]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
70 {
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
73 size, 0, I915_COLOR_UNEVICTABLE,
74 0, ggtt->mappable_end,
75 DRM_MM_INSERT_LOW);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 u64 size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 u64 size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 might_sleep();
109
110 if (!i915_reset_in_progress(error))
111 return 0;
112
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
118 ret = wait_event_interruptible_timeout(error->reset_queue,
119 !i915_reset_in_progress(error),
120 I915_RESET_TIMEOUT);
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
125 return ret;
126 } else {
127 return 0;
128 }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 int ret;
135
136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
144 return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 struct drm_i915_gem_get_aperture *args = data;
154 struct i915_vma *vma;
155 size_t pinned;
156
157 pinned = 0;
158 mutex_lock(&dev->struct_mutex);
159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 if (i915_vma_is_pinned(vma))
164 pinned += vma->node.size;
165 mutex_unlock(&dev->struct_mutex);
166
167 args->aper_size = ggtt->base.total;
168 args->aper_available_size = args->aper_size - pinned;
169
170 return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 struct address_space *mapping = obj->base.filp->f_mapping;
177 drm_dma_handle_t *phys;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 char *vaddr;
181 int i;
182
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return ERR_PTR(-EINVAL);
185
186 /* Always aligning to the object size, allows a single allocation
187 * to handle all possible callers, and given typical object sizes,
188 * the alignment of the buddy allocation will naturally match.
189 */
190 phys = drm_pci_alloc(obj->base.dev,
191 obj->base.size,
192 roundup_pow_of_two(obj->base.size));
193 if (!phys)
194 return ERR_PTR(-ENOMEM);
195
196 vaddr = phys->vaddr;
197 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 struct page *page;
199 char *src;
200
201 page = shmem_read_mapping_page(mapping, i);
202 if (IS_ERR(page)) {
203 st = ERR_CAST(page);
204 goto err_phys;
205 }
206
207 src = kmap_atomic(page);
208 memcpy(vaddr, src, PAGE_SIZE);
209 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 kunmap_atomic(src);
211
212 put_page(page);
213 vaddr += PAGE_SIZE;
214 }
215
216 i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218 st = kmalloc(sizeof(*st), GFP_KERNEL);
219 if (!st) {
220 st = ERR_PTR(-ENOMEM);
221 goto err_phys;
222 }
223
224 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 kfree(st);
226 st = ERR_PTR(-ENOMEM);
227 goto err_phys;
228 }
229
230 sg = st->sgl;
231 sg->offset = 0;
232 sg->length = obj->base.size;
233
234 sg_dma_address(sg) = phys->busaddr;
235 sg_dma_len(sg) = obj->base.size;
236
237 obj->phys_handle = phys;
238 return st;
239
240 err_phys:
241 drm_pci_free(obj->base.dev, phys);
242 return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 struct sg_table *pages,
248 bool needs_clflush)
249 {
250 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252 if (obj->mm.madv == I915_MADV_DONTNEED)
253 obj->mm.dirty = false;
254
255 if (needs_clflush &&
256 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 drm_clflush_sg(pages);
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267 {
268 __i915_gem_object_release_shmem(obj, pages, false);
269
270 if (obj->mm.dirty) {
271 struct address_space *mapping = obj->base.filp->f_mapping;
272 char *vaddr = obj->phys_handle->vaddr;
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 if (obj->mm.madv == I915_MADV_WILLNEED)
290 mark_page_accessed(page);
291 put_page(page);
292 vaddr += PAGE_SIZE;
293 }
294 obj->mm.dirty = false;
295 }
296
297 sg_free_table(pages);
298 kfree(pages);
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426 {
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
432 int ret;
433
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
436 if (ret)
437 return ret;
438
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout < 0)
444 break;
445
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
454 }
455
456 if (excl && timeout >= 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498 {
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526 }
527
528 /**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
534 */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
540 {
541 might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546 #endif
547 GEM_BUG_ON(timeout < 0);
548
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
552 return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565 {
566 int ret;
567
568 if (align > obj->base.size)
569 return -EINVAL;
570
571 if (obj->ops == &i915_gem_phys_ops)
572 return 0;
573
574 if (obj->mm.madv != I915_MADV_WILLNEED)
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 if (obj->mm.pages)
586 return -EBUSY;
587
588 obj->ops = &i915_gem_phys_ops;
589
590 return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 void *vaddr = obj->phys_handle->vaddr + args->offset;
599 char __user *user_data = u64_to_user_ptr(args->data_ptr);
600
601 /* We manually control the domain here and pretend that it
602 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 */
604 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 if (copy_from_user(vaddr, user_data, args->size))
606 return -EFAULT;
607
608 drm_clflush_virt_range(vaddr, args->size);
609 i915_gem_chipset_flush(to_i915(obj->base.dev));
610
611 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612 return 0;
613 }
614
615 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616 {
617 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 }
619
620 void i915_gem_object_free(struct drm_i915_gem_object *obj)
621 {
622 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623 kmem_cache_free(dev_priv->objects, obj);
624 }
625
626 static int
627 i915_gem_create(struct drm_file *file,
628 struct drm_i915_private *dev_priv,
629 uint64_t size,
630 uint32_t *handle_p)
631 {
632 struct drm_i915_gem_object *obj;
633 int ret;
634 u32 handle;
635
636 size = roundup(size, PAGE_SIZE);
637 if (size == 0)
638 return -EINVAL;
639
640 /* Allocate the new object */
641 obj = i915_gem_object_create(dev_priv, size);
642 if (IS_ERR(obj))
643 return PTR_ERR(obj);
644
645 ret = drm_gem_handle_create(file, &obj->base, &handle);
646 /* drop reference from allocate - handle holds it now */
647 i915_gem_object_put(obj);
648 if (ret)
649 return ret;
650
651 *handle_p = handle;
652 return 0;
653 }
654
655 int
656 i915_gem_dumb_create(struct drm_file *file,
657 struct drm_device *dev,
658 struct drm_mode_create_dumb *args)
659 {
660 /* have to work out size/pitch and return them */
661 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662 args->size = args->pitch * args->height;
663 return i915_gem_create(file, to_i915(dev),
664 args->size, &args->handle);
665 }
666
667 /**
668 * Creates a new mm object and returns a handle to it.
669 * @dev: drm device pointer
670 * @data: ioctl data blob
671 * @file: drm file pointer
672 */
673 int
674 i915_gem_create_ioctl(struct drm_device *dev, void *data,
675 struct drm_file *file)
676 {
677 struct drm_i915_private *dev_priv = to_i915(dev);
678 struct drm_i915_gem_create *args = data;
679
680 i915_gem_flush_free_objects(dev_priv);
681
682 return i915_gem_create(file, dev_priv,
683 args->size, &args->handle);
684 }
685
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688 const char *gpu_vaddr, int gpu_offset,
689 int length)
690 {
691 int ret, cpu_offset = 0;
692
693 while (length > 0) {
694 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 int this_length = min(cacheline_end - gpu_offset, length);
696 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 gpu_vaddr + swizzled_gpu_offset,
700 this_length);
701 if (ret)
702 return ret + length;
703
704 cpu_offset += this_length;
705 gpu_offset += this_length;
706 length -= this_length;
707 }
708
709 return 0;
710 }
711
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 const char __user *cpu_vaddr,
715 int length)
716 {
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 cpu_vaddr + cpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736 }
737
738 /*
739 * Pins the specified object's pages and synchronizes the object with
740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
741 * flush the object from the CPU cache.
742 */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744 unsigned int *needs_clflush)
745 {
746 int ret;
747
748 lockdep_assert_held(&obj->base.dev->struct_mutex);
749
750 *needs_clflush = 0;
751 if (!i915_gem_object_has_struct_page(obj))
752 return -ENODEV;
753
754 ret = i915_gem_object_wait(obj,
755 I915_WAIT_INTERRUPTIBLE |
756 I915_WAIT_LOCKED,
757 MAX_SCHEDULE_TIMEOUT,
758 NULL);
759 if (ret)
760 return ret;
761
762 ret = i915_gem_object_pin_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_flush_gtt_write_domain(obj);
767
768 /* If we're not in the cpu read domain, set ourself into the gtt
769 * read domain and manually flush cachelines (if required). This
770 * optimizes for the case when the gpu will dirty the data
771 * anyway again before the next pread happens.
772 */
773 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 obj->cache_level);
776
777 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 if (ret)
780 goto err_unpin;
781
782 *needs_clflush = 0;
783 }
784
785 /* return with the pages pinned */
786 return 0;
787
788 err_unpin:
789 i915_gem_object_unpin_pages(obj);
790 return ret;
791 }
792
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 unsigned int *needs_clflush)
795 {
796 int ret;
797
798 lockdep_assert_held(&obj->base.dev->struct_mutex);
799
800 *needs_clflush = 0;
801 if (!i915_gem_object_has_struct_page(obj))
802 return -ENODEV;
803
804 ret = i915_gem_object_wait(obj,
805 I915_WAIT_INTERRUPTIBLE |
806 I915_WAIT_LOCKED |
807 I915_WAIT_ALL,
808 MAX_SCHEDULE_TIMEOUT,
809 NULL);
810 if (ret)
811 return ret;
812
813 ret = i915_gem_object_pin_pages(obj);
814 if (ret)
815 return ret;
816
817 i915_gem_object_flush_gtt_write_domain(obj);
818
819 /* If we're not in the cpu write domain, set ourself into the
820 * gtt write domain and manually flush cachelines (as required).
821 * This optimizes for the case when the gpu will use the data
822 * right away and we therefore have to clflush anyway.
823 */
824 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827 /* Same trick applies to invalidate partially written cachelines read
828 * before writing.
829 */
830 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 obj->cache_level);
833
834 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 if (ret)
837 goto err_unpin;
838
839 *needs_clflush = 0;
840 }
841
842 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 obj->cache_dirty = true;
844
845 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846 obj->mm.dirty = true;
847 /* return with the pages pinned */
848 return 0;
849
850 err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
853 }
854
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 bool swizzled)
858 {
859 if (unlikely(swizzled)) {
860 unsigned long start = (unsigned long) addr;
861 unsigned long end = (unsigned long) addr + length;
862
863 /* For swizzling simply ensure that we always flush both
864 * channels. Lame, but simple and it works. Swizzled
865 * pwrite/pread is far from a hotpath - current userspace
866 * doesn't use it at all. */
867 start = round_down(start, 128);
868 end = round_up(end, 128);
869
870 drm_clflush_virt_range((void *)start, end - start);
871 } else {
872 drm_clflush_virt_range(addr, length);
873 }
874
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884 char *vaddr;
885 int ret;
886
887 vaddr = kmap(page);
888 if (needs_clflush)
889 shmem_clflush_swizzled_range(vaddr + offset, length,
890 page_do_bit17_swizzling);
891
892 if (page_do_bit17_swizzling)
893 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894 else
895 ret = __copy_to_user(user_data, vaddr + offset, length);
896 kunmap(page);
897
898 return ret ? - EFAULT : 0;
899 }
900
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 int ret;
906
907 ret = -ENODEV;
908 if (!page_do_bit17_swizzling) {
909 char *vaddr = kmap_atomic(page);
910
911 if (needs_clflush)
912 drm_clflush_virt_range(vaddr + offset, length);
913 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 kunmap_atomic(vaddr);
915 }
916 if (ret == 0)
917 return 0;
918
919 return shmem_pread_slow(page, offset, length, user_data,
920 page_do_bit17_swizzling, needs_clflush);
921 }
922
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 struct drm_i915_gem_pread *args)
926 {
927 char __user *user_data;
928 u64 remain;
929 unsigned int obj_do_bit17_swizzling;
930 unsigned int needs_clflush;
931 unsigned int idx, offset;
932 int ret;
933
934 obj_do_bit17_swizzling = 0;
935 if (i915_gem_object_needs_bit17_swizzle(obj))
936 obj_do_bit17_swizzling = BIT(17);
937
938 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 if (ret)
940 return ret;
941
942 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 mutex_unlock(&obj->base.dev->struct_mutex);
944 if (ret)
945 return ret;
946
947 remain = args->size;
948 user_data = u64_to_user_ptr(args->data_ptr);
949 offset = offset_in_page(args->offset);
950 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 struct page *page = i915_gem_object_get_page(obj, idx);
952 int length;
953
954 length = remain;
955 if (offset + length > PAGE_SIZE)
956 length = PAGE_SIZE - offset;
957
958 ret = shmem_pread(page, offset, length, user_data,
959 page_to_phys(page) & obj_do_bit17_swizzling,
960 needs_clflush);
961 if (ret)
962 break;
963
964 remain -= length;
965 user_data += length;
966 offset = 0;
967 }
968
969 i915_gem_obj_finish_shmem_access(obj);
970 return ret;
971 }
972
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975 loff_t base, int offset,
976 char __user *user_data, int length)
977 {
978 void *vaddr;
979 unsigned long unwritten;
980
981 /* We can use the cpu mem copy function because this is X86. */
982 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 io_mapping_unmap_atomic(vaddr);
985 if (unwritten) {
986 vaddr = (void __force *)
987 io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 unwritten = copy_to_user(user_data, vaddr + offset, length);
989 io_mapping_unmap(vaddr);
990 }
991 return unwritten;
992 }
993
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 const struct drm_i915_gem_pread *args)
997 {
998 struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 struct i915_ggtt *ggtt = &i915->ggtt;
1000 struct drm_mm_node node;
1001 struct i915_vma *vma;
1002 void __user *user_data;
1003 u64 remain, offset;
1004 int ret;
1005
1006 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 if (ret)
1008 return ret;
1009
1010 intel_runtime_pm_get(i915);
1011 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 PIN_MAPPABLE | PIN_NONBLOCK);
1013 if (!IS_ERR(vma)) {
1014 node.start = i915_ggtt_offset(vma);
1015 node.allocated = false;
1016 ret = i915_vma_put_fence(vma);
1017 if (ret) {
1018 i915_vma_unpin(vma);
1019 vma = ERR_PTR(ret);
1020 }
1021 }
1022 if (IS_ERR(vma)) {
1023 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024 if (ret)
1025 goto out_unlock;
1026 GEM_BUG_ON(!node.allocated);
1027 }
1028
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 if (ret)
1031 goto out_unpin;
1032
1033 mutex_unlock(&i915->drm.struct_mutex);
1034
1035 user_data = u64_to_user_ptr(args->data_ptr);
1036 remain = args->size;
1037 offset = args->offset;
1038
1039 while (remain > 0) {
1040 /* Operation in this page
1041 *
1042 * page_base = page offset within aperture
1043 * page_offset = offset within page
1044 * page_length = bytes to copy for this page
1045 */
1046 u32 page_base = node.start;
1047 unsigned page_offset = offset_in_page(offset);
1048 unsigned page_length = PAGE_SIZE - page_offset;
1049 page_length = remain < page_length ? remain : page_length;
1050 if (node.allocated) {
1051 wmb();
1052 ggtt->base.insert_page(&ggtt->base,
1053 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054 node.start, I915_CACHE_NONE, 0);
1055 wmb();
1056 } else {
1057 page_base += offset & PAGE_MASK;
1058 }
1059
1060 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 user_data, page_length)) {
1062 ret = -EFAULT;
1063 break;
1064 }
1065
1066 remain -= page_length;
1067 user_data += page_length;
1068 offset += page_length;
1069 }
1070
1071 mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073 if (node.allocated) {
1074 wmb();
1075 ggtt->base.clear_range(&ggtt->base,
1076 node.start, node.size);
1077 remove_mappable_node(&node);
1078 } else {
1079 i915_vma_unpin(vma);
1080 }
1081 out_unlock:
1082 intel_runtime_pm_put(i915);
1083 mutex_unlock(&i915->drm.struct_mutex);
1084
1085 return ret;
1086 }
1087
1088 /**
1089 * Reads data from the object referenced by handle.
