SHRINK_UNBOUND |
1993 I915_SHRINK_PURGEABLE);
1994 ret = drm_gem_create_mmap_offset(&obj->base);
1995 if (ret != -ENOSPC)
1996 goto out;
1997
1998 i915_gem_shrink_all(dev_priv);
1999 ret = drm_gem_create_mmap_offset(&obj->base);
2000 out:
2001 dev_priv->mm.shrinker_no_lock_stealing = false;
2002
2003 return ret;
2004 }
2005
2006 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2007 {
2008 drm_gem_free_mmap_offset(&obj->base);
2009 }
2010
2011 int
2012 i915_gem_mmap_gtt(struct drm_file *file,
2013 struct drm_device *dev,
2014 uint32_t handle,
2015 uint64_t *offset)
2016 {
2017 struct drm_i915_gem_object *obj;
2018 int ret;
2019
2020 ret = i915_mutex_lock_interruptible(dev);
2021 if (ret)
2022 return ret;
2023
2024 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2025 if (&obj->base == NULL) {
2026 ret = -ENOENT;
2027 goto unlock;
2028 }
2029
2030 if (obj->madv != I915_MADV_WILLNEED) {
2031 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2032 ret = -EFAULT;
2033 goto out;
2034 }
2035
2036 ret = i915_gem_object_create_mmap_offset(obj);
2037 if (ret)
2038 goto out;
2039
2040 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2041
2042 out:
2043 drm_gem_object_unreference(&obj->base);
2044 unlock:
2045 mutex_unlock(&dev->struct_mutex);
2046 return ret;
2047 }
2048
2049 /**
2050 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2051 * @dev: DRM device
2052 * @data: GTT mapping ioctl data
2053 * @file: GEM object info
2054 *
2055 * Simply returns the fake offset to userspace so it can mmap it.
2056 * The mmap call will end up in drm_gem_mmap(), which will set things
2057 * up so we can get faults in the handler above.
2058 *
2059 * The fault handler will take care of binding the object into the GTT
2060 * (since it may have been evicted to make room for something), allocating
2061 * a fence register, and mapping the appropriate aperture address into
2062 * userspace.
2063 */
2064 int
2065 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2066 struct drm_file *file)
2067 {
2068 struct drm_i915_gem_mmap_gtt *args = data;
2069
2070 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2071 }
2072
2073 /* Immediately discard the backing storage */
2074 static void
2075 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2076 {
2077 i915_gem_object_free_mmap_offset(obj);
2078
2079 if (obj->base.filp == NULL)
2080 return;
2081
2082 /* Our goal here is to return as much of the memory as
2083 * is possible back to the system as we are called from OOM.
2084 * To do this we must instruct the shmfs to drop all of its
2085 * backing pages, *now*.
2086 */
2087 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2088 obj->madv = __I915_MADV_PURGED;
2089 }
2090
2091 /* Try to discard unwanted pages */
2092 static void
2093 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2094 {
2095 struct address_space *mapping;
2096
2097 switch (obj->madv) {
2098 case I915_MADV_DONTNEED:
2099 i915_gem_object_truncate(obj);
2100 case __I915_MADV_PURGED:
2101 return;
2102 }
2103
2104 if (obj->base.filp == NULL)
2105 return;
2106
2107 mapping = file_inode(obj->base.filp)->i_mapping,
2108 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2109 }
2110
2111 static void
2112 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2113 {
2114 struct sg_page_iter sg_iter;
2115 int ret;
2116
2117 BUG_ON(obj->madv == __I915_MADV_PURGED);
2118
2119 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2120 if (ret) {
2121 /* In the event of a disaster, abandon all caches and
2122 * hope for the best.
2123 */
2124 WARN_ON(ret != -EIO);
2125 i915_gem_clflush_object(obj, true);
2126 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2127 }
2128
2129 i915_gem_gtt_finish_object(obj);
2130
2131 if (i915_gem_object_needs_bit17_swizzle(obj))
2132 i915_gem_object_save_bit_17_swizzle(obj);
2133
2134 if (obj->madv == I915_MADV_DONTNEED)
2135 obj->dirty = 0;
2136
2137 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2138 struct page *page = sg_page_iter_page(&sg_iter);
2139
2140 if (obj->dirty)
2141 set_page_dirty(page);
2142
2143 if (obj->madv == I915_MADV_WILLNEED)
2144 mark_page_accessed(page);
2145
2146 page_cache_release(page);
2147 }
2148 obj->dirty = 0;
2149
2150 sg_free_table(obj->pages);
2151 kfree(obj->pages);
2152 }
2153
2154 int
2155 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2156 {
2157 const struct drm_i915_gem_object_ops *ops = obj->ops;
2158
2159 if (obj->pages == NULL)
2160 return 0;
2161
2162 if (obj->pages_pin_count)
2163 return -EBUSY;
2164
2165 BUG_ON(i915_gem_obj_bound_any(obj));
2166
2167 /* ->put_pages might need to allocate memory for the bit17 swizzle
2168 * array, hence protect them from being reaped by removing them from gtt
2169 * lists early. */
2170 list_del(&obj->global_list);
2171
2172 ops->put_pages(obj);
2173 obj->pages = NULL;
2174
2175 i915_gem_object_invalidate(obj);
2176
2177 return 0;
2178 }
2179
2180 static int
2181 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2182 {
2183 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2184 int page_count, i;
2185 struct address_space *mapping;
2186 struct sg_table *st;
2187 struct scatterlist *sg;
2188 struct sg_page_iter sg_iter;
2189 struct page *page;
2190 unsigned long last_pfn = 0; /* suppress gcc warning */
2191 int ret;
2192 gfp_t gfp;
2193
2194 /* Assert that the object is not currently in any GPU domain. As it
2195 * wasn't in the GTT, there shouldn't be any way it could have been in
2196 * a GPU cache
2197 */
2198 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2199 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2200
2201 st = kmalloc(sizeof(*st), GFP_KERNEL);
2202 if (st == NULL)
2203 return -ENOMEM;
2204
2205 page_count = obj->base.size / PAGE_SIZE;
2206 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2207 kfree(st);
2208 return -ENOMEM;
2209 }
2210
2211 /* Get the list of pages out of our struct file. They'll be pinned
2212 * at this point until we release them.
2213 *
2214 * Fail silently without starting the shrinker
2215 */
2216 mapping = file_inode(obj->base.filp)->i_mapping;
2217 gfp = mapping_gfp_mask(mapping);
2218 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2219 gfp &= ~(__GFP_IO | __GFP_WAIT);
2220 sg = st->sgl;
2221 st->nents = 0;
2222 for (i = 0; i < page_count; i++) {
2223 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2224 if (IS_ERR(page)) {
2225 i915_gem_shrink(dev_priv,
2226 page_count,
2227 I915_SHRINK_BOUND |
2228 I915_SHRINK_UNBOUND |
2229 I915_SHRINK_PURGEABLE);
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 }
2232 if (IS_ERR(page)) {
2233 /* We've tried hard to allocate the memory by reaping
2234 * our own buffer, now let the real VM do its job and
2235 * go down in flames if truly OOM.
2236 */
2237 i915_gem_shrink_all(dev_priv);
2238 page = shmem_read_mapping_page(mapping, i);
2239 if (IS_ERR(page)) {
2240 ret = PTR_ERR(page);
2241 goto err_pages;
2242 }
2243 }
2244 #ifdef CONFIG_SWIOTLB
2245 if (swiotlb_nr_tbl()) {
2246 st->nents++;
2247 sg_set_page(sg, page, PAGE_SIZE, 0);
2248 sg = sg_next(sg);
2249 continue;
2250 }
2251 #endif
2252 if (!i || page_to_pfn(page) != last_pfn + 1) {
2253 if (i)
2254 sg = sg_next(sg);
2255 st->nents++;
2256 sg_set_page(sg, page, PAGE_SIZE, 0);
2257 } else {
2258 sg->length += PAGE_SIZE;
2259 }
2260 last_pfn = page_to_pfn(page);
2261
2262 /* Check that the i965g/gm workaround works. */
2263 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2264 }
2265 #ifdef CONFIG_SWIOTLB
2266 if (!swiotlb_nr_tbl())
2267 #endif
2268 sg_mark_end(sg);
2269 obj->pages = st;
2270
2271 ret = i915_gem_gtt_prepare_object(obj);
2272 if (ret)
2273 goto err_pages;
2274
2275 if (i915_gem_object_needs_bit17_swizzle(obj))
2276 i915_gem_object_do_bit_17_swizzle(obj);
2277
2278 if (obj->tiling_mode != I915_TILING_NONE &&
2279 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2280 i915_gem_object_pin_pages(obj);
2281
2282 return 0;
2283
2284 err_pages:
2285 sg_mark_end(sg);
2286 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2287 page_cache_release(sg_page_iter_page(&sg_iter));
2288 sg_free_table(st);
2289 kfree(st);
2290
2291 /* shmemfs first checks if there is enough memory to allocate the page
2292 * and reports ENOSPC should there be insufficient, along with the usual
2293 * ENOMEM for a genuine allocation failure.
2294 *
2295 * We use ENOSPC in our driver to mean that we have run out of aperture
2296 * space and so want to translate the error from shmemfs back to our
2297 * usual understanding of ENOMEM.
2298 */
2299 if (ret == -ENOSPC)
2300 ret = -ENOMEM;
2301
2302 return ret;
2303 }
2304
2305 /* Ensure that the associated pages are gathered from the backing storage
2306 * and pinned into our object. i915_gem_object_get_pages() may be called
2307 * multiple times before they are released by a single call to
2308 * i915_gem_object_put_pages() - once the pages are no longer referenced
2309 * either as a result of memory pressure (reaping pages under the shrinker)
2310 * or as the object is itself released.
2311 */
2312 int
2313 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2314 {
2315 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2316 const struct drm_i915_gem_object_ops *ops = obj->ops;
2317 int ret;
2318
2319 if (obj->pages)
2320 return 0;
2321
2322 if (obj->madv != I915_MADV_WILLNEED) {
2323 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2324 return -EFAULT;
2325 }
2326
2327 BUG_ON(obj->pages_pin_count);
2328
2329 ret = ops->get_pages(obj);
2330 if (ret)
2331 return ret;
2332
2333 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2334
2335 obj->get_page.sg = obj->pages->sgl;
2336 obj->get_page.last = 0;
2337
2338 return 0;
2339 }
2340
2341 void i915_vma_move_to_active(struct i915_vma *vma,
2342 struct drm_i915_gem_request *req)
2343 {
2344 struct drm_i915_gem_object *obj = vma->obj;
2345 struct intel_engine_cs *ring;
2346
2347 ring = i915_gem_request_get_ring(req);
2348
2349 /* Add a reference if we're newly entering the active list. */
2350 if (obj->active == 0)
2351 drm_gem_object_reference(&obj->base);
2352 obj->active |= intel_ring_flag(ring);
2353
2354 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2355 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2356
2357 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2358 }
2359
2360 static void
2361 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2362 {
2363 RQ_BUG_ON(obj->last_write_req == NULL);
2364 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2365
2366 i915_gem_request_assign(&obj->last_write_req, NULL);
2367 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2368 }
2369
2370 static void
2371 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2372 {
2373 struct i915_vma *vma;
2374
2375 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2376 RQ_BUG_ON(!(obj->active & (1 << ring)));
2377
2378 list_del_init(&obj->ring_list[ring]);
2379 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2380
2381 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2382 i915_gem_object_retire__write(obj);
2383
2384 obj->active &= ~(1 << ring);
2385 if (obj->active)
2386 return;
2387
2388 /* Bump our place on the bound list to keep it roughly in LRU order
2389 * so that we don't steal from recently used but inactive objects
2390 * (unless we are forced to ofc!)
