]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Remove fence pipelining
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
43 unsigned alignment,
44 bool map_and_fenceable);
45 static void i915_gem_clear_fence_reg(struct drm_device *dev,
46 struct drm_i915_fence_reg *reg);
47 static int i915_gem_phys_pwrite(struct drm_device *dev,
48 struct drm_i915_gem_object *obj,
49 struct drm_i915_gem_pwrite *args,
50 struct drm_file *file);
51 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
52
53 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
54 struct shrink_control *sc);
55 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
56
57 /* some bookkeeping */
58 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
59 size_t size)
60 {
61 dev_priv->mm.object_count++;
62 dev_priv->mm.object_memory += size;
63 }
64
65 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 dev_priv->mm.object_count--;
69 dev_priv->mm.object_memory -= size;
70 }
71
72 static int
73 i915_gem_wait_for_error(struct drm_device *dev)
74 {
75 struct drm_i915_private *dev_priv = dev->dev_private;
76 struct completion *x = &dev_priv->error_completion;
77 unsigned long flags;
78 int ret;
79
80 if (!atomic_read(&dev_priv->mm.wedged))
81 return 0;
82
83 ret = wait_for_completion_interruptible(x);
84 if (ret)
85 return ret;
86
87 if (atomic_read(&dev_priv->mm.wedged)) {
88 /* GPU is hung, bump the completion count to account for
89 * the token we just consumed so that we never hit zero and
90 * end up waiting upon a subsequent completion event that
91 * will never happen.
92 */
93 spin_lock_irqsave(&x->wait.lock, flags);
94 x->done++;
95 spin_unlock_irqrestore(&x->wait.lock, flags);
96 }
97 return 0;
98 }
99
100 int i915_mutex_lock_interruptible(struct drm_device *dev)
101 {
102 int ret;
103
104 ret = i915_gem_wait_for_error(dev);
105 if (ret)
106 return ret;
107
108 ret = mutex_lock_interruptible(&dev->struct_mutex);
109 if (ret)
110 return ret;
111
112 WARN_ON(i915_verify_lists(dev));
113 return 0;
114 }
115
116 static inline bool
117 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
118 {
119 return obj->gtt_space && !obj->active && obj->pin_count == 0;
120 }
121
122 int
123 i915_gem_init_ioctl(struct drm_device *dev, void *data,
124 struct drm_file *file)
125 {
126 struct drm_i915_gem_init *args = data;
127
128 if (args->gtt_start >= args->gtt_end ||
129 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
130 return -EINVAL;
131
132 /* GEM with user mode setting was never supported on ilk and later. */
133 if (INTEL_INFO(dev)->gen >= 5)
134 return -ENODEV;
135
136 mutex_lock(&dev->struct_mutex);
137 i915_gem_init_global_gtt(dev, args->gtt_start,
138 args->gtt_end, args->gtt_end);
139 mutex_unlock(&dev->struct_mutex);
140
141 return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 struct drm_i915_gem_get_aperture *args = data;
150 struct drm_i915_gem_object *obj;
151 size_t pinned;
152
153 if (!(dev->driver->driver_features & DRIVER_GEM))
154 return -ENODEV;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
159 pinned += obj->gtt_space->size;
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->mm.gtt_total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_create(struct drm_file *file,
170 struct drm_device *dev,
171 uint64_t size,
172 uint32_t *handle_p)
173 {
174 struct drm_i915_gem_object *obj;
175 int ret;
176 u32 handle;
177
178 size = roundup(size, PAGE_SIZE);
179 if (size == 0)
180 return -EINVAL;
181
182 /* Allocate the new object */
183 obj = i915_gem_alloc_object(dev, size);
184 if (obj == NULL)
185 return -ENOMEM;
186
187 ret = drm_gem_handle_create(file, &obj->base, &handle);
188 if (ret) {
189 drm_gem_object_release(&obj->base);
190 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
191 kfree(obj);
192 return ret;
193 }
194
195 /* drop reference from allocate - handle holds it now */
196 drm_gem_object_unreference(&obj->base);
197 trace_i915_gem_object_create(obj);
198
199 *handle_p = handle;
200 return 0;
201 }
202
203 int
204 i915_gem_dumb_create(struct drm_file *file,
205 struct drm_device *dev,
206 struct drm_mode_create_dumb *args)
207 {
208 /* have to work out size/pitch and return them */
209 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
210 args->size = args->pitch * args->height;
211 return i915_gem_create(file, dev,
212 args->size, &args->handle);
213 }
214
215 int i915_gem_dumb_destroy(struct drm_file *file,
216 struct drm_device *dev,
217 uint32_t handle)
218 {
219 return drm_gem_handle_delete(file, handle);
220 }
221
222 /**
223 * Creates a new mm object and returns a handle to it.
224 */
225 int
226 i915_gem_create_ioctl(struct drm_device *dev, void *data,
227 struct drm_file *file)
228 {
229 struct drm_i915_gem_create *args = data;
230 return i915_gem_create(file, dev,
231 args->size, &args->handle);
232 }
233
234 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
235 {
236 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
237
238 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
239 obj->tiling_mode != I915_TILING_NONE;
240 }
241
242 static inline int
243 __copy_to_user_swizzled(char __user *cpu_vaddr,
244 const char *gpu_vaddr, int gpu_offset,
245 int length)
246 {
247 int ret, cpu_offset = 0;
248
249 while (length > 0) {
250 int cacheline_end = ALIGN(gpu_offset + 1, 64);
251 int this_length = min(cacheline_end - gpu_offset, length);
252 int swizzled_gpu_offset = gpu_offset ^ 64;
253
254 ret = __copy_to_user(cpu_vaddr + cpu_offset,
255 gpu_vaddr + swizzled_gpu_offset,
256 this_length);
257 if (ret)
258 return ret + length;
259
260 cpu_offset += this_length;
261 gpu_offset += this_length;
262 length -= this_length;
263 }
264
265 return 0;
266 }
267
268 static inline int
269 __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
270 const char *cpu_vaddr,
271 int length)
272 {
273 int ret, cpu_offset = 0;
274
275 while (length > 0) {
276 int cacheline_end = ALIGN(gpu_offset + 1, 64);
277 int this_length = min(cacheline_end - gpu_offset, length);
278 int swizzled_gpu_offset = gpu_offset ^ 64;
279
280 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
281 cpu_vaddr + cpu_offset,
282 this_length);
283 if (ret)
284 return ret + length;
285
286 cpu_offset += this_length;
287 gpu_offset += this_length;
288 length -= this_length;
289 }
290
291 return 0;
292 }
293
294 /* Per-page copy function for the shmem pread fastpath.
295 * Flushes invalid cachelines before reading the target if
296 * needs_clflush is set. */
297 static int
298 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
299 char __user *user_data,
300 bool page_do_bit17_swizzling, bool needs_clflush)
301 {
302 char *vaddr;
303 int ret;
304
305 if (unlikely(page_do_bit17_swizzling))
306 return -EINVAL;
307
308 vaddr = kmap_atomic(page);
309 if (needs_clflush)
310 drm_clflush_virt_range(vaddr + shmem_page_offset,
311 page_length);
312 ret = __copy_to_user_inatomic(user_data,
313 vaddr + shmem_page_offset,
314 page_length);
315 kunmap_atomic(vaddr);
316
317 return ret;
318 }
319
320 static void
321 shmem_clflush_swizzled_range(char *addr, unsigned long length,
322 bool swizzled)
323 {
324 if (unlikely(swizzled)) {
325 unsigned long start = (unsigned long) addr;
326 unsigned long end = (unsigned long) addr + length;
327
328 /* For swizzling simply ensure that we always flush both
329 * channels. Lame, but simple and it works. Swizzled
330 * pwrite/pread is far from a hotpath - current userspace
331 * doesn't use it at all. */
332 start = round_down(start, 128);
333 end = round_up(end, 128);
334
335 drm_clflush_virt_range((void *)start, end - start);
336 } else {
337 drm_clflush_virt_range(addr, length);
338 }
339
340 }
341
342 /* Only difference to the fast-path function is that this can handle bit17
343 * and uses non-atomic copy and kmap functions. */
344 static int
345 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
346 char __user *user_data,
347 bool page_do_bit17_swizzling, bool needs_clflush)
348 {
349 char *vaddr;
350 int ret;
351
352 vaddr = kmap(page);
353 if (needs_clflush)
354 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
355 page_length,
356 page_do_bit17_swizzling);
357
358 if (page_do_bit17_swizzling)
359 ret = __copy_to_user_swizzled(user_data,
360 vaddr, shmem_page_offset,
361 page_length);
362 else
363 ret = __copy_to_user(user_data,
364 vaddr + shmem_page_offset,
365 page_length);
366 kunmap(page);
367
368 return ret;
369 }
370
371 static int
372 i915_gem_shmem_pread(struct drm_device *dev,
373 struct drm_i915_gem_object *obj,
374 struct drm_i915_gem_pread *args,
375 struct drm_file *file)
376 {
377 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
378 char __user *user_data;
379 ssize_t remain;
380 loff_t offset;
381 int shmem_page_offset, page_length, ret = 0;
382 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
383 int hit_slowpath = 0;
384 int prefaulted = 0;
385 int needs_clflush = 0;
386 int release_page;
387
388 user_data = (char __user *) (uintptr_t) args->data_ptr;
389 remain = args->size;
390
391 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
392
393 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
394 /* If we're not in the cpu read domain, set ourself into the gtt
395 * read domain and manually flush cachelines (if required). This
396 * optimizes for the case when the gpu will dirty the data
397 * anyway again before the next pread happens. */
398 if (obj->cache_level == I915_CACHE_NONE)
399 needs_clflush = 1;
400 ret = i915_gem_object_set_to_gtt_domain(obj, false);
401 if (ret)
402 return ret;
403 }
404
405 offset = args->offset;
406
407 while (remain > 0) {
408 struct page *page;
409
410 /* Operation in this page
411 *
412 * shmem_page_offset = offset within page in shmem file
413 * page_length = bytes to copy for this page
414 */
415 shmem_page_offset = offset_in_page(offset);
416 page_length = remain;
417 if ((shmem_page_offset + page_length) > PAGE_SIZE)
418 page_length = PAGE_SIZE - shmem_page_offset;
419
420 if (obj->pages) {
421 page = obj->pages[offset >> PAGE_SHIFT];
422 release_page = 0;
423 } else {
424 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
425 if (IS_ERR(page)) {
426 ret = PTR_ERR(page);
427 goto out;
428 }
429 release_page = 1;
430 }
431
432 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
433 (page_to_phys(page) & (1 << 17)) != 0;
434
435 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
436 user_data, page_do_bit17_swizzling,
437 needs_clflush);
438 if (ret == 0)
439 goto next_page;
440
441 hit_slowpath = 1;
442 page_cache_get(page);
443 mutex_unlock(&dev->struct_mutex);
444
445 if (!prefaulted) {
446 ret = fault_in_multipages_writeable(user_data, remain);
447 /* Userspace is tricking us, but we've already clobbered
448 * its pages with the prefault and promised to write the
449 * data up to the first fault. Hence ignore any errors
450 * and just continue. */
451 (void)ret;
452 prefaulted = 1;
453 }
454
455 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
456 user_data, page_do_bit17_swizzling,
457 needs_clflush);
458
459 mutex_lock(&dev->struct_mutex);
460 page_cache_release(page);
461 next_page:
462 mark_page_accessed(page);
463 if (release_page)
464 page_cache_release(page);
465
466 if (ret) {
467 ret = -EFAULT;
468 goto out;
469 }
470
471 remain -= page_length;
472 user_data += page_length;
473 offset += page_length;
474 }
475
476 out:
477 if (hit_slowpath) {
478 /* Fixup: Kill any reinstated backing storage pages */
479 if (obj->madv == __I915_MADV_PURGED)
480 i915_gem_object_truncate(obj);
481 }
482
483 return ret;
484 }
485
486 /**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491 int
492 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
493 struct drm_file *file)
494 {
495 struct drm_i915_gem_pread *args = data;
496 struct drm_i915_gem_object *obj;
497 int ret = 0;
498
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
507 ret = i915_mutex_lock_interruptible(dev);
508 if (ret)
509 return ret;
510
511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
512 if (&obj->base == NULL) {
513 ret = -ENOENT;
514 goto unlock;
515 }
516
517 /* Bounds check source. */
518 if (args->offset > obj->base.size ||
519 args->size > obj->base.size - args->offset) {
520 ret = -EINVAL;
521 goto out;
522 }
523
524 trace_i915_gem_object_pread(obj, args->offset, args->size);
525
526 ret = i915_gem_shmem_pread(dev, obj, args, file);
527
528 out:
529 drm_gem_object_unreference(&obj->base);
530 unlock:
531 mutex_unlock(&dev->struct_mutex);
532 return ret;
533 }
534
535 /* This is the fast write path which cannot handle
536 * page faults in the source data
537 */
538
539 static inline int
540 fast_user_write(struct io_mapping *mapping,
541 loff_t page_base, int page_offset,
542 char __user *user_data,
543 int length)
544 {
545 char *vaddr_atomic;
546 unsigned long unwritten;
547
548 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
549 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
550 user_data, length);
551 io_mapping_unmap_atomic(vaddr_atomic);
552 return unwritten;
553 }
554
555 /**
556 * This is the fast pwrite path, where we copy the data directly from the
557 * user into the GTT, uncached.
558 */
559 static int
560 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
561 struct drm_i915_gem_object *obj,
562 struct drm_i915_gem_pwrite *args,
563 struct drm_file *file)
564 {
565 drm_i915_private_t *dev_priv = dev->dev_private;
566 ssize_t remain;
567 loff_t offset, page_base;
568 char __user *user_data;
569 int page_offset, page_length, ret;
570
571 ret = i915_gem_object_pin(obj, 0, true);
572 if (ret)
573 goto out;
574
575 ret = i915_gem_object_set_to_gtt_domain(obj, true);
576 if (ret)
577 goto out_unpin;
578
579 ret = i915_gem_object_put_fence(obj);
580 if (ret)
581 goto out_unpin;
582
583 user_data = (char __user *) (uintptr_t) args->data_ptr;
584 remain = args->size;
585
586 offset = obj->gtt_offset + args->offset;
587
588 while (remain > 0) {
589 /* Operation in this page
590 *
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
594 */
595 page_base = offset & PAGE_MASK;
596 page_offset = offset_in_page(offset);
597 page_length = remain;
598 if ((page_offset + remain) > PAGE_SIZE)
599 page_length = PAGE_SIZE - page_offset;
600
601 /* If we get a fault while copying data, then (presumably) our
602 * source page isn't available. Return the error and we'll
603 * retry in the slow path.