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098 struct drm_file *file)
1099 {
1100 struct drm_i915_gem_pread *args = data;
1101 struct drm_i915_gem_object *obj;
1102 int ret;
1103
1104 if (args->size == 0)
1105 return 0;
1106
1107 if (!access_ok(VERIFY_WRITE,
1108 u64_to_user_ptr(args->data_ptr),
1109 args->size))
1110 return -EFAULT;
1111
1112 obj = i915_gem_object_lookup(file, args->handle);
1113 if (!obj)
1114 return -ENOENT;
1115
1116 /* Bounds check source. */
1117 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
1122 trace_i915_gem_object_pread(obj, args->offset, args->size);
1123
1124 ret = i915_gem_object_wait(obj,
1125 I915_WAIT_INTERRUPTIBLE,
1126 MAX_SCHEDULE_TIMEOUT,
1127 to_rps_client(file));
1128 if (ret)
1129 goto out;
1130
1131 ret = i915_gem_object_pin_pages(obj);
1132 if (ret)
1133 goto out;
1134
1135 ret = i915_gem_shmem_pread(obj, args);
1136 if (ret == -EFAULT || ret == -ENODEV)
1137 ret = i915_gem_gtt_pread(obj, args);
1138
1139 i915_gem_object_unpin_pages(obj);
1140 out:
1141 i915_gem_object_put(obj);
1142 return ret;
1143 }
1144
1145 /* This is the fast write path which cannot handle
1146 * page faults in the source data
1147 */
1148
1149 static inline bool
1150 ggtt_write(struct io_mapping *mapping,
1151 loff_t base, int offset,
1152 char __user *user_data, int length)
1153 {
1154 void *vaddr;
1155 unsigned long unwritten;
1156
1157 /* We can use the cpu mem copy function because this is X86. */
1158 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1159 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160 user_data, length);
1161 io_mapping_unmap_atomic(vaddr);
1162 if (unwritten) {
1163 vaddr = (void __force *)
1164 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1165 unwritten = copy_from_user(vaddr + offset, user_data, length);
1166 io_mapping_unmap(vaddr);
1167 }
1168
1169 return unwritten;
1170 }
1171
1172 /**
1173 * This is the fast pwrite path, where we copy the data directly from the
1174 * user into the GTT, uncached.
1175 * @obj: i915 GEM object
1176 * @args: pwrite arguments structure
1177 */
1178 static int
1179 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1180 const struct drm_i915_gem_pwrite *args)
1181 {
1182 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 struct i915_ggtt *ggtt = &i915->ggtt;
1184 struct drm_mm_node node;
1185 struct i915_vma *vma;
1186 u64 remain, offset;
1187 void __user *user_data;
1188 int ret;
1189
1190 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1191 if (ret)
1192 return ret;
1193
1194 intel_runtime_pm_get(i915);
1195 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196 PIN_MAPPABLE | PIN_NONBLOCK);
1197 if (!IS_ERR(vma)) {
1198 node.start = i915_ggtt_offset(vma);
1199 node.allocated = false;
1200 ret = i915_vma_put_fence(vma);
1201 if (ret) {
1202 i915_vma_unpin(vma);
1203 vma = ERR_PTR(ret);
1204 }
1205 }
1206 if (IS_ERR(vma)) {
1207 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208 if (ret)
1209 goto out_unlock;
1210 GEM_BUG_ON(!node.allocated);
1211 }
1212
1213 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1214 if (ret)
1215 goto out_unpin;
1216
1217 mutex_unlock(&i915->drm.struct_mutex);
1218
1219 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220
1221 user_data = u64_to_user_ptr(args->data_ptr);
1222 offset = args->offset;
1223 remain = args->size;
1224 while (remain) {
1225 /* Operation in this page
1226 *
1227 * page_base = page offset within aperture
1228 * page_offset = offset within page
1229 * page_length = bytes to copy for this page
1230 */
1231 u32 page_base = node.start;
1232 unsigned int page_offset = offset_in_page(offset);
1233 unsigned int page_length = PAGE_SIZE - page_offset;
1234 page_length = remain < page_length ? remain : page_length;
1235 if (node.allocated) {
1236 wmb(); /* flush the write before we modify the GGTT */
1237 ggtt->base.insert_page(&ggtt->base,
1238 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1239 node.start, I915_CACHE_NONE, 0);
1240 wmb(); /* flush modifications to the GGTT (insert_page) */
1241 } else {
1242 page_base += offset & PAGE_MASK;
1243 }
1244 /* If we get a fault while copying data, then (presumably) our
1245 * source page isn't available. Return the error and we'll
1246 * retry in the slow path.
1247 * If the object is non-shmem backed, we retry again with the
1248 * path that handles page fault.
1249 */
1250 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1251 user_data, page_length)) {
1252 ret = -EFAULT;
1253 break;
1254 }
1255
1256 remain -= page_length;
1257 user_data += page_length;
1258 offset += page_length;
1259 }
1260 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261
1262 mutex_lock(&i915->drm.struct_mutex);
1263 out_unpin:
1264 if (node.allocated) {
1265 wmb();
1266 ggtt->base.clear_range(&ggtt->base,
1267 node.start, node.size);
1268 remove_mappable_node(&node);
1269 } else {
1270 i915_vma_unpin(vma);
1271 }
1272 out_unlock:
1273 intel_runtime_pm_put(i915);
1274 mutex_unlock(&i915->drm.struct_mutex);
1275 return ret;
1276 }
1277
1278 static int
1279 shmem_pwrite_slow(struct page *page, int offset, int length,
1280 char __user *user_data,
1281 bool page_do_bit17_swizzling,
1282 bool needs_clflush_before,
1283 bool needs_clflush_after)
1284 {
1285 char *vaddr;
1286 int ret;
1287
1288 vaddr = kmap(page);
1289 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290 shmem_clflush_swizzled_range(vaddr + offset, length,
1291 page_do_bit17_swizzling);
1292 if (page_do_bit17_swizzling)
1293 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1294 length);
1295 else
1296 ret = __copy_from_user(vaddr + offset, user_data, length);
1297 if (needs_clflush_after)
1298 shmem_clflush_swizzled_range(vaddr + offset, length,
1299 page_do_bit17_swizzling);
1300 kunmap(page);
1301
1302 return ret ? -EFAULT : 0;
1303 }
1304
1305 /* Per-page copy function for the shmem pwrite fastpath.
1306 * Flushes invalid cachelines before writing to the target if
1307 * needs_clflush_before is set and flushes out any written cachelines after
1308 * writing if needs_clflush is set.
1309 */
1310 static int
1311 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1312 bool page_do_bit17_swizzling,
1313 bool needs_clflush_before,
1314 bool needs_clflush_after)
1315 {
1316 int ret;
1317
1318 ret = -ENODEV;
1319 if (!page_do_bit17_swizzling) {
1320 char *vaddr = kmap_atomic(page);
1321
1322 if (needs_clflush_before)
1323 drm_clflush_virt_range(vaddr + offset, len);
1324 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1325 if (needs_clflush_after)
1326 drm_clflush_virt_range(vaddr + offset, len);
1327
1328 kunmap_atomic(vaddr);
1329 }
1330 if (ret == 0)
1331 return ret;
1332
1333 return shmem_pwrite_slow(page, offset, len, user_data,
1334 page_do_bit17_swizzling,
1335 needs_clflush_before,
1336 needs_clflush_after);
1337 }
1338
1339 static int
1340 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1341 const struct drm_i915_gem_pwrite *args)
1342 {
1343 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344 void __user *user_data;
1345 u64 remain;
1346 unsigned int obj_do_bit17_swizzling;
1347 unsigned int partial_cacheline_write;
1348 unsigned int needs_clflush;
1349 unsigned int offset, idx;
1350 int ret;
1351
1352 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1357 mutex_unlock(&i915->drm.struct_mutex);
1358 if (ret)
1359 return ret;
1360
1361 obj_do_bit17_swizzling = 0;
1362 if (i915_gem_object_needs_bit17_swizzle(obj))
1363 obj_do_bit17_swizzling = BIT(17);
1364
1365 /* If we don't overwrite a cacheline completely we need to be
1366 * careful to have up-to-date data by first clflushing. Don't
1367 * overcomplicate things and flush the entire patch.
1368 */
1369 partial_cacheline_write = 0;
1370 if (needs_clflush & CLFLUSH_BEFORE)
1371 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372
1373 user_data = u64_to_user_ptr(args->data_ptr);
1374 remain = args->size;
1375 offset = offset_in_page(args->offset);
1376 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1377 struct page *page = i915_gem_object_get_page(obj, idx);
1378 int length;
1379
1380 length = remain;
1381 if (offset + length > PAGE_SIZE)
1382 length = PAGE_SIZE - offset;
1383
1384 ret = shmem_pwrite(page, offset, length, user_data,
1385 page_to_phys(page) & obj_do_bit17_swizzling,
1386 (offset | length) & partial_cacheline_write,
1387 needs_clflush & CLFLUSH_AFTER);
1388 if (ret)
1389 break;
1390
1391 remain -= length;
1392 user_data += length;
1393 offset = 0;
1394 }
1395
1396 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397 i915_gem_obj_finish_shmem_access(obj);
1398 return ret;
1399 }
1400
1401 /**
1402 * Writes data to the object referenced by handle.
1403 * @dev: drm device
1404 * @data: ioctl data blob
1405 * @file: drm file
1406 *
1407 * On error, the contents of the buffer that were to be modified are undefined.
1408 */
1409 int
1410 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411 struct drm_file *file)
1412 {
1413 struct drm_i915_gem_pwrite *args = data;
1414 struct drm_i915_gem_object *obj;
1415 int ret;
1416
1417 if (args->size == 0)
1418 return 0;
1419
1420 if (!access_ok(VERIFY_READ,
1421 u64_to_user_ptr(args->data_ptr),
1422 args->size))
1423 return -EFAULT;
1424
1425 obj = i915_gem_object_lookup(file, args->handle);
1426 if (!obj)
1427 return -ENOENT;
1428
1429 /* Bounds check destination. */
1430 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1431 ret = -EINVAL;
1432 goto err;
1433 }
1434
1435 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1436
1437 ret = i915_gem_object_wait(obj,
1438 I915_WAIT_INTERRUPTIBLE |
1439 I915_WAIT_ALL,
1440 MAX_SCHEDULE_TIMEOUT,
1441 to_rps_client(file));
1442 if (ret)
1443 goto err;
1444
1445 ret = i915_gem_object_pin_pages(obj);
1446 if (ret)
1447 goto err;
1448
1449 ret = -EFAULT;
1450 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1451 * it would end up going through the fenced access, and we'll get
1452 * different detiling behavior between reading and writing.
1453 * pread/pwrite currently are reading and writing from the CPU
1454 * perspective, requiring manual detiling by the client.
1455 */
1456 if (!i915_gem_object_has_struct_page(obj) ||
1457 cpu_write_needs_clflush(obj))
1458 /* Note that the gtt paths might fail with non-page-backed user
1459 * pointers (e.g. gtt mappings when moving data between
1460 * textures). Fallback to the shmem path in that case.
1461 */
1462 ret = i915_gem_gtt_pwrite_fast(obj, args);
1463
1464 if (ret == -EFAULT || ret == -ENOSPC) {
1465 if (obj->phys_handle)
1466 ret = i915_gem_phys_pwrite(obj, args, file);
1467 else
1468 ret = i915_gem_shmem_pwrite(obj, args);
1469 }
1470
1471 i915_gem_object_unpin_pages(obj);
1472 err:
1473 i915_gem_object_put(obj);
1474 return ret;
1475 }
1476
1477 static inline enum fb_op_origin
1478 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1479 {
1480 return (domain == I915_GEM_DOMAIN_GTT ?
1481 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 }
1483
1484 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *i915;
1487 struct list_head *list;
1488 struct i915_vma *vma;
1489
1490 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1491 if (!i915_vma_is_ggtt(vma))
1492 break;
1493
1494 if (i915_vma_is_active(vma))
1495 continue;
1496
1497 if (!drm_mm_node_allocated(&vma->node))
1498 continue;
1499
1500 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1501 }
1502
1503 i915 = to_i915(obj->base.dev);
1504 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505 list_move_tail(&obj->global_link, list);
1506 }
1507
1508 /**
1509 * Called when user space prepares to use an object with the CPU, either
1510 * through the mmap ioctl's mapping or a GTT mapping.
1511 * @dev: drm device
1512 * @data: ioctl data blob
1513 * @file: drm file
1514 */
1515 int
1516 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517 struct drm_file *file)
1518 {
1519 struct drm_i915_gem_set_domain *args = data;
1520 struct drm_i915_gem_object *obj;
1521 uint32_t read_domains = args->read_domains;
1522 uint32_t write_domain = args->write_domain;
1523 int err;
1524
1525 /* Only handle setting domains to types used by the CPU. */
1526 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 return -EINVAL;
1528
1529 /* Having something in the write domain implies it's in the read
1530 * domain, and only that read domain. Enforce that in the request.
1531 */
1532 if (write_domain != 0 && read_domains != write_domain)
1533 return -EINVAL;
1534
1535 obj = i915_gem_object_lookup(file, args->handle);
1536 if (!obj)
1537 return -ENOENT;
1538
1539 /* Try to flush the object off the GPU without holding the lock.
1540 * We will repeat the flush holding the lock in the normal manner
1541 * to catch cases where we are gazumped.
1542 */
1543 err = i915_gem_object_wait(obj,
1544 I915_WAIT_INTERRUPTIBLE |
1545 (write_domain ? I915_WAIT_ALL : 0),
1546 MAX_SCHEDULE_TIMEOUT,
1547 to_rps_client(file));
1548 if (err)
1549 goto out;
1550
1551 /* Flush and acquire obj->pages so that we are coherent through
1552 * direct access in memory with previous cached writes through
1553 * shmemfs and that our cache domain tracking remains valid.
1554 * For example, if the obj->filp was moved to swap without us
1555 * being notified and releasing the pages, we would mistakenly
1556 * continue to assume that the obj remained out of the CPU cached
1557 * domain.
1558 */
1559 err = i915_gem_object_pin_pages(obj);
1560 if (err)
1561 goto out;
1562
1563 err = i915_mutex_lock_interruptible(dev);
1564 if (err)
1565 goto out_unpin;
1566
1567 if (read_domains & I915_GEM_DOMAIN_GTT)
1568 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569 else
1570 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571
1572 /* And bump the LRU for this access */
1573 i915_gem_object_bump_inactive_ggtt(obj);
1574
1575 mutex_unlock(&dev->struct_mutex);
1576
1577 if (write_domain != 0)
1578 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1579
1580 out_unpin:
1581 i915_gem_object_unpin_pages(obj);
1582 out:
1583 i915_gem_object_put(obj);
1584 return err;
1585 }
1586
1587 /**
1588 * Called when user space has done writes to this buffer
1589 * @dev: drm device
1590 * @data: ioctl data blob
1591 * @file: drm file
1592 */
1593 int
1594 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1596 {
1597 struct drm_i915_gem_sw_finish *args = data;
1598 struct drm_i915_gem_object *obj;
1599 int err = 0;
1600
1601 obj = i915_gem_object_lookup(file, args->handle);
1602 if (!obj)
1603 return -ENOENT;
1604
1605 /* Pinned buffers may be scanout, so flush the cache */
1606 if (READ_ONCE(obj->pin_display)) {
1607 err = i915_mutex_lock_interruptible(dev);
1608 if (!err) {
1609 i915_gem_object_flush_cpu_write_domain(obj);
1610 mutex_unlock(&dev->struct_mutex);
1611 }
1612 }
1613
1614 i915_gem_object_put(obj);
1615 return err;
1616 }
1617
1618 /**
1619 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1620 * it is mapped to.
1621 * @dev: drm device
1622 * @data: ioctl data blob
1623 * @file: drm file
1624 *
1625 * While the mapping holds a reference on the contents of the object, it doesn't
1626 * imply a ref on the object itself.
1627 *
1628 * IMPORTANT:
1629 *
1630 * DRM driver writers who look a this function as an example for how to do GEM
1631 * mmap support, please don't implement mmap support like here. The modern way
1632 * to implement DRM mmap support is with an mmap offset ioctl (like
1633 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1634 * That way debug tooling like valgrind will understand what's going on, hiding
1635 * the mmap call in a driver private ioctl will break that. The i915 driver only
1636 * does cpu mmaps this way because we didn't know better.
1637 */
1638 int
1639 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640 struct drm_file *file)
1641 {
1642 struct drm_i915_gem_mmap *args = data;
1643 struct drm_i915_gem_object *obj;
1644 unsigned long addr;
1645
1646 if (args->flags & ~(I915_MMAP_WC))
1647 return -EINVAL;
1648
1649 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 return -ENODEV;
1651
1652 obj = i915_gem_object_lookup(file, args->handle);
1653 if (!obj)
1654 return -ENOENT;
1655
1656 /* prime objects have no backing filp to GEM mmap
1657 * pages from.