2391 */
2392 list_move_tail(&obj->global_list,
2393 &to_i915(obj->base.dev)->mm.bound_list);
2394
2395 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2396 if (!list_empty(&vma->mm_list))
2397 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2398 }
2399
2400 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2401 drm_gem_object_unreference(&obj->base);
2402 }
2403
2404 static int
2405 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2406 {
2407 struct drm_i915_private *dev_priv = dev->dev_private;
2408 struct intel_engine_cs *ring;
2409 int ret, i, j;
2410
2411 /* Carefully retire all requests without writing to the rings */
2412 for_each_ring(ring, dev_priv, i) {
2413 ret = intel_ring_idle(ring);
2414 if (ret)
2415 return ret;
2416 }
2417 i915_gem_retire_requests(dev);
2418
2419 /* Finally reset hw state */
2420 for_each_ring(ring, dev_priv, i) {
2421 intel_ring_init_seqno(ring, seqno);
2422
2423 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2424 ring->semaphore.sync_seqno[j] = 0;
2425 }
2426
2427 return 0;
2428 }
2429
2430 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2431 {
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 int ret;
2434
2435 if (seqno == 0)
2436 return -EINVAL;
2437
2438 /* HWS page needs to be set less than what we
2439 * will inject to ring
2440 */
2441 ret = i915_gem_init_seqno(dev, seqno - 1);
2442 if (ret)
2443 return ret;
2444
2445 /* Carefully set the last_seqno value so that wrap
2446 * detection still works
2447 */
2448 dev_priv->next_seqno = seqno;
2449 dev_priv->last_seqno = seqno - 1;
2450 if (dev_priv->last_seqno == 0)
2451 dev_priv->last_seqno--;
2452
2453 return 0;
2454 }
2455
2456 int
2457 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2458 {
2459 struct drm_i915_private *dev_priv = dev->dev_private;
2460
2461 /* reserve 0 for non-seqno */
2462 if (dev_priv->next_seqno == 0) {
2463 int ret = i915_gem_init_seqno(dev, 0);
2464 if (ret)
2465 return ret;
2466
2467 dev_priv->next_seqno = 1;
2468 }
2469
2470 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2471 return 0;
2472 }
2473
2474 /*
2475 * NB: This function is not allowed to fail. Doing so would mean the the
2476 * request is not being tracked for completion but the work itself is
2477 * going to happen on the hardware. This would be a Bad Thing(tm).
2478 */
2479 void __i915_add_request(struct drm_i915_gem_request *request,
2480 struct drm_i915_gem_object *obj,
2481 bool flush_caches)
2482 {
2483 struct intel_engine_cs *ring;
2484 struct drm_i915_private *dev_priv;
2485 struct intel_ringbuffer *ringbuf;
2486 u32 request_start;
2487 int ret;
2488
2489 if (WARN_ON(request == NULL))
2490 return;
2491
2492 ring = request->ring;
2493 dev_priv = ring->dev->dev_private;
2494 ringbuf = request->ringbuf;
2495
2496 /*
2497 * To ensure that this call will not fail, space for its emissions
2498 * should already have been reserved in the ring buffer. Let the ring
2499 * know that it is time to use that space up.
2500 */
2501 intel_ring_reserved_space_use(ringbuf);
2502
2503 request_start = intel_ring_get_tail(ringbuf);
2504 /*
2505 * Emit any outstanding flushes - execbuf can fail to emit the flush
2506 * after having emitted the batchbuffer command. Hence we need to fix
2507 * things up similar to emitting the lazy request. The difference here
2508 * is that the flush _must_ happen before the next request, no matter
2509 * what.
2510 */
2511 if (flush_caches) {
2512 if (i915.enable_execlists)
2513 ret = logical_ring_flush_all_caches(request);
2514 else
2515 ret = intel_ring_flush_all_caches(request);
2516 /* Not allowed to fail! */
2517 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2518 }
2519
2520 /* Record the position of the start of the request so that
2521 * should we detect the updated seqno part-way through the
2522 * GPU processing the request, we never over-estimate the
2523 * position of the head.
2524 */
2525 request->postfix = intel_ring_get_tail(ringbuf);
2526
2527 if (i915.enable_execlists)
2528 ret = ring->emit_request(request);
2529 else {
2530 ret = ring->add_request(request);
2531
2532 request->tail = intel_ring_get_tail(ringbuf);
2533 }
2534 /* Not allowed to fail! */
2535 WARN(ret, "emit|add_request failed: %d!\n", ret);
2536
2537 request->head = request_start;
2538
2539 /* Whilst this request exists, batch_obj will be on the
2540 * active_list, and so will hold the active reference. Only when this
2541 * request is retired will the the batch_obj be moved onto the
2542 * inactive_list and lose its active reference. Hence we do not need
2543 * to explicitly hold another reference here.
2544 */
2545 request->batch_obj = obj;
2546
2547 request->emitted_jiffies = jiffies;
2548 ring->last_submitted_seqno = request->seqno;
2549 list_add_tail(&request->list, &ring->request_list);
2550
2551 trace_i915_gem_request_add(request);
2552
2553 i915_queue_hangcheck(ring->dev);
2554
2555 queue_delayed_work(dev_priv->wq,
2556 &dev_priv->mm.retire_work,
2557 round_jiffies_up_relative(HZ));
2558 intel_mark_busy(dev_priv->dev);
2559
2560 /* Sanity check that the reserved size was large enough. */
2561 intel_ring_reserved_space_end(ringbuf);
2562 }
2563
2564 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2565 const struct intel_context *ctx)
2566 {
2567 unsigned long elapsed;
2568
2569 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2570
2571 if (ctx->hang_stats.banned)
2572 return true;
2573
2574 if (ctx->hang_stats.ban_period_seconds &&
2575 elapsed <= ctx->hang_stats.ban_period_seconds) {
2576 if (!i915_gem_context_is_default(ctx)) {
2577 DRM_DEBUG("context hanging too fast, banning!\n");
2578 return true;
2579 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2580 if (i915_stop_ring_allow_warn(dev_priv))
2581 DRM_ERROR("gpu hanging too fast, banning!\n");
2582 return true;
2583 }
2584 }
2585
2586 return false;
2587 }
2588
2589 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2590 struct intel_context *ctx,
2591 const bool guilty)
2592 {
2593 struct i915_ctx_hang_stats *hs;
2594
2595 if (WARN_ON(!ctx))
2596 return;
2597
2598 hs = &ctx->hang_stats;
2599
2600 if (guilty) {
2601 hs->banned = i915_context_is_banned(dev_priv, ctx);
2602 hs->batch_active++;
2603 hs->guilty_ts = get_seconds();
2604 } else {
2605 hs->batch_pending++;
2606 }
2607 }
2608
2609 void i915_gem_request_free(struct kref *req_ref)
2610 {
2611 struct drm_i915_gem_request *req = container_of(req_ref,
2612 typeof(*req), ref);
2613 struct intel_context *ctx = req->ctx;
2614
2615 if (req->file_priv)
2616 i915_gem_request_remove_from_client(req);
2617
2618 if (ctx) {
2619 if (i915.enable_execlists) {
2620 if (ctx != req->ring->default_context)
2621 intel_lr_context_unpin(req);
2622 }
2623
2624 i915_gem_context_unreference(ctx);
2625 }
2626
2627 kmem_cache_free(req->i915->requests, req);
2628 }
2629
2630 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2631 struct intel_context *ctx,
2632 struct drm_i915_gem_request **req_out)
2633 {
2634 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2635 struct drm_i915_gem_request *req;
2636 int ret;
2637
2638 if (!req_out)
2639 return -EINVAL;
2640
2641 *req_out = NULL;
2642
2643 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2644 if (req == NULL)
2645 return -ENOMEM;
2646
2647 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2648 if (ret)
2649 goto err;
2650
2651 kref_init(&req->ref);
2652 req->i915 = dev_priv;
2653 req->ring = ring;
2654 req->ctx = ctx;
2655 i915_gem_context_reference(req->ctx);
2656
2657 if (i915.enable_execlists)
2658 ret = intel_logical_ring_alloc_request_extras(req);
2659 else
2660 ret = intel_ring_alloc_request_extras(req);
2661 if (ret) {
2662 i915_gem_context_unreference(req->ctx);
2663 goto err;
2664 }
2665
2666 /*
2667 * Reserve space in the ring buffer for all the commands required to
2668 * eventually emit this request. This is to guarantee that the
2669 * i915_add_request() call can't fail. Note that the reserve may need
2670 * to be redone if the request is not actually submitted straight
2671 * away, e.g. because a GPU scheduler has deferred it.
2672 */
2673 if (i915.enable_execlists)
2674 ret = intel_logical_ring_reserve_space(req);
2675 else
2676 ret = intel_ring_reserve_space(req);
2677 if (ret) {
2678 /*
2679 * At this point, the request is fully allocated even if not
2680 * fully prepared. Thus it can be cleaned up using the proper
2681 * free code.
2682 */
2683 i915_gem_request_cancel(req);
2684 return ret;
2685 }
2686
2687 *req_out = req;
2688 return 0;
2689
2690 err:
2691 kmem_cache_free(dev_priv->requests, req);
2692 return ret;
2693 }
2694
2695 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2696 {
2697 intel_ring_reserved_space_cancel(req->ringbuf);
2698
2699 i915_gem_request_unreference(req);
2700 }
2701
2702 struct drm_i915_gem_request *
2703 i915_gem_find_active_request(struct intel_engine_cs *ring)
2704 {
2705 struct drm_i915_gem_request *request;
2706
2707 list_for_each_entry(request, &ring->request_list, list) {
2708 if (i915_gem_request_completed(request, false))
2709 continue;
2710
2711 return request;
2712 }
2713
2714 return NULL;
2715 }
2716
2717 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2718 struct intel_engine_cs *ring)
2719 {
2720 struct drm_i915_gem_request *request;
2721 bool ring_hung;
2722
2723 request = i915_gem_find_active_request(ring);
2724
2725 if (request == NULL)
2726 return;
2727
2728 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2729
2730 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2731
2732 list_for_each_entry_continue(request, &ring->request_list, list)
2733 i915_set_reset_status(dev_priv, request->ctx, false);
2734 }
2735
2736 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2737 struct intel_engine_cs *ring)
2738 {
2739 while (!list_empty(&ring->active_list)) {
2740 struct drm_i915_gem_object *obj;
2741
2742 obj = list_first_entry(&ring->active_list,
2743 struct drm_i915_gem_object,
2744 ring_list[ring->id]);
2745
2746 i915_gem_object_retire__read(obj, ring->id);
2747 }
2748
2749 /*
2750 * Clear the execlists queue up before freeing the requests, as those
2751 * are the ones that keep the context and ringbuffer backing objects
2752 * pinned in place.
