]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm: add drm_fb_helper_restore_fbdev_mode_unlocked()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static int i915_gem_phys_pwrite(struct drm_device *dev,
51 struct drm_i915_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file);
54
55 static void i915_gem_write_fence(struct drm_device *dev, int reg,
56 struct drm_i915_gem_object *obj);
57 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
58 struct drm_i915_fence_reg *fence,
59 bool enable);
60
61 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
62 struct shrink_control *sc);
63 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static int i915_gem_shrinker_oom(struct notifier_block *nb,
66 unsigned long event,
67 void *ptr);
68 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
69 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (i915_gem_obj_is_pinned(obj))
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /*
336 * Pins the specified object's pages and synchronizes the object with
337 * GPU accesses. Sets needs_clflush to non-zero if the caller should
338 * flush the object from the CPU cache.
339 */
340 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
341 int *needs_clflush)
342 {
343 int ret;
344
345 *needs_clflush = 0;
346
347 if (!obj->base.filp)
348 return -EINVAL;
349
350 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
351 /* If we're not in the cpu read domain, set ourself into the gtt
352 * read domain and manually flush cachelines (if required). This
353 * optimizes for the case when the gpu will dirty the data
354 * anyway again before the next pread happens. */
355 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
356 obj->cache_level);
357 ret = i915_gem_object_wait_rendering(obj, true);
358 if (ret)
359 return ret;
360
361 i915_gem_object_retire(obj);
362 }
363
364 ret = i915_gem_object_get_pages(obj);
365 if (ret)
366 return ret;
367
368 i915_gem_object_pin_pages(obj);
369
370 return ret;
371 }
372
373 /* Per-page copy function for the shmem pread fastpath.
374 * Flushes invalid cachelines before reading the target if
375 * needs_clflush is set. */
376 static int
377 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381 char *vaddr;
382 int ret;
383
384 if (unlikely(page_do_bit17_swizzling))
385 return -EINVAL;
386
387 vaddr = kmap_atomic(page);
388 if (needs_clflush)
389 drm_clflush_virt_range(vaddr + shmem_page_offset,
390 page_length);
391 ret = __copy_to_user_inatomic(user_data,
392 vaddr + shmem_page_offset,
393 page_length);
394 kunmap_atomic(vaddr);
395
396 return ret ? -EFAULT : 0;
397 }
398
399 static void
400 shmem_clflush_swizzled_range(char *addr, unsigned long length,
401 bool swizzled)
402 {
403 if (unlikely(swizzled)) {
404 unsigned long start = (unsigned long) addr;
405 unsigned long end = (unsigned long) addr + length;
406
407 /* For swizzling simply ensure that we always flush both
408 * channels. Lame, but simple and it works. Swizzled
409 * pwrite/pread is far from a hotpath - current userspace
410 * doesn't use it at all. */
411 start = round_down(start, 128);
412 end = round_up(end, 128);
413
414 drm_clflush_virt_range((void *)start, end - start);
415 } else {
416 drm_clflush_virt_range(addr, length);
417 }
418
419 }
420
421 /* Only difference to the fast-path function is that this can handle bit17
422 * and uses non-atomic copy and kmap functions. */
423 static int
424 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
425 char __user *user_data,
426 bool page_do_bit17_swizzling, bool needs_clflush)
427 {
428 char *vaddr;
429 int ret;
430
431 vaddr = kmap(page);
432 if (needs_clflush)
433 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
434 page_length,
435 page_do_bit17_swizzling);
436
437 if (page_do_bit17_swizzling)
438 ret = __copy_to_user_swizzled(user_data,
439 vaddr, shmem_page_offset,
440 page_length);
441 else
442 ret = __copy_to_user(user_data,
443 vaddr + shmem_page_offset,
444 page_length);
445 kunmap(page);
446
447 return ret ? - EFAULT : 0;
448 }
449
450 static int
451 i915_gem_shmem_pread(struct drm_device *dev,
452 struct drm_i915_gem_object *obj,
453 struct drm_i915_gem_pread *args,
454 struct drm_file *file)
455 {
456 char __user *user_data;
457 ssize_t remain;
458 loff_t offset;
459 int shmem_page_offset, page_length, ret = 0;
460 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
461 int prefaulted = 0;
462 int needs_clflush = 0;
463 struct sg_page_iter sg_iter;
464
465 user_data = to_user_ptr(args->data_ptr);
466 remain = args->size;
467
468 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
469
470 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
471 if (ret)
472 return ret;
473
474 offset = args->offset;
475
476 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
477 offset >> PAGE_SHIFT) {
478 struct page *page = sg_page_iter_page(&sg_iter);
479
480 if (remain <= 0)
481 break;
482
483 /* Operation in this page
484 *
485 * shmem_page_offset = offset within page in shmem file
486 * page_length = bytes to copy for this page
487 */
488 shmem_page_offset = offset_in_page(offset);
489 page_length = remain;
490 if ((shmem