1658 */
1659 if (!obj->base.filp) {
1660 i915_gem_object_put(obj);
1661 return -EINVAL;
1662 }
1663
1664 addr = vm_mmap(obj->base.filp, 0, args->size,
1665 PROT_READ | PROT_WRITE, MAP_SHARED,
1666 args->offset);
1667 if (args->flags & I915_MMAP_WC) {
1668 struct mm_struct *mm = current->mm;
1669 struct vm_area_struct *vma;
1670
1671 if (down_write_killable(&mm->mmap_sem)) {
1672 i915_gem_object_put(obj);
1673 return -EINTR;
1674 }
1675 vma = find_vma(mm, addr);
1676 if (vma)
1677 vma->vm_page_prot =
1678 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1679 else
1680 addr = -ENOMEM;
1681 up_write(&mm->mmap_sem);
1682
1683 /* This may race, but that's ok, it only gets set */
1684 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685 }
1686 i915_gem_object_put(obj);
1687 if (IS_ERR((void *)addr))
1688 return addr;
1689
1690 args->addr_ptr = (uint64_t) addr;
1691
1692 return 0;
1693 }
1694
1695 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1696 {
1697 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 }
1699
1700 /**
1701 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1702 *
1703 * A history of the GTT mmap interface:
1704 *
1705 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1706 * aligned and suitable for fencing, and still fit into the available
1707 * mappable space left by the pinned display objects. A classic problem
1708 * we called the page-fault-of-doom where we would ping-pong between
1709 * two objects that could not fit inside the GTT and so the memcpy
1710 * would page one object in at the expense of the other between every
1711 * single byte.
1712 *
1713 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1714 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1715 * object is too large for the available space (or simply too large
1716 * for the mappable aperture!), a view is created instead and faulted
1717 * into userspace. (This view is aligned and sized appropriately for
1718 * fenced access.)
1719 *
1720 * Restrictions:
1721 *
1722 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1723 * hangs on some architectures, corruption on others. An attempt to service
1724 * a GTT page fault from a snoopable object will generate a SIGBUS.
1725 *
1726 * * the object must be able to fit into RAM (physical memory, though no
1727 * limited to the mappable aperture).
1728 *
1729 *
1730 * Caveats:
1731 *
1732 * * a new GTT page fault will synchronize rendering from the GPU and flush
1733 * all data to system memory. Subsequent access will not be synchronized.
1734 *
1735 * * all mappings are revoked on runtime device suspend.
1736 *
1737 * * there are only 8, 16 or 32 fence registers to share between all users
1738 * (older machines require fence register for display and blitter access
1739 * as well). Contention of the fence registers will cause the previous users
1740 * to be unmapped and any new access will generate new page faults.
1741 *
1742 * * running out of memory while servicing a fault may generate a SIGBUS,
1743 * rather than the expected SIGSEGV.
1744 */
1745 int i915_gem_mmap_gtt_version(void)
1746 {
1747 return 1;
1748 }
1749
1750 static inline struct i915_ggtt_view
1751 compute_partial_view(struct drm_i915_gem_object *obj,
1752 pgoff_t page_offset,
1753 unsigned int chunk)
1754 {
1755 struct i915_ggtt_view view;
1756
1757 if (i915_gem_object_is_tiled(obj))
1758 chunk = roundup(chunk, tile_row_pages(obj));
1759
1760 view.type = I915_GGTT_VIEW_PARTIAL;
1761 view.partial.offset = rounddown(page_offset, chunk);
1762 view.partial.size =
1763 min_t(unsigned int, chunk,
1764 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765
1766 /* If the partial covers the entire object, just create a normal VMA. */
1767 if (chunk >= obj->base.size >> PAGE_SHIFT)
1768 view.type = I915_GGTT_VIEW_NORMAL;
1769
1770 return view;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @vmf: fault info
1776 *
1777 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1778 * from userspace. The fault handler takes care of binding the object to
1779 * the GTT (if needed), allocating and programming a fence register (again,
1780 * only if needed based on whether the old reg is still valid or the object
1781 * is tiled) and inserting a new PTE into the faulting process.
1782 *
1783 * Note that the faulting process may involve evicting existing objects
1784 * from the GTT and/or fence registers to make room. So performance may
1785 * suffer if the GTT working set is large or there are few fence registers
1786 * left.
1787 *
1788 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1789 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1790 */
1791 int i915_gem_fault(struct vm_fault *vmf)
1792 {
1793 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1794 struct vm_area_struct *area = vmf->vma;
1795 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796 struct drm_device *dev = obj->base.dev;
1797 struct drm_i915_private *dev_priv = to_i915(dev);
1798 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1800 struct i915_vma *vma;
1801 pgoff_t page_offset;
1802 unsigned int flags;
1803 int ret;
1804
1805 /* We don't use vmf->pgoff since that has the fake offset */
1806 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807
1808 trace_i915_gem_object_fault(obj, page_offset, true, write);
1809
1810 /* Try to flush the object off the GPU first without holding the lock.
1811 * Upon acquiring the lock, we will perform our sanity checks and then
1812 * repeat the flush holding the lock in the normal manner to catch cases
1813 * where we are gazumped.
1814 */
1815 ret = i915_gem_object_wait(obj,
1816 I915_WAIT_INTERRUPTIBLE,
1817 MAX_SCHEDULE_TIMEOUT,
1818 NULL);
1819 if (ret)
1820 goto err;
1821
1822 ret = i915_gem_object_pin_pages(obj);
1823 if (ret)
1824 goto err;
1825
1826 intel_runtime_pm_get(dev_priv);
1827
1828 ret = i915_mutex_lock_interruptible(dev);
1829 if (ret)
1830 goto err_rpm;
1831
1832 /* Access to snoopable pages through the GTT is incoherent. */
1833 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834 ret = -EFAULT;
1835 goto err_unlock;
1836 }
1837
1838 /* If the object is smaller than a couple of partial vma, it is
1839 * not worth only creating a single partial vma - we may as well
1840 * clear enough space for the full object.
1841 */
1842 flags = PIN_MAPPABLE;
1843 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1844 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1845
1846 /* Now pin it into the GTT as needed */
1847 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 if (IS_ERR(vma)) {
1849 /* Use a partial view if it is bigger than available space */
1850 struct i915_ggtt_view view =
1851 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852
1853 /* Userspace is now writing through an untracked VMA, abandon
1854 * all hope that the hardware is able to track future writes.
1855 */
1856 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1857
1858 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1859 }
1860 if (IS_ERR(vma)) {
1861 ret = PTR_ERR(vma);
1862 goto err_unlock;
1863 }
1864
1865 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1866 if (ret)
1867 goto err_unpin;
1868
1869 ret = i915_vma_get_fence(vma);
1870 if (ret)
1871 goto err_unpin;
1872
1873 /* Mark as being mmapped into userspace for later revocation */
1874 assert_rpm_wakelock_held(dev_priv);
1875 if (list_empty(&obj->userfault_link))
1876 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1877
1878 /* Finally, remap it using the new GTT offset */
1879 ret = remap_io_mapping(area,
1880 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1882 min_t(u64, vma->size, area->vm_end - area->vm_start),
1883 &ggtt->mappable);
1884
1885 err_unpin:
1886 __i915_vma_unpin(vma);
1887 err_unlock:
1888 mutex_unlock(&dev->struct_mutex);
1889 err_rpm:
1890 intel_runtime_pm_put(dev_priv);
1891 i915_gem_object_unpin_pages(obj);
1892 err:
1893 switch (ret) {
1894 case -EIO:
1895 /*
1896 * We eat errors when the gpu is terminally wedged to avoid
1897 * userspace unduly crashing (gl has no provisions for mmaps to
1898 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1899 * and so needs to be reported.
1900 */
1901 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 ret = VM_FAULT_SIGBUS;
1903 break;
1904 }
1905 case -EAGAIN:
1906 /*
1907 * EAGAIN means the gpu is hung and we'll wait for the error
1908 * handler to reset everything when re-faulting in
1909 * i915_mutex_lock_interruptible.
1910 */
1911 case 0:
1912 case -ERESTARTSYS:
1913 case -EINTR:
1914 case -EBUSY:
1915 /*
1916 * EBUSY is ok: this just means that another thread
1917 * already did the job.
1918 */
1919 ret = VM_FAULT_NOPAGE;
1920 break;
1921 case -ENOMEM:
1922 ret = VM_FAULT_OOM;
1923 break;
1924 case -ENOSPC:
1925 case -EFAULT:
1926 ret = VM_FAULT_SIGBUS;
1927 break;
1928 default:
1929 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 ret = VM_FAULT_SIGBUS;
1931 break;
1932 }
1933 return ret;
1934 }
1935
1936 /**
1937 * i915_gem_release_mmap - remove physical page mappings
1938 * @obj: obj in question
1939 *
1940 * Preserve the reservation of the mmapping with the DRM core code, but
1941 * relinquish ownership of the pages back to the system.
1942 *
1943 * It is vital that we remove the page mapping if we have mapped a tiled
1944 * object through the GTT and then lose the fence register due to
1945 * resource pressure. Similarly if the object has been moved out of the
1946 * aperture, than pages mapped into userspace must be revoked. Removing the
1947 * mapping will then trigger a page fault on the next user access, allowing
1948 * fixup by i915_gem_fault().
1949 */
1950 void
1951 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952 {
1953 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1954
1955 /* Serialisation between user GTT access and our code depends upon
1956 * revoking the CPU's PTE whilst the mutex is held. The next user
1957 * pagefault then has to wait until we release the mutex.
1958 *
1959 * Note that RPM complicates somewhat by adding an additional
1960 * requirement that operations to the GGTT be made holding the RPM
1961 * wakeref.
1962 */
1963 lockdep_assert_held(&i915->drm.struct_mutex);
1964 intel_runtime_pm_get(i915);
1965
1966 if (list_empty(&obj->userfault_link))
1967 goto out;
1968
1969 list_del_init(&obj->userfault_link);
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972
1973 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1974 * memory transactions from userspace before we return. The TLB
1975 * flushing implied above by changing the PTE above *should* be
1976 * sufficient, an extra barrier here just provides us with a bit
1977 * of paranoid documentation about our requirement to serialise
1978 * memory writes before touching registers / GSM.
1979 */
1980 wmb();
1981
1982 out:
1983 intel_runtime_pm_put(i915);
1984 }
1985
1986 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987 {
1988 struct drm_i915_gem_object *obj, *on;
1989 int i;
1990
1991 /*
1992 * Only called during RPM suspend. All users of the userfault_list
1993 * must be holding an RPM wakeref to ensure that this can not
1994 * run concurrently with themselves (and use the struct_mutex for
1995 * protection between themselves).
1996 */
1997
1998 list_for_each_entry_safe(obj, on,
1999 &dev_priv->mm.userfault_list, userfault_link) {
2000 list_del_init(&obj->userfault_link);
2001 drm_vma_node_unmap(&obj->base.vma_node,
2002 obj->base.dev->anon_inode->i_mapping);
2003 }
2004
2005 /* The fence will be lost when the device powers down. If any were
2006 * in use by hardware (i.e. they are pinned), we should not be powering
2007 * down! All other fences will be reacquired by the user upon waking.
2008 */
2009 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2011
2012 /* Ideally we want to assert that the fence register is not
2013 * live at this point (i.e. that no piece of code will be
2014 * trying to write through fence + GTT, as that both violates
2015 * our tracking of activity and associated locking/barriers,
2016 * but also is illegal given that the hw is powered down).
2017 *
2018 * Previously we used reg->pin_count as a "liveness" indicator.
2019 * That is not sufficient, and we need a more fine-grained
2020 * tool if we want to have a sanity check here.
2021 */
2022
2023 if (!reg->vma)
2024 continue;
2025
2026 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2027 reg->dirty = true;
2028 }
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2034 int err;
2035
2036 err = drm_gem_create_mmap_offset(&obj->base);
2037 if (likely(!err))
2038 return 0;
2039
2040 /* Attempt to reap some mmap space from dead objects */
2041 do {
2042 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2043 if (err)
2044 break;
2045
2046 i915_gem_drain_freed_objects(dev_priv);
2047 err = drm_gem_create_mmap_offset(&obj->base);
2048 if (!err)
2049 break;
2050
2051 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2052
2053 return err;
2054 }
2055
2056 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2057 {
2058 drm_gem_free_mmap_offset(&obj->base);
2059 }
2060
2061 int
2062 i915_gem_mmap_gtt(struct drm_file *file,
2063 struct drm_device *dev,
2064 uint32_t handle,
2065 uint64_t *offset)
2066 {
2067 struct drm_i915_gem_object *obj;
2068 int ret;
2069
2070 obj = i915_gem_object_lookup(file, handle);
2071 if (!obj)
2072 return -ENOENT;
2073
2074 ret = i915_gem_object_create_mmap_offset(obj);
2075 if (ret == 0)
2076 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2077
2078 i915_gem_object_put(obj);
2079 return ret;
2080 }
2081
2082 /**
2083 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2084 * @dev: DRM device
2085 * @data: GTT mapping ioctl data
2086 * @file: GEM object info
2087 *
2088 * Simply returns the fake offset to userspace so it can mmap it.
2089 * The mmap call will end up in drm_gem_mmap(), which will set things
2090 * up so we can get faults in the handler above.
2091 *
2092 * The fault handler will take care of binding the object into the GTT
2093 * (since it may have been evicted to make room for something), allocating
2094 * a fence register, and mapping the appropriate aperture address into
2095 * userspace.
2096 */
2097 int
2098 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2099 struct drm_file *file)
2100 {
2101 struct drm_i915_gem_mmap_gtt *args = data;
2102
2103 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2104 }
2105
2106 /* Immediately discard the backing storage */
2107 static void
2108 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2109 {
2110 i915_gem_object_free_mmap_offset(obj);
2111
2112 if (obj->base.filp == NULL)
2113 return;
2114
2115 /* Our goal here is to return as much of the memory as
2116 * is possible back to the system as we are called from OOM.
2117 * To do this we must instruct the shmfs to drop all of its
2118 * backing pages, *now*.
2119 */
2120 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2121 obj->mm.madv = __I915_MADV_PURGED;
2122 }
2123
2124 /* Try to discard unwanted pages */
2125 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2126 {
2127 struct address_space *mapping;
2128
2129 lockdep_assert_held(&obj->mm.lock);
2130 GEM_BUG_ON(obj->mm.pages);
2131
2132 switch (obj->mm.madv) {
2133 case I915_MADV_DONTNEED:
2134 i915_gem_object_truncate(obj);
2135 case __I915_MADV_PURGED:
2136 return;
2137 }
2138
2139 if (obj->base.filp == NULL)
2140 return;
2141
2142 mapping = obj->base.filp->f_mapping,
2143 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2144 }
2145
2146 static void
2147 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2148 struct sg_table *pages)
2149 {
2150 struct sgt_iter sgt_iter;
2151 struct page *page;
2152
2153 __i915_gem_object_release_shmem(obj, pages, true);
2154
2155 i915_gem_gtt_finish_pages(obj, pages);
2156
2157 if (i915_gem_object_needs_bit17_swizzle(obj))
2158 i915_gem_object_save_bit_17_swizzle(obj, pages);
2159
2160 for_each_sgt_page(page, sgt_iter, pages) {
2161 if (obj->mm.dirty)
2162 set_page_dirty(page);
2163
2164 if (obj->mm.madv == I915_MADV_WILLNEED)
2165 mark_page_accessed(page);
2166
2167 put_page(page);
2168 }
2169 obj->mm.dirty = false;
2170
2171 sg_free_table(pages);
2172 kfree(pages);
2173 }
2174
2175 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2176 {
2177 struct radix_tree_iter iter;
2178 void **slot;
2179
2180 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2181 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2182 }
2183
2184 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2185 enum i915_mm_subclass subclass)
2186 {
2187 struct sg_table *pages;
2188
2189 if (i915_gem_object_has_pinned_pages(obj))
2190 return;
2191
2192 GEM_BUG_ON(obj->bind_count);
2193 if (!READ_ONCE(obj->mm.pages))
2194 return;
2195
2196 /* May be called by shrinker from within get_pages() (on another bo) */
2197 mutex_lock_nested(&obj->mm.lock, subclass);
2198 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2199 goto unlock;
2200
2201 /* ->put_pages might need to allocate memory for the bit17 swizzle
2202 * array, hence protect them from being reaped by removing them from gtt
2203 * lists early. */
2204 pages = fetch_and_zero(&obj->mm.pages);
2205 GEM_BUG_ON(!pages);
2206
2207 if (obj->mm.mapping) {
2208 void *ptr;
2209
2210 ptr = ptr_mask_bits(obj->mm.mapping);
2211 if (is_vmalloc_addr(ptr))
2212 vunmap(ptr);
2213 else
2214 kunmap(kmap_to_page(ptr));
2215
2216 obj->mm.mapping = NULL;
2217 }
2218
2219 __i915_gem_object_reset_page_iter(obj);
2220
2221 obj->ops->put_pages(obj, pages);
2222 unlock:
2223 mutex_unlock(&obj->mm.lock);
2224 }
2225
2226 static void i915_sg_trim(struct sg_table *orig_st)
2227 {
2228 struct sg_table new_st;
2229 struct scatterlist *sg, *new_sg;
2230 unsigned int i;
2231
2232 if (orig_st->nents == orig_st->orig_nents)
2233 return;
2234
2235 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2236 return;
2237
2238 new_sg = new_st.sgl;
2239 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2240 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2241 /* called before being DMA mapped, no need to copy sg->dma_* */
2242 new_sg = sg_next(new_sg);
2243 }
2244 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2245
2246 sg_free_table(orig_st);
2247
2248 *orig_st = new_st;
2249 }
2250
2251 static struct sg_table *
2252 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253 {
2254 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2255 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2256 unsigned long i;
2257 struct address_space *mapping;
2258 struct sg_table *st;
2259 struct scatterlist *sg;
2260 struct sgt_iter sgt_iter;
2261 struct page *page;
2262 unsigned long last_pfn = 0; /* suppress gcc warning */
2263 unsigned int max_segment;
2264 int ret;
2265 gfp_t gfp;
2266
2267 /* Assert that the object is not currently in any GPU domain. As it
2268 * wasn't in the GTT, there shouldn't be any way it could have been in
2269 * a GPU cache
2270 */
2271 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2272 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2273
2274 max_segment = swiotlb_max_segment();
2275 if (!max_segment)
2276 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2277
2278 st = kmalloc(sizeof(*st), GFP_KERNEL);
2279 if (st == NULL)
2280 return ERR_PTR(-ENOMEM);
2281
2282 rebuild_st:
2283 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2284 kfree(st);
2285 return ERR_PTR(-ENOMEM);
2286 }
2287
2288 /* Get the list of pages out of our struct file. They'll be pinned
2289 * at this point until we release them.
