]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55 return false;
56
57 if (!i915_gem_object_is_coherent(obj))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 u64 size)
83 {
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 u64 size)
92 {
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 int ret;
103
104 might_sleep();
105
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
111 ret = wait_event_interruptible_timeout(error->reset_queue,
112 !i915_reset_backoff(error),
113 I915_RESET_TIMEOUT);
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
118 return ret;
119 } else {
120 return 0;
121 }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = to_i915(dev);
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 return 0;
138 }
139
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142 struct drm_file *file)
143 {
144 struct drm_i915_private *dev_priv = to_i915(dev);
145 struct i915_ggtt *ggtt = &dev_priv->ggtt;
146 struct drm_i915_gem_get_aperture *args = data;
147 struct i915_vma *vma;
148 size_t pinned;
149
150 pinned = 0;
151 mutex_lock(&dev->struct_mutex);
152 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153 if (i915_vma_is_pinned(vma))
154 pinned += vma->node.size;
155 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156 if (i915_vma_is_pinned(vma))
157 pinned += vma->node.size;
158 mutex_unlock(&dev->struct_mutex);
159
160 args->aper_size = ggtt->base.total;
161 args->aper_available_size = args->aper_size - pinned;
162
163 return 0;
164 }
165
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169 struct address_space *mapping = obj->base.filp->f_mapping;
170 drm_dma_handle_t *phys;
171 struct sg_table *st;
172 struct scatterlist *sg;
173 char *vaddr;
174 int i;
175
176 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177 return ERR_PTR(-EINVAL);
178
179 /* Always aligning to the object size, allows a single allocation
180 * to handle all possible callers, and given typical object sizes,
181 * the alignment of the buddy allocation will naturally match.
182 */
183 phys = drm_pci_alloc(obj->base.dev,
184 obj->base.size,
185 roundup_pow_of_two(obj->base.size));
186 if (!phys)
187 return ERR_PTR(-ENOMEM);
188
189 vaddr = phys->vaddr;
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page)) {
196 st = ERR_CAST(page);
197 goto err_phys;
198 }
199
200 src = kmap_atomic(page);
201 memcpy(vaddr, src, PAGE_SIZE);
202 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203 kunmap_atomic(src);
204
205 put_page(page);
206 vaddr += PAGE_SIZE;
207 }
208
209 i915_gem_chipset_flush(to_i915(obj->base.dev));
210
211 st = kmalloc(sizeof(*st), GFP_KERNEL);
212 if (!st) {
213 st = ERR_PTR(-ENOMEM);
214 goto err_phys;
215 }
216
217 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218 kfree(st);
219 st = ERR_PTR(-ENOMEM);
220 goto err_phys;
221 }
222
223 sg = st->sgl;
224 sg->offset = 0;
225 sg->length = obj->base.size;
226
227 sg_dma_address(sg) = phys->busaddr;
228 sg_dma_len(sg) = obj->base.size;
229
230 obj->phys_handle = phys;
231 return st;
232
233 err_phys:
234 drm_pci_free(obj->base.dev, phys);
235 return st;
236 }
237
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240 struct sg_table *pages,
241 bool needs_clflush)
242 {
243 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244
245 if (obj->mm.madv == I915_MADV_DONTNEED)
246 obj->mm.dirty = false;
247
248 if (needs_clflush &&
249 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250 !i915_gem_object_is_coherent(obj))
251 drm_clflush_sg(pages);
252
253 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259 struct sg_table *pages)
260 {
261 __i915_gem_object_release_shmem(obj, pages, false);
262
263 if (obj->mm.dirty) {
264 struct address_space *mapping = obj->base.filp->f_mapping;
265 char *vaddr = obj->phys_handle->vaddr;
266 int i;
267
268 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269 struct page *page;
270 char *dst;
271
272 page = shmem_read_mapping_page(mapping, i);
273 if (IS_ERR(page))
274 continue;
275
276 dst = kmap_atomic(page);
277 drm_clflush_virt_range(vaddr, PAGE_SIZE);
278 memcpy(dst, vaddr, PAGE_SIZE);
279 kunmap_atomic(dst);
280
281 set_page_dirty(page);
282 if (obj->mm.madv == I915_MADV_WILLNEED)
283 mark_page_accessed(page);
284 put_page(page);
285 vaddr += PAGE_SIZE;
286 }
287 obj->mm.dirty = false;
288 }
289
290 sg_free_table(pages);
291 kfree(pages);
292
293 drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299 i915_gem_object_unpin_pages(obj);
300 }
301
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303 .get_pages = i915_gem_object_get_pages_phys,
304 .put_pages = i915_gem_object_put_pages_phys,
305 .release = i915_gem_object_release_phys,
306 };
307
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312 struct i915_vma *vma;
313 LIST_HEAD(still_in_list);
314 int ret;
315
316 lockdep_assert_held(&obj->base.dev->struct_mutex);
317
318 /* Closed vma are removed from the obj->vma_list - but they may
319 * still have an active binding on the object. To remove those we
320 * must wait for all rendering to complete to the object (as unbinding
321 * must anyway), and retire the requests.
322 */
323 ret = i915_gem_object_wait(obj,
324 I915_WAIT_INTERRUPTIBLE |
325 I915_WAIT_LOCKED |
326 I915_WAIT_ALL,
327 MAX_SCHEDULE_TIMEOUT,
328 NULL);
329 if (ret)
330 return ret;
331
332 i915_gem_retire_requests(to_i915(obj->base.dev));
333
334 while ((vma = list_first_entry_or_null(&obj->vma_list,
335 struct i915_vma,
336 obj_link))) {
337 list_move_tail(&vma->obj_link, &still_in_list);
338 ret = i915_vma_unbind(vma);
339 if (ret)
340 break;
341 }
342 list_splice(&still_in_list, &obj->vma_list);
343
344 return ret;
345 }
346
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349 unsigned int flags,
350 long timeout,
351 struct intel_rps_client *rps)
352 {
353 struct drm_i915_gem_request *rq;
354
355 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356
357 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358 return timeout;
359
360 if (!dma_fence_is_i915(fence))
361 return dma_fence_wait_timeout(fence,
362 flags & I915_WAIT_INTERRUPTIBLE,
363 timeout);
364
365 rq = to_request(fence);
366 if (i915_gem_request_completed(rq))
367 goto out;
368
369 /* This client is about to stall waiting for the GPU. In many cases
370 * this is undesirable and limits the throughput of the system, as
371 * many clients cannot continue processing user input/output whilst
372 * blocked. RPS autotuning may take tens of milliseconds to respond
373 * to the GPU load and thus incurs additional latency for the client.
374 * We can circumvent that by promoting the GPU frequency to maximum
375 * before we wait. This makes the GPU throttle up much more quickly
376 * (good for benchmarks and user experience, e.g. window animations),
377 * but at a cost of spending more power processing the workload
378 * (bad for battery). Not all clients even want their results
379 * immediately and for them we should just let the GPU select its own
380 * frequency to maximise efficiency. To prevent a single client from
381 * forcing the clocks too high for the whole system, we only allow
382 * each client to waitboost once in a busy period.
383 */
384 if (rps) {
385 if (INTEL_GEN(rq->i915) >= 6)
386 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387 else
388 rps = NULL;
389 }
390
391 timeout = i915_wait_request(rq, flags, timeout);
392
393 out:
394 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395 i915_gem_request_retire_upto(rq);
396
397 if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398 /* The GPU is now idle and this client has stalled.
399 * Since no other client has submitted a request in the
400 * meantime, assume that this client is the only one
401 * supplying work to the GPU but is unable to keep that
402 * work supplied because it is waiting. Since the GPU is
403 * then never kept fully busy, RPS autoclocking will
404 * keep the clocks relatively low, causing further delays.
405 * Compensate by giving the synchronous client credit for
406 * a waitboost next time.
407 */
408 spin_lock(&rq->i915->rps.client_lock);
409 list_del_init(&rps->link);
410 spin_unlock(&rq->i915->rps.client_lock);
411 }
412
413 return timeout;
414 }
415
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418 unsigned int flags,
419 long timeout,
420 struct intel_rps_client *rps)
421 {
422 unsigned int seq = __read_seqcount_begin(&resv->seq);
423 struct dma_fence *excl;
424 bool prune_fences = false;
425
426 if (flags & I915_WAIT_ALL) {
427 struct dma_fence **shared;
428 unsigned int count, i;
429 int ret;
430
431 ret = reservation_object_get_fences_rcu(resv,
432 &excl, &count, &shared);
433 if (ret)
434 return ret;
435
436 for (i = 0; i < count; i++) {
437 timeout = i915_gem_object_wait_fence(shared[i],
438 flags, timeout,
439 rps);
440 if (timeout < 0)
441 break;
442
443 dma_fence_put(shared[i]);
444 }
445
446 for (; i < count; i++)
447 dma_fence_put(shared[i]);
448 kfree(shared);
449
450 prune_fences = count && timeout >= 0;
451 } else {
452 excl = reservation_object_get_excl_rcu(resv);
453 }
454
455 if (excl && timeout >= 0) {
456 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457 prune_fences = timeout >= 0;
458 }
459
460 dma_fence_put(excl);
461
462 /* Oportunistically prune the fences iff we know they have *all* been
463 * signaled and that the reservation object has not been changed (i.e.
464 * no new fences have been added).
465 */
466 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467 if (reservation_object_trylock(resv)) {
468 if (!__read_seqcount_retry(&resv->seq, seq))
469 reservation_object_add_excl_fence(resv, NULL);
470 reservation_object_unlock(resv);
471 }
472 }
473
474 return timeout;
475 }
476
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479 struct drm_i915_gem_request *rq;
480 struct intel_engine_cs *engine;
481
482 if (!dma_fence_is_i915(fence))
483 return;
484
485 rq = to_request(fence);
486 engine = rq->engine;
487 if (!engine->schedule)
488 return;
489
490 engine->schedule(rq, prio);
491 }
492
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495 /* Recurse once into a fence-array */
496 if (dma_fence_is_array(fence)) {
497 struct dma_fence_array *array = to_dma_fence_array(fence);
498 int i;
499
500 for (i = 0; i < array->num_fences; i++)
501 __fence_set_priority(array->fences[i], prio);
502 } else {
503 __fence_set_priority(fence, prio);
504 }
505 }
506
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509 unsigned int flags,
510 int prio)
511 {
512 struct dma_fence *excl;
513
514 if (flags & I915_WAIT_ALL) {
515 struct dma_fence **shared;
516 unsigned int count, i;
517 int ret;
518
519 ret = reservation_object_get_fences_rcu(obj->resv,
520 &excl, &count, &shared);
521 if (ret)
522 return ret;
523
524 for (i = 0; i < count; i++) {
525 fence_set_priority(shared[i], prio);
526 dma_fence_put(shared[i]);
527 }
528
529 kfree(shared);
530 } else {
531 excl = reservation_object_get_excl_rcu(obj->resv);
532 }
533
534 if (excl) {
535 fence_set_priority(excl, prio);
536 dma_fence_put(excl);
537 }
538 return 0;
539 }
540
541 /**
542 * Waits for rendering to the object to be completed
543 * @obj: i915 gem object
544 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545 * @timeout: how long to wait
546 * @rps: client (user process) to charge for any waitboosting
547 */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550 unsigned int flags,
551 long timeout,
552 struct intel_rps_client *rps)
553 {
554 might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556 GEM_BUG_ON(debug_locks &&
557 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558 !!(flags & I915_WAIT_LOCKED));
559 #endif
560 GEM_BUG_ON(timeout < 0);
561
562 timeout = i915_gem_object_wait_reservation(obj->resv,
563 flags, timeout,
564 rps);
565 return timeout < 0 ? timeout : 0;
566 }
567
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570 struct drm_i915_file_private *fpriv = file->driver_priv;
571
572 return &fpriv->rps;
573 }
574
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577 int align)
578 {
579 int ret;
580
581 if (align > obj->base.size)
582 return -EINVAL;
583
584 if (obj->ops == &i915_gem_phys_ops)
585 return 0;
586
587 if (obj->mm.madv != I915_MADV_WILLNEED)
588 return -EFAULT;
589
590 if (obj->base.filp == NULL)
591 return -EINVAL;
592
593 ret = i915_gem_object_unbind(obj);
594 if (ret)
595 return ret;
596
597 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598 if (obj->mm.pages)
599 return -EBUSY;
600
601 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602 obj->ops = &i915_gem_phys_ops;
603
604 ret = i915_gem_object_pin_pages(obj);
605 if (ret)
606 goto err_xfer;
607
608 return 0;
609
610 err_xfer:
611 obj->ops = &i915_gem_object_ops;
612 return ret;
613 }
614
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617 struct drm_i915_gem_pwrite *args,
618 struct drm_file *file)
619 {
620 void *vaddr = obj->phys_handle->vaddr + args->offset;
621 char __user *user_data = u64_to_user_ptr(args->data_ptr);
622
623 /* We manually control the domain here and pretend that it
624 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625 */
626 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627 if (copy_from_user(vaddr, user_data, args->size))
628 return -EFAULT;
629
630 drm_clflush_virt_range(vaddr, args->size);
631 i915_gem_chipset_flush(to_i915(obj->base.dev));
632
633 intel_fb_obj_flush(obj, ORIGIN_CPU);
634 return 0;
635 }
636
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645 kmem_cache_free(dev_priv->objects, obj);
646 }
647
648 static int
649 i915_gem_create(struct drm_file *file,
650 struct drm_i915_private *dev_priv,
651 uint64_t size,
652 uint32_t *handle_p)
653 {
654 struct drm_i915_gem_object *obj;
655 int ret;
656 u32 handle;
657
658 size = roundup(size, PAGE_SIZE);
659 if (size == 0)
660 return -EINVAL;
661
662 /* Allocate the new object */
663 obj = i915_gem_object_create(dev_priv, size);
664 if (IS_ERR(obj))
665 return PTR_ERR(obj);
666
667 ret = drm_gem_handle_create(file, &obj->base, &handle);
668 /* drop reference from allocate - handle holds it now */
669 i915_gem_object_put(obj);
670 if (ret)
671 return ret;
672
673 *handle_p = handle;
674 return 0;
675 }
676
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679 struct drm_device *dev,
680 struct drm_mode_create_dumb *args)
681 {
682 /* have to work out size/pitch and return them */
683 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684 args->size = args->pitch * args->height;
685 return i915_gem_create(file, to_i915(dev),
686 args->size, &args->handle);
687 }
688
689 /**
690 * Creates a new mm object and returns a handle to it.
691 * @dev: drm device pointer
692 * @data: ioctl data blob
693 * @file: drm file pointer
694 */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697 struct drm_file *file)
698 {
699 struct drm_i915_private *dev_priv = to_i915(dev);
700 struct drm_i915_gem_create *args = data;
701
702 i915_gem_flush_free_objects(dev_priv);
703
704 return i915_gem_create(file, dev_priv,
705 args->size, &args->handle);
706 }
707
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710 const char *gpu_vaddr, int gpu_offset,
711 int length)
712 {
713 int ret, cpu_offset = 0;
714
715 while (length > 0) {
716 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717 int this_length = min(cacheline_end - gpu_offset, length);
718 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721 gpu_vaddr + swizzled_gpu_offset,
722 this_length);
723 if (ret)
724 return ret + length;
725
726 cpu_offset += this_length;
727 gpu_offset += this_length;
728 length -= this_length;
729 }
730
731 return 0;
732 }
733
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736 const char __user *cpu_vaddr,
737 int length)
738 {
739 int ret, cpu_offset = 0;
740
741 while (length > 0) {
742 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743 int this_length = min(cacheline_end - gpu_offset, length);
744 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747 cpu_vaddr + cpu_offset,
748 this_length);
749 if (ret)
750 return ret + length;
751
752 cpu_offset += this_length;
753 gpu_offset += this_length;
754 length -= this_length;
755 }
756
757 return 0;
758 }
759
760 /*
761 * Pins the specified object's pages and synchronizes the object with
762 * GPU accesses. Sets needs_clflush to non-zero if the caller should
763 * flush the object from the CPU cache.
764 */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766 unsigned int *needs_clflush)
767 {
768 int ret;
769
770 lockdep_assert_held(&obj->base.dev->struct_mutex);
771
772 *needs_clflush = 0;
773 if (!i915_gem_object_has_struct_page(obj))
774 return -ENODEV;
775
776 ret = i915_gem_object_wait(obj,
777 I915_WAIT_INTERRUPTIBLE |
778 I915_WAIT_LOCKED,
779 MAX_SCHEDULE_TIMEOUT,
780 NULL);
781 if (ret)
782 return ret;
783
784 ret = i915_gem_object_pin_pages(obj);
785 if (ret)
786 return ret;
787
788 if (i915_gem_object_is_coherent(obj) ||
789 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791 if (ret)
792 goto err_unpin;
793 else
794 goto out;
795 }
796
797 i915_gem_object_flush_gtt_write_domain(obj);
798
799 /* If we're not in the cpu read domain, set ourself into the gtt
800 * read domain and manually flush cachelines (if required). This
801 * optimizes for the case when the gpu will dirty the data
802 * anyway again before the next pread happens.
803 */
804 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805 *needs_clflush = CLFLUSH_BEFORE;
806
807 out:
808 /* return with the pages pinned */
809 return 0;
810
811 err_unpin:
812 i915_gem_object_unpin_pages(obj);
813 return ret;
814 }
815
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817 unsigned int *needs_clflush)
818 {
819 int ret;
820
821 lockdep_assert_held(&obj->base.dev->struct_mutex);
822
823 *needs_clflush = 0;
824 if (!i915_gem_object_has_struct_page(obj))
825 return -ENODEV;
826
827 ret = i915_gem_object_wait(obj,
828 I915_WAIT_INTERRUPTIBLE |
829 I915_WAIT_LOCKED |
830 I915_WAIT_ALL,
831 MAX_SCHEDULE_TIMEOUT,
832 NULL);
833 if (ret)
834 return ret;
835
836 ret = i915_gem_object_pin_pages(obj);
837 if (ret)
838 return ret;
839
840 if (i915_gem_object_is_coherent(obj) ||
841 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843 if (ret)
844 goto err_unpin;
845 else
846 goto out;
847 }
848
849 i915_gem_object_flush_gtt_write_domain(obj);
850
851 /* If we're not in the cpu write domain, set ourself into the
852 * gtt write domain and manually flush cachelines (as required).
853 * This optimizes for the case when the gpu will use the data
854 * right away and we therefore have to clflush anyway.
855 */
856 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857 *needs_clflush |= CLFLUSH_AFTER;
858
859 /* Same trick applies to invalidate partially written cachelines read
860 * before writing.
