]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use __sg_alloc_table_from_pages for userptr allocations
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 if (obj->cache_dirty)
53 return false;
54
55 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 return true;
57
58 return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
64 {
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 u64 size)
81 {
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 u64 size)
90 {
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 int ret;
101
102 might_sleep();
103
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
111 I915_RESET_TIMEOUT);
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
116 return ret;
117 } else {
118 return 0;
119 }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = to_i915(dev);
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
146 u64 pinned;
147
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
157
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
160
161 return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
176
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 put_page(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
224
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
227
228 obj->phys_handle = phys;
229 return st;
230
231 err_phys:
232 drm_pci_free(obj->base.dev, phys);
233 return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
247 bool needs_clflush)
248 {
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
253
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257 drm_clflush_sg(pages);
258
259 __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265 {
266 __i915_gem_object_release_shmem(obj, pages, false);
267
268 if (obj->mm.dirty) {
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
289 put_page(page);
290 vaddr += PAGE_SIZE;
291 }
292 obj->mm.dirty = false;
293 }
294
295 sg_free_table(pages);
296 kfree(pages);
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq, rps);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410 {
411 unsigned int seq = __read_seqcount_begin(&resv->seq);
412 struct dma_fence *excl;
413 bool prune_fences = false;
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
418 int ret;
419
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
422 if (ret)
423 return ret;
424
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
429 if (timeout < 0)
430 break;
431
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
438
439 prune_fences = count && timeout >= 0;
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
442 }
443
444 if (excl && timeout >= 0) {
445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 prune_fences = timeout >= 0;
447 }
448
449 dma_fence_put(excl);
450
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
461 }
462
463 return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500 {
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528 }
529
530 /**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
536 */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
542 {
543 might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548 #endif
549 GEM_BUG_ON(timeout < 0);
550
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566 struct drm_i915_gem_pwrite *args,
567 struct drm_file *file)
568 {
569 void *vaddr = obj->phys_handle->vaddr + args->offset;
570 char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572 /* We manually control the domain here and pretend that it
573 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574 */
575 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 if (copy_from_user(vaddr, user_data, args->size))
577 return -EFAULT;
578
579 drm_clflush_virt_range(vaddr, args->size);
580 i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582 intel_fb_obj_flush(obj, ORIGIN_CPU);
583 return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594 kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599 struct drm_i915_private *dev_priv,
600 uint64_t size,
601 uint32_t *handle_p)
602 {
603 struct drm_i915_gem_object *obj;
604 int ret;
605 u32 handle;
606
607 size = roundup(size, PAGE_SIZE);
608 if (size == 0)
609 return -EINVAL;
610
611 /* Allocate the new object */
612 obj = i915_gem_object_create(dev_priv, size);
613 if (IS_ERR(obj))
614 return PTR_ERR(obj);
615
616 ret = drm_gem_handle_create(file, &obj->base, &handle);
617 /* drop reference from allocate - handle holds it now */
618 i915_gem_object_put(obj);
619 if (ret)
620 return ret;
621
622 *handle_p = handle;
623 return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628 struct drm_device *dev,
629 struct drm_mode_create_dumb *args)
630 {
631 /* have to work out size/pitch and return them */
632 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633 args->size = args->pitch * args->height;
634 return i915_gem_create(file, to_i915(dev),
635 args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640 return !(obj->cache_level == I915_CACHE_NONE ||
641 obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645 * Creates a new mm object and returns a handle to it.
646 * @dev: drm device pointer
647 * @data: ioctl data blob
648 * @file: drm file pointer
649 */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652 struct drm_file *file)
653 {
654 struct drm_i915_private *dev_priv = to_i915(dev);
655 struct drm_i915_gem_create *args = data;
656
657 i915_gem_flush_free_objects(dev_priv);
658
659 return i915_gem_create(file, dev_priv,
660 args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666 return (domain == I915_GEM_DOMAIN_GTT ?
667 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675 if (!(obj->base.write_domain & flush_domains))
676 return;
677
678 /* No actual flushing is required for the GTT write domain. Writes
679 * to it "immediately" go to main memory as far as we know, so there's
680 * no chipset flush. It also doesn't land in render cache.
681 *
682 * However, we do have to enforce the order so that all writes through
683 * the GTT land before any writes to the device, such as updates to
684 * the GATT itself.
685 *
686 * We also have to wait a bit for the writes to land from the GTT.
687 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688 * timing. This issue has only been observed when switching quickly
689 * between GTT writes and CPU reads from inside the kernel on recent hw,
690 * and it appears to only affect discrete GTT blocks (i.e. on LLC
691 * system agents we cannot reproduce this behaviour).
692 */
693 wmb();
694
695 switch (obj->base.write_domain) {
696 case I915_GEM_DOMAIN_GTT:
697 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 intel_runtime_pm_get(dev_priv);
699 spin_lock_irq(&dev_priv->uncore.lock);
700 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701 spin_unlock_irq(&dev_priv->uncore.lock);
702 intel_runtime_pm_put(dev_priv);
703 }
704
705 intel_fb_obj_flush(obj,
706 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707 break;
708
709 case I915_GEM_DOMAIN_CPU:
710 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711 break;
712
713 case I915_GEM_DOMAIN_RENDER:
714 if (gpu_write_needs_clflush(obj))
715 obj->cache_dirty = true;
716 break;
717 }
718
719 obj->base.write_domain = 0;
720 }
721
722 static inline int
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724 const char *gpu_vaddr, int gpu_offset,
725 int length)
726 {
727 int ret, cpu_offset = 0;
728
729 while (length > 0) {
730 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731 int this_length = min(cacheline_end - gpu_offset, length);
732 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735 gpu_vaddr + swizzled_gpu_offset,
736 this_length);
737 if (ret)
738 return ret + length;
739
740 cpu_offset += this_length;
741 gpu_offset += this_length;
742 length -= this_length;
743 }
744
745 return 0;
746 }
747
748 static inline int
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750 const char __user *cpu_vaddr,
751 int length)
752 {
753 int ret, cpu_offset = 0;
754
755 while (length > 0) {
756 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757 int this_length = min(cacheline_end - gpu_offset, length);
758 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761 cpu_vaddr + cpu_offset,
762 this_length);
763 if (ret)
764 return ret + length;
765
766 cpu_offset += this_length;
767 gpu_offset += this_length;
768 length -= this_length;
769 }
770
771 return 0;
772 }
773
774 /*
775 * Pins the specified object's pages and synchronizes the object with
776 * GPU accesses. Sets needs_clflush to non-zero if the caller should
777 * flush the object from the CPU cache.
778 */
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780 unsigned int *needs_clflush)
781 {
782 int ret;
783
784 lockdep_assert_held(&obj->base.dev->struct_mutex);
785
786 *needs_clflush = 0;
787 if (!i915_gem_object_has_struct_page(obj))
788 return -ENODEV;
789
790 ret = i915_gem_object_wait(obj,
791 I915_WAIT_INTERRUPTIBLE |
792 I915_WAIT_LOCKED,
793 MAX_SCHEDULE_TIMEOUT,
794 NULL);
795 if (ret)
796 return ret;
797
798 ret = i915_gem_object_pin_pages(obj);
799 if (ret)
800 return ret;
801
802 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807 else
808 goto out;
809 }
810
811 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812
813 /* If we're not in the cpu read domain, set ourself into the gtt
814 * read domain and manually flush cachelines (if required). This
815 * optimizes for the case when the gpu will dirty the data
816 * anyway again before the next pread happens.
817 */
818 if (!obj->cache_dirty &&
819 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820 *needs_clflush = CLFLUSH_BEFORE;
821
822 out:
823 /* return with the pages pinned */
824 return 0;
825
826 err_unpin:
827 i915_gem_object_unpin_pages(obj);
828 return ret;
829 }
830
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832 unsigned int *needs_clflush)
833 {
834 int ret;
835
836 lockdep_assert_held(&obj->base.dev->struct_mutex);
837
838 *needs_clflush = 0;
839 if (!i915_gem_object_has_struct_page(obj))
840 return -ENODEV;
841
842 ret = i915_gem_object_wait(obj,
843 I915_WAIT_INTERRUPTIBLE |
844 I915_WAIT_LOCKED |
845 I915_WAIT_ALL,
846 MAX_SCHEDULE_TIMEOUT,
847 NULL);
848 if (ret)
849 return ret;
850
851 ret = i915_gem_object_pin_pages(obj);
852 if (ret)
853 return ret;
854
855 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858 if (ret)
859 goto err_unpin;
860 else
861 goto out;
862 }
863
864 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865
866 /* If we're not in the cpu write domain, set ourself into the
867 * gtt write domain and manually flush cachelines (as required).
868 * This optimizes for the case when the gpu will use the data
869 * right away and we therefore have to clflush anyway.
870 */
871 if (!obj->cache_dirty) {
872 *needs_clflush |= CLFLUSH_AFTER;
873
874 /*
875 * Same trick applies to invalidate partially written
876 * cachelines read before writing.
877 */
878 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879 *needs_clflush |= CLFLUSH_BEFORE;
880 }
881
882 out:
883 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884 obj->mm.dirty = true;
885 /* return with the pages pinned */
886 return 0;
887
888 err_unpin:
889 i915_gem_object_unpin_pages(obj);
890 return ret;
891 }
892
893 static void
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
895 bool swizzled)
896 {
897 if (unlikely(swizzled)) {
898 unsigned long start = (unsigned long) addr;
899 unsigned long end = (unsigned long) addr + length;
900
901 /* For swizzling simply ensure that we always flush both
902 * channels. Lame, but simple and it works. Swizzled
903 * pwrite/pread is far from a hotpath - current userspace
904 * doesn't use it at all. */
905 start = round_down(start, 128);
906 end = round_up(end, 128);
907
908 drm_clflush_virt_range((void *)start, end - start);
909 } else {
910 drm_clflush_virt_range(addr, length);
911 }
912
913 }
914
915 /* Only difference to the fast-path function is that this can handle bit17
916 * and uses non-atomic copy and kmap functions. */
917 static int
918 shmem_pread_slow(struct page *page, int offset, int length,
919 char __user *user_data,
920 bool page_do_bit17_swizzling, bool needs_clflush)
921 {
922 char *vaddr;
923 int ret;
924
925 vaddr = kmap(page);
926 if (needs_clflush)
927 shmem_clflush_swizzled_range(vaddr + offset, length,
928 page_do_bit17_swizzling);
929
930 if (page_do_bit17_swizzling)
931 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932 else
933 ret = __copy_to_user(user_data, vaddr + offset, length);
934 kunmap(page);
935
936 return ret ? - EFAULT : 0;
937 }
938
939 static int
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941 bool page_do_bit17_swizzling, bool needs_clflush)
942 {
943 int ret;
944
945 ret = -ENODEV;
946 if (!page_do_bit17_swizzling) {
947 char *vaddr = kmap_atomic(page);
948
949 if (needs_clflush)
950 drm_clflush_virt_range(vaddr + offset, length);
951 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952 kunmap_atomic(vaddr);
953 }
954 if (ret == 0)
955 return 0;
956
957 return shmem_pread_slow(page, offset, length, user_data,
958 page_do_bit17_swizzling, needs_clflush);
959 }
960
961 static int
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963 struct drm_i915_gem_pread *args)
964 {
965 char __user *user_data;
966 u64 remain;
967 unsigned int obj_do_bit17_swizzling;
968 unsigned int needs_clflush;
969 unsigned int idx, offset;
970 int ret;
971
972 obj_do_bit17_swizzling = 0;
973 if (i915_gem_object_needs_bit17_swizzle(obj))
974 obj_do_bit17_swizzling = BIT(17);
975
976 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977 if (ret)
978 return ret;
979
980 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981 mutex_unlock(&obj->base.dev->struct_mutex);
982 if (ret)
983 return ret;
984
985 remain = args->size;
986 user_data = u64_to_user_ptr(args->data_ptr);
987 offset = offset_in_page(args->offset);
988 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989 struct page *page = i915_gem_object_get_page(obj, idx);
990 int length;
991
992 length = remain;
993 if (offset + length > PAGE_SIZE)
994 length = PAGE_SIZE - offset;
995
996 ret = shmem_pread(page, offset, length, user_data,
997 page_to_phys(page) & obj_do_bit17_swizzling,
998 needs_clflush);
999 if (ret)
1000 break;
1001
1002 remain -= length;
1003 user_data += length;
1004 offset = 0;
1005 }
1006
1007 i915_gem_obj_finish_shmem_access(obj);
1008 return ret;
1009 }
1010
1011 static inline bool
1012 gtt_user_read(struct io_mapping *mapping,
1013 loff_t base, int offset,
1014 char __user *user_data, int length)
1015 {
1016 void __iomem *vaddr;
1017 unsigned long unwritten;
1018
1019 /* We can use the cpu mem copy function because this is X86. */
1020 vaddr = io_mapping_map_atomic_wc(mapping, base);
1021 unwritten = __copy_to_user_inatomic(user_data,
1022 (void __force *)vaddr + offset,
1023 length);
1024 io_mapping_unmap_atomic(vaddr);
1025 if (unwritten) {
1026 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1027 unwritten = copy_to_user(user_data,
1028 (void __force *)vaddr + offset,
1029 length);
1030 io_mapping_unmap(vaddr);
1031 }
1032 return unwritten;
1033 }
1034
1035 static int
1036 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1037 const struct drm_i915_gem_pread *args)
1038 {
1039 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1040 struct i915_ggtt *ggtt = &i915->ggtt;
1041 struct drm_mm_node node;
1042 struct i915_vma *vma;
1043 void __user *user_data;
1044 u64 remain, offset;
1045 int ret;
1046
1047 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1048 if (ret)
1049 return ret;
1050
1051 intel_runtime_pm_get(i915);
1052 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1053 PIN_MAPPABLE | PIN_NONBLOCK);
1054 if (!IS_ERR(vma)) {
1055 node.start = i915_ggtt_offset(vma);
1056 node.allocated = false;
1057 ret = i915_vma_put_fence(vma);
1058 if (ret) {
1059 i915_vma_unpin(vma);
1060 vma = ERR_PTR(ret);
1061 }
1062 }
1063 if (IS_ERR(vma)) {
1064 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1065 if (ret)
1066 goto out_unlock;
1067 GEM_BUG_ON(!node.allocated);
1068 }
1069
1070 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1071 if (ret)
1072 goto out_unpin;
1073
1074 mutex_unlock(&i915->drm.struct_mutex);
1075
1076 user_data = u64_to_user_ptr(args->data_ptr);
1077 remain = args->size;
1078 offset = args->offset;
1079
1080 while (remain > 0) {
1081 /* Operation in this page
1082 *
1083 * page_base = page offset within aperture
1084 * page_offset = offset within page
1085 * page_length = bytes to copy for this page
1086 */
1087 u32 page_base = node.start;
1088 unsigned page_offset = offset_in_page(offset);
1089 unsigned page_length = PAGE_SIZE - page_offset;
1090 page_length = remain < page_length ? remain : page_length;
1091 if (node.allocated) {
1092 wmb();
1093 ggtt->base.insert_page(&ggtt->base,
1094 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1095 node.start, I915_CACHE_NONE, 0);
1096 wmb();
1097 } else {
1098 page_base += offset & PAGE_MASK;
1099 }
1100
1101 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1102 user_data, page_length)) {
1103 ret = -EFAULT;
1104 break;
1105 }
1106
1107 remain -= page_length;
1108 user_data += page_length;
1109 offset += page_length;
1110 }
1111
1112 mutex_lock(&i915->drm.struct_mutex);
1113 out_unpin:
1114 if (node.allocated) {
1115 wmb();
1116 ggtt->base.clear_range(&ggtt->base,
1117 node.start, node.size);
1118 remove_mappable_node(&node);
1119 } else {
1120 i915_vma_unpin(vma);
1121 }
1122 out_unlock:
1123 intel_runtime_pm_put(i915);
1124 mutex_unlock(&i915->drm.struct_mutex);
1125
1126 return ret;
1127 }
1128
1129 /**
1130 * Reads data from the object referenced by handle.
1131 * @dev: drm device pointer
1132 * @data: ioctl data blob
1133 * @file: drm file pointer
1134 *
1135 * On error, the contents of *data are undefined.
1136 */
1137 int
1138 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1139 struct drm_file *file)
1140 {
1141 struct drm_i915_gem_pread *args = data;
1142 struct drm_i915_gem_object *obj;
1143 int ret;
1144
1145 if (args->size == 0)
1146 return 0;
1147
1148 if (!access_ok(VERIFY_WRITE,
1149 u64_to_user_ptr(args->data_ptr),
1150 args->size))
1151 return -EFAULT;
1152
1153 obj = i915_gem_object_lookup(file, args->handle);
1154 if (!obj)
1155 return -ENOENT;
1156
1157 /* Bounds check source. */
1158 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1159 ret = -EINVAL;
1160 goto out;
1161 }
1162
1163 trace_i915_gem_object_pread(obj, args->offset, args->size);
1164
1165 ret = i915_gem_object_wait(obj,
1166 I915_WAIT_INTERRUPTIBLE,
1167 MAX_SCHEDULE_TIMEOUT,
1168 to_rps_client(file));
1169 if (ret)
1170 goto out;
1171
1172 ret = i915_gem_object_pin_pages(obj);
1173 if (ret)
1174 goto out;
1175
1176 ret = i915_gem_shmem_pread(obj, args);
1177 if (ret == -EFAULT || ret == -ENODEV)
1178 ret = i915_gem_gtt_pread(obj, args);
1179
1180 i915_gem_object_unpin_pages(obj);
1181 out:
1182 i915_gem_object_put(obj);
1183 return ret;
1184 }
1185
1186 /* This is the fast write path which cannot handle
1187 * page faults in the source data
1188 */
1189
1190 static inline bool
1191 ggtt_write(struct io_mapping *mapping,
1192 loff_t base, int offset,
1193 char __user *user_data, int length)
1194 {
1195 void __iomem *vaddr;
1196 unsigned long unwritten;
1197
1198 /* We can use the cpu mem copy function because this is X86. */
1199 vaddr = io_mapping_map_atomic_wc(mapping, base);
1200 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1201 user_data, length);
1202 io_mapping_unmap_atomic(vaddr);
1203 if (unwritten) {
1204 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1205 unwritten = copy_from_user((void __force *)vaddr + offset,
1206 user_data, length);
1207 io_mapping_unmap(vaddr);
1208 }
1209
1210 return unwritten;
1211 }
1212
1213 /**
1214 * This is the fast pwrite path, where we copy the data directly from the
1215 * user into the GTT, uncached.