2753 */
2754 while (!list_empty(&ring->execlist_queue)) {
2755 struct drm_i915_gem_request *submit_req;
2756
2757 submit_req = list_first_entry(&ring->execlist_queue,
2758 struct drm_i915_gem_request,
2759 execlist_link);
2760 list_del(&submit_req->execlist_link);
2761
2762 if (submit_req->ctx != ring->default_context)
2763 intel_lr_context_unpin(submit_req);
2764
2765 i915_gem_request_unreference(submit_req);
2766 }
2767
2768 /*
2769 * We must free the requests after all the corresponding objects have
2770 * been moved off active lists. Which is the same order as the normal
2771 * retire_requests function does. This is important if object hold
2772 * implicit references on things like e.g. ppgtt address spaces through
2773 * the request.
2774 */
2775 while (!list_empty(&ring->request_list)) {
2776 struct drm_i915_gem_request *request;
2777
2778 request = list_first_entry(&ring->request_list,
2779 struct drm_i915_gem_request,
2780 list);
2781
2782 i915_gem_request_retire(request);
2783 }
2784 }
2785
2786 void i915_gem_reset(struct drm_device *dev)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 struct intel_engine_cs *ring;
2790 int i;
2791
2792 /*
2793 * Before we free the objects from the requests, we need to inspect
2794 * them for finding the guilty party. As the requests only borrow
2795 * their reference to the objects, the inspection must be done first.
2796 */
2797 for_each_ring(ring, dev_priv, i)
2798 i915_gem_reset_ring_status(dev_priv, ring);
2799
2800 for_each_ring(ring, dev_priv, i)
2801 i915_gem_reset_ring_cleanup(dev_priv, ring);
2802
2803 i915_gem_context_reset(dev);
2804
2805 i915_gem_restore_fences(dev);
2806
2807 WARN_ON(i915_verify_lists(dev));
2808 }
2809
2810 /**
2811 * This function clears the request list as sequence numbers are passed.
2812 */
2813 void
2814 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2815 {
2816 WARN_ON(i915_verify_lists(ring->dev));
2817
2818 /* Retire requests first as we use it above for the early return.
2819 * If we retire requests last, we may use a later seqno and so clear
2820 * the requests lists without clearing the active list, leading to
2821 * confusion.
2822 */
2823 while (!list_empty(&ring->request_list)) {
2824 struct drm_i915_gem_request *request;
2825
2826 request = list_first_entry(&ring->request_list,
2827 struct drm_i915_gem_request,
2828 list);
2829
2830 if (!i915_gem_request_completed(request, true))
2831 break;
2832
2833 i915_gem_request_retire(request);
2834 }
2835
2836 /* Move any buffers on the active list that are no longer referenced
2837 * by the ringbuffer to the flushing/inactive lists as appropriate,
2838 * before we free the context associated with the requests.
2839 */
2840 while (!list_empty(&ring->active_list)) {
2841 struct drm_i915_gem_object *obj;
2842
2843 obj = list_first_entry(&ring->active_list,
2844 struct drm_i915_gem_object,
2845 ring_list[ring->id]);
2846
2847 if (!list_empty(&obj->last_read_req[ring->id]->list))
2848 break;
2849
2850 i915_gem_object_retire__read(obj, ring->id);
2851 }
2852
2853 if (unlikely(ring->trace_irq_req &&
2854 i915_gem_request_completed(ring->trace_irq_req, true))) {
2855 ring->irq_put(ring);
2856 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2857 }
2858
2859 WARN_ON(i915_verify_lists(ring->dev));
2860 }
2861
2862 bool
2863 i915_gem_retire_requests(struct drm_device *dev)
2864 {
2865 struct drm_i915_private *dev_priv = dev->dev_private;
2866 struct intel_engine_cs *ring;
2867 bool idle = true;
2868 int i;
2869
2870 for_each_ring(ring, dev_priv, i) {
2871 i915_gem_retire_requests_ring(ring);
2872 idle &= list_empty(&ring->request_list);
2873 if (i915.enable_execlists) {
2874 unsigned long flags;
2875
2876 spin_lock_irqsave(&ring->execlist_lock, flags);
2877 idle &= list_empty(&ring->execlist_queue);
2878 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2879
2880 intel_execlists_retire_requests(ring);
2881 }
2882 }
2883
2884 if (idle)
2885 mod_delayed_work(dev_priv->wq,
2886 &dev_priv->mm.idle_work,
2887 msecs_to_jiffies(100));
2888
2889 return idle;
2890 }
2891
2892 static void
2893 i915_gem_retire_work_handler(struct work_struct *work)
2894 {
2895 struct drm_i915_private *dev_priv =
2896 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2897 struct drm_device *dev = dev_priv->dev;
2898 bool idle;
2899
2900 /* Come back later if the device is busy... */
2901 idle = false;
2902 if (mutex_trylock(&dev->struct_mutex)) {
2903 idle = i915_gem_retire_requests(dev);
2904 mutex_unlock(&dev->struct_mutex);
2905 }
2906 if (!idle)
2907 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2908 round_jiffies_up_relative(HZ));
2909 }
2910
2911 static void
2912 i915_gem_idle_work_handler(struct work_struct *work)
2913 {
2914 struct drm_i915_private *dev_priv =
2915 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2916 struct drm_device *dev = dev_priv->dev;
2917 struct intel_engine_cs *ring;
2918 int i;
2919
2920 for_each_ring(ring, dev_priv, i)
2921 if (!list_empty(&ring->request_list))
2922 return;
2923
2924 intel_mark_idle(dev);
2925
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 struct intel_engine_cs *ring;
2928 int i;
2929
2930 for_each_ring(ring, dev_priv, i)
2931 i915_gem_batch_pool_fini(&ring->batch_pool);
2932
2933 mutex_unlock(&dev->struct_mutex);
2934 }
2935 }
2936
2937 /**
2938 * Ensures that an object will eventually get non-busy by flushing any required
2939 * write domains, emitting any outstanding lazy request and retiring and
2940 * completed requests.
2941 */
2942 static int
2943 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2944 {
2945 int i;
2946
2947 if (!obj->active)
2948 return 0;
2949
2950 for (i = 0; i < I915_NUM_RINGS; i++) {
2951 struct drm_i915_gem_request *req;
2952
2953 req = obj->last_read_req[i];
2954 if (req == NULL)
2955 continue;
2956
2957 if (list_empty(&req->list))
2958 goto retire;
2959
2960 if (i915_gem_request_completed(req, true)) {
2961 __i915_gem_request_retire__upto(req);
2962 retire:
2963 i915_gem_object_retire__read(obj, i);
2964 }
2965 }
2966
2967 return 0;
2968 }
2969
2970 /**
2971 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2972 * @DRM_IOCTL_ARGS: standard ioctl arguments
2973 *
2974 * Returns 0 if successful, else an error is returned with the remaining time in
2975 * the timeout parameter.
2976 * -ETIME: object is still busy after timeout
2977 * -ERESTARTSYS: signal interrupted the wait
2978 * -ENONENT: object doesn't exist
2979 * Also possible, but rare:
2980 * -EAGAIN: GPU wedged
2981 * -ENOMEM: damn
2982 * -ENODEV: Internal IRQ fail
2983 * -E?: The add request failed
2984 *
2985 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2986 * non-zero timeout parameter the wait ioctl will wait for the given number of
2987 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2988 * without holding struct_mutex the object may become re-busied before this
2989 * function completes. A similar but shorter * race condition exists in the busy
2990 * ioctl
2991 */
2992 int
2993 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2994 {
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 struct drm_i915_gem_wait *args = data;
2997 struct drm_i915_gem_object *obj;
2998 struct drm_i915_gem_request *req[I915_NUM_RINGS];
2999 unsigned reset_counter;
3000 int i, n = 0;
3001 int ret;
3002
3003 if (args->flags != 0)
3004 return -EINVAL;
3005
3006 ret = i915_mutex_lock_interruptible(dev);
3007 if (ret)
3008 return ret;
3009
3010 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3011 if (&obj->base == NULL) {
3012 mutex_unlock(&dev->struct_mutex);
3013 return -ENOENT;
3014 }
3015
3016 /* Need to make sure the object gets inactive eventually. */
3017 ret = i915_gem_object_flush_active(obj);
3018 if (ret)
3019 goto out;
3020
3021 if (!obj->active)
3022 goto out;
3023
3024 /* Do this after OLR check to make sure we make forward progress polling
3025 * on this IOCTL with a timeout == 0 (like busy ioctl)
3026 */
3027 if (args->timeout_ns == 0) {
3028 ret = -ETIME;
3029 goto out;
3030 }
3031
3032 drm_gem_object_unreference(&obj->base);
3033 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3034
3035 for (i = 0; i < I915_NUM_RINGS; i++) {
3036 if (obj->last_read_req[i] == NULL)
3037 continue;
3038
3039 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3040 }
3041
3042 mutex_unlock(&dev->struct_mutex);
3043
3044 for (i = 0; i < n; i++) {
3045 if (ret == 0)
3046 ret = __i915_wait_request(req[i], reset_counter, true,
3047 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3048 file->driver_priv);
3049 i915_gem_request_unreference__unlocked(req[i]);
3050 }
3051 return ret;
3052
3053 out:
3054 drm_gem_object_unreference(&obj->base);
3055 mutex_unlock(&dev->struct_mutex);
3056 return ret;
3057 }
3058
3059 static int
3060 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3061 struct intel_engine_cs *to,
3062 struct drm_i915_gem_request *from_req,
3063 struct drm_i915_gem_request **to_req)
3064 {
3065 struct intel_engine_cs *from;
3066 int ret;
3067
3068 from = i915_gem_request_get_ring(from_req);
3069 if (to == from)
3070 return 0;
3071
3072 if (i915_gem_request_completed(from_req, true))
3073 return 0;
3074
3075 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3076 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3077 ret = __i915_wait_request(from_req,
3078 atomic_read(&i915->gpu_error.reset_counter),
3079 i915->mm.interruptible,
3080 NULL,
3081 &i915->rps.semaphores);
3082 if (ret)
3083 return ret;
3084
3085 i915_gem_object_retire_request(obj, from_req);
3086 } else {
3087 int idx = intel_ring_sync_index(from, to);
3088 u32 seqno = i915_gem_request_get_seqno(from_req);
3089
3090 WARN_ON(!to_req);
3091
3092 if (seqno <= from->semaphore.sync_seqno[idx])
3093 return 0;
3094
3095 if (*to_req == NULL) {
3096 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3097 if (ret)
3098 return ret;
3099 }
3100
3101 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3102 ret = to->semaphore.sync_to(*to_req, from, seqno);
3103 if (ret)
3104 return ret;
3105
3106 /* We use last_read_req because sync_to()
3107 * might have just caused seqno wrap under
3108 * the radar.
3109 */
3110 from->semaphore.sync_seqno[idx] =
3111 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3112 }
3113
3114 return 0;
3115 }
3116
3117 /**
3118 * i915_gem_object_sync - sync an object to a ring.
3119 *
3120 * @obj: object which may be in use on another ring.
3121 * @to: ring we wish to use the object on. May be NULL.
3122 * @to_req: request we wish to use the object for. See below.
3123 * This will be allocated and returned if a request is
3124 * required but not passed in.
3125 *
3126 * This code is meant to abstract object synchronization with the GPU.
3127 * Calling with NULL implies synchronizing the object with the CPU
3128 * rather than a particular GPU ring. Conceptually we serialise writes
3129 * between engines inside the GPU. We only allow one engine to write
3130 * into a buffer at any time, but multiple readers. To ensure each has
3131 * a coherent view of memory, we must:
3132 *
3133 * - If there is an outstanding write request to the object, the new
3134 * request must wait for it to complete (either CPU or in hw, requests
3135 * on the same ring will be naturally ordered).