861 */
862 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863 *needs_clflush |= CLFLUSH_BEFORE;
864
865 out:
866 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867 obj->mm.dirty = true;
868 /* return with the pages pinned */
869 return 0;
870
871 err_unpin:
872 i915_gem_object_unpin_pages(obj);
873 return ret;
874 }
875
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878 bool swizzled)
879 {
880 if (unlikely(swizzled)) {
881 unsigned long start = (unsigned long) addr;
882 unsigned long end = (unsigned long) addr + length;
883
884 /* For swizzling simply ensure that we always flush both
885 * channels. Lame, but simple and it works. Swizzled
886 * pwrite/pread is far from a hotpath - current userspace
887 * doesn't use it at all. */
888 start = round_down(start, 128);
889 end = round_up(end, 128);
890
891 drm_clflush_virt_range((void *)start, end - start);
892 } else {
893 drm_clflush_virt_range(addr, length);
894 }
895
896 }
897
898 /* Only difference to the fast-path function is that this can handle bit17
899 * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902 char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 char *vaddr;
906 int ret;
907
908 vaddr = kmap(page);
909 if (needs_clflush)
910 shmem_clflush_swizzled_range(vaddr + offset, length,
911 page_do_bit17_swizzling);
912
913 if (page_do_bit17_swizzling)
914 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915 else
916 ret = __copy_to_user(user_data, vaddr + offset, length);
917 kunmap(page);
918
919 return ret ? - EFAULT : 0;
920 }
921
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924 bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926 int ret;
927
928 ret = -ENODEV;
929 if (!page_do_bit17_swizzling) {
930 char *vaddr = kmap_atomic(page);
931
932 if (needs_clflush)
933 drm_clflush_virt_range(vaddr + offset, length);
934 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935 kunmap_atomic(vaddr);
936 }
937 if (ret == 0)
938 return 0;
939
940 return shmem_pread_slow(page, offset, length, user_data,
941 page_do_bit17_swizzling, needs_clflush);
942 }
943
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946 struct drm_i915_gem_pread *args)
947 {
948 char __user *user_data;
949 u64 remain;
950 unsigned int obj_do_bit17_swizzling;
951 unsigned int needs_clflush;
952 unsigned int idx, offset;
953 int ret;
954
955 obj_do_bit17_swizzling = 0;
956 if (i915_gem_object_needs_bit17_swizzle(obj))
957 obj_do_bit17_swizzling = BIT(17);
958
959 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960 if (ret)
961 return ret;
962
963 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964 mutex_unlock(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 remain = args->size;
969 user_data = u64_to_user_ptr(args->data_ptr);
970 offset = offset_in_page(args->offset);
971 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972 struct page *page = i915_gem_object_get_page(obj, idx);
973 int length;
974
975 length = remain;
976 if (offset + length > PAGE_SIZE)
977 length = PAGE_SIZE - offset;
978
979 ret = shmem_pread(page, offset, length, user_data,
980 page_to_phys(page) & obj_do_bit17_swizzling,
981 needs_clflush);
982 if (ret)
983 break;
984
985 remain -= length;
986 user_data += length;
987 offset = 0;
988 }
989
990 i915_gem_obj_finish_shmem_access(obj);
991 return ret;
992 }
993
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996 loff_t base, int offset,
997 char __user *user_data, int length)
998 {
999 void *vaddr;
1000 unsigned long unwritten;
1001
1002 /* We can use the cpu mem copy function because this is X86. */
1003 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005 io_mapping_unmap_atomic(vaddr);
1006 if (unwritten) {
1007 vaddr = (void __force *)
1008 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010 io_mapping_unmap(vaddr);
1011 }
1012 return unwritten;
1013 }
1014
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017 const struct drm_i915_gem_pread *args)
1018 {
1019 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020 struct i915_ggtt *ggtt = &i915->ggtt;
1021 struct drm_mm_node node;
1022 struct i915_vma *vma;
1023 void __user *user_data;
1024 u64 remain, offset;
1025 int ret;
1026
1027 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028 if (ret)
1029 return ret;
1030
1031 intel_runtime_pm_get(i915);
1032 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033 PIN_MAPPABLE | PIN_NONBLOCK);
1034 if (!IS_ERR(vma)) {
1035 node.start = i915_ggtt_offset(vma);
1036 node.allocated = false;
1037 ret = i915_vma_put_fence(vma);
1038 if (ret) {
1039 i915_vma_unpin(vma);
1040 vma = ERR_PTR(ret);
1041 }
1042 }
1043 if (IS_ERR(vma)) {
1044 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045 if (ret)
1046 goto out_unlock;
1047 GEM_BUG_ON(!node.allocated);
1048 }
1049
1050 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051 if (ret)
1052 goto out_unpin;
1053
1054 mutex_unlock(&i915->drm.struct_mutex);
1055
1056 user_data = u64_to_user_ptr(args->data_ptr);
1057 remain = args->size;
1058 offset = args->offset;
1059
1060 while (remain > 0) {
1061 /* Operation in this page
1062 *
1063 * page_base = page offset within aperture
1064 * page_offset = offset within page
1065 * page_length = bytes to copy for this page
1066 */
1067 u32 page_base = node.start;
1068 unsigned page_offset = offset_in_page(offset);
1069 unsigned page_length = PAGE_SIZE - page_offset;
1070 page_length = remain < page_length ? remain : page_length;
1071 if (node.allocated) {
1072 wmb();
1073 ggtt->base.insert_page(&ggtt->base,
1074 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075 node.start, I915_CACHE_NONE, 0);
1076 wmb();
1077 } else {
1078 page_base += offset & PAGE_MASK;
1079 }
1080
1081 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082 user_data, page_length)) {
1083 ret = -EFAULT;
1084 break;
1085 }
1086
1087 remain -= page_length;
1088 user_data += page_length;
1089 offset += page_length;
1090 }
1091
1092 mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094 if (node.allocated) {
1095 wmb();
1096 ggtt->base.clear_range(&ggtt->base,
1097 node.start, node.size);
1098 remove_mappable_node(&node);
1099 } else {
1100 i915_vma_unpin(vma);
1101 }
1102 out_unlock:
1103 intel_runtime_pm_put(i915);
1104 mutex_unlock(&i915->drm.struct_mutex);
1105
1106 return ret;
1107 }
1108
1109 /**
1110 * Reads data from the object referenced by handle.
1111 * @dev: drm device pointer
1112 * @data: ioctl data blob
1113 * @file: drm file pointer
1114 *
1115 * On error, the contents of *data are undefined.
1116 */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119 struct drm_file *file)
1120 {
1121 struct drm_i915_gem_pread *args = data;
1122 struct drm_i915_gem_object *obj;
1123 int ret;
1124
1125 if (args->size == 0)
1126 return 0;
1127
1128 if (!access_ok(VERIFY_WRITE,
1129 u64_to_user_ptr(args->data_ptr),
1130 args->size))
1131 return -EFAULT;
1132
1133 obj = i915_gem_object_lookup(file, args->handle);
1134 if (!obj)
1135 return -ENOENT;
1136
1137 /* Bounds check source. */
1138 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139 ret = -EINVAL;
1140 goto out;
1141 }
1142
1143 trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
1145 ret = i915_gem_object_wait(obj,
1146 I915_WAIT_INTERRUPTIBLE,
1147 MAX_SCHEDULE_TIMEOUT,
1148 to_rps_client(file));
1149 if (ret)
1150 goto out;
1151
1152 ret = i915_gem_object_pin_pages(obj);
1153 if (ret)
1154 goto out;
1155
1156 ret = i915_gem_shmem_pread(obj, args);
1157 if (ret == -EFAULT || ret == -ENODEV)
1158 ret = i915_gem_gtt_pread(obj, args);
1159
1160 i915_gem_object_unpin_pages(obj);
1161 out:
1162 i915_gem_object_put(obj);
1163 return ret;
1164 }
1165
1166 /* This is the fast write path which cannot handle
1167 * page faults in the source data
1168 */
1169
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172 loff_t base, int offset,
1173 char __user *user_data, int length)
1174 {
1175 void *vaddr;
1176 unsigned long unwritten;
1177
1178 /* We can use the cpu mem copy function because this is X86. */
1179 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181 user_data, length);
1182 io_mapping_unmap_atomic(vaddr);
1183 if (unwritten) {
1184 vaddr = (void __force *)
1185 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187 io_mapping_unmap(vaddr);
1188 }
1189
1190 return unwritten;
1191 }
1192
1193 /**
1194 * This is the fast pwrite path, where we copy the data directly from the
1195 * user into the GTT, uncached.
1196 * @obj: i915 GEM object
1197 * @args: pwrite arguments structure
1198 */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201 const struct drm_i915_gem_pwrite *args)
1202 {
1203 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204 struct i915_ggtt *ggtt = &i915->ggtt;
1205 struct drm_mm_node node;
1206 struct i915_vma *vma;
1207 u64 remain, offset;
1208 void __user *user_data;
1209 int ret;
1210
1211 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212 if (ret)
1213 return ret;
1214
1215 intel_runtime_pm_get(i915);
1216 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217 PIN_MAPPABLE | PIN_NONBLOCK);
1218 if (!IS_ERR(vma)) {
1219 node.start = i915_ggtt_offset(vma);
1220 node.allocated = false;
1221 ret = i915_vma_put_fence(vma);
1222 if (ret) {
1223 i915_vma_unpin(vma);
1224 vma = ERR_PTR(ret);
1225 }
1226 }
1227 if (IS_ERR(vma)) {
1228 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229 if (ret)
1230 goto out_unlock;
1231 GEM_BUG_ON(!node.allocated);
1232 }
1233
1234 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235 if (ret)
1236 goto out_unpin;
1237
1238 mutex_unlock(&i915->drm.struct_mutex);
1239
1240 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241
1242 user_data = u64_to_user_ptr(args->data_ptr);
1243 offset = args->offset;
1244 remain = args->size;
1245 while (remain) {
1246 /* Operation in this page
1247 *
1248 * page_base = page offset within aperture
1249 * page_offset = offset within page
1250 * page_length = bytes to copy for this page
1251 */
1252 u32 page_base = node.start;
1253 unsigned int page_offset = offset_in_page(offset);
1254 unsigned int page_length = PAGE_SIZE - page_offset;
1255 page_length = remain < page_length ? remain : page_length;
1256 if (node.allocated) {
1257 wmb(); /* flush the write before we modify the GGTT */
1258 ggtt->base.insert_page(&ggtt->base,
1259 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260 node.start, I915_CACHE_NONE, 0);
1261 wmb(); /* flush modifications to the GGTT (insert_page) */
1262 } else {
1263 page_base += offset & PAGE_MASK;
1264 }
1265 /* If we get a fault while copying data, then (presumably) our
1266 * source page isn't available. Return the error and we'll
1267 * retry in the slow path.
1268 * If the object is non-shmem backed, we retry again with the
1269 * path that handles page fault.
1270 */
1271 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272 user_data, page_length)) {
1273 ret = -EFAULT;
1274 break;
1275 }
1276
1277 remain -= page_length;
1278 user_data += page_length;
1279 offset += page_length;
1280 }
1281 intel_fb_obj_flush(obj, ORIGIN_CPU);
1282
1283 mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285 if (node.allocated) {
1286 wmb();
1287 ggtt->base.clear_range(&ggtt->base,
1288 node.start, node.size);
1289 remove_mappable_node(&node);
1290 } else {
1291 i915_vma_unpin(vma);
1292 }
1293 out_unlock:
1294 intel_runtime_pm_put(i915);
1295 mutex_unlock(&i915->drm.struct_mutex);
1296 return ret;
1297 }
1298
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301 char __user *user_data,
1302 bool page_do_bit17_swizzling,
1303 bool needs_clflush_before,
1304 bool needs_clflush_after)
1305 {
1306 char *vaddr;
1307 int ret;
1308
1309 vaddr = kmap(page);
1310 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311 shmem_clflush_swizzled_range(vaddr + offset, length,
1312 page_do_bit17_swizzling);
1313 if (page_do_bit17_swizzling)
1314 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315 length);
1316 else
1317 ret = __copy_from_user(vaddr + offset, user_data, length);
1318 if (needs_clflush_after)
1319 shmem_clflush_swizzled_range(vaddr + offset, length,
1320 page_do_bit17_swizzling);
1321 kunmap(page);
1322
1323 return ret ? -EFAULT : 0;
1324 }
1325
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327 * Flushes invalid cachelines before writing to the target if
1328 * needs_clflush_before is set and flushes out any written cachelines after
1329 * writing if needs_clflush is set.
1330 */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333 bool page_do_bit17_swizzling,
1334 bool needs_clflush_before,
1335 bool needs_clflush_after)
1336 {
1337 int ret;
1338
1339 ret = -ENODEV;
1340 if (!page_do_bit17_swizzling) {
1341 char *vaddr = kmap_atomic(page);
1342
1343 if (needs_clflush_before)
1344 drm_clflush_virt_range(vaddr + offset, len);
1345 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346 if (needs_clflush_after)
1347 drm_clflush_virt_range(vaddr + offset, len);
1348
1349 kunmap_atomic(vaddr);
1350 }
1351 if (ret == 0)
1352 return ret;
1353
1354 return shmem_pwrite_slow(page, offset, len, user_data,
1355 page_do_bit17_swizzling,
1356 needs_clflush_before,
1357 needs_clflush_after);
1358 }
1359
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362 const struct drm_i915_gem_pwrite *args)
1363 {
1364 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365 void __user *user_data;
1366 u64 remain;
1367 unsigned int obj_do_bit17_swizzling;
1368 unsigned int partial_cacheline_write;
1369 unsigned int needs_clflush;
1370 unsigned int offset, idx;
1371 int ret;
1372
1373 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 if (ret)
1375 return ret;
1376
1377 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378 mutex_unlock(&i915->drm.struct_mutex);
1379 if (ret)
1380 return ret;
1381
1382 obj_do_bit17_swizzling = 0;
1383 if (i915_gem_object_needs_bit17_swizzle(obj))
1384 obj_do_bit17_swizzling = BIT(17);
1385
1386 /* If we don't overwrite a cacheline completely we need to be
1387 * careful to have up-to-date data by first clflushing. Don't
1388 * overcomplicate things and flush the entire patch.
1389 */
1390 partial_cacheline_write = 0;
1391 if (needs_clflush & CLFLUSH_BEFORE)
1392 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393
1394 user_data = u64_to_user_ptr(args->data_ptr);
1395 remain = args->size;
1396 offset = offset_in_page(args->offset);
1397 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398 struct page *page = i915_gem_object_get_page(obj, idx);
1399 int length;
1400
1401 length = remain;
1402 if (offset + length > PAGE_SIZE)
1403 length = PAGE_SIZE - offset;
1404
1405 ret = shmem_pwrite(page, offset, length, user_data,
1406 page_to_phys(page) & obj_do_bit17_swizzling,
1407 (offset | length) & partial_cacheline_write,
1408 needs_clflush & CLFLUSH_AFTER);
1409 if (ret)
1410 break;
1411
1412 remain -= length;
1413 user_data += length;
1414 offset = 0;
1415 }
1416
1417 intel_fb_obj_flush(obj, ORIGIN_CPU);
1418 i915_gem_obj_finish_shmem_access(obj);
1419 return ret;
1420 }
1421
1422 /**
1423 * Writes data to the object referenced by handle.
1424 * @dev: drm device
1425 * @data: ioctl data blob
1426 * @file: drm file
1427 *
1428 * On error, the contents of the buffer that were to be modified are undefined.
1429 */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432 struct drm_file *file)
1433 {
1434 struct drm_i915_gem_pwrite *args = data;
1435 struct drm_i915_gem_object *obj;
1436 int ret;
1437
1438 if (args->size == 0)
1439 return 0;
1440
1441 if (!access_ok(VERIFY_READ,
1442 u64_to_user_ptr(args->data_ptr),
1443 args->size))
1444 return -EFAULT;
1445
1446 obj = i915_gem_object_lookup(file, args->handle);
1447 if (!obj)
1448 return -ENOENT;
1449
1450 /* Bounds check destination. */
1451 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452 ret = -EINVAL;
1453 goto err;
1454 }
1455
1456 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
1458 ret = -ENODEV;
1459 if (obj->ops->pwrite)
1460 ret = obj->ops->pwrite(obj, args);
1461 if (ret != -ENODEV)
1462 goto err;
1463
1464 ret = i915_gem_object_wait(obj,
1465 I915_WAIT_INTERRUPTIBLE |
1466 I915_WAIT_ALL,
1467 MAX_SCHEDULE_TIMEOUT,
1468 to_rps_client(file));
1469 if (ret)
1470 goto err;
1471
1472 ret = i915_gem_object_pin_pages(obj);
1473 if (ret)
1474 goto err;
1475
1476 ret = -EFAULT;
1477 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478 * it would end up going through the fenced access, and we'll get
1479 * different detiling behavior between reading and writing.
1480 * pread/pwrite currently are reading and writing from the CPU
1481 * perspective, requiring manual detiling by the client.
1482 */
1483 if (!i915_gem_object_has_struct_page(obj) ||
1484 cpu_write_needs_clflush(obj))
1485 /* Note that the gtt paths might fail with non-page-backed user
1486 * pointers (e.g. gtt mappings when moving data between
1487 * textures). Fallback to the shmem path in that case.
1488 */
1489 ret = i915_gem_gtt_pwrite_fast(obj, args);
1490
1491 if (ret == -EFAULT || ret == -ENOSPC) {
1492 if (obj->phys_handle)
1493 ret = i915_gem_phys_pwrite(obj, args, file);
1494 else
1495 ret = i915_gem_shmem_pwrite(obj, args);
1496 }
1497
1498 i915_gem_object_unpin_pages(obj);
1499 err:
1500 i915_gem_object_put(obj);
1501 return ret;
1502 }
1503
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507 return (domain == I915_GEM_DOMAIN_GTT ?
1508 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513 struct drm_i915_private *i915;
1514 struct list_head *list;
1515 struct i915_vma *vma;
1516
1517 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518 if (!i915_vma_is_ggtt(vma))
1519 break;
1520
1521 if (i915_vma_is_active(vma))
1522 continue;
1523
1524 if (!drm_mm_node_allocated(&vma->node))
1525 continue;
1526
1527 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528 }
1529
1530 i915 = to_i915(obj->base.dev);
1531 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532 list_move_tail(&obj->global_link, list);
1533 }
1534
1535 /**
1536 * Called when user space prepares to use an object with the CPU, either
1537 * through the mmap ioctl's mapping or a GTT mapping.