604 */
605 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
606 page_offset, user_data, page_length)) {
607 ret = -EFAULT;
608 goto out_unpin;
609 }
610
611 remain -= page_length;
612 user_data += page_length;
613 offset += page_length;
614 }
615
616 out_unpin:
617 i915_gem_object_unpin(obj);
618 out:
619 return ret;
620 }
621
622 /* Per-page copy function for the shmem pwrite fastpath.
623 * Flushes invalid cachelines before writing to the target if
624 * needs_clflush_before is set and flushes out any written cachelines after
625 * writing if needs_clflush is set. */
626 static int
627 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
628 char __user *user_data,
629 bool page_do_bit17_swizzling,
630 bool needs_clflush_before,
631 bool needs_clflush_after)
632 {
633 char *vaddr;
634 int ret;
635
636 if (unlikely(page_do_bit17_swizzling))
637 return -EINVAL;
638
639 vaddr = kmap_atomic(page);
640 if (needs_clflush_before)
641 drm_clflush_virt_range(vaddr + shmem_page_offset,
642 page_length);
643 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
644 user_data,
645 page_length);
646 if (needs_clflush_after)
647 drm_clflush_virt_range(vaddr + shmem_page_offset,
648 page_length);
649 kunmap_atomic(vaddr);
650
651 return ret;
652 }
653
654 /* Only difference to the fast-path function is that this can handle bit17
655 * and uses non-atomic copy and kmap functions. */
656 static int
657 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
658 char __user *user_data,
659 bool page_do_bit17_swizzling,
660 bool needs_clflush_before,
661 bool needs_clflush_after)
662 {
663 char *vaddr;
664 int ret;
665
666 vaddr = kmap(page);
667 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
668 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
669 page_length,
670 page_do_bit17_swizzling);
671 if (page_do_bit17_swizzling)
672 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
673 user_data,
674 page_length);
675 else
676 ret = __copy_from_user(vaddr + shmem_page_offset,
677 user_data,
678 page_length);
679 if (needs_clflush_after)
680 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
681 page_length,
682 page_do_bit17_swizzling);
683 kunmap(page);
684
685 return ret;
686 }
687
688 static int
689 i915_gem_shmem_pwrite(struct drm_device *dev,
690 struct drm_i915_gem_object *obj,
691 struct drm_i915_gem_pwrite *args,
692 struct drm_file *file)
693 {
694 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
695 ssize_t remain;
696 loff_t offset;
697 char __user *user_data;
698 int shmem_page_offset, page_length, ret = 0;
699 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
700 int hit_slowpath = 0;
701 int needs_clflush_after = 0;
702 int needs_clflush_before = 0;
703 int release_page;
704
705 user_data = (char __user *) (uintptr_t) args->data_ptr;
706 remain = args->size;
707
708 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
709
710 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
711 /* If we're not in the cpu write domain, set ourself into the gtt
712 * write domain and manually flush cachelines (if required). This
713 * optimizes for the case when the gpu will use the data
714 * right away and we therefore have to clflush anyway. */
715 if (obj->cache_level == I915_CACHE_NONE)
716 needs_clflush_after = 1;
717 ret = i915_gem_object_set_to_gtt_domain(obj, true);
718 if (ret)
719 return ret;
720 }
721 /* Same trick applies for invalidate partially written cachelines before
722 * writing. */
723 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
724 && obj->cache_level == I915_CACHE_NONE)
725 needs_clflush_before = 1;
726
727 offset = args->offset;
728 obj->dirty = 1;
729
730 while (remain > 0) {
731 struct page *page;
732 int partial_cacheline_write;
733
734 /* Operation in this page
735 *
736 * shmem_page_offset = offset within page in shmem file
737 * page_length = bytes to copy for this page
738 */
739 shmem_page_offset = offset_in_page(offset);
740
741 page_length = remain;
742 if ((shmem_page_offset + page_length) > PAGE_SIZE)
743 page_length = PAGE_SIZE - shmem_page_offset;
744
745 /* If we don't overwrite a cacheline completely we need to be
746 * careful to have up-to-date data by first clflushing. Don't
747 * overcomplicate things and flush the entire patch. */
748 partial_cacheline_write = needs_clflush_before &&
749 ((shmem_page_offset | page_length)
750 & (boot_cpu_data.x86_clflush_size - 1));
751
752 if (obj->pages) {
753 page = obj->pages[offset >> PAGE_SHIFT];
754 release_page = 0;
755 } else {
756 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
757 if (IS_ERR(page)) {
758 ret = PTR_ERR(page);
759 goto out;
760 }
761 release_page = 1;
762 }
763
764 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
765 (page_to_phys(page) & (1 << 17)) != 0;
766
767 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
768 user_data, page_do_bit17_swizzling,
769 partial_cacheline_write,
770 needs_clflush_after);
771 if (ret == 0)
772 goto next_page;
773
774 hit_slowpath = 1;
775 page_cache_get(page);
776 mutex_unlock(&dev->struct_mutex);
777
778 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
779 user_data, page_do_bit17_swizzling,
780 partial_cacheline_write,
781 needs_clflush_after);
782
783 mutex_lock(&dev->struct_mutex);
784 page_cache_release(page);
785 next_page:
786 set_page_dirty(page);
787 mark_page_accessed(page);
788 if (release_page)
789 page_cache_release(page);
790
791 if (ret) {
792 ret = -EFAULT;
793 goto out;
794 }
795
796 remain -= page_length;
797 user_data += page_length;
798 offset += page_length;
799 }
800
801 out:
802 if (hit_slowpath) {
803 /* Fixup: Kill any reinstated backing storage pages */
804 if (obj->madv == __I915_MADV_PURGED)
805 i915_gem_object_truncate(obj);
806 /* and flush dirty cachelines in case the object isn't in the cpu write
807 * domain anymore. */
808 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
809 i915_gem_clflush_object(obj);
810 intel_gtt_chipset_flush();
811 }
812 }
813
814 if (needs_clflush_after)
815 intel_gtt_chipset_flush();
816
817 return ret;
818 }
819
820 /**
821 * Writes data to the object referenced by handle.
822 *
823 * On error, the contents of the buffer that were to be modified are undefined.
824 */
825 int
826 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
827 struct drm_file *file)
828 {
829 struct drm_i915_gem_pwrite *args = data;
830 struct drm_i915_gem_object *obj;
831 int ret;
832
833 if (args->size == 0)
834 return 0;
835
836 if (!access_ok(VERIFY_READ,
837 (char __user *)(uintptr_t)args->data_ptr,
838 args->size))
839 return -EFAULT;
840
841 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
842 args->size);
843 if (ret)
844 return -EFAULT;
845
846 ret = i915_mutex_lock_interruptible(dev);
847 if (ret)
848 return ret;
849
850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
851 if (&obj->base == NULL) {
852 ret = -ENOENT;
853 goto unlock;
854 }
855
856 /* Bounds check destination. */
857 if (args->offset > obj->base.size ||
858 args->size > obj->base.size - args->offset) {
859 ret = -EINVAL;
860 goto out;
861 }
862
863 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
864
865 ret = -EFAULT;
866 /* We can only do the GTT pwrite on untiled buffers, as otherwise
867 * it would end up going through the fenced access, and we'll get
868 * different detiling behavior between reading and writing.
869 * pread/pwrite currently are reading and writing from the CPU
870 * perspective, requiring manual detiling by the client.
871 */
872 if (obj->phys_obj) {
873 ret = i915_gem_phys_pwrite(dev, obj, args, file);
874 goto out;
875 }
876
877 if (obj->gtt_space &&
878 obj->cache_level == I915_CACHE_NONE &&
879 obj->tiling_mode == I915_TILING_NONE &&
880 obj->map_and_fenceable &&
881 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
882 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
883 /* Note that the gtt paths might fail with non-page-backed user
884 * pointers (e.g. gtt mappings when moving data between
885 * textures). Fallback to the shmem path in that case. */
886 }
887
888 if (ret == -EFAULT)
889 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
890
891 out:
892 drm_gem_object_unreference(&obj->base);
893 unlock:
894 mutex_unlock(&dev->struct_mutex);
895 return ret;
896 }
897
898 /**
899 * Called when user space prepares to use an object with the CPU, either
900 * through the mmap ioctl's mapping or a GTT mapping.
901 */
902 int
903 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
904 struct drm_file *file)
905 {
906 struct drm_i915_gem_set_domain *args = data;
907 struct drm_i915_gem_object *obj;
908 uint32_t read_domains = args->read_domains;
909 uint32_t write_domain = args->write_domain;
910 int ret;
911
912 if (!(dev->driver->driver_features & DRIVER_GEM))
913 return -ENODEV;
914
915 /* Only handle setting domains to types used by the CPU. */
916 if (write_domain & I915_GEM_GPU_DOMAINS)
917 return -EINVAL;
918
919 if (read_domains & I915_GEM_GPU_DOMAINS)
920 return -EINVAL;
921
922 /* Having something in the write domain implies it's in the read
923 * domain, and only that read domain. Enforce that in the request.
924 */
925 if (write_domain != 0 && read_domains != write_domain)
926 return -EINVAL;
927
928 ret = i915_mutex_lock_interruptible(dev);
929 if (ret)
930 return ret;
931
932 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
933 if (&obj->base == NULL) {
934 ret = -ENOENT;
935 goto unlock;
936 }
937
938 if (read_domains & I915_GEM_DOMAIN_GTT) {
939 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
940
941 /* Silently promote "you're not bound, there was nothing to do"
942 * to success, since the client was just asking us to
943 * make sure everything was done.
944 */
945 if (ret == -EINVAL)
946 ret = 0;
947 } else {
948 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
949 }
950
951 drm_gem_object_unreference(&obj->base);
952 unlock:
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955 }
956
957 /**
958 * Called when user space has done writes to this buffer
959 */
960 int
961 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
962 struct drm_file *file)
963 {
964 struct drm_i915_gem_sw_finish *args = data;
965 struct drm_i915_gem_object *obj;
966 int ret = 0;
967
968 if (!(dev->driver->driver_features & DRIVER_GEM))
969 return -ENODEV;
970
971 ret = i915_mutex_lock_interruptible(dev);
972 if (ret)
973 return ret;
974
975 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
976 if (&obj->base == NULL) {
977 ret = -ENOENT;
978 goto unlock;
979 }
980
981 /* Pinned buffers may be scanout, so flush the cache */
982 if (obj->pin_count)
983 i915_gem_object_flush_cpu_write_domain(obj);
984
985 drm_gem_object_unreference(&obj->base);
986 unlock:
987 mutex_unlock(&dev->struct_mutex);
988 return ret;
989 }
990
991 /**
992 * Maps the contents of an object, returning the address it is mapped
993 * into.
994 *
995 * While the mapping holds a reference on the contents of the object, it doesn't
996 * imply a ref on the object itself.
997 */
998 int
999 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1000 struct drm_file *file)
1001 {
1002 struct drm_i915_gem_mmap *args = data;
1003 struct drm_gem_object *obj;
1004 unsigned long addr;
1005
1006 if (!(dev->driver->driver_features & DRIVER_GEM))
1007 return -ENODEV;
1008
1009 obj = drm_gem_object_lookup(dev, file, args->handle);
1010 if (obj == NULL)
1011 return -ENOENT;
1012
1013 down_write(&current->mm->mmap_sem);
1014 addr = do_mmap(obj->filp, 0, args->size,
1015 PROT_READ | PROT_WRITE, MAP_SHARED,
1016 args->offset);
1017 up_write(&current->mm->mmap_sem);
1018 drm_gem_object_unreference_unlocked(obj);
1019 if (IS_ERR((void *)addr))
1020 return addr;
1021
1022 args->addr_ptr = (uint64_t) addr;
1023
1024 return 0;
1025 }
1026
1027 /**
1028 * i915_gem_fault - fault a page into the GTT
1029 * vma: VMA in question
1030 * vmf: fault info
1031 *
1032 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1033 * from userspace. The fault handler takes care of binding the object to
1034 * the GTT (if needed), allocating and programming a fence register (again,
1035 * only if needed based on whether the old reg is still valid or the object
1036 * is tiled) and inserting a new PTE into the faulting process.
1037 *
1038 * Note that the faulting process may involve evicting existing objects
1039 * from the GTT and/or fence registers to make room. So performance may
1040 * suffer if the GTT working set is large or there are few fence registers
1041 * left.
1042 */
1043 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1044 {
1045 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1046 struct drm_device *dev = obj->base.dev;
1047 drm_i915_private_t *dev_priv = dev->dev_private;
1048 pgoff_t page_offset;
1049 unsigned long pfn;
1050 int ret = 0;
1051 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1052
1053 /* We don't use vmf->pgoff since that has the fake offset */
1054 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1055 PAGE_SHIFT;
1056
1057 ret = i915_mutex_lock_interruptible(dev);
1058 if (ret)
1059 goto out;
1060
1061 trace_i915_gem_object_fault(obj, page_offset, true, write);
1062
1063 /* Now bind it into the GTT if needed */
1064 if (!obj->map_and_fenceable) {
1065 ret = i915_gem_object_unbind(obj);
1066 if (ret)
1067 goto unlock;
1068 }
1069 if (!obj->gtt_space) {
1070 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1071 if (ret)
1072 goto unlock;
1073
1074 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1075 if (ret)
1076 goto unlock;
1077 }
1078
1079 if (!obj->has_global_gtt_mapping)
1080 i915_gem_gtt_bind_object(obj, obj->cache_level);
1081
1082 ret = i915_gem_object_get_fence(obj);
1083 if (ret)
1084 goto unlock;
1085
1086 if (i915_gem_object_is_inactive(obj))
1087 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1088
1089 obj->fault_mappable = true;
1090
1091 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1092 page_offset;
1093
1094 /* Finally, remap it using the new GTT offset */
1095 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1096 unlock:
1097 mutex_unlock(&dev->struct_mutex);
1098 out:
1099 switch (ret) {
1100 case -EIO:
1101 case -EAGAIN:
1102 /* Give the error handler a chance to run and move the
1103 * objects off the GPU active list. Next time we service the
1104 * fault, we should be able to transition the page into the
1105 * GTT without touching the GPU (and so avoid further
1106 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1107 * with coherency, just lost writes.