3136 *
3137 * - If we are a write request (pending_write_domain is set), the new
3138 * request must wait for outstanding read requests to complete.
3139 *
3140 * For CPU synchronisation (NULL to) no request is required. For syncing with
3141 * rings to_req must be non-NULL. However, a request does not have to be
3142 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3143 * request will be allocated automatically and returned through *to_req. Note
3144 * that it is not guaranteed that commands will be emitted (because the system
3145 * might already be idle). Hence there is no need to create a request that
3146 * might never have any work submitted. Note further that if a request is
3147 * returned in *to_req, it is the responsibility of the caller to submit
3148 * that request (after potentially adding more work to it).
3149 *
3150 * Returns 0 if successful, else propagates up the lower layer error.
3151 */
3152 int
3153 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3154 struct intel_engine_cs *to,
3155 struct drm_i915_gem_request **to_req)
3156 {
3157 const bool readonly = obj->base.pending_write_domain == 0;
3158 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3159 int ret, i, n;
3160
3161 if (!obj->active)
3162 return 0;
3163
3164 if (to == NULL)
3165 return i915_gem_object_wait_rendering(obj, readonly);
3166
3167 n = 0;
3168 if (readonly) {
3169 if (obj->last_write_req)
3170 req[n++] = obj->last_write_req;
3171 } else {
3172 for (i = 0; i < I915_NUM_RINGS; i++)
3173 if (obj->last_read_req[i])
3174 req[n++] = obj->last_read_req[i];
3175 }
3176 for (i = 0; i < n; i++) {
3177 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 return 0;
3183 }
3184
3185 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3186 {
3187 u32 old_write_domain, old_read_domains;
3188
3189 /* Force a pagefault for domain tracking on next user access */
3190 i915_gem_release_mmap(obj);
3191
3192 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3193 return;
3194
3195 /* Wait for any direct GTT access to complete */
3196 mb();
3197
3198 old_read_domains = obj->base.read_domains;
3199 old_write_domain = obj->base.write_domain;
3200
3201 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3202 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3203
3204 trace_i915_gem_object_change_domain(obj,
3205 old_read_domains,
3206 old_write_domain);
3207 }
3208
3209 int i915_vma_unbind(struct i915_vma *vma)
3210 {
3211 struct drm_i915_gem_object *obj = vma->obj;
3212 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3213 int ret;
3214
3215 if (list_empty(&vma->vma_link))
3216 return 0;
3217
3218 if (!drm_mm_node_allocated(&vma->node)) {
3219 i915_gem_vma_destroy(vma);
3220 return 0;
3221 }
3222
3223 if (vma->pin_count)
3224 return -EBUSY;
3225
3226 BUG_ON(obj->pages == NULL);
3227
3228 ret = i915_gem_object_wait_rendering(obj, false);
3229 if (ret)
3230 return ret;
3231 /* Continue on if we fail due to EIO, the GPU is hung so we
3232 * should be safe and we need to cleanup or else we might
3233 * cause memory corruption through use-after-free.
3234 */
3235
3236 if (i915_is_ggtt(vma->vm) &&
3237 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3238 i915_gem_object_finish_gtt(obj);
3239
3240 /* release the fence reg _after_ flushing */
3241 ret = i915_gem_object_put_fence(obj);
3242 if (ret)
3243 return ret;
3244 }
3245
3246 trace_i915_vma_unbind(vma);
3247
3248 vma->vm->unbind_vma(vma);
3249 vma->bound = 0;
3250
3251 list_del_init(&vma->mm_list);
3252 if (i915_is_ggtt(vma->vm)) {
3253 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3254 obj->map_and_fenceable = false;
3255 } else if (vma->ggtt_view.pages) {
3256 sg_free_table(vma->ggtt_view.pages);
3257 kfree(vma->ggtt_view.pages);
3258 }
3259 vma->ggtt_view.pages = NULL;
3260 }
3261
3262 drm_mm_remove_node(&vma->node);
3263 i915_gem_vma_destroy(vma);
3264
3265 /* Since the unbound list is global, only move to that list if
3266 * no more VMAs exist. */
3267 if (list_empty(&obj->vma_list))
3268 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3269
3270 /* And finally now the object is completely decoupled from this vma,
3271 * we can drop its hold on the backing storage and allow it to be
3272 * reaped by the shrinker.
3273 */
3274 i915_gem_object_unpin_pages(obj);
3275
3276 return 0;
3277 }
3278
3279 int i915_gpu_idle(struct drm_device *dev)
3280 {
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 struct intel_engine_cs *ring;
3283 int ret, i;
3284
3285 /* Flush everything onto the inactive list. */
3286 for_each_ring(ring, dev_priv, i) {
3287 if (!i915.enable_execlists) {
3288 struct drm_i915_gem_request *req;
3289
3290 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3291 if (ret)
3292 return ret;
3293
3294 ret = i915_switch_context(req);
3295 if (ret) {
3296 i915_gem_request_cancel(req);
3297 return ret;
3298 }
3299
3300 i915_add_request_no_flush(req);
3301 }
3302
3303 ret = intel_ring_idle(ring);
3304 if (ret)
3305 return ret;
3306 }
3307
3308 WARN_ON(i915_verify_lists(dev));
3309 return 0;
3310 }
3311
3312 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3313 unsigned long cache_level)
3314 {
3315 struct drm_mm_node *gtt_space = &vma->node;
3316 struct drm_mm_node *other;
3317
3318 /*
3319 * On some machines we have to be careful when putting differing types
3320 * of snoopable memory together to avoid the prefetcher crossing memory
3321 * domains and dying. During vm initialisation, we decide whether or not
3322 * these constraints apply and set the drm_mm.color_adjust
3323 * appropriately.
3324 */
3325 if (vma->vm->mm.color_adjust == NULL)
3326 return true;
3327
3328 if (!drm_mm_node_allocated(gtt_space))
3329 return true;
3330
3331 if (list_empty(&gtt_space->node_list))
3332 return true;
3333
3334 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3335 if (other->allocated && !other->hole_follows && other->color != cache_level)
3336 return false;
3337
3338 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3339 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3340 return false;
3341
3342 return true;
3343 }
3344
3345 /**
3346 * Finds free space in the GTT aperture and binds the object or a view of it
3347 * there.
3348 */
3349 static struct i915_vma *
3350 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3351 struct i915_address_space *vm,
3352 const struct i915_ggtt_view *ggtt_view,
3353 unsigned alignment,
3354 uint64_t flags)
3355 {
3356 struct drm_device *dev = obj->base.dev;
3357 struct drm_i915_private *dev_priv = dev->dev_private;
3358 u32 size, fence_size, fence_alignment, unfenced_alignment;
3359 u64 start =
3360 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3361 u64 end =
3362 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3363 struct i915_vma *vma;
3364 int ret;
3365
3366 if (i915_is_ggtt(vm)) {
3367 u32 view_size;
3368
3369 if (WARN_ON(!ggtt_view))
3370 return ERR_PTR(-EINVAL);
3371
3372 view_size = i915_ggtt_view_size(obj, ggtt_view);
3373
3374 fence_size = i915_gem_get_gtt_size(dev,
3375 view_size,
3376 obj->tiling_mode);
3377 fence_alignment = i915_gem_get_gtt_alignment(dev,
3378 view_size,
3379 obj->tiling_mode,
3380 true);
3381 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3382 view_size,
3383 obj->tiling_mode,
3384 false);
3385 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3386 } else {
3387 fence_size = i915_gem_get_gtt_size(dev,
3388 obj->base.size,
3389 obj->tiling_mode);
3390 fence_alignment = i915_gem_get_gtt_alignment(dev,
3391 obj->base.size,
3392 obj->tiling_mode,
3393 true);
3394 unfenced_alignment =
3395 i915_gem_get_gtt_alignment(dev,
3396 obj->base.size,
3397 obj->tiling_mode,
3398 false);
3399 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3400 }
3401
3402 if (alignment == 0)
3403 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3404 unfenced_alignment;
3405 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3406 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3407 ggtt_view ? ggtt_view->type : 0,
3408 alignment);
3409 return ERR_PTR(-EINVAL);
3410 }
3411
3412 /* If binding the object/GGTT view requires more space than the entire
3413 * aperture has, reject it early before evicting everything in a vain
3414 * attempt to find space.
3415 */
3416 if (size > end) {
3417 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3418 ggtt_view ? ggtt_view->type : 0,
3419 size,
3420 flags & PIN_MAPPABLE ? "mappable" : "total",
3421 end);
3422 return ERR_PTR(-E2BIG);
3423 }
3424
3425 ret = i915_gem_object_get_pages(obj);
3426 if (ret)
3427 return ERR_PTR(ret);
3428
3429 i915_gem_object_pin_pages(obj);
3430
3431 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3432 i915_gem_obj_lookup_or_create_vma(obj, vm);
3433
3434 if (IS_ERR(vma))
3435 goto err_unpin;
3436
3437 search_free:
3438 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3439 size, alignment,
3440 obj->cache_level,
3441 start, end,
3442 DRM_MM_SEARCH_DEFAULT,
3443 DRM_MM_CREATE_DEFAULT);
3444 if (ret) {
3445 ret = i915_gem_evict_something(dev, vm, size, alignment,
3446 obj->cache_level,
3447 start, end,
3448 flags);
3449 if (ret == 0)
3450 goto search_free;
3451
3452 goto err_free_vma;
3453 }
3454 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3455 ret = -EINVAL;
3456 goto err_remove_node;
3457 }
3458
3459 trace_i915_vma_bind(vma, flags);
3460 ret = i915_vma_bind(vma, obj->cache_level, flags);
3461 if (ret)
3462 goto err_remove_node;
3463
3464 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3465 list_add_tail(&vma->mm_list, &vm->inactive_list);
3466
3467 return vma;
3468
3469 err_remove_node:
3470 drm_mm_remove_node(&vma->node);
3471 err_free_vma:
3472 i915_gem_vma_destroy(vma);
3473 vma = ERR_PTR(ret);
3474 err_unpin:
3475 i915_gem_object_unpin_pages(obj);
3476 return vma;
3477 }
3478
3479 bool
3480 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3481 bool force)
3482 {
3483 /* If we don't have a page list set up, then we're not pinned
3484 * to GPU, and we can ignore the cache flush because it'll happen
3485 * again at bind time.
3486 */
3487 if (obj->pages == NULL)
3488 return false;
3489
3490 /*
3491 * Stolen memory is always coherent with the GPU as it is explicitly
3492 * marked as wc by the system, or the system is cache-coherent.
3493 */
3494 if (obj->stolen || obj->phys_handle)
3495 return false;
3496
3497 /* If the GPU is snooping the contents of the CPU cache,
3498 * we do not need to manually clear the CPU cache lines. However,
3499 * the caches are only snooped when the render cache is
3500 * flushed/invalidated. As we always have to emit invalidations
3501 * and flushes when moving into and out of the RENDER domain, correct
3502 * snooping behaviour occurs naturally as the result of our domain
3503 * tracking.
3504 */
3505 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3506 obj->cache_dirty = true;
3507 return false;
3508 }
3509
3510 trace_i915_gem_object_clflush(obj);
3511 drm_clflush_sg(obj->pages);
3512 obj->cache_dirty = false;
3513
3514 return true;
3515 }
3516
3517 /** Flushes the GTT write domain for the object if it's dirty. */
3518 static void
3519 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3520 {
3521 uint32_t old_write_domain;
3522
3523 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3524 return;
3525
3526 /* No actual flushing is required for the GTT write domain. Writes
3527 * to it immediately go to main memory as far as we know, so there's
3528 * no chipset flush. It also doesn't land in render cache.