1538 * @dev: drm device
1539 * @data: ioctl data blob
1540 * @file: drm file
1541 */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544 struct drm_file *file)
1545 {
1546 struct drm_i915_gem_set_domain *args = data;
1547 struct drm_i915_gem_object *obj;
1548 uint32_t read_domains = args->read_domains;
1549 uint32_t write_domain = args->write_domain;
1550 int err;
1551
1552 /* Only handle setting domains to types used by the CPU. */
1553 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554 return -EINVAL;
1555
1556 /* Having something in the write domain implies it's in the read
1557 * domain, and only that read domain. Enforce that in the request.
1558 */
1559 if (write_domain != 0 && read_domains != write_domain)
1560 return -EINVAL;
1561
1562 obj = i915_gem_object_lookup(file, args->handle);
1563 if (!obj)
1564 return -ENOENT;
1565
1566 /* Try to flush the object off the GPU without holding the lock.
1567 * We will repeat the flush holding the lock in the normal manner
1568 * to catch cases where we are gazumped.
1569 */
1570 err = i915_gem_object_wait(obj,
1571 I915_WAIT_INTERRUPTIBLE |
1572 (write_domain ? I915_WAIT_ALL : 0),
1573 MAX_SCHEDULE_TIMEOUT,
1574 to_rps_client(file));
1575 if (err)
1576 goto out;
1577
1578 /* Flush and acquire obj->pages so that we are coherent through
1579 * direct access in memory with previous cached writes through
1580 * shmemfs and that our cache domain tracking remains valid.
1581 * For example, if the obj->filp was moved to swap without us
1582 * being notified and releasing the pages, we would mistakenly
1583 * continue to assume that the obj remained out of the CPU cached
1584 * domain.
1585 */
1586 err = i915_gem_object_pin_pages(obj);
1587 if (err)
1588 goto out;
1589
1590 err = i915_mutex_lock_interruptible(dev);
1591 if (err)
1592 goto out_unpin;
1593
1594 if (read_domains & I915_GEM_DOMAIN_GTT)
1595 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596 else
1597 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598
1599 /* And bump the LRU for this access */
1600 i915_gem_object_bump_inactive_ggtt(obj);
1601
1602 mutex_unlock(&dev->struct_mutex);
1603
1604 if (write_domain != 0)
1605 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
1607 out_unpin:
1608 i915_gem_object_unpin_pages(obj);
1609 out:
1610 i915_gem_object_put(obj);
1611 return err;
1612 }
1613
1614 /**
1615 * Called when user space has done writes to this buffer
1616 * @dev: drm device
1617 * @data: ioctl data blob
1618 * @file: drm file
1619 */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622 struct drm_file *file)
1623 {
1624 struct drm_i915_gem_sw_finish *args = data;
1625 struct drm_i915_gem_object *obj;
1626
1627 obj = i915_gem_object_lookup(file, args->handle);
1628 if (!obj)
1629 return -ENOENT;
1630
1631 /* Pinned buffers may be scanout, so flush the cache */
1632 i915_gem_object_flush_if_display(obj);
1633 i915_gem_object_put(obj);
1634
1635 return 0;
1636 }
1637
1638 /**
1639 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640 * it is mapped to.
1641 * @dev: drm device
1642 * @data: ioctl data blob
1643 * @file: drm file
1644 *
1645 * While the mapping holds a reference on the contents of the object, it doesn't
1646 * imply a ref on the object itself.
1647 *
1648 * IMPORTANT:
1649 *
1650 * DRM driver writers who look a this function as an example for how to do GEM
1651 * mmap support, please don't implement mmap support like here. The modern way
1652 * to implement DRM mmap support is with an mmap offset ioctl (like
1653 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654 * That way debug tooling like valgrind will understand what's going on, hiding
1655 * the mmap call in a driver private ioctl will break that. The i915 driver only
1656 * does cpu mmaps this way because we didn't know better.
1657 */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660 struct drm_file *file)
1661 {
1662 struct drm_i915_gem_mmap *args = data;
1663 struct drm_i915_gem_object *obj;
1664 unsigned long addr;
1665
1666 if (args->flags & ~(I915_MMAP_WC))
1667 return -EINVAL;
1668
1669 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670 return -ENODEV;
1671
1672 obj = i915_gem_object_lookup(file, args->handle);
1673 if (!obj)
1674 return -ENOENT;
1675
1676 /* prime objects have no backing filp to GEM mmap
1677 * pages from.
1678 */
1679 if (!obj->base.filp) {
1680 i915_gem_object_put(obj);
1681 return -EINVAL;
1682 }
1683
1684 addr = vm_mmap(obj->base.filp, 0, args->size,
1685 PROT_READ | PROT_WRITE, MAP_SHARED,
1686 args->offset);
1687 if (args->flags & I915_MMAP_WC) {
1688 struct mm_struct *mm = current->mm;
1689 struct vm_area_struct *vma;
1690
1691 if (down_write_killable(&mm->mmap_sem)) {
1692 i915_gem_object_put(obj);
1693 return -EINTR;
1694 }
1695 vma = find_vma(mm, addr);
1696 if (vma)
1697 vma->vm_page_prot =
1698 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699 else
1700 addr = -ENOMEM;
1701 up_write(&mm->mmap_sem);
1702
1703 /* This may race, but that's ok, it only gets set */
1704 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705 }
1706 i915_gem_object_put(obj);
1707 if (IS_ERR((void *)addr))
1708 return addr;
1709
1710 args->addr_ptr = (uint64_t) addr;
1711
1712 return 0;
1713 }
1714
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719
1720 /**
1721 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722 *
1723 * A history of the GTT mmap interface:
1724 *
1725 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726 * aligned and suitable for fencing, and still fit into the available
1727 * mappable space left by the pinned display objects. A classic problem
1728 * we called the page-fault-of-doom where we would ping-pong between
1729 * two objects that could not fit inside the GTT and so the memcpy
1730 * would page one object in at the expense of the other between every
1731 * single byte.
1732 *
1733 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735 * object is too large for the available space (or simply too large
1736 * for the mappable aperture!), a view is created instead and faulted
1737 * into userspace. (This view is aligned and sized appropriately for
1738 * fenced access.)
1739 *
1740 * Restrictions:
1741 *
1742 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1743 * hangs on some architectures, corruption on others. An attempt to service
1744 * a GTT page fault from a snoopable object will generate a SIGBUS.
1745 *
1746 * * the object must be able to fit into RAM (physical memory, though no
1747 * limited to the mappable aperture).
1748 *
1749 *
1750 * Caveats:
1751 *
1752 * * a new GTT page fault will synchronize rendering from the GPU and flush
1753 * all data to system memory. Subsequent access will not be synchronized.
1754 *
1755 * * all mappings are revoked on runtime device suspend.
1756 *
1757 * * there are only 8, 16 or 32 fence registers to share between all users
1758 * (older machines require fence register for display and blitter access
1759 * as well). Contention of the fence registers will cause the previous users
1760 * to be unmapped and any new access will generate new page faults.
1761 *
1762 * * running out of memory while servicing a fault may generate a SIGBUS,
1763 * rather than the expected SIGSEGV.
1764 */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767 return 1;
1768 }
1769
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772 pgoff_t page_offset,
1773 unsigned int chunk)
1774 {
1775 struct i915_ggtt_view view;
1776
1777 if (i915_gem_object_is_tiled(obj))
1778 chunk = roundup(chunk, tile_row_pages(obj));
1779
1780 view.type = I915_GGTT_VIEW_PARTIAL;
1781 view.partial.offset = rounddown(page_offset, chunk);
1782 view.partial.size =
1783 min_t(unsigned int, chunk,
1784 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785
1786 /* If the partial covers the entire object, just create a normal VMA. */
1787 if (chunk >= obj->base.size >> PAGE_SHIFT)
1788 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790 return view;
1791 }
1792
1793 /**
1794 * i915_gem_fault - fault a page into the GTT
1795 * @vmf: fault info
1796 *
1797 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798 * from userspace. The fault handler takes care of binding the object to
1799 * the GTT (if needed), allocating and programming a fence register (again,
1800 * only if needed based on whether the old reg is still valid or the object
1801 * is tiled) and inserting a new PTE into the faulting process.
1802 *
1803 * Note that the faulting process may involve evicting existing objects
1804 * from the GTT and/or fence registers to make room. So performance may
1805 * suffer if the GTT working set is large or there are few fence registers
1806 * left.
1807 *
1808 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810 */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814 struct vm_area_struct *area = vmf->vma;
1815 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816 struct drm_device *dev = obj->base.dev;
1817 struct drm_i915_private *dev_priv = to_i915(dev);
1818 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820 struct i915_vma *vma;
1821 pgoff_t page_offset;
1822 unsigned int flags;
1823 int ret;
1824
1825 /* We don't use vmf->pgoff since that has the fake offset */
1826 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827
1828 trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
1830 /* Try to flush the object off the GPU first without holding the lock.
1831 * Upon acquiring the lock, we will perform our sanity checks and then
1832 * repeat the flush holding the lock in the normal manner to catch cases
1833 * where we are gazumped.
1834 */
1835 ret = i915_gem_object_wait(obj,
1836 I915_WAIT_INTERRUPTIBLE,
1837 MAX_SCHEDULE_TIMEOUT,
1838 NULL);
1839 if (ret)
1840 goto err;
1841
1842 ret = i915_gem_object_pin_pages(obj);
1843 if (ret)
1844 goto err;
1845
1846 intel_runtime_pm_get(dev_priv);
1847
1848 ret = i915_mutex_lock_interruptible(dev);
1849 if (ret)
1850 goto err_rpm;
1851
1852 /* Access to snoopable pages through the GTT is incoherent. */
1853 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854 ret = -EFAULT;
1855 goto err_unlock;
1856 }
1857
1858 /* If the object is smaller than a couple of partial vma, it is
1859 * not worth only creating a single partial vma - we may as well
1860 * clear enough space for the full object.
1861 */
1862 flags = PIN_MAPPABLE;
1863 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
1866 /* Now pin it into the GTT as needed */
1867 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868 if (IS_ERR(vma)) {
1869 /* Use a partial view if it is bigger than available space */
1870 struct i915_ggtt_view view =
1871 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872
1873 /* Userspace is now writing through an untracked VMA, abandon
1874 * all hope that the hardware is able to track future writes.
1875 */
1876 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
1878 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879 }
1880 if (IS_ERR(vma)) {
1881 ret = PTR_ERR(vma);
1882 goto err_unlock;
1883 }
1884
1885 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886 if (ret)
1887 goto err_unpin;
1888
1889 ret = i915_vma_get_fence(vma);
1890 if (ret)
1891 goto err_unpin;
1892
1893 /* Mark as being mmapped into userspace for later revocation */
1894 assert_rpm_wakelock_held(dev_priv);
1895 if (list_empty(&obj->userfault_link))
1896 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897
1898 /* Finally, remap it using the new GTT offset */
1899 ret = remap_io_mapping(area,
1900 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902 min_t(u64, vma->size, area->vm_end - area->vm_start),
1903 &ggtt->mappable);
1904
1905 err_unpin:
1906 __i915_vma_unpin(vma);
1907 err_unlock:
1908 mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910 intel_runtime_pm_put(dev_priv);
1911 i915_gem_object_unpin_pages(obj);
1912 err:
1913 switch (ret) {
1914 case -EIO:
1915 /*
1916 * We eat errors when the gpu is terminally wedged to avoid
1917 * userspace unduly crashing (gl has no provisions for mmaps to
1918 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919 * and so needs to be reported.
1920 */
1921 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922 ret = VM_FAULT_SIGBUS;
1923 break;
1924 }
1925 case -EAGAIN:
1926 /*
1927 * EAGAIN means the gpu is hung and we'll wait for the error
1928 * handler to reset everything when re-faulting in
1929 * i915_mutex_lock_interruptible.
1930 */
1931 case 0:
1932 case -ERESTARTSYS:
1933 case -EINTR:
1934 case -EBUSY:
1935 /*
1936 * EBUSY is ok: this just means that another thread
1937 * already did the job.
1938 */
1939 ret = VM_FAULT_NOPAGE;
1940 break;
1941 case -ENOMEM:
1942 ret = VM_FAULT_OOM;
1943 break;
1944 case -ENOSPC:
1945 case -EFAULT:
1946 ret = VM_FAULT_SIGBUS;
1947 break;
1948 default:
1949 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950 ret = VM_FAULT_SIGBUS;
1951 break;
1952 }
1953 return ret;
1954 }
1955
1956 /**
1957 * i915_gem_release_mmap - remove physical page mappings
1958 * @obj: obj in question
1959 *
1960 * Preserve the reservation of the mmapping with the DRM core code, but
1961 * relinquish ownership of the pages back to the system.
1962 *
1963 * It is vital that we remove the page mapping if we have mapped a tiled
1964 * object through the GTT and then lose the fence register due to
1965 * resource pressure. Similarly if the object has been moved out of the
1966 * aperture, than pages mapped into userspace must be revoked. Removing the
1967 * mapping will then trigger a page fault on the next user access, allowing
1968 * fixup by i915_gem_fault().
1969 */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974
1975 /* Serialisation between user GTT access and our code depends upon
1976 * revoking the CPU's PTE whilst the mutex is held. The next user
1977 * pagefault then has to wait until we release the mutex.
1978 *
1979 * Note that RPM complicates somewhat by adding an additional
1980 * requirement that operations to the GGTT be made holding the RPM
1981 * wakeref.
1982 */
1983 lockdep_assert_held(&i915->drm.struct_mutex);
1984 intel_runtime_pm_get(i915);
1985
1986 if (list_empty(&obj->userfault_link))
1987 goto out;
1988
1989 list_del_init(&obj->userfault_link);
1990 drm_vma_node_unmap(&obj->base.vma_node,
1991 obj->base.dev->anon_inode->i_mapping);
1992
1993 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994 * memory transactions from userspace before we return. The TLB
1995 * flushing implied above by changing the PTE above *should* be
1996 * sufficient, an extra barrier here just provides us with a bit
1997 * of paranoid documentation about our requirement to serialise
1998 * memory writes before touching registers / GSM.
1999 */
2000 wmb();
2001
2002 out:
2003 intel_runtime_pm_put(i915);
2004 }
2005
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008 struct drm_i915_gem_object *obj, *on;
2009 int i;
2010
2011 /*
2012 * Only called during RPM suspend. All users of the userfault_list
2013 * must be holding an RPM wakeref to ensure that this can not
2014 * run concurrently with themselves (and use the struct_mutex for
2015 * protection between themselves).
2016 */
2017
2018 list_for_each_entry_safe(obj, on,
2019 &dev_priv->mm.userfault_list, userfault_link) {
2020 list_del_init(&obj->userfault_link);
2021 drm_vma_node_unmap(&obj->base.vma_node,
2022 obj->base.dev->anon_inode->i_mapping);
2023 }
2024
2025 /* The fence will be lost when the device powers down. If any were
2026 * in use by hardware (i.e. they are pinned), we should not be powering
2027 * down! All other fences will be reacquired by the user upon waking.
2028 */
2029 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
2032 /* Ideally we want to assert that the fence register is not
2033 * live at this point (i.e. that no piece of code will be
2034 * trying to write through fence + GTT, as that both violates
2035 * our tracking of activity and associated locking/barriers,
2036 * but also is illegal given that the hw is powered down).
2037 *
2038 * Previously we used reg->pin_count as a "liveness" indicator.
2039 * That is not sufficient, and we need a more fine-grained
2040 * tool if we want to have a sanity check here.
2041 */
2042
2043 if (!reg->vma)
2044 continue;
2045
2046 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047 reg->dirty = true;
2048 }
2049 }
2050
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054 int err;
2055
2056 err = drm_gem_create_mmap_offset(&obj->base);
2057 if (likely(!err))
2058 return 0;
2059
2060 /* Attempt to reap some mmap space from dead objects */
2061 do {
2062 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063 if (err)
2064 break;
2065
2066 i915_gem_drain_freed_objects(dev_priv);
2067 err = drm_gem_create_mmap_offset(&obj->base);
2068 if (!err)
2069 break;
2070
2071 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2072
2073 return err;
2074 }
2075
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078 drm_gem_free_mmap_offset(&obj->base);
2079 }
2080
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083 struct drm_device *dev,
2084 uint32_t handle,
2085 uint64_t *offset)
2086 {
2087 struct drm_i915_gem_object *obj;
2088 int ret;
2089
2090 obj = i915_gem_object_lookup(file, handle);
2091 if (!obj)
2092 return -ENOENT;
2093
2094 ret = i915_gem_object_create_mmap_offset(obj);
2095 if (ret == 0)
2096 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097
2098 i915_gem_object_put(obj);
2099 return ret;
2100 }
2101
2102 /**
2103 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104 * @dev: DRM device
2105 * @data: GTT mapping ioctl data
2106 * @file: GEM object info
2107 *
2108 * Simply returns the fake offset to userspace so it can mmap it.
2109 * The mmap call will end up in drm_gem_mmap(), which will set things
2110 * up so we can get faults in the handler above.
2111 *
2112 * The fault handler will take care of binding the object into the GTT
2113 * (since it may have been evicted to make room for something), allocating
2114 * a fence register, and mapping the appropriate aperture address into
2115 * userspace.
2116 */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119 struct drm_file *file)
2120 {
2121 struct drm_i915_gem_mmap_gtt *args = data;
2122
2123 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130 i915_gem_object_free_mmap_offset(obj);
2131
2132 if (obj->base.filp == NULL)
2133 return;
2134
2135 /* Our goal here is to return as much of the memory as
2136 * is possible back to the system as we are called from OOM.
2137 * To do this we must instruct the shmfs to drop all of its
2138 * backing pages, *now*.