1108 */
1109 set_need_resched();
1110 case 0:
1111 case -ERESTARTSYS:
1112 case -EINTR:
1113 return VM_FAULT_NOPAGE;
1114 case -ENOMEM:
1115 return VM_FAULT_OOM;
1116 default:
1117 return VM_FAULT_SIGBUS;
1118 }
1119 }
1120
1121 /**
1122 * i915_gem_release_mmap - remove physical page mappings
1123 * @obj: obj in question
1124 *
1125 * Preserve the reservation of the mmapping with the DRM core code, but
1126 * relinquish ownership of the pages back to the system.
1127 *
1128 * It is vital that we remove the page mapping if we have mapped a tiled
1129 * object through the GTT and then lose the fence register due to
1130 * resource pressure. Similarly if the object has been moved out of the
1131 * aperture, than pages mapped into userspace must be revoked. Removing the
1132 * mapping will then trigger a page fault on the next user access, allowing
1133 * fixup by i915_gem_fault().
1134 */
1135 void
1136 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1137 {
1138 if (!obj->fault_mappable)
1139 return;
1140
1141 if (obj->base.dev->dev_mapping)
1142 unmap_mapping_range(obj->base.dev->dev_mapping,
1143 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1144 obj->base.size, 1);
1145
1146 obj->fault_mappable = false;
1147 }
1148
1149 static uint32_t
1150 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1151 {
1152 uint32_t gtt_size;
1153
1154 if (INTEL_INFO(dev)->gen >= 4 ||
1155 tiling_mode == I915_TILING_NONE)
1156 return size;
1157
1158 /* Previous chips need a power-of-two fence region when tiling */
1159 if (INTEL_INFO(dev)->gen == 3)
1160 gtt_size = 1024*1024;
1161 else
1162 gtt_size = 512*1024;
1163
1164 while (gtt_size < size)
1165 gtt_size <<= 1;
1166
1167 return gtt_size;
1168 }
1169
1170 /**
1171 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1172 * @obj: object to check
1173 *
1174 * Return the required GTT alignment for an object, taking into account
1175 * potential fence register mapping.
1176 */
1177 static uint32_t
1178 i915_gem_get_gtt_alignment(struct drm_device *dev,
1179 uint32_t size,
1180 int tiling_mode)
1181 {
1182 /*
1183 * Minimum alignment is 4k (GTT page size), but might be greater
1184 * if a fence register is needed for the object.
1185 */
1186 if (INTEL_INFO(dev)->gen >= 4 ||
1187 tiling_mode == I915_TILING_NONE)
1188 return 4096;
1189
1190 /*
1191 * Previous chips need to be aligned to the size of the smallest
1192 * fence register that can contain the object.
1193 */
1194 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1195 }
1196
1197 /**
1198 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1199 * unfenced object
1200 * @dev: the device
1201 * @size: size of the object
1202 * @tiling_mode: tiling mode of the object
1203 *
1204 * Return the required GTT alignment for an object, only taking into account
1205 * unfenced tiled surface requirements.
1206 */
1207 uint32_t
1208 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1209 uint32_t size,
1210 int tiling_mode)
1211 {
1212 /*
1213 * Minimum alignment is 4k (GTT page size) for sane hw.
1214 */
1215 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1216 tiling_mode == I915_TILING_NONE)
1217 return 4096;
1218
1219 /* Previous hardware however needs to be aligned to a power-of-two
1220 * tile height. The simplest method for determining this is to reuse
1221 * the power-of-tile object size.
1222 */
1223 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1224 }
1225
1226 int
1227 i915_gem_mmap_gtt(struct drm_file *file,
1228 struct drm_device *dev,
1229 uint32_t handle,
1230 uint64_t *offset)
1231 {
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 struct drm_i915_gem_object *obj;
1234 int ret;
1235
1236 if (!(dev->driver->driver_features & DRIVER_GEM))
1237 return -ENODEV;
1238
1239 ret = i915_mutex_lock_interruptible(dev);
1240 if (ret)
1241 return ret;
1242
1243 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1244 if (&obj->base == NULL) {
1245 ret = -ENOENT;
1246 goto unlock;
1247 }
1248
1249 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1250 ret = -E2BIG;
1251 goto out;
1252 }
1253
1254 if (obj->madv != I915_MADV_WILLNEED) {
1255 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1256 ret = -EINVAL;
1257 goto out;
1258 }
1259
1260 if (!obj->base.map_list.map) {
1261 ret = drm_gem_create_mmap_offset(&obj->base);
1262 if (ret)
1263 goto out;
1264 }
1265
1266 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1267
1268 out:
1269 drm_gem_object_unreference(&obj->base);
1270 unlock:
1271 mutex_unlock(&dev->struct_mutex);
1272 return ret;
1273 }
1274
1275 /**
1276 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1277 * @dev: DRM device
1278 * @data: GTT mapping ioctl data
1279 * @file: GEM object info
1280 *
1281 * Simply returns the fake offset to userspace so it can mmap it.
1282 * The mmap call will end up in drm_gem_mmap(), which will set things
1283 * up so we can get faults in the handler above.
1284 *
1285 * The fault handler will take care of binding the object into the GTT
1286 * (since it may have been evicted to make room for something), allocating
1287 * a fence register, and mapping the appropriate aperture address into
1288 * userspace.
1289 */
1290 int
1291 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_mmap_gtt *args = data;
1295
1296 if (!(dev->driver->driver_features & DRIVER_GEM))
1297 return -ENODEV;
1298
1299 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1300 }
1301
1302
1303 static int
1304 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1305 gfp_t gfpmask)
1306 {
1307 int page_count, i;
1308 struct address_space *mapping;
1309 struct inode *inode;
1310 struct page *page;
1311
1312 /* Get the list of pages out of our struct file. They'll be pinned
1313 * at this point until we release them.
1314 */
1315 page_count = obj->base.size / PAGE_SIZE;
1316 BUG_ON(obj->pages != NULL);
1317 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1318 if (obj->pages == NULL)
1319 return -ENOMEM;
1320
1321 inode = obj->base.filp->f_path.dentry->d_inode;
1322 mapping = inode->i_mapping;
1323 gfpmask |= mapping_gfp_mask(mapping);
1324
1325 for (i = 0; i < page_count; i++) {
1326 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1327 if (IS_ERR(page))
1328 goto err_pages;
1329
1330 obj->pages[i] = page;
1331 }
1332
1333 if (i915_gem_object_needs_bit17_swizzle(obj))
1334 i915_gem_object_do_bit_17_swizzle(obj);
1335
1336 return 0;
1337
1338 err_pages:
1339 while (i--)
1340 page_cache_release(obj->pages[i]);
1341
1342 drm_free_large(obj->pages);
1343 obj->pages = NULL;
1344 return PTR_ERR(page);
1345 }
1346
1347 static void
1348 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1349 {
1350 int page_count = obj->base.size / PAGE_SIZE;
1351 int i;
1352
1353 BUG_ON(obj->madv == __I915_MADV_PURGED);
1354
1355 if (i915_gem_object_needs_bit17_swizzle(obj))
1356 i915_gem_object_save_bit_17_swizzle(obj);
1357
1358 if (obj->madv == I915_MADV_DONTNEED)
1359 obj->dirty = 0;
1360
1361 for (i = 0; i < page_count; i++) {
1362 if (obj->dirty)
1363 set_page_dirty(obj->pages[i]);
1364
1365 if (obj->madv == I915_MADV_WILLNEED)
1366 mark_page_accessed(obj->pages[i]);
1367
1368 page_cache_release(obj->pages[i]);
1369 }
1370 obj->dirty = 0;
1371
1372 drm_free_large(obj->pages);
1373 obj->pages = NULL;
1374 }
1375
1376 void
1377 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1378 struct intel_ring_buffer *ring,
1379 u32 seqno)
1380 {
1381 struct drm_device *dev = obj->base.dev;
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383
1384 BUG_ON(ring == NULL);
1385 obj->ring = ring;
1386
1387 /* Add a reference if we're newly entering the active list. */
1388 if (!obj->active) {
1389 drm_gem_object_reference(&obj->base);
1390 obj->active = 1;
1391 }
1392
1393 /* Move from whatever list we were on to the tail of execution. */
1394 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1395 list_move_tail(&obj->ring_list, &ring->active_list);
1396
1397 obj->last_rendering_seqno = seqno;
1398
1399 if (obj->fenced_gpu_access) {
1400 obj->last_fenced_seqno = seqno;
1401 obj->last_fenced_ring = ring;
1402
1403 /* Bump MRU to take account of the delayed flush */
1404 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1405 struct drm_i915_fence_reg *reg;
1406
1407 reg = &dev_priv->fence_regs[obj->fence_reg];
1408 list_move_tail(&reg->lru_list,
1409 &dev_priv->mm.fence_list);
1410 }
1411 }
1412 }
1413
1414 static void
1415 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1416 {
1417 list_del_init(&obj->ring_list);
1418 obj->last_rendering_seqno = 0;
1419 obj->last_fenced_seqno = 0;
1420 }
1421
1422 static void
1423 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1424 {
1425 struct drm_device *dev = obj->base.dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427
1428 BUG_ON(!obj->active);
1429 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1430
1431 i915_gem_object_move_off_active(obj);
1432 }
1433
1434 static void
1435 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1436 {
1437 struct drm_device *dev = obj->base.dev;
1438 struct drm_i915_private *dev_priv = dev->dev_private;
1439
1440 if (obj->pin_count != 0)
1441 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1442 else
1443 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1444
1445 BUG_ON(!list_empty(&obj->gpu_write_list));
1446 BUG_ON(!obj->active);
1447 obj->ring = NULL;
1448 obj->last_fenced_ring = NULL;
1449
1450 i915_gem_object_move_off_active(obj);
1451 obj->fenced_gpu_access = false;
1452
1453 obj->active = 0;
1454 obj->pending_gpu_write = false;
1455 drm_gem_object_unreference(&obj->base);
1456
1457 WARN_ON(i915_verify_lists(dev));
1458 }
1459
1460 /* Immediately discard the backing storage */
1461 static void
1462 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1463 {
1464 struct inode *inode;
1465
1466 /* Our goal here is to return as much of the memory as
1467 * is possible back to the system as we are called from OOM.
1468 * To do this we must instruct the shmfs to drop all of its
1469 * backing pages, *now*.
1470 */
1471 inode = obj->base.filp->f_path.dentry->d_inode;
1472 shmem_truncate_range(inode, 0, (loff_t)-1);
1473
1474 if (obj->base.map_list.map)
1475 drm_gem_free_mmap_offset(&obj->base);
1476
1477 obj->madv = __I915_MADV_PURGED;
1478 }
1479
1480 static inline int
1481 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1482 {
1483 return obj->madv == I915_MADV_DONTNEED;
1484 }
1485
1486 static void
1487 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1488 uint32_t flush_domains)
1489 {
1490 struct drm_i915_gem_object *obj, *next;
1491
1492 list_for_each_entry_safe(obj, next,
1493 &ring->gpu_write_list,
1494 gpu_write_list) {
1495 if (obj->base.write_domain & flush_domains) {
1496 uint32_t old_write_domain = obj->base.write_domain;
1497
1498 obj->base.write_domain = 0;
1499 list_del_init(&obj->gpu_write_list);
1500 i915_gem_object_move_to_active(obj, ring,
1501 i915_gem_next_request_seqno(ring));
1502
1503 trace_i915_gem_object_change_domain(obj,
1504 obj->base.read_domains,
1505 old_write_domain);
1506 }
1507 }
1508 }
1509
1510 static u32
1511 i915_gem_get_seqno(struct drm_device *dev)
1512 {
1513 drm_i915_private_t *dev_priv = dev->dev_private;
1514 u32 seqno = dev_priv->next_seqno;
1515
1516 /* reserve 0 for non-seqno */
1517 if (++dev_priv->next_seqno == 0)
1518 dev_priv->next_seqno = 1;
1519
1520 return seqno;
1521 }
1522
1523 u32
1524 i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
1525 {
1526 if (ring->outstanding_lazy_request == 0)
1527 ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
1528
1529 return ring->outstanding_lazy_request;
1530 }
1531
1532 int
1533 i915_add_request(struct intel_ring_buffer *ring,
1534 struct drm_file *file,
1535 struct drm_i915_gem_request *request)
1536 {
1537 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1538 uint32_t seqno;
1539 u32 request_ring_position;
1540 int was_empty;
1541 int ret;
1542
1543 BUG_ON(request == NULL);
1544 seqno = i915_gem_next_request_seqno(ring);
1545
1546 /* Record the position of the start of the request so that
1547 * should we detect the updated seqno part-way through the
1548 * GPU processing the request, we never over-estimate the
1549 * position of the head.
1550 */
1551 request_ring_position = intel_ring_get_tail(ring);
1552
1553 ret = ring->add_request(ring, &seqno);
1554 if (ret)
1555 return ret;
1556
1557 trace_i915_gem_request_add(ring, seqno);
1558
1559 request->seqno = seqno;
1560 request->ring = ring;
1561 request->tail = request_ring_position;
1562 request->emitted_jiffies = jiffies;
1563 was_empty = list_empty(&ring->request_list);
1564 list_add_tail(&request->list, &ring->request_list);
1565
1566 if (file) {
1567 struct drm_i915_file_private *file_priv = file->driver_priv;
1568
1569 spin_lock(&file_priv->mm.lock);
1570 request->file_priv = file_priv;
1571 list_add_tail(&request->client_list,
1572 &file_priv->mm.request_list);
1573 spin_unlock(&file_priv->mm.lock);
1574 }
1575
1576 ring->outstanding_lazy_request = 0;
1577
1578 if (!dev_priv->mm.suspended) {
1579 if (i915_enable_hangcheck) {
1580 mod_timer(&dev_priv->hangcheck_timer,
1581 jiffies +
1582 msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1583 }
1584 if (was_empty)
1585 queue_delayed_work(dev_priv->wq,
1586 &dev_priv->mm.retire_work, HZ);
1587 }
1588 return 0;
1589 }
1590
1591 static inline void
1592 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1593 {
1594 struct drm_i915_file_private *file_priv = request->file_priv;
1595
1596 if (!file_priv)
1597 return;
1598
1599 spin_lock(&file_priv->mm.lock);
1600 if (request->file_priv) {
1601 list_del(&request->client_list);
1602 request->file_priv = NULL;
1603 }
1604 spin_unlock(&file_priv->mm.lock);
1605 }
1606
1607 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1608 struct intel_ring_buffer *ring)
1609 {
1610 while (!list_empty(&ring->request_list)) {
1611 struct drm_i915_gem_request *request;
1612
1613 request = list_first_entry(&ring->request_list,
1614 struct drm_i915_gem_request,
1615 list);
1616
1617 list_del(&request->list);
1618 i915_gem_request_remove_from_client(request);
1619 kfree(request);
1620 }
1621
1622 while (!list_empty(&ring->active_list)) {
1623 struct drm_i915_gem_object *obj;
1624
1625 obj = list_first_entry(&ring->active_list,
1626 struct drm_i915_gem_object,
1627 ring_list);
1628
1629 obj->base.write_domain = 0;
1630 list_del_init(&obj->gpu_write_list);
1631 i915_gem_object_move_to_inactive(obj);
1632 }
1633 }
1634
1635 static void i915_gem_reset_fences(struct drm_device *dev)
1636 {
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 int i;
1639
1640 for (i = 0; i < dev_priv->num_fence_regs; i++) {
1641 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1642 struct drm_i915_gem_object *obj = reg->obj;
1643
1644 if (!obj)
1645 continue;
1646
1647 if (obj->tiling_mode)
1648 i915_gem_release_mmap(obj);
1649
1650 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1651 reg->obj->fenced_gpu_access = false;
1652 reg->obj->last_fenced_seqno = 0;
1653 reg->obj->last_fenced_ring = NULL;
1654 i915_gem_clear_fence_reg(dev, reg);
1655 }
1656 }
1657
1658 void i915_gem_reset(struct drm_device *dev)
1659 {
1660 struct drm_i915_private *dev_priv = dev->dev_private;
1661 struct drm_i915_gem_object *obj;
1662 int i;
1663
1664 for (i = 0; i < I915_NUM_RINGS; i++)
1665 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1666
1667 /* Remove anything from the flushing lists. The GPU cache is likely
1668 * to be lost on reset along with the data, so simply move the
1669 * lost bo to the inactive list.