3529 *
3530 * However, we do have to enforce the order so that all writes through
3531 * the GTT land before any writes to the device, such as updates to
3532 * the GATT itself.
3533 */
3534 wmb();
3535
3536 old_write_domain = obj->base.write_domain;
3537 obj->base.write_domain = 0;
3538
3539 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3540
3541 trace_i915_gem_object_change_domain(obj,
3542 obj->base.read_domains,
3543 old_write_domain);
3544 }
3545
3546 /** Flushes the CPU write domain for the object if it's dirty. */
3547 static void
3548 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3549 {
3550 uint32_t old_write_domain;
3551
3552 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3553 return;
3554
3555 if (i915_gem_clflush_object(obj, obj->pin_display))
3556 i915_gem_chipset_flush(obj->base.dev);
3557
3558 old_write_domain = obj->base.write_domain;
3559 obj->base.write_domain = 0;
3560
3561 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3562
3563 trace_i915_gem_object_change_domain(obj,
3564 obj->base.read_domains,
3565 old_write_domain);
3566 }
3567
3568 /**
3569 * Moves a single object to the GTT read, and possibly write domain.
3570 *
3571 * This function returns when the move is complete, including waiting on
3572 * flushes to occur.
3573 */
3574 int
3575 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577 uint32_t old_write_domain, old_read_domains;
3578 struct i915_vma *vma;
3579 int ret;
3580
3581 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3582 return 0;
3583
3584 ret = i915_gem_object_wait_rendering(obj, !write);
3585 if (ret)
3586 return ret;
3587
3588 /* Flush and acquire obj->pages so that we are coherent through
3589 * direct access in memory with previous cached writes through
3590 * shmemfs and that our cache domain tracking remains valid.
3591 * For example, if the obj->filp was moved to swap without us
3592 * being notified and releasing the pages, we would mistakenly
3593 * continue to assume that the obj remained out of the CPU cached
3594 * domain.
3595 */
3596 ret = i915_gem_object_get_pages(obj);
3597 if (ret)
3598 return ret;
3599
3600 i915_gem_object_flush_cpu_write_domain(obj);
3601
3602 /* Serialise direct access to this object with the barriers for
3603 * coherent writes from the GPU, by effectively invalidating the
3604 * GTT domain upon first access.
3605 */
3606 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607 mb();
3608
3609 old_write_domain = obj->base.write_domain;
3610 old_read_domains = obj->base.read_domains;
3611
3612 /* It should now be out of any other write domains, and we can update
3613 * the domain values for our changes.
3614 */
3615 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617 if (write) {
3618 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620 obj->dirty = 1;
3621 }
3622
3623 trace_i915_gem_object_change_domain(obj,
3624 old_read_domains,
3625 old_write_domain);
3626
3627 /* And bump the LRU for this access */
3628 vma = i915_gem_obj_to_ggtt(obj);
3629 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3630 list_move_tail(&vma->mm_list,
3631 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3632
3633 return 0;
3634 }
3635
3636 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3637 enum i915_cache_level cache_level)
3638 {
3639 struct drm_device *dev = obj->base.dev;
3640 struct i915_vma *vma, *next;
3641 int ret;
3642
3643 if (obj->cache_level == cache_level)
3644 return 0;
3645
3646 if (i915_gem_obj_is_pinned(obj)) {
3647 DRM_DEBUG("can not change the cache level of pinned objects\n");
3648 return -EBUSY;
3649 }
3650
3651 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3652 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3653 ret = i915_vma_unbind(vma);
3654 if (ret)
3655 return ret;
3656 }
3657 }
3658
3659 if (i915_gem_obj_bound_any(obj)) {
3660 ret = i915_gem_object_wait_rendering(obj, false);
3661 if (ret)
3662 return ret;
3663
3664 i915_gem_object_finish_gtt(obj);
3665
3666 /* Before SandyBridge, you could not use tiling or fence
3667 * registers with snooped memory, so relinquish any fences
3668 * currently pointing to our region in the aperture.
3669 */
3670 if (INTEL_INFO(dev)->gen < 6) {
3671 ret = i915_gem_object_put_fence(obj);
3672 if (ret)
3673 return ret;
3674 }
3675
3676 list_for_each_entry(vma, &obj->vma_list, vma_link)
3677 if (drm_mm_node_allocated(&vma->node)) {
3678 ret = i915_vma_bind(vma, cache_level,
3679 PIN_UPDATE);
3680 if (ret)
3681 return ret;
3682 }
3683 }
3684
3685 list_for_each_entry(vma, &obj->vma_list, vma_link)
3686 vma->node.color = cache_level;
3687 obj->cache_level = cache_level;
3688
3689 if (obj->cache_dirty &&
3690 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3691 cpu_write_needs_clflush(obj)) {
3692 if (i915_gem_clflush_object(obj, true))
3693 i915_gem_chipset_flush(obj->base.dev);
3694 }
3695
3696 return 0;
3697 }
3698
3699 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3700 struct drm_file *file)
3701 {
3702 struct drm_i915_gem_caching *args = data;
3703 struct drm_i915_gem_object *obj;
3704
3705 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3706 if (&obj->base == NULL)
3707 return -ENOENT;
3708
3709 switch (obj->cache_level) {
3710 case I915_CACHE_LLC:
3711 case I915_CACHE_L3_LLC:
3712 args->caching = I915_CACHING_CACHED;
3713 break;
3714
3715 case I915_CACHE_WT:
3716 args->caching = I915_CACHING_DISPLAY;
3717 break;
3718
3719 default:
3720 args->caching = I915_CACHING_NONE;
3721 break;
3722 }
3723
3724 drm_gem_object_unreference_unlocked(&obj->base);
3725 return 0;
3726 }
3727
3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3729 struct drm_file *file)
3730 {
3731 struct drm_i915_gem_caching *args = data;
3732 struct drm_i915_gem_object *obj;
3733 enum i915_cache_level level;
3734 int ret;
3735
3736 switch (args->caching) {
3737 case I915_CACHING_NONE:
3738 level = I915_CACHE_NONE;
3739 break;
3740 case I915_CACHING_CACHED:
3741 level = I915_CACHE_LLC;
3742 break;
3743 case I915_CACHING_DISPLAY:
3744 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3745 break;
3746 default:
3747 return -EINVAL;
3748 }
3749
3750 ret = i915_mutex_lock_interruptible(dev);
3751 if (ret)
3752 return ret;
3753
3754 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3755 if (&obj->base == NULL) {
3756 ret = -ENOENT;
3757 goto unlock;
3758 }
3759
3760 ret = i915_gem_object_set_cache_level(obj, level);
3761
3762 drm_gem_object_unreference(&obj->base);
3763 unlock:
3764 mutex_unlock(&dev->struct_mutex);
3765 return ret;
3766 }
3767
3768 /*
3769 * Prepare buffer for display plane (scanout, cursors, etc).
3770 * Can be called from an uninterruptible phase (modesetting) and allows
3771 * any flushes to be pipelined (for pageflips).
3772 */
3773 int
3774 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3775 u32 alignment,
3776 struct intel_engine_cs *pipelined,
3777 struct drm_i915_gem_request **pipelined_request,
3778 const struct i915_ggtt_view *view)
3779 {
3780 u32 old_read_domains, old_write_domain;
3781 int ret;
3782
3783 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3784 if (ret)
3785 return ret;
3786
3787 /* Mark the pin_display early so that we account for the
3788 * display coherency whilst setting up the cache domains.
3789 */
3790 obj->pin_display++;
3791
3792 /* The display engine is not coherent with the LLC cache on gen6. As
3793 * a result, we make sure that the pinning that is about to occur is
3794 * done with uncached PTEs. This is lowest common denominator for all
3795 * chipsets.
3796 *
3797 * However for gen6+, we could do better by using the GFDT bit instead
3798 * of uncaching, which would allow us to flush all the LLC-cached data
3799 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3800 */
3801 ret = i915_gem_object_set_cache_level(obj,
3802 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3803 if (ret)
3804 goto err_unpin_display;
3805
3806 /* As the user may map the buffer once pinned in the display plane
3807 * (e.g. libkms for the bootup splash), we have to ensure that we
3808 * always use map_and_fenceable for all scanout buffers.
3809 */
3810 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3811 view->type == I915_GGTT_VIEW_NORMAL ?
3812 PIN_MAPPABLE : 0);
3813 if (ret)
3814 goto err_unpin_display;
3815
3816 i915_gem_object_flush_cpu_write_domain(obj);
3817
3818 old_write_domain = obj->base.write_domain;
3819 old_read_domains = obj->base.read_domains;
3820
3821 /* It should now be out of any other write domains, and we can update
3822 * the domain values for our changes.
3823 */
3824 obj->base.write_domain = 0;
3825 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3826
3827 trace_i915_gem_object_change_domain(obj,
3828 old_read_domains,
3829 old_write_domain);
3830
3831 return 0;
3832
3833 err_unpin_display:
3834 obj->pin_display--;
3835 return ret;
3836 }
3837
3838 void
3839 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3840 const struct i915_ggtt_view *view)
3841 {
3842 if (WARN_ON(obj->pin_display == 0))
3843 return;
3844
3845 i915_gem_object_ggtt_unpin_view(obj, view);
3846
3847 obj->pin_display--;
3848 }
3849
3850 /**
3851 * Moves a single object to the CPU read, and possibly write domain.
3852 *
3853 * This function returns when the move is complete, including waiting on
3854 * flushes to occur.
3855 */
3856 int
3857 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3858 {
3859 uint32_t old_write_domain, old_read_domains;
3860 int ret;
3861
3862 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3863 return 0;
3864
3865 ret = i915_gem_object_wait_rendering(obj, !write);
3866 if (ret)
3867 return ret;
3868
3869 i915_gem_object_flush_gtt_write_domain(obj);
3870
3871 old_write_domain = obj->base.write_domain;
3872 old_read_domains = obj->base.read_domains;
3873
3874 /* Flush the CPU cache if it's still invalid. */
3875 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3876 i915_gem_clflush_object(obj, false);
3877
3878 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3879 }
3880
3881 /* It should now be out of any other write domains, and we can update
3882 * the domain values for our changes.
3883 */
3884 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3885
3886 /* If we're writing through the CPU, then the GPU read domains will
3887 * need to be invalidated at next use.
3888 */
3889 if (write) {
3890 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3891 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3892 }
3893
3894 trace_i915_gem_object_change_domain(obj,
3895 old_read_domains,
3896 old_write_domain);
3897
3898 return 0;
3899 }
3900
3901 /* Throttle our rendering by waiting until the ring has completed our requests
3902 * emitted over 20 msec ago.
3903 *
3904 * Note that if we were to use the current jiffies each time around the loop,
3905 * we wouldn't escape the function with any frames outstanding if the time to
3906 * render a frame was over 20ms.
3907 *
3908 * This should get us reasonable parallelism between CPU and GPU but also
3909 * relatively low latency when blocking on a particular request to finish.