2139 */
2140 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141 obj->mm.madv = __I915_MADV_PURGED;
2142 obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148 struct address_space *mapping;
2149
2150 lockdep_assert_held(&obj->mm.lock);
2151 GEM_BUG_ON(obj->mm.pages);
2152
2153 switch (obj->mm.madv) {
2154 case I915_MADV_DONTNEED:
2155 i915_gem_object_truncate(obj);
2156 case __I915_MADV_PURGED:
2157 return;
2158 }
2159
2160 if (obj->base.filp == NULL)
2161 return;
2162
2163 mapping = obj->base.filp->f_mapping,
2164 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169 struct sg_table *pages)
2170 {
2171 struct sgt_iter sgt_iter;
2172 struct page *page;
2173
2174 __i915_gem_object_release_shmem(obj, pages, true);
2175
2176 i915_gem_gtt_finish_pages(obj, pages);
2177
2178 if (i915_gem_object_needs_bit17_swizzle(obj))
2179 i915_gem_object_save_bit_17_swizzle(obj, pages);
2180
2181 for_each_sgt_page(page, sgt_iter, pages) {
2182 if (obj->mm.dirty)
2183 set_page_dirty(page);
2184
2185 if (obj->mm.madv == I915_MADV_WILLNEED)
2186 mark_page_accessed(page);
2187
2188 put_page(page);
2189 }
2190 obj->mm.dirty = false;
2191
2192 sg_free_table(pages);
2193 kfree(pages);
2194 }
2195
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198 struct radix_tree_iter iter;
2199 void **slot;
2200
2201 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206 enum i915_mm_subclass subclass)
2207 {
2208 struct sg_table *pages;
2209
2210 if (i915_gem_object_has_pinned_pages(obj))
2211 return;
2212
2213 GEM_BUG_ON(obj->bind_count);
2214 if (!READ_ONCE(obj->mm.pages))
2215 return;
2216
2217 /* May be called by shrinker from within get_pages() (on another bo) */
2218 mutex_lock_nested(&obj->mm.lock, subclass);
2219 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220 goto unlock;
2221
2222 /* ->put_pages might need to allocate memory for the bit17 swizzle
2223 * array, hence protect them from being reaped by removing them from gtt
2224 * lists early. */
2225 pages = fetch_and_zero(&obj->mm.pages);
2226 GEM_BUG_ON(!pages);
2227
2228 if (obj->mm.mapping) {
2229 void *ptr;
2230
2231 ptr = ptr_mask_bits(obj->mm.mapping);
2232 if (is_vmalloc_addr(ptr))
2233 vunmap(ptr);
2234 else
2235 kunmap(kmap_to_page(ptr));
2236
2237 obj->mm.mapping = NULL;
2238 }
2239
2240 __i915_gem_object_reset_page_iter(obj);
2241
2242 if (!IS_ERR(pages))
2243 obj->ops->put_pages(obj, pages);
2244
2245 unlock:
2246 mutex_unlock(&obj->mm.lock);
2247 }
2248
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251 struct sg_table new_st;
2252 struct scatterlist *sg, *new_sg;
2253 unsigned int i;
2254
2255 if (orig_st->nents == orig_st->orig_nents)
2256 return false;
2257
2258 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259 return false;
2260
2261 new_sg = new_st.sgl;
2262 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264 /* called before being DMA mapped, no need to copy sg->dma_* */
2265 new_sg = sg_next(new_sg);
2266 }
2267 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268
2269 sg_free_table(orig_st);
2270
2271 *orig_st = new_st;
2272 return true;
2273 }
2274
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280 unsigned long i;
2281 struct address_space *mapping;
2282 struct sg_table *st;
2283 struct scatterlist *sg;
2284 struct sgt_iter sgt_iter;
2285 struct page *page;
2286 unsigned long last_pfn = 0; /* suppress gcc warning */
2287 unsigned int max_segment;
2288 gfp_t noreclaim;
2289 int ret;
2290
2291 /* Assert that the object is not currently in any GPU domain. As it
2292 * wasn't in the GTT, there shouldn't be any way it could have been in
2293 * a GPU cache
2294 */
2295 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297
2298 max_segment = swiotlb_max_segment();
2299 if (!max_segment)
2300 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301
2302 st = kmalloc(sizeof(*st), GFP_KERNEL);
2303 if (st == NULL)
2304 return ERR_PTR(-ENOMEM);
2305
2306 rebuild_st:
2307 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308 kfree(st);
2309 return ERR_PTR(-ENOMEM);
2310 }
2311
2312 /* Get the list of pages out of our struct file. They'll be pinned
2313 * at this point until we release them.
2314 *
2315 * Fail silently without starting the shrinker
2316 */
2317 mapping = obj->base.filp->f_mapping;
2318 noreclaim = mapping_gfp_constraint(mapping,
2319 ~(__GFP_IO | __GFP_RECLAIM));
2320 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2321
2322 sg = st->sgl;
2323 st->nents = 0;
2324 for (i = 0; i < page_count; i++) {
2325 const unsigned int shrink[] = {
2326 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2327 0,
2328 }, *s = shrink;
2329 gfp_t gfp = noreclaim;
2330
2331 do {
2332 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2333 if (likely(!IS_ERR(page)))
2334 break;
2335
2336 if (!*s) {
2337 ret = PTR_ERR(page);
2338 goto err_sg;
2339 }
2340
2341 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2342 cond_resched();
2343
2344 /* We've tried hard to allocate the memory by reaping
2345 * our own buffer, now let the real VM do its job and
2346 * go down in flames if truly OOM.
2347 *
2348 * However, since graphics tend to be disposable,
2349 * defer the oom here by reporting the ENOMEM back
2350 * to userspace.
2351 */
2352 if (!*s) {
2353 /* reclaim and warn, but no oom */
2354 gfp = mapping_gfp_mask(mapping);
2355
2356 /* Our bo are always dirty and so we require
2357 * kswapd to reclaim our pages (direct reclaim
2358 * does not effectively begin pageout of our
2359 * buffers on its own). However, direct reclaim
2360 * only waits for kswapd when under allocation
2361 * congestion. So as a result __GFP_RECLAIM is
2362 * unreliable and fails to actually reclaim our
2363 * dirty pages -- unless you try over and over
2364 * again with !__GFP_NORETRY. However, we still
2365 * want to fail this allocation rather than
2366 * trigger the out-of-memory killer and for
2367 * this we want the future __GFP_MAYFAIL.
2368 */
2369 }
2370 } while (1);
2371
2372 if (!i ||
2373 sg->length >= max_segment ||
2374 page_to_pfn(page) != last_pfn + 1) {
2375 if (i)
2376 sg = sg_next(sg);
2377 st->nents++;
2378 sg_set_page(sg, page, PAGE_SIZE, 0);
2379 } else {
2380 sg->length += PAGE_SIZE;
2381 }
2382 last_pfn = page_to_pfn(page);
2383
2384 /* Check that the i965g/gm workaround works. */
2385 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2386 }
2387 if (sg) /* loop terminated early; short sg table */
2388 sg_mark_end(sg);
2389
2390 /* Trim unused sg entries to avoid wasting memory. */
2391 i915_sg_trim(st);
2392
2393 ret = i915_gem_gtt_prepare_pages(obj, st);
2394 if (ret) {
2395 /* DMA remapping failed? One possible cause is that
2396 * it could not reserve enough large entries, asking
2397 * for PAGE_SIZE chunks instead may be helpful.
2398 */
2399 if (max_segment > PAGE_SIZE) {
2400 for_each_sgt_page(page, sgt_iter, st)
2401 put_page(page);
2402 sg_free_table(st);
2403
2404 max_segment = PAGE_SIZE;
2405 goto rebuild_st;
2406 } else {
2407 dev_warn(&dev_priv->drm.pdev->dev,
2408 "Failed to DMA remap %lu pages\n",
2409 page_count);
2410 goto err_pages;
2411 }
2412 }
2413
2414 if (i915_gem_object_needs_bit17_swizzle(obj))
2415 i915_gem_object_do_bit_17_swizzle(obj, st);
2416
2417 return st;
2418
2419 err_sg:
2420 sg_mark_end(sg);
2421 err_pages:
2422 for_each_sgt_page(page, sgt_iter, st)
2423 put_page(page);
2424 sg_free_table(st);
2425 kfree(st);
2426
2427 /* shmemfs first checks if there is enough memory to allocate the page
2428 * and reports ENOSPC should there be insufficient, along with the usual
2429 * ENOMEM for a genuine allocation failure.
2430 *
2431 * We use ENOSPC in our driver to mean that we have run out of aperture
2432 * space and so want to translate the error from shmemfs back to our
2433 * usual understanding of ENOMEM.
2434 */
2435 if (ret == -ENOSPC)
2436 ret = -ENOMEM;
2437
2438 return ERR_PTR(ret);
2439 }
2440
2441 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2442 struct sg_table *pages)
2443 {
2444 lockdep_assert_held(&obj->mm.lock);
2445
2446 obj->mm.get_page.sg_pos = pages->sgl;
2447 obj->mm.get_page.sg_idx = 0;
2448
2449 obj->mm.pages = pages;
2450
2451 if (i915_gem_object_is_tiled(obj) &&
2452 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2453 GEM_BUG_ON(obj->mm.quirked);
2454 __i915_gem_object_pin_pages(obj);
2455 obj->mm.quirked = true;
2456 }
2457 }
2458
2459 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2460 {
2461 struct sg_table *pages;
2462
2463 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2464
2465 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2466 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2467 return -EFAULT;
2468 }
2469
2470 pages = obj->ops->get_pages(obj);
2471 if (unlikely(IS_ERR(pages)))
2472 return PTR_ERR(pages);
2473
2474 __i915_gem_object_set_pages(obj, pages);
2475 return 0;
2476 }
2477
2478 /* Ensure that the associated pages are gathered from the backing storage
2479 * and pinned into our object. i915_gem_object_pin_pages() may be called
2480 * multiple times before they are released by a single call to
2481 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2482 * either as a result of memory pressure (reaping pages under the shrinker)
2483 * or as the object is itself released.
2484 */
2485 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2486 {
2487 int err;
2488
2489 err = mutex_lock_interruptible(&obj->mm.lock);
2490 if (err)
2491 return err;
2492
2493 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2494 err = ____i915_gem_object_get_pages(obj);
2495 if (err)
2496 goto unlock;
2497
2498 smp_mb__before_atomic();
2499 }
2500 atomic_inc(&obj->mm.pages_pin_count);
2501
2502 unlock:
2503 mutex_unlock(&obj->mm.lock);
2504 return err;
2505 }
2506
2507 /* The 'mapping' part of i915_gem_object_pin_map() below */
2508 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2509 enum i915_map_type type)
2510 {
2511 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2512 struct sg_table *sgt = obj->mm.pages;
2513 struct sgt_iter sgt_iter;
2514 struct page *page;
2515 struct page *stack_pages[32];
2516 struct page **pages = stack_pages;
2517 unsigned long i = 0;
2518 pgprot_t pgprot;
2519 void *addr;
2520
2521 /* A single page can always be kmapped */
2522 if (n_pages == 1 && type == I915_MAP_WB)
2523 return kmap(sg_page(sgt->sgl));
2524
2525 if (n_pages > ARRAY_SIZE(stack_pages)) {
2526 /* Too big for stack -- allocate temporary array instead */
2527 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2528 if (!pages)
2529 return NULL;
2530 }
2531
2532 for_each_sgt_page(page, sgt_iter, sgt)
2533 pages[i++] = page;
2534
2535 /* Check that we have the expected number of pages */
2536 GEM_BUG_ON(i != n_pages);
2537
2538 switch (type) {
2539 case I915_MAP_WB:
2540 pgprot = PAGE_KERNEL;
2541 break;
2542 case I915_MAP_WC:
2543 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2544 break;
2545 }
2546 addr = vmap(pages, n_pages, 0, pgprot);
2547
2548 if (pages != stack_pages)
2549 drm_free_large(pages);
2550
2551 return addr;
2552 }
2553
2554 /* get, pin, and map the pages of the object into kernel space */
2555 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2556 enum i915_map_type type)
2557 {
2558 enum i915_map_type has_type;
2559 bool pinned;
2560 void *ptr;
2561 int ret;
2562
2563 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2564
2565 ret = mutex_lock_interruptible(&obj->mm.lock);
2566 if (ret)
2567 return ERR_PTR(ret);
2568
2569 pinned = true;
2570 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2571 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2572 ret = ____i915_gem_object_get_pages(obj);
2573 if (ret)
2574 goto err_unlock;
2575
2576 smp_mb__before_atomic();
2577 }
2578 atomic_inc(&obj->mm.pages_pin_count);
2579 pinned = false;
2580 }
2581 GEM_BUG_ON(!obj->mm.pages);
2582
2583 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2584 if (ptr && has_type != type) {
2585 if (pinned) {
2586 ret = -EBUSY;
2587 goto err_unpin;
2588 }
2589
2590 if (is_vmalloc_addr(ptr))
2591 vunmap(ptr);
2592 else
2593 kunmap(kmap_to_page(ptr));
2594
2595 ptr = obj->mm.mapping = NULL;
2596 }
2597
2598 if (!ptr) {
2599 ptr = i915_gem_object_map(obj, type);
2600 if (!ptr) {
2601 ret = -ENOMEM;
2602 goto err_unpin;
2603 }
2604
2605 obj->mm.mapping = ptr_pack_bits(ptr, type);
2606 }
2607
2608 out_unlock:
2609 mutex_unlock(&obj->mm.lock);
2610 return ptr;
2611
2612 err_unpin:
2613 atomic_dec(&obj->mm.pages_pin_count);
2614 err_unlock:
2615 ptr = ERR_PTR(ret);
2616 goto out_unlock;
2617 }
2618
2619 static int
2620 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2621 const struct drm_i915_gem_pwrite *arg)
2622 {
2623 struct address_space *mapping = obj->base.filp->f_mapping;
2624 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2625 u64 remain, offset;
2626 unsigned int pg;
2627
2628 /* Before we instantiate/pin the backing store for our use, we
2629 * can prepopulate the shmemfs filp efficiently using a write into
2630 * the pagecache. We avoid the penalty of instantiating all the
2631 * pages, important if the user is just writing to a few and never
2632 * uses the object on the GPU, and using a direct write into shmemfs
2633 * allows it to avoid the cost of retrieving a page (either swapin
2634 * or clearing-before-use) before it is overwritten.
2635 */
2636 if (READ_ONCE(obj->mm.pages))
2637 return -ENODEV;
2638
2639 /* Before the pages are instantiated the object is treated as being
2640 * in the CPU domain. The pages will be clflushed as required before
2641 * use, and we can freely write into the pages directly. If userspace
2642 * races pwrite with any other operation; corruption will ensue -
2643 * that is userspace's prerogative!
2644 */
2645
2646 remain = arg->size;
2647 offset = arg->offset;
2648 pg = offset_in_page(offset);
2649
2650 do {
2651 unsigned int len, unwritten;
2652 struct page *page;
2653 void *data, *vaddr;
2654 int err;
2655
2656 len = PAGE_SIZE - pg;
2657 if (len > remain)
2658 len = remain;
2659
2660 err = pagecache_write_begin(obj->base.filp, mapping,
2661 offset, len, 0,
2662 &page, &data);
2663 if (err < 0)
2664 return err;
2665
2666 vaddr = kmap(page);
2667 unwritten = copy_from_user(vaddr + pg, user_data, len);
2668 kunmap(page);
2669
2670 err = pagecache_write_end(obj->base.filp, mapping,
2671 offset, len, len - unwritten,
2672 page, data);
2673 if (err < 0)
2674 return err;
2675
2676 if (unwritten)
2677 return -EFAULT;
2678
2679 remain -= len;
2680 user_data += len;
2681 offset += len;
2682 pg = 0;
2683 } while (remain);
2684
2685 return 0;
2686 }
2687
2688 static bool ban_context(const struct i915_gem_context *ctx)
2689 {
2690 return (i915_gem_context_is_bannable(ctx) &&
2691 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2692 }
2693
2694 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2695 {
2696 ctx->guilty_count++;
2697 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2698 if (ban_context(ctx))
2699 i915_gem_context_set_banned(ctx);
2700
2701 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2702 ctx->name, ctx->ban_score,
2703 yesno(i915_gem_context_is_banned(ctx)));
2704
2705 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2706 return;
2707
2708 ctx->file_priv->context_bans++;
2709 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2710 ctx->name, ctx->file_priv->context_bans);
2711 }
2712
2713 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2714 {
2715 ctx->active_count++;
2716 }
2717
2718 struct drm_i915_gem_request *
2719 i915_gem_find_active_request(struct intel_engine_cs *engine)
2720 {
2721 struct drm_i915_gem_request *request, *active = NULL;
2722 unsigned long flags;
2723
2724 /* We are called by the error capture and reset at a random
2725 * point in time. In particular, note that neither is crucially
2726 * ordered with an interrupt. After a hang, the GPU is dead and we
2727 * assume that no more writes can happen (we waited long enough for
2728 * all writes that were in transaction to be flushed) - adding an
2729 * extra delay for a recent interrupt is pointless. Hence, we do
2730 * not need an engine->irq_seqno_barrier() before the seqno reads.
2731 */
2732 spin_lock_irqsave(&engine->timeline->lock, flags);
2733 list_for_each_entry(request, &engine->timeline->requests, link) {
2734 if (__i915_gem_request_completed(request,
2735 request->global_seqno))
2736 continue;
2737
2738 GEM_BUG_ON(request->engine != engine);
2739 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2740 &request->fence.flags));
2741
2742 active = request;
2743 break;
2744 }
2745 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2746
2747 return active;
2748 }
2749
2750 static bool engine_stalled(struct intel_engine_cs *engine)
2751 {
2752 if (!engine->hangcheck.stalled)
2753 return false;
2754
2755 /* Check for possible seqno movement after hang declaration */
2756 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2757 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2758 return false;
2759 }
2760
2761 return true;
2762 }
2763
2764 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2765 {
2766 struct intel_engine_cs *engine;
2767 enum intel_engine_id id;
2768 int err = 0;
2769
2770 /* Ensure irq handler finishes, and not run again. */
2771 for_each_engine(engine, dev_priv, id) {
2772 struct drm_i915_gem_request *request;
2773
2774 /* Prevent the signaler thread from updating the request
2775 * state (by calling dma_fence_signal) as we are processing
2776 * the reset. The write from the GPU of the seqno is
2777 * asynchronous and the signaler thread may see a different
2778 * value to us and declare the request complete, even though
2779 * the reset routine have picked that request as the active
2780 * (incomplete) request. This conflict is not handled
2781 * gracefully!
2782 */
2783 kthread_park(engine->breadcrumbs.signaler);
2784
2785 /* Prevent request submission to the hardware until we have
2786 * completed the reset in i915_gem_reset_finish(). If a request
2787 * is completed by one engine, it may then queue a request
2788 * to a second via its engine->irq_tasklet *just* as we are
2789 * calling engine->init_hw() and also writing the ELSP.
2790 * Turning off the engine->irq_tasklet until the reset is over
2791 * prevents the race.
2792 */
2793 tasklet_kill(&engine->irq_tasklet);
2794 tasklet_disable(&engine->irq_tasklet);
2795
2796 if (engine->irq_seqno_barrier)
2797 engine->irq_seqno_barrier(engine);
2798
2799 if (engine_stalled(engine)) {
2800 request = i915_gem_find_active_request(engine);
2801 if (request && request->fence.error == -EIO)
2802 err = -EIO; /* Previous reset failed! */
2803 }
2804 }
2805
2806 i915_gem_revoke_fences(dev_priv);
2807
2808 return err;
2809 }
2810
2811 static void skip_request(struct drm_i915_gem_request *request)
2812 {
2813 void *vaddr = request->ring->vaddr;
2814 u32 head;
2815
2816 /* As this request likely depends on state from the lost
2817 * context, clear out all the user operations leaving the
2818 * breadcrumb at the end (so we get the fence notifications).