2290 *
2291 * Fail silently without starting the shrinker
2292 */
2293 mapping = obj->base.filp->f_mapping;
2294 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2295 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2296 sg = st->sgl;
2297 st->nents = 0;
2298 for (i = 0; i < page_count; i++) {
2299 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2300 if (IS_ERR(page)) {
2301 i915_gem_shrink(dev_priv,
2302 page_count,
2303 I915_SHRINK_BOUND |
2304 I915_SHRINK_UNBOUND |
2305 I915_SHRINK_PURGEABLE);
2306 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2307 }
2308 if (IS_ERR(page)) {
2309 /* We've tried hard to allocate the memory by reaping
2310 * our own buffer, now let the real VM do its job and
2311 * go down in flames if truly OOM.
2312 */
2313 page = shmem_read_mapping_page(mapping, i);
2314 if (IS_ERR(page)) {
2315 ret = PTR_ERR(page);
2316 goto err_sg;
2317 }
2318 }
2319 if (!i ||
2320 sg->length >= max_segment ||
2321 page_to_pfn(page) != last_pfn + 1) {
2322 if (i)
2323 sg = sg_next(sg);
2324 st->nents++;
2325 sg_set_page(sg, page, PAGE_SIZE, 0);
2326 } else {
2327 sg->length += PAGE_SIZE;
2328 }
2329 last_pfn = page_to_pfn(page);
2330
2331 /* Check that the i965g/gm workaround works. */
2332 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2333 }
2334 if (sg) /* loop terminated early; short sg table */
2335 sg_mark_end(sg);
2336
2337 /* Trim unused sg entries to avoid wasting memory. */
2338 i915_sg_trim(st);
2339
2340 ret = i915_gem_gtt_prepare_pages(obj, st);
2341 if (ret) {
2342 /* DMA remapping failed? One possible cause is that
2343 * it could not reserve enough large entries, asking
2344 * for PAGE_SIZE chunks instead may be helpful.
2345 */
2346 if (max_segment > PAGE_SIZE) {
2347 for_each_sgt_page(page, sgt_iter, st)
2348 put_page(page);
2349 sg_free_table(st);
2350
2351 max_segment = PAGE_SIZE;
2352 goto rebuild_st;
2353 } else {
2354 dev_warn(&dev_priv->drm.pdev->dev,
2355 "Failed to DMA remap %lu pages\n",
2356 page_count);
2357 goto err_pages;
2358 }
2359 }
2360
2361 if (i915_gem_object_needs_bit17_swizzle(obj))
2362 i915_gem_object_do_bit_17_swizzle(obj, st);
2363
2364 return st;
2365
2366 err_sg:
2367 sg_mark_end(sg);
2368 err_pages:
2369 for_each_sgt_page(page, sgt_iter, st)
2370 put_page(page);
2371 sg_free_table(st);
2372 kfree(st);
2373
2374 /* shmemfs first checks if there is enough memory to allocate the page
2375 * and reports ENOSPC should there be insufficient, along with the usual
2376 * ENOMEM for a genuine allocation failure.
2377 *
2378 * We use ENOSPC in our driver to mean that we have run out of aperture
2379 * space and so want to translate the error from shmemfs back to our
2380 * usual understanding of ENOMEM.
2381 */
2382 if (ret == -ENOSPC)
2383 ret = -ENOMEM;
2384
2385 return ERR_PTR(ret);
2386 }
2387
2388 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2389 struct sg_table *pages)
2390 {
2391 lockdep_assert_held(&obj->mm.lock);
2392
2393 obj->mm.get_page.sg_pos = pages->sgl;
2394 obj->mm.get_page.sg_idx = 0;
2395
2396 obj->mm.pages = pages;
2397
2398 if (i915_gem_object_is_tiled(obj) &&
2399 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2400 GEM_BUG_ON(obj->mm.quirked);
2401 __i915_gem_object_pin_pages(obj);
2402 obj->mm.quirked = true;
2403 }
2404 }
2405
2406 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2407 {
2408 struct sg_table *pages;
2409
2410 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2411
2412 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2413 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2414 return -EFAULT;
2415 }
2416
2417 pages = obj->ops->get_pages(obj);
2418 if (unlikely(IS_ERR(pages)))
2419 return PTR_ERR(pages);
2420
2421 __i915_gem_object_set_pages(obj, pages);
2422 return 0;
2423 }
2424
2425 /* Ensure that the associated pages are gathered from the backing storage
2426 * and pinned into our object. i915_gem_object_pin_pages() may be called
2427 * multiple times before they are released by a single call to
2428 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2429 * either as a result of memory pressure (reaping pages under the shrinker)
2430 * or as the object is itself released.
2431 */
2432 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2433 {
2434 int err;
2435
2436 err = mutex_lock_interruptible(&obj->mm.lock);
2437 if (err)
2438 return err;
2439
2440 if (unlikely(!obj->mm.pages)) {
2441 err = ____i915_gem_object_get_pages(obj);
2442 if (err)
2443 goto unlock;
2444
2445 smp_mb__before_atomic();
2446 }
2447 atomic_inc(&obj->mm.pages_pin_count);
2448
2449 unlock:
2450 mutex_unlock(&obj->mm.lock);
2451 return err;
2452 }
2453
2454 /* The 'mapping' part of i915_gem_object_pin_map() below */
2455 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2456 enum i915_map_type type)
2457 {
2458 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2459 struct sg_table *sgt = obj->mm.pages;
2460 struct sgt_iter sgt_iter;
2461 struct page *page;
2462 struct page *stack_pages[32];
2463 struct page **pages = stack_pages;
2464 unsigned long i = 0;
2465 pgprot_t pgprot;
2466 void *addr;
2467
2468 /* A single page can always be kmapped */
2469 if (n_pages == 1 && type == I915_MAP_WB)
2470 return kmap(sg_page(sgt->sgl));
2471
2472 if (n_pages > ARRAY_SIZE(stack_pages)) {
2473 /* Too big for stack -- allocate temporary array instead */
2474 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2475 if (!pages)
2476 return NULL;
2477 }
2478
2479 for_each_sgt_page(page, sgt_iter, sgt)
2480 pages[i++] = page;
2481
2482 /* Check that we have the expected number of pages */
2483 GEM_BUG_ON(i != n_pages);
2484
2485 switch (type) {
2486 case I915_MAP_WB:
2487 pgprot = PAGE_KERNEL;
2488 break;
2489 case I915_MAP_WC:
2490 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2491 break;
2492 }
2493 addr = vmap(pages, n_pages, 0, pgprot);
2494
2495 if (pages != stack_pages)
2496 drm_free_large(pages);
2497
2498 return addr;
2499 }
2500
2501 /* get, pin, and map the pages of the object into kernel space */
2502 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2503 enum i915_map_type type)
2504 {
2505 enum i915_map_type has_type;
2506 bool pinned;
2507 void *ptr;
2508 int ret;
2509
2510 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2511
2512 ret = mutex_lock_interruptible(&obj->mm.lock);
2513 if (ret)
2514 return ERR_PTR(ret);
2515
2516 pinned = true;
2517 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2518 if (unlikely(!obj->mm.pages)) {
2519 ret = ____i915_gem_object_get_pages(obj);
2520 if (ret)
2521 goto err_unlock;
2522
2523 smp_mb__before_atomic();
2524 }
2525 atomic_inc(&obj->mm.pages_pin_count);
2526 pinned = false;
2527 }
2528 GEM_BUG_ON(!obj->mm.pages);
2529
2530 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2531 if (ptr && has_type != type) {
2532 if (pinned) {
2533 ret = -EBUSY;
2534 goto err_unpin;
2535 }
2536
2537 if (is_vmalloc_addr(ptr))
2538 vunmap(ptr);
2539 else
2540 kunmap(kmap_to_page(ptr));
2541
2542 ptr = obj->mm.mapping = NULL;
2543 }
2544
2545 if (!ptr) {
2546 ptr = i915_gem_object_map(obj, type);
2547 if (!ptr) {
2548 ret = -ENOMEM;
2549 goto err_unpin;
2550 }
2551
2552 obj->mm.mapping = ptr_pack_bits(ptr, type);
2553 }
2554
2555 out_unlock:
2556 mutex_unlock(&obj->mm.lock);
2557 return ptr;
2558
2559 err_unpin:
2560 atomic_dec(&obj->mm.pages_pin_count);
2561 err_unlock:
2562 ptr = ERR_PTR(ret);
2563 goto out_unlock;
2564 }
2565
2566 static bool ban_context(const struct i915_gem_context *ctx)
2567 {
2568 return (i915_gem_context_is_bannable(ctx) &&
2569 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2570 }
2571
2572 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2573 {
2574 ctx->guilty_count++;
2575 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2576 if (ban_context(ctx))
2577 i915_gem_context_set_banned(ctx);
2578
2579 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2580 ctx->name, ctx->ban_score,
2581 yesno(i915_gem_context_is_banned(ctx)));
2582
2583 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2584 return;
2585
2586 ctx->file_priv->context_bans++;
2587 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2588 ctx->name, ctx->file_priv->context_bans);
2589 }
2590
2591 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2592 {
2593 ctx->active_count++;
2594 }
2595
2596 struct drm_i915_gem_request *
2597 i915_gem_find_active_request(struct intel_engine_cs *engine)
2598 {
2599 struct drm_i915_gem_request *request;
2600
2601 /* We are called by the error capture and reset at a random
2602 * point in time. In particular, note that neither is crucially
2603 * ordered with an interrupt. After a hang, the GPU is dead and we
2604 * assume that no more writes can happen (we waited long enough for
2605 * all writes that were in transaction to be flushed) - adding an
2606 * extra delay for a recent interrupt is pointless. Hence, we do
2607 * not need an engine->irq_seqno_barrier() before the seqno reads.
2608 */
2609 list_for_each_entry(request, &engine->timeline->requests, link) {
2610 if (__i915_gem_request_completed(request))
2611 continue;
2612
2613 GEM_BUG_ON(request->engine != engine);
2614 return request;
2615 }
2616
2617 return NULL;
2618 }
2619
2620 static bool engine_stalled(struct intel_engine_cs *engine)
2621 {
2622 if (!engine->hangcheck.stalled)
2623 return false;
2624
2625 /* Check for possible seqno movement after hang declaration */
2626 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2627 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2628 return false;
2629 }
2630
2631 return true;
2632 }
2633
2634 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2635 {
2636 struct intel_engine_cs *engine;
2637 enum intel_engine_id id;
2638 int err = 0;
2639
2640 /* Ensure irq handler finishes, and not run again. */
2641 for_each_engine(engine, dev_priv, id) {
2642 struct drm_i915_gem_request *request;
2643
2644 tasklet_kill(&engine->irq_tasklet);
2645
2646 if (engine_stalled(engine)) {
2647 request = i915_gem_find_active_request(engine);
2648 if (request && request->fence.error == -EIO)
2649 err = -EIO; /* Previous reset failed! */
2650 }
2651 }
2652
2653 i915_gem_revoke_fences(dev_priv);
2654
2655 return err;
2656 }
2657
2658 static void skip_request(struct drm_i915_gem_request *request)
2659 {
2660 void *vaddr = request->ring->vaddr;
2661 u32 head;
2662
2663 /* As this request likely depends on state from the lost
2664 * context, clear out all the user operations leaving the
2665 * breadcrumb at the end (so we get the fence notifications).
2666 */
2667 head = request->head;
2668 if (request->postfix < head) {
2669 memset(vaddr + head, 0, request->ring->size - head);
2670 head = 0;
2671 }
2672 memset(vaddr + head, 0, request->postfix - head);
2673
2674 dma_fence_set_error(&request->fence, -EIO);
2675 }
2676
2677 static void engine_skip_context(struct drm_i915_gem_request *request)
2678 {
2679 struct intel_engine_cs *engine = request->engine;
2680 struct i915_gem_context *hung_ctx = request->ctx;
2681 struct intel_timeline *timeline;
2682 unsigned long flags;
2683
2684 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2685
2686 spin_lock_irqsave(&engine->timeline->lock, flags);
2687 spin_lock(&timeline->lock);
2688
2689 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2690 if (request->ctx == hung_ctx)
2691 skip_request(request);
2692
2693 list_for_each_entry(request, &timeline->requests, link)
2694 skip_request(request);
2695
2696 spin_unlock(&timeline->lock);
2697 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2698 }
2699
2700 /* Returns true if the request was guilty of hang */
2701 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2702 {
2703 /* Read once and return the resolution */
2704 const bool guilty = engine_stalled(request->engine);
2705
2706 /* The guilty request will get skipped on a hung engine.
2707 *
2708 * Users of client default contexts do not rely on logical
2709 * state preserved between batches so it is safe to execute
2710 * queued requests following the hang. Non default contexts
2711 * rely on preserved state, so skipping a batch loses the
2712 * evolution of the state and it needs to be considered corrupted.
2713 * Executing more queued batches on top of corrupted state is
2714 * risky. But we take the risk by trying to advance through
2715 * the queued requests in order to make the client behaviour
2716 * more predictable around resets, by not throwing away random
2717 * amount of batches it has prepared for execution. Sophisticated
2718 * clients can use gem_reset_stats_ioctl and dma fence status
2719 * (exported via sync_file info ioctl on explicit fences) to observe
2720 * when it loses the context state and should rebuild accordingly.
2721 *
2722 * The context ban, and ultimately the client ban, mechanism are safety
2723 * valves if client submission ends up resulting in nothing more than
2724 * subsequent hangs.
2725 */
2726
2727 if (guilty) {
2728 i915_gem_context_mark_guilty(request->ctx);
2729 skip_request(request);
2730 } else {
2731 i915_gem_context_mark_innocent(request->ctx);
2732 dma_fence_set_error(&request->fence, -EAGAIN);
2733 }
2734
2735 return guilty;
2736 }
2737
2738 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2739 {
2740 struct drm_i915_gem_request *request;
2741
2742 if (engine->irq_seqno_barrier)
2743 engine->irq_seqno_barrier(engine);
2744
2745 request = i915_gem_find_active_request(engine);
2746 if (request && i915_gem_reset_request(request)) {
2747 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2748 engine->name, request->global_seqno);
2749
2750 /* If this context is now banned, skip all pending requests. */
2751 if (i915_gem_context_is_banned(request->ctx))
2752 engine_skip_context(request);
2753 }
2754
2755 /* Setup the CS to resume from the breadcrumb of the hung request */
2756 engine->reset_hw(engine, request);
2757 }
2758
2759 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2760 {
2761 struct intel_engine_cs *engine;
2762 enum intel_engine_id id;
2763
2764 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2765
2766 i915_gem_retire_requests(dev_priv);
2767
2768 for_each_engine(engine, dev_priv, id)
2769 i915_gem_reset_engine(engine);
2770
2771 i915_gem_restore_fences(dev_priv);
2772
2773 if (dev_priv->gt.awake) {
2774 intel_sanitize_gt_powersave(dev_priv);
2775 intel_enable_gt_powersave(dev_priv);
2776 if (INTEL_GEN(dev_priv) >= 6)
2777 gen6_rps_busy(dev_priv);
2778 }
2779 }
2780
2781 static void nop_submit_request(struct drm_i915_gem_request *request)
2782 {
2783 dma_fence_set_error(&request->fence, -EIO);
2784 i915_gem_request_submit(request);
2785 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2786 }
2787
2788 static void engine_set_wedged(struct intel_engine_cs *engine)
2789 {
2790 struct drm_i915_gem_request *request;
2791 unsigned long flags;
2792
2793 /* We need to be sure that no thread is running the old callback as
2794 * we install the nop handler (otherwise we would submit a request
2795 * to hardware that will never complete). In order to prevent this
2796 * race, we wait until the machine is idle before making the swap
2797 * (using stop_machine()).