3910 */
3911 static int
3912 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3913 {
3914 struct drm_i915_private *dev_priv = dev->dev_private;
3915 struct drm_i915_file_private *file_priv = file->driver_priv;
3916 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3917 struct drm_i915_gem_request *request, *target = NULL;
3918 unsigned reset_counter;
3919 int ret;
3920
3921 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3922 if (ret)
3923 return ret;
3924
3925 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3926 if (ret)
3927 return ret;
3928
3929 spin_lock(&file_priv->mm.lock);
3930 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3931 if (time_after_eq(request->emitted_jiffies, recent_enough))
3932 break;
3933
3934 /*
3935 * Note that the request might not have been submitted yet.
3936 * In which case emitted_jiffies will be zero.
3937 */
3938 if (!request->emitted_jiffies)
3939 continue;
3940
3941 target = request;
3942 }
3943 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3944 if (target)
3945 i915_gem_request_reference(target);
3946 spin_unlock(&file_priv->mm.lock);
3947
3948 if (target == NULL)
3949 return 0;
3950
3951 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
3952 if (ret == 0)
3953 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3954
3955 i915_gem_request_unreference__unlocked(target);
3956
3957 return ret;
3958 }
3959
3960 static bool
3961 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
3962 {
3963 struct drm_i915_gem_object *obj = vma->obj;
3964
3965 if (alignment &&
3966 vma->node.start & (alignment - 1))
3967 return true;
3968
3969 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
3970 return true;
3971
3972 if (flags & PIN_OFFSET_BIAS &&
3973 vma->node.start < (flags & PIN_OFFSET_MASK))
3974 return true;
3975
3976 return false;
3977 }
3978
3979 static int
3980 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
3981 struct i915_address_space *vm,
3982 const struct i915_ggtt_view *ggtt_view,
3983 uint32_t alignment,
3984 uint64_t flags)
3985 {
3986 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3987 struct i915_vma *vma;
3988 unsigned bound;
3989 int ret;
3990
3991 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3992 return -ENODEV;
3993
3994 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3995 return -EINVAL;
3996
3997 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
3998 return -EINVAL;
3999
4000 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4001 return -EINVAL;
4002
4003 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4004 i915_gem_obj_to_vma(obj, vm);
4005
4006 if (IS_ERR(vma))
4007 return PTR_ERR(vma);
4008
4009 if (vma) {
4010 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4011 return -EBUSY;
4012
4013 if (i915_vma_misplaced(vma, alignment, flags)) {
4014 unsigned long offset;
4015 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4016 i915_gem_obj_offset(obj, vm);
4017 WARN(vma->pin_count,
4018 "bo is already pinned in %s with incorrect alignment:"
4019 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4020 " obj->map_and_fenceable=%d\n",
4021 ggtt_view ? "ggtt" : "ppgtt",
4022 offset,
4023 alignment,
4024 !!(flags & PIN_MAPPABLE),
4025 obj->map_and_fenceable);
4026 ret = i915_vma_unbind(vma);
4027 if (ret)
4028 return ret;
4029
4030 vma = NULL;
4031 }
4032 }
4033
4034 bound = vma ? vma->bound : 0;
4035 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4036 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4037 flags);
4038 if (IS_ERR(vma))
4039 return PTR_ERR(vma);
4040 } else {
4041 ret = i915_vma_bind(vma, obj->cache_level, flags);
4042 if (ret)
4043 return ret;
4044 }
4045
4046 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4047 (bound ^ vma->bound) & GLOBAL_BIND) {
4048 bool mappable, fenceable;
4049 u32 fence_size, fence_alignment;
4050
4051 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4052 obj->base.size,
4053 obj->tiling_mode);
4054 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4055 obj->base.size,
4056 obj->tiling_mode,
4057 true);
4058
4059 fenceable = (vma->node.size == fence_size &&
4060 (vma->node.start & (fence_alignment - 1)) == 0);
4061
4062 mappable = (vma->node.start + fence_size <=
4063 dev_priv->gtt.mappable_end);
4064
4065 obj->map_and_fenceable = mappable && fenceable;
4066
4067 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4068 }
4069
4070 vma->pin_count++;
4071 return 0;
4072 }
4073
4074 int
4075 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4076 struct i915_address_space *vm,
4077 uint32_t alignment,
4078 uint64_t flags)
4079 {
4080 return i915_gem_object_do_pin(obj, vm,
4081 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4082 alignment, flags);
4083 }
4084
4085 int
4086 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4087 const struct i915_ggtt_view *view,
4088 uint32_t alignment,
4089 uint64_t flags)
4090 {
4091 if (WARN_ONCE(!view, "no view specified"))
4092 return -EINVAL;
4093
4094 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4095 alignment, flags | PIN_GLOBAL);
4096 }
4097
4098 void
4099 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4100 const struct i915_ggtt_view *view)
4101 {
4102 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4103
4104 BUG_ON(!vma);
4105 WARN_ON(vma->pin_count == 0);
4106 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4107
4108 --vma->pin_count;
4109 }
4110
4111 int
4112 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4113 struct drm_file *file)
4114 {
4115 struct drm_i915_gem_busy *args = data;
4116 struct drm_i915_gem_object *obj;
4117 int ret;
4118
4119 ret = i915_mutex_lock_interruptible(dev);
4120 if (ret)
4121 return ret;
4122
4123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4124 if (&obj->base == NULL) {
4125 ret = -ENOENT;
4126 goto unlock;
4127 }
4128
4129 /* Count all active objects as busy, even if they are currently not used
4130 * by the gpu. Users of this interface expect objects to eventually
4131 * become non-busy without any further actions, therefore emit any
4132 * necessary flushes here.
4133 */
4134 ret = i915_gem_object_flush_active(obj);
4135 if (ret)
4136 goto unref;
4137
4138 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4139 args->busy = obj->active << 16;
4140 if (obj->last_write_req)
4141 args->busy |= obj->last_write_req->ring->id;
4142
4143 unref:
4144 drm_gem_object_unreference(&obj->base);
4145 unlock:
4146 mutex_unlock(&dev->struct_mutex);
4147 return ret;
4148 }
4149
4150 int
4151 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4152 struct drm_file *file_priv)
4153 {
4154 return i915_gem_ring_throttle(dev, file_priv);
4155 }
4156
4157 int
4158 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4159 struct drm_file *file_priv)
4160 {
4161 struct drm_i915_private *dev_priv = dev->dev_private;
4162 struct drm_i915_gem_madvise *args = data;
4163 struct drm_i915_gem_object *obj;
4164 int ret;
4165
4166 switch (args->madv) {
4167 case I915_MADV_DONTNEED:
4168 case I915_MADV_WILLNEED:
4169 break;
4170 default:
4171 return -EINVAL;
4172 }
4173
4174 ret = i915_mutex_lock_interruptible(dev);
4175 if (ret)
4176 return ret;
4177
4178 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4179 if (&obj->base == NULL) {
4180 ret = -ENOENT;
4181 goto unlock;
4182 }
4183
4184 if (i915_gem_obj_is_pinned(obj)) {
4185 ret = -EINVAL;
4186 goto out;
4187 }
4188
4189 if (obj->pages &&
4190 obj->tiling_mode != I915_TILING_NONE &&
4191 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4192 if (obj->madv == I915_MADV_WILLNEED)
4193 i915_gem_object_unpin_pages(obj);
4194 if (args->madv == I915_MADV_WILLNEED)
4195 i915_gem_object_pin_pages(obj);
4196 }
4197
4198 if (obj->madv != __I915_MADV_PURGED)
4199 obj->madv = args->madv;
4200
4201 /* if the object is no longer attached, discard its backing storage */
4202 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4203 i915_gem_object_truncate(obj);
4204
4205 args->retained = obj->madv != __I915_MADV_PURGED;
4206
4207 out:
4208 drm_gem_object_unreference(&obj->base);
4209 unlock:
4210 mutex_unlock(&dev->struct_mutex);
4211 return ret;
4212 }
4213
4214 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4215 const struct drm_i915_gem_object_ops *ops)
4216 {
4217 int i;
4218
4219 INIT_LIST_HEAD(&obj->global_list);
4220 for (i = 0; i < I915_NUM_RINGS; i++)
4221 INIT_LIST_HEAD(&obj->ring_list[i]);
4222 INIT_LIST_HEAD(&obj->obj_exec_link);
4223 INIT_LIST_HEAD(&obj->vma_list);
4224 INIT_LIST_HEAD(&obj->batch_pool_link);
4225
4226 obj->ops = ops;
4227
4228 obj->fence_reg = I915_FENCE_REG_NONE;
4229 obj->madv = I915_MADV_WILLNEED;
4230
4231 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4232 }
4233
4234 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4235 .get_pages = i915_gem_object_get_pages_gtt,
4236 .put_pages = i915_gem_object_put_pages_gtt,
4237 };
4238
4239 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4240 size_t size)
4241 {
4242 struct drm_i915_gem_object *obj;
4243 struct address_space *mapping;
4244 gfp_t mask;
4245
4246 obj = i915_gem_object_alloc(dev);
4247 if (obj == NULL)
4248 return NULL;
4249
4250 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4251 i915_gem_object_free(obj);
4252 return NULL;
4253 }
4254
4255 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4256 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4257 /* 965gm cannot relocate objects above 4GiB. */
4258 mask &= ~__GFP_HIGHMEM;
4259 mask |= __GFP_DMA32;
4260 }
4261
4262 mapping = file_inode(obj->base.filp)->i_mapping;
4263 mapping_set_gfp_mask(mapping, mask);
4264
4265 i915_gem_object_init(obj, &i915_gem_object_ops);
4266
4267 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4268 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4269
4270 if (HAS_LLC(dev)) {
4271 /* On some devices, we can have the GPU use the LLC (the CPU
4272 * cache) for about a 10% performance improvement
4273 * compared to uncached. Graphics requests other than
4274 * display scanout are coherent with the CPU in
4275 * accessing this cache. This means in this mode we
4276 * don't need to clflush on the CPU side, and on the
4277 * GPU side we only need to flush internal caches to
4278 * get data visible to the CPU.
4279 *
4280 * However, we maintain the display planes as UC, and so
4281 * need to rebind when first used as such.
4282 */
4283 obj->cache_level = I915_CACHE_LLC;
4284 } else
4285 obj->cache_level = I915_CACHE_NONE;
4286
4287 trace_i915_gem_object_create(obj);
4288
4289 return obj;
4290 }
4291
4292 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4293 {
4294 /* If we are the last user of the backing storage (be it shmemfs
4295 * pages or stolen etc), we know that the pages are going to be
4296 * immediately released. In this case, we can then skip copying
4297 * back the contents from the GPU.
4298 */
4299
4300 if (obj->madv != I915_MADV_WILLNEED)
4301 return false;
4302
4303 if (obj->base.filp == NULL)
4304 return true;
4305
4306 /* At first glance, this looks racy, but then again so would be
4307 * userspace racing mmap against close. However, the first external
4308 * reference to the filp can only be obtained through the
4309 * i915_gem_mmap_ioctl() which safeguards us against the user
4310 * acquiring such a reference whilst we are in the middle of
4311 * freeing the object.