1670 */
1671 while (!list_empty(&dev_priv->mm.flushing_list)) {
1672 obj = list_first_entry(&dev_priv->mm.flushing_list,
1673 struct drm_i915_gem_object,
1674 mm_list);
1675
1676 obj->base.write_domain = 0;
1677 list_del_init(&obj->gpu_write_list);
1678 i915_gem_object_move_to_inactive(obj);
1679 }
1680
1681 /* Move everything out of the GPU domains to ensure we do any
1682 * necessary invalidation upon reuse.
1683 */
1684 list_for_each_entry(obj,
1685 &dev_priv->mm.inactive_list,
1686 mm_list)
1687 {
1688 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1689 }
1690
1691 /* The fence registers are invalidated so clear them out */
1692 i915_gem_reset_fences(dev);
1693 }
1694
1695 /**
1696 * This function clears the request list as sequence numbers are passed.
1697 */
1698 void
1699 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1700 {
1701 uint32_t seqno;
1702 int i;
1703
1704 if (list_empty(&ring->request_list))
1705 return;
1706
1707 WARN_ON(i915_verify_lists(ring->dev));
1708
1709 seqno = ring->get_seqno(ring);
1710
1711 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1712 if (seqno >= ring->sync_seqno[i])
1713 ring->sync_seqno[i] = 0;
1714
1715 while (!list_empty(&ring->request_list)) {
1716 struct drm_i915_gem_request *request;
1717
1718 request = list_first_entry(&ring->request_list,
1719 struct drm_i915_gem_request,
1720 list);
1721
1722 if (!i915_seqno_passed(seqno, request->seqno))
1723 break;
1724
1725 trace_i915_gem_request_retire(ring, request->seqno);
1726 /* We know the GPU must have read the request to have
1727 * sent us the seqno + interrupt, so use the position
1728 * of tail of the request to update the last known position
1729 * of the GPU head.
1730 */
1731 ring->last_retired_head = request->tail;
1732
1733 list_del(&request->list);
1734 i915_gem_request_remove_from_client(request);
1735 kfree(request);
1736 }
1737
1738 /* Move any buffers on the active list that are no longer referenced
1739 * by the ringbuffer to the flushing/inactive lists as appropriate.
1740 */
1741 while (!list_empty(&ring->active_list)) {
1742 struct drm_i915_gem_object *obj;
1743
1744 obj = list_first_entry(&ring->active_list,
1745 struct drm_i915_gem_object,
1746 ring_list);
1747
1748 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1749 break;
1750
1751 if (obj->base.write_domain != 0)
1752 i915_gem_object_move_to_flushing(obj);
1753 else
1754 i915_gem_object_move_to_inactive(obj);
1755 }
1756
1757 if (unlikely(ring->trace_irq_seqno &&
1758 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1759 ring->irq_put(ring);
1760 ring->trace_irq_seqno = 0;
1761 }
1762
1763 WARN_ON(i915_verify_lists(ring->dev));
1764 }
1765
1766 void
1767 i915_gem_retire_requests(struct drm_device *dev)
1768 {
1769 drm_i915_private_t *dev_priv = dev->dev_private;
1770 int i;
1771
1772 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1773 struct drm_i915_gem_object *obj, *next;
1774
1775 /* We must be careful that during unbind() we do not
1776 * accidentally infinitely recurse into retire requests.
1777 * Currently:
1778 * retire -> free -> unbind -> wait -> retire_ring
1779 */
1780 list_for_each_entry_safe(obj, next,
1781 &dev_priv->mm.deferred_free_list,
1782 mm_list)
1783 i915_gem_free_object_tail(obj);
1784 }
1785
1786 for (i = 0; i < I915_NUM_RINGS; i++)
1787 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1788 }
1789
1790 static void
1791 i915_gem_retire_work_handler(struct work_struct *work)
1792 {
1793 drm_i915_private_t *dev_priv;
1794 struct drm_device *dev;
1795 bool idle;
1796 int i;
1797
1798 dev_priv = container_of(work, drm_i915_private_t,
1799 mm.retire_work.work);
1800 dev = dev_priv->dev;
1801
1802 /* Come back later if the device is busy... */
1803 if (!mutex_trylock(&dev->struct_mutex)) {
1804 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1805 return;
1806 }
1807
1808 i915_gem_retire_requests(dev);
1809
1810 /* Send a periodic flush down the ring so we don't hold onto GEM
1811 * objects indefinitely.
1812 */
1813 idle = true;
1814 for (i = 0; i < I915_NUM_RINGS; i++) {
1815 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1816
1817 if (!list_empty(&ring->gpu_write_list)) {
1818 struct drm_i915_gem_request *request;
1819 int ret;
1820
1821 ret = i915_gem_flush_ring(ring,
1822 0, I915_GEM_GPU_DOMAINS);
1823 request = kzalloc(sizeof(*request), GFP_KERNEL);
1824 if (ret || request == NULL ||
1825 i915_add_request(ring, NULL, request))
1826 kfree(request);
1827 }
1828
1829 idle &= list_empty(&ring->request_list);
1830 }
1831
1832 if (!dev_priv->mm.suspended && !idle)
1833 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1834
1835 mutex_unlock(&dev->struct_mutex);
1836 }
1837
1838 /**
1839 * Waits for a sequence number to be signaled, and cleans up the
1840 * request and object lists appropriately for that event.
1841 */
1842 int
1843 i915_wait_request(struct intel_ring_buffer *ring,
1844 uint32_t seqno,
1845 bool do_retire)
1846 {
1847 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1848 u32 ier;
1849 int ret = 0;
1850
1851 BUG_ON(seqno == 0);
1852
1853 if (atomic_read(&dev_priv->mm.wedged)) {
1854 struct completion *x = &dev_priv->error_completion;
1855 bool recovery_complete;
1856 unsigned long flags;
1857
1858 /* Give the error handler a chance to run. */
1859 spin_lock_irqsave(&x->wait.lock, flags);
1860 recovery_complete = x->done > 0;
1861 spin_unlock_irqrestore(&x->wait.lock, flags);
1862
1863 return recovery_complete ? -EIO : -EAGAIN;
1864 }
1865
1866 if (seqno == ring->outstanding_lazy_request) {
1867 struct drm_i915_gem_request *request;
1868
1869 request = kzalloc(sizeof(*request), GFP_KERNEL);
1870 if (request == NULL)
1871 return -ENOMEM;
1872
1873 ret = i915_add_request(ring, NULL, request);
1874 if (ret) {
1875 kfree(request);
1876 return ret;
1877 }
1878
1879 seqno = request->seqno;
1880 }
1881
1882 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
1883 if (HAS_PCH_SPLIT(ring->dev))
1884 ier = I915_READ(DEIER) | I915_READ(GTIER);
1885 else if (IS_VALLEYVIEW(ring->dev))
1886 ier = I915_READ(GTIER) | I915_READ(VLV_IER);
1887 else
1888 ier = I915_READ(IER);
1889 if (!ier) {
1890 DRM_ERROR("something (likely vbetool) disabled "
1891 "interrupts, re-enabling\n");
1892 ring->dev->driver->irq_preinstall(ring->dev);
1893 ring->dev->driver->irq_postinstall(ring->dev);
1894 }
1895
1896 trace_i915_gem_request_wait_begin(ring, seqno);
1897
1898 ring->waiting_seqno = seqno;
1899 if (ring->irq_get(ring)) {
1900 if (dev_priv->mm.interruptible)
1901 ret = wait_event_interruptible(ring->irq_queue,
1902 i915_seqno_passed(ring->get_seqno(ring), seqno)
1903 || atomic_read(&dev_priv->mm.wedged));
1904 else
1905 wait_event(ring->irq_queue,
1906 i915_seqno_passed(ring->get_seqno(ring), seqno)
1907 || atomic_read(&dev_priv->mm.wedged));
1908
1909 ring->irq_put(ring);
1910 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
1911 seqno) ||
1912 atomic_read(&dev_priv->mm.wedged), 3000))
1913 ret = -EBUSY;
1914 ring->waiting_seqno = 0;
1915
1916 trace_i915_gem_request_wait_end(ring, seqno);
1917 }
1918 if (atomic_read(&dev_priv->mm.wedged))
1919 ret = -EAGAIN;
1920
1921 /* Directly dispatch request retiring. While we have the work queue
1922 * to handle this, the waiter on a request often wants an associated
1923 * buffer to have made it to the inactive list, and we would need
1924 * a separate wait queue to handle that.
1925 */
1926 if (ret == 0 && do_retire)
1927 i915_gem_retire_requests_ring(ring);
1928
1929 return ret;
1930 }
1931
1932 /**
1933 * Ensures that all rendering to the object has completed and the object is
1934 * safe to unbind from the GTT or access from the CPU.
1935 */
1936 int
1937 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
1938 {
1939 int ret;
1940
1941 /* This function only exists to support waiting for existing rendering,
1942 * not for emitting required flushes.
1943 */
1944 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
1945
1946 /* If there is rendering queued on the buffer being evicted, wait for
1947 * it.
1948 */
1949 if (obj->active) {
1950 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
1951 true);
1952 if (ret)
1953 return ret;
1954 }
1955
1956 return 0;
1957 }
1958
1959 /**
1960 * i915_gem_object_sync - sync an object to a ring.
1961 *
1962 * @obj: object which may be in use on another ring.
1963 * @to: ring we wish to use the object on. May be NULL.
1964 *
1965 * This code is meant to abstract object synchronization with the GPU.
1966 * Calling with NULL implies synchronizing the object with the CPU
1967 * rather than a particular GPU ring.
1968 *
1969 * Returns 0 if successful, else propagates up the lower layer error.
1970 */
1971 int
1972 i915_gem_object_sync(struct drm_i915_gem_object *obj,
1973 struct intel_ring_buffer *to)
1974 {
1975 struct intel_ring_buffer *from = obj->ring;
1976 u32 seqno;
1977 int ret, idx;
1978
1979 if (from == NULL || to == from)
1980 return 0;
1981
1982 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1983 return i915_gem_object_wait_rendering(obj);
1984
1985 idx = intel_ring_sync_index(from, to);
1986
1987 seqno = obj->last_rendering_seqno;
1988 if (seqno <= from->sync_seqno[idx])
1989 return 0;
1990
1991 if (seqno == from->outstanding_lazy_request) {
1992 struct drm_i915_gem_request *request;
1993
1994 request = kzalloc(sizeof(*request), GFP_KERNEL);
1995 if (request == NULL)
1996 return -ENOMEM;
1997
1998 ret = i915_add_request(from, NULL, request);
1999 if (ret) {
2000 kfree(request);
2001 return ret;
2002 }
2003
2004 seqno = request->seqno;
2005 }
2006
2007
2008 ret = to->sync_to(to, from, seqno);
2009 if (!ret)
2010 from->sync_seqno[idx] = seqno;
2011
2012 return ret;
2013 }
2014
2015 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2016 {
2017 u32 old_write_domain, old_read_domains;
2018
2019 /* Act a barrier for all accesses through the GTT */
2020 mb();
2021
2022 /* Force a pagefault for domain tracking on next user access */
2023 i915_gem_release_mmap(obj);
2024
2025 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2026 return;
2027
2028 old_read_domains = obj->base.read_domains;
2029 old_write_domain = obj->base.write_domain;
2030
2031 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2032 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2033
2034 trace_i915_gem_object_change_domain(obj,
2035 old_read_domains,
2036 old_write_domain);
2037 }
2038
2039 /**
2040 * Unbinds an object from the GTT aperture.
2041 */
2042 int
2043 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2044 {
2045 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2046 int ret = 0;
2047
2048 if (obj->gtt_space == NULL)
2049 return 0;
2050
2051 if (obj->pin_count != 0) {
2052 DRM_ERROR("Attempting to unbind pinned buffer\n");
2053 return -EINVAL;
2054 }
2055
2056 ret = i915_gem_object_finish_gpu(obj);
2057 if (ret == -ERESTARTSYS)
2058 return ret;
2059 /* Continue on if we fail due to EIO, the GPU is hung so we
2060 * should be safe and we need to cleanup or else we might
2061 * cause memory corruption through use-after-free.
2062 */
2063
2064 i915_gem_object_finish_gtt(obj);
2065
2066 /* Move the object to the CPU domain to ensure that
2067 * any possible CPU writes while it's not in the GTT
2068 * are flushed when we go to remap it.
2069 */
2070 if (ret == 0)
2071 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2072 if (ret == -ERESTARTSYS)
2073 return ret;
2074 if (ret) {
2075 /* In the event of a disaster, abandon all caches and
2076 * hope for the best.