1216 * @obj: i915 GEM object
1217 * @args: pwrite arguments structure
1218 */
1219 static int
1220 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1221 const struct drm_i915_gem_pwrite *args)
1222 {
1223 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1224 struct i915_ggtt *ggtt = &i915->ggtt;
1225 struct drm_mm_node node;
1226 struct i915_vma *vma;
1227 u64 remain, offset;
1228 void __user *user_data;
1229 int ret;
1230
1231 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1232 if (ret)
1233 return ret;
1234
1235 intel_runtime_pm_get(i915);
1236 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1237 PIN_MAPPABLE | PIN_NONBLOCK);
1238 if (!IS_ERR(vma)) {
1239 node.start = i915_ggtt_offset(vma);
1240 node.allocated = false;
1241 ret = i915_vma_put_fence(vma);
1242 if (ret) {
1243 i915_vma_unpin(vma);
1244 vma = ERR_PTR(ret);
1245 }
1246 }
1247 if (IS_ERR(vma)) {
1248 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1249 if (ret)
1250 goto out_unlock;
1251 GEM_BUG_ON(!node.allocated);
1252 }
1253
1254 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1255 if (ret)
1256 goto out_unpin;
1257
1258 mutex_unlock(&i915->drm.struct_mutex);
1259
1260 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1261
1262 user_data = u64_to_user_ptr(args->data_ptr);
1263 offset = args->offset;
1264 remain = args->size;
1265 while (remain) {
1266 /* Operation in this page
1267 *
1268 * page_base = page offset within aperture
1269 * page_offset = offset within page
1270 * page_length = bytes to copy for this page
1271 */
1272 u32 page_base = node.start;
1273 unsigned int page_offset = offset_in_page(offset);
1274 unsigned int page_length = PAGE_SIZE - page_offset;
1275 page_length = remain < page_length ? remain : page_length;
1276 if (node.allocated) {
1277 wmb(); /* flush the write before we modify the GGTT */
1278 ggtt->base.insert_page(&ggtt->base,
1279 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1280 node.start, I915_CACHE_NONE, 0);
1281 wmb(); /* flush modifications to the GGTT (insert_page) */
1282 } else {
1283 page_base += offset & PAGE_MASK;
1284 }
1285 /* If we get a fault while copying data, then (presumably) our
1286 * source page isn't available. Return the error and we'll
1287 * retry in the slow path.
1288 * If the object is non-shmem backed, we retry again with the
1289 * path that handles page fault.
1290 */
1291 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1292 user_data, page_length)) {
1293 ret = -EFAULT;
1294 break;
1295 }
1296
1297 remain -= page_length;
1298 user_data += page_length;
1299 offset += page_length;
1300 }
1301 intel_fb_obj_flush(obj, ORIGIN_CPU);
1302
1303 mutex_lock(&i915->drm.struct_mutex);
1304 out_unpin:
1305 if (node.allocated) {
1306 wmb();
1307 ggtt->base.clear_range(&ggtt->base,
1308 node.start, node.size);
1309 remove_mappable_node(&node);
1310 } else {
1311 i915_vma_unpin(vma);
1312 }
1313 out_unlock:
1314 intel_runtime_pm_put(i915);
1315 mutex_unlock(&i915->drm.struct_mutex);
1316 return ret;
1317 }
1318
1319 static int
1320 shmem_pwrite_slow(struct page *page, int offset, int length,
1321 char __user *user_data,
1322 bool page_do_bit17_swizzling,
1323 bool needs_clflush_before,
1324 bool needs_clflush_after)
1325 {
1326 char *vaddr;
1327 int ret;
1328
1329 vaddr = kmap(page);
1330 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1331 shmem_clflush_swizzled_range(vaddr + offset, length,
1332 page_do_bit17_swizzling);
1333 if (page_do_bit17_swizzling)
1334 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1335 length);
1336 else
1337 ret = __copy_from_user(vaddr + offset, user_data, length);
1338 if (needs_clflush_after)
1339 shmem_clflush_swizzled_range(vaddr + offset, length,
1340 page_do_bit17_swizzling);
1341 kunmap(page);
1342
1343 return ret ? -EFAULT : 0;
1344 }
1345
1346 /* Per-page copy function for the shmem pwrite fastpath.
1347 * Flushes invalid cachelines before writing to the target if
1348 * needs_clflush_before is set and flushes out any written cachelines after
1349 * writing if needs_clflush is set.
1350 */
1351 static int
1352 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1353 bool page_do_bit17_swizzling,
1354 bool needs_clflush_before,
1355 bool needs_clflush_after)
1356 {
1357 int ret;
1358
1359 ret = -ENODEV;
1360 if (!page_do_bit17_swizzling) {
1361 char *vaddr = kmap_atomic(page);
1362
1363 if (needs_clflush_before)
1364 drm_clflush_virt_range(vaddr + offset, len);
1365 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1366 if (needs_clflush_after)
1367 drm_clflush_virt_range(vaddr + offset, len);
1368
1369 kunmap_atomic(vaddr);
1370 }
1371 if (ret == 0)
1372 return ret;
1373
1374 return shmem_pwrite_slow(page, offset, len, user_data,
1375 page_do_bit17_swizzling,
1376 needs_clflush_before,
1377 needs_clflush_after);
1378 }
1379
1380 static int
1381 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1382 const struct drm_i915_gem_pwrite *args)
1383 {
1384 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1385 void __user *user_data;
1386 u64 remain;
1387 unsigned int obj_do_bit17_swizzling;
1388 unsigned int partial_cacheline_write;
1389 unsigned int needs_clflush;
1390 unsigned int offset, idx;
1391 int ret;
1392
1393 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1394 if (ret)
1395 return ret;
1396
1397 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1398 mutex_unlock(&i915->drm.struct_mutex);
1399 if (ret)
1400 return ret;
1401
1402 obj_do_bit17_swizzling = 0;
1403 if (i915_gem_object_needs_bit17_swizzle(obj))
1404 obj_do_bit17_swizzling = BIT(17);
1405
1406 /* If we don't overwrite a cacheline completely we need to be
1407 * careful to have up-to-date data by first clflushing. Don't
1408 * overcomplicate things and flush the entire patch.
1409 */
1410 partial_cacheline_write = 0;
1411 if (needs_clflush & CLFLUSH_BEFORE)
1412 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1413
1414 user_data = u64_to_user_ptr(args->data_ptr);
1415 remain = args->size;
1416 offset = offset_in_page(args->offset);
1417 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1418 struct page *page = i915_gem_object_get_page(obj, idx);
1419 int length;
1420
1421 length = remain;
1422 if (offset + length > PAGE_SIZE)
1423 length = PAGE_SIZE - offset;
1424
1425 ret = shmem_pwrite(page, offset, length, user_data,
1426 page_to_phys(page) & obj_do_bit17_swizzling,
1427 (offset | length) & partial_cacheline_write,
1428 needs_clflush & CLFLUSH_AFTER);
1429 if (ret)
1430 break;
1431
1432 remain -= length;
1433 user_data += length;
1434 offset = 0;
1435 }
1436
1437 intel_fb_obj_flush(obj, ORIGIN_CPU);
1438 i915_gem_obj_finish_shmem_access(obj);
1439 return ret;
1440 }
1441
1442 /**
1443 * Writes data to the object referenced by handle.
1444 * @dev: drm device
1445 * @data: ioctl data blob
1446 * @file: drm file
1447 *
1448 * On error, the contents of the buffer that were to be modified are undefined.
1449 */
1450 int
1451 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1452 struct drm_file *file)
1453 {
1454 struct drm_i915_gem_pwrite *args = data;
1455 struct drm_i915_gem_object *obj;
1456 int ret;
1457
1458 if (args->size == 0)
1459 return 0;
1460
1461 if (!access_ok(VERIFY_READ,
1462 u64_to_user_ptr(args->data_ptr),
1463 args->size))
1464 return -EFAULT;
1465
1466 obj = i915_gem_object_lookup(file, args->handle);
1467 if (!obj)
1468 return -ENOENT;
1469
1470 /* Bounds check destination. */
1471 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1472 ret = -EINVAL;
1473 goto err;
1474 }
1475
1476 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1477
1478 ret = -ENODEV;
1479 if (obj->ops->pwrite)
1480 ret = obj->ops->pwrite(obj, args);
1481 if (ret != -ENODEV)
1482 goto err;
1483
1484 ret = i915_gem_object_wait(obj,
1485 I915_WAIT_INTERRUPTIBLE |
1486 I915_WAIT_ALL,
1487 MAX_SCHEDULE_TIMEOUT,
1488 to_rps_client(file));
1489 if (ret)
1490 goto err;
1491
1492 ret = i915_gem_object_pin_pages(obj);
1493 if (ret)
1494 goto err;
1495
1496 ret = -EFAULT;
1497 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1498 * it would end up going through the fenced access, and we'll get
1499 * different detiling behavior between reading and writing.
1500 * pread/pwrite currently are reading and writing from the CPU
1501 * perspective, requiring manual detiling by the client.
1502 */
1503 if (!i915_gem_object_has_struct_page(obj) ||
1504 cpu_write_needs_clflush(obj))
1505 /* Note that the gtt paths might fail with non-page-backed user
1506 * pointers (e.g. gtt mappings when moving data between
1507 * textures). Fallback to the shmem path in that case.
1508 */
1509 ret = i915_gem_gtt_pwrite_fast(obj, args);
1510
1511 if (ret == -EFAULT || ret == -ENOSPC) {
1512 if (obj->phys_handle)
1513 ret = i915_gem_phys_pwrite(obj, args, file);
1514 else
1515 ret = i915_gem_shmem_pwrite(obj, args);
1516 }
1517
1518 i915_gem_object_unpin_pages(obj);
1519 err:
1520 i915_gem_object_put(obj);
1521 return ret;
1522 }
1523
1524 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1525 {
1526 struct drm_i915_private *i915;
1527 struct list_head *list;
1528 struct i915_vma *vma;
1529
1530 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1531 if (!i915_vma_is_ggtt(vma))
1532 break;
1533
1534 if (i915_vma_is_active(vma))
1535 continue;
1536
1537 if (!drm_mm_node_allocated(&vma->node))
1538 continue;
1539
1540 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1541 }
1542
1543 i915 = to_i915(obj->base.dev);
1544 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1545 list_move_tail(&obj->global_link, list);
1546 }
1547
1548 /**
1549 * Called when user space prepares to use an object with the CPU, either
1550 * through the mmap ioctl's mapping or a GTT mapping.
1551 * @dev: drm device
1552 * @data: ioctl data blob
1553 * @file: drm file
1554 */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557 struct drm_file *file)
1558 {
1559 struct drm_i915_gem_set_domain *args = data;
1560 struct drm_i915_gem_object *obj;
1561 uint32_t read_domains = args->read_domains;
1562 uint32_t write_domain = args->write_domain;
1563 int err;
1564
1565 /* Only handle setting domains to types used by the CPU. */
1566 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1567 return -EINVAL;
1568
1569 /* Having something in the write domain implies it's in the read
1570 * domain, and only that read domain. Enforce that in the request.
1571 */
1572 if (write_domain != 0 && read_domains != write_domain)
1573 return -EINVAL;
1574
1575 obj = i915_gem_object_lookup(file, args->handle);
1576 if (!obj)
1577 return -ENOENT;
1578
1579 /* Try to flush the object off the GPU without holding the lock.
1580 * We will repeat the flush holding the lock in the normal manner
1581 * to catch cases where we are gazumped.
1582 */
1583 err = i915_gem_object_wait(obj,
1584 I915_WAIT_INTERRUPTIBLE |
1585 (write_domain ? I915_WAIT_ALL : 0),
1586 MAX_SCHEDULE_TIMEOUT,
1587 to_rps_client(file));
1588 if (err)
1589 goto out;
1590
1591 /* Flush and acquire obj->pages so that we are coherent through
1592 * direct access in memory with previous cached writes through
1593 * shmemfs and that our cache domain tracking remains valid.
1594 * For example, if the obj->filp was moved to swap without us
1595 * being notified and releasing the pages, we would mistakenly
1596 * continue to assume that the obj remained out of the CPU cached
1597 * domain.
1598 */
1599 err = i915_gem_object_pin_pages(obj);
1600 if (err)
1601 goto out;
1602
1603 err = i915_mutex_lock_interruptible(dev);
1604 if (err)
1605 goto out_unpin;
1606
1607 if (read_domains & I915_GEM_DOMAIN_WC)
1608 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1609 else if (read_domains & I915_GEM_DOMAIN_GTT)
1610 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1611 else
1612 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1613
1614 /* And bump the LRU for this access */
1615 i915_gem_object_bump_inactive_ggtt(obj);
1616
1617 mutex_unlock(&dev->struct_mutex);
1618
1619 if (write_domain != 0)
1620 intel_fb_obj_invalidate(obj,
1621 fb_write_origin(obj, write_domain));
1622
1623 out_unpin:
1624 i915_gem_object_unpin_pages(obj);
1625 out:
1626 i915_gem_object_put(obj);
1627 return err;
1628 }
1629
1630 /**
1631 * Called when user space has done writes to this buffer
1632 * @dev: drm device
1633 * @data: ioctl data blob
1634 * @file: drm file
1635 */
1636 int
1637 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1638 struct drm_file *file)
1639 {
1640 struct drm_i915_gem_sw_finish *args = data;
1641 struct drm_i915_gem_object *obj;
1642
1643 obj = i915_gem_object_lookup(file, args->handle);
1644 if (!obj)
1645 return -ENOENT;
1646
1647 /* Pinned buffers may be scanout, so flush the cache */
1648 i915_gem_object_flush_if_display(obj);
1649 i915_gem_object_put(obj);
1650
1651 return 0;
1652 }
1653
1654 /**
1655 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1656 * it is mapped to.
1657 * @dev: drm device
1658 * @data: ioctl data blob
1659 * @file: drm file
1660 *
1661 * While the mapping holds a reference on the contents of the object, it doesn't
1662 * imply a ref on the object itself.
1663 *
1664 * IMPORTANT:
1665 *
1666 * DRM driver writers who look a this function as an example for how to do GEM
1667 * mmap support, please don't implement mmap support like here. The modern way
1668 * to implement DRM mmap support is with an mmap offset ioctl (like
1669 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1670 * That way debug tooling like valgrind will understand what's going on, hiding
1671 * the mmap call in a driver private ioctl will break that. The i915 driver only
1672 * does cpu mmaps this way because we didn't know better.
1673 */
1674 int
1675 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676 struct drm_file *file)
1677 {
1678 struct drm_i915_gem_mmap *args = data;
1679 struct drm_i915_gem_object *obj;
1680 unsigned long addr;
1681
1682 if (args->flags & ~(I915_MMAP_WC))
1683 return -EINVAL;
1684
1685 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1686 return -ENODEV;
1687
1688 obj = i915_gem_object_lookup(file, args->handle);
1689 if (!obj)
1690 return -ENOENT;
1691
1692 /* prime objects have no backing filp to GEM mmap
1693 * pages from.
1694 */
1695 if (!obj->base.filp) {
1696 i915_gem_object_put(obj);
1697 return -EINVAL;
1698 }
1699
1700 addr = vm_mmap(obj->base.filp, 0, args->size,
1701 PROT_READ | PROT_WRITE, MAP_SHARED,
1702 args->offset);
1703 if (args->flags & I915_MMAP_WC) {
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma;
1706
1707 if (down_write_killable(&mm->mmap_sem)) {
1708 i915_gem_object_put(obj);
1709 return -EINTR;
1710 }
1711 vma = find_vma(mm, addr);
1712 if (vma)
1713 vma->vm_page_prot =
1714 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1715 else
1716 addr = -ENOMEM;
1717 up_write(&mm->mmap_sem);
1718
1719 /* This may race, but that's ok, it only gets set */
1720 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1721 }
1722 i915_gem_object_put(obj);
1723 if (IS_ERR((void *)addr))
1724 return addr;
1725
1726 args->addr_ptr = (uint64_t) addr;
1727
1728 return 0;
1729 }
1730
1731 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1732 {
1733 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1734 }
1735
1736 /**
1737 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1738 *
1739 * A history of the GTT mmap interface:
1740 *
1741 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1742 * aligned and suitable for fencing, and still fit into the available
1743 * mappable space left by the pinned display objects. A classic problem
1744 * we called the page-fault-of-doom where we would ping-pong between
1745 * two objects that could not fit inside the GTT and so the memcpy
1746 * would page one object in at the expense of the other between every
1747 * single byte.
1748 *
1749 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1750 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1751 * object is too large for the available space (or simply too large
1752 * for the mappable aperture!), a view is created instead and faulted
1753 * into userspace. (This view is aligned and sized appropriately for
1754 * fenced access.)
1755 *
1756 * 2 - Recognise WC as a separate cache domain so that we can flush the
1757 * delayed writes via GTT before performing direct access via WC.
1758 *
1759 * Restrictions:
1760 *
1761 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1762 * hangs on some architectures, corruption on others. An attempt to service
1763 * a GTT page fault from a snoopable object will generate a SIGBUS.
1764 *
1765 * * the object must be able to fit into RAM (physical memory, though no
1766 * limited to the mappable aperture).
1767 *
1768 *
1769 * Caveats:
1770 *
1771 * * a new GTT page fault will synchronize rendering from the GPU and flush
1772 * all data to system memory. Subsequent access will not be synchronized.
1773 *
1774 * * all mappings are revoked on runtime device suspend.
1775 *
1776 * * there are only 8, 16 or 32 fence registers to share between all users
1777 * (older machines require fence register for display and blitter access
1778 * as well). Contention of the fence registers will cause the previous users
1779 * to be unmapped and any new access will generate new page faults.
1780 *
1781 * * running out of memory while servicing a fault may generate a SIGBUS,
1782 * rather than the expected SIGSEGV.