4312 */
4313 return atomic_long_read(&obj->base.filp->f_count) == 1;
4314 }
4315
4316 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4317 {
4318 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4319 struct drm_device *dev = obj->base.dev;
4320 struct drm_i915_private *dev_priv = dev->dev_private;
4321 struct i915_vma *vma, *next;
4322
4323 intel_runtime_pm_get(dev_priv);
4324
4325 trace_i915_gem_object_destroy(obj);
4326
4327 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4328 int ret;
4329
4330 vma->pin_count = 0;
4331 ret = i915_vma_unbind(vma);
4332 if (WARN_ON(ret == -ERESTARTSYS)) {
4333 bool was_interruptible;
4334
4335 was_interruptible = dev_priv->mm.interruptible;
4336 dev_priv->mm.interruptible = false;
4337
4338 WARN_ON(i915_vma_unbind(vma));
4339
4340 dev_priv->mm.interruptible = was_interruptible;
4341 }
4342 }
4343
4344 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4345 * before progressing. */
4346 if (obj->stolen)
4347 i915_gem_object_unpin_pages(obj);
4348
4349 WARN_ON(obj->frontbuffer_bits);
4350
4351 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4352 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4353 obj->tiling_mode != I915_TILING_NONE)
4354 i915_gem_object_unpin_pages(obj);
4355
4356 if (WARN_ON(obj->pages_pin_count))
4357 obj->pages_pin_count = 0;
4358 if (discard_backing_storage(obj))
4359 obj->madv = I915_MADV_DONTNEED;
4360 i915_gem_object_put_pages(obj);
4361 i915_gem_object_free_mmap_offset(obj);
4362
4363 BUG_ON(obj->pages);
4364
4365 if (obj->base.import_attach)
4366 drm_prime_gem_destroy(&obj->base, NULL);
4367
4368 if (obj->ops->release)
4369 obj->ops->release(obj);
4370
4371 drm_gem_object_release(&obj->base);
4372 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4373
4374 kfree(obj->bit_17);
4375 i915_gem_object_free(obj);
4376
4377 intel_runtime_pm_put(dev_priv);
4378 }
4379
4380 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4381 struct i915_address_space *vm)
4382 {
4383 struct i915_vma *vma;
4384 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4385 if (i915_is_ggtt(vma->vm) &&
4386 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4387 continue;
4388 if (vma->vm == vm)
4389 return vma;
4390 }
4391 return NULL;
4392 }
4393
4394 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4395 const struct i915_ggtt_view *view)
4396 {
4397 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4398 struct i915_vma *vma;
4399
4400 if (WARN_ONCE(!view, "no view specified"))
4401 return ERR_PTR(-EINVAL);
4402
4403 list_for_each_entry(vma, &obj->vma_list, vma_link)
4404 if (vma->vm == ggtt &&
4405 i915_ggtt_view_equal(&vma->ggtt_view, view))
4406 return vma;
4407 return NULL;
4408 }
4409
4410 void i915_gem_vma_destroy(struct i915_vma *vma)
4411 {
4412 struct i915_address_space *vm = NULL;
4413 WARN_ON(vma->node.allocated);
4414
4415 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4416 if (!list_empty(&vma->exec_list))
4417 return;
4418
4419 vm = vma->vm;
4420
4421 if (!i915_is_ggtt(vm))
4422 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4423
4424 list_del(&vma->vma_link);
4425
4426 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4427 }
4428
4429 static void
4430 i915_gem_stop_ringbuffers(struct drm_device *dev)
4431 {
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 struct intel_engine_cs *ring;
4434 int i;
4435
4436 for_each_ring(ring, dev_priv, i)
4437 dev_priv->gt.stop_ring(ring);
4438 }
4439
4440 int
4441 i915_gem_suspend(struct drm_device *dev)
4442 {
4443 struct drm_i915_private *dev_priv = dev->dev_private;
4444 int ret = 0;
4445
4446 mutex_lock(&dev->struct_mutex);
4447 ret = i915_gpu_idle(dev);
4448 if (ret)
4449 goto err;
4450
4451 i915_gem_retire_requests(dev);
4452
4453 i915_gem_stop_ringbuffers(dev);
4454 mutex_unlock(&dev->struct_mutex);
4455
4456 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4457 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4458 flush_delayed_work(&dev_priv->mm.idle_work);
4459
4460 /* Assert that we sucessfully flushed all the work and
4461 * reset the GPU back to its idle, low power state.
4462 */
4463 WARN_ON(dev_priv->mm.busy);
4464
4465 return 0;
4466
4467 err:
4468 mutex_unlock(&dev->struct_mutex);
4469 return ret;
4470 }
4471
4472 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4473 {
4474 struct intel_engine_cs *ring = req->ring;
4475 struct drm_device *dev = ring->dev;
4476 struct drm_i915_private *dev_priv = dev->dev_private;
4477 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4478 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4479 int i, ret;
4480
4481 if (!HAS_L3_DPF(dev) || !remap_info)
4482 return 0;
4483
4484 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4485 if (ret)
4486 return ret;
4487
4488 /*
4489 * Note: We do not worry about the concurrent register cacheline hang
4490 * here because no other code should access these registers other than
4491 * at initialization time.
4492 */
4493 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4494 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4495 intel_ring_emit(ring, reg_base + i);
4496 intel_ring_emit(ring, remap_info[i/4]);
4497 }
4498
4499 intel_ring_advance(ring);
4500
4501 return ret;
4502 }
4503
4504 void i915_gem_init_swizzling(struct drm_device *dev)
4505 {
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507
4508 if (INTEL_INFO(dev)->gen < 5 ||
4509 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4510 return;
4511
4512 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4513 DISP_TILE_SURFACE_SWIZZLING);
4514
4515 if (IS_GEN5(dev))
4516 return;
4517
4518 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4519 if (IS_GEN6(dev))
4520 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4521 else if (IS_GEN7(dev))
4522 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4523 else if (IS_GEN8(dev))
4524 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4525 else
4526 BUG();
4527 }
4528
4529 static bool
4530 intel_enable_blt(struct drm_device *dev)
4531 {
4532 if (!HAS_BLT(dev))
4533 return false;
4534
4535 /* The blitter was dysfunctional on early prototypes */
4536 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4537 DRM_INFO("BLT not supported on this pre-production hardware;"
4538 " graphics performance will be degraded.\n");
4539 return false;
4540 }
4541
4542 return true;
4543 }
4544
4545 static void init_unused_ring(struct drm_device *dev, u32 base)
4546 {
4547 struct drm_i915_private *dev_priv = dev->dev_private;
4548
4549 I915_WRITE(RING_CTL(base), 0);
4550 I915_WRITE(RING_HEAD(base), 0);
4551 I915_WRITE(RING_TAIL(base), 0);
4552 I915_WRITE(RING_START(base), 0);
4553 }
4554
4555 static void init_unused_rings(struct drm_device *dev)
4556 {
4557 if (IS_I830(dev)) {
4558 init_unused_ring(dev, PRB1_BASE);
4559 init_unused_ring(dev, SRB0_BASE);
4560 init_unused_ring(dev, SRB1_BASE);
4561 init_unused_ring(dev, SRB2_BASE);
4562 init_unused_ring(dev, SRB3_BASE);
4563 } else if (IS_GEN2(dev)) {
4564 init_unused_ring(dev, SRB0_BASE);
4565 init_unused_ring(dev, SRB1_BASE);
4566 } else if (IS_GEN3(dev)) {
4567 init_unused_ring(dev, PRB1_BASE);
4568 init_unused_ring(dev, PRB2_BASE);
4569 }
4570 }
4571
4572 int i915_gem_init_rings(struct drm_device *dev)
4573 {
4574 struct drm_i915_private *dev_priv = dev->dev_private;
4575 int ret;
4576
4577 ret = intel_init_render_ring_buffer(dev);
4578 if (ret)
4579 return ret;
4580
4581 if (HAS_BSD(dev)) {
4582 ret = intel_init_bsd_ring_buffer(dev);
4583 if (ret)
4584 goto cleanup_render_ring;
4585 }
4586
4587 if (intel_enable_blt(dev)) {
4588 ret = intel_init_blt_ring_buffer(dev);
4589 if (ret)
4590 goto cleanup_bsd_ring;
4591 }
4592
4593 if (HAS_VEBOX(dev)) {
4594 ret = intel_init_vebox_ring_buffer(dev);
4595 if (ret)
4596 goto cleanup_blt_ring;
4597 }
4598
4599 if (HAS_BSD2(dev)) {
4600 ret = intel_init_bsd2_ring_buffer(dev);
4601 if (ret)
4602 goto cleanup_vebox_ring;
4603 }
4604
4605 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4606 if (ret)
4607 goto cleanup_bsd2_ring;
4608
4609 return 0;
4610
4611 cleanup_bsd2_ring:
4612 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4613 cleanup_vebox_ring:
4614 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4615 cleanup_blt_ring:
4616 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4617 cleanup_bsd_ring:
4618 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4619 cleanup_render_ring:
4620 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4621
4622 return ret;
4623 }
4624
4625 int
4626 i915_gem_init_hw(struct drm_device *dev)
4627 {
4628 struct drm_i915_private *dev_priv = dev->dev_private;
4629 struct intel_engine_cs *ring;
4630 int ret, i, j;
4631
4632 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4633 return -EIO;
4634
4635 /* Double layer security blanket, see i915_gem_init() */
4636 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4637
4638 if (dev_priv->ellc_size)
4639 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4640
4641 if (IS_HASWELL(dev))
4642 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4643 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4644
4645 if (HAS_PCH_NOP(dev)) {
4646 if (IS_IVYBRIDGE(dev)) {
4647 u32 temp = I915_READ(GEN7_MSG_CTL);
4648 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4649 I915_WRITE(GEN7_MSG_CTL, temp);
4650 } else if (INTEL_INFO(dev)->gen >= 7) {
4651 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4652 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4653 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4654 }
4655 }
4656
4657 i915_gem_init_swizzling(dev);
4658
4659 /*
4660 * At least 830 can leave some of the unused rings
4661 * "active" (ie. head != tail) after resume which
4662 * will prevent c3 entry. Makes sure all unused rings
4663 * are totally idle.
4664 */
4665 init_unused_rings(dev);
4666
4667 BUG_ON(!dev_priv->ring[RCS].default_context);
4668
4669 ret = i915_ppgtt_init_hw(dev);
4670 if (ret) {
4671 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4672 goto out;
4673 }
4674
4675 /* Need to do basic initialisation of all rings first: */
4676 for_each_ring(ring, dev_priv, i) {
4677 ret = ring->init_hw(ring);
4678 if (ret)
4679 goto out;
4680 }
4681
4682 /* Now it is safe to go back round and do everything else: */
4683 for_each_ring(ring, dev_priv, i) {
4684 struct drm_i915_gem_request *req;
4685
4686 WARN_ON(!ring->default_context);
4687
4688 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4689 if (ret) {
4690 i915_gem_cleanup_ringbuffer(dev);
4691 goto out;
4692 }
4693
4694 if (ring->id == RCS) {
4695 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4696 i915_gem_l3_remap(req, j);
4697 }
4698
4699 ret = i915_ppgtt_init_ring(req);
4700 if (ret && ret != -EIO) {
4701 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4702 i915_gem_request_cancel(req);
4703 i915_gem_cleanup_ringbuffer(dev);
4704 goto out;
4705 }
4706
4707 ret = i915_gem_context_enable(req);
4708 if (ret && ret != -EIO) {
4709 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4710 i915_gem_request_cancel(req);
4711 i915_gem_cleanup_ringbuffer(dev);
4712 goto out;
4713 }
4714
4715 i915_add_request_no_flush(req);
4716 }
4717
4718 out:
4719 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4720 return ret;
4721 }
4722
4723 int i915_gem_init(struct drm_device *dev)
4724 {
4725 struct drm_i915_private *dev_priv = dev->dev_private;
4726 int ret;
4727
4728 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4729 i915.enable_execlists);
4730
4731 mutex_lock(&dev->struct_mutex);
4732
4733 if (IS_VALLEYVIEW(dev)) {
4734 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4735 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4736 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4737 VLV_GTLC_ALLOWWAKEACK), 10))
4738 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4739 }
4740
4741 if (!i915.enable_execlists) {
4742 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4743 dev_priv->gt.init_rings = i915_gem_init_rings;
4744 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4745 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4746 } else {
4747 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4748 dev_priv->gt.init_rings = intel_logical_rings_init;
4749 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4750 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4751 }
4752
4753 /* This is just a security blanket to placate dragons.