2819 */
2820 head = request->head;
2821 if (request->postfix < head) {
2822 memset(vaddr + head, 0, request->ring->size - head);
2823 head = 0;
2824 }
2825 memset(vaddr + head, 0, request->postfix - head);
2826
2827 dma_fence_set_error(&request->fence, -EIO);
2828 }
2829
2830 static void engine_skip_context(struct drm_i915_gem_request *request)
2831 {
2832 struct intel_engine_cs *engine = request->engine;
2833 struct i915_gem_context *hung_ctx = request->ctx;
2834 struct intel_timeline *timeline;
2835 unsigned long flags;
2836
2837 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2838
2839 spin_lock_irqsave(&engine->timeline->lock, flags);
2840 spin_lock(&timeline->lock);
2841
2842 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2843 if (request->ctx == hung_ctx)
2844 skip_request(request);
2845
2846 list_for_each_entry(request, &timeline->requests, link)
2847 skip_request(request);
2848
2849 spin_unlock(&timeline->lock);
2850 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2851 }
2852
2853 /* Returns true if the request was guilty of hang */
2854 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2855 {
2856 /* Read once and return the resolution */
2857 const bool guilty = engine_stalled(request->engine);
2858
2859 /* The guilty request will get skipped on a hung engine.
2860 *
2861 * Users of client default contexts do not rely on logical
2862 * state preserved between batches so it is safe to execute
2863 * queued requests following the hang. Non default contexts
2864 * rely on preserved state, so skipping a batch loses the
2865 * evolution of the state and it needs to be considered corrupted.
2866 * Executing more queued batches on top of corrupted state is
2867 * risky. But we take the risk by trying to advance through
2868 * the queued requests in order to make the client behaviour
2869 * more predictable around resets, by not throwing away random
2870 * amount of batches it has prepared for execution. Sophisticated
2871 * clients can use gem_reset_stats_ioctl and dma fence status
2872 * (exported via sync_file info ioctl on explicit fences) to observe
2873 * when it loses the context state and should rebuild accordingly.
2874 *
2875 * The context ban, and ultimately the client ban, mechanism are safety
2876 * valves if client submission ends up resulting in nothing more than
2877 * subsequent hangs.
2878 */
2879
2880 if (guilty) {
2881 i915_gem_context_mark_guilty(request->ctx);
2882 skip_request(request);
2883 } else {
2884 i915_gem_context_mark_innocent(request->ctx);
2885 dma_fence_set_error(&request->fence, -EAGAIN);
2886 }
2887
2888 return guilty;
2889 }
2890
2891 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2892 {
2893 struct drm_i915_gem_request *request;
2894
2895 request = i915_gem_find_active_request(engine);
2896 if (request && i915_gem_reset_request(request)) {
2897 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2898 engine->name, request->global_seqno);
2899
2900 /* If this context is now banned, skip all pending requests. */
2901 if (i915_gem_context_is_banned(request->ctx))
2902 engine_skip_context(request);
2903 }
2904
2905 /* Setup the CS to resume from the breadcrumb of the hung request */
2906 engine->reset_hw(engine, request);
2907 }
2908
2909 void i915_gem_reset(struct drm_i915_private *dev_priv)
2910 {
2911 struct intel_engine_cs *engine;
2912 enum intel_engine_id id;
2913
2914 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2915
2916 i915_gem_retire_requests(dev_priv);
2917
2918 for_each_engine(engine, dev_priv, id) {
2919 struct i915_gem_context *ctx;
2920
2921 i915_gem_reset_engine(engine);
2922 ctx = fetch_and_zero(&engine->last_retired_context);
2923 if (ctx)
2924 engine->context_unpin(engine, ctx);
2925 }
2926
2927 i915_gem_restore_fences(dev_priv);
2928
2929 if (dev_priv->gt.awake) {
2930 intel_sanitize_gt_powersave(dev_priv);
2931 intel_enable_gt_powersave(dev_priv);
2932 if (INTEL_GEN(dev_priv) >= 6)
2933 gen6_rps_busy(dev_priv);
2934 }
2935 }
2936
2937 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2938 {
2939 struct intel_engine_cs *engine;
2940 enum intel_engine_id id;
2941
2942 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2943
2944 for_each_engine(engine, dev_priv, id) {
2945 tasklet_enable(&engine->irq_tasklet);
2946 kthread_unpark(engine->breadcrumbs.signaler);
2947 }
2948 }
2949
2950 static void nop_submit_request(struct drm_i915_gem_request *request)
2951 {
2952 dma_fence_set_error(&request->fence, -EIO);
2953 i915_gem_request_submit(request);
2954 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2955 }
2956
2957 static void engine_set_wedged(struct intel_engine_cs *engine)
2958 {
2959 struct drm_i915_gem_request *request;
2960 unsigned long flags;
2961
2962 /* We need to be sure that no thread is running the old callback as
2963 * we install the nop handler (otherwise we would submit a request
2964 * to hardware that will never complete). In order to prevent this
2965 * race, we wait until the machine is idle before making the swap
2966 * (using stop_machine()).
2967 */
2968 engine->submit_request = nop_submit_request;
2969
2970 /* Mark all executing requests as skipped */
2971 spin_lock_irqsave(&engine->timeline->lock, flags);
2972 list_for_each_entry(request, &engine->timeline->requests, link)
2973 dma_fence_set_error(&request->fence, -EIO);
2974 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2975
2976 /* Mark all pending requests as complete so that any concurrent
2977 * (lockless) lookup doesn't try and wait upon the request as we
2978 * reset it.
2979 */
2980 intel_engine_init_global_seqno(engine,
2981 intel_engine_last_submit(engine));
2982
2983 /*
2984 * Clear the execlists queue up before freeing the requests, as those
2985 * are the ones that keep the context and ringbuffer backing objects
2986 * pinned in place.
2987 */
2988
2989 if (i915.enable_execlists) {
2990 unsigned long flags;
2991
2992 spin_lock_irqsave(&engine->timeline->lock, flags);
2993
2994 i915_gem_request_put(engine->execlist_port[0].request);
2995 i915_gem_request_put(engine->execlist_port[1].request);
2996 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2997 engine->execlist_queue = RB_ROOT;
2998 engine->execlist_first = NULL;
2999
3000 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3001 }
3002 }
3003
3004 static int __i915_gem_set_wedged_BKL(void *data)
3005 {
3006 struct drm_i915_private *i915 = data;
3007 struct intel_engine_cs *engine;
3008 enum intel_engine_id id;
3009
3010 for_each_engine(engine, i915, id)
3011 engine_set_wedged(engine);
3012
3013 return 0;
3014 }
3015
3016 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3017 {
3018 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3019 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3020
3021 /* Retire completed requests first so the list of inflight/incomplete
3022 * requests is accurate and we don't try and mark successful requests
3023 * as in error during __i915_gem_set_wedged_BKL().
3024 */
3025 i915_gem_retire_requests(dev_priv);
3026
3027 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3028
3029 i915_gem_context_lost(dev_priv);
3030
3031 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3032 }
3033
3034 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3035 {
3036 struct i915_gem_timeline *tl;
3037 int i;
3038
3039 lockdep_assert_held(&i915->drm.struct_mutex);
3040 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3041 return true;
3042
3043 /* Before unwedging, make sure that all pending operations
3044 * are flushed and errored out - we may have requests waiting upon
3045 * third party fences. We marked all inflight requests as EIO, and
3046 * every execbuf since returned EIO, for consistency we want all
3047 * the currently pending requests to also be marked as EIO, which
3048 * is done inside our nop_submit_request - and so we must wait.
3049 *
3050 * No more can be submitted until we reset the wedged bit.
3051 */
3052 list_for_each_entry(tl, &i915->gt.timelines, link) {
3053 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3054 struct drm_i915_gem_request *rq;
3055
3056 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3057 &i915->drm.struct_mutex);
3058 if (!rq)
3059 continue;
3060
3061 /* We can't use our normal waiter as we want to
3062 * avoid recursively trying to handle the current
3063 * reset. The basic dma_fence_default_wait() installs
3064 * a callback for dma_fence_signal(), which is
3065 * triggered by our nop handler (indirectly, the
3066 * callback enables the signaler thread which is
3067 * woken by the nop_submit_request() advancing the seqno
3068 * and when the seqno passes the fence, the signaler
3069 * then signals the fence waking us up).
3070 */
3071 if (dma_fence_default_wait(&rq->fence, true,
3072 MAX_SCHEDULE_TIMEOUT) < 0)
3073 return false;
3074 }
3075 }
3076
3077 /* Undo nop_submit_request. We prevent all new i915 requests from
3078 * being queued (by disallowing execbuf whilst wedged) so having
3079 * waited for all active requests above, we know the system is idle
3080 * and do not have to worry about a thread being inside
3081 * engine->submit_request() as we swap over. So unlike installing
3082 * the nop_submit_request on reset, we can do this from normal
3083 * context and do not require stop_machine().
3084 */
3085 intel_engines_reset_default_submission(i915);
3086
3087 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3088 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3089
3090 return true;
3091 }
3092
3093 static void
3094 i915_gem_retire_work_handler(struct work_struct *work)
3095 {
3096 struct drm_i915_private *dev_priv =
3097 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3098 struct drm_device *dev = &dev_priv->drm;
3099
3100 /* Come back later if the device is busy... */
3101 if (mutex_trylock(&dev->struct_mutex)) {
3102 i915_gem_retire_requests(dev_priv);
3103 mutex_unlock(&dev->struct_mutex);
3104 }
3105
3106 /* Keep the retire handler running until we are finally idle.
3107 * We do not need to do this test under locking as in the worst-case
3108 * we queue the retire worker once too often.
3109 */
3110 if (READ_ONCE(dev_priv->gt.awake)) {
3111 i915_queue_hangcheck(dev_priv);
3112 queue_delayed_work(dev_priv->wq,
3113 &dev_priv->gt.retire_work,
3114 round_jiffies_up_relative(HZ));
3115 }
3116 }
3117
3118 static void
3119 i915_gem_idle_work_handler(struct work_struct *work)
3120 {
3121 struct drm_i915_private *dev_priv =
3122 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3123 struct drm_device *dev = &dev_priv->drm;
3124 struct intel_engine_cs *engine;
3125 enum intel_engine_id id;
3126 bool rearm_hangcheck;
3127
3128 if (!READ_ONCE(dev_priv->gt.awake))
3129 return;
3130
3131 /*
3132 * Wait for last execlists context complete, but bail out in case a
3133 * new request is submitted.
3134 */
3135 wait_for(intel_engines_are_idle(dev_priv), 10);
3136 if (READ_ONCE(dev_priv->gt.active_requests))
3137 return;
3138
3139 rearm_hangcheck =
3140 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3141
3142 if (!mutex_trylock(&dev->struct_mutex)) {
3143 /* Currently busy, come back later */
3144 mod_delayed_work(dev_priv->wq,
3145 &dev_priv->gt.idle_work,
3146 msecs_to_jiffies(50));
3147 goto out_rearm;
3148 }
3149
3150 /*
3151 * New request retired after this work handler started, extend active
3152 * period until next instance of the work.
3153 */
3154 if (work_pending(work))
3155 goto out_unlock;
3156
3157 if (dev_priv->gt.active_requests)
3158 goto out_unlock;
3159
3160 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3161 DRM_ERROR("Timeout waiting for engines to idle\n");
3162
3163 for_each_engine(engine, dev_priv, id) {
3164 intel_engine_disarm_breadcrumbs(engine);
3165 i915_gem_batch_pool_fini(&engine->batch_pool);
3166 }
3167
3168 GEM_BUG_ON(!dev_priv->gt.awake);
3169 dev_priv->gt.awake = false;
3170 rearm_hangcheck = false;
3171
3172 if (INTEL_GEN(dev_priv) >= 6)
3173 gen6_rps_idle(dev_priv);
3174 intel_runtime_pm_put(dev_priv);
3175 out_unlock:
3176 mutex_unlock(&dev->struct_mutex);
3177
3178 out_rearm:
3179 if (rearm_hangcheck) {
3180 GEM_BUG_ON(!dev_priv->gt.awake);
3181 i915_queue_hangcheck(dev_priv);
3182 }
3183 }
3184
3185 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3186 {
3187 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3188 struct drm_i915_file_private *fpriv = file->driver_priv;
3189 struct i915_vma *vma, *vn;
3190
3191 mutex_lock(&obj->base.dev->struct_mutex);
3192 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3193 if (vma->vm->file == fpriv)
3194 i915_vma_close(vma);
3195
3196 if (i915_gem_object_is_active(obj) &&
3197 !i915_gem_object_has_active_reference(obj)) {
3198 i915_gem_object_set_active_reference(obj);
3199 i915_gem_object_get(obj);
3200 }
3201 mutex_unlock(&obj->base.dev->struct_mutex);
3202 }
3203
3204 static unsigned long to_wait_timeout(s64 timeout_ns)
3205 {
3206 if (timeout_ns < 0)
3207 return MAX_SCHEDULE_TIMEOUT;
3208
3209 if (timeout_ns == 0)
3210 return 0;
3211
3212 return nsecs_to_jiffies_timeout(timeout_ns);
3213 }
3214
3215 /**
3216 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3217 * @dev: drm device pointer
3218 * @data: ioctl data blob
3219 * @file: drm file pointer
3220 *
3221 * Returns 0 if successful, else an error is returned with the remaining time in
3222 * the timeout parameter.
3223 * -ETIME: object is still busy after timeout
3224 * -ERESTARTSYS: signal interrupted the wait
3225 * -ENONENT: object doesn't exist
3226 * Also possible, but rare:
3227 * -EAGAIN: GPU wedged
3228 * -ENOMEM: damn
3229 * -ENODEV: Internal IRQ fail
3230 * -E?: The add request failed
3231 *
3232 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3233 * non-zero timeout parameter the wait ioctl will wait for the given number of
3234 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3235 * without holding struct_mutex the object may become re-busied before this
3236 * function completes. A similar but shorter * race condition exists in the busy
3237 * ioctl
3238 */
3239 int
3240 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3241 {
3242 struct drm_i915_gem_wait *args = data;
3243 struct drm_i915_gem_object *obj;
3244 ktime_t start;
3245 long ret;
3246
3247 if (args->flags != 0)
3248 return -EINVAL;
3249
3250 obj = i915_gem_object_lookup(file, args->bo_handle);
3251 if (!obj)
3252 return -ENOENT;
3253
3254 start = ktime_get();
3255
3256 ret = i915_gem_object_wait(obj,
3257 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3258 to_wait_timeout(args->timeout_ns),
3259 to_rps_client(file));
3260
3261 if (args->timeout_ns > 0) {
3262 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3263 if (args->timeout_ns < 0)
3264 args->timeout_ns = 0;
3265
3266 /*
3267 * Apparently ktime isn't accurate enough and occasionally has a
3268 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3269 * things up to make the test happy. We allow up to 1 jiffy.
3270 *
3271 * This is a regression from the timespec->ktime conversion.
3272 */
3273 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3274 args->timeout_ns = 0;
3275 }
3276
3277 i915_gem_object_put(obj);
3278 return ret;
3279 }
3280
3281 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3282 {
3283 int ret, i;
3284
3285 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3286 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3287 if (ret)
3288 return ret;
3289 }
3290
3291 return 0;
3292 }
3293
3294 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3295 {
3296 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3297 }
3298
3299 static int wait_for_engines(struct drm_i915_private *i915)
3300 {
3301 struct intel_engine_cs *engine;
3302 enum intel_engine_id id;
3303
3304 for_each_engine(engine, i915, id) {
3305 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3306 i915_gem_set_wedged(i915);
3307 return -EIO;
3308 }
3309
3310 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3311 intel_engine_last_submit(engine));
3312 }
3313
3314 return 0;
3315 }
3316
3317 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3318 {
3319 int ret;
3320
3321 /* If the device is asleep, we have no requests outstanding */
3322 if (!READ_ONCE(i915->gt.awake))
3323 return 0;
3324
3325 if (flags & I915_WAIT_LOCKED) {
3326 struct i915_gem_timeline *tl;
3327
3328 lockdep_assert_held(&i915->drm.struct_mutex);
3329
3330 list_for_each_entry(tl, &i915->gt.timelines, link) {
3331 ret = wait_for_timeline(tl, flags);
3332 if (ret)
3333 return ret;
3334 }
3335
3336 i915_gem_retire_requests(i915);
3337 GEM_BUG_ON(i915->gt.active_requests);
3338
3339 ret = wait_for_engines(i915);
3340 } else {
3341 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3342 }
3343
3344 return ret;
3345 }
3346
3347 /** Flushes the GTT write domain for the object if it's dirty. */
3348 static void
3349 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3350 {
3351 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3352
3353 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3354 return;
3355
3356 /* No actual flushing is required for the GTT write domain. Writes
3357 * to it "immediately" go to main memory as far as we know, so there's
3358 * no chipset flush. It also doesn't land in render cache.
3359 *
3360 * However, we do have to enforce the order so that all writes through
3361 * the GTT land before any writes to the device, such as updates to
3362 * the GATT itself.
3363 *
3364 * We also have to wait a bit for the writes to land from the GTT.
3365 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3366 * timing. This issue has only been observed when switching quickly
3367 * between GTT writes and CPU reads from inside the kernel on recent hw,
3368 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3369 * system agents we cannot reproduce this behaviour).
3370 */
3371 wmb();
3372 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3373 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3374 spin_lock_irq(&dev_priv->uncore.lock);
3375 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3376 spin_unlock_irq(&dev_priv->uncore.lock);
3377 intel_runtime_pm_put(dev_priv);
3378 }
3379 }
3380
3381 intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3382
3383 obj->base.write_domain = 0;
3384 }
3385
3386 /** Flushes the CPU write domain for the object if it's dirty. */
3387 static void
3388 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3389 {
3390 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3391 return;
3392
3393 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3394 obj->base.write_domain = 0;
3395 }
3396
3397 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3398 {
3399 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3400 return;
3401
3402 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3403 obj->base.write_domain = 0;
3404 }
3405
3406 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3407 {
3408 if (!READ_ONCE(obj->pin_display))
3409 return;
3410
3411 mutex_lock(&obj->base.dev->struct_mutex);
3412 __i915_gem_object_flush_for_display(obj);
3413 mutex_unlock(&obj->base.dev->struct_mutex);
3414 }
3415
3416 /**
3417 * Moves a single object to the GTT read, and possibly write domain.
3418 * @obj: object to act on
3419 * @write: ask for write access or read only
3420 *
3421 * This function returns when the move is complete, including waiting on
3422 * flushes to occur.