1783 */
1784 int i915_gem_mmap_gtt_version(void)
1785 {
1786 return 2;
1787 }
1788
1789 static inline struct i915_ggtt_view
1790 compute_partial_view(struct drm_i915_gem_object *obj,
1791 pgoff_t page_offset,
1792 unsigned int chunk)
1793 {
1794 struct i915_ggtt_view view;
1795
1796 if (i915_gem_object_is_tiled(obj))
1797 chunk = roundup(chunk, tile_row_pages(obj));
1798
1799 view.type = I915_GGTT_VIEW_PARTIAL;
1800 view.partial.offset = rounddown(page_offset, chunk);
1801 view.partial.size =
1802 min_t(unsigned int, chunk,
1803 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1804
1805 /* If the partial covers the entire object, just create a normal VMA. */
1806 if (chunk >= obj->base.size >> PAGE_SHIFT)
1807 view.type = I915_GGTT_VIEW_NORMAL;
1808
1809 return view;
1810 }
1811
1812 /**
1813 * i915_gem_fault - fault a page into the GTT
1814 * @vmf: fault info
1815 *
1816 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1817 * from userspace. The fault handler takes care of binding the object to
1818 * the GTT (if needed), allocating and programming a fence register (again,
1819 * only if needed based on whether the old reg is still valid or the object
1820 * is tiled) and inserting a new PTE into the faulting process.
1821 *
1822 * Note that the faulting process may involve evicting existing objects
1823 * from the GTT and/or fence registers to make room. So performance may
1824 * suffer if the GTT working set is large or there are few fence registers
1825 * left.
1826 *
1827 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1828 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1829 */
1830 int i915_gem_fault(struct vm_fault *vmf)
1831 {
1832 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1833 struct vm_area_struct *area = vmf->vma;
1834 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1835 struct drm_device *dev = obj->base.dev;
1836 struct drm_i915_private *dev_priv = to_i915(dev);
1837 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1838 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1839 struct i915_vma *vma;
1840 pgoff_t page_offset;
1841 unsigned int flags;
1842 int ret;
1843
1844 /* We don't use vmf->pgoff since that has the fake offset */
1845 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1846
1847 trace_i915_gem_object_fault(obj, page_offset, true, write);
1848
1849 /* Try to flush the object off the GPU first without holding the lock.
1850 * Upon acquiring the lock, we will perform our sanity checks and then
1851 * repeat the flush holding the lock in the normal manner to catch cases
1852 * where we are gazumped.
1853 */
1854 ret = i915_gem_object_wait(obj,
1855 I915_WAIT_INTERRUPTIBLE,
1856 MAX_SCHEDULE_TIMEOUT,
1857 NULL);
1858 if (ret)
1859 goto err;
1860
1861 ret = i915_gem_object_pin_pages(obj);
1862 if (ret)
1863 goto err;
1864
1865 intel_runtime_pm_get(dev_priv);
1866
1867 ret = i915_mutex_lock_interruptible(dev);
1868 if (ret)
1869 goto err_rpm;
1870
1871 /* Access to snoopable pages through the GTT is incoherent. */
1872 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1873 ret = -EFAULT;
1874 goto err_unlock;
1875 }
1876
1877 /* If the object is smaller than a couple of partial vma, it is
1878 * not worth only creating a single partial vma - we may as well
1879 * clear enough space for the full object.
1880 */
1881 flags = PIN_MAPPABLE;
1882 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1883 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1884
1885 /* Now pin it into the GTT as needed */
1886 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1887 if (IS_ERR(vma)) {
1888 /* Use a partial view if it is bigger than available space */
1889 struct i915_ggtt_view view =
1890 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1891
1892 /* Userspace is now writing through an untracked VMA, abandon
1893 * all hope that the hardware is able to track future writes.
1894 */
1895 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1896
1897 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1898 }
1899 if (IS_ERR(vma)) {
1900 ret = PTR_ERR(vma);
1901 goto err_unlock;
1902 }
1903
1904 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1905 if (ret)
1906 goto err_unpin;
1907
1908 ret = i915_vma_get_fence(vma);
1909 if (ret)
1910 goto err_unpin;
1911
1912 /* Mark as being mmapped into userspace for later revocation */
1913 assert_rpm_wakelock_held(dev_priv);
1914 if (list_empty(&obj->userfault_link))
1915 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1916
1917 /* Finally, remap it using the new GTT offset */
1918 ret = remap_io_mapping(area,
1919 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1920 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1921 min_t(u64, vma->size, area->vm_end - area->vm_start),
1922 &ggtt->mappable);
1923
1924 err_unpin:
1925 __i915_vma_unpin(vma);
1926 err_unlock:
1927 mutex_unlock(&dev->struct_mutex);
1928 err_rpm:
1929 intel_runtime_pm_put(dev_priv);
1930 i915_gem_object_unpin_pages(obj);
1931 err:
1932 switch (ret) {
1933 case -EIO:
1934 /*
1935 * We eat errors when the gpu is terminally wedged to avoid
1936 * userspace unduly crashing (gl has no provisions for mmaps to
1937 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1938 * and so needs to be reported.
1939 */
1940 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1941 ret = VM_FAULT_SIGBUS;
1942 break;
1943 }
1944 case -EAGAIN:
1945 /*
1946 * EAGAIN means the gpu is hung and we'll wait for the error
1947 * handler to reset everything when re-faulting in
1948 * i915_mutex_lock_interruptible.
1949 */
1950 case 0:
1951 case -ERESTARTSYS:
1952 case -EINTR:
1953 case -EBUSY:
1954 /*
1955 * EBUSY is ok: this just means that another thread
1956 * already did the job.
1957 */
1958 ret = VM_FAULT_NOPAGE;
1959 break;
1960 case -ENOMEM:
1961 ret = VM_FAULT_OOM;
1962 break;
1963 case -ENOSPC:
1964 case -EFAULT:
1965 ret = VM_FAULT_SIGBUS;
1966 break;
1967 default:
1968 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1969 ret = VM_FAULT_SIGBUS;
1970 break;
1971 }
1972 return ret;
1973 }
1974
1975 /**
1976 * i915_gem_release_mmap - remove physical page mappings
1977 * @obj: obj in question
1978 *
1979 * Preserve the reservation of the mmapping with the DRM core code, but
1980 * relinquish ownership of the pages back to the system.
1981 *
1982 * It is vital that we remove the page mapping if we have mapped a tiled
1983 * object through the GTT and then lose the fence register due to
1984 * resource pressure. Similarly if the object has been moved out of the
1985 * aperture, than pages mapped into userspace must be revoked. Removing the
1986 * mapping will then trigger a page fault on the next user access, allowing
1987 * fixup by i915_gem_fault().
1988 */
1989 void
1990 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1991 {
1992 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1993
1994 /* Serialisation between user GTT access and our code depends upon
1995 * revoking the CPU's PTE whilst the mutex is held. The next user
1996 * pagefault then has to wait until we release the mutex.
1997 *
1998 * Note that RPM complicates somewhat by adding an additional
1999 * requirement that operations to the GGTT be made holding the RPM
2000 * wakeref.
2001 */
2002 lockdep_assert_held(&i915->drm.struct_mutex);
2003 intel_runtime_pm_get(i915);
2004
2005 if (list_empty(&obj->userfault_link))
2006 goto out;
2007
2008 list_del_init(&obj->userfault_link);
2009 drm_vma_node_unmap(&obj->base.vma_node,
2010 obj->base.dev->anon_inode->i_mapping);
2011
2012 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2013 * memory transactions from userspace before we return. The TLB
2014 * flushing implied above by changing the PTE above *should* be
2015 * sufficient, an extra barrier here just provides us with a bit
2016 * of paranoid documentation about our requirement to serialise
2017 * memory writes before touching registers / GSM.
2018 */
2019 wmb();
2020
2021 out:
2022 intel_runtime_pm_put(i915);
2023 }
2024
2025 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2026 {
2027 struct drm_i915_gem_object *obj, *on;
2028 int i;
2029
2030 /*
2031 * Only called during RPM suspend. All users of the userfault_list
2032 * must be holding an RPM wakeref to ensure that this can not
2033 * run concurrently with themselves (and use the struct_mutex for
2034 * protection between themselves).
2035 */
2036
2037 list_for_each_entry_safe(obj, on,
2038 &dev_priv->mm.userfault_list, userfault_link) {
2039 list_del_init(&obj->userfault_link);
2040 drm_vma_node_unmap(&obj->base.vma_node,
2041 obj->base.dev->anon_inode->i_mapping);
2042 }
2043
2044 /* The fence will be lost when the device powers down. If any were
2045 * in use by hardware (i.e. they are pinned), we should not be powering
2046 * down! All other fences will be reacquired by the user upon waking.
2047 */
2048 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2049 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2050
2051 /* Ideally we want to assert that the fence register is not
2052 * live at this point (i.e. that no piece of code will be
2053 * trying to write through fence + GTT, as that both violates
2054 * our tracking of activity and associated locking/barriers,
2055 * but also is illegal given that the hw is powered down).
2056 *
2057 * Previously we used reg->pin_count as a "liveness" indicator.
2058 * That is not sufficient, and we need a more fine-grained
2059 * tool if we want to have a sanity check here.
2060 */
2061
2062 if (!reg->vma)
2063 continue;
2064
2065 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2066 reg->dirty = true;
2067 }
2068 }
2069
2070 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2071 {
2072 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2073 int err;
2074
2075 err = drm_gem_create_mmap_offset(&obj->base);
2076 if (likely(!err))
2077 return 0;
2078
2079 /* Attempt to reap some mmap space from dead objects */
2080 do {
2081 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2082 if (err)
2083 break;
2084
2085 i915_gem_drain_freed_objects(dev_priv);
2086 err = drm_gem_create_mmap_offset(&obj->base);
2087 if (!err)
2088 break;
2089
2090 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2091
2092 return err;
2093 }
2094
2095 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2096 {
2097 drm_gem_free_mmap_offset(&obj->base);
2098 }
2099
2100 int
2101 i915_gem_mmap_gtt(struct drm_file *file,
2102 struct drm_device *dev,
2103 uint32_t handle,
2104 uint64_t *offset)
2105 {
2106 struct drm_i915_gem_object *obj;
2107 int ret;
2108
2109 obj = i915_gem_object_lookup(file, handle);
2110 if (!obj)
2111 return -ENOENT;
2112
2113 ret = i915_gem_object_create_mmap_offset(obj);
2114 if (ret == 0)
2115 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2116
2117 i915_gem_object_put(obj);
2118 return ret;
2119 }
2120
2121 /**
2122 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2123 * @dev: DRM device
2124 * @data: GTT mapping ioctl data
2125 * @file: GEM object info
2126 *
2127 * Simply returns the fake offset to userspace so it can mmap it.
2128 * The mmap call will end up in drm_gem_mmap(), which will set things
2129 * up so we can get faults in the handler above.
2130 *
2131 * The fault handler will take care of binding the object into the GTT
2132 * (since it may have been evicted to make room for something), allocating
2133 * a fence register, and mapping the appropriate aperture address into
2134 * userspace.
2135 */
2136 int
2137 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2138 struct drm_file *file)
2139 {
2140 struct drm_i915_gem_mmap_gtt *args = data;
2141
2142 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2143 }
2144
2145 /* Immediately discard the backing storage */
2146 static void
2147 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2148 {
2149 i915_gem_object_free_mmap_offset(obj);
2150
2151 if (obj->base.filp == NULL)
2152 return;
2153
2154 /* Our goal here is to return as much of the memory as
2155 * is possible back to the system as we are called from OOM.
2156 * To do this we must instruct the shmfs to drop all of its
2157 * backing pages, *now*.
2158 */
2159 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2160 obj->mm.madv = __I915_MADV_PURGED;
2161 obj->mm.pages = ERR_PTR(-EFAULT);
2162 }
2163
2164 /* Try to discard unwanted pages */
2165 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2166 {
2167 struct address_space *mapping;
2168
2169 lockdep_assert_held(&obj->mm.lock);
2170 GEM_BUG_ON(obj->mm.pages);
2171
2172 switch (obj->mm.madv) {
2173 case I915_MADV_DONTNEED:
2174 i915_gem_object_truncate(obj);
2175 case __I915_MADV_PURGED:
2176 return;
2177 }
2178
2179 if (obj->base.filp == NULL)
2180 return;
2181
2182 mapping = obj->base.filp->f_mapping,
2183 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2184 }
2185
2186 static void
2187 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2188 struct sg_table *pages)
2189 {
2190 struct sgt_iter sgt_iter;
2191 struct page *page;
2192
2193 __i915_gem_object_release_shmem(obj, pages, true);
2194
2195 i915_gem_gtt_finish_pages(obj, pages);
2196
2197 if (i915_gem_object_needs_bit17_swizzle(obj))
2198 i915_gem_object_save_bit_17_swizzle(obj, pages);
2199
2200 for_each_sgt_page(page, sgt_iter, pages) {
2201 if (obj->mm.dirty)
2202 set_page_dirty(page);
2203
2204 if (obj->mm.madv == I915_MADV_WILLNEED)
2205 mark_page_accessed(page);
2206
2207 put_page(page);
2208 }
2209 obj->mm.dirty = false;
2210
2211 sg_free_table(pages);
2212 kfree(pages);
2213 }
2214
2215 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2216 {
2217 struct radix_tree_iter iter;
2218 void __rcu **slot;
2219
2220 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2221 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2222 }
2223
2224 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2225 enum i915_mm_subclass subclass)
2226 {
2227 struct sg_table *pages;
2228
2229 if (i915_gem_object_has_pinned_pages(obj))
2230 return;
2231
2232 GEM_BUG_ON(obj->bind_count);
2233 if (!READ_ONCE(obj->mm.pages))
2234 return;
2235
2236 /* May be called by shrinker from within get_pages() (on another bo) */
2237 mutex_lock_nested(&obj->mm.lock, subclass);
2238 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2239 goto unlock;
2240
2241 /* ->put_pages might need to allocate memory for the bit17 swizzle
2242 * array, hence protect them from being reaped by removing them from gtt
2243 * lists early. */
2244 pages = fetch_and_zero(&obj->mm.pages);
2245 GEM_BUG_ON(!pages);
2246
2247 if (obj->mm.mapping) {
2248 void *ptr;
2249
2250 ptr = page_mask_bits(obj->mm.mapping);
2251 if (is_vmalloc_addr(ptr))
2252 vunmap(ptr);
2253 else
2254 kunmap(kmap_to_page(ptr));
2255
2256 obj->mm.mapping = NULL;
2257 }
2258
2259 __i915_gem_object_reset_page_iter(obj);
2260
2261 if (!IS_ERR(pages))
2262 obj->ops->put_pages(obj, pages);
2263
2264 unlock:
2265 mutex_unlock(&obj->mm.lock);
2266 }
2267
2268 static bool i915_sg_trim(struct sg_table *orig_st)
2269 {
2270 struct sg_table new_st;
2271 struct scatterlist *sg, *new_sg;
2272 unsigned int i;
2273
2274 if (orig_st->nents == orig_st->orig_nents)
2275 return false;
2276
2277 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2278 return false;
2279
2280 new_sg = new_st.sgl;
2281 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2282 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2283 /* called before being DMA mapped, no need to copy sg->dma_* */
2284 new_sg = sg_next(new_sg);
2285 }
2286 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2287
2288 sg_free_table(orig_st);
2289
2290 *orig_st = new_st;
2291 return true;
2292 }
2293
2294 static struct sg_table *
2295 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2296 {
2297 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2298 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2299 unsigned long i;
2300 struct address_space *mapping;
2301 struct sg_table *st;
2302 struct scatterlist *sg;
2303 struct sgt_iter sgt_iter;
2304 struct page *page;
2305 unsigned long last_pfn = 0; /* suppress gcc warning */
2306 unsigned int max_segment = i915_sg_segment_size();
2307 gfp_t noreclaim;
2308 int ret;
2309
2310 /* Assert that the object is not currently in any GPU domain. As it
2311 * wasn't in the GTT, there shouldn't be any way it could have been in
2312 * a GPU cache
2313 */
2314 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2315 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2316
2317 st = kmalloc(sizeof(*st), GFP_KERNEL);
2318 if (st == NULL)
2319 return ERR_PTR(-ENOMEM);
2320
2321 rebuild_st:
2322 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2323 kfree(st);
2324 return ERR_PTR(-ENOMEM);
2325 }
2326
2327 /* Get the list of pages out of our struct file. They'll be pinned
2328 * at this point until we release them.
2329 *
2330 * Fail silently without starting the shrinker
2331 */
2332 mapping = obj->base.filp->f_mapping;
2333 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2334 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2335
2336 sg = st->sgl;
2337 st->nents = 0;
2338 for (i = 0; i < page_count; i++) {
2339 const unsigned int shrink[] = {
2340 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2341 0,
2342 }, *s = shrink;
2343 gfp_t gfp = noreclaim;
2344
2345 do {
2346 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2347 if (likely(!IS_ERR(page)))
2348 break;
2349
2350 if (!*s) {
2351 ret = PTR_ERR(page);
2352 goto err_sg;
2353 }
2354
2355 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2356 cond_resched();
2357
2358 /* We've tried hard to allocate the memory by reaping
2359 * our own buffer, now let the real VM do its job and
2360 * go down in flames if truly OOM.
2361 *
2362 * However, since graphics tend to be disposable,
2363 * defer the oom here by reporting the ENOMEM back
2364 * to userspace.
2365 */
2366 if (!*s) {
2367 /* reclaim and warn, but no oom */
2368 gfp = mapping_gfp_mask(mapping);
2369
2370 /* Our bo are always dirty and so we require
2371 * kswapd to reclaim our pages (direct reclaim
2372 * does not effectively begin pageout of our
2373 * buffers on its own). However, direct reclaim
2374 * only waits for kswapd when under allocation
2375 * congestion. So as a result __GFP_RECLAIM is
2376 * unreliable and fails to actually reclaim our
2377 * dirty pages -- unless you try over and over
2378 * again with !__GFP_NORETRY. However, we still
2379 * want to fail this allocation rather than
2380 * trigger the out-of-memory killer and for
2381 * this we want __GFP_RETRY_MAYFAIL.
2382 */
2383 gfp |= __GFP_RETRY_MAYFAIL;
2384 }
2385 } while (1);
2386
2387 if (!i ||
2388 sg->length >= max_segment ||
2389 page_to_pfn(page) != last_pfn + 1) {
2390 if (i)
2391 sg = sg_next(sg);
2392 st->nents++;
2393 sg_set_page(sg, page, PAGE_SIZE, 0);
2394 } else {
2395 sg->length += PAGE_SIZE;
2396 }
2397 last_pfn = page_to_pfn(page);
2398
2399 /* Check that the i965g/gm workaround works. */
2400 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2401 }
2402 if (sg) /* loop terminated early; short sg table */
2403 sg_mark_end(sg);
2404
2405 /* Trim unused sg entries to avoid wasting memory. */
2406 i915_sg_trim(st);
2407
2408 ret = i915_gem_gtt_prepare_pages(obj, st);
2409 if (ret) {
2410 /* DMA remapping failed? One possible cause is that
2411 * it could not reserve enough large entries, asking
2412 * for PAGE_SIZE chunks instead may be helpful.