4754 * On some systems, we very sporadically observe that the first TLBs
4755 * used by the CS may be stale, despite us poking the TLB reset. If
4756 * we hold the forcewake during initialisation these problems
4757 * just magically go away.
4758 */
4759 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4760
4761 ret = i915_gem_init_userptr(dev);
4762 if (ret)
4763 goto out_unlock;
4764
4765 i915_gem_init_global_gtt(dev);
4766
4767 ret = i915_gem_context_init(dev);
4768 if (ret)
4769 goto out_unlock;
4770
4771 ret = dev_priv->gt.init_rings(dev);
4772 if (ret)
4773 goto out_unlock;
4774
4775 ret = i915_gem_init_hw(dev);
4776 if (ret == -EIO) {
4777 /* Allow ring initialisation to fail by marking the GPU as
4778 * wedged. But we only want to do this where the GPU is angry,
4779 * for all other failure, such as an allocation failure, bail.
4780 */
4781 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4782 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4783 ret = 0;
4784 }
4785
4786 out_unlock:
4787 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4788 mutex_unlock(&dev->struct_mutex);
4789
4790 return ret;
4791 }
4792
4793 void
4794 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4795 {
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 struct intel_engine_cs *ring;
4798 int i;
4799
4800 for_each_ring(ring, dev_priv, i)
4801 dev_priv->gt.cleanup_ring(ring);
4802
4803 if (i915.enable_execlists)
4804 /*
4805 * Neither the BIOS, ourselves or any other kernel
4806 * expects the system to be in execlists mode on startup,
4807 * so we need to reset the GPU back to legacy mode.
4808 */
4809 intel_gpu_reset(dev);
4810 }
4811
4812 static void
4813 init_ring_lists(struct intel_engine_cs *ring)
4814 {
4815 INIT_LIST_HEAD(&ring->active_list);
4816 INIT_LIST_HEAD(&ring->request_list);
4817 }
4818
4819 void i915_init_vm(struct drm_i915_private *dev_priv,
4820 struct i915_address_space *vm)
4821 {
4822 if (!i915_is_ggtt(vm))
4823 drm_mm_init(&vm->mm, vm->start, vm->total);
4824 vm->dev = dev_priv->dev;
4825 INIT_LIST_HEAD(&vm->active_list);
4826 INIT_LIST_HEAD(&vm->inactive_list);
4827 INIT_LIST_HEAD(&vm->global_link);
4828 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4829 }
4830
4831 void
4832 i915_gem_load(struct drm_device *dev)
4833 {
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 int i;
4836
4837 dev_priv->objects =
4838 kmem_cache_create("i915_gem_object",
4839 sizeof(struct drm_i915_gem_object), 0,
4840 SLAB_HWCACHE_ALIGN,
4841 NULL);
4842 dev_priv->vmas =
4843 kmem_cache_create("i915_gem_vma",
4844 sizeof(struct i915_vma), 0,
4845 SLAB_HWCACHE_ALIGN,
4846 NULL);
4847 dev_priv->requests =
4848 kmem_cache_create("i915_gem_request",
4849 sizeof(struct drm_i915_gem_request), 0,
4850 SLAB_HWCACHE_ALIGN,
4851 NULL);
4852
4853 INIT_LIST_HEAD(&dev_priv->vm_list);
4854 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4855
4856 INIT_LIST_HEAD(&dev_priv->context_list);
4857 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4858 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4859 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4860 for (i = 0; i < I915_NUM_RINGS; i++)
4861 init_ring_lists(&dev_priv->ring[i]);
4862 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4863 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4864 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4865 i915_gem_retire_work_handler);
4866 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4867 i915_gem_idle_work_handler);
4868 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4869
4870 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4871
4872 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4873 dev_priv->num_fence_regs = 32;
4874 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4875 dev_priv->num_fence_regs = 16;
4876 else
4877 dev_priv->num_fence_regs = 8;
4878
4879 if (intel_vgpu_active(dev))
4880 dev_priv->num_fence_regs =
4881 I915_READ(vgtif_reg(avail_rs.fence_num));
4882
4883 /* Initialize fence registers to zero */
4884 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4885 i915_gem_restore_fences(dev);
4886
4887 i915_gem_detect_bit_6_swizzle(dev);
4888 init_waitqueue_head(&dev_priv->pending_flip_queue);
4889
4890 dev_priv->mm.interruptible = true;
4891
4892 i915_gem_shrinker_init(dev_priv);
4893
4894 mutex_init(&dev_priv->fb_tracking.lock);
4895 }
4896
4897 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4898 {
4899 struct drm_i915_file_private *file_priv = file->driver_priv;
4900
4901 /* Clean up our request list when the client is going away, so that
4902 * later retire_requests won't dereference our soon-to-be-gone
4903 * file_priv.
4904 */
4905 spin_lock(&file_priv->mm.lock);
4906 while (!list_empty(&file_priv->mm.request_list)) {
4907 struct drm_i915_gem_request *request;
4908
4909 request = list_first_entry(&file_priv->mm.request_list,
4910 struct drm_i915_gem_request,
4911 client_list);
4912 list_del(&request->client_list);
4913 request->file_priv = NULL;
4914 }
4915 spin_unlock(&file_priv->mm.lock);
4916
4917 if (!list_empty(&file_priv->rps.link)) {
4918 spin_lock(&to_i915(dev)->rps.client_lock);
4919 list_del(&file_priv->rps.link);
4920 spin_unlock(&to_i915(dev)->rps.client_lock);
4921 }
4922 }
4923
4924 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4925 {
4926 struct drm_i915_file_private *file_priv;
4927 int ret;
4928
4929 DRM_DEBUG_DRIVER("\n");
4930
4931 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4932 if (!file_priv)
4933 return -ENOMEM;
4934
4935 file->driver_priv = file_priv;
4936 file_priv->dev_priv = dev->dev_private;
4937 file_priv->file = file;
4938 INIT_LIST_HEAD(&file_priv->rps.link);
4939
4940 spin_lock_init(&file_priv->mm.lock);
4941 INIT_LIST_HEAD(&file_priv->mm.request_list);
4942
4943 ret = i915_gem_context_open(dev, file);
4944 if (ret)
4945 kfree(file_priv);
4946
4947 return ret;
4948 }
4949
4950 /**
4951 * i915_gem_track_fb - update frontbuffer tracking
4952 * old: current GEM buffer for the frontbuffer slots
4953 * new: new GEM buffer for the frontbuffer slots
4954 * frontbuffer_bits: bitmask of frontbuffer slots
4955 *
4956 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4957 * from @old and setting them in @new. Both @old and @new can be NULL.
4958 */
4959 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4960 struct drm_i915_gem_object *new,
4961 unsigned frontbuffer_bits)
4962 {
4963 if (old) {
4964 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
4965 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
4966 old->frontbuffer_bits &= ~frontbuffer_bits;
4967 }
4968
4969 if (new) {
4970 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
4971 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
4972 new->frontbuffer_bits |= frontbuffer_bits;
4973 }
4974 }
4975
4976 /* All the new VM stuff */
4977 unsigned long
4978 i915_gem_obj_offset(struct drm_i915_gem_object *o,
4979 struct i915_address_space *vm)
4980 {
4981 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4982 struct i915_vma *vma;
4983
4984 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
4985
4986 list_for_each_entry(vma, &o->vma_list, vma_link) {
4987 if (i915_is_ggtt(vma->vm) &&
4988 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4989 continue;
4990 if (vma->vm == vm)
4991 return vma->node.start;
4992 }
4993
4994 WARN(1, "%s vma for this object not found.\n",
4995 i915_is_ggtt(vm) ? "global" : "ppgtt");
4996 return -1;
4997 }
4998
4999 unsigned long
5000 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5001 const struct i915_ggtt_view *view)
5002 {
5003 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5004 struct i915_vma *vma;
5005
5006 list_for_each_entry(vma, &o->vma_list, vma_link)
5007 if (vma->vm == ggtt &&
5008 i915_ggtt_view_equal(&vma->ggtt_view, view))
5009 return vma->node.start;
5010
5011 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5012 return -1;
5013 }
5014
5015 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5016 struct i915_address_space *vm)
5017 {
5018 struct i915_vma *vma;
5019
5020 list_for_each_entry(vma, &o->vma_list, vma_link) {
5021 if (i915_is_ggtt(vma->vm) &&
5022 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5023 continue;
5024 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5025 return true;
5026 }
5027
5028 return false;
5029 }
5030
5031 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5032 const struct i915_ggtt_view *view)
5033 {
5034 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5035 struct i915_vma *vma;
5036
5037 list_for_each_entry(vma, &o->vma_list, vma_link)
5038 if (vma->vm == ggtt &&
5039 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5040 drm_mm_node_allocated(&vma->node))
5041 return true;
5042
5043 return false;
5044 }
5045
5046 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5047 {
5048 struct i915_vma *vma;
5049
5050 list_for_each_entry(vma, &o->vma_list, vma_link)
5051 if (drm_mm_node_allocated(&vma->node))
5052 return true;
5053
5054 return false;
5055 }
5056
5057 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5058 struct i915_address_space *vm)
5059 {
5060 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5061 struct i915_vma *vma;
5062
5063 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5064
5065 BUG_ON(list_empty(&o->vma_list));
5066
5067 list_for_each_entry(vma, &o->vma_list, vma_link) {
5068 if (i915_is_ggtt(vma->vm) &&
5069 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5070 continue;
5071 if (vma->vm == vm)
5072 return vma->node.size;
5073 }
5074 return 0;
5075 }
5076
5077 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5078 {
5079 struct i915_vma *vma;
5080 list_for_each_entry(vma, &obj->vma_list, vma_link)
5081 if (vma->pin_count > 0)
5082 return true;
5083
5084 return false;
5085 }
5086
5087 /* Allocate a new GEM object and fill it with the supplied data */
5088 struct drm_i915_gem_object *
5089 i915_gem_object_create_from_data(struct drm_device *dev,
5090 const void *data, size_t size)
5091 {
5092 struct drm_i915_gem_object *obj;
5093 struct sg_table *sg;
5094 size_t bytes;
5095 int ret;
5096
5097 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5098 if (IS_ERR_OR_NULL(obj))
5099 return obj;
5100
5101 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5102 if (ret)
5103 goto fail;
5104
5105 ret = i915_gem_object_get_pages(obj);
5106 if (ret)
5107 goto fail;
5108
5109 i915_gem_object_pin_pages(obj);
5110 sg = obj->pages;
5111 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5112 i915_gem_object_unpin_pages(obj);
5113
5114 if (WARN_ON(bytes != size)) {
5115 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5116 ret = -EFAULT;
5117 goto fail;
5118 }
5119
5120 return obj;
5121
5122 fail:
5123 drm_gem_object_unreference(&obj->base);
5124 return ERR_PTR(ret);
5125 }