2077 */
2078 i915_gem_clflush_object(obj);
2079 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2080 }
2081
2082 /* release the fence reg _after_ flushing */
2083 ret = i915_gem_object_put_fence(obj);
2084 if (ret == -ERESTARTSYS)
2085 return ret;
2086
2087 trace_i915_gem_object_unbind(obj);
2088
2089 if (obj->has_global_gtt_mapping)
2090 i915_gem_gtt_unbind_object(obj);
2091 if (obj->has_aliasing_ppgtt_mapping) {
2092 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2093 obj->has_aliasing_ppgtt_mapping = 0;
2094 }
2095 i915_gem_gtt_finish_object(obj);
2096
2097 i915_gem_object_put_pages_gtt(obj);
2098
2099 list_del_init(&obj->gtt_list);
2100 list_del_init(&obj->mm_list);
2101 /* Avoid an unnecessary call to unbind on rebind. */
2102 obj->map_and_fenceable = true;
2103
2104 drm_mm_put_block(obj->gtt_space);
2105 obj->gtt_space = NULL;
2106 obj->gtt_offset = 0;
2107
2108 if (i915_gem_object_is_purgeable(obj))
2109 i915_gem_object_truncate(obj);
2110
2111 return ret;
2112 }
2113
2114 int
2115 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2116 uint32_t invalidate_domains,
2117 uint32_t flush_domains)
2118 {
2119 int ret;
2120
2121 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2122 return 0;
2123
2124 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2125
2126 ret = ring->flush(ring, invalidate_domains, flush_domains);
2127 if (ret)
2128 return ret;
2129
2130 if (flush_domains & I915_GEM_GPU_DOMAINS)
2131 i915_gem_process_flushing_list(ring, flush_domains);
2132
2133 return 0;
2134 }
2135
2136 static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
2137 {
2138 int ret;
2139
2140 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2141 return 0;
2142
2143 if (!list_empty(&ring->gpu_write_list)) {
2144 ret = i915_gem_flush_ring(ring,
2145 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2146 if (ret)
2147 return ret;
2148 }
2149
2150 return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
2151 do_retire);
2152 }
2153
2154 int i915_gpu_idle(struct drm_device *dev, bool do_retire)
2155 {
2156 drm_i915_private_t *dev_priv = dev->dev_private;
2157 int ret, i;
2158
2159 /* Flush everything onto the inactive list. */
2160 for (i = 0; i < I915_NUM_RINGS; i++) {
2161 ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
2162 if (ret)
2163 return ret;
2164 }
2165
2166 return 0;
2167 }
2168
2169 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj)
2170 {
2171 struct drm_device *dev = obj->base.dev;
2172 drm_i915_private_t *dev_priv = dev->dev_private;
2173 u32 size = obj->gtt_space->size;
2174 int regnum = obj->fence_reg;
2175 uint64_t val;
2176
2177 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2178 0xfffff000) << 32;
2179 val |= obj->gtt_offset & 0xfffff000;
2180 val |= (uint64_t)((obj->stride / 128) - 1) <<
2181 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2182
2183 if (obj->tiling_mode == I915_TILING_Y)
2184 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2185 val |= I965_FENCE_REG_VALID;
2186
2187 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2188
2189 return 0;
2190 }
2191
2192 static int i965_write_fence_reg(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_device *dev = obj->base.dev;
2195 drm_i915_private_t *dev_priv = dev->dev_private;
2196 u32 size = obj->gtt_space->size;
2197 int regnum = obj->fence_reg;
2198 uint64_t val;
2199
2200 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2201 0xfffff000) << 32;
2202 val |= obj->gtt_offset & 0xfffff000;
2203 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2204 if (obj->tiling_mode == I915_TILING_Y)
2205 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2206 val |= I965_FENCE_REG_VALID;
2207
2208 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2209
2210 return 0;
2211 }
2212
2213 static int i915_write_fence_reg(struct drm_i915_gem_object *obj)
2214 {
2215 struct drm_device *dev = obj->base.dev;
2216 drm_i915_private_t *dev_priv = dev->dev_private;
2217 u32 size = obj->gtt_space->size;
2218 u32 fence_reg, val, pitch_val;
2219 int tile_width;
2220
2221 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2222 (size & -size) != size ||
2223 (obj->gtt_offset & (size - 1)),
2224 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2225 obj->gtt_offset, obj->map_and_fenceable, size))
2226 return -EINVAL;
2227
2228 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2229 tile_width = 128;
2230 else
2231 tile_width = 512;
2232
2233 /* Note: pitch better be a power of two tile widths */
2234 pitch_val = obj->stride / tile_width;
2235 pitch_val = ffs(pitch_val) - 1;
2236
2237 val = obj->gtt_offset;
2238 if (obj->tiling_mode == I915_TILING_Y)
2239 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2240 val |= I915_FENCE_SIZE_BITS(size);
2241 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2242 val |= I830_FENCE_REG_VALID;
2243
2244 fence_reg = obj->fence_reg;
2245 if (fence_reg < 8)
2246 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2247 else
2248 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2249
2250 I915_WRITE(fence_reg, val);
2251
2252 return 0;
2253 }
2254
2255 static int i830_write_fence_reg(struct drm_i915_gem_object *obj)
2256 {
2257 struct drm_device *dev = obj->base.dev;
2258 drm_i915_private_t *dev_priv = dev->dev_private;
2259 u32 size = obj->gtt_space->size;
2260 int regnum = obj->fence_reg;
2261 uint32_t val;
2262 uint32_t pitch_val;
2263
2264 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2265 (size & -size) != size ||
2266 (obj->gtt_offset & (size - 1)),
2267 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2268 obj->gtt_offset, size))
2269 return -EINVAL;
2270
2271 pitch_val = obj->stride / 128;
2272 pitch_val = ffs(pitch_val) - 1;
2273
2274 val = obj->gtt_offset;
2275 if (obj->tiling_mode == I915_TILING_Y)
2276 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2277 val |= I830_FENCE_SIZE_BITS(size);
2278 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2279 val |= I830_FENCE_REG_VALID;
2280
2281 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2282
2283 return 0;
2284 }
2285
2286 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2287 {
2288 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2289 }
2290
2291 static int
2292 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2293 {
2294 int ret;
2295
2296 if (obj->fenced_gpu_access) {
2297 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2298 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2299 0, obj->base.write_domain);
2300 if (ret)
2301 return ret;
2302 }
2303
2304 obj->fenced_gpu_access = false;
2305 }
2306
2307 if (obj->last_fenced_seqno && NULL != obj->last_fenced_ring) {
2308 if (!ring_passed_seqno(obj->last_fenced_ring,
2309 obj->last_fenced_seqno)) {
2310 ret = i915_wait_request(obj->last_fenced_ring,
2311 obj->last_fenced_seqno,
2312 true);
2313 if (ret)
2314 return ret;
2315 }
2316
2317 obj->last_fenced_seqno = 0;
2318 obj->last_fenced_ring = NULL;
2319 }
2320
2321 /* Ensure that all CPU reads are completed before installing a fence
2322 * and all writes before removing the fence.
2323 */
2324 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2325 mb();
2326
2327 return 0;
2328 }
2329
2330 int
2331 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2332 {
2333 int ret;
2334
2335 if (obj->tiling_mode)
2336 i915_gem_release_mmap(obj);
2337
2338 ret = i915_gem_object_flush_fence(obj);
2339 if (ret)
2340 return ret;
2341
2342 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2344
2345 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
2346 i915_gem_clear_fence_reg(obj->base.dev,
2347 &dev_priv->fence_regs[obj->fence_reg]);
2348
2349 obj->fence_reg = I915_FENCE_REG_NONE;
2350 }
2351
2352 return 0;
2353 }
2354
2355 static struct drm_i915_fence_reg *
2356 i915_find_fence_reg(struct drm_device *dev)
2357 {
2358 struct drm_i915_private *dev_priv = dev->dev_private;
2359 struct drm_i915_fence_reg *reg, *first, *avail;
2360 int i;
2361
2362 /* First try to find a free reg */
2363 avail = NULL;
2364 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2365 reg = &dev_priv->fence_regs[i];
2366 if (!reg->obj)
2367 return reg;
2368
2369 if (!reg->pin_count)
2370 avail = reg;
2371 }
2372
2373 if (avail == NULL)
2374 return NULL;
2375
2376 /* None available, try to steal one or wait for a user to finish */
2377 avail = first = NULL;
2378 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2379 if (reg->pin_count)
2380 continue;
2381
2382 if (first == NULL)
2383 first = reg;
2384
2385 if (reg->obj->last_fenced_ring == NULL) {
2386 avail = reg;
2387 break;
2388 }
2389 }
2390
2391 if (avail == NULL)
2392 avail = first;
2393
2394 return avail;
2395 }
2396
2397 /**
2398 * i915_gem_object_get_fence - set up fencing for an object
2399 * @obj: object to map through a fence reg
2400 *
2401 * When mapping objects through the GTT, userspace wants to be able to write
2402 * to them without having to worry about swizzling if the object is tiled.
2403 * This function walks the fence regs looking for a free one for @obj,
2404 * stealing one if it can't find any.
2405 *
2406 * It then sets up the reg based on the object's properties: address, pitch
2407 * and tiling format.
2408 *
2409 * For an untiled surface, this removes any existing fence.
2410 */
2411 int
2412 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2413 {
2414 struct drm_device *dev = obj->base.dev;
2415 struct drm_i915_private *dev_priv = dev->dev_private;
2416 struct drm_i915_fence_reg *reg;
2417 int ret;
2418
2419 if (obj->tiling_mode == I915_TILING_NONE)
2420 return i915_gem_object_put_fence(obj);
2421
2422 /* Just update our place in the LRU if our fence is getting reused. */
2423 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2424 reg = &dev_priv->fence_regs[obj->fence_reg];
2425 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2426
2427 if (obj->tiling_changed) {
2428 ret = i915_gem_object_flush_fence(obj);
2429 if (ret)
2430 return ret;
2431
2432 goto update;
2433 }
2434
2435 if (reg->setup_seqno) {
2436 if (!ring_passed_seqno(obj->last_fenced_ring,
2437 reg->setup_seqno)) {
2438 ret = i915_wait_request(obj->last_fenced_ring,
2439 reg->setup_seqno,
2440 true);
2441 if (ret)
2442 return ret;
2443 }
2444
2445 reg->setup_seqno = 0;
2446 }
2447
2448 return 0;
2449 }
2450
2451 reg = i915_find_fence_reg(dev);
2452 if (reg == NULL)
2453 return -EDEADLK;
2454
2455 ret = i915_gem_object_flush_fence(obj);
2456 if (ret)
2457 return ret;
2458
2459 if (reg->obj) {
2460 struct drm_i915_gem_object *old = reg->obj;
2461
2462 drm_gem_object_reference(&old->base);
2463
2464 if (old->tiling_mode)
2465 i915_gem_release_mmap(old);
2466
2467 ret = i915_gem_object_flush_fence(old);
2468 if (ret) {
2469 drm_gem_object_unreference(&old->base);
2470 return ret;
2471 }
2472
2473 old->fence_reg = I915_FENCE_REG_NONE;
2474 old->last_fenced_ring = NULL;
2475 old->last_fenced_seqno = 0;
2476
2477 drm_gem_object_unreference(&old->base);
2478 }
2479
2480 reg->obj = obj;
2481 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2482 obj->fence_reg = reg - dev_priv->fence_regs;
2483 obj->last_fenced_ring = NULL;
2484
2485 reg->setup_seqno = 0;
2486 obj->last_fenced_seqno = reg->setup_seqno;
2487
2488 update:
2489 obj->tiling_changed = false;
2490 switch (INTEL_INFO(dev)->gen) {
2491 case 7:
2492 case 6:
2493 ret = sandybridge_write_fence_reg(obj);
2494 break;
2495 case 5:
2496 case 4:
2497 ret = i965_write_fence_reg(obj);
2498 break;
2499 case 3:
2500 ret = i915_write_fence_reg(obj);
2501 break;
2502 case 2:
2503 ret = i830_write_fence_reg(obj);
2504 break;
2505 }
2506
2507 return ret;
2508 }
2509
2510 /**
2511 * i915_gem_clear_fence_reg - clear out fence register info
2512 * @obj: object to clear
2513 *
2514 * Zeroes out the fence register itself and clears out the associated
2515 * data structures in dev_priv and obj.
2516 */
2517 static void
2518 i915_gem_clear_fence_reg(struct drm_device *dev,
2519 struct drm_i915_fence_reg *reg)
2520 {
2521 drm_i915_private_t *dev_priv = dev->dev_private;
2522 uint32_t fence_reg = reg - dev_priv->fence_regs;
2523
2524 switch (INTEL_INFO(dev)->gen) {
2525 case 7:
2526 case 6:
2527 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2528 break;
2529 case 5:
2530 case 4:
2531 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2532 break;
2533 case 3:
2534 if (fence_reg >= 8)
2535 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2536 else
2537 case 2:
2538 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2539
2540 I915_WRITE(fence_reg, 0);
2541 break;
2542 }
2543
2544 list_del_init(&reg->lru_list);
2545 reg->obj = NULL;
2546 reg->setup_seqno = 0;
2547 reg->pin_count = 0;
2548 }
2549
2550 /**
2551 * Finds free space in the GTT aperture and binds the object there.
2552 */
2553 static int
2554 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2555 unsigned alignment,
2556 bool map_and_fenceable)
2557 {
2558 struct drm_device *dev = obj->base.dev;
2559 drm_i915_private_t *dev_priv = dev->dev_private;
2560 struct drm_mm_node *free_space;
2561 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2562 u32 size, fence_size, fence_alignment, unfenced_alignment;
2563 bool mappable, fenceable;
2564 int ret;
2565
2566 if (obj->madv != I915_MADV_WILLNEED) {
2567 DRM_ERROR("Attempting to bind a purgeable object\n");
2568 return -EINVAL;
2569 }
2570
2571 fence_size = i915_gem_get_gtt_size(dev,
2572 obj->base.size,
2573 obj->tiling_mode);
2574 fence_alignment = i915_gem_get_gtt_alignment(dev,
2575 obj->base.size,
2576 obj->tiling_mode);
2577 unfenced_alignment =
2578 i915_gem_get_unfenced_gtt_alignment(dev,
2579 obj->base.size,
2580 obj->tiling_mode);
2581
2582 if (alignment == 0)
2583 alignment = map_and_fenceable ? fence_alignment :
2584 unfenced_alignment;
2585 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2586 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2587 return -EINVAL;
2588 }
2589
2590 size = map_and_fenceable ? fence_size : obj->base.size;
2591
2592 /* If the object is bigger than the entire aperture, reject it early
2593 * before evicting everything in a vain attempt to find space.