2413 */
2414 if (max_segment > PAGE_SIZE) {
2415 for_each_sgt_page(page, sgt_iter, st)
2416 put_page(page);
2417 sg_free_table(st);
2418
2419 max_segment = PAGE_SIZE;
2420 goto rebuild_st;
2421 } else {
2422 dev_warn(&dev_priv->drm.pdev->dev,
2423 "Failed to DMA remap %lu pages\n",
2424 page_count);
2425 goto err_pages;
2426 }
2427 }
2428
2429 if (i915_gem_object_needs_bit17_swizzle(obj))
2430 i915_gem_object_do_bit_17_swizzle(obj, st);
2431
2432 return st;
2433
2434 err_sg:
2435 sg_mark_end(sg);
2436 err_pages:
2437 for_each_sgt_page(page, sgt_iter, st)
2438 put_page(page);
2439 sg_free_table(st);
2440 kfree(st);
2441
2442 /* shmemfs first checks if there is enough memory to allocate the page
2443 * and reports ENOSPC should there be insufficient, along with the usual
2444 * ENOMEM for a genuine allocation failure.
2445 *
2446 * We use ENOSPC in our driver to mean that we have run out of aperture
2447 * space and so want to translate the error from shmemfs back to our
2448 * usual understanding of ENOMEM.
2449 */
2450 if (ret == -ENOSPC)
2451 ret = -ENOMEM;
2452
2453 return ERR_PTR(ret);
2454 }
2455
2456 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2457 struct sg_table *pages)
2458 {
2459 lockdep_assert_held(&obj->mm.lock);
2460
2461 obj->mm.get_page.sg_pos = pages->sgl;
2462 obj->mm.get_page.sg_idx = 0;
2463
2464 obj->mm.pages = pages;
2465
2466 if (i915_gem_object_is_tiled(obj) &&
2467 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2468 GEM_BUG_ON(obj->mm.quirked);
2469 __i915_gem_object_pin_pages(obj);
2470 obj->mm.quirked = true;
2471 }
2472 }
2473
2474 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2475 {
2476 struct sg_table *pages;
2477
2478 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2479 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2480 return -EFAULT;
2481 }
2482
2483 pages = obj->ops->get_pages(obj);
2484 if (unlikely(IS_ERR(pages)))
2485 return PTR_ERR(pages);
2486
2487 __i915_gem_object_set_pages(obj, pages);
2488 return 0;
2489 }
2490
2491 /* Ensure that the associated pages are gathered from the backing storage
2492 * and pinned into our object. i915_gem_object_pin_pages() may be called
2493 * multiple times before they are released by a single call to
2494 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2495 * either as a result of memory pressure (reaping pages under the shrinker)
2496 * or as the object is itself released.
2497 */
2498 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2499 {
2500 int err;
2501
2502 err = mutex_lock_interruptible(&obj->mm.lock);
2503 if (err)
2504 return err;
2505
2506 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2507 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2508
2509 err = ____i915_gem_object_get_pages(obj);
2510 if (err)
2511 goto unlock;
2512
2513 smp_mb__before_atomic();
2514 }
2515 atomic_inc(&obj->mm.pages_pin_count);
2516
2517 unlock:
2518 mutex_unlock(&obj->mm.lock);
2519 return err;
2520 }
2521
2522 /* The 'mapping' part of i915_gem_object_pin_map() below */
2523 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2524 enum i915_map_type type)
2525 {
2526 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2527 struct sg_table *sgt = obj->mm.pages;
2528 struct sgt_iter sgt_iter;
2529 struct page *page;
2530 struct page *stack_pages[32];
2531 struct page **pages = stack_pages;
2532 unsigned long i = 0;
2533 pgprot_t pgprot;
2534 void *addr;
2535
2536 /* A single page can always be kmapped */
2537 if (n_pages == 1 && type == I915_MAP_WB)
2538 return kmap(sg_page(sgt->sgl));
2539
2540 if (n_pages > ARRAY_SIZE(stack_pages)) {
2541 /* Too big for stack -- allocate temporary array instead */
2542 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2543 if (!pages)
2544 return NULL;
2545 }
2546
2547 for_each_sgt_page(page, sgt_iter, sgt)
2548 pages[i++] = page;
2549
2550 /* Check that we have the expected number of pages */
2551 GEM_BUG_ON(i != n_pages);
2552
2553 switch (type) {
2554 default:
2555 MISSING_CASE(type);
2556 /* fallthrough to use PAGE_KERNEL anyway */
2557 case I915_MAP_WB:
2558 pgprot = PAGE_KERNEL;
2559 break;
2560 case I915_MAP_WC:
2561 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2562 break;
2563 }
2564 addr = vmap(pages, n_pages, 0, pgprot);
2565
2566 if (pages != stack_pages)
2567 kvfree(pages);
2568
2569 return addr;
2570 }
2571
2572 /* get, pin, and map the pages of the object into kernel space */
2573 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2574 enum i915_map_type type)
2575 {
2576 enum i915_map_type has_type;
2577 bool pinned;
2578 void *ptr;
2579 int ret;
2580
2581 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2582
2583 ret = mutex_lock_interruptible(&obj->mm.lock);
2584 if (ret)
2585 return ERR_PTR(ret);
2586
2587 pinned = !(type & I915_MAP_OVERRIDE);
2588 type &= ~I915_MAP_OVERRIDE;
2589
2590 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2591 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2592 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2593
2594 ret = ____i915_gem_object_get_pages(obj);
2595 if (ret)
2596 goto err_unlock;
2597
2598 smp_mb__before_atomic();
2599 }
2600 atomic_inc(&obj->mm.pages_pin_count);
2601 pinned = false;
2602 }
2603 GEM_BUG_ON(!obj->mm.pages);
2604
2605 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2606 if (ptr && has_type != type) {
2607 if (pinned) {
2608 ret = -EBUSY;
2609 goto err_unpin;
2610 }
2611
2612 if (is_vmalloc_addr(ptr))
2613 vunmap(ptr);
2614 else
2615 kunmap(kmap_to_page(ptr));
2616
2617 ptr = obj->mm.mapping = NULL;
2618 }
2619
2620 if (!ptr) {
2621 ptr = i915_gem_object_map(obj, type);
2622 if (!ptr) {
2623 ret = -ENOMEM;
2624 goto err_unpin;
2625 }
2626
2627 obj->mm.mapping = page_pack_bits(ptr, type);
2628 }
2629
2630 out_unlock:
2631 mutex_unlock(&obj->mm.lock);
2632 return ptr;
2633
2634 err_unpin:
2635 atomic_dec(&obj->mm.pages_pin_count);
2636 err_unlock:
2637 ptr = ERR_PTR(ret);
2638 goto out_unlock;
2639 }
2640
2641 static int
2642 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2643 const struct drm_i915_gem_pwrite *arg)
2644 {
2645 struct address_space *mapping = obj->base.filp->f_mapping;
2646 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2647 u64 remain, offset;
2648 unsigned int pg;
2649
2650 /* Before we instantiate/pin the backing store for our use, we
2651 * can prepopulate the shmemfs filp efficiently using a write into
2652 * the pagecache. We avoid the penalty of instantiating all the
2653 * pages, important if the user is just writing to a few and never
2654 * uses the object on the GPU, and using a direct write into shmemfs
2655 * allows it to avoid the cost of retrieving a page (either swapin
2656 * or clearing-before-use) before it is overwritten.
2657 */
2658 if (READ_ONCE(obj->mm.pages))
2659 return -ENODEV;
2660
2661 /* Before the pages are instantiated the object is treated as being
2662 * in the CPU domain. The pages will be clflushed as required before
2663 * use, and we can freely write into the pages directly. If userspace
2664 * races pwrite with any other operation; corruption will ensue -
2665 * that is userspace's prerogative!
2666 */
2667
2668 remain = arg->size;
2669 offset = arg->offset;
2670 pg = offset_in_page(offset);
2671
2672 do {
2673 unsigned int len, unwritten;
2674 struct page *page;
2675 void *data, *vaddr;
2676 int err;
2677
2678 len = PAGE_SIZE - pg;
2679 if (len > remain)
2680 len = remain;
2681
2682 err = pagecache_write_begin(obj->base.filp, mapping,
2683 offset, len, 0,
2684 &page, &data);
2685 if (err < 0)
2686 return err;
2687
2688 vaddr = kmap(page);
2689 unwritten = copy_from_user(vaddr + pg, user_data, len);
2690 kunmap(page);
2691
2692 err = pagecache_write_end(obj->base.filp, mapping,
2693 offset, len, len - unwritten,
2694 page, data);
2695 if (err < 0)
2696 return err;
2697
2698 if (unwritten)
2699 return -EFAULT;
2700
2701 remain -= len;
2702 user_data += len;
2703 offset += len;
2704 pg = 0;
2705 } while (remain);
2706
2707 return 0;
2708 }
2709
2710 static bool ban_context(const struct i915_gem_context *ctx,
2711 unsigned int score)
2712 {
2713 return (i915_gem_context_is_bannable(ctx) &&
2714 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2715 }
2716
2717 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2718 {
2719 unsigned int score;
2720 bool banned;
2721
2722 atomic_inc(&ctx->guilty_count);
2723
2724 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2725 banned = ban_context(ctx, score);
2726 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2727 ctx->name, score, yesno(banned));
2728 if (!banned)
2729 return;
2730
2731 i915_gem_context_set_banned(ctx);
2732 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2733 atomic_inc(&ctx->file_priv->context_bans);
2734 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2735 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2736 }
2737 }
2738
2739 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2740 {
2741 atomic_inc(&ctx->active_count);
2742 }
2743
2744 struct drm_i915_gem_request *
2745 i915_gem_find_active_request(struct intel_engine_cs *engine)
2746 {
2747 struct drm_i915_gem_request *request, *active = NULL;
2748 unsigned long flags;
2749
2750 /* We are called by the error capture and reset at a random
2751 * point in time. In particular, note that neither is crucially
2752 * ordered with an interrupt. After a hang, the GPU is dead and we
2753 * assume that no more writes can happen (we waited long enough for
2754 * all writes that were in transaction to be flushed) - adding an
2755 * extra delay for a recent interrupt is pointless. Hence, we do
2756 * not need an engine->irq_seqno_barrier() before the seqno reads.
2757 */
2758 spin_lock_irqsave(&engine->timeline->lock, flags);
2759 list_for_each_entry(request, &engine->timeline->requests, link) {
2760 if (__i915_gem_request_completed(request,
2761 request->global_seqno))
2762 continue;
2763
2764 GEM_BUG_ON(request->engine != engine);
2765 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2766 &request->fence.flags));
2767
2768 active = request;
2769 break;
2770 }
2771 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2772
2773 return active;
2774 }
2775
2776 static bool engine_stalled(struct intel_engine_cs *engine)
2777 {
2778 if (!engine->hangcheck.stalled)
2779 return false;
2780
2781 /* Check for possible seqno movement after hang declaration */
2782 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2783 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2784 return false;
2785 }
2786
2787 return true;
2788 }
2789
2790 /*
2791 * Ensure irq handler finishes, and not run again.
2792 * Also return the active request so that we only search for it once.
2793 */
2794 struct drm_i915_gem_request *
2795 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2796 {
2797 struct drm_i915_gem_request *request = NULL;
2798
2799 /* Prevent the signaler thread from updating the request
2800 * state (by calling dma_fence_signal) as we are processing
2801 * the reset. The write from the GPU of the seqno is
2802 * asynchronous and the signaler thread may see a different
2803 * value to us and declare the request complete, even though
2804 * the reset routine have picked that request as the active
2805 * (incomplete) request. This conflict is not handled
2806 * gracefully!
2807 */
2808 kthread_park(engine->breadcrumbs.signaler);
2809
2810 /* Prevent request submission to the hardware until we have
2811 * completed the reset in i915_gem_reset_finish(). If a request
2812 * is completed by one engine, it may then queue a request
2813 * to a second via its engine->irq_tasklet *just* as we are
2814 * calling engine->init_hw() and also writing the ELSP.
2815 * Turning off the engine->irq_tasklet until the reset is over
2816 * prevents the race.
2817 */
2818 tasklet_kill(&engine->irq_tasklet);
2819 tasklet_disable(&engine->irq_tasklet);
2820
2821 if (engine->irq_seqno_barrier)
2822 engine->irq_seqno_barrier(engine);
2823
2824 request = i915_gem_find_active_request(engine);
2825 if (request && request->fence.error == -EIO)
2826 request = ERR_PTR(-EIO); /* Previous reset failed! */
2827
2828 return request;
2829 }
2830
2831 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2832 {
2833 struct intel_engine_cs *engine;
2834 struct drm_i915_gem_request *request;
2835 enum intel_engine_id id;
2836 int err = 0;
2837
2838 for_each_engine(engine, dev_priv, id) {
2839 request = i915_gem_reset_prepare_engine(engine);
2840 if (IS_ERR(request)) {
2841 err = PTR_ERR(request);
2842 continue;
2843 }
2844
2845 engine->hangcheck.active_request = request;
2846 }
2847
2848 i915_gem_revoke_fences(dev_priv);
2849
2850 return err;
2851 }
2852
2853 static void skip_request(struct drm_i915_gem_request *request)
2854 {
2855 void *vaddr = request->ring->vaddr;
2856 u32 head;
2857
2858 /* As this request likely depends on state from the lost
2859 * context, clear out all the user operations leaving the
2860 * breadcrumb at the end (so we get the fence notifications).
2861 */
2862 head = request->head;
2863 if (request->postfix < head) {
2864 memset(vaddr + head, 0, request->ring->size - head);
2865 head = 0;
2866 }
2867 memset(vaddr + head, 0, request->postfix - head);
2868
2869 dma_fence_set_error(&request->fence, -EIO);
2870 }
2871
2872 static void engine_skip_context(struct drm_i915_gem_request *request)
2873 {
2874 struct intel_engine_cs *engine = request->engine;
2875 struct i915_gem_context *hung_ctx = request->ctx;
2876 struct intel_timeline *timeline;
2877 unsigned long flags;
2878
2879 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2880
2881 spin_lock_irqsave(&engine->timeline->lock, flags);
2882 spin_lock(&timeline->lock);
2883
2884 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2885 if (request->ctx == hung_ctx)
2886 skip_request(request);
2887
2888 list_for_each_entry(request, &timeline->requests, link)
2889 skip_request(request);
2890
2891 spin_unlock(&timeline->lock);
2892 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2893 }
2894
2895 /* Returns the request if it was guilty of the hang */
2896 static struct drm_i915_gem_request *
2897 i915_gem_reset_request(struct intel_engine_cs *engine,
2898 struct drm_i915_gem_request *request)
2899 {
2900 /* The guilty request will get skipped on a hung engine.
2901 *
2902 * Users of client default contexts do not rely on logical
2903 * state preserved between batches so it is safe to execute
2904 * queued requests following the hang. Non default contexts
2905 * rely on preserved state, so skipping a batch loses the
2906 * evolution of the state and it needs to be considered corrupted.
2907 * Executing more queued batches on top of corrupted state is
2908 * risky. But we take the risk by trying to advance through
2909 * the queued requests in order to make the client behaviour
2910 * more predictable around resets, by not throwing away random
2911 * amount of batches it has prepared for execution. Sophisticated
2912 * clients can use gem_reset_stats_ioctl and dma fence status
2913 * (exported via sync_file info ioctl on explicit fences) to observe
2914 * when it loses the context state and should rebuild accordingly.
2915 *
2916 * The context ban, and ultimately the client ban, mechanism are safety
2917 * valves if client submission ends up resulting in nothing more than
2918 * subsequent hangs.
2919 */
2920
2921 if (engine_stalled(engine)) {
2922 i915_gem_context_mark_guilty(request->ctx);
2923 skip_request(request);
2924
2925 /* If this context is now banned, skip all pending requests. */
2926 if (i915_gem_context_is_banned(request->ctx))
2927 engine_skip_context(request);
2928 } else {
2929 /*
2930 * Since this is not the hung engine, it may have advanced
2931 * since the hang declaration. Double check by refinding
2932 * the active request at the time of the reset.
2933 */
2934 request = i915_gem_find_active_request(engine);
2935 if (request) {
2936 i915_gem_context_mark_innocent(request->ctx);
2937 dma_fence_set_error(&request->fence, -EAGAIN);
2938
2939 /* Rewind the engine to replay the incomplete rq */
2940 spin_lock_irq(&engine->timeline->lock);
2941 request = list_prev_entry(request, link);
2942 if (&request->link == &engine->timeline->requests)
2943 request = NULL;
2944 spin_unlock_irq(&engine->timeline->lock);
2945 }
2946 }
2947
2948 return request;
2949 }
2950
2951 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2952 struct drm_i915_gem_request *request)
2953 {
2954 engine->irq_posted = 0;
2955
2956 if (request)
2957 request = i915_gem_reset_request(engine, request);
2958
2959 if (request) {
2960 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2961 engine->name, request->global_seqno);
2962 }
2963
2964 /* Setup the CS to resume from the breadcrumb of the hung request */
2965 engine->reset_hw(engine, request);
2966 }
2967
2968 void i915_gem_reset(struct drm_i915_private *dev_priv)
2969 {
2970 struct intel_engine_cs *engine;
2971 enum intel_engine_id id;
2972
2973 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2974
2975 i915_gem_retire_requests(dev_priv);
2976
2977 for_each_engine(engine, dev_priv, id) {
2978 struct i915_gem_context *ctx;
2979
2980 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2981 ctx = fetch_and_zero(&engine->last_retired_context);
2982 if (ctx)
2983 engine->context_unpin(engine, ctx);
2984 }
2985
2986 i915_gem_restore_fences(dev_priv);
2987
2988 if (dev_priv->gt.awake) {
2989 intel_sanitize_gt_powersave(dev_priv);
2990 intel_enable_gt_powersave(dev_priv);
2991 if (INTEL_GEN(dev_priv) >= 6)
2992 gen6_rps_busy(dev_priv);
2993 }
2994 }
2995
2996 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2997 {
2998 tasklet_enable(&engine->irq_tasklet);
2999 kthread_unpark(engine->breadcrumbs.signaler);
3000 }
3001
3002 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3003 {
3004 struct intel_engine_cs *engine;
3005 enum intel_engine_id id;
3006
3007 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3008
3009 for_each_engine(engine, dev_priv, id) {
3010 engine->hangcheck.active_request = NULL;
3011 i915_gem_reset_finish_engine(engine);
3012 }
3013 }
3014
3015 static void nop_submit_request(struct drm_i915_gem_request *request)
3016 {
3017 GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3018 dma_fence_set_error(&request->fence, -EIO);
3019 i915_gem_request_submit(request);
3020 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3021 }
3022
3023 static void engine_set_wedged(struct intel_engine_cs *engine)
3024 {
3025 struct drm_i915_gem_request *request;
3026 unsigned long flags;
3027
3028 /* We need to be sure that no thread is running the old callback as
3029 * we install the nop handler (otherwise we would submit a request
3030 * to hardware that will never complete). In order to prevent this
3031 * race, we wait until the machine is idle before making the swap
3032 * (using stop_machine()).