3423 */
3424 int
3425 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3426 {
3427 int ret;
3428
3429 lockdep_assert_held(&obj->base.dev->struct_mutex);
3430
3431 ret = i915_gem_object_wait(obj,
3432 I915_WAIT_INTERRUPTIBLE |
3433 I915_WAIT_LOCKED |
3434 (write ? I915_WAIT_ALL : 0),
3435 MAX_SCHEDULE_TIMEOUT,
3436 NULL);
3437 if (ret)
3438 return ret;
3439
3440 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3441 return 0;
3442
3443 /* Flush and acquire obj->pages so that we are coherent through
3444 * direct access in memory with previous cached writes through
3445 * shmemfs and that our cache domain tracking remains valid.
3446 * For example, if the obj->filp was moved to swap without us
3447 * being notified and releasing the pages, we would mistakenly
3448 * continue to assume that the obj remained out of the CPU cached
3449 * domain.
3450 */
3451 ret = i915_gem_object_pin_pages(obj);
3452 if (ret)
3453 return ret;
3454
3455 i915_gem_object_flush_cpu_write_domain(obj);
3456
3457 /* Serialise direct access to this object with the barriers for
3458 * coherent writes from the GPU, by effectively invalidating the
3459 * GTT domain upon first access.
3460 */
3461 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3462 mb();
3463
3464 /* It should now be out of any other write domains, and we can update
3465 * the domain values for our changes.
3466 */
3467 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3468 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3469 if (write) {
3470 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3471 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3472 obj->mm.dirty = true;
3473 }
3474
3475 i915_gem_object_unpin_pages(obj);
3476 return 0;
3477 }
3478
3479 /**
3480 * Changes the cache-level of an object across all VMA.
3481 * @obj: object to act on
3482 * @cache_level: new cache level to set for the object
3483 *
3484 * After this function returns, the object will be in the new cache-level
3485 * across all GTT and the contents of the backing storage will be coherent,
3486 * with respect to the new cache-level. In order to keep the backing storage
3487 * coherent for all users, we only allow a single cache level to be set
3488 * globally on the object and prevent it from being changed whilst the
3489 * hardware is reading from the object. That is if the object is currently
3490 * on the scanout it will be set to uncached (or equivalent display
3491 * cache coherency) and all non-MOCS GPU access will also be uncached so
3492 * that all direct access to the scanout remains coherent.
3493 */
3494 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3495 enum i915_cache_level cache_level)
3496 {
3497 struct i915_vma *vma;
3498 int ret;
3499
3500 lockdep_assert_held(&obj->base.dev->struct_mutex);
3501
3502 if (obj->cache_level == cache_level)
3503 return 0;
3504
3505 /* Inspect the list of currently bound VMA and unbind any that would
3506 * be invalid given the new cache-level. This is principally to
3507 * catch the issue of the CS prefetch crossing page boundaries and
3508 * reading an invalid PTE on older architectures.
3509 */
3510 restart:
3511 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3512 if (!drm_mm_node_allocated(&vma->node))
3513 continue;
3514
3515 if (i915_vma_is_pinned(vma)) {
3516 DRM_DEBUG("can not change the cache level of pinned objects\n");
3517 return -EBUSY;
3518 }
3519
3520 if (i915_gem_valid_gtt_space(vma, cache_level))
3521 continue;
3522
3523 ret = i915_vma_unbind(vma);
3524 if (ret)
3525 return ret;
3526
3527 /* As unbinding may affect other elements in the
3528 * obj->vma_list (due to side-effects from retiring
3529 * an active vma), play safe and restart the iterator.
3530 */
3531 goto restart;
3532 }
3533
3534 /* We can reuse the existing drm_mm nodes but need to change the
3535 * cache-level on the PTE. We could simply unbind them all and
3536 * rebind with the correct cache-level on next use. However since
3537 * we already have a valid slot, dma mapping, pages etc, we may as
3538 * rewrite the PTE in the belief that doing so tramples upon less
3539 * state and so involves less work.
3540 */
3541 if (obj->bind_count) {
3542 /* Before we change the PTE, the GPU must not be accessing it.
3543 * If we wait upon the object, we know that all the bound
3544 * VMA are no longer active.
3545 */
3546 ret = i915_gem_object_wait(obj,
3547 I915_WAIT_INTERRUPTIBLE |
3548 I915_WAIT_LOCKED |
3549 I915_WAIT_ALL,
3550 MAX_SCHEDULE_TIMEOUT,
3551 NULL);
3552 if (ret)
3553 return ret;
3554
3555 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3556 cache_level != I915_CACHE_NONE) {
3557 /* Access to snoopable pages through the GTT is
3558 * incoherent and on some machines causes a hard
3559 * lockup. Relinquish the CPU mmaping to force
3560 * userspace to refault in the pages and we can
3561 * then double check if the GTT mapping is still
3562 * valid for that pointer access.
3563 */
3564 i915_gem_release_mmap(obj);
3565
3566 /* As we no longer need a fence for GTT access,
3567 * we can relinquish it now (and so prevent having
3568 * to steal a fence from someone else on the next
3569 * fence request). Note GPU activity would have
3570 * dropped the fence as all snoopable access is
3571 * supposed to be linear.
3572 */
3573 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3574 ret = i915_vma_put_fence(vma);
3575 if (ret)
3576 return ret;
3577 }
3578 } else {
3579 /* We either have incoherent backing store and
3580 * so no GTT access or the architecture is fully
3581 * coherent. In such cases, existing GTT mmaps
3582 * ignore the cache bit in the PTE and we can
3583 * rewrite it without confusing the GPU or having
3584 * to force userspace to fault back in its mmaps.
3585 */
3586 }
3587
3588 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3589 if (!drm_mm_node_allocated(&vma->node))
3590 continue;
3591
3592 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3593 if (ret)
3594 return ret;
3595 }
3596 }
3597
3598 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3599 i915_gem_object_is_coherent(obj))
3600 obj->cache_dirty = true;
3601
3602 list_for_each_entry(vma, &obj->vma_list, obj_link)
3603 vma->node.color = cache_level;
3604 obj->cache_level = cache_level;
3605
3606 return 0;
3607 }
3608
3609 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3610 struct drm_file *file)
3611 {
3612 struct drm_i915_gem_caching *args = data;
3613 struct drm_i915_gem_object *obj;
3614 int err = 0;
3615
3616 rcu_read_lock();
3617 obj = i915_gem_object_lookup_rcu(file, args->handle);
3618 if (!obj) {
3619 err = -ENOENT;
3620 goto out;
3621 }
3622
3623 switch (obj->cache_level) {
3624 case I915_CACHE_LLC:
3625 case I915_CACHE_L3_LLC:
3626 args->caching = I915_CACHING_CACHED;
3627 break;
3628
3629 case I915_CACHE_WT:
3630 args->caching = I915_CACHING_DISPLAY;
3631 break;
3632
3633 default:
3634 args->caching = I915_CACHING_NONE;
3635 break;
3636 }
3637 out:
3638 rcu_read_unlock();
3639 return err;
3640 }
3641
3642 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3643 struct drm_file *file)
3644 {
3645 struct drm_i915_private *i915 = to_i915(dev);
3646 struct drm_i915_gem_caching *args = data;
3647 struct drm_i915_gem_object *obj;
3648 enum i915_cache_level level;
3649 int ret = 0;
3650
3651 switch (args->caching) {
3652 case I915_CACHING_NONE:
3653 level = I915_CACHE_NONE;
3654 break;
3655 case I915_CACHING_CACHED:
3656 /*
3657 * Due to a HW issue on BXT A stepping, GPU stores via a
3658 * snooped mapping may leave stale data in a corresponding CPU
3659 * cacheline, whereas normally such cachelines would get
3660 * invalidated.
3661 */
3662 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3663 return -ENODEV;
3664
3665 level = I915_CACHE_LLC;
3666 break;
3667 case I915_CACHING_DISPLAY:
3668 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3669 break;
3670 default:
3671 return -EINVAL;
3672 }
3673
3674 obj = i915_gem_object_lookup(file, args->handle);
3675 if (!obj)
3676 return -ENOENT;
3677
3678 if (obj->cache_level == level)
3679 goto out;
3680
3681 ret = i915_gem_object_wait(obj,
3682 I915_WAIT_INTERRUPTIBLE,
3683 MAX_SCHEDULE_TIMEOUT,
3684 to_rps_client(file));
3685 if (ret)
3686 goto out;
3687
3688 ret = i915_mutex_lock_interruptible(dev);
3689 if (ret)
3690 goto out;
3691
3692 ret = i915_gem_object_set_cache_level(obj, level);
3693 mutex_unlock(&dev->struct_mutex);
3694
3695 out:
3696 i915_gem_object_put(obj);
3697 return ret;
3698 }
3699
3700 /*
3701 * Prepare buffer for display plane (scanout, cursors, etc).
3702 * Can be called from an uninterruptible phase (modesetting) and allows
3703 * any flushes to be pipelined (for pageflips).
3704 */
3705 struct i915_vma *
3706 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3707 u32 alignment,
3708 const struct i915_ggtt_view *view)
3709 {
3710 struct i915_vma *vma;
3711 int ret;
3712
3713 lockdep_assert_held(&obj->base.dev->struct_mutex);
3714
3715 /* Mark the pin_display early so that we account for the
3716 * display coherency whilst setting up the cache domains.
3717 */
3718 obj->pin_display++;
3719
3720 /* The display engine is not coherent with the LLC cache on gen6. As
3721 * a result, we make sure that the pinning that is about to occur is
3722 * done with uncached PTEs. This is lowest common denominator for all
3723 * chipsets.
3724 *
3725 * However for gen6+, we could do better by using the GFDT bit instead
3726 * of uncaching, which would allow us to flush all the LLC-cached data
3727 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3728 */
3729 ret = i915_gem_object_set_cache_level(obj,
3730 HAS_WT(to_i915(obj->base.dev)) ?
3731 I915_CACHE_WT : I915_CACHE_NONE);
3732 if (ret) {
3733 vma = ERR_PTR(ret);
3734 goto err_unpin_display;
3735 }
3736
3737 /* As the user may map the buffer once pinned in the display plane
3738 * (e.g. libkms for the bootup splash), we have to ensure that we
3739 * always use map_and_fenceable for all scanout buffers. However,
3740 * it may simply be too big to fit into mappable, in which case
3741 * put it anyway and hope that userspace can cope (but always first
3742 * try to preserve the existing ABI).
3743 */
3744 vma = ERR_PTR(-ENOSPC);
3745 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3746 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3747 PIN_MAPPABLE | PIN_NONBLOCK);
3748 if (IS_ERR(vma)) {
3749 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3750 unsigned int flags;
3751
3752 /* Valleyview is definitely limited to scanning out the first
3753 * 512MiB. Lets presume this behaviour was inherited from the
3754 * g4x display engine and that all earlier gen are similarly
3755 * limited. Testing suggests that it is a little more
3756 * complicated than this. For example, Cherryview appears quite
3757 * happy to scanout from anywhere within its global aperture.
3758 */
3759 flags = 0;
3760 if (HAS_GMCH_DISPLAY(i915))
3761 flags = PIN_MAPPABLE;
3762 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3763 }
3764 if (IS_ERR(vma))
3765 goto err_unpin_display;
3766
3767 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3768
3769 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3770 __i915_gem_object_flush_for_display(obj);
3771 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3772
3773 /* It should now be out of any other write domains, and we can update
3774 * the domain values for our changes.
3775 */
3776 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3777
3778 return vma;
3779
3780 err_unpin_display:
3781 obj->pin_display--;
3782 return vma;
3783 }
3784
3785 void
3786 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3787 {
3788 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3789
3790 if (WARN_ON(vma->obj->pin_display == 0))
3791 return;
3792
3793 if (--vma->obj->pin_display == 0)
3794 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3795
3796 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3797 i915_gem_object_bump_inactive_ggtt(vma->obj);
3798
3799 i915_vma_unpin(vma);
3800 }
3801
3802 /**
3803 * Moves a single object to the CPU read, and possibly write domain.
3804 * @obj: object to act on
3805 * @write: requesting write or read-only access
3806 *
3807 * This function returns when the move is complete, including waiting on
3808 * flushes to occur.
3809 */
3810 int
3811 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3812 {
3813 int ret;
3814
3815 lockdep_assert_held(&obj->base.dev->struct_mutex);
3816
3817 ret = i915_gem_object_wait(obj,
3818 I915_WAIT_INTERRUPTIBLE |
3819 I915_WAIT_LOCKED |
3820 (write ? I915_WAIT_ALL : 0),
3821 MAX_SCHEDULE_TIMEOUT,
3822 NULL);
3823 if (ret)
3824 return ret;
3825
3826 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3827 return 0;
3828
3829 i915_gem_object_flush_gtt_write_domain(obj);
3830
3831 /* Flush the CPU cache if it's still invalid. */
3832 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3833 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3834 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3835 }
3836
3837 /* It should now be out of any other write domains, and we can update
3838 * the domain values for our changes.
3839 */
3840 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3841
3842 /* If we're writing through the CPU, then the GPU read domains will
3843 * need to be invalidated at next use.
3844 */
3845 if (write) {
3846 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3847 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3848 }
3849
3850 return 0;
3851 }
3852
3853 /* Throttle our rendering by waiting until the ring has completed our requests
3854 * emitted over 20 msec ago.
3855 *
3856 * Note that if we were to use the current jiffies each time around the loop,
3857 * we wouldn't escape the function with any frames outstanding if the time to
3858 * render a frame was over 20ms.
3859 *
3860 * This should get us reasonable parallelism between CPU and GPU but also
3861 * relatively low latency when blocking on a particular request to finish.
3862 */
3863 static int
3864 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3865 {
3866 struct drm_i915_private *dev_priv = to_i915(dev);
3867 struct drm_i915_file_private *file_priv = file->driver_priv;
3868 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3869 struct drm_i915_gem_request *request, *target = NULL;
3870 long ret;
3871
3872 /* ABI: return -EIO if already wedged */
3873 if (i915_terminally_wedged(&dev_priv->gpu_error))
3874 return -EIO;
3875
3876 spin_lock(&file_priv->mm.lock);
3877 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3878 if (time_after_eq(request->emitted_jiffies, recent_enough))
3879 break;
3880
3881 if (target) {
3882 list_del(&target->client_link);
3883 target->file_priv = NULL;
3884 }
3885
3886 target = request;
3887 }
3888 if (target)
3889 i915_gem_request_get(target);
3890 spin_unlock(&file_priv->mm.lock);
3891
3892 if (target == NULL)
3893 return 0;
3894
3895 ret = i915_wait_request(target,
3896 I915_WAIT_INTERRUPTIBLE,
3897 MAX_SCHEDULE_TIMEOUT);
3898 i915_gem_request_put(target);
3899
3900 return ret < 0 ? ret : 0;
3901 }
3902
3903 struct i915_vma *
3904 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3905 const struct i915_ggtt_view *view,
3906 u64 size,
3907 u64 alignment,
3908 u64 flags)
3909 {
3910 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3911 struct i915_address_space *vm = &dev_priv->ggtt.base;
3912 struct i915_vma *vma;
3913 int ret;
3914
3915 lockdep_assert_held(&obj->base.dev->struct_mutex);
3916
3917 vma = i915_vma_instance(obj, vm, view);
3918 if (unlikely(IS_ERR(vma)))
3919 return vma;
3920
3921 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3922 if (flags & PIN_NONBLOCK &&
3923 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3924 return ERR_PTR(-ENOSPC);
3925
3926 if (flags & PIN_MAPPABLE) {
3927 /* If the required space is larger than the available
3928 * aperture, we will not able to find a slot for the
3929 * object and unbinding the object now will be in
3930 * vain. Worse, doing so may cause us to ping-pong
3931 * the object in and out of the Global GTT and
3932 * waste a lot of cycles under the mutex.
3933 */
3934 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3935 return ERR_PTR(-E2BIG);
3936
3937 /* If NONBLOCK is set the caller is optimistically
3938 * trying to cache the full object within the mappable
3939 * aperture, and *must* have a fallback in place for
3940 * situations where we cannot bind the object. We
3941 * can be a little more lax here and use the fallback
3942 * more often to avoid costly migrations of ourselves
3943 * and other objects within the aperture.
3944 *
3945 * Half-the-aperture is used as a simple heuristic.
3946 * More interesting would to do search for a free
3947 * block prior to making the commitment to unbind.
3948 * That caters for the self-harm case, and with a
3949 * little more heuristics (e.g. NOFAULT, NOEVICT)
3950 * we could try to minimise harm to others.
3951 */
3952 if (flags & PIN_NONBLOCK &&
3953 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3954 return ERR_PTR(-ENOSPC);
3955 }
3956
3957 WARN(i915_vma_is_pinned(vma),
3958 "bo is already pinned in ggtt with incorrect alignment:"
3959 " offset=%08x, req.alignment=%llx,"
3960 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3961 i915_ggtt_offset(vma), alignment,
3962 !!(flags & PIN_MAPPABLE),
3963 i915_vma_is_map_and_fenceable(vma));
3964 ret = i915_vma_unbind(vma);
3965 if (ret)
3966 return ERR_PTR(ret);
3967 }
3968
3969 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3970 if (ret)
3971 return ERR_PTR(ret);
3972
3973 return vma;
3974 }
3975
3976 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3977 {
3978 /* Note that we could alias engines in the execbuf API, but
3979 * that would be very unwise as it prevents userspace from
3980 * fine control over engine selection. Ahem.
3981 *
3982 * This should be something like EXEC_MAX_ENGINE instead of
3983 * I915_NUM_ENGINES.
3984 */
3985 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3986 return 0x10000 << id;
3987 }
3988
3989 static __always_inline unsigned int __busy_write_id(unsigned int id)
3990 {
3991 /* The uABI guarantees an active writer is also amongst the read
3992 * engines. This would be true if we accessed the activity tracking
3993 * under the lock, but as we perform the lookup of the object and
3994 * its activity locklessly we can not guarantee that the last_write
3995 * being active implies that we have set the same engine flag from
3996 * last_read - hence we always set both read and write busy for
3997 * last_write.
3998 */
3999 return id | __busy_read_flag(id);
4000 }
4001
4002 static __always_inline unsigned int
4003 __busy_set_if_active(const struct dma_fence *fence,
4004 unsigned int (*flag)(unsigned int id))
4005 {
4006 struct drm_i915_gem_request *rq;
4007
4008 /* We have to check the current hw status of the fence as the uABI
4009 * guarantees forward progress. We could rely on the idle worker
4010 * to eventually flush us, but to minimise latency just ask the
4011 * hardware.