2594 */
2595 if (obj->base.size >
2596 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2597 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2598 return -E2BIG;
2599 }
2600
2601 search_free:
2602 if (map_and_fenceable)
2603 free_space =
2604 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2605 size, alignment, 0,
2606 dev_priv->mm.gtt_mappable_end,
2607 0);
2608 else
2609 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2610 size, alignment, 0);
2611
2612 if (free_space != NULL) {
2613 if (map_and_fenceable)
2614 obj->gtt_space =
2615 drm_mm_get_block_range_generic(free_space,
2616 size, alignment, 0,
2617 dev_priv->mm.gtt_mappable_end,
2618 0);
2619 else
2620 obj->gtt_space =
2621 drm_mm_get_block(free_space, size, alignment);
2622 }
2623 if (obj->gtt_space == NULL) {
2624 /* If the gtt is empty and we're still having trouble
2625 * fitting our object in, we're out of memory.
2626 */
2627 ret = i915_gem_evict_something(dev, size, alignment,
2628 map_and_fenceable);
2629 if (ret)
2630 return ret;
2631
2632 goto search_free;
2633 }
2634
2635 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2636 if (ret) {
2637 drm_mm_put_block(obj->gtt_space);
2638 obj->gtt_space = NULL;
2639
2640 if (ret == -ENOMEM) {
2641 /* first try to reclaim some memory by clearing the GTT */
2642 ret = i915_gem_evict_everything(dev, false);
2643 if (ret) {
2644 /* now try to shrink everyone else */
2645 if (gfpmask) {
2646 gfpmask = 0;
2647 goto search_free;
2648 }
2649
2650 return -ENOMEM;
2651 }
2652
2653 goto search_free;
2654 }
2655
2656 return ret;
2657 }
2658
2659 ret = i915_gem_gtt_prepare_object(obj);
2660 if (ret) {
2661 i915_gem_object_put_pages_gtt(obj);
2662 drm_mm_put_block(obj->gtt_space);
2663 obj->gtt_space = NULL;
2664
2665 if (i915_gem_evict_everything(dev, false))
2666 return ret;
2667
2668 goto search_free;
2669 }
2670
2671 if (!dev_priv->mm.aliasing_ppgtt)
2672 i915_gem_gtt_bind_object(obj, obj->cache_level);
2673
2674 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2675 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2676
2677 /* Assert that the object is not currently in any GPU domain. As it
2678 * wasn't in the GTT, there shouldn't be any way it could have been in
2679 * a GPU cache
2680 */
2681 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2682 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2683
2684 obj->gtt_offset = obj->gtt_space->start;
2685
2686 fenceable =
2687 obj->gtt_space->size == fence_size &&
2688 (obj->gtt_space->start & (fence_alignment - 1)) == 0;
2689
2690 mappable =
2691 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2692
2693 obj->map_and_fenceable = mappable && fenceable;
2694
2695 trace_i915_gem_object_bind(obj, map_and_fenceable);
2696 return 0;
2697 }
2698
2699 void
2700 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2701 {
2702 /* If we don't have a page list set up, then we're not pinned
2703 * to GPU, and we can ignore the cache flush because it'll happen
2704 * again at bind time.
2705 */
2706 if (obj->pages == NULL)
2707 return;
2708
2709 /* If the GPU is snooping the contents of the CPU cache,
2710 * we do not need to manually clear the CPU cache lines. However,
2711 * the caches are only snooped when the render cache is
2712 * flushed/invalidated. As we always have to emit invalidations
2713 * and flushes when moving into and out of the RENDER domain, correct
2714 * snooping behaviour occurs naturally as the result of our domain
2715 * tracking.
2716 */
2717 if (obj->cache_level != I915_CACHE_NONE)
2718 return;
2719
2720 trace_i915_gem_object_clflush(obj);
2721
2722 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2723 }
2724
2725 /** Flushes any GPU write domain for the object if it's dirty. */
2726 static int
2727 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2728 {
2729 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2730 return 0;
2731
2732 /* Queue the GPU write cache flushing we need. */
2733 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2734 }
2735
2736 /** Flushes the GTT write domain for the object if it's dirty. */
2737 static void
2738 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2739 {
2740 uint32_t old_write_domain;
2741
2742 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2743 return;
2744
2745 /* No actual flushing is required for the GTT write domain. Writes
2746 * to it immediately go to main memory as far as we know, so there's
2747 * no chipset flush. It also doesn't land in render cache.
2748 *
2749 * However, we do have to enforce the order so that all writes through
2750 * the GTT land before any writes to the device, such as updates to
2751 * the GATT itself.
2752 */
2753 wmb();
2754
2755 old_write_domain = obj->base.write_domain;
2756 obj->base.write_domain = 0;
2757
2758 trace_i915_gem_object_change_domain(obj,
2759 obj->base.read_domains,
2760 old_write_domain);
2761 }
2762
2763 /** Flushes the CPU write domain for the object if it's dirty. */
2764 static void
2765 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2766 {
2767 uint32_t old_write_domain;
2768
2769 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2770 return;
2771
2772 i915_gem_clflush_object(obj);
2773 intel_gtt_chipset_flush();
2774 old_write_domain = obj->base.write_domain;
2775 obj->base.write_domain = 0;
2776
2777 trace_i915_gem_object_change_domain(obj,
2778 obj->base.read_domains,
2779 old_write_domain);
2780 }
2781
2782 /**
2783 * Moves a single object to the GTT read, and possibly write domain.
2784 *
2785 * This function returns when the move is complete, including waiting on
2786 * flushes to occur.
2787 */
2788 int
2789 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2790 {
2791 uint32_t old_write_domain, old_read_domains;
2792 int ret;
2793
2794 /* Not valid to be called on unbound objects. */
2795 if (obj->gtt_space == NULL)
2796 return -EINVAL;
2797
2798 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2799 return 0;
2800
2801 ret = i915_gem_object_flush_gpu_write_domain(obj);
2802 if (ret)
2803 return ret;
2804
2805 if (obj->pending_gpu_write || write) {
2806 ret = i915_gem_object_wait_rendering(obj);
2807 if (ret)
2808 return ret;
2809 }
2810
2811 i915_gem_object_flush_cpu_write_domain(obj);
2812
2813 old_write_domain = obj->base.write_domain;
2814 old_read_domains = obj->base.read_domains;
2815
2816 /* It should now be out of any other write domains, and we can update
2817 * the domain values for our changes.
2818 */
2819 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2820 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2821 if (write) {
2822 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2823 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2824 obj->dirty = 1;
2825 }
2826
2827 trace_i915_gem_object_change_domain(obj,
2828 old_read_domains,
2829 old_write_domain);
2830
2831 return 0;
2832 }
2833
2834 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2835 enum i915_cache_level cache_level)
2836 {
2837 struct drm_device *dev = obj->base.dev;
2838 drm_i915_private_t *dev_priv = dev->dev_private;
2839 int ret;
2840
2841 if (obj->cache_level == cache_level)
2842 return 0;
2843
2844 if (obj->pin_count) {
2845 DRM_DEBUG("can not change the cache level of pinned objects\n");
2846 return -EBUSY;
2847 }
2848
2849 if (obj->gtt_space) {
2850 ret = i915_gem_object_finish_gpu(obj);
2851 if (ret)
2852 return ret;
2853
2854 i915_gem_object_finish_gtt(obj);
2855
2856 /* Before SandyBridge, you could not use tiling or fence
2857 * registers with snooped memory, so relinquish any fences
2858 * currently pointing to our region in the aperture.
2859 */
2860 if (INTEL_INFO(obj->base.dev)->gen < 6) {
2861 ret = i915_gem_object_put_fence(obj);
2862 if (ret)
2863 return ret;
2864 }
2865
2866 if (obj->has_global_gtt_mapping)
2867 i915_gem_gtt_bind_object(obj, cache_level);
2868 if (obj->has_aliasing_ppgtt_mapping)
2869 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
2870 obj, cache_level);
2871 }
2872
2873 if (cache_level == I915_CACHE_NONE) {
2874 u32 old_read_domains, old_write_domain;
2875
2876 /* If we're coming from LLC cached, then we haven't
2877 * actually been tracking whether the data is in the
2878 * CPU cache or not, since we only allow one bit set
2879 * in obj->write_domain and have been skipping the clflushes.
2880 * Just set it to the CPU cache for now.
2881 */
2882 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
2883 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
2884
2885 old_read_domains = obj->base.read_domains;
2886 old_write_domain = obj->base.write_domain;
2887
2888 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
2889 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2890
2891 trace_i915_gem_object_change_domain(obj,
2892 old_read_domains,
2893 old_write_domain);
2894 }
2895
2896 obj->cache_level = cache_level;
2897 return 0;
2898 }
2899
2900 /*
2901 * Prepare buffer for display plane (scanout, cursors, etc).
2902 * Can be called from an uninterruptible phase (modesetting) and allows
2903 * any flushes to be pipelined (for pageflips).
2904 */
2905 int
2906 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2907 u32 alignment,
2908 struct intel_ring_buffer *pipelined)
2909 {
2910 u32 old_read_domains, old_write_domain;
2911 int ret;
2912
2913 ret = i915_gem_object_flush_gpu_write_domain(obj);
2914 if (ret)
2915 return ret;
2916
2917 if (pipelined != obj->ring) {
2918 ret = i915_gem_object_sync(obj, pipelined);
2919 if (ret)
2920 return ret;
2921 }
2922
2923 /* The display engine is not coherent with the LLC cache on gen6. As
2924 * a result, we make sure that the pinning that is about to occur is
2925 * done with uncached PTEs. This is lowest common denominator for all
2926 * chipsets.
2927 *
2928 * However for gen6+, we could do better by using the GFDT bit instead
2929 * of uncaching, which would allow us to flush all the LLC-cached data
2930 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
2931 */
2932 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
2933 if (ret)
2934 return ret;
2935
2936 /* As the user may map the buffer once pinned in the display plane
2937 * (e.g. libkms for the bootup splash), we have to ensure that we
2938 * always use map_and_fenceable for all scanout buffers.
2939 */
2940 ret = i915_gem_object_pin(obj, alignment, true);
2941 if (ret)
2942 return ret;
2943
2944 i915_gem_object_flush_cpu_write_domain(obj);
2945
2946 old_write_domain = obj->base.write_domain;
2947 old_read_domains = obj->base.read_domains;
2948
2949 /* It should now be out of any other write domains, and we can update
2950 * the domain values for our changes.
2951 */
2952 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2953 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2954
2955 trace_i915_gem_object_change_domain(obj,
2956 old_read_domains,
2957 old_write_domain);
2958
2959 return 0;
2960 }
2961
2962 int
2963 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
2964 {
2965 int ret;
2966
2967 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
2968 return 0;
2969
2970 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2971 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2972 if (ret)
2973 return ret;
2974 }
2975
2976 ret = i915_gem_object_wait_rendering(obj);
2977 if (ret)
2978 return ret;
2979
2980 /* Ensure that we invalidate the GPU's caches and TLBs. */
2981 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2982 return 0;
2983 }
2984
2985 /**
2986 * Moves a single object to the CPU read, and possibly write domain.
2987 *
2988 * This function returns when the move is complete, including waiting on
2989 * flushes to occur.
2990 */
2991 int
2992 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
2993 {
2994 uint32_t old_write_domain, old_read_domains;
2995 int ret;
2996
2997 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
2998 return 0;
2999
3000 ret = i915_gem_object_flush_gpu_write_domain(obj);
3001 if (ret)
3002 return ret;
3003
3004 if (write || obj->pending_gpu_write) {
3005 ret = i915_gem_object_wait_rendering(obj);
3006 if (ret)
3007 return ret;
3008 }
3009
3010 i915_gem_object_flush_gtt_write_domain(obj);
3011
3012 old_write_domain = obj->base.write_domain;
3013 old_read_domains = obj->base.read_domains;
3014
3015 /* Flush the CPU cache if it's still invalid. */
3016 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3017 i915_gem_clflush_object(obj);
3018
3019 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3020 }
3021
3022 /* It should now be out of any other write domains, and we can update
3023 * the domain values for our changes.
3024 */
3025 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3026
3027 /* If we're writing through the CPU, then the GPU read domains will
3028 * need to be invalidated at next use.
3029 */
3030 if (write) {
3031 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3032 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3033 }
3034
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 old_write_domain);
3038
3039 return 0;
3040 }
3041
3042 /* Throttle our rendering by waiting until the ring has completed our requests
3043 * emitted over 20 msec ago.
3044 *
3045 * Note that if we were to use the current jiffies each time around the loop,
3046 * we wouldn't escape the function with any frames outstanding if the time to
3047 * render a frame was over 20ms.
3048 *
3049 * This should get us reasonable parallelism between CPU and GPU but also
3050 * relatively low latency when blocking on a particular request to finish.
3051 */
3052 static int
3053 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3054 {
3055 struct drm_i915_private *dev_priv = dev->dev_private;
3056 struct drm_i915_file_private *file_priv = file->driver_priv;
3057 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3058 struct drm_i915_gem_request *request;
3059 struct intel_ring_buffer *ring = NULL;
3060 u32 seqno = 0;
3061 int ret;
3062
3063 if (atomic_read(&dev_priv->mm.wedged))
3064 return -EIO;
3065
3066 spin_lock(&file_priv->mm.lock);
3067 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3068 if (time_after_eq(request->emitted_jiffies, recent_enough))
3069 break;
3070
3071 ring = request->ring;
3072 seqno = request->seqno;
3073 }
3074 spin_unlock(&file_priv->mm.lock);
3075
3076 if (seqno == 0)
3077 return 0;
3078
3079 ret = 0;
3080 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3081 /* And wait for the seqno passing without holding any locks and
3082 * causing extra latency for others. This is safe as the irq
3083 * generation is designed to be run atomically and so is
3084 * lockless.