2798 */
2799 engine->submit_request = nop_submit_request;
2800
2801 /* Mark all executing requests as skipped */
2802 spin_lock_irqsave(&engine->timeline->lock, flags);
2803 list_for_each_entry(request, &engine->timeline->requests, link)
2804 dma_fence_set_error(&request->fence, -EIO);
2805 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2806
2807 /* Mark all pending requests as complete so that any concurrent
2808 * (lockless) lookup doesn't try and wait upon the request as we
2809 * reset it.
2810 */
2811 intel_engine_init_global_seqno(engine,
2812 intel_engine_last_submit(engine));
2813
2814 /*
2815 * Clear the execlists queue up before freeing the requests, as those
2816 * are the ones that keep the context and ringbuffer backing objects
2817 * pinned in place.
2818 */
2819
2820 if (i915.enable_execlists) {
2821 unsigned long flags;
2822
2823 spin_lock_irqsave(&engine->timeline->lock, flags);
2824
2825 i915_gem_request_put(engine->execlist_port[0].request);
2826 i915_gem_request_put(engine->execlist_port[1].request);
2827 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2828 engine->execlist_queue = RB_ROOT;
2829 engine->execlist_first = NULL;
2830
2831 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2832 }
2833 }
2834
2835 static int __i915_gem_set_wedged_BKL(void *data)
2836 {
2837 struct drm_i915_private *i915 = data;
2838 struct intel_engine_cs *engine;
2839 enum intel_engine_id id;
2840
2841 for_each_engine(engine, i915, id)
2842 engine_set_wedged(engine);
2843
2844 return 0;
2845 }
2846
2847 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2848 {
2849 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2850 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2851
2852 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2853
2854 i915_gem_context_lost(dev_priv);
2855 i915_gem_retire_requests(dev_priv);
2856
2857 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2858 }
2859
2860 static void
2861 i915_gem_retire_work_handler(struct work_struct *work)
2862 {
2863 struct drm_i915_private *dev_priv =
2864 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2865 struct drm_device *dev = &dev_priv->drm;
2866
2867 /* Come back later if the device is busy... */
2868 if (mutex_trylock(&dev->struct_mutex)) {
2869 i915_gem_retire_requests(dev_priv);
2870 mutex_unlock(&dev->struct_mutex);
2871 }
2872
2873 /* Keep the retire handler running until we are finally idle.
2874 * We do not need to do this test under locking as in the worst-case
2875 * we queue the retire worker once too often.
2876 */
2877 if (READ_ONCE(dev_priv->gt.awake)) {
2878 i915_queue_hangcheck(dev_priv);
2879 queue_delayed_work(dev_priv->wq,
2880 &dev_priv->gt.retire_work,
2881 round_jiffies_up_relative(HZ));
2882 }
2883 }
2884
2885 static void
2886 i915_gem_idle_work_handler(struct work_struct *work)
2887 {
2888 struct drm_i915_private *dev_priv =
2889 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2890 struct drm_device *dev = &dev_priv->drm;
2891 struct intel_engine_cs *engine;
2892 enum intel_engine_id id;
2893 bool rearm_hangcheck;
2894
2895 if (!READ_ONCE(dev_priv->gt.awake))
2896 return;
2897
2898 /*
2899 * Wait for last execlists context complete, but bail out in case a
2900 * new request is submitted.
2901 */
2902 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2903 intel_execlists_idle(dev_priv), 10);
2904
2905 if (READ_ONCE(dev_priv->gt.active_requests))
2906 return;
2907
2908 rearm_hangcheck =
2909 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2910
2911 if (!mutex_trylock(&dev->struct_mutex)) {
2912 /* Currently busy, come back later */
2913 mod_delayed_work(dev_priv->wq,
2914 &dev_priv->gt.idle_work,
2915 msecs_to_jiffies(50));
2916 goto out_rearm;
2917 }
2918
2919 /*
2920 * New request retired after this work handler started, extend active
2921 * period until next instance of the work.
2922 */
2923 if (work_pending(work))
2924 goto out_unlock;
2925
2926 if (dev_priv->gt.active_requests)
2927 goto out_unlock;
2928
2929 if (wait_for(intel_execlists_idle(dev_priv), 10))
2930 DRM_ERROR("Timeout waiting for engines to idle\n");
2931
2932 for_each_engine(engine, dev_priv, id)
2933 i915_gem_batch_pool_fini(&engine->batch_pool);
2934
2935 GEM_BUG_ON(!dev_priv->gt.awake);
2936 dev_priv->gt.awake = false;
2937 rearm_hangcheck = false;
2938
2939 if (INTEL_GEN(dev_priv) >= 6)
2940 gen6_rps_idle(dev_priv);
2941 intel_runtime_pm_put(dev_priv);
2942 out_unlock:
2943 mutex_unlock(&dev->struct_mutex);
2944
2945 out_rearm:
2946 if (rearm_hangcheck) {
2947 GEM_BUG_ON(!dev_priv->gt.awake);
2948 i915_queue_hangcheck(dev_priv);
2949 }
2950 }
2951
2952 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2953 {
2954 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2955 struct drm_i915_file_private *fpriv = file->driver_priv;
2956 struct i915_vma *vma, *vn;
2957
2958 mutex_lock(&obj->base.dev->struct_mutex);
2959 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2960 if (vma->vm->file == fpriv)
2961 i915_vma_close(vma);
2962
2963 if (i915_gem_object_is_active(obj) &&
2964 !i915_gem_object_has_active_reference(obj)) {
2965 i915_gem_object_set_active_reference(obj);
2966 i915_gem_object_get(obj);
2967 }
2968 mutex_unlock(&obj->base.dev->struct_mutex);
2969 }
2970
2971 static unsigned long to_wait_timeout(s64 timeout_ns)
2972 {
2973 if (timeout_ns < 0)
2974 return MAX_SCHEDULE_TIMEOUT;
2975
2976 if (timeout_ns == 0)
2977 return 0;
2978
2979 return nsecs_to_jiffies_timeout(timeout_ns);
2980 }
2981
2982 /**
2983 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2984 * @dev: drm device pointer
2985 * @data: ioctl data blob
2986 * @file: drm file pointer
2987 *
2988 * Returns 0 if successful, else an error is returned with the remaining time in
2989 * the timeout parameter.
2990 * -ETIME: object is still busy after timeout
2991 * -ERESTARTSYS: signal interrupted the wait
2992 * -ENONENT: object doesn't exist
2993 * Also possible, but rare:
2994 * -EAGAIN: GPU wedged
2995 * -ENOMEM: damn
2996 * -ENODEV: Internal IRQ fail
2997 * -E?: The add request failed
2998 *
2999 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3000 * non-zero timeout parameter the wait ioctl will wait for the given number of
3001 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3002 * without holding struct_mutex the object may become re-busied before this
3003 * function completes. A similar but shorter * race condition exists in the busy
3004 * ioctl
3005 */
3006 int
3007 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3008 {
3009 struct drm_i915_gem_wait *args = data;
3010 struct drm_i915_gem_object *obj;
3011 ktime_t start;
3012 long ret;
3013
3014 if (args->flags != 0)
3015 return -EINVAL;
3016
3017 obj = i915_gem_object_lookup(file, args->bo_handle);
3018 if (!obj)
3019 return -ENOENT;
3020
3021 start = ktime_get();
3022
3023 ret = i915_gem_object_wait(obj,
3024 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3025 to_wait_timeout(args->timeout_ns),
3026 to_rps_client(file));
3027
3028 if (args->timeout_ns > 0) {
3029 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3030 if (args->timeout_ns < 0)
3031 args->timeout_ns = 0;
3032 }
3033
3034 i915_gem_object_put(obj);
3035 return ret;
3036 }
3037
3038 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3039 {
3040 int ret, i;
3041
3042 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3043 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3044 if (ret)
3045 return ret;
3046 }
3047
3048 return 0;
3049 }
3050
3051 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3052 {
3053 int ret;
3054
3055 if (flags & I915_WAIT_LOCKED) {
3056 struct i915_gem_timeline *tl;
3057
3058 lockdep_assert_held(&i915->drm.struct_mutex);
3059
3060 list_for_each_entry(tl, &i915->gt.timelines, link) {
3061 ret = wait_for_timeline(tl, flags);
3062 if (ret)
3063 return ret;
3064 }
3065 } else {
3066 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3067 if (ret)
3068 return ret;
3069 }
3070
3071 return 0;
3072 }
3073
3074 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3075 bool force)
3076 {
3077 /* If we don't have a page list set up, then we're not pinned
3078 * to GPU, and we can ignore the cache flush because it'll happen
3079 * again at bind time.
3080 */
3081 if (!obj->mm.pages)
3082 return;
3083
3084 /*
3085 * Stolen memory is always coherent with the GPU as it is explicitly
3086 * marked as wc by the system, or the system is cache-coherent.
3087 */
3088 if (obj->stolen || obj->phys_handle)
3089 return;
3090
3091 /* If the GPU is snooping the contents of the CPU cache,
3092 * we do not need to manually clear the CPU cache lines. However,
3093 * the caches are only snooped when the render cache is
3094 * flushed/invalidated. As we always have to emit invalidations
3095 * and flushes when moving into and out of the RENDER domain, correct
3096 * snooping behaviour occurs naturally as the result of our domain
3097 * tracking.
3098 */
3099 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3100 obj->cache_dirty = true;
3101 return;
3102 }
3103
3104 trace_i915_gem_object_clflush(obj);
3105 drm_clflush_sg(obj->mm.pages);
3106 obj->cache_dirty = false;
3107 }
3108
3109 /** Flushes the GTT write domain for the object if it's dirty. */
3110 static void
3111 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3112 {
3113 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3114
3115 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3116 return;
3117
3118 /* No actual flushing is required for the GTT write domain. Writes
3119 * to it "immediately" go to main memory as far as we know, so there's
3120 * no chipset flush. It also doesn't land in render cache.
3121 *
3122 * However, we do have to enforce the order so that all writes through
3123 * the GTT land before any writes to the device, such as updates to
3124 * the GATT itself.
3125 *
3126 * We also have to wait a bit for the writes to land from the GTT.
3127 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3128 * timing. This issue has only been observed when switching quickly
3129 * between GTT writes and CPU reads from inside the kernel on recent hw,
3130 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3131 * system agents we cannot reproduce this behaviour).
3132 */
3133 wmb();
3134 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3135 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3136
3137 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3138
3139 obj->base.write_domain = 0;
3140 trace_i915_gem_object_change_domain(obj,
3141 obj->base.read_domains,
3142 I915_GEM_DOMAIN_GTT);
3143 }
3144
3145 /** Flushes the CPU write domain for the object if it's dirty. */
3146 static void
3147 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3148 {
3149 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3150 return;
3151
3152 i915_gem_clflush_object(obj, obj->pin_display);
3153 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3154
3155 obj->base.write_domain = 0;
3156 trace_i915_gem_object_change_domain(obj,
3157 obj->base.read_domains,
3158 I915_GEM_DOMAIN_CPU);
3159 }
3160
3161 /**
3162 * Moves a single object to the GTT read, and possibly write domain.
3163 * @obj: object to act on
3164 * @write: ask for write access or read only
3165 *
3166 * This function returns when the move is complete, including waiting on
3167 * flushes to occur.
3168 */
3169 int
3170 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3171 {
3172 uint32_t old_write_domain, old_read_domains;
3173 int ret;
3174
3175 lockdep_assert_held(&obj->base.dev->struct_mutex);
3176
3177 ret = i915_gem_object_wait(obj,
3178 I915_WAIT_INTERRUPTIBLE |
3179 I915_WAIT_LOCKED |
3180 (write ? I915_WAIT_ALL : 0),
3181 MAX_SCHEDULE_TIMEOUT,
3182 NULL);
3183 if (ret)
3184 return ret;
3185
3186 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3187 return 0;
3188
3189 /* Flush and acquire obj->pages so that we are coherent through
3190 * direct access in memory with previous cached writes through
3191 * shmemfs and that our cache domain tracking remains valid.
3192 * For example, if the obj->filp was moved to swap without us
3193 * being notified and releasing the pages, we would mistakenly
3194 * continue to assume that the obj remained out of the CPU cached
3195 * domain.
3196 */
3197 ret = i915_gem_object_pin_pages(obj);
3198 if (ret)
3199 return ret;
3200
3201 i915_gem_object_flush_cpu_write_domain(obj);
3202
3203 /* Serialise direct access to this object with the barriers for
3204 * coherent writes from the GPU, by effectively invalidating the
3205 * GTT domain upon first access.
3206 */
3207 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3208 mb();
3209
3210 old_write_domain = obj->base.write_domain;
3211 old_read_domains = obj->base.read_domains;
3212
3213 /* It should now be out of any other write domains, and we can update
3214 * the domain values for our changes.
3215 */
3216 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3217 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3218 if (write) {
3219 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3220 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3221 obj->mm.dirty = true;
3222 }
3223
3224 trace_i915_gem_object_change_domain(obj,
3225 old_read_domains,
3226 old_write_domain);
3227
3228 i915_gem_object_unpin_pages(obj);
3229 return 0;
3230 }
3231
3232 /**
3233 * Changes the cache-level of an object across all VMA.
3234 * @obj: object to act on
3235 * @cache_level: new cache level to set for the object
3236 *
3237 * After this function returns, the object will be in the new cache-level
3238 * across all GTT and the contents of the backing storage will be coherent,
3239 * with respect to the new cache-level. In order to keep the backing storage
3240 * coherent for all users, we only allow a single cache level to be set
3241 * globally on the object and prevent it from being changed whilst the
3242 * hardware is reading from the object. That is if the object is currently
3243 * on the scanout it will be set to uncached (or equivalent display
3244 * cache coherency) and all non-MOCS GPU access will also be uncached so
3245 * that all direct access to the scanout remains coherent.
3246 */
3247 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3248 enum i915_cache_level cache_level)
3249 {
3250 struct i915_vma *vma;
3251 int ret;
3252
3253 lockdep_assert_held(&obj->base.dev->struct_mutex);
3254
3255 if (obj->cache_level == cache_level)
3256 return 0;
3257
3258 /* Inspect the list of currently bound VMA and unbind any that would
3259 * be invalid given the new cache-level. This is principally to
3260 * catch the issue of the CS prefetch crossing page boundaries and
3261 * reading an invalid PTE on older architectures.
3262 */
3263 restart:
3264 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3265 if (!drm_mm_node_allocated(&vma->node))
3266 continue;
3267
3268 if (i915_vma_is_pinned(vma)) {
3269 DRM_DEBUG("can not change the cache level of pinned objects\n");
3270 return -EBUSY;
3271 }
3272
3273 if (i915_gem_valid_gtt_space(vma, cache_level))
3274 continue;
3275
3276 ret = i915_vma_unbind(vma);
3277 if (ret)
3278 return ret;
3279
3280 /* As unbinding may affect other elements in the
3281 * obj->vma_list (due to side-effects from retiring
3282 * an active vma), play safe and restart the iterator.
3283 */
3284 goto restart;
3285 }
3286
3287 /* We can reuse the existing drm_mm nodes but need to change the
3288 * cache-level on the PTE. We could simply unbind them all and
3289 * rebind with the correct cache-level on next use. However since
3290 * we already have a valid slot, dma mapping, pages etc, we may as
3291 * rewrite the PTE in the belief that doing so tramples upon less
3292 * state and so involves less work.
3293 */
3294 if (obj->bind_count) {
3295 /* Before we change the PTE, the GPU must not be accessing it.
3296 * If we wait upon the object, we know that all the bound
3297 * VMA are no longer active.
3298 */
3299 ret = i915_gem_object_wait(obj,
3300 I915_WAIT_INTERRUPTIBLE |
3301 I915_WAIT_LOCKED |
3302 I915_WAIT_ALL,
3303 MAX_SCHEDULE_TIMEOUT,
3304 NULL);
3305 if (ret)
3306 return ret;
3307
3308 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3309 cache_level != I915_CACHE_NONE) {
3310 /* Access to snoopable pages through the GTT is
3311 * incoherent and on some machines causes a hard
3312 * lockup. Relinquish the CPU mmaping to force
3313 * userspace to refault in the pages and we can
3314 * then double check if the GTT mapping is still
3315 * valid for that pointer access.