3033 */
3034 engine->submit_request = nop_submit_request;
3035
3036 /* Mark all executing requests as skipped */
3037 spin_lock_irqsave(&engine->timeline->lock, flags);
3038 list_for_each_entry(request, &engine->timeline->requests, link)
3039 if (!i915_gem_request_completed(request))
3040 dma_fence_set_error(&request->fence, -EIO);
3041 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3042
3043 /*
3044 * Clear the execlists queue up before freeing the requests, as those
3045 * are the ones that keep the context and ringbuffer backing objects
3046 * pinned in place.
3047 */
3048
3049 if (i915.enable_execlists) {
3050 struct execlist_port *port = engine->execlist_port;
3051 unsigned long flags;
3052 unsigned int n;
3053
3054 spin_lock_irqsave(&engine->timeline->lock, flags);
3055
3056 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3057 i915_gem_request_put(port_request(&port[n]));
3058 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3059 engine->execlist_queue = RB_ROOT;
3060 engine->execlist_first = NULL;
3061
3062 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3063
3064 /* The port is checked prior to scheduling a tasklet, but
3065 * just in case we have suspended the tasklet to do the
3066 * wedging make sure that when it wakes, it decides there
3067 * is no work to do by clearing the irq_posted bit.
3068 */
3069 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3070 }
3071
3072 /* Mark all pending requests as complete so that any concurrent
3073 * (lockless) lookup doesn't try and wait upon the request as we
3074 * reset it.
3075 */
3076 intel_engine_init_global_seqno(engine,
3077 intel_engine_last_submit(engine));
3078 }
3079
3080 static int __i915_gem_set_wedged_BKL(void *data)
3081 {
3082 struct drm_i915_private *i915 = data;
3083 struct intel_engine_cs *engine;
3084 enum intel_engine_id id;
3085
3086 for_each_engine(engine, i915, id)
3087 engine_set_wedged(engine);
3088
3089 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3090 wake_up_all(&i915->gpu_error.reset_queue);
3091
3092 return 0;
3093 }
3094
3095 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3096 {
3097 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3098 }
3099
3100 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3101 {
3102 struct i915_gem_timeline *tl;
3103 int i;
3104
3105 lockdep_assert_held(&i915->drm.struct_mutex);
3106 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3107 return true;
3108
3109 /* Before unwedging, make sure that all pending operations
3110 * are flushed and errored out - we may have requests waiting upon
3111 * third party fences. We marked all inflight requests as EIO, and
3112 * every execbuf since returned EIO, for consistency we want all
3113 * the currently pending requests to also be marked as EIO, which
3114 * is done inside our nop_submit_request - and so we must wait.
3115 *
3116 * No more can be submitted until we reset the wedged bit.
3117 */
3118 list_for_each_entry(tl, &i915->gt.timelines, link) {
3119 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3120 struct drm_i915_gem_request *rq;
3121
3122 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3123 &i915->drm.struct_mutex);
3124 if (!rq)
3125 continue;
3126
3127 /* We can't use our normal waiter as we want to
3128 * avoid recursively trying to handle the current
3129 * reset. The basic dma_fence_default_wait() installs
3130 * a callback for dma_fence_signal(), which is
3131 * triggered by our nop handler (indirectly, the
3132 * callback enables the signaler thread which is
3133 * woken by the nop_submit_request() advancing the seqno
3134 * and when the seqno passes the fence, the signaler
3135 * then signals the fence waking us up).
3136 */
3137 if (dma_fence_default_wait(&rq->fence, true,
3138 MAX_SCHEDULE_TIMEOUT) < 0)
3139 return false;
3140 }
3141 }
3142
3143 /* Undo nop_submit_request. We prevent all new i915 requests from
3144 * being queued (by disallowing execbuf whilst wedged) so having
3145 * waited for all active requests above, we know the system is idle
3146 * and do not have to worry about a thread being inside
3147 * engine->submit_request() as we swap over. So unlike installing
3148 * the nop_submit_request on reset, we can do this from normal
3149 * context and do not require stop_machine().
3150 */
3151 intel_engines_reset_default_submission(i915);
3152 i915_gem_contexts_lost(i915);
3153
3154 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3155 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3156
3157 return true;
3158 }
3159
3160 static void
3161 i915_gem_retire_work_handler(struct work_struct *work)
3162 {
3163 struct drm_i915_private *dev_priv =
3164 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3165 struct drm_device *dev = &dev_priv->drm;
3166
3167 /* Come back later if the device is busy... */
3168 if (mutex_trylock(&dev->struct_mutex)) {
3169 i915_gem_retire_requests(dev_priv);
3170 mutex_unlock(&dev->struct_mutex);
3171 }
3172
3173 /* Keep the retire handler running until we are finally idle.
3174 * We do not need to do this test under locking as in the worst-case
3175 * we queue the retire worker once too often.
3176 */
3177 if (READ_ONCE(dev_priv->gt.awake)) {
3178 i915_queue_hangcheck(dev_priv);
3179 queue_delayed_work(dev_priv->wq,
3180 &dev_priv->gt.retire_work,
3181 round_jiffies_up_relative(HZ));
3182 }
3183 }
3184
3185 static void
3186 i915_gem_idle_work_handler(struct work_struct *work)
3187 {
3188 struct drm_i915_private *dev_priv =
3189 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3190 struct drm_device *dev = &dev_priv->drm;
3191 bool rearm_hangcheck;
3192
3193 if (!READ_ONCE(dev_priv->gt.awake))
3194 return;
3195
3196 /*
3197 * Wait for last execlists context complete, but bail out in case a
3198 * new request is submitted.
3199 */
3200 wait_for(intel_engines_are_idle(dev_priv), 10);
3201 if (READ_ONCE(dev_priv->gt.active_requests))
3202 return;
3203
3204 rearm_hangcheck =
3205 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3206
3207 if (!mutex_trylock(&dev->struct_mutex)) {
3208 /* Currently busy, come back later */
3209 mod_delayed_work(dev_priv->wq,
3210 &dev_priv->gt.idle_work,
3211 msecs_to_jiffies(50));
3212 goto out_rearm;
3213 }
3214
3215 /*
3216 * New request retired after this work handler started, extend active
3217 * period until next instance of the work.
3218 */
3219 if (work_pending(work))
3220 goto out_unlock;
3221
3222 if (dev_priv->gt.active_requests)
3223 goto out_unlock;
3224
3225 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3226 DRM_ERROR("Timeout waiting for engines to idle\n");
3227
3228 intel_engines_mark_idle(dev_priv);
3229 i915_gem_timelines_mark_idle(dev_priv);
3230
3231 GEM_BUG_ON(!dev_priv->gt.awake);
3232 dev_priv->gt.awake = false;
3233 rearm_hangcheck = false;
3234
3235 if (INTEL_GEN(dev_priv) >= 6)
3236 gen6_rps_idle(dev_priv);
3237 intel_runtime_pm_put(dev_priv);
3238 out_unlock:
3239 mutex_unlock(&dev->struct_mutex);
3240
3241 out_rearm:
3242 if (rearm_hangcheck) {
3243 GEM_BUG_ON(!dev_priv->gt.awake);
3244 i915_queue_hangcheck(dev_priv);
3245 }
3246 }
3247
3248 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3249 {
3250 struct drm_i915_private *i915 = to_i915(gem->dev);
3251 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3252 struct drm_i915_file_private *fpriv = file->driver_priv;
3253 struct i915_lut_handle *lut, *ln;
3254
3255 mutex_lock(&i915->drm.struct_mutex);
3256
3257 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3258 struct i915_gem_context *ctx = lut->ctx;
3259 struct i915_vma *vma;
3260
3261 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3262 if (ctx->file_priv != fpriv)
3263 continue;
3264
3265 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3266 GEM_BUG_ON(vma->obj != obj);
3267
3268 /* We allow the process to have multiple handles to the same
3269 * vma, in the same fd namespace, by virtue of flink/open.
3270 */
3271 GEM_BUG_ON(!vma->open_count);
3272 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3273 i915_vma_close(vma);
3274
3275 list_del(&lut->obj_link);
3276 list_del(&lut->ctx_link);
3277
3278 kmem_cache_free(i915->luts, lut);
3279 __i915_gem_object_release_unless_active(obj);
3280 }
3281
3282 mutex_unlock(&i915->drm.struct_mutex);
3283 }
3284
3285 static unsigned long to_wait_timeout(s64 timeout_ns)
3286 {
3287 if (timeout_ns < 0)
3288 return MAX_SCHEDULE_TIMEOUT;
3289
3290 if (timeout_ns == 0)
3291 return 0;
3292
3293 return nsecs_to_jiffies_timeout(timeout_ns);
3294 }
3295
3296 /**
3297 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3298 * @dev: drm device pointer
3299 * @data: ioctl data blob
3300 * @file: drm file pointer
3301 *
3302 * Returns 0 if successful, else an error is returned with the remaining time in
3303 * the timeout parameter.
3304 * -ETIME: object is still busy after timeout
3305 * -ERESTARTSYS: signal interrupted the wait
3306 * -ENONENT: object doesn't exist
3307 * Also possible, but rare:
3308 * -EAGAIN: incomplete, restart syscall
3309 * -ENOMEM: damn
3310 * -ENODEV: Internal IRQ fail
3311 * -E?: The add request failed
3312 *
3313 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3314 * non-zero timeout parameter the wait ioctl will wait for the given number of
3315 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3316 * without holding struct_mutex the object may become re-busied before this
3317 * function completes. A similar but shorter * race condition exists in the busy
3318 * ioctl
3319 */
3320 int
3321 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3322 {
3323 struct drm_i915_gem_wait *args = data;
3324 struct drm_i915_gem_object *obj;
3325 ktime_t start;
3326 long ret;
3327
3328 if (args->flags != 0)
3329 return -EINVAL;
3330
3331 obj = i915_gem_object_lookup(file, args->bo_handle);
3332 if (!obj)
3333 return -ENOENT;
3334
3335 start = ktime_get();
3336
3337 ret = i915_gem_object_wait(obj,
3338 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3339 to_wait_timeout(args->timeout_ns),
3340 to_rps_client(file));
3341
3342 if (args->timeout_ns > 0) {
3343 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3344 if (args->timeout_ns < 0)
3345 args->timeout_ns = 0;
3346
3347 /*
3348 * Apparently ktime isn't accurate enough and occasionally has a
3349 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3350 * things up to make the test happy. We allow up to 1 jiffy.
3351 *
3352 * This is a regression from the timespec->ktime conversion.
3353 */
3354 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3355 args->timeout_ns = 0;
3356
3357 /* Asked to wait beyond the jiffie/scheduler precision? */
3358 if (ret == -ETIME && args->timeout_ns)
3359 ret = -EAGAIN;
3360 }
3361
3362 i915_gem_object_put(obj);
3363 return ret;
3364 }
3365
3366 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3367 {
3368 int ret, i;
3369
3370 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3371 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3372 if (ret)
3373 return ret;
3374 }
3375
3376 return 0;
3377 }
3378
3379 static int wait_for_engines(struct drm_i915_private *i915)
3380 {
3381 if (wait_for(intel_engines_are_idle(i915), 50)) {
3382 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3383 i915_gem_set_wedged(i915);
3384 return -EIO;
3385 }
3386
3387 return 0;
3388 }
3389
3390 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3391 {
3392 int ret;
3393
3394 /* If the device is asleep, we have no requests outstanding */
3395 if (!READ_ONCE(i915->gt.awake))
3396 return 0;
3397
3398 if (flags & I915_WAIT_LOCKED) {
3399 struct i915_gem_timeline *tl;
3400
3401 lockdep_assert_held(&i915->drm.struct_mutex);
3402
3403 list_for_each_entry(tl, &i915->gt.timelines, link) {
3404 ret = wait_for_timeline(tl, flags);
3405 if (ret)
3406 return ret;
3407 }
3408
3409 i915_gem_retire_requests(i915);
3410 GEM_BUG_ON(i915->gt.active_requests);
3411
3412 ret = wait_for_engines(i915);
3413 } else {
3414 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3415 }
3416
3417 return ret;
3418 }
3419
3420 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3421 {
3422 /*
3423 * We manually flush the CPU domain so that we can override and
3424 * force the flush for the display, and perform it asyncrhonously.
3425 */
3426 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3427 if (obj->cache_dirty)
3428 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3429 obj->base.write_domain = 0;
3430 }
3431
3432 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3433 {
3434 if (!READ_ONCE(obj->pin_display))
3435 return;
3436
3437 mutex_lock(&obj->base.dev->struct_mutex);
3438 __i915_gem_object_flush_for_display(obj);
3439 mutex_unlock(&obj->base.dev->struct_mutex);
3440 }
3441
3442 /**
3443 * Moves a single object to the WC read, and possibly write domain.
3444 * @obj: object to act on
3445 * @write: ask for write access or read only
3446 *
3447 * This function returns when the move is complete, including waiting on
3448 * flushes to occur.
3449 */
3450 int
3451 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3452 {
3453 int ret;
3454
3455 lockdep_assert_held(&obj->base.dev->struct_mutex);
3456
3457 ret = i915_gem_object_wait(obj,
3458 I915_WAIT_INTERRUPTIBLE |
3459 I915_WAIT_LOCKED |
3460 (write ? I915_WAIT_ALL : 0),
3461 MAX_SCHEDULE_TIMEOUT,
3462 NULL);
3463 if (ret)
3464 return ret;
3465
3466 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3467 return 0;
3468
3469 /* Flush and acquire obj->pages so that we are coherent through
3470 * direct access in memory with previous cached writes through
3471 * shmemfs and that our cache domain tracking remains valid.
3472 * For example, if the obj->filp was moved to swap without us
3473 * being notified and releasing the pages, we would mistakenly
3474 * continue to assume that the obj remained out of the CPU cached
3475 * domain.
3476 */
3477 ret = i915_gem_object_pin_pages(obj);
3478 if (ret)
3479 return ret;
3480
3481 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3482
3483 /* Serialise direct access to this object with the barriers for
3484 * coherent writes from the GPU, by effectively invalidating the
3485 * WC domain upon first access.
3486 */
3487 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3488 mb();
3489
3490 /* It should now be out of any other write domains, and we can update
3491 * the domain values for our changes.
3492 */
3493 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3494 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3495 if (write) {
3496 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3497 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3498 obj->mm.dirty = true;
3499 }
3500
3501 i915_gem_object_unpin_pages(obj);
3502 return 0;
3503 }
3504
3505 /**
3506 * Moves a single object to the GTT read, and possibly write domain.
3507 * @obj: object to act on
3508 * @write: ask for write access or read only
3509 *
3510 * This function returns when the move is complete, including waiting on
3511 * flushes to occur.
3512 */
3513 int
3514 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3515 {
3516 int ret;
3517
3518 lockdep_assert_held(&obj->base.dev->struct_mutex);
3519
3520 ret = i915_gem_object_wait(obj,
3521 I915_WAIT_INTERRUPTIBLE |
3522 I915_WAIT_LOCKED |
3523 (write ? I915_WAIT_ALL : 0),
3524 MAX_SCHEDULE_TIMEOUT,
3525 NULL);
3526 if (ret)
3527 return ret;
3528
3529 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3530 return 0;
3531
3532 /* Flush and acquire obj->pages so that we are coherent through
3533 * direct access in memory with previous cached writes through
3534 * shmemfs and that our cache domain tracking remains valid.
3535 * For example, if the obj->filp was moved to swap without us
3536 * being notified and releasing the pages, we would mistakenly
3537 * continue to assume that the obj remained out of the CPU cached
3538 * domain.
3539 */
3540 ret = i915_gem_object_pin_pages(obj);
3541 if (ret)
3542 return ret;
3543
3544 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3545
3546 /* Serialise direct access to this object with the barriers for
3547 * coherent writes from the GPU, by effectively invalidating the
3548 * GTT domain upon first access.
3549 */
3550 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3551 mb();
3552
3553 /* It should now be out of any other write domains, and we can update
3554 * the domain values for our changes.
3555 */
3556 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3557 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3558 if (write) {
3559 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3560 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3561 obj->mm.dirty = true;
3562 }
3563
3564 i915_gem_object_unpin_pages(obj);
3565 return 0;
3566 }
3567
3568 /**
3569 * Changes the cache-level of an object across all VMA.
3570 * @obj: object to act on
3571 * @cache_level: new cache level to set for the object
3572 *
3573 * After this function returns, the object will be in the new cache-level
3574 * across all GTT and the contents of the backing storage will be coherent,
3575 * with respect to the new cache-level. In order to keep the backing storage
3576 * coherent for all users, we only allow a single cache level to be set
3577 * globally on the object and prevent it from being changed whilst the
3578 * hardware is reading from the object. That is if the object is currently
3579 * on the scanout it will be set to uncached (or equivalent display
3580 * cache coherency) and all non-MOCS GPU access will also be uncached so
3581 * that all direct access to the scanout remains coherent.
3582 */
3583 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3584 enum i915_cache_level cache_level)
3585 {
3586 struct i915_vma *vma;
3587 int ret;
3588
3589 lockdep_assert_held(&obj->base.dev->struct_mutex);
3590
3591 if (obj->cache_level == cache_level)
3592 return 0;
3593
3594 /* Inspect the list of currently bound VMA and unbind any that would
3595 * be invalid given the new cache-level. This is principally to
3596 * catch the issue of the CS prefetch crossing page boundaries and
3597 * reading an invalid PTE on older architectures.