4012 *
4013 * Note we only report on the status of native fences.
4014 */
4015 if (!dma_fence_is_i915(fence))
4016 return 0;
4017
4018 /* opencode to_request() in order to avoid const warnings */
4019 rq = container_of(fence, struct drm_i915_gem_request, fence);
4020 if (i915_gem_request_completed(rq))
4021 return 0;
4022
4023 return flag(rq->engine->exec_id);
4024 }
4025
4026 static __always_inline unsigned int
4027 busy_check_reader(const struct dma_fence *fence)
4028 {
4029 return __busy_set_if_active(fence, __busy_read_flag);
4030 }
4031
4032 static __always_inline unsigned int
4033 busy_check_writer(const struct dma_fence *fence)
4034 {
4035 if (!fence)
4036 return 0;
4037
4038 return __busy_set_if_active(fence, __busy_write_id);
4039 }
4040
4041 int
4042 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4043 struct drm_file *file)
4044 {
4045 struct drm_i915_gem_busy *args = data;
4046 struct drm_i915_gem_object *obj;
4047 struct reservation_object_list *list;
4048 unsigned int seq;
4049 int err;
4050
4051 err = -ENOENT;
4052 rcu_read_lock();
4053 obj = i915_gem_object_lookup_rcu(file, args->handle);
4054 if (!obj)
4055 goto out;
4056
4057 /* A discrepancy here is that we do not report the status of
4058 * non-i915 fences, i.e. even though we may report the object as idle,
4059 * a call to set-domain may still stall waiting for foreign rendering.
4060 * This also means that wait-ioctl may report an object as busy,
4061 * where busy-ioctl considers it idle.
4062 *
4063 * We trade the ability to warn of foreign fences to report on which
4064 * i915 engines are active for the object.
4065 *
4066 * Alternatively, we can trade that extra information on read/write
4067 * activity with
4068 * args->busy =
4069 * !reservation_object_test_signaled_rcu(obj->resv, true);
4070 * to report the overall busyness. This is what the wait-ioctl does.
4071 *
4072 */
4073 retry:
4074 seq = raw_read_seqcount(&obj->resv->seq);
4075
4076 /* Translate the exclusive fence to the READ *and* WRITE engine */
4077 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4078
4079 /* Translate shared fences to READ set of engines */
4080 list = rcu_dereference(obj->resv->fence);
4081 if (list) {
4082 unsigned int shared_count = list->shared_count, i;
4083
4084 for (i = 0; i < shared_count; ++i) {
4085 struct dma_fence *fence =
4086 rcu_dereference(list->shared[i]);
4087
4088 args->busy |= busy_check_reader(fence);
4089 }
4090 }
4091
4092 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4093 goto retry;
4094
4095 err = 0;
4096 out:
4097 rcu_read_unlock();
4098 return err;
4099 }
4100
4101 int
4102 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4103 struct drm_file *file_priv)
4104 {
4105 return i915_gem_ring_throttle(dev, file_priv);
4106 }
4107
4108 int
4109 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4110 struct drm_file *file_priv)
4111 {
4112 struct drm_i915_private *dev_priv = to_i915(dev);
4113 struct drm_i915_gem_madvise *args = data;
4114 struct drm_i915_gem_object *obj;
4115 int err;
4116
4117 switch (args->madv) {
4118 case I915_MADV_DONTNEED:
4119 case I915_MADV_WILLNEED:
4120 break;
4121 default:
4122 return -EINVAL;
4123 }
4124
4125 obj = i915_gem_object_lookup(file_priv, args->handle);
4126 if (!obj)
4127 return -ENOENT;
4128
4129 err = mutex_lock_interruptible(&obj->mm.lock);
4130 if (err)
4131 goto out;
4132
4133 if (obj->mm.pages &&
4134 i915_gem_object_is_tiled(obj) &&
4135 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4136 if (obj->mm.madv == I915_MADV_WILLNEED) {
4137 GEM_BUG_ON(!obj->mm.quirked);
4138 __i915_gem_object_unpin_pages(obj);
4139 obj->mm.quirked = false;
4140 }
4141 if (args->madv == I915_MADV_WILLNEED) {
4142 GEM_BUG_ON(obj->mm.quirked);
4143 __i915_gem_object_pin_pages(obj);
4144 obj->mm.quirked = true;
4145 }
4146 }
4147
4148 if (obj->mm.madv != __I915_MADV_PURGED)
4149 obj->mm.madv = args->madv;
4150
4151 /* if the object is no longer attached, discard its backing storage */
4152 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4153 i915_gem_object_truncate(obj);
4154
4155 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4156 mutex_unlock(&obj->mm.lock);
4157
4158 out:
4159 i915_gem_object_put(obj);
4160 return err;
4161 }
4162
4163 static void
4164 frontbuffer_retire(struct i915_gem_active *active,
4165 struct drm_i915_gem_request *request)
4166 {
4167 struct drm_i915_gem_object *obj =
4168 container_of(active, typeof(*obj), frontbuffer_write);
4169
4170 intel_fb_obj_flush(obj, ORIGIN_CS);
4171 }
4172
4173 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4174 const struct drm_i915_gem_object_ops *ops)
4175 {
4176 mutex_init(&obj->mm.lock);
4177
4178 INIT_LIST_HEAD(&obj->global_link);
4179 INIT_LIST_HEAD(&obj->userfault_link);
4180 INIT_LIST_HEAD(&obj->obj_exec_link);
4181 INIT_LIST_HEAD(&obj->vma_list);
4182 INIT_LIST_HEAD(&obj->batch_pool_link);
4183
4184 obj->ops = ops;
4185
4186 reservation_object_init(&obj->__builtin_resv);
4187 obj->resv = &obj->__builtin_resv;
4188
4189 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4190 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4191
4192 obj->mm.madv = I915_MADV_WILLNEED;
4193 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4194 mutex_init(&obj->mm.get_page.lock);
4195
4196 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4197 }
4198
4199 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4200 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4201 I915_GEM_OBJECT_IS_SHRINKABLE,
4202
4203 .get_pages = i915_gem_object_get_pages_gtt,
4204 .put_pages = i915_gem_object_put_pages_gtt,
4205
4206 .pwrite = i915_gem_object_pwrite_gtt,
4207 };
4208
4209 struct drm_i915_gem_object *
4210 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4211 {
4212 struct drm_i915_gem_object *obj;
4213 struct address_space *mapping;
4214 gfp_t mask;
4215 int ret;
4216
4217 /* There is a prevalence of the assumption that we fit the object's
4218 * page count inside a 32bit _signed_ variable. Let's document this and
4219 * catch if we ever need to fix it. In the meantime, if you do spot
4220 * such a local variable, please consider fixing!
4221 */
4222 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4223 return ERR_PTR(-E2BIG);
4224
4225 if (overflows_type(size, obj->base.size))
4226 return ERR_PTR(-E2BIG);
4227
4228 obj = i915_gem_object_alloc(dev_priv);
4229 if (obj == NULL)
4230 return ERR_PTR(-ENOMEM);
4231
4232 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4233 if (ret)
4234 goto fail;
4235
4236 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4237 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4238 /* 965gm cannot relocate objects above 4GiB. */
4239 mask &= ~__GFP_HIGHMEM;
4240 mask |= __GFP_DMA32;
4241 }
4242
4243 mapping = obj->base.filp->f_mapping;
4244 mapping_set_gfp_mask(mapping, mask);
4245 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4246
4247 i915_gem_object_init(obj, &i915_gem_object_ops);
4248
4249 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4250 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4251
4252 if (HAS_LLC(dev_priv)) {
4253 /* On some devices, we can have the GPU use the LLC (the CPU
4254 * cache) for about a 10% performance improvement
4255 * compared to uncached. Graphics requests other than
4256 * display scanout are coherent with the CPU in
4257 * accessing this cache. This means in this mode we
4258 * don't need to clflush on the CPU side, and on the
4259 * GPU side we only need to flush internal caches to
4260 * get data visible to the CPU.
4261 *
4262 * However, we maintain the display planes as UC, and so
4263 * need to rebind when first used as such.
4264 */
4265 obj->cache_level = I915_CACHE_LLC;
4266 } else
4267 obj->cache_level = I915_CACHE_NONE;
4268
4269 trace_i915_gem_object_create(obj);
4270
4271 return obj;
4272
4273 fail:
4274 i915_gem_object_free(obj);
4275 return ERR_PTR(ret);
4276 }
4277
4278 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4279 {
4280 /* If we are the last user of the backing storage (be it shmemfs
4281 * pages or stolen etc), we know that the pages are going to be
4282 * immediately released. In this case, we can then skip copying
4283 * back the contents from the GPU.
4284 */
4285
4286 if (obj->mm.madv != I915_MADV_WILLNEED)
4287 return false;
4288
4289 if (obj->base.filp == NULL)
4290 return true;
4291
4292 /* At first glance, this looks racy, but then again so would be
4293 * userspace racing mmap against close. However, the first external
4294 * reference to the filp can only be obtained through the
4295 * i915_gem_mmap_ioctl() which safeguards us against the user
4296 * acquiring such a reference whilst we are in the middle of
4297 * freeing the object.
4298 */
4299 return atomic_long_read(&obj->base.filp->f_count) == 1;
4300 }
4301
4302 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4303 struct llist_node *freed)
4304 {
4305 struct drm_i915_gem_object *obj, *on;
4306
4307 mutex_lock(&i915->drm.struct_mutex);
4308 intel_runtime_pm_get(i915);
4309 llist_for_each_entry(obj, freed, freed) {
4310 struct i915_vma *vma, *vn;
4311
4312 trace_i915_gem_object_destroy(obj);
4313
4314 GEM_BUG_ON(i915_gem_object_is_active(obj));
4315 list_for_each_entry_safe(vma, vn,
4316 &obj->vma_list, obj_link) {
4317 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4318 GEM_BUG_ON(i915_vma_is_active(vma));
4319 vma->flags &= ~I915_VMA_PIN_MASK;
4320 i915_vma_close(vma);
4321 }
4322 GEM_BUG_ON(!list_empty(&obj->vma_list));
4323 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4324
4325 list_del(&obj->global_link);
4326 }
4327 intel_runtime_pm_put(i915);
4328 mutex_unlock(&i915->drm.struct_mutex);
4329
4330 llist_for_each_entry_safe(obj, on, freed, freed) {
4331 GEM_BUG_ON(obj->bind_count);
4332 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4333
4334 if (obj->ops->release)
4335 obj->ops->release(obj);
4336
4337 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4338 atomic_set(&obj->mm.pages_pin_count, 0);
4339 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4340 GEM_BUG_ON(obj->mm.pages);
4341
4342 if (obj->base.import_attach)
4343 drm_prime_gem_destroy(&obj->base, NULL);
4344
4345 reservation_object_fini(&obj->__builtin_resv);
4346 drm_gem_object_release(&obj->base);
4347 i915_gem_info_remove_obj(i915, obj->base.size);
4348
4349 kfree(obj->bit_17);
4350 i915_gem_object_free(obj);
4351 }
4352 }
4353
4354 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4355 {
4356 struct llist_node *freed;
4357
4358 freed = llist_del_all(&i915->mm.free_list);
4359 if (unlikely(freed))
4360 __i915_gem_free_objects(i915, freed);
4361 }
4362
4363 static void __i915_gem_free_work(struct work_struct *work)
4364 {
4365 struct drm_i915_private *i915 =
4366 container_of(work, struct drm_i915_private, mm.free_work);
4367 struct llist_node *freed;
4368
4369 /* All file-owned VMA should have been released by this point through
4370 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4371 * However, the object may also be bound into the global GTT (e.g.
4372 * older GPUs without per-process support, or for direct access through
4373 * the GTT either for the user or for scanout). Those VMA still need to
4374 * unbound now.
4375 */
4376
4377 while ((freed = llist_del_all(&i915->mm.free_list)))
4378 __i915_gem_free_objects(i915, freed);
4379 }
4380
4381 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4382 {
4383 struct drm_i915_gem_object *obj =
4384 container_of(head, typeof(*obj), rcu);
4385 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4386
4387 /* We can't simply use call_rcu() from i915_gem_free_object()
4388 * as we need to block whilst unbinding, and the call_rcu
4389 * task may be called from softirq context. So we take a
4390 * detour through a worker.
4391 */
4392 if (llist_add(&obj->freed, &i915->mm.free_list))
4393 schedule_work(&i915->mm.free_work);
4394 }
4395
4396 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4397 {
4398 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4399
4400 if (obj->mm.quirked)
4401 __i915_gem_object_unpin_pages(obj);
4402
4403 if (discard_backing_storage(obj))
4404 obj->mm.madv = I915_MADV_DONTNEED;
4405
4406 /* Before we free the object, make sure any pure RCU-only
4407 * read-side critical sections are complete, e.g.
4408 * i915_gem_busy_ioctl(). For the corresponding synchronized
4409 * lookup see i915_gem_object_lookup_rcu().
4410 */
4411 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4412 }
4413
4414 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4415 {
4416 lockdep_assert_held(&obj->base.dev->struct_mutex);
4417
4418 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4419 if (i915_gem_object_is_active(obj))
4420 i915_gem_object_set_active_reference(obj);
4421 else
4422 i915_gem_object_put(obj);
4423 }
4424
4425 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4426 {
4427 struct intel_engine_cs *engine;
4428 enum intel_engine_id id;
4429
4430 for_each_engine(engine, dev_priv, id)
4431 GEM_BUG_ON(engine->last_retired_context &&
4432 !i915_gem_context_is_kernel(engine->last_retired_context));
4433 }
4434
4435 void i915_gem_sanitize(struct drm_i915_private *i915)
4436 {
4437 /*
4438 * If we inherit context state from the BIOS or earlier occupants
4439 * of the GPU, the GPU may be in an inconsistent state when we
4440 * try to take over. The only way to remove the earlier state
4441 * is by resetting. However, resetting on earlier gen is tricky as
4442 * it may impact the display and we are uncertain about the stability
4443 * of the reset, so we only reset recent machines with logical
4444 * context support (that must be reset to remove any stray contexts).
4445 */
4446 if (HAS_HW_CONTEXTS(i915)) {
4447 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4448 WARN_ON(reset && reset != -ENODEV);
4449 }
4450 }
4451
4452 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4453 {
4454 struct drm_device *dev = &dev_priv->drm;
4455 int ret;
4456
4457 intel_runtime_pm_get(dev_priv);
4458 intel_suspend_gt_powersave(dev_priv);
4459
4460 mutex_lock(&dev->struct_mutex);
4461
4462 /* We have to flush all the executing contexts to main memory so
4463 * that they can saved in the hibernation image. To ensure the last
4464 * context image is coherent, we have to switch away from it. That
4465 * leaves the dev_priv->kernel_context still active when
4466 * we actually suspend, and its image in memory may not match the GPU
4467 * state. Fortunately, the kernel_context is disposable and we do
4468 * not rely on its state.
4469 */
4470 ret = i915_gem_switch_to_kernel_context(dev_priv);
4471 if (ret)
4472 goto err_unlock;
4473
4474 ret = i915_gem_wait_for_idle(dev_priv,
4475 I915_WAIT_INTERRUPTIBLE |
4476 I915_WAIT_LOCKED);
4477 if (ret)
4478 goto err_unlock;
4479
4480 assert_kernel_context_is_current(dev_priv);
4481 i915_gem_context_lost(dev_priv);
4482 mutex_unlock(&dev->struct_mutex);
4483
4484 intel_guc_suspend(dev_priv);
4485
4486 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4487 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4488
4489 /* As the idle_work is rearming if it detects a race, play safe and
4490 * repeat the flush until it is definitely idle.
4491 */
4492 while (flush_delayed_work(&dev_priv->gt.idle_work))
4493 ;
4494
4495 i915_gem_drain_freed_objects(dev_priv);
4496
4497 /* Assert that we sucessfully flushed all the work and
4498 * reset the GPU back to its idle, low power state.
4499 */
4500 WARN_ON(dev_priv->gt.awake);
4501 WARN_ON(!intel_engines_are_idle(dev_priv));
4502
4503 /*
4504 * Neither the BIOS, ourselves or any other kernel
4505 * expects the system to be in execlists mode on startup,
4506 * so we need to reset the GPU back to legacy mode. And the only
4507 * known way to disable logical contexts is through a GPU reset.
4508 *
4509 * So in order to leave the system in a known default configuration,
4510 * always reset the GPU upon unload and suspend. Afterwards we then
4511 * clean up the GEM state tracking, flushing off the requests and
4512 * leaving the system in a known idle state.
4513 *
4514 * Note that is of the upmost importance that the GPU is idle and
4515 * all stray writes are flushed *before* we dismantle the backing
4516 * storage for the pinned objects.
4517 *
4518 * However, since we are uncertain that resetting the GPU on older
4519 * machines is a good idea, we don't - just in case it leaves the
4520 * machine in an unusable condition.
4521 */
4522 i915_gem_sanitize(dev_priv);
4523 goto out_rpm_put;
4524
4525 err_unlock:
4526 mutex_unlock(&dev->struct_mutex);
4527 out_rpm_put:
4528 intel_runtime_pm_put(dev_priv);
4529 return ret;
4530 }
4531
4532 void i915_gem_resume(struct drm_i915_private *dev_priv)
4533 {
4534 struct drm_device *dev = &dev_priv->drm;
4535
4536 WARN_ON(dev_priv->gt.awake);
4537
4538 mutex_lock(&dev->struct_mutex);
4539 i915_gem_restore_gtt_mappings(dev_priv);
4540
4541 /* As we didn't flush the kernel context before suspend, we cannot
4542 * guarantee that the context image is complete. So let's just reset
4543 * it and start again.