3316 */
3317 i915_gem_release_mmap(obj);
3318
3319 /* As we no longer need a fence for GTT access,
3320 * we can relinquish it now (and so prevent having
3321 * to steal a fence from someone else on the next
3322 * fence request). Note GPU activity would have
3323 * dropped the fence as all snoopable access is
3324 * supposed to be linear.
3325 */
3326 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3327 ret = i915_vma_put_fence(vma);
3328 if (ret)
3329 return ret;
3330 }
3331 } else {
3332 /* We either have incoherent backing store and
3333 * so no GTT access or the architecture is fully
3334 * coherent. In such cases, existing GTT mmaps
3335 * ignore the cache bit in the PTE and we can
3336 * rewrite it without confusing the GPU or having
3337 * to force userspace to fault back in its mmaps.
3338 */
3339 }
3340
3341 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3342 if (!drm_mm_node_allocated(&vma->node))
3343 continue;
3344
3345 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3346 if (ret)
3347 return ret;
3348 }
3349 }
3350
3351 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3352 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3353 obj->cache_dirty = true;
3354
3355 list_for_each_entry(vma, &obj->vma_list, obj_link)
3356 vma->node.color = cache_level;
3357 obj->cache_level = cache_level;
3358
3359 return 0;
3360 }
3361
3362 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3363 struct drm_file *file)
3364 {
3365 struct drm_i915_gem_caching *args = data;
3366 struct drm_i915_gem_object *obj;
3367 int err = 0;
3368
3369 rcu_read_lock();
3370 obj = i915_gem_object_lookup_rcu(file, args->handle);
3371 if (!obj) {
3372 err = -ENOENT;
3373 goto out;
3374 }
3375
3376 switch (obj->cache_level) {
3377 case I915_CACHE_LLC:
3378 case I915_CACHE_L3_LLC:
3379 args->caching = I915_CACHING_CACHED;
3380 break;
3381
3382 case I915_CACHE_WT:
3383 args->caching = I915_CACHING_DISPLAY;
3384 break;
3385
3386 default:
3387 args->caching = I915_CACHING_NONE;
3388 break;
3389 }
3390 out:
3391 rcu_read_unlock();
3392 return err;
3393 }
3394
3395 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3396 struct drm_file *file)
3397 {
3398 struct drm_i915_private *i915 = to_i915(dev);
3399 struct drm_i915_gem_caching *args = data;
3400 struct drm_i915_gem_object *obj;
3401 enum i915_cache_level level;
3402 int ret = 0;
3403
3404 switch (args->caching) {
3405 case I915_CACHING_NONE:
3406 level = I915_CACHE_NONE;
3407 break;
3408 case I915_CACHING_CACHED:
3409 /*
3410 * Due to a HW issue on BXT A stepping, GPU stores via a
3411 * snooped mapping may leave stale data in a corresponding CPU
3412 * cacheline, whereas normally such cachelines would get
3413 * invalidated.
3414 */
3415 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3416 return -ENODEV;
3417
3418 level = I915_CACHE_LLC;
3419 break;
3420 case I915_CACHING_DISPLAY:
3421 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3422 break;
3423 default:
3424 return -EINVAL;
3425 }
3426
3427 obj = i915_gem_object_lookup(file, args->handle);
3428 if (!obj)
3429 return -ENOENT;
3430
3431 if (obj->cache_level == level)
3432 goto out;
3433
3434 ret = i915_gem_object_wait(obj,
3435 I915_WAIT_INTERRUPTIBLE,
3436 MAX_SCHEDULE_TIMEOUT,
3437 to_rps_client(file));
3438 if (ret)
3439 goto out;
3440
3441 ret = i915_mutex_lock_interruptible(dev);
3442 if (ret)
3443 goto out;
3444
3445 ret = i915_gem_object_set_cache_level(obj, level);
3446 mutex_unlock(&dev->struct_mutex);
3447
3448 out:
3449 i915_gem_object_put(obj);
3450 return ret;
3451 }
3452
3453 /*
3454 * Prepare buffer for display plane (scanout, cursors, etc).
3455 * Can be called from an uninterruptible phase (modesetting) and allows
3456 * any flushes to be pipelined (for pageflips).
3457 */
3458 struct i915_vma *
3459 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3460 u32 alignment,
3461 const struct i915_ggtt_view *view)
3462 {
3463 struct i915_vma *vma;
3464 u32 old_read_domains, old_write_domain;
3465 int ret;
3466
3467 lockdep_assert_held(&obj->base.dev->struct_mutex);
3468
3469 /* Mark the pin_display early so that we account for the
3470 * display coherency whilst setting up the cache domains.
3471 */
3472 obj->pin_display++;
3473
3474 /* The display engine is not coherent with the LLC cache on gen6. As
3475 * a result, we make sure that the pinning that is about to occur is
3476 * done with uncached PTEs. This is lowest common denominator for all
3477 * chipsets.
3478 *
3479 * However for gen6+, we could do better by using the GFDT bit instead
3480 * of uncaching, which would allow us to flush all the LLC-cached data
3481 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3482 */
3483 ret = i915_gem_object_set_cache_level(obj,
3484 HAS_WT(to_i915(obj->base.dev)) ?
3485 I915_CACHE_WT : I915_CACHE_NONE);
3486 if (ret) {
3487 vma = ERR_PTR(ret);
3488 goto err_unpin_display;
3489 }
3490
3491 /* As the user may map the buffer once pinned in the display plane
3492 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 * always use map_and_fenceable for all scanout buffers. However,
3494 * it may simply be too big to fit into mappable, in which case
3495 * put it anyway and hope that userspace can cope (but always first
3496 * try to preserve the existing ABI).
3497 */
3498 vma = ERR_PTR(-ENOSPC);
3499 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3500 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3501 PIN_MAPPABLE | PIN_NONBLOCK);
3502 if (IS_ERR(vma)) {
3503 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3504 unsigned int flags;
3505
3506 /* Valleyview is definitely limited to scanning out the first
3507 * 512MiB. Lets presume this behaviour was inherited from the
3508 * g4x display engine and that all earlier gen are similarly
3509 * limited. Testing suggests that it is a little more
3510 * complicated than this. For example, Cherryview appears quite
3511 * happy to scanout from anywhere within its global aperture.
3512 */
3513 flags = 0;
3514 if (HAS_GMCH_DISPLAY(i915))
3515 flags = PIN_MAPPABLE;
3516 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3517 }
3518 if (IS_ERR(vma))
3519 goto err_unpin_display;
3520
3521 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3522
3523 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3524 if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3525 i915_gem_clflush_object(obj, true);
3526 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3527 }
3528
3529 old_write_domain = obj->base.write_domain;
3530 old_read_domains = obj->base.read_domains;
3531
3532 /* It should now be out of any other write domains, and we can update
3533 * the domain values for our changes.
3534 */
3535 obj->base.write_domain = 0;
3536 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3537
3538 trace_i915_gem_object_change_domain(obj,
3539 old_read_domains,
3540 old_write_domain);
3541
3542 return vma;
3543
3544 err_unpin_display:
3545 obj->pin_display--;
3546 return vma;
3547 }
3548
3549 void
3550 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3551 {
3552 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3553
3554 if (WARN_ON(vma->obj->pin_display == 0))
3555 return;
3556
3557 if (--vma->obj->pin_display == 0)
3558 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3559
3560 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3561 i915_gem_object_bump_inactive_ggtt(vma->obj);
3562
3563 i915_vma_unpin(vma);
3564 }
3565
3566 /**
3567 * Moves a single object to the CPU read, and possibly write domain.
3568 * @obj: object to act on
3569 * @write: requesting write or read-only access
3570 *
3571 * This function returns when the move is complete, including waiting on
3572 * flushes to occur.
3573 */
3574 int
3575 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3576 {
3577 uint32_t old_write_domain, old_read_domains;
3578 int ret;
3579
3580 lockdep_assert_held(&obj->base.dev->struct_mutex);
3581
3582 ret = i915_gem_object_wait(obj,
3583 I915_WAIT_INTERRUPTIBLE |
3584 I915_WAIT_LOCKED |
3585 (write ? I915_WAIT_ALL : 0),
3586 MAX_SCHEDULE_TIMEOUT,
3587 NULL);
3588 if (ret)
3589 return ret;
3590
3591 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3592 return 0;
3593
3594 i915_gem_object_flush_gtt_write_domain(obj);
3595
3596 old_write_domain = obj->base.write_domain;
3597 old_read_domains = obj->base.read_domains;
3598
3599 /* Flush the CPU cache if it's still invalid. */
3600 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3601 i915_gem_clflush_object(obj, false);
3602
3603 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3604 }
3605
3606 /* It should now be out of any other write domains, and we can update
3607 * the domain values for our changes.
3608 */
3609 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3610
3611 /* If we're writing through the CPU, then the GPU read domains will
3612 * need to be invalidated at next use.
3613 */
3614 if (write) {
3615 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3616 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3617 }
3618
3619 trace_i915_gem_object_change_domain(obj,
3620 old_read_domains,
3621 old_write_domain);
3622
3623 return 0;
3624 }
3625
3626 /* Throttle our rendering by waiting until the ring has completed our requests
3627 * emitted over 20 msec ago.
3628 *
3629 * Note that if we were to use the current jiffies each time around the loop,
3630 * we wouldn't escape the function with any frames outstanding if the time to
3631 * render a frame was over 20ms.
3632 *
3633 * This should get us reasonable parallelism between CPU and GPU but also
3634 * relatively low latency when blocking on a particular request to finish.
3635 */
3636 static int
3637 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3638 {
3639 struct drm_i915_private *dev_priv = to_i915(dev);
3640 struct drm_i915_file_private *file_priv = file->driver_priv;
3641 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3642 struct drm_i915_gem_request *request, *target = NULL;
3643 long ret;
3644
3645 /* ABI: return -EIO if already wedged */
3646 if (i915_terminally_wedged(&dev_priv->gpu_error))
3647 return -EIO;
3648
3649 spin_lock(&file_priv->mm.lock);
3650 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3651 if (time_after_eq(request->emitted_jiffies, recent_enough))
3652 break;
3653
3654 /*
3655 * Note that the request might not have been submitted yet.
3656 * In which case emitted_jiffies will be zero.
3657 */
3658 if (!request->emitted_jiffies)
3659 continue;
3660
3661 target = request;
3662 }
3663 if (target)
3664 i915_gem_request_get(target);
3665 spin_unlock(&file_priv->mm.lock);
3666
3667 if (target == NULL)
3668 return 0;
3669
3670 ret = i915_wait_request(target,
3671 I915_WAIT_INTERRUPTIBLE,
3672 MAX_SCHEDULE_TIMEOUT);
3673 i915_gem_request_put(target);
3674
3675 return ret < 0 ? ret : 0;
3676 }
3677
3678 struct i915_vma *
3679 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3680 const struct i915_ggtt_view *view,
3681 u64 size,
3682 u64 alignment,
3683 u64 flags)
3684 {
3685 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3686 struct i915_address_space *vm = &dev_priv->ggtt.base;
3687 struct i915_vma *vma;
3688 int ret;
3689
3690 lockdep_assert_held(&obj->base.dev->struct_mutex);
3691
3692 vma = i915_vma_instance(obj, vm, view);
3693 if (unlikely(IS_ERR(vma)))
3694 return vma;
3695
3696 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3697 if (flags & PIN_NONBLOCK &&
3698 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3699 return ERR_PTR(-ENOSPC);
3700
3701 if (flags & PIN_MAPPABLE) {
3702 /* If the required space is larger than the available
3703 * aperture, we will not able to find a slot for the
3704 * object and unbinding the object now will be in
3705 * vain. Worse, doing so may cause us to ping-pong
3706 * the object in and out of the Global GTT and
3707 * waste a lot of cycles under the mutex.
3708 */
3709 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3710 return ERR_PTR(-E2BIG);
3711
3712 /* If NONBLOCK is set the caller is optimistically
3713 * trying to cache the full object within the mappable
3714 * aperture, and *must* have a fallback in place for
3715 * situations where we cannot bind the object. We
3716 * can be a little more lax here and use the fallback
3717 * more often to avoid costly migrations of ourselves
3718 * and other objects within the aperture.
3719 *
3720 * Half-the-aperture is used as a simple heuristic.
3721 * More interesting would to do search for a free
3722 * block prior to making the commitment to unbind.
3723 * That caters for the self-harm case, and with a
3724 * little more heuristics (e.g. NOFAULT, NOEVICT)
3725 * we could try to minimise harm to others.
3726 */
3727 if (flags & PIN_NONBLOCK &&
3728 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3729 return ERR_PTR(-ENOSPC);
3730 }
3731
3732 WARN(i915_vma_is_pinned(vma),
3733 "bo is already pinned in ggtt with incorrect alignment:"
3734 " offset=%08x, req.alignment=%llx,"
3735 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3736 i915_ggtt_offset(vma), alignment,
3737 !!(flags & PIN_MAPPABLE),
3738 i915_vma_is_map_and_fenceable(vma));
3739 ret = i915_vma_unbind(vma);
3740 if (ret)
3741 return ERR_PTR(ret);
3742 }
3743
3744 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3745 if (ret)
3746 return ERR_PTR(ret);
3747
3748 return vma;
3749 }
3750
3751 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3752 {
3753 /* Note that we could alias engines in the execbuf API, but
3754 * that would be very unwise as it prevents userspace from
3755 * fine control over engine selection. Ahem.
3756 *
3757 * This should be something like EXEC_MAX_ENGINE instead of
3758 * I915_NUM_ENGINES.
3759 */
3760 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3761 return 0x10000 << id;
3762 }
3763
3764 static __always_inline unsigned int __busy_write_id(unsigned int id)
3765 {
3766 /* The uABI guarantees an active writer is also amongst the read
3767 * engines. This would be true if we accessed the activity tracking
3768 * under the lock, but as we perform the lookup of the object and
3769 * its activity locklessly we can not guarantee that the last_write
3770 * being active implies that we have set the same engine flag from
3771 * last_read - hence we always set both read and write busy for
3772 * last_write.
3773 */
3774 return id | __busy_read_flag(id);
3775 }
3776
3777 static __always_inline unsigned int
3778 __busy_set_if_active(const struct dma_fence *fence,
3779 unsigned int (*flag)(unsigned int id))
3780 {
3781 struct drm_i915_gem_request *rq;
3782
3783 /* We have to check the current hw status of the fence as the uABI
3784 * guarantees forward progress. We could rely on the idle worker
3785 * to eventually flush us, but to minimise latency just ask the
3786 * hardware.
3787 *
3788 * Note we only report on the status of native fences.
3789 */
3790 if (!dma_fence_is_i915(fence))
3791 return 0;
3792
3793 /* opencode to_request() in order to avoid const warnings */
3794 rq = container_of(fence, struct drm_i915_gem_request, fence);
3795 if (i915_gem_request_completed(rq))
3796 return 0;
3797
3798 return flag(rq->engine->exec_id);
3799 }
3800
3801 static __always_inline unsigned int
3802 busy_check_reader(const struct dma_fence *fence)
3803 {
3804 return __busy_set_if_active(fence, __busy_read_flag);
3805 }
3806
3807 static __always_inline unsigned int
3808 busy_check_writer(const struct dma_fence *fence)
3809 {
3810 if (!fence)
3811 return 0;
3812
3813 return __busy_set_if_active(fence, __busy_write_id);
3814 }
3815
3816 int
3817 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file)
3819 {
3820 struct drm_i915_gem_busy *args = data;
3821 struct drm_i915_gem_object *obj;
3822 struct reservation_object_list *list;
3823 unsigned int seq;
3824 int err;
3825
3826 err = -ENOENT;
3827 rcu_read_lock();
3828 obj = i915_gem_object_lookup_rcu(file, args->handle);
3829 if (!obj)
3830 goto out;
3831
3832 /* A discrepancy here is that we do not report the status of
3833 * non-i915 fences, i.e. even though we may report the object as idle,
3834 * a call to set-domain may still stall waiting for foreign rendering.
3835 * This also means that wait-ioctl may report an object as busy,
3836 * where busy-ioctl considers it idle.
3837 *
3838 * We trade the ability to warn of foreign fences to report on which
3839 * i915 engines are active for the object.
3840 *
3841 * Alternatively, we can trade that extra information on read/write
3842 * activity with
3843 * args->busy =
3844 * !reservation_object_test_signaled_rcu(obj->resv, true);
3845 * to report the overall busyness. This is what the wait-ioctl does.