3085 */
3086 if (ring->irq_get(ring)) {
3087 ret = wait_event_interruptible(ring->irq_queue,
3088 i915_seqno_passed(ring->get_seqno(ring), seqno)
3089 || atomic_read(&dev_priv->mm.wedged));
3090 ring->irq_put(ring);
3091
3092 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3093 ret = -EIO;
3094 } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
3095 seqno) ||
3096 atomic_read(&dev_priv->mm.wedged), 3000)) {
3097 ret = -EBUSY;
3098 }
3099 }
3100
3101 if (ret == 0)
3102 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3103
3104 return ret;
3105 }
3106
3107 int
3108 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3109 uint32_t alignment,
3110 bool map_and_fenceable)
3111 {
3112 struct drm_device *dev = obj->base.dev;
3113 struct drm_i915_private *dev_priv = dev->dev_private;
3114 int ret;
3115
3116 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3117 WARN_ON(i915_verify_lists(dev));
3118
3119 if (obj->gtt_space != NULL) {
3120 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3121 (map_and_fenceable && !obj->map_and_fenceable)) {
3122 WARN(obj->pin_count,
3123 "bo is already pinned with incorrect alignment:"
3124 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3125 " obj->map_and_fenceable=%d\n",
3126 obj->gtt_offset, alignment,
3127 map_and_fenceable,
3128 obj->map_and_fenceable);
3129 ret = i915_gem_object_unbind(obj);
3130 if (ret)
3131 return ret;
3132 }
3133 }
3134
3135 if (obj->gtt_space == NULL) {
3136 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3137 map_and_fenceable);
3138 if (ret)
3139 return ret;
3140 }
3141
3142 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3143 i915_gem_gtt_bind_object(obj, obj->cache_level);
3144
3145 if (obj->pin_count++ == 0) {
3146 if (!obj->active)
3147 list_move_tail(&obj->mm_list,
3148 &dev_priv->mm.pinned_list);
3149 }
3150 obj->pin_mappable |= map_and_fenceable;
3151
3152 WARN_ON(i915_verify_lists(dev));
3153 return 0;
3154 }
3155
3156 void
3157 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3158 {
3159 struct drm_device *dev = obj->base.dev;
3160 drm_i915_private_t *dev_priv = dev->dev_private;
3161
3162 WARN_ON(i915_verify_lists(dev));
3163 BUG_ON(obj->pin_count == 0);
3164 BUG_ON(obj->gtt_space == NULL);
3165
3166 if (--obj->pin_count == 0) {
3167 if (!obj->active)
3168 list_move_tail(&obj->mm_list,
3169 &dev_priv->mm.inactive_list);
3170 obj->pin_mappable = false;
3171 }
3172 WARN_ON(i915_verify_lists(dev));
3173 }
3174
3175 int
3176 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3177 struct drm_file *file)
3178 {
3179 struct drm_i915_gem_pin *args = data;
3180 struct drm_i915_gem_object *obj;
3181 int ret;
3182
3183 ret = i915_mutex_lock_interruptible(dev);
3184 if (ret)
3185 return ret;
3186
3187 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3188 if (&obj->base == NULL) {
3189 ret = -ENOENT;
3190 goto unlock;
3191 }
3192
3193 if (obj->madv != I915_MADV_WILLNEED) {
3194 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3195 ret = -EINVAL;
3196 goto out;
3197 }
3198
3199 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3200 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3201 args->handle);
3202 ret = -EINVAL;
3203 goto out;
3204 }
3205
3206 obj->user_pin_count++;
3207 obj->pin_filp = file;
3208 if (obj->user_pin_count == 1) {
3209 ret = i915_gem_object_pin(obj, args->alignment, true);
3210 if (ret)
3211 goto out;
3212 }
3213
3214 /* XXX - flush the CPU caches for pinned objects
3215 * as the X server doesn't manage domains yet
3216 */
3217 i915_gem_object_flush_cpu_write_domain(obj);
3218 args->offset = obj->gtt_offset;
3219 out:
3220 drm_gem_object_unreference(&obj->base);
3221 unlock:
3222 mutex_unlock(&dev->struct_mutex);
3223 return ret;
3224 }
3225
3226 int
3227 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3228 struct drm_file *file)
3229 {
3230 struct drm_i915_gem_pin *args = data;
3231 struct drm_i915_gem_object *obj;
3232 int ret;
3233
3234 ret = i915_mutex_lock_interruptible(dev);
3235 if (ret)
3236 return ret;
3237
3238 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3239 if (&obj->base == NULL) {
3240 ret = -ENOENT;
3241 goto unlock;
3242 }
3243
3244 if (obj->pin_filp != file) {
3245 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3246 args->handle);
3247 ret = -EINVAL;
3248 goto out;
3249 }
3250 obj->user_pin_count--;
3251 if (obj->user_pin_count == 0) {
3252 obj->pin_filp = NULL;
3253 i915_gem_object_unpin(obj);
3254 }
3255
3256 out:
3257 drm_gem_object_unreference(&obj->base);
3258 unlock:
3259 mutex_unlock(&dev->struct_mutex);
3260 return ret;
3261 }
3262
3263 int
3264 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3265 struct drm_file *file)
3266 {
3267 struct drm_i915_gem_busy *args = data;
3268 struct drm_i915_gem_object *obj;
3269 int ret;
3270
3271 ret = i915_mutex_lock_interruptible(dev);
3272 if (ret)
3273 return ret;
3274
3275 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3276 if (&obj->base == NULL) {
3277 ret = -ENOENT;
3278 goto unlock;
3279 }
3280
3281 /* Count all active objects as busy, even if they are currently not used
3282 * by the gpu. Users of this interface expect objects to eventually
3283 * become non-busy without any further actions, therefore emit any
3284 * necessary flushes here.
3285 */
3286 args->busy = obj->active;
3287 if (args->busy) {
3288 /* Unconditionally flush objects, even when the gpu still uses this
3289 * object. Userspace calling this function indicates that it wants to
3290 * use this buffer rather sooner than later, so issuing the required
3291 * flush earlier is beneficial.
3292 */
3293 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3294 ret = i915_gem_flush_ring(obj->ring,
3295 0, obj->base.write_domain);
3296 } else if (obj->ring->outstanding_lazy_request ==
3297 obj->last_rendering_seqno) {
3298 struct drm_i915_gem_request *request;
3299
3300 /* This ring is not being cleared by active usage,
3301 * so emit a request to do so.
3302 */
3303 request = kzalloc(sizeof(*request), GFP_KERNEL);
3304 if (request) {
3305 ret = i915_add_request(obj->ring, NULL, request);
3306 if (ret)
3307 kfree(request);
3308 } else
3309 ret = -ENOMEM;
3310 }
3311
3312 /* Update the active list for the hardware's current position.
3313 * Otherwise this only updates on a delayed timer or when irqs
3314 * are actually unmasked, and our working set ends up being
3315 * larger than required.
3316 */
3317 i915_gem_retire_requests_ring(obj->ring);
3318
3319 args->busy = obj->active;
3320 }
3321
3322 drm_gem_object_unreference(&obj->base);
3323 unlock:
3324 mutex_unlock(&dev->struct_mutex);
3325 return ret;
3326 }
3327
3328 int
3329 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file_priv)
3331 {
3332 return i915_gem_ring_throttle(dev, file_priv);
3333 }
3334
3335 int
3336 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3337 struct drm_file *file_priv)
3338 {
3339 struct drm_i915_gem_madvise *args = data;
3340 struct drm_i915_gem_object *obj;
3341 int ret;
3342
3343 switch (args->madv) {
3344 case I915_MADV_DONTNEED:
3345 case I915_MADV_WILLNEED:
3346 break;
3347 default:
3348 return -EINVAL;
3349 }
3350
3351 ret = i915_mutex_lock_interruptible(dev);
3352 if (ret)
3353 return ret;
3354
3355 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3356 if (&obj->base == NULL) {
3357 ret = -ENOENT;
3358 goto unlock;
3359 }
3360
3361 if (obj->pin_count) {
3362 ret = -EINVAL;
3363 goto out;
3364 }
3365
3366 if (obj->madv != __I915_MADV_PURGED)
3367 obj->madv = args->madv;
3368
3369 /* if the object is no longer bound, discard its backing storage */
3370 if (i915_gem_object_is_purgeable(obj) &&
3371 obj->gtt_space == NULL)
3372 i915_gem_object_truncate(obj);
3373
3374 args->retained = obj->madv != __I915_MADV_PURGED;
3375
3376 out:
3377 drm_gem_object_unreference(&obj->base);
3378 unlock:
3379 mutex_unlock(&dev->struct_mutex);
3380 return ret;
3381 }
3382
3383 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3384 size_t size)
3385 {
3386 struct drm_i915_private *dev_priv = dev->dev_private;
3387 struct drm_i915_gem_object *obj;
3388 struct address_space *mapping;
3389
3390 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3391 if (obj == NULL)
3392 return NULL;
3393
3394 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3395 kfree(obj);
3396 return NULL;
3397 }
3398
3399 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3400 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3401
3402 i915_gem_info_add_obj(dev_priv, size);
3403
3404 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3405 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3406
3407 if (HAS_LLC(dev)) {
3408 /* On some devices, we can have the GPU use the LLC (the CPU
3409 * cache) for about a 10% performance improvement
3410 * compared to uncached. Graphics requests other than
3411 * display scanout are coherent with the CPU in
3412 * accessing this cache. This means in this mode we
3413 * don't need to clflush on the CPU side, and on the
3414 * GPU side we only need to flush internal caches to
3415 * get data visible to the CPU.
3416 *
3417 * However, we maintain the display planes as UC, and so
3418 * need to rebind when first used as such.
3419 */
3420 obj->cache_level = I915_CACHE_LLC;
3421 } else
3422 obj->cache_level = I915_CACHE_NONE;
3423
3424 obj->base.driver_private = NULL;
3425 obj->fence_reg = I915_FENCE_REG_NONE;
3426 INIT_LIST_HEAD(&obj->mm_list);
3427 INIT_LIST_HEAD(&obj->gtt_list);
3428 INIT_LIST_HEAD(&obj->ring_list);
3429 INIT_LIST_HEAD(&obj->exec_list);
3430 INIT_LIST_HEAD(&obj->gpu_write_list);
3431 obj->madv = I915_MADV_WILLNEED;
3432 /* Avoid an unnecessary call to unbind on the first bind. */
3433 obj->map_and_fenceable = true;
3434
3435 return obj;
3436 }
3437
3438 int i915_gem_init_object(struct drm_gem_object *obj)
3439 {
3440 BUG();
3441
3442 return 0;
3443 }
3444
3445 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3446 {
3447 struct drm_device *dev = obj->base.dev;
3448 drm_i915_private_t *dev_priv = dev->dev_private;
3449 int ret;
3450
3451 ret = i915_gem_object_unbind(obj);
3452 if (ret == -ERESTARTSYS) {
3453 list_move(&obj->mm_list,
3454 &dev_priv->mm.deferred_free_list);
3455 return;
3456 }
3457
3458 trace_i915_gem_object_destroy(obj);
3459
3460 if (obj->base.map_list.map)
3461 drm_gem_free_mmap_offset(&obj->base);
3462
3463 drm_gem_object_release(&obj->base);
3464 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3465
3466 kfree(obj->bit_17);
3467 kfree(obj);
3468 }
3469
3470 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3471 {
3472 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3473 struct drm_device *dev = obj->base.dev;
3474
3475 while (obj->pin_count > 0)
3476 i915_gem_object_unpin(obj);
3477
3478 if (obj->phys_obj)
3479 i915_gem_detach_phys_object(dev, obj);
3480
3481 i915_gem_free_object_tail(obj);
3482 }
3483
3484 int
3485 i915_gem_idle(struct drm_device *dev)
3486 {
3487 drm_i915_private_t *dev_priv = dev->dev_private;
3488 int ret;
3489
3490 mutex_lock(&dev->struct_mutex);
3491
3492 if (dev_priv->mm.suspended) {
3493 mutex_unlock(&dev->struct_mutex);
3494 return 0;
3495 }
3496
3497 ret = i915_gpu_idle(dev, true);
3498 if (ret) {
3499 mutex_unlock(&dev->struct_mutex);
3500 return ret;
3501 }
3502
3503 /* Under UMS, be paranoid and evict. */
3504 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3505 ret = i915_gem_evict_inactive(dev, false);
3506 if (ret) {
3507 mutex_unlock(&dev->struct_mutex);
3508 return ret;
3509 }
3510 }
3511
3512 i915_gem_reset_fences(dev);
3513
3514 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3515 * We need to replace this with a semaphore, or something.
3516 * And not confound mm.suspended!