3598 */
3599 restart:
3600 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3601 if (!drm_mm_node_allocated(&vma->node))
3602 continue;
3603
3604 if (i915_vma_is_pinned(vma)) {
3605 DRM_DEBUG("can not change the cache level of pinned objects\n");
3606 return -EBUSY;
3607 }
3608
3609 if (i915_gem_valid_gtt_space(vma, cache_level))
3610 continue;
3611
3612 ret = i915_vma_unbind(vma);
3613 if (ret)
3614 return ret;
3615
3616 /* As unbinding may affect other elements in the
3617 * obj->vma_list (due to side-effects from retiring
3618 * an active vma), play safe and restart the iterator.
3619 */
3620 goto restart;
3621 }
3622
3623 /* We can reuse the existing drm_mm nodes but need to change the
3624 * cache-level on the PTE. We could simply unbind them all and
3625 * rebind with the correct cache-level on next use. However since
3626 * we already have a valid slot, dma mapping, pages etc, we may as
3627 * rewrite the PTE in the belief that doing so tramples upon less
3628 * state and so involves less work.
3629 */
3630 if (obj->bind_count) {
3631 /* Before we change the PTE, the GPU must not be accessing it.
3632 * If we wait upon the object, we know that all the bound
3633 * VMA are no longer active.
3634 */
3635 ret = i915_gem_object_wait(obj,
3636 I915_WAIT_INTERRUPTIBLE |
3637 I915_WAIT_LOCKED |
3638 I915_WAIT_ALL,
3639 MAX_SCHEDULE_TIMEOUT,
3640 NULL);
3641 if (ret)
3642 return ret;
3643
3644 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3645 cache_level != I915_CACHE_NONE) {
3646 /* Access to snoopable pages through the GTT is
3647 * incoherent and on some machines causes a hard
3648 * lockup. Relinquish the CPU mmaping to force
3649 * userspace to refault in the pages and we can
3650 * then double check if the GTT mapping is still
3651 * valid for that pointer access.
3652 */
3653 i915_gem_release_mmap(obj);
3654
3655 /* As we no longer need a fence for GTT access,
3656 * we can relinquish it now (and so prevent having
3657 * to steal a fence from someone else on the next
3658 * fence request). Note GPU activity would have
3659 * dropped the fence as all snoopable access is
3660 * supposed to be linear.
3661 */
3662 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3663 ret = i915_vma_put_fence(vma);
3664 if (ret)
3665 return ret;
3666 }
3667 } else {
3668 /* We either have incoherent backing store and
3669 * so no GTT access or the architecture is fully
3670 * coherent. In such cases, existing GTT mmaps
3671 * ignore the cache bit in the PTE and we can
3672 * rewrite it without confusing the GPU or having
3673 * to force userspace to fault back in its mmaps.
3674 */
3675 }
3676
3677 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3678 if (!drm_mm_node_allocated(&vma->node))
3679 continue;
3680
3681 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3682 if (ret)
3683 return ret;
3684 }
3685 }
3686
3687 list_for_each_entry(vma, &obj->vma_list, obj_link)
3688 vma->node.color = cache_level;
3689 i915_gem_object_set_cache_coherency(obj, cache_level);
3690 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3691
3692 return 0;
3693 }
3694
3695 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3696 struct drm_file *file)
3697 {
3698 struct drm_i915_gem_caching *args = data;
3699 struct drm_i915_gem_object *obj;
3700 int err = 0;
3701
3702 rcu_read_lock();
3703 obj = i915_gem_object_lookup_rcu(file, args->handle);
3704 if (!obj) {
3705 err = -ENOENT;
3706 goto out;
3707 }
3708
3709 switch (obj->cache_level) {
3710 case I915_CACHE_LLC:
3711 case I915_CACHE_L3_LLC:
3712 args->caching = I915_CACHING_CACHED;
3713 break;
3714
3715 case I915_CACHE_WT:
3716 args->caching = I915_CACHING_DISPLAY;
3717 break;
3718
3719 default:
3720 args->caching = I915_CACHING_NONE;
3721 break;
3722 }
3723 out:
3724 rcu_read_unlock();
3725 return err;
3726 }
3727
3728 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3729 struct drm_file *file)
3730 {
3731 struct drm_i915_private *i915 = to_i915(dev);
3732 struct drm_i915_gem_caching *args = data;
3733 struct drm_i915_gem_object *obj;
3734 enum i915_cache_level level;
3735 int ret = 0;
3736
3737 switch (args->caching) {
3738 case I915_CACHING_NONE:
3739 level = I915_CACHE_NONE;
3740 break;
3741 case I915_CACHING_CACHED:
3742 /*
3743 * Due to a HW issue on BXT A stepping, GPU stores via a
3744 * snooped mapping may leave stale data in a corresponding CPU
3745 * cacheline, whereas normally such cachelines would get
3746 * invalidated.
3747 */
3748 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3749 return -ENODEV;
3750
3751 level = I915_CACHE_LLC;
3752 break;
3753 case I915_CACHING_DISPLAY:
3754 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3755 break;
3756 default:
3757 return -EINVAL;
3758 }
3759
3760 obj = i915_gem_object_lookup(file, args->handle);
3761 if (!obj)
3762 return -ENOENT;
3763
3764 if (obj->cache_level == level)
3765 goto out;
3766
3767 ret = i915_gem_object_wait(obj,
3768 I915_WAIT_INTERRUPTIBLE,
3769 MAX_SCHEDULE_TIMEOUT,
3770 to_rps_client(file));
3771 if (ret)
3772 goto out;
3773
3774 ret = i915_mutex_lock_interruptible(dev);
3775 if (ret)
3776 goto out;
3777
3778 ret = i915_gem_object_set_cache_level(obj, level);
3779 mutex_unlock(&dev->struct_mutex);
3780
3781 out:
3782 i915_gem_object_put(obj);
3783 return ret;
3784 }
3785
3786 /*
3787 * Prepare buffer for display plane (scanout, cursors, etc).
3788 * Can be called from an uninterruptible phase (modesetting) and allows
3789 * any flushes to be pipelined (for pageflips).
3790 */
3791 struct i915_vma *
3792 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3793 u32 alignment,
3794 const struct i915_ggtt_view *view)
3795 {
3796 struct i915_vma *vma;
3797 int ret;
3798
3799 lockdep_assert_held(&obj->base.dev->struct_mutex);
3800
3801 /* Mark the pin_display early so that we account for the
3802 * display coherency whilst setting up the cache domains.
3803 */
3804 obj->pin_display++;
3805
3806 /* The display engine is not coherent with the LLC cache on gen6. As
3807 * a result, we make sure that the pinning that is about to occur is
3808 * done with uncached PTEs. This is lowest common denominator for all
3809 * chipsets.
3810 *
3811 * However for gen6+, we could do better by using the GFDT bit instead
3812 * of uncaching, which would allow us to flush all the LLC-cached data
3813 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3814 */
3815 ret = i915_gem_object_set_cache_level(obj,
3816 HAS_WT(to_i915(obj->base.dev)) ?
3817 I915_CACHE_WT : I915_CACHE_NONE);
3818 if (ret) {
3819 vma = ERR_PTR(ret);
3820 goto err_unpin_display;
3821 }
3822
3823 /* As the user may map the buffer once pinned in the display plane
3824 * (e.g. libkms for the bootup splash), we have to ensure that we
3825 * always use map_and_fenceable for all scanout buffers. However,
3826 * it may simply be too big to fit into mappable, in which case
3827 * put it anyway and hope that userspace can cope (but always first
3828 * try to preserve the existing ABI).
3829 */
3830 vma = ERR_PTR(-ENOSPC);
3831 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3832 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3833 PIN_MAPPABLE | PIN_NONBLOCK);
3834 if (IS_ERR(vma)) {
3835 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3836 unsigned int flags;
3837
3838 /* Valleyview is definitely limited to scanning out the first
3839 * 512MiB. Lets presume this behaviour was inherited from the
3840 * g4x display engine and that all earlier gen are similarly
3841 * limited. Testing suggests that it is a little more
3842 * complicated than this. For example, Cherryview appears quite
3843 * happy to scanout from anywhere within its global aperture.
3844 */
3845 flags = 0;
3846 if (HAS_GMCH_DISPLAY(i915))
3847 flags = PIN_MAPPABLE;
3848 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3849 }
3850 if (IS_ERR(vma))
3851 goto err_unpin_display;
3852
3853 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3854
3855 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3856 __i915_gem_object_flush_for_display(obj);
3857 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3858
3859 /* It should now be out of any other write domains, and we can update
3860 * the domain values for our changes.
3861 */
3862 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3863
3864 return vma;
3865
3866 err_unpin_display:
3867 obj->pin_display--;
3868 return vma;
3869 }
3870
3871 void
3872 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3873 {
3874 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3875
3876 if (WARN_ON(vma->obj->pin_display == 0))
3877 return;
3878
3879 if (--vma->obj->pin_display == 0)
3880 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3881
3882 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3883 i915_gem_object_bump_inactive_ggtt(vma->obj);
3884
3885 i915_vma_unpin(vma);
3886 }
3887
3888 /**
3889 * Moves a single object to the CPU read, and possibly write domain.
3890 * @obj: object to act on
3891 * @write: requesting write or read-only access
3892 *
3893 * This function returns when the move is complete, including waiting on
3894 * flushes to occur.
3895 */
3896 int
3897 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3898 {
3899 int ret;
3900
3901 lockdep_assert_held(&obj->base.dev->struct_mutex);
3902
3903 ret = i915_gem_object_wait(obj,
3904 I915_WAIT_INTERRUPTIBLE |
3905 I915_WAIT_LOCKED |
3906 (write ? I915_WAIT_ALL : 0),
3907 MAX_SCHEDULE_TIMEOUT,
3908 NULL);
3909 if (ret)
3910 return ret;
3911
3912 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3913
3914 /* Flush the CPU cache if it's still invalid. */
3915 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3916 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3917 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3918 }
3919
3920 /* It should now be out of any other write domains, and we can update
3921 * the domain values for our changes.
3922 */
3923 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3924
3925 /* If we're writing through the CPU, then the GPU read domains will
3926 * need to be invalidated at next use.
3927 */
3928 if (write)
3929 __start_cpu_write(obj);
3930
3931 return 0;
3932 }
3933
3934 /* Throttle our rendering by waiting until the ring has completed our requests
3935 * emitted over 20 msec ago.
3936 *
3937 * Note that if we were to use the current jiffies each time around the loop,
3938 * we wouldn't escape the function with any frames outstanding if the time to
3939 * render a frame was over 20ms.
3940 *
3941 * This should get us reasonable parallelism between CPU and GPU but also
3942 * relatively low latency when blocking on a particular request to finish.
3943 */
3944 static int
3945 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3946 {
3947 struct drm_i915_private *dev_priv = to_i915(dev);
3948 struct drm_i915_file_private *file_priv = file->driver_priv;
3949 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3950 struct drm_i915_gem_request *request, *target = NULL;
3951 long ret;
3952
3953 /* ABI: return -EIO if already wedged */
3954 if (i915_terminally_wedged(&dev_priv->gpu_error))
3955 return -EIO;
3956
3957 spin_lock(&file_priv->mm.lock);
3958 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3959 if (time_after_eq(request->emitted_jiffies, recent_enough))
3960 break;
3961
3962 if (target) {
3963 list_del(&target->client_link);
3964 target->file_priv = NULL;
3965 }
3966
3967 target = request;
3968 }
3969 if (target)
3970 i915_gem_request_get(target);
3971 spin_unlock(&file_priv->mm.lock);
3972
3973 if (target == NULL)
3974 return 0;
3975
3976 ret = i915_wait_request(target,
3977 I915_WAIT_INTERRUPTIBLE,
3978 MAX_SCHEDULE_TIMEOUT);
3979 i915_gem_request_put(target);
3980
3981 return ret < 0 ? ret : 0;
3982 }
3983
3984 struct i915_vma *
3985 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3986 const struct i915_ggtt_view *view,
3987 u64 size,
3988 u64 alignment,
3989 u64 flags)
3990 {
3991 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3992 struct i915_address_space *vm = &dev_priv->ggtt.base;
3993 struct i915_vma *vma;
3994 int ret;
3995
3996 lockdep_assert_held(&obj->base.dev->struct_mutex);
3997
3998 vma = i915_vma_instance(obj, vm, view);
3999 if (unlikely(IS_ERR(vma)))
4000 return vma;
4001
4002 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4003 if (flags & PIN_NONBLOCK &&
4004 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4005 return ERR_PTR(-ENOSPC);
4006
4007 if (flags & PIN_MAPPABLE) {
4008 /* If the required space is larger than the available
4009 * aperture, we will not able to find a slot for the
4010 * object and unbinding the object now will be in
4011 * vain. Worse, doing so may cause us to ping-pong
4012 * the object in and out of the Global GTT and
4013 * waste a lot of cycles under the mutex.
4014 */
4015 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4016 return ERR_PTR(-E2BIG);
4017
4018 /* If NONBLOCK is set the caller is optimistically
4019 * trying to cache the full object within the mappable
4020 * aperture, and *must* have a fallback in place for
4021 * situations where we cannot bind the object. We
4022 * can be a little more lax here and use the fallback
4023 * more often to avoid costly migrations of ourselves
4024 * and other objects within the aperture.
4025 *
4026 * Half-the-aperture is used as a simple heuristic.
4027 * More interesting would to do search for a free
4028 * block prior to making the commitment to unbind.
4029 * That caters for the self-harm case, and with a
4030 * little more heuristics (e.g. NOFAULT, NOEVICT)
4031 * we could try to minimise harm to others.
4032 */
4033 if (flags & PIN_NONBLOCK &&
4034 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4035 return ERR_PTR(-ENOSPC);
4036 }
4037
4038 WARN(i915_vma_is_pinned(vma),
4039 "bo is already pinned in ggtt with incorrect alignment:"
4040 " offset=%08x, req.alignment=%llx,"
4041 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4042 i915_ggtt_offset(vma), alignment,
4043 !!(flags & PIN_MAPPABLE),
4044 i915_vma_is_map_and_fenceable(vma));
4045 ret = i915_vma_unbind(vma);
4046 if (ret)
4047 return ERR_PTR(ret);
4048 }
4049
4050 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4051 if (ret)
4052 return ERR_PTR(ret);
4053
4054 return vma;
4055 }
4056
4057 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4058 {
4059 /* Note that we could alias engines in the execbuf API, but
4060 * that would be very unwise as it prevents userspace from
4061 * fine control over engine selection. Ahem.
4062 *
4063 * This should be something like EXEC_MAX_ENGINE instead of
4064 * I915_NUM_ENGINES.
4065 */
4066 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4067 return 0x10000 << id;
4068 }
4069
4070 static __always_inline unsigned int __busy_write_id(unsigned int id)
4071 {
4072 /* The uABI guarantees an active writer is also amongst the read
4073 * engines. This would be true if we accessed the activity tracking
4074 * under the lock, but as we perform the lookup of the object and
4075 * its activity locklessly we can not guarantee that the last_write
4076 * being active implies that we have set the same engine flag from
4077 * last_read - hence we always set both read and write busy for
4078 * last_write.
4079 */
4080 return id | __busy_read_flag(id);
4081 }
4082
4083 static __always_inline unsigned int
4084 __busy_set_if_active(const struct dma_fence *fence,
4085 unsigned int (*flag)(unsigned int id))
4086 {
4087 struct drm_i915_gem_request *rq;
4088
4089 /* We have to check the current hw status of the fence as the uABI
4090 * guarantees forward progress. We could rely on the idle worker
4091 * to eventually flush us, but to minimise latency just ask the
4092 * hardware.
4093 *
4094 * Note we only report on the status of native fences.
4095 */
4096 if (!dma_fence_is_i915(fence))
4097 return 0;
4098
4099 /* opencode to_request() in order to avoid const warnings */
4100 rq = container_of(fence, struct drm_i915_gem_request, fence);
4101 if (i915_gem_request_completed(rq))
4102 return 0;
4103
4104 return flag(rq->engine->uabi_id);
4105 }
4106
4107 static __always_inline unsigned int
4108 busy_check_reader(const struct dma_fence *fence)
4109 {
4110 return __busy_set_if_active(fence, __busy_read_flag);
4111 }
4112
4113 static __always_inline unsigned int
4114 busy_check_writer(const struct dma_fence *fence)
4115 {
4116 if (!fence)
4117 return 0;
4118
4119 return __busy_set_if_active(fence, __busy_write_id);
4120 }
4121
4122 int
4123 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4124 struct drm_file *file)
4125 {
4126 struct drm_i915_gem_busy *args = data;
4127 struct drm_i915_gem_object *obj;
4128 struct reservation_object_list *list;
4129 unsigned int seq;
4130 int err;
4131
4132 err = -ENOENT;
4133 rcu_read_lock();
4134 obj = i915_gem_object_lookup_rcu(file, args->handle);
4135 if (!obj)
4136 goto out;
4137
4138 /* A discrepancy here is that we do not report the status of
4139 * non-i915 fences, i.e. even though we may report the object as idle,
4140 * a call to set-domain may still stall waiting for foreign rendering.
4141 * This also means that wait-ioctl may report an object as busy,
4142 * where busy-ioctl considers it idle.
4143 *
4144 * We trade the ability to warn of foreign fences to report on which
4145 * i915 engines are active for the object.
4146 *
4147 * Alternatively, we can trade that extra information on read/write
4148 * activity with
4149 * args->busy =
4150 * !reservation_object_test_signaled_rcu(obj->resv, true);
4151 * to report the overall busyness. This is what the wait-ioctl does.