3846 *
3847 */
3848 retry:
3849 seq = raw_read_seqcount(&obj->resv->seq);
3850
3851 /* Translate the exclusive fence to the READ *and* WRITE engine */
3852 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3853
3854 /* Translate shared fences to READ set of engines */
3855 list = rcu_dereference(obj->resv->fence);
3856 if (list) {
3857 unsigned int shared_count = list->shared_count, i;
3858
3859 for (i = 0; i < shared_count; ++i) {
3860 struct dma_fence *fence =
3861 rcu_dereference(list->shared[i]);
3862
3863 args->busy |= busy_check_reader(fence);
3864 }
3865 }
3866
3867 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3868 goto retry;
3869
3870 err = 0;
3871 out:
3872 rcu_read_unlock();
3873 return err;
3874 }
3875
3876 int
3877 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file_priv)
3879 {
3880 return i915_gem_ring_throttle(dev, file_priv);
3881 }
3882
3883 int
3884 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3885 struct drm_file *file_priv)
3886 {
3887 struct drm_i915_private *dev_priv = to_i915(dev);
3888 struct drm_i915_gem_madvise *args = data;
3889 struct drm_i915_gem_object *obj;
3890 int err;
3891
3892 switch (args->madv) {
3893 case I915_MADV_DONTNEED:
3894 case I915_MADV_WILLNEED:
3895 break;
3896 default:
3897 return -EINVAL;
3898 }
3899
3900 obj = i915_gem_object_lookup(file_priv, args->handle);
3901 if (!obj)
3902 return -ENOENT;
3903
3904 err = mutex_lock_interruptible(&obj->mm.lock);
3905 if (err)
3906 goto out;
3907
3908 if (obj->mm.pages &&
3909 i915_gem_object_is_tiled(obj) &&
3910 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3911 if (obj->mm.madv == I915_MADV_WILLNEED) {
3912 GEM_BUG_ON(!obj->mm.quirked);
3913 __i915_gem_object_unpin_pages(obj);
3914 obj->mm.quirked = false;
3915 }
3916 if (args->madv == I915_MADV_WILLNEED) {
3917 GEM_BUG_ON(obj->mm.quirked);
3918 __i915_gem_object_pin_pages(obj);
3919 obj->mm.quirked = true;
3920 }
3921 }
3922
3923 if (obj->mm.madv != __I915_MADV_PURGED)
3924 obj->mm.madv = args->madv;
3925
3926 /* if the object is no longer attached, discard its backing storage */
3927 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3928 i915_gem_object_truncate(obj);
3929
3930 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3931 mutex_unlock(&obj->mm.lock);
3932
3933 out:
3934 i915_gem_object_put(obj);
3935 return err;
3936 }
3937
3938 static void
3939 frontbuffer_retire(struct i915_gem_active *active,
3940 struct drm_i915_gem_request *request)
3941 {
3942 struct drm_i915_gem_object *obj =
3943 container_of(active, typeof(*obj), frontbuffer_write);
3944
3945 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3946 }
3947
3948 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3949 const struct drm_i915_gem_object_ops *ops)
3950 {
3951 mutex_init(&obj->mm.lock);
3952
3953 INIT_LIST_HEAD(&obj->global_link);
3954 INIT_LIST_HEAD(&obj->userfault_link);
3955 INIT_LIST_HEAD(&obj->obj_exec_link);
3956 INIT_LIST_HEAD(&obj->vma_list);
3957 INIT_LIST_HEAD(&obj->batch_pool_link);
3958
3959 obj->ops = ops;
3960
3961 reservation_object_init(&obj->__builtin_resv);
3962 obj->resv = &obj->__builtin_resv;
3963
3964 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3965 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3966
3967 obj->mm.madv = I915_MADV_WILLNEED;
3968 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3969 mutex_init(&obj->mm.get_page.lock);
3970
3971 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3972 }
3973
3974 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3975 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3976 I915_GEM_OBJECT_IS_SHRINKABLE,
3977 .get_pages = i915_gem_object_get_pages_gtt,
3978 .put_pages = i915_gem_object_put_pages_gtt,
3979 };
3980
3981 struct drm_i915_gem_object *
3982 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3983 {
3984 struct drm_i915_gem_object *obj;
3985 struct address_space *mapping;
3986 gfp_t mask;
3987 int ret;
3988
3989 /* There is a prevalence of the assumption that we fit the object's
3990 * page count inside a 32bit _signed_ variable. Let's document this and
3991 * catch if we ever need to fix it. In the meantime, if you do spot
3992 * such a local variable, please consider fixing!
3993 */
3994 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3995 return ERR_PTR(-E2BIG);
3996
3997 if (overflows_type(size, obj->base.size))
3998 return ERR_PTR(-E2BIG);
3999
4000 obj = i915_gem_object_alloc(dev_priv);
4001 if (obj == NULL)
4002 return ERR_PTR(-ENOMEM);
4003
4004 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4005 if (ret)
4006 goto fail;
4007
4008 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4009 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4010 /* 965gm cannot relocate objects above 4GiB. */
4011 mask &= ~__GFP_HIGHMEM;
4012 mask |= __GFP_DMA32;
4013 }
4014
4015 mapping = obj->base.filp->f_mapping;
4016 mapping_set_gfp_mask(mapping, mask);
4017
4018 i915_gem_object_init(obj, &i915_gem_object_ops);
4019
4020 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4021 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4022
4023 if (HAS_LLC(dev_priv)) {
4024 /* On some devices, we can have the GPU use the LLC (the CPU
4025 * cache) for about a 10% performance improvement
4026 * compared to uncached. Graphics requests other than
4027 * display scanout are coherent with the CPU in
4028 * accessing this cache. This means in this mode we
4029 * don't need to clflush on the CPU side, and on the
4030 * GPU side we only need to flush internal caches to
4031 * get data visible to the CPU.
4032 *
4033 * However, we maintain the display planes as UC, and so
4034 * need to rebind when first used as such.
4035 */
4036 obj->cache_level = I915_CACHE_LLC;
4037 } else
4038 obj->cache_level = I915_CACHE_NONE;
4039
4040 trace_i915_gem_object_create(obj);
4041
4042 return obj;
4043
4044 fail:
4045 i915_gem_object_free(obj);
4046 return ERR_PTR(ret);
4047 }
4048
4049 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4050 {
4051 /* If we are the last user of the backing storage (be it shmemfs
4052 * pages or stolen etc), we know that the pages are going to be
4053 * immediately released. In this case, we can then skip copying
4054 * back the contents from the GPU.
4055 */
4056
4057 if (obj->mm.madv != I915_MADV_WILLNEED)
4058 return false;
4059
4060 if (obj->base.filp == NULL)
4061 return true;
4062
4063 /* At first glance, this looks racy, but then again so would be
4064 * userspace racing mmap against close. However, the first external
4065 * reference to the filp can only be obtained through the
4066 * i915_gem_mmap_ioctl() which safeguards us against the user
4067 * acquiring such a reference whilst we are in the middle of
4068 * freeing the object.
4069 */
4070 return atomic_long_read(&obj->base.filp->f_count) == 1;
4071 }
4072
4073 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4074 struct llist_node *freed)
4075 {
4076 struct drm_i915_gem_object *obj, *on;
4077
4078 mutex_lock(&i915->drm.struct_mutex);
4079 intel_runtime_pm_get(i915);
4080 llist_for_each_entry(obj, freed, freed) {
4081 struct i915_vma *vma, *vn;
4082
4083 trace_i915_gem_object_destroy(obj);
4084
4085 GEM_BUG_ON(i915_gem_object_is_active(obj));
4086 list_for_each_entry_safe(vma, vn,
4087 &obj->vma_list, obj_link) {
4088 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4089 GEM_BUG_ON(i915_vma_is_active(vma));
4090 vma->flags &= ~I915_VMA_PIN_MASK;
4091 i915_vma_close(vma);
4092 }
4093 GEM_BUG_ON(!list_empty(&obj->vma_list));
4094 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4095
4096 list_del(&obj->global_link);
4097 }
4098 intel_runtime_pm_put(i915);
4099 mutex_unlock(&i915->drm.struct_mutex);
4100
4101 llist_for_each_entry_safe(obj, on, freed, freed) {
4102 GEM_BUG_ON(obj->bind_count);
4103 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4104
4105 if (obj->ops->release)
4106 obj->ops->release(obj);
4107
4108 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4109 atomic_set(&obj->mm.pages_pin_count, 0);
4110 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4111 GEM_BUG_ON(obj->mm.pages);
4112
4113 if (obj->base.import_attach)
4114 drm_prime_gem_destroy(&obj->base, NULL);
4115
4116 reservation_object_fini(&obj->__builtin_resv);
4117 drm_gem_object_release(&obj->base);
4118 i915_gem_info_remove_obj(i915, obj->base.size);
4119
4120 kfree(obj->bit_17);
4121 i915_gem_object_free(obj);
4122 }
4123 }
4124
4125 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4126 {
4127 struct llist_node *freed;
4128
4129 freed = llist_del_all(&i915->mm.free_list);
4130 if (unlikely(freed))
4131 __i915_gem_free_objects(i915, freed);
4132 }
4133
4134 static void __i915_gem_free_work(struct work_struct *work)
4135 {
4136 struct drm_i915_private *i915 =
4137 container_of(work, struct drm_i915_private, mm.free_work);
4138 struct llist_node *freed;
4139
4140 /* All file-owned VMA should have been released by this point through
4141 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4142 * However, the object may also be bound into the global GTT (e.g.
4143 * older GPUs without per-process support, or for direct access through
4144 * the GTT either for the user or for scanout). Those VMA still need to
4145 * unbound now.
4146 */
4147
4148 while ((freed = llist_del_all(&i915->mm.free_list)))
4149 __i915_gem_free_objects(i915, freed);
4150 }
4151
4152 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4153 {
4154 struct drm_i915_gem_object *obj =
4155 container_of(head, typeof(*obj), rcu);
4156 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4157
4158 /* We can't simply use call_rcu() from i915_gem_free_object()
4159 * as we need to block whilst unbinding, and the call_rcu
4160 * task may be called from softirq context. So we take a
4161 * detour through a worker.
4162 */
4163 if (llist_add(&obj->freed, &i915->mm.free_list))
4164 schedule_work(&i915->mm.free_work);
4165 }
4166
4167 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4168 {
4169 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4170
4171 if (obj->mm.quirked)
4172 __i915_gem_object_unpin_pages(obj);
4173
4174 if (discard_backing_storage(obj))
4175 obj->mm.madv = I915_MADV_DONTNEED;
4176
4177 /* Before we free the object, make sure any pure RCU-only
4178 * read-side critical sections are complete, e.g.
4179 * i915_gem_busy_ioctl(). For the corresponding synchronized
4180 * lookup see i915_gem_object_lookup_rcu().
4181 */
4182 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4183 }
4184
4185 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4186 {
4187 lockdep_assert_held(&obj->base.dev->struct_mutex);
4188
4189 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4190 if (i915_gem_object_is_active(obj))
4191 i915_gem_object_set_active_reference(obj);
4192 else
4193 i915_gem_object_put(obj);
4194 }
4195
4196 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4197 {
4198 struct intel_engine_cs *engine;
4199 enum intel_engine_id id;
4200
4201 for_each_engine(engine, dev_priv, id)
4202 GEM_BUG_ON(engine->last_retired_context &&
4203 !i915_gem_context_is_kernel(engine->last_retired_context));
4204 }
4205
4206 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4207 {
4208 struct drm_device *dev = &dev_priv->drm;
4209 int ret;
4210
4211 intel_suspend_gt_powersave(dev_priv);
4212
4213 mutex_lock(&dev->struct_mutex);
4214
4215 /* We have to flush all the executing contexts to main memory so
4216 * that they can saved in the hibernation image. To ensure the last
4217 * context image is coherent, we have to switch away from it. That
4218 * leaves the dev_priv->kernel_context still active when
4219 * we actually suspend, and its image in memory may not match the GPU
4220 * state. Fortunately, the kernel_context is disposable and we do
4221 * not rely on its state.
4222 */
4223 ret = i915_gem_switch_to_kernel_context(dev_priv);
4224 if (ret)
4225 goto err;
4226
4227 ret = i915_gem_wait_for_idle(dev_priv,
4228 I915_WAIT_INTERRUPTIBLE |
4229 I915_WAIT_LOCKED);
4230 if (ret)
4231 goto err;
4232
4233 i915_gem_retire_requests(dev_priv);
4234 GEM_BUG_ON(dev_priv->gt.active_requests);
4235
4236 assert_kernel_context_is_current(dev_priv);
4237 i915_gem_context_lost(dev_priv);
4238 mutex_unlock(&dev->struct_mutex);
4239
4240 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4241 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4242
4243 /* As the idle_work is rearming if it detects a race, play safe and
4244 * repeat the flush until it is definitely idle.
4245 */
4246 while (flush_delayed_work(&dev_priv->gt.idle_work))
4247 ;
4248
4249 i915_gem_drain_freed_objects(dev_priv);
4250
4251 /* Assert that we sucessfully flushed all the work and
4252 * reset the GPU back to its idle, low power state.
4253 */
4254 WARN_ON(dev_priv->gt.awake);
4255 WARN_ON(!intel_execlists_idle(dev_priv));
4256
4257 /*
4258 * Neither the BIOS, ourselves or any other kernel
4259 * expects the system to be in execlists mode on startup,
4260 * so we need to reset the GPU back to legacy mode. And the only
4261 * known way to disable logical contexts is through a GPU reset.
4262 *
4263 * So in order to leave the system in a known default configuration,
4264 * always reset the GPU upon unload and suspend. Afterwards we then
4265 * clean up the GEM state tracking, flushing off the requests and
4266 * leaving the system in a known idle state.
4267 *
4268 * Note that is of the upmost importance that the GPU is idle and
4269 * all stray writes are flushed *before* we dismantle the backing
4270 * storage for the pinned objects.
4271 *
4272 * However, since we are uncertain that resetting the GPU on older
4273 * machines is a good idea, we don't - just in case it leaves the
4274 * machine in an unusable condition.
4275 */
4276 if (HAS_HW_CONTEXTS(dev_priv)) {
4277 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4278 WARN_ON(reset && reset != -ENODEV);
4279 }
4280
4281 return 0;
4282
4283 err:
4284 mutex_unlock(&dev->struct_mutex);
4285 return ret;
4286 }
4287
4288 void i915_gem_resume(struct drm_i915_private *dev_priv)
4289 {
4290 struct drm_device *dev = &dev_priv->drm;
4291
4292 WARN_ON(dev_priv->gt.awake);
4293
4294 mutex_lock(&dev->struct_mutex);
4295 i915_gem_restore_gtt_mappings(dev_priv);
4296
4297 /* As we didn't flush the kernel context before suspend, we cannot
4298 * guarantee that the context image is complete. So let's just reset
4299 * it and start again.
4300 */
4301 dev_priv->gt.resume(dev_priv);
4302
4303 mutex_unlock(&dev->struct_mutex);
4304 }
4305
4306 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4307 {
4308 if (INTEL_GEN(dev_priv) < 5 ||
4309 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4310 return;
4311
4312 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4313 DISP_TILE_SURFACE_SWIZZLING);
4314
4315 if (IS_GEN5(dev_priv))
4316 return;
4317
4318 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4319 if (IS_GEN6(dev_priv))
4320 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4321 else if (IS_GEN7(dev_priv))
4322 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4323 else if (IS_GEN8(dev_priv))
4324 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4325 else
4326 BUG();
4327 }
4328
4329 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4330 {
4331 I915_WRITE(RING_CTL(base), 0);
4332 I915_WRITE(RING_HEAD(base), 0);
4333 I915_WRITE(RING_TAIL(base), 0);
4334 I915_WRITE(RING_START(base), 0);
4335 }
4336
4337 static void init_unused_rings(struct drm_i915_private *dev_priv)
4338 {
4339 if (IS_I830(dev_priv)) {
4340 init_unused_ring(dev_priv, PRB1_BASE);
4341 init_unused_ring(dev_priv, SRB0_BASE);
4342 init_unused_ring(dev_priv, SRB1_BASE);
4343 init_unused_ring(dev_priv, SRB2_BASE);
4344 init_unused_ring(dev_priv, SRB3_BASE);
4345 } else if (IS_GEN2(dev_priv)) {
4346 init_unused_ring(dev_priv, SRB0_BASE);
4347 init_unused_ring(dev_priv, SRB1_BASE);
4348 } else if (IS_GEN3(dev_priv)) {
4349 init_unused_ring(dev_priv, PRB1_BASE);
4350 init_unused_ring(dev_priv, PRB2_BASE);
4351 }
4352 }
4353
4354 int
4355 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4356 {
4357 struct intel_engine_cs *engine;
4358 enum intel_engine_id id;
4359 int ret;
4360
4361 dev_priv->gt.last_init_time = ktime_get();
4362
4363 /* Double layer security blanket, see i915_gem_init() */
4364 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4365
4366 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4367 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4368
4369 if (IS_HASWELL(dev_priv))
4370 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4371 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4372
4373 if (HAS_PCH_NOP(dev_priv)) {
4374 if (IS_IVYBRIDGE(dev_priv)) {
4375 u32 temp = I915_READ(GEN7_MSG_CTL);
4376 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4377 I915_WRITE(GEN7_MSG_CTL, temp);
4378 } else if (INTEL_GEN(dev_priv) >= 7) {
4379 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4380 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4381 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4382 }
4383 }
4384
4385 i915_gem_init_swizzling(dev_priv);
4386
4387 /*
4388 * At least 830 can leave some of the unused rings
4389 * "active" (ie. head != tail) after resume which
4390 * will prevent c3 entry. Makes sure all unused rings
4391 * are totally idle.