4544 */
4545 dev_priv->gt.resume(dev_priv);
4546
4547 mutex_unlock(&dev->struct_mutex);
4548 }
4549
4550 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4551 {
4552 if (INTEL_GEN(dev_priv) < 5 ||
4553 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4554 return;
4555
4556 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4557 DISP_TILE_SURFACE_SWIZZLING);
4558
4559 if (IS_GEN5(dev_priv))
4560 return;
4561
4562 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4563 if (IS_GEN6(dev_priv))
4564 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4565 else if (IS_GEN7(dev_priv))
4566 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4567 else if (IS_GEN8(dev_priv))
4568 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4569 else
4570 BUG();
4571 }
4572
4573 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4574 {
4575 I915_WRITE(RING_CTL(base), 0);
4576 I915_WRITE(RING_HEAD(base), 0);
4577 I915_WRITE(RING_TAIL(base), 0);
4578 I915_WRITE(RING_START(base), 0);
4579 }
4580
4581 static void init_unused_rings(struct drm_i915_private *dev_priv)
4582 {
4583 if (IS_I830(dev_priv)) {
4584 init_unused_ring(dev_priv, PRB1_BASE);
4585 init_unused_ring(dev_priv, SRB0_BASE);
4586 init_unused_ring(dev_priv, SRB1_BASE);
4587 init_unused_ring(dev_priv, SRB2_BASE);
4588 init_unused_ring(dev_priv, SRB3_BASE);
4589 } else if (IS_GEN2(dev_priv)) {
4590 init_unused_ring(dev_priv, SRB0_BASE);
4591 init_unused_ring(dev_priv, SRB1_BASE);
4592 } else if (IS_GEN3(dev_priv)) {
4593 init_unused_ring(dev_priv, PRB1_BASE);
4594 init_unused_ring(dev_priv, PRB2_BASE);
4595 }
4596 }
4597
4598 static int __i915_gem_restart_engines(void *data)
4599 {
4600 struct drm_i915_private *i915 = data;
4601 struct intel_engine_cs *engine;
4602 enum intel_engine_id id;
4603 int err;
4604
4605 for_each_engine(engine, i915, id) {
4606 err = engine->init_hw(engine);
4607 if (err)
4608 return err;
4609 }
4610
4611 return 0;
4612 }
4613
4614 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4615 {
4616 int ret;
4617
4618 dev_priv->gt.last_init_time = ktime_get();
4619
4620 /* Double layer security blanket, see i915_gem_init() */
4621 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4622
4623 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4624 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4625
4626 if (IS_HASWELL(dev_priv))
4627 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4628 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4629
4630 if (HAS_PCH_NOP(dev_priv)) {
4631 if (IS_IVYBRIDGE(dev_priv)) {
4632 u32 temp = I915_READ(GEN7_MSG_CTL);
4633 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4634 I915_WRITE(GEN7_MSG_CTL, temp);
4635 } else if (INTEL_GEN(dev_priv) >= 7) {
4636 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4637 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4638 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4639 }
4640 }
4641
4642 i915_gem_init_swizzling(dev_priv);
4643
4644 /*
4645 * At least 830 can leave some of the unused rings
4646 * "active" (ie. head != tail) after resume which
4647 * will prevent c3 entry. Makes sure all unused rings
4648 * are totally idle.
4649 */
4650 init_unused_rings(dev_priv);
4651
4652 BUG_ON(!dev_priv->kernel_context);
4653
4654 ret = i915_ppgtt_init_hw(dev_priv);
4655 if (ret) {
4656 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4657 goto out;
4658 }
4659
4660 /* Need to do basic initialisation of all rings first: */
4661 ret = __i915_gem_restart_engines(dev_priv);
4662 if (ret)
4663 goto out;
4664
4665 intel_mocs_init_l3cc_table(dev_priv);
4666
4667 /* We can't enable contexts until all firmware is loaded */
4668 ret = intel_uc_init_hw(dev_priv);
4669 if (ret)
4670 goto out;
4671
4672 out:
4673 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4674 return ret;
4675 }
4676
4677 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4678 {
4679 if (INTEL_INFO(dev_priv)->gen < 6)
4680 return false;
4681
4682 /* TODO: make semaphores and Execlists play nicely together */
4683 if (i915.enable_execlists)
4684 return false;
4685
4686 if (value >= 0)
4687 return value;
4688
4689 #ifdef CONFIG_INTEL_IOMMU
4690 /* Enable semaphores on SNB when IO remapping is off */
4691 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4692 return false;
4693 #endif
4694
4695 return true;
4696 }
4697
4698 int i915_gem_init(struct drm_i915_private *dev_priv)
4699 {
4700 int ret;
4701
4702 mutex_lock(&dev_priv->drm.struct_mutex);
4703
4704 i915_gem_clflush_init(dev_priv);
4705
4706 if (!i915.enable_execlists) {
4707 dev_priv->gt.resume = intel_legacy_submission_resume;
4708 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4709 } else {
4710 dev_priv->gt.resume = intel_lr_context_resume;
4711 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4712 }
4713
4714 /* This is just a security blanket to placate dragons.
4715 * On some systems, we very sporadically observe that the first TLBs
4716 * used by the CS may be stale, despite us poking the TLB reset. If
4717 * we hold the forcewake during initialisation these problems
4718 * just magically go away.
4719 */
4720 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4721
4722 i915_gem_init_userptr(dev_priv);
4723
4724 ret = i915_gem_init_ggtt(dev_priv);
4725 if (ret)
4726 goto out_unlock;
4727
4728 ret = i915_gem_context_init(dev_priv);
4729 if (ret)
4730 goto out_unlock;
4731
4732 ret = intel_engines_init(dev_priv);
4733 if (ret)
4734 goto out_unlock;
4735
4736 ret = i915_gem_init_hw(dev_priv);
4737 if (ret == -EIO) {
4738 /* Allow engine initialisation to fail by marking the GPU as
4739 * wedged. But we only want to do this where the GPU is angry,
4740 * for all other failure, such as an allocation failure, bail.
4741 */
4742 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4743 i915_gem_set_wedged(dev_priv);
4744 ret = 0;
4745 }
4746
4747 out_unlock:
4748 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4749 mutex_unlock(&dev_priv->drm.struct_mutex);
4750
4751 return ret;
4752 }
4753
4754 void i915_gem_init_mmio(struct drm_i915_private *i915)
4755 {
4756 i915_gem_sanitize(i915);
4757 }
4758
4759 void
4760 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4761 {
4762 struct intel_engine_cs *engine;
4763 enum intel_engine_id id;
4764
4765 for_each_engine(engine, dev_priv, id)
4766 dev_priv->gt.cleanup_engine(engine);
4767 }
4768
4769 void
4770 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4771 {
4772 int i;
4773
4774 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4775 !IS_CHERRYVIEW(dev_priv))
4776 dev_priv->num_fence_regs = 32;
4777 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4778 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4779 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4780 dev_priv->num_fence_regs = 16;
4781 else
4782 dev_priv->num_fence_regs = 8;
4783
4784 if (intel_vgpu_active(dev_priv))
4785 dev_priv->num_fence_regs =
4786 I915_READ(vgtif_reg(avail_rs.fence_num));
4787
4788 /* Initialize fence registers to zero */
4789 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4790 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4791
4792 fence->i915 = dev_priv;
4793 fence->id = i;
4794 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4795 }
4796 i915_gem_restore_fences(dev_priv);
4797
4798 i915_gem_detect_bit_6_swizzle(dev_priv);
4799 }
4800
4801 int
4802 i915_gem_load_init(struct drm_i915_private *dev_priv)
4803 {
4804 int err = -ENOMEM;
4805
4806 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4807 if (!dev_priv->objects)
4808 goto err_out;
4809
4810 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4811 if (!dev_priv->vmas)
4812 goto err_objects;
4813
4814 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4815 SLAB_HWCACHE_ALIGN |
4816 SLAB_RECLAIM_ACCOUNT |
4817 SLAB_TYPESAFE_BY_RCU);
4818 if (!dev_priv->requests)
4819 goto err_vmas;
4820
4821 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4822 SLAB_HWCACHE_ALIGN |
4823 SLAB_RECLAIM_ACCOUNT);
4824 if (!dev_priv->dependencies)
4825 goto err_requests;
4826
4827 mutex_lock(&dev_priv->drm.struct_mutex);
4828 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4829 err = i915_gem_timeline_init__global(dev_priv);
4830 mutex_unlock(&dev_priv->drm.struct_mutex);
4831 if (err)
4832 goto err_dependencies;
4833
4834 INIT_LIST_HEAD(&dev_priv->context_list);
4835 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4836 init_llist_head(&dev_priv->mm.free_list);
4837 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4838 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4839 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4840 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4841 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4842 i915_gem_retire_work_handler);
4843 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4844 i915_gem_idle_work_handler);
4845 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4846 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4847
4848 init_waitqueue_head(&dev_priv->pending_flip_queue);
4849
4850 dev_priv->mm.interruptible = true;
4851
4852 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4853
4854 spin_lock_init(&dev_priv->fb_tracking.lock);
4855
4856 return 0;
4857
4858 err_dependencies:
4859 kmem_cache_destroy(dev_priv->dependencies);
4860 err_requests:
4861 kmem_cache_destroy(dev_priv->requests);
4862 err_vmas:
4863 kmem_cache_destroy(dev_priv->vmas);
4864 err_objects:
4865 kmem_cache_destroy(dev_priv->objects);
4866 err_out:
4867 return err;
4868 }
4869
4870 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4871 {
4872 i915_gem_drain_freed_objects(dev_priv);
4873 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4874 WARN_ON(dev_priv->mm.object_count);
4875
4876 mutex_lock(&dev_priv->drm.struct_mutex);
4877 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4878 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4879 mutex_unlock(&dev_priv->drm.struct_mutex);
4880
4881 kmem_cache_destroy(dev_priv->dependencies);
4882 kmem_cache_destroy(dev_priv->requests);
4883 kmem_cache_destroy(dev_priv->vmas);
4884 kmem_cache_destroy(dev_priv->objects);
4885
4886 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4887 rcu_barrier();
4888 }
4889
4890 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4891 {
4892 mutex_lock(&dev_priv->drm.struct_mutex);
4893 i915_gem_shrink_all(dev_priv);
4894 mutex_unlock(&dev_priv->drm.struct_mutex);
4895
4896 return 0;
4897 }
4898
4899 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4900 {
4901 struct drm_i915_gem_object *obj;
4902 struct list_head *phases[] = {
4903 &dev_priv->mm.unbound_list,
4904 &dev_priv->mm.bound_list,
4905 NULL
4906 }, **p;
4907
4908 /* Called just before we write the hibernation image.
4909 *
4910 * We need to update the domain tracking to reflect that the CPU
4911 * will be accessing all the pages to create and restore from the
4912 * hibernation, and so upon restoration those pages will be in the
4913 * CPU domain.
4914 *
4915 * To make sure the hibernation image contains the latest state,
4916 * we update that state just before writing out the image.
4917 *
4918 * To try and reduce the hibernation image, we manually shrink
4919 * the objects as well.
4920 */
4921
4922 mutex_lock(&dev_priv->drm.struct_mutex);
4923 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4924
4925 for (p = phases; *p; p++) {
4926 list_for_each_entry(obj, *p, global_link) {
4927 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4928 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4929 }
4930 }
4931 mutex_unlock(&dev_priv->drm.struct_mutex);
4932
4933 return 0;
4934 }
4935
4936 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4937 {
4938 struct drm_i915_file_private *file_priv = file->driver_priv;
4939 struct drm_i915_gem_request *request;
4940
4941 /* Clean up our request list when the client is going away, so that
4942 * later retire_requests won't dereference our soon-to-be-gone
4943 * file_priv.
4944 */
4945 spin_lock(&file_priv->mm.lock);
4946 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4947 request->file_priv = NULL;
4948 spin_unlock(&file_priv->mm.lock);
4949
4950 if (!list_empty(&file_priv->rps.link)) {
4951 spin_lock(&to_i915(dev)->rps.client_lock);
4952 list_del(&file_priv->rps.link);
4953 spin_unlock(&to_i915(dev)->rps.client_lock);
4954 }
4955 }
4956
4957 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4958 {
4959 struct drm_i915_file_private *file_priv;
4960 int ret;
4961
4962 DRM_DEBUG("\n");
4963
4964 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4965 if (!file_priv)
4966 return -ENOMEM;
4967
4968 file->driver_priv = file_priv;
4969 file_priv->dev_priv = to_i915(dev);
4970 file_priv->file = file;
4971 INIT_LIST_HEAD(&file_priv->rps.link);
4972
4973 spin_lock_init(&file_priv->mm.lock);
4974 INIT_LIST_HEAD(&file_priv->mm.request_list);
4975
4976 file_priv->bsd_engine = -1;
4977
4978 ret = i915_gem_context_open(dev, file);
4979 if (ret)
4980 kfree(file_priv);
4981
4982 return ret;
4983 }
4984
4985 /**
4986 * i915_gem_track_fb - update frontbuffer tracking
4987 * @old: current GEM buffer for the frontbuffer slots
4988 * @new: new GEM buffer for the frontbuffer slots
4989 * @frontbuffer_bits: bitmask of frontbuffer slots
4990 *
4991 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4992 * from @old and setting them in @new. Both @old and @new can be NULL.
4993 */
4994 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4995 struct drm_i915_gem_object *new,
4996 unsigned frontbuffer_bits)
4997 {
4998 /* Control of individual bits within the mask are guarded by
4999 * the owning plane->mutex, i.e. we can never see concurrent
5000 * manipulation of individual bits. But since the bitfield as a whole
5001 * is updated using RMW, we need to use atomics in order to update
5002 * the bits.
5003 */
5004 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5005 sizeof(atomic_t) * BITS_PER_BYTE);
5006
5007 if (old) {
5008 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5009 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5010 }
5011
5012 if (new) {
5013 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5014 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5015 }
5016 }
5017
5018 /* Allocate a new GEM object and fill it with the supplied data */
5019 struct drm_i915_gem_object *
5020 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5021 const void *data, size_t size)
5022 {
5023 struct drm_i915_gem_object *obj;
5024 struct file *file;
5025 size_t offset;
5026 int err;
5027
5028 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5029 if (IS_ERR(obj))
5030 return obj;
5031
5032 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5033
5034 file = obj->base.filp;
5035 offset = 0;
5036 do {
5037 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5038 struct page *page;
5039 void *pgdata, *vaddr;
5040
5041 err = pagecache_write_begin(file, file->f_mapping,
5042 offset, len, 0,
5043 &page, &pgdata);
5044 if (err < 0)
5045 goto fail;
5046
5047 vaddr = kmap(page);
5048 memcpy(vaddr, data, len);
5049 kunmap(page);
5050
5051 err = pagecache_write_end(file, file->f_mapping,
5052 offset, len, len,
5053 page, pgdata);
5054 if (err < 0)
5055 goto fail;
5056
5057 size -= len;
5058 data += len;
5059 offset += len;
5060 } while (size);
5061
5062 return obj;
5063
5064 fail:
5065 i915_gem_object_put(obj);
5066 return ERR_PTR(err);
5067 }
5068
5069 struct scatterlist *
5070 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5071 unsigned int n,
5072 unsigned int *offset)
5073 {
5074 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5075 struct scatterlist *sg;
5076 unsigned int idx, count;
5077
5078 might_sleep();
5079 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5080 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5081
5082 /* As we iterate forward through the sg, we record each entry in a
5083 * radixtree for quick repeated (backwards) lookups. If we have seen
5084 * this index previously, we will have an entry for it.
5085 *
5086 * Initial lookup is O(N), but this is amortized to O(1) for
5087 * sequential page access (where each new request is consecutive
5088 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5089 * i.e. O(1) with a large constant!
5090 */
5091 if (n < READ_ONCE(iter->sg_idx))
5092 goto lookup;
5093
5094 mutex_lock(&iter->lock);
5095
5096 /* We prefer to reuse the last sg so that repeated lookup of this
5097 * (or the subsequent) sg are fast - comparing against the last
5098 * sg is faster than going through the radixtree.
5099 */
5100
5101 sg = iter->sg_pos;
5102 idx = iter->sg_idx;
5103 count = __sg_page_count(sg);
5104
5105 while (idx + count <= n) {
5106 unsigned long exception, i;
5107 int ret;
5108
5109 /* If we cannot allocate and insert this entry, or the
5110 * individual pages from this range, cancel updating the
5111 * sg_idx so that on this lookup we are forced to linearly
5112 * scan onwards, but on future lookups we will try the
5113 * insertion again (in which case we need to be careful of
5114 * the error return reporting that we have already inserted
5115 * this index).
5116 */
5117 ret = radix_tree_insert(&iter->radix, idx, sg);
5118 if (ret && ret != -EEXIST)
5119 goto scan;
5120
5121 exception =
5122 RADIX_TREE_EXCEPTIONAL_ENTRY |
5123 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5124 for (i = 1; i < count; i++) {
5125 ret = radix_tree_insert(&iter->radix, idx + i,
5126 (void *)exception);
5127 if (ret && ret != -EEXIST)
5128 goto scan;
5129 }
5130
5131 idx += count;
5132 sg = ____sg_next(sg);
5133 count = __sg_page_count(sg);
5134 }
5135
5136 scan:
5137 iter->sg_pos = sg;
5138 iter->sg_idx = idx;
5139
5140 mutex_unlock(&iter->lock);
5141
5142 if (unlikely(n < idx)) /* insertion completed by another thread */
5143 goto lookup;
5144
5145 /* In case we failed to insert the entry into the radixtree, we need
5146 * to look beyond the current sg.
5147 */
5148 while (idx + count <= n) {
5149 idx += count;
5150 sg = ____sg_next(sg);
5151 count = __sg_page_count(sg);
5152 }
5153
5154 *offset = n - idx;
5155 return sg;
5156
5157 lookup:
5158 rcu_read_lock();
5159
5160 sg = radix_tree_lookup(&iter->radix, n);
5161 GEM_BUG_ON(!sg);
5162
5163 /* If this index is in the middle of multi-page sg entry,
5164 * the radixtree will contain an exceptional entry that points
5165 * to the start of that range. We will return the pointer to
5166 * the base page and the offset of this page within the
5167 * sg entry's range.
5168 */
5169 *offset = 0;
5170 if (unlikely(radix_tree_exception(sg))) {
5171 unsigned long base =
5172 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5173
5174 sg = radix_tree_lookup(&iter->radix, base);
5175 GEM_BUG_ON(!sg);
5176
5177 *offset = n - base;
5178 }
5179
5180 rcu_read_unlock();
5181
5182 return sg;
5183 }
5184
5185 struct page *
5186 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5187 {
5188 struct scatterlist *sg;
5189 unsigned int offset;
5190
5191 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5192
5193 sg = i915_gem_object_get_sg(obj, n, &offset);
5194 return nth_page(sg_page(sg), offset);
5195 }
5196
5197 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5198 struct page *
5199 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5200 unsigned int n)
5201 {
5202 struct page *page;
5203
5204 page = i915_gem_object_get_page(obj, n);
5205 if (!obj->mm.dirty)
5206 set_page_dirty(page);
5207
5208 return page;
5209 }
5210
5211 dma_addr_t
5212 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5213 unsigned long n)
5214 {
5215 struct scatterlist *sg;
5216 unsigned int offset;
5217
5218 sg = i915_gem_object_get_sg(obj, n, &offset);
5219 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5220 }
5221
5222 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5223 #include "selftests/scatterlist.c"
5224 #include "selftests/mock_gem_device.c"
5225 #include "selftests/huge_gem_object.c"
5226 #include "selftests/i915_gem_object.c"
5227 #include "selftests/i915_gem_coherency.c"
5228 #endif