4152 *
4153 */
4154 retry:
4155 seq = raw_read_seqcount(&obj->resv->seq);
4156
4157 /* Translate the exclusive fence to the READ *and* WRITE engine */
4158 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4159
4160 /* Translate shared fences to READ set of engines */
4161 list = rcu_dereference(obj->resv->fence);
4162 if (list) {
4163 unsigned int shared_count = list->shared_count, i;
4164
4165 for (i = 0; i < shared_count; ++i) {
4166 struct dma_fence *fence =
4167 rcu_dereference(list->shared[i]);
4168
4169 args->busy |= busy_check_reader(fence);
4170 }
4171 }
4172
4173 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4174 goto retry;
4175
4176 err = 0;
4177 out:
4178 rcu_read_unlock();
4179 return err;
4180 }
4181
4182 int
4183 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4184 struct drm_file *file_priv)
4185 {
4186 return i915_gem_ring_throttle(dev, file_priv);
4187 }
4188
4189 int
4190 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4191 struct drm_file *file_priv)
4192 {
4193 struct drm_i915_private *dev_priv = to_i915(dev);
4194 struct drm_i915_gem_madvise *args = data;
4195 struct drm_i915_gem_object *obj;
4196 int err;
4197
4198 switch (args->madv) {
4199 case I915_MADV_DONTNEED:
4200 case I915_MADV_WILLNEED:
4201 break;
4202 default:
4203 return -EINVAL;
4204 }
4205
4206 obj = i915_gem_object_lookup(file_priv, args->handle);
4207 if (!obj)
4208 return -ENOENT;
4209
4210 err = mutex_lock_interruptible(&obj->mm.lock);
4211 if (err)
4212 goto out;
4213
4214 if (obj->mm.pages &&
4215 i915_gem_object_is_tiled(obj) &&
4216 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4217 if (obj->mm.madv == I915_MADV_WILLNEED) {
4218 GEM_BUG_ON(!obj->mm.quirked);
4219 __i915_gem_object_unpin_pages(obj);
4220 obj->mm.quirked = false;
4221 }
4222 if (args->madv == I915_MADV_WILLNEED) {
4223 GEM_BUG_ON(obj->mm.quirked);
4224 __i915_gem_object_pin_pages(obj);
4225 obj->mm.quirked = true;
4226 }
4227 }
4228
4229 if (obj->mm.madv != __I915_MADV_PURGED)
4230 obj->mm.madv = args->madv;
4231
4232 /* if the object is no longer attached, discard its backing storage */
4233 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4234 i915_gem_object_truncate(obj);
4235
4236 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4237 mutex_unlock(&obj->mm.lock);
4238
4239 out:
4240 i915_gem_object_put(obj);
4241 return err;
4242 }
4243
4244 static void
4245 frontbuffer_retire(struct i915_gem_active *active,
4246 struct drm_i915_gem_request *request)
4247 {
4248 struct drm_i915_gem_object *obj =
4249 container_of(active, typeof(*obj), frontbuffer_write);
4250
4251 intel_fb_obj_flush(obj, ORIGIN_CS);
4252 }
4253
4254 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4255 const struct drm_i915_gem_object_ops *ops)
4256 {
4257 mutex_init(&obj->mm.lock);
4258
4259 INIT_LIST_HEAD(&obj->global_link);
4260 INIT_LIST_HEAD(&obj->userfault_link);
4261 INIT_LIST_HEAD(&obj->vma_list);
4262 INIT_LIST_HEAD(&obj->lut_list);
4263 INIT_LIST_HEAD(&obj->batch_pool_link);
4264
4265 obj->ops = ops;
4266
4267 reservation_object_init(&obj->__builtin_resv);
4268 obj->resv = &obj->__builtin_resv;
4269
4270 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4271 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4272
4273 obj->mm.madv = I915_MADV_WILLNEED;
4274 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4275 mutex_init(&obj->mm.get_page.lock);
4276
4277 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4278 }
4279
4280 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4281 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4282 I915_GEM_OBJECT_IS_SHRINKABLE,
4283
4284 .get_pages = i915_gem_object_get_pages_gtt,
4285 .put_pages = i915_gem_object_put_pages_gtt,
4286
4287 .pwrite = i915_gem_object_pwrite_gtt,
4288 };
4289
4290 struct drm_i915_gem_object *
4291 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4292 {
4293 struct drm_i915_gem_object *obj;
4294 struct address_space *mapping;
4295 unsigned int cache_level;
4296 gfp_t mask;
4297 int ret;
4298
4299 /* There is a prevalence of the assumption that we fit the object's
4300 * page count inside a 32bit _signed_ variable. Let's document this and
4301 * catch if we ever need to fix it. In the meantime, if you do spot
4302 * such a local variable, please consider fixing!
4303 */
4304 if (size >> PAGE_SHIFT > INT_MAX)
4305 return ERR_PTR(-E2BIG);
4306
4307 if (overflows_type(size, obj->base.size))
4308 return ERR_PTR(-E2BIG);
4309
4310 obj = i915_gem_object_alloc(dev_priv);
4311 if (obj == NULL)
4312 return ERR_PTR(-ENOMEM);
4313
4314 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4315 if (ret)
4316 goto fail;
4317
4318 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4319 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4320 /* 965gm cannot relocate objects above 4GiB. */
4321 mask &= ~__GFP_HIGHMEM;
4322 mask |= __GFP_DMA32;
4323 }
4324
4325 mapping = obj->base.filp->f_mapping;
4326 mapping_set_gfp_mask(mapping, mask);
4327 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4328
4329 i915_gem_object_init(obj, &i915_gem_object_ops);
4330
4331 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4332 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4333
4334 if (HAS_LLC(dev_priv))
4335 /* On some devices, we can have the GPU use the LLC (the CPU
4336 * cache) for about a 10% performance improvement
4337 * compared to uncached. Graphics requests other than
4338 * display scanout are coherent with the CPU in
4339 * accessing this cache. This means in this mode we
4340 * don't need to clflush on the CPU side, and on the
4341 * GPU side we only need to flush internal caches to
4342 * get data visible to the CPU.
4343 *
4344 * However, we maintain the display planes as UC, and so
4345 * need to rebind when first used as such.
4346 */
4347 cache_level = I915_CACHE_LLC;
4348 else
4349 cache_level = I915_CACHE_NONE;
4350
4351 i915_gem_object_set_cache_coherency(obj, cache_level);
4352
4353 trace_i915_gem_object_create(obj);
4354
4355 return obj;
4356
4357 fail:
4358 i915_gem_object_free(obj);
4359 return ERR_PTR(ret);
4360 }
4361
4362 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4363 {
4364 /* If we are the last user of the backing storage (be it shmemfs
4365 * pages or stolen etc), we know that the pages are going to be
4366 * immediately released. In this case, we can then skip copying
4367 * back the contents from the GPU.
4368 */
4369
4370 if (obj->mm.madv != I915_MADV_WILLNEED)
4371 return false;
4372
4373 if (obj->base.filp == NULL)
4374 return true;
4375
4376 /* At first glance, this looks racy, but then again so would be
4377 * userspace racing mmap against close. However, the first external
4378 * reference to the filp can only be obtained through the
4379 * i915_gem_mmap_ioctl() which safeguards us against the user
4380 * acquiring such a reference whilst we are in the middle of
4381 * freeing the object.
4382 */
4383 return atomic_long_read(&obj->base.filp->f_count) == 1;
4384 }
4385
4386 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4387 struct llist_node *freed)
4388 {
4389 struct drm_i915_gem_object *obj, *on;
4390
4391 mutex_lock(&i915->drm.struct_mutex);
4392 intel_runtime_pm_get(i915);
4393 llist_for_each_entry(obj, freed, freed) {
4394 struct i915_vma *vma, *vn;
4395
4396 trace_i915_gem_object_destroy(obj);
4397
4398 GEM_BUG_ON(i915_gem_object_is_active(obj));
4399 list_for_each_entry_safe(vma, vn,
4400 &obj->vma_list, obj_link) {
4401 GEM_BUG_ON(i915_vma_is_active(vma));
4402 vma->flags &= ~I915_VMA_PIN_MASK;
4403 i915_vma_close(vma);
4404 }
4405 GEM_BUG_ON(!list_empty(&obj->vma_list));
4406 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4407
4408 list_del(&obj->global_link);
4409 }
4410 intel_runtime_pm_put(i915);
4411 mutex_unlock(&i915->drm.struct_mutex);
4412
4413 cond_resched();
4414
4415 llist_for_each_entry_safe(obj, on, freed, freed) {
4416 GEM_BUG_ON(obj->bind_count);
4417 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4418 GEM_BUG_ON(!list_empty(&obj->lut_list));
4419
4420 if (obj->ops->release)
4421 obj->ops->release(obj);
4422
4423 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4424 atomic_set(&obj->mm.pages_pin_count, 0);
4425 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4426 GEM_BUG_ON(obj->mm.pages);
4427
4428 if (obj->base.import_attach)
4429 drm_prime_gem_destroy(&obj->base, NULL);
4430
4431 reservation_object_fini(&obj->__builtin_resv);
4432 drm_gem_object_release(&obj->base);
4433 i915_gem_info_remove_obj(i915, obj->base.size);
4434
4435 kfree(obj->bit_17);
4436 i915_gem_object_free(obj);
4437 }
4438 }
4439
4440 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4441 {
4442 struct llist_node *freed;
4443
4444 freed = llist_del_all(&i915->mm.free_list);
4445 if (unlikely(freed))
4446 __i915_gem_free_objects(i915, freed);
4447 }
4448
4449 static void __i915_gem_free_work(struct work_struct *work)
4450 {
4451 struct drm_i915_private *i915 =
4452 container_of(work, struct drm_i915_private, mm.free_work);
4453 struct llist_node *freed;
4454
4455 /* All file-owned VMA should have been released by this point through
4456 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4457 * However, the object may also be bound into the global GTT (e.g.
4458 * older GPUs without per-process support, or for direct access through
4459 * the GTT either for the user or for scanout). Those VMA still need to
4460 * unbound now.
4461 */
4462
4463 while ((freed = llist_del_all(&i915->mm.free_list))) {
4464 __i915_gem_free_objects(i915, freed);
4465 if (need_resched())
4466 break;
4467 }
4468 }
4469
4470 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4471 {
4472 struct drm_i915_gem_object *obj =
4473 container_of(head, typeof(*obj), rcu);
4474 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4475
4476 /* We can't simply use call_rcu() from i915_gem_free_object()
4477 * as we need to block whilst unbinding, and the call_rcu
4478 * task may be called from softirq context. So we take a
4479 * detour through a worker.
4480 */
4481 if (llist_add(&obj->freed, &i915->mm.free_list))
4482 schedule_work(&i915->mm.free_work);
4483 }
4484
4485 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4486 {
4487 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4488
4489 if (obj->mm.quirked)
4490 __i915_gem_object_unpin_pages(obj);
4491
4492 if (discard_backing_storage(obj))
4493 obj->mm.madv = I915_MADV_DONTNEED;
4494
4495 /* Before we free the object, make sure any pure RCU-only
4496 * read-side critical sections are complete, e.g.
4497 * i915_gem_busy_ioctl(). For the corresponding synchronized
4498 * lookup see i915_gem_object_lookup_rcu().
4499 */
4500 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4501 }
4502
4503 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4504 {
4505 lockdep_assert_held(&obj->base.dev->struct_mutex);
4506
4507 if (!i915_gem_object_has_active_reference(obj) &&
4508 i915_gem_object_is_active(obj))
4509 i915_gem_object_set_active_reference(obj);
4510 else
4511 i915_gem_object_put(obj);
4512 }
4513
4514 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4515 {
4516 struct intel_engine_cs *engine;
4517 enum intel_engine_id id;
4518
4519 for_each_engine(engine, dev_priv, id)
4520 GEM_BUG_ON(engine->last_retired_context &&
4521 !i915_gem_context_is_kernel(engine->last_retired_context));
4522 }
4523
4524 void i915_gem_sanitize(struct drm_i915_private *i915)
4525 {
4526 if (i915_terminally_wedged(&i915->gpu_error)) {
4527 mutex_lock(&i915->drm.struct_mutex);
4528 i915_gem_unset_wedged(i915);
4529 mutex_unlock(&i915->drm.struct_mutex);
4530 }
4531
4532 /*
4533 * If we inherit context state from the BIOS or earlier occupants
4534 * of the GPU, the GPU may be in an inconsistent state when we
4535 * try to take over. The only way to remove the earlier state
4536 * is by resetting. However, resetting on earlier gen is tricky as
4537 * it may impact the display and we are uncertain about the stability
4538 * of the reset, so this could be applied to even earlier gen.
4539 */
4540 if (INTEL_GEN(i915) >= 5) {
4541 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4542 WARN_ON(reset && reset != -ENODEV);
4543 }
4544 }
4545
4546 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4547 {
4548 struct drm_device *dev = &dev_priv->drm;
4549 int ret;
4550
4551 intel_runtime_pm_get(dev_priv);
4552 intel_suspend_gt_powersave(dev_priv);
4553
4554 mutex_lock(&dev->struct_mutex);
4555
4556 /* We have to flush all the executing contexts to main memory so
4557 * that they can saved in the hibernation image. To ensure the last
4558 * context image is coherent, we have to switch away from it. That
4559 * leaves the dev_priv->kernel_context still active when
4560 * we actually suspend, and its image in memory may not match the GPU
4561 * state. Fortunately, the kernel_context is disposable and we do
4562 * not rely on its state.
4563 */
4564 ret = i915_gem_switch_to_kernel_context(dev_priv);
4565 if (ret)
4566 goto err_unlock;
4567
4568 ret = i915_gem_wait_for_idle(dev_priv,
4569 I915_WAIT_INTERRUPTIBLE |
4570 I915_WAIT_LOCKED);
4571 if (ret && ret != -EIO)
4572 goto err_unlock;
4573
4574 assert_kernel_context_is_current(dev_priv);
4575 i915_gem_contexts_lost(dev_priv);
4576 mutex_unlock(&dev->struct_mutex);
4577
4578 intel_guc_suspend(dev_priv);
4579
4580 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4581 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4582
4583 /* As the idle_work is rearming if it detects a race, play safe and
4584 * repeat the flush until it is definitely idle.
4585 */
4586 while (flush_delayed_work(&dev_priv->gt.idle_work))
4587 ;
4588
4589 /* Assert that we sucessfully flushed all the work and
4590 * reset the GPU back to its idle, low power state.
4591 */
4592 WARN_ON(dev_priv->gt.awake);
4593 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4594 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4595
4596 /*
4597 * Neither the BIOS, ourselves or any other kernel
4598 * expects the system to be in execlists mode on startup,
4599 * so we need to reset the GPU back to legacy mode. And the only
4600 * known way to disable logical contexts is through a GPU reset.
4601 *
4602 * So in order to leave the system in a known default configuration,
4603 * always reset the GPU upon unload and suspend. Afterwards we then
4604 * clean up the GEM state tracking, flushing off the requests and
4605 * leaving the system in a known idle state.
4606 *
4607 * Note that is of the upmost importance that the GPU is idle and
4608 * all stray writes are flushed *before* we dismantle the backing
4609 * storage for the pinned objects.
4610 *
4611 * However, since we are uncertain that resetting the GPU on older
4612 * machines is a good idea, we don't - just in case it leaves the
4613 * machine in an unusable condition.
4614 */
4615 i915_gem_sanitize(dev_priv);
4616
4617 intel_runtime_pm_put(dev_priv);
4618 return 0;
4619
4620 err_unlock:
4621 mutex_unlock(&dev->struct_mutex);
4622 intel_runtime_pm_put(dev_priv);
4623 return ret;
4624 }
4625
4626 void i915_gem_resume(struct drm_i915_private *dev_priv)
4627 {
4628 struct drm_device *dev = &dev_priv->drm;
4629
4630 WARN_ON(dev_priv->gt.awake);
4631
4632 mutex_lock(&dev->struct_mutex);
4633 i915_gem_restore_gtt_mappings(dev_priv);
4634
4635 /* As we didn't flush the kernel context before suspend, we cannot
4636 * guarantee that the context image is complete. So let's just reset
4637 * it and start again.
4638 */
4639 dev_priv->gt.resume(dev_priv);
4640
4641 mutex_unlock(&dev->struct_mutex);
4642 }
4643
4644 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4645 {
4646 if (INTEL_GEN(dev_priv) < 5 ||
4647 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4648 return;
4649
4650 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4651 DISP_TILE_SURFACE_SWIZZLING);
4652
4653 if (IS_GEN5(dev_priv))
4654 return;
4655
4656 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4657 if (IS_GEN6(dev_priv))
4658 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4659 else if (IS_GEN7(dev_priv))
4660 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4661 else if (IS_GEN8(dev_priv))
4662 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4663 else
4664 BUG();
4665 }
4666
4667 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4668 {
4669 I915_WRITE(RING_CTL(base), 0);
4670 I915_WRITE(RING_HEAD(base), 0);
4671 I915_WRITE(RING_TAIL(base), 0);
4672 I915_WRITE(RING_START(base), 0);
4673 }
4674
4675 static void init_unused_rings(struct drm_i915_private *dev_priv)
4676 {
4677 if (IS_I830(dev_priv)) {
4678 init_unused_ring(dev_priv, PRB1_BASE);
4679 init_unused_ring(dev_priv, SRB0_BASE);
4680 init_unused_ring(dev_priv, SRB1_BASE);
4681 init_unused_ring(dev_priv, SRB2_BASE);
4682 init_unused_ring(dev_priv, SRB3_BASE);
4683 } else if (IS_GEN2(dev_priv)) {
4684 init_unused_ring(dev_priv, SRB0_BASE);
4685 init_unused_ring(dev_priv, SRB1_BASE);
4686 } else if (IS_GEN3(dev_priv)) {
4687 init_unused_ring(dev_priv, PRB1_BASE);
4688 init_unused_ring(dev_priv, PRB2_BASE);
4689 }
4690 }
4691
4692 static int __i915_gem_restart_engines(void *data)
4693 {
4694 struct drm_i915_private *i915 = data;
4695 struct intel_engine_cs *engine;
4696 enum intel_engine_id id;
4697 int err;
4698
4699 for_each_engine(engine, i915, id) {
4700 err = engine->init_hw(engine);
4701 if (err)
4702 return err;
4703 }
4704
4705 return 0;
4706 }
4707
4708 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4709 {
4710 int ret;
4711
4712 dev_priv->gt.last_init_time = ktime_get();
4713
4714 /* Double layer security blanket, see i915_gem_init() */
4715 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4716
4717 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4718 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4719
4720 if (IS_HASWELL(dev_priv))
4721 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4722 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4723
4724 if (HAS_PCH_NOP(dev_priv)) {
4725 if (IS_IVYBRIDGE(dev_priv)) {
4726 u32 temp = I915_READ(GEN7_MSG_CTL);
4727 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4728 I915_WRITE(GEN7_MSG_CTL, temp);
4729 } else if (INTEL_GEN(dev_priv) >= 7) {
4730 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4731 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4732 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4733 }
4734 }
4735
4736 i915_gem_init_swizzling(dev_priv);
4737
4738 /*
4739 * At least 830 can leave some of the unused rings
4740 * "active" (ie. head != tail) after resume which
4741 * will prevent c3 entry. Makes sure all unused rings
4742 * are totally idle.