4392 */
4393 init_unused_rings(dev_priv);
4394
4395 BUG_ON(!dev_priv->kernel_context);
4396
4397 ret = i915_ppgtt_init_hw(dev_priv);
4398 if (ret) {
4399 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4400 goto out;
4401 }
4402
4403 /* Need to do basic initialisation of all rings first: */
4404 for_each_engine(engine, dev_priv, id) {
4405 ret = engine->init_hw(engine);
4406 if (ret)
4407 goto out;
4408 }
4409
4410 intel_mocs_init_l3cc_table(dev_priv);
4411
4412 /* We can't enable contexts until all firmware is loaded */
4413 ret = intel_guc_setup(dev_priv);
4414 if (ret)
4415 goto out;
4416
4417 out:
4418 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4419 return ret;
4420 }
4421
4422 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4423 {
4424 if (INTEL_INFO(dev_priv)->gen < 6)
4425 return false;
4426
4427 /* TODO: make semaphores and Execlists play nicely together */
4428 if (i915.enable_execlists)
4429 return false;
4430
4431 if (value >= 0)
4432 return value;
4433
4434 #ifdef CONFIG_INTEL_IOMMU
4435 /* Enable semaphores on SNB when IO remapping is off */
4436 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4437 return false;
4438 #endif
4439
4440 return true;
4441 }
4442
4443 int i915_gem_init(struct drm_i915_private *dev_priv)
4444 {
4445 int ret;
4446
4447 mutex_lock(&dev_priv->drm.struct_mutex);
4448
4449 if (!i915.enable_execlists) {
4450 dev_priv->gt.resume = intel_legacy_submission_resume;
4451 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4452 } else {
4453 dev_priv->gt.resume = intel_lr_context_resume;
4454 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4455 }
4456
4457 /* This is just a security blanket to placate dragons.
4458 * On some systems, we very sporadically observe that the first TLBs
4459 * used by the CS may be stale, despite us poking the TLB reset. If
4460 * we hold the forcewake during initialisation these problems
4461 * just magically go away.
4462 */
4463 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4464
4465 i915_gem_init_userptr(dev_priv);
4466
4467 ret = i915_gem_init_ggtt(dev_priv);
4468 if (ret)
4469 goto out_unlock;
4470
4471 ret = i915_gem_context_init(dev_priv);
4472 if (ret)
4473 goto out_unlock;
4474
4475 ret = intel_engines_init(dev_priv);
4476 if (ret)
4477 goto out_unlock;
4478
4479 ret = i915_gem_init_hw(dev_priv);
4480 if (ret == -EIO) {
4481 /* Allow engine initialisation to fail by marking the GPU as
4482 * wedged. But we only want to do this where the GPU is angry,
4483 * for all other failure, such as an allocation failure, bail.
4484 */
4485 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4486 i915_gem_set_wedged(dev_priv);
4487 ret = 0;
4488 }
4489
4490 out_unlock:
4491 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4492 mutex_unlock(&dev_priv->drm.struct_mutex);
4493
4494 return ret;
4495 }
4496
4497 void
4498 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4499 {
4500 struct intel_engine_cs *engine;
4501 enum intel_engine_id id;
4502
4503 for_each_engine(engine, dev_priv, id)
4504 dev_priv->gt.cleanup_engine(engine);
4505 }
4506
4507 void
4508 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4509 {
4510 int i;
4511
4512 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4513 !IS_CHERRYVIEW(dev_priv))
4514 dev_priv->num_fence_regs = 32;
4515 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4516 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4517 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4518 dev_priv->num_fence_regs = 16;
4519 else
4520 dev_priv->num_fence_regs = 8;
4521
4522 if (intel_vgpu_active(dev_priv))
4523 dev_priv->num_fence_regs =
4524 I915_READ(vgtif_reg(avail_rs.fence_num));
4525
4526 /* Initialize fence registers to zero */
4527 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4528 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4529
4530 fence->i915 = dev_priv;
4531 fence->id = i;
4532 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4533 }
4534 i915_gem_restore_fences(dev_priv);
4535
4536 i915_gem_detect_bit_6_swizzle(dev_priv);
4537 }
4538
4539 int
4540 i915_gem_load_init(struct drm_i915_private *dev_priv)
4541 {
4542 int err = -ENOMEM;
4543
4544 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4545 if (!dev_priv->objects)
4546 goto err_out;
4547
4548 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4549 if (!dev_priv->vmas)
4550 goto err_objects;
4551
4552 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4553 SLAB_HWCACHE_ALIGN |
4554 SLAB_RECLAIM_ACCOUNT |
4555 SLAB_DESTROY_BY_RCU);
4556 if (!dev_priv->requests)
4557 goto err_vmas;
4558
4559 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4560 SLAB_HWCACHE_ALIGN |
4561 SLAB_RECLAIM_ACCOUNT);
4562 if (!dev_priv->dependencies)
4563 goto err_requests;
4564
4565 mutex_lock(&dev_priv->drm.struct_mutex);
4566 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4567 err = i915_gem_timeline_init__global(dev_priv);
4568 mutex_unlock(&dev_priv->drm.struct_mutex);
4569 if (err)
4570 goto err_dependencies;
4571
4572 INIT_LIST_HEAD(&dev_priv->context_list);
4573 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4574 init_llist_head(&dev_priv->mm.free_list);
4575 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4576 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4577 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4578 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4579 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4580 i915_gem_retire_work_handler);
4581 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4582 i915_gem_idle_work_handler);
4583 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4584 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4585
4586 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4587
4588 init_waitqueue_head(&dev_priv->pending_flip_queue);
4589
4590 dev_priv->mm.interruptible = true;
4591
4592 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4593
4594 spin_lock_init(&dev_priv->fb_tracking.lock);
4595
4596 return 0;
4597
4598 err_dependencies:
4599 kmem_cache_destroy(dev_priv->dependencies);
4600 err_requests:
4601 kmem_cache_destroy(dev_priv->requests);
4602 err_vmas:
4603 kmem_cache_destroy(dev_priv->vmas);
4604 err_objects:
4605 kmem_cache_destroy(dev_priv->objects);
4606 err_out:
4607 return err;
4608 }
4609
4610 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4611 {
4612 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4613
4614 mutex_lock(&dev_priv->drm.struct_mutex);
4615 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4616 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4617 mutex_unlock(&dev_priv->drm.struct_mutex);
4618
4619 kmem_cache_destroy(dev_priv->dependencies);
4620 kmem_cache_destroy(dev_priv->requests);
4621 kmem_cache_destroy(dev_priv->vmas);
4622 kmem_cache_destroy(dev_priv->objects);
4623
4624 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4625 rcu_barrier();
4626 }
4627
4628 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4629 {
4630 intel_runtime_pm_get(dev_priv);
4631
4632 mutex_lock(&dev_priv->drm.struct_mutex);
4633 i915_gem_shrink_all(dev_priv);
4634 mutex_unlock(&dev_priv->drm.struct_mutex);
4635
4636 intel_runtime_pm_put(dev_priv);
4637
4638 return 0;
4639 }
4640
4641 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4642 {
4643 struct drm_i915_gem_object *obj;
4644 struct list_head *phases[] = {
4645 &dev_priv->mm.unbound_list,
4646 &dev_priv->mm.bound_list,
4647 NULL
4648 }, **p;
4649
4650 /* Called just before we write the hibernation image.
4651 *
4652 * We need to update the domain tracking to reflect that the CPU
4653 * will be accessing all the pages to create and restore from the
4654 * hibernation, and so upon restoration those pages will be in the
4655 * CPU domain.
4656 *
4657 * To make sure the hibernation image contains the latest state,
4658 * we update that state just before writing out the image.
4659 *
4660 * To try and reduce the hibernation image, we manually shrink
4661 * the objects as well.
4662 */
4663
4664 mutex_lock(&dev_priv->drm.struct_mutex);
4665 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666
4667 for (p = phases; *p; p++) {
4668 list_for_each_entry(obj, *p, global_link) {
4669 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4670 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671 }
4672 }
4673 mutex_unlock(&dev_priv->drm.struct_mutex);
4674
4675 return 0;
4676 }
4677
4678 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679 {
4680 struct drm_i915_file_private *file_priv = file->driver_priv;
4681 struct drm_i915_gem_request *request;
4682
4683 /* Clean up our request list when the client is going away, so that
4684 * later retire_requests won't dereference our soon-to-be-gone
4685 * file_priv.
4686 */
4687 spin_lock(&file_priv->mm.lock);
4688 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689 request->file_priv = NULL;
4690 spin_unlock(&file_priv->mm.lock);
4691
4692 if (!list_empty(&file_priv->rps.link)) {
4693 spin_lock(&to_i915(dev)->rps.client_lock);
4694 list_del(&file_priv->rps.link);
4695 spin_unlock(&to_i915(dev)->rps.client_lock);
4696 }
4697 }
4698
4699 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4700 {
4701 struct drm_i915_file_private *file_priv;
4702 int ret;
4703
4704 DRM_DEBUG("\n");
4705
4706 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4707 if (!file_priv)
4708 return -ENOMEM;
4709
4710 file->driver_priv = file_priv;
4711 file_priv->dev_priv = to_i915(dev);
4712 file_priv->file = file;
4713 INIT_LIST_HEAD(&file_priv->rps.link);
4714
4715 spin_lock_init(&file_priv->mm.lock);
4716 INIT_LIST_HEAD(&file_priv->mm.request_list);
4717
4718 file_priv->bsd_engine = -1;
4719
4720 ret = i915_gem_context_open(dev, file);
4721 if (ret)
4722 kfree(file_priv);
4723
4724 return ret;
4725 }
4726
4727 /**
4728 * i915_gem_track_fb - update frontbuffer tracking
4729 * @old: current GEM buffer for the frontbuffer slots
4730 * @new: new GEM buffer for the frontbuffer slots
4731 * @frontbuffer_bits: bitmask of frontbuffer slots
4732 *
4733 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4734 * from @old and setting them in @new. Both @old and @new can be NULL.
4735 */
4736 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4737 struct drm_i915_gem_object *new,
4738 unsigned frontbuffer_bits)
4739 {
4740 /* Control of individual bits within the mask are guarded by
4741 * the owning plane->mutex, i.e. we can never see concurrent
4742 * manipulation of individual bits. But since the bitfield as a whole
4743 * is updated using RMW, we need to use atomics in order to update
4744 * the bits.
4745 */
4746 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4747 sizeof(atomic_t) * BITS_PER_BYTE);
4748
4749 if (old) {
4750 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4751 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 }
4753
4754 if (new) {
4755 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4756 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757 }
4758 }
4759
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4763 const void *data, size_t size)
4764 {
4765 struct drm_i915_gem_object *obj;
4766 struct sg_table *sg;
4767 size_t bytes;
4768 int ret;
4769
4770 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4771 if (IS_ERR(obj))
4772 return obj;
4773
4774 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775 if (ret)
4776 goto fail;
4777
4778 ret = i915_gem_object_pin_pages(obj);
4779 if (ret)
4780 goto fail;
4781
4782 sg = obj->mm.pages;
4783 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4784 obj->mm.dirty = true; /* Backing store is now out of date */
4785 i915_gem_object_unpin_pages(obj);
4786
4787 if (WARN_ON(bytes != size)) {
4788 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4789 ret = -EFAULT;
4790 goto fail;
4791 }
4792
4793 return obj;
4794
4795 fail:
4796 i915_gem_object_put(obj);
4797 return ERR_PTR(ret);
4798 }
4799
4800 struct scatterlist *
4801 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4802 unsigned int n,
4803 unsigned int *offset)
4804 {
4805 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806 struct scatterlist *sg;
4807 unsigned int idx, count;
4808
4809 might_sleep();
4810 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4811 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812
4813 /* As we iterate forward through the sg, we record each entry in a
4814 * radixtree for quick repeated (backwards) lookups. If we have seen
4815 * this index previously, we will have an entry for it.
4816 *
4817 * Initial lookup is O(N), but this is amortized to O(1) for
4818 * sequential page access (where each new request is consecutive
4819 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4820 * i.e. O(1) with a large constant!
4821 */
4822 if (n < READ_ONCE(iter->sg_idx))
4823 goto lookup;
4824
4825 mutex_lock(&iter->lock);
4826
4827 /* We prefer to reuse the last sg so that repeated lookup of this
4828 * (or the subsequent) sg are fast - comparing against the last
4829 * sg is faster than going through the radixtree.
4830 */
4831
4832 sg = iter->sg_pos;
4833 idx = iter->sg_idx;
4834 count = __sg_page_count(sg);
4835
4836 while (idx + count <= n) {
4837 unsigned long exception, i;
4838 int ret;
4839
4840 /* If we cannot allocate and insert this entry, or the
4841 * individual pages from this range, cancel updating the
4842 * sg_idx so that on this lookup we are forced to linearly
4843 * scan onwards, but on future lookups we will try the
4844 * insertion again (in which case we need to be careful of
4845 * the error return reporting that we have already inserted
4846 * this index).
4847 */
4848 ret = radix_tree_insert(&iter->radix, idx, sg);
4849 if (ret && ret != -EEXIST)
4850 goto scan;
4851
4852 exception =
4853 RADIX_TREE_EXCEPTIONAL_ENTRY |
4854 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4855 for (i = 1; i < count; i++) {
4856 ret = radix_tree_insert(&iter->radix, idx + i,
4857 (void *)exception);
4858 if (ret && ret != -EEXIST)
4859 goto scan;
4860 }
4861
4862 idx += count;
4863 sg = ____sg_next(sg);
4864 count = __sg_page_count(sg);
4865 }
4866
4867 scan:
4868 iter->sg_pos = sg;
4869 iter->sg_idx = idx;
4870
4871 mutex_unlock(&iter->lock);
4872
4873 if (unlikely(n < idx)) /* insertion completed by another thread */
4874 goto lookup;
4875
4876 /* In case we failed to insert the entry into the radixtree, we need
4877 * to look beyond the current sg.
4878 */
4879 while (idx + count <= n) {
4880 idx += count;
4881 sg = ____sg_next(sg);
4882 count = __sg_page_count(sg);
4883 }
4884
4885 *offset = n - idx;
4886 return sg;
4887
4888 lookup:
4889 rcu_read_lock();
4890
4891 sg = radix_tree_lookup(&iter->radix, n);
4892 GEM_BUG_ON(!sg);
4893
4894 /* If this index is in the middle of multi-page sg entry,
4895 * the radixtree will contain an exceptional entry that points
4896 * to the start of that range. We will return the pointer to
4897 * the base page and the offset of this page within the
4898 * sg entry's range.
4899 */
4900 *offset = 0;
4901 if (unlikely(radix_tree_exception(sg))) {
4902 unsigned long base =
4903 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4904
4905 sg = radix_tree_lookup(&iter->radix, base);
4906 GEM_BUG_ON(!sg);
4907
4908 *offset = n - base;
4909 }
4910
4911 rcu_read_unlock();
4912
4913 return sg;
4914 }
4915
4916 struct page *
4917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4918 {
4919 struct scatterlist *sg;
4920 unsigned int offset;
4921
4922 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4923
4924 sg = i915_gem_object_get_sg(obj, n, &offset);
4925 return nth_page(sg_page(sg), offset);
4926 }
4927
4928 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4929 struct page *
4930 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4931 unsigned int n)
4932 {
4933 struct page *page;
4934
4935 page = i915_gem_object_get_page(obj, n);
4936 if (!obj->mm.dirty)
4937 set_page_dirty(page);
4938
4939 return page;
4940 }
4941
4942 dma_addr_t
4943 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4944 unsigned long n)
4945 {
4946 struct scatterlist *sg;
4947 unsigned int offset;
4948
4949 sg = i915_gem_object_get_sg(obj, n, &offset);
4950 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4951 }