3517 */
3518 dev_priv->mm.suspended = 1;
3519 del_timer_sync(&dev_priv->hangcheck_timer);
3520
3521 i915_kernel_lost_context(dev);
3522 i915_gem_cleanup_ringbuffer(dev);
3523
3524 mutex_unlock(&dev->struct_mutex);
3525
3526 /* Cancel the retire work handler, which should be idle now. */
3527 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3528
3529 return 0;
3530 }
3531
3532 void i915_gem_init_swizzling(struct drm_device *dev)
3533 {
3534 drm_i915_private_t *dev_priv = dev->dev_private;
3535
3536 if (INTEL_INFO(dev)->gen < 5 ||
3537 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3538 return;
3539
3540 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3541 DISP_TILE_SURFACE_SWIZZLING);
3542
3543 if (IS_GEN5(dev))
3544 return;
3545
3546 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3547 if (IS_GEN6(dev))
3548 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
3549 else
3550 I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
3551 }
3552
3553 void i915_gem_init_ppgtt(struct drm_device *dev)
3554 {
3555 drm_i915_private_t *dev_priv = dev->dev_private;
3556 uint32_t pd_offset;
3557 struct intel_ring_buffer *ring;
3558 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
3559 uint32_t __iomem *pd_addr;
3560 uint32_t pd_entry;
3561 int i;
3562
3563 if (!dev_priv->mm.aliasing_ppgtt)
3564 return;
3565
3566
3567 pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
3568 for (i = 0; i < ppgtt->num_pd_entries; i++) {
3569 dma_addr_t pt_addr;
3570
3571 if (dev_priv->mm.gtt->needs_dmar)
3572 pt_addr = ppgtt->pt_dma_addr[i];
3573 else
3574 pt_addr = page_to_phys(ppgtt->pt_pages[i]);
3575
3576 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
3577 pd_entry |= GEN6_PDE_VALID;
3578
3579 writel(pd_entry, pd_addr + i);
3580 }
3581 readl(pd_addr);
3582
3583 pd_offset = ppgtt->pd_offset;
3584 pd_offset /= 64; /* in cachelines, */
3585 pd_offset <<= 16;
3586
3587 if (INTEL_INFO(dev)->gen == 6) {
3588 uint32_t ecochk, gab_ctl, ecobits;
3589
3590 ecobits = I915_READ(GAC_ECO_BITS);
3591 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
3592
3593 gab_ctl = I915_READ(GAB_CTL);
3594 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
3595
3596 ecochk = I915_READ(GAM_ECOCHK);
3597 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
3598 ECOCHK_PPGTT_CACHE64B);
3599 I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3600 } else if (INTEL_INFO(dev)->gen >= 7) {
3601 I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
3602 /* GFX_MODE is per-ring on gen7+ */
3603 }
3604
3605 for (i = 0; i < I915_NUM_RINGS; i++) {
3606 ring = &dev_priv->ring[i];
3607
3608 if (INTEL_INFO(dev)->gen >= 7)
3609 I915_WRITE(RING_MODE_GEN7(ring),
3610 GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
3611
3612 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
3613 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
3614 }
3615 }
3616
3617 int
3618 i915_gem_init_hw(struct drm_device *dev)
3619 {
3620 drm_i915_private_t *dev_priv = dev->dev_private;
3621 int ret;
3622
3623 i915_gem_init_swizzling(dev);
3624
3625 ret = intel_init_render_ring_buffer(dev);
3626 if (ret)
3627 return ret;
3628
3629 if (HAS_BSD(dev)) {
3630 ret = intel_init_bsd_ring_buffer(dev);
3631 if (ret)
3632 goto cleanup_render_ring;
3633 }
3634
3635 if (HAS_BLT(dev)) {
3636 ret = intel_init_blt_ring_buffer(dev);
3637 if (ret)
3638 goto cleanup_bsd_ring;
3639 }
3640
3641 dev_priv->next_seqno = 1;
3642
3643 i915_gem_init_ppgtt(dev);
3644
3645 return 0;
3646
3647 cleanup_bsd_ring:
3648 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3649 cleanup_render_ring:
3650 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3651 return ret;
3652 }
3653
3654 void
3655 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3656 {
3657 drm_i915_private_t *dev_priv = dev->dev_private;
3658 int i;
3659
3660 for (i = 0; i < I915_NUM_RINGS; i++)
3661 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3662 }
3663
3664 int
3665 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3666 struct drm_file *file_priv)
3667 {
3668 drm_i915_private_t *dev_priv = dev->dev_private;
3669 int ret, i;
3670
3671 if (drm_core_check_feature(dev, DRIVER_MODESET))
3672 return 0;
3673
3674 if (atomic_read(&dev_priv->mm.wedged)) {
3675 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3676 atomic_set(&dev_priv->mm.wedged, 0);
3677 }
3678
3679 mutex_lock(&dev->struct_mutex);
3680 dev_priv->mm.suspended = 0;
3681
3682 ret = i915_gem_init_hw(dev);
3683 if (ret != 0) {
3684 mutex_unlock(&dev->struct_mutex);
3685 return ret;
3686 }
3687
3688 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3689 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3690 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3691 for (i = 0; i < I915_NUM_RINGS; i++) {
3692 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3693 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3694 }
3695 mutex_unlock(&dev->struct_mutex);
3696
3697 ret = drm_irq_install(dev);
3698 if (ret)
3699 goto cleanup_ringbuffer;
3700
3701 return 0;
3702
3703 cleanup_ringbuffer:
3704 mutex_lock(&dev->struct_mutex);
3705 i915_gem_cleanup_ringbuffer(dev);
3706 dev_priv->mm.suspended = 1;
3707 mutex_unlock(&dev->struct_mutex);
3708
3709 return ret;
3710 }
3711
3712 int
3713 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3714 struct drm_file *file_priv)
3715 {
3716 if (drm_core_check_feature(dev, DRIVER_MODESET))
3717 return 0;
3718
3719 drm_irq_uninstall(dev);
3720 return i915_gem_idle(dev);
3721 }
3722
3723 void
3724 i915_gem_lastclose(struct drm_device *dev)
3725 {
3726 int ret;
3727
3728 if (drm_core_check_feature(dev, DRIVER_MODESET))
3729 return;
3730
3731 ret = i915_gem_idle(dev);
3732 if (ret)
3733 DRM_ERROR("failed to idle hardware: %d\n", ret);
3734 }
3735
3736 static void
3737 init_ring_lists(struct intel_ring_buffer *ring)
3738 {
3739 INIT_LIST_HEAD(&ring->active_list);
3740 INIT_LIST_HEAD(&ring->request_list);
3741 INIT_LIST_HEAD(&ring->gpu_write_list);
3742 }
3743
3744 void
3745 i915_gem_load(struct drm_device *dev)
3746 {
3747 int i;
3748 drm_i915_private_t *dev_priv = dev->dev_private;
3749
3750 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3751 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3752 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3753 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3754 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3755 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3756 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3757 for (i = 0; i < I915_NUM_RINGS; i++)
3758 init_ring_lists(&dev_priv->ring[i]);
3759 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
3760 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3761 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3762 i915_gem_retire_work_handler);
3763 init_completion(&dev_priv->error_completion);
3764
3765 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3766 if (IS_GEN3(dev)) {
3767 u32 tmp = I915_READ(MI_ARB_STATE);
3768 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3769 /* arb state is a masked write, so set bit + bit in mask */
3770 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3771 I915_WRITE(MI_ARB_STATE, tmp);
3772 }
3773 }
3774
3775 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3776
3777 /* Old X drivers will take 0-2 for front, back, depth buffers */
3778 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3779 dev_priv->fence_reg_start = 3;
3780
3781 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3782 dev_priv->num_fence_regs = 16;
3783 else
3784 dev_priv->num_fence_regs = 8;
3785
3786 /* Initialize fence registers to zero */
3787 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3788 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3789 }
3790
3791 i915_gem_detect_bit_6_swizzle(dev);
3792 init_waitqueue_head(&dev_priv->pending_flip_queue);
3793
3794 dev_priv->mm.interruptible = true;
3795
3796 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3797 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3798 register_shrinker(&dev_priv->mm.inactive_shrinker);
3799 }
3800
3801 /*
3802 * Create a physically contiguous memory object for this object
3803 * e.g. for cursor + overlay regs
3804 */
3805 static int i915_gem_init_phys_object(struct drm_device *dev,
3806 int id, int size, int align)
3807 {
3808 drm_i915_private_t *dev_priv = dev->dev_private;
3809 struct drm_i915_gem_phys_object *phys_obj;
3810 int ret;
3811
3812 if (dev_priv->mm.phys_objs[id - 1] || !size)
3813 return 0;
3814
3815 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3816 if (!phys_obj)
3817 return -ENOMEM;
3818
3819 phys_obj->id = id;
3820
3821 phys_obj->handle = drm_pci_alloc(dev, size, align);
3822 if (!phys_obj->handle) {
3823 ret = -ENOMEM;
3824 goto kfree_obj;
3825 }
3826 #ifdef CONFIG_X86
3827 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3828 #endif
3829
3830 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3831
3832 return 0;
3833 kfree_obj:
3834 kfree(phys_obj);
3835 return ret;
3836 }
3837
3838 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3839 {
3840 drm_i915_private_t *dev_priv = dev->dev_private;
3841 struct drm_i915_gem_phys_object *phys_obj;
3842
3843 if (!dev_priv->mm.phys_objs[id - 1])
3844 return;
3845
3846 phys_obj = dev_priv->mm.phys_objs[id - 1];
3847 if (phys_obj->cur_obj) {
3848 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3849 }
3850
3851 #ifdef CONFIG_X86
3852 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3853 #endif
3854 drm_pci_free(dev, phys_obj->handle);
3855 kfree(phys_obj);
3856 dev_priv->mm.phys_objs[id - 1] = NULL;
3857 }
3858
3859 void i915_gem_free_all_phys_object(struct drm_device *dev)
3860 {
3861 int i;
3862
3863 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3864 i915_gem_free_phys_object(dev, i);
3865 }
3866
3867 void i915_gem_detach_phys_object(struct drm_device *dev,
3868 struct drm_i915_gem_object *obj)
3869 {
3870 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3871 char *vaddr;
3872 int i;
3873 int page_count;
3874
3875 if (!obj->phys_obj)
3876 return;
3877 vaddr = obj->phys_obj->handle->vaddr;
3878
3879 page_count = obj->base.size / PAGE_SIZE;
3880 for (i = 0; i < page_count; i++) {
3881 struct page *page = shmem_read_mapping_page(mapping, i);
3882 if (!IS_ERR(page)) {
3883 char *dst = kmap_atomic(page);
3884 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3885 kunmap_atomic(dst);
3886
3887 drm_clflush_pages(&page, 1);
3888
3889 set_page_dirty(page);
3890 mark_page_accessed(page);
3891 page_cache_release(page);
3892 }
3893 }
3894 intel_gtt_chipset_flush();
3895
3896 obj->phys_obj->cur_obj = NULL;
3897 obj->phys_obj = NULL;
3898 }
3899
3900 int
3901 i915_gem_attach_phys_object(struct drm_device *dev,
3902 struct drm_i915_gem_object *obj,
3903 int id,
3904 int align)
3905 {
3906 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3907 drm_i915_private_t *dev_priv = dev->dev_private;
3908 int ret = 0;
3909 int page_count;
3910 int i;
3911
3912 if (id > I915_MAX_PHYS_OBJECT)
3913 return -EINVAL;
3914
3915 if (obj->phys_obj) {
3916 if (obj->phys_obj->id == id)
3917 return 0;
3918 i915_gem_detach_phys_object(dev, obj);
3919 }
3920
3921 /* create a new object */
3922 if (!dev_priv->mm.phys_objs[id - 1]) {
3923 ret = i915_gem_init_phys_object(dev, id,
3924 obj->base.size, align);
3925 if (ret) {
3926 DRM_ERROR("failed to init phys object %d size: %zu\n",
3927 id, obj->base.size);
3928 return ret;
3929 }
3930 }
3931
3932 /* bind to the object */
3933 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3934 obj->phys_obj->cur_obj = obj;
3935
3936 page_count = obj->base.size / PAGE_SIZE;
3937
3938 for (i = 0; i < page_count; i++) {
3939 struct page *page;
3940 char *dst, *src;
3941
3942 page = shmem_read_mapping_page(mapping, i);
3943 if (IS_ERR(page))
3944 return PTR_ERR(page);
3945
3946 src = kmap_atomic(page);
3947 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3948 memcpy(dst, src, PAGE_SIZE);
3949 kunmap_atomic(src);
3950
3951 mark_page_accessed(page);
3952 page_cache_release(page);
3953 }
3954
3955 return 0;
3956 }
3957
3958 static int
3959 i915_gem_phys_pwrite(struct drm_device *dev,
3960 struct drm_i915_gem_object *obj,
3961 struct drm_i915_gem_pwrite *args,
3962 struct drm_file *file_priv)
3963 {
3964 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
3965 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
3966
3967 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
3968 unsigned long unwritten;
3969
3970 /* The physical object once assigned is fixed for the lifetime
3971 * of the obj, so we can safely drop the lock and continue
3972 * to access vaddr.
3973 */
3974 mutex_unlock(&dev->struct_mutex);
3975 unwritten = copy_from_user(vaddr, user_data, args->size);
3976 mutex_lock(&dev->struct_mutex);
3977 if (unwritten)
3978 return -EFAULT;
3979 }
3980
3981 intel_gtt_chipset_flush();
3982 return 0;
3983 }
3984
3985 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
3986 {
3987 struct drm_i915_file_private *file_priv = file->driver_priv;
3988
3989 /* Clean up our request list when the client is going away, so that
3990 * later retire_requests won't dereference our soon-to-be-gone
3991 * file_priv.
3992 */
3993 spin_lock(&file_priv->mm.lock);
3994 while (!list_empty(&file_priv->mm.request_list)) {
3995 struct drm_i915_gem_request *request;
3996
3997 request = list_first_entry(&file_priv->mm.request_list,
3998 struct drm_i915_gem_request,
3999 client_list);
4000 list_del(&request->client_list);
4001 request->file_priv = NULL;
4002 }
4003 spin_unlock(&file_priv->mm.lock);
4004 }
4005
4006 static int
4007 i915_gpu_is_active(struct drm_device *dev)
4008 {
4009 drm_i915_private_t *dev_priv = dev->dev_private;
4010 int lists_empty;
4011
4012 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4013 list_empty(&dev_priv->mm.active_list);
4014
4015 return !lists_empty;
4016 }
4017
4018 static int
4019 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4020 {
4021 struct drm_i915_private *dev_priv =
4022 container_of(shrinker,
4023 struct drm_i915_private,
4024 mm.inactive_shrinker);
4025 struct drm_device *dev = dev_priv->dev;
4026 struct drm_i915_gem_object *obj, *next;
4027 int nr_to_scan = sc->nr_to_scan;
4028 int cnt;
4029
4030 if (!mutex_trylock(&dev->struct_mutex))
4031 return 0;
4032
4033 /* "fast-path" to count number of available objects */
4034 if (nr_to_scan == 0) {
4035 cnt = 0;
4036 list_for_each_entry(obj,
4037 &dev_priv->mm.inactive_list,
4038 mm_list)
4039 cnt++;
4040 mutex_unlock(&dev->struct_mutex);
4041 return cnt / 100 * sysctl_vfs_cache_pressure;
4042 }
4043
4044 rescan:
4045 /* first scan for clean buffers */
4046 i915_gem_retire_requests(dev);
4047
4048 list_for_each_entry_safe(obj, next,
4049 &dev_priv->mm.inactive_list,
4050 mm_list) {
4051 if (i915_gem_object_is_purgeable(obj)) {
4052 if (i915_gem_object_unbind(obj) == 0 &&
4053 --nr_to_scan == 0)
4054 break;
4055 }
4056 }
4057
4058 /* second pass, evict/count anything still on the inactive list */
4059 cnt = 0;
4060 list_for_each_entry_safe(obj, next,
4061 &dev_priv->mm.inactive_list,
4062 mm_list) {
4063 if (nr_to_scan &&
4064 i915_gem_object_unbind(obj) == 0)
4065 nr_to_scan--;
4066 else
4067 cnt++;
4068 }
4069
4070 if (nr_to_scan && i915_gpu_is_active(dev)) {
4071 /*
4072 * We are desperate for pages, so as a last resort, wait
4073 * for the GPU to finish and discard whatever we can.
4074 * This has a dramatic impact to reduce the number of
4075 * OOM-killer events whilst running the GPU aggressively.
4076 */
4077 if (i915_gpu_idle(dev, true) == 0)
4078 goto rescan;
4079 }
4080 mutex_unlock(&dev->struct_mutex);
4081 return cnt / 100 * sysctl_vfs_cache_pressure;
4082 }