4743 */
4744 init_unused_rings(dev_priv);
4745
4746 BUG_ON(!dev_priv->kernel_context);
4747
4748 ret = i915_ppgtt_init_hw(dev_priv);
4749 if (ret) {
4750 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4751 goto out;
4752 }
4753
4754 /* Need to do basic initialisation of all rings first: */
4755 ret = __i915_gem_restart_engines(dev_priv);
4756 if (ret)
4757 goto out;
4758
4759 intel_mocs_init_l3cc_table(dev_priv);
4760
4761 /* We can't enable contexts until all firmware is loaded */
4762 ret = intel_uc_init_hw(dev_priv);
4763 if (ret)
4764 goto out;
4765
4766 out:
4767 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768 return ret;
4769 }
4770
4771 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4772 {
4773 if (INTEL_INFO(dev_priv)->gen < 6)
4774 return false;
4775
4776 /* TODO: make semaphores and Execlists play nicely together */
4777 if (i915.enable_execlists)
4778 return false;
4779
4780 if (value >= 0)
4781 return value;
4782
4783 /* Enable semaphores on SNB when IO remapping is off */
4784 if (IS_GEN6(dev_priv) && intel_vtd_active())
4785 return false;
4786
4787 return true;
4788 }
4789
4790 int i915_gem_init(struct drm_i915_private *dev_priv)
4791 {
4792 int ret;
4793
4794 mutex_lock(&dev_priv->drm.struct_mutex);
4795
4796 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4797
4798 if (!i915.enable_execlists) {
4799 dev_priv->gt.resume = intel_legacy_submission_resume;
4800 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4801 } else {
4802 dev_priv->gt.resume = intel_lr_context_resume;
4803 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4804 }
4805
4806 /* This is just a security blanket to placate dragons.
4807 * On some systems, we very sporadically observe that the first TLBs
4808 * used by the CS may be stale, despite us poking the TLB reset. If
4809 * we hold the forcewake during initialisation these problems
4810 * just magically go away.
4811 */
4812 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4813
4814 ret = i915_gem_init_userptr(dev_priv);
4815 if (ret)
4816 goto out_unlock;
4817
4818 ret = i915_gem_init_ggtt(dev_priv);
4819 if (ret)
4820 goto out_unlock;
4821
4822 ret = i915_gem_contexts_init(dev_priv);
4823 if (ret)
4824 goto out_unlock;
4825
4826 ret = intel_engines_init(dev_priv);
4827 if (ret)
4828 goto out_unlock;
4829
4830 ret = i915_gem_init_hw(dev_priv);
4831 if (ret == -EIO) {
4832 /* Allow engine initialisation to fail by marking the GPU as
4833 * wedged. But we only want to do this where the GPU is angry,
4834 * for all other failure, such as an allocation failure, bail.
4835 */
4836 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4837 i915_gem_set_wedged(dev_priv);
4838 ret = 0;
4839 }
4840
4841 out_unlock:
4842 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4843 mutex_unlock(&dev_priv->drm.struct_mutex);
4844
4845 return ret;
4846 }
4847
4848 void i915_gem_init_mmio(struct drm_i915_private *i915)
4849 {
4850 i915_gem_sanitize(i915);
4851 }
4852
4853 void
4854 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4855 {
4856 struct intel_engine_cs *engine;
4857 enum intel_engine_id id;
4858
4859 for_each_engine(engine, dev_priv, id)
4860 dev_priv->gt.cleanup_engine(engine);
4861 }
4862
4863 void
4864 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4865 {
4866 int i;
4867
4868 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4869 !IS_CHERRYVIEW(dev_priv))
4870 dev_priv->num_fence_regs = 32;
4871 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4872 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4873 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4874 dev_priv->num_fence_regs = 16;
4875 else
4876 dev_priv->num_fence_regs = 8;
4877
4878 if (intel_vgpu_active(dev_priv))
4879 dev_priv->num_fence_regs =
4880 I915_READ(vgtif_reg(avail_rs.fence_num));
4881
4882 /* Initialize fence registers to zero */
4883 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4884 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4885
4886 fence->i915 = dev_priv;
4887 fence->id = i;
4888 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4889 }
4890 i915_gem_restore_fences(dev_priv);
4891
4892 i915_gem_detect_bit_6_swizzle(dev_priv);
4893 }
4894
4895 int
4896 i915_gem_load_init(struct drm_i915_private *dev_priv)
4897 {
4898 int err = -ENOMEM;
4899
4900 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4901 if (!dev_priv->objects)
4902 goto err_out;
4903
4904 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4905 if (!dev_priv->vmas)
4906 goto err_objects;
4907
4908 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4909 if (!dev_priv->luts)
4910 goto err_vmas;
4911
4912 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4913 SLAB_HWCACHE_ALIGN |
4914 SLAB_RECLAIM_ACCOUNT |
4915 SLAB_TYPESAFE_BY_RCU);
4916 if (!dev_priv->requests)
4917 goto err_luts;
4918
4919 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4920 SLAB_HWCACHE_ALIGN |
4921 SLAB_RECLAIM_ACCOUNT);
4922 if (!dev_priv->dependencies)
4923 goto err_requests;
4924
4925 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4926 if (!dev_priv->priorities)
4927 goto err_dependencies;
4928
4929 mutex_lock(&dev_priv->drm.struct_mutex);
4930 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4931 err = i915_gem_timeline_init__global(dev_priv);
4932 mutex_unlock(&dev_priv->drm.struct_mutex);
4933 if (err)
4934 goto err_priorities;
4935
4936 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4937 init_llist_head(&dev_priv->mm.free_list);
4938 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4939 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4940 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4941 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4942 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4943 i915_gem_retire_work_handler);
4944 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4945 i915_gem_idle_work_handler);
4946 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4947 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4948
4949 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4950
4951 spin_lock_init(&dev_priv->fb_tracking.lock);
4952
4953 return 0;
4954
4955 err_priorities:
4956 kmem_cache_destroy(dev_priv->priorities);
4957 err_dependencies:
4958 kmem_cache_destroy(dev_priv->dependencies);
4959 err_requests:
4960 kmem_cache_destroy(dev_priv->requests);
4961 err_luts:
4962 kmem_cache_destroy(dev_priv->luts);
4963 err_vmas:
4964 kmem_cache_destroy(dev_priv->vmas);
4965 err_objects:
4966 kmem_cache_destroy(dev_priv->objects);
4967 err_out:
4968 return err;
4969 }
4970
4971 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4972 {
4973 i915_gem_drain_freed_objects(dev_priv);
4974 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4975 WARN_ON(dev_priv->mm.object_count);
4976
4977 mutex_lock(&dev_priv->drm.struct_mutex);
4978 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4979 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4980 mutex_unlock(&dev_priv->drm.struct_mutex);
4981
4982 kmem_cache_destroy(dev_priv->priorities);
4983 kmem_cache_destroy(dev_priv->dependencies);
4984 kmem_cache_destroy(dev_priv->requests);
4985 kmem_cache_destroy(dev_priv->luts);
4986 kmem_cache_destroy(dev_priv->vmas);
4987 kmem_cache_destroy(dev_priv->objects);
4988
4989 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4990 rcu_barrier();
4991 }
4992
4993 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4994 {
4995 /* Discard all purgeable objects, let userspace recover those as
4996 * required after resuming.
4997 */
4998 i915_gem_shrink_all(dev_priv);
4999
5000 return 0;
5001 }
5002
5003 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5004 {
5005 struct drm_i915_gem_object *obj;
5006 struct list_head *phases[] = {
5007 &dev_priv->mm.unbound_list,
5008 &dev_priv->mm.bound_list,
5009 NULL
5010 }, **p;
5011
5012 /* Called just before we write the hibernation image.
5013 *
5014 * We need to update the domain tracking to reflect that the CPU
5015 * will be accessing all the pages to create and restore from the
5016 * hibernation, and so upon restoration those pages will be in the
5017 * CPU domain.
5018 *
5019 * To make sure the hibernation image contains the latest state,
5020 * we update that state just before writing out the image.
5021 *
5022 * To try and reduce the hibernation image, we manually shrink
5023 * the objects as well, see i915_gem_freeze()
5024 */
5025
5026 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5027 i915_gem_drain_freed_objects(dev_priv);
5028
5029 mutex_lock(&dev_priv->drm.struct_mutex);
5030 for (p = phases; *p; p++) {
5031 list_for_each_entry(obj, *p, global_link)
5032 __start_cpu_write(obj);
5033 }
5034 mutex_unlock(&dev_priv->drm.struct_mutex);
5035
5036 return 0;
5037 }
5038
5039 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5040 {
5041 struct drm_i915_file_private *file_priv = file->driver_priv;
5042 struct drm_i915_gem_request *request;
5043
5044 /* Clean up our request list when the client is going away, so that
5045 * later retire_requests won't dereference our soon-to-be-gone
5046 * file_priv.
5047 */
5048 spin_lock(&file_priv->mm.lock);
5049 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5050 request->file_priv = NULL;
5051 spin_unlock(&file_priv->mm.lock);
5052 }
5053
5054 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5055 {
5056 struct drm_i915_file_private *file_priv;
5057 int ret;
5058
5059 DRM_DEBUG("\n");
5060
5061 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5062 if (!file_priv)
5063 return -ENOMEM;
5064
5065 file->driver_priv = file_priv;
5066 file_priv->dev_priv = i915;
5067 file_priv->file = file;
5068
5069 spin_lock_init(&file_priv->mm.lock);
5070 INIT_LIST_HEAD(&file_priv->mm.request_list);
5071
5072 file_priv->bsd_engine = -1;
5073
5074 ret = i915_gem_context_open(i915, file);
5075 if (ret)
5076 kfree(file_priv);
5077
5078 return ret;
5079 }
5080
5081 /**
5082 * i915_gem_track_fb - update frontbuffer tracking
5083 * @old: current GEM buffer for the frontbuffer slots
5084 * @new: new GEM buffer for the frontbuffer slots
5085 * @frontbuffer_bits: bitmask of frontbuffer slots
5086 *
5087 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5088 * from @old and setting them in @new. Both @old and @new can be NULL.
5089 */
5090 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5091 struct drm_i915_gem_object *new,
5092 unsigned frontbuffer_bits)
5093 {
5094 /* Control of individual bits within the mask are guarded by
5095 * the owning plane->mutex, i.e. we can never see concurrent
5096 * manipulation of individual bits. But since the bitfield as a whole
5097 * is updated using RMW, we need to use atomics in order to update
5098 * the bits.
5099 */
5100 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5101 sizeof(atomic_t) * BITS_PER_BYTE);
5102
5103 if (old) {
5104 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5105 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5106 }
5107
5108 if (new) {
5109 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5110 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5111 }
5112 }
5113
5114 /* Allocate a new GEM object and fill it with the supplied data */
5115 struct drm_i915_gem_object *
5116 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5117 const void *data, size_t size)
5118 {
5119 struct drm_i915_gem_object *obj;
5120 struct file *file;
5121 size_t offset;
5122 int err;
5123
5124 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5125 if (IS_ERR(obj))
5126 return obj;
5127
5128 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5129
5130 file = obj->base.filp;
5131 offset = 0;
5132 do {
5133 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5134 struct page *page;
5135 void *pgdata, *vaddr;
5136
5137 err = pagecache_write_begin(file, file->f_mapping,
5138 offset, len, 0,
5139 &page, &pgdata);
5140 if (err < 0)
5141 goto fail;
5142
5143 vaddr = kmap(page);
5144 memcpy(vaddr, data, len);
5145 kunmap(page);
5146
5147 err = pagecache_write_end(file, file->f_mapping,
5148 offset, len, len,
5149 page, pgdata);
5150 if (err < 0)
5151 goto fail;
5152
5153 size -= len;
5154 data += len;
5155 offset += len;
5156 } while (size);
5157
5158 return obj;
5159
5160 fail:
5161 i915_gem_object_put(obj);
5162 return ERR_PTR(err);
5163 }
5164
5165 struct scatterlist *
5166 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5167 unsigned int n,
5168 unsigned int *offset)
5169 {
5170 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5171 struct scatterlist *sg;
5172 unsigned int idx, count;
5173
5174 might_sleep();
5175 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5176 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5177
5178 /* As we iterate forward through the sg, we record each entry in a
5179 * radixtree for quick repeated (backwards) lookups. If we have seen
5180 * this index previously, we will have an entry for it.
5181 *
5182 * Initial lookup is O(N), but this is amortized to O(1) for
5183 * sequential page access (where each new request is consecutive
5184 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5185 * i.e. O(1) with a large constant!
5186 */
5187 if (n < READ_ONCE(iter->sg_idx))
5188 goto lookup;
5189
5190 mutex_lock(&iter->lock);
5191
5192 /* We prefer to reuse the last sg so that repeated lookup of this
5193 * (or the subsequent) sg are fast - comparing against the last
5194 * sg is faster than going through the radixtree.
5195 */
5196
5197 sg = iter->sg_pos;
5198 idx = iter->sg_idx;
5199 count = __sg_page_count(sg);
5200
5201 while (idx + count <= n) {
5202 unsigned long exception, i;
5203 int ret;
5204
5205 /* If we cannot allocate and insert this entry, or the
5206 * individual pages from this range, cancel updating the
5207 * sg_idx so that on this lookup we are forced to linearly
5208 * scan onwards, but on future lookups we will try the
5209 * insertion again (in which case we need to be careful of
5210 * the error return reporting that we have already inserted
5211 * this index).
5212 */
5213 ret = radix_tree_insert(&iter->radix, idx, sg);
5214 if (ret && ret != -EEXIST)
5215 goto scan;
5216
5217 exception =
5218 RADIX_TREE_EXCEPTIONAL_ENTRY |
5219 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5220 for (i = 1; i < count; i++) {
5221 ret = radix_tree_insert(&iter->radix, idx + i,
5222 (void *)exception);
5223 if (ret && ret != -EEXIST)
5224 goto scan;
5225 }
5226
5227 idx += count;
5228 sg = ____sg_next(sg);
5229 count = __sg_page_count(sg);
5230 }
5231
5232 scan:
5233 iter->sg_pos = sg;
5234 iter->sg_idx = idx;
5235
5236 mutex_unlock(&iter->lock);
5237
5238 if (unlikely(n < idx)) /* insertion completed by another thread */
5239 goto lookup;
5240
5241 /* In case we failed to insert the entry into the radixtree, we need
5242 * to look beyond the current sg.
5243 */
5244 while (idx + count <= n) {
5245 idx += count;
5246 sg = ____sg_next(sg);
5247 count = __sg_page_count(sg);
5248 }
5249
5250 *offset = n - idx;
5251 return sg;
5252
5253 lookup:
5254 rcu_read_lock();
5255
5256 sg = radix_tree_lookup(&iter->radix, n);
5257 GEM_BUG_ON(!sg);
5258
5259 /* If this index is in the middle of multi-page sg entry,
5260 * the radixtree will contain an exceptional entry that points
5261 * to the start of that range. We will return the pointer to
5262 * the base page and the offset of this page within the
5263 * sg entry's range.
5264 */
5265 *offset = 0;
5266 if (unlikely(radix_tree_exception(sg))) {
5267 unsigned long base =
5268 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5269
5270 sg = radix_tree_lookup(&iter->radix, base);
5271 GEM_BUG_ON(!sg);
5272
5273 *offset = n - base;
5274 }
5275
5276 rcu_read_unlock();
5277
5278 return sg;
5279 }
5280
5281 struct page *
5282 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5283 {
5284 struct scatterlist *sg;
5285 unsigned int offset;
5286
5287 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5288
5289 sg = i915_gem_object_get_sg(obj, n, &offset);
5290 return nth_page(sg_page(sg), offset);
5291 }
5292
5293 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5294 struct page *
5295 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5296 unsigned int n)
5297 {
5298 struct page *page;
5299
5300 page = i915_gem_object_get_page(obj, n);
5301 if (!obj->mm.dirty)
5302 set_page_dirty(page);
5303
5304 return page;
5305 }
5306
5307 dma_addr_t
5308 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5309 unsigned long n)
5310 {
5311 struct scatterlist *sg;
5312 unsigned int offset;
5313
5314 sg = i915_gem_object_get_sg(obj, n, &offset);
5315 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5316 }
5317
5318 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5319 {
5320 struct sg_table *pages;
5321 int err;
5322
5323 if (align > obj->base.size)
5324 return -EINVAL;
5325
5326 if (obj->ops == &i915_gem_phys_ops)
5327 return 0;
5328
5329 if (obj->ops != &i915_gem_object_ops)
5330 return -EINVAL;
5331
5332 err = i915_gem_object_unbind(obj);
5333 if (err)
5334 return err;
5335
5336 mutex_lock(&obj->mm.lock);
5337
5338 if (obj->mm.madv != I915_MADV_WILLNEED) {
5339 err = -EFAULT;
5340 goto err_unlock;
5341 }
5342
5343 if (obj->mm.quirked) {
5344 err = -EFAULT;
5345 goto err_unlock;
5346 }
5347
5348 if (obj->mm.mapping) {
5349 err = -EBUSY;
5350 goto err_unlock;
5351 }
5352
5353 pages = obj->mm.pages;
5354 obj->ops = &i915_gem_phys_ops;
5355
5356 err = ____i915_gem_object_get_pages(obj);
5357 if (err)
5358 goto err_xfer;
5359
5360 /* Perma-pin (until release) the physical set of pages */
5361 __i915_gem_object_pin_pages(obj);
5362
5363 if (!IS_ERR_OR_NULL(pages))
5364 i915_gem_object_ops.put_pages(obj, pages);
5365 mutex_unlock(&obj->mm.lock);
5366 return 0;
5367
5368 err_xfer:
5369 obj->ops = &i915_gem_object_ops;
5370 obj->mm.pages = pages;
5371 err_unlock:
5372 mutex_unlock(&obj->mm.lock);
5373 return err;
5374 }
5375
5376 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5377 #include "selftests/scatterlist.c"
5378 #include "selftests/mock_gem_device.c"
5379 #include "selftests/huge_gem_object.c"
5380 #include "selftests/i915_gem_object.c"
5381 #include "selftests/i915_gem_coherency.c"
5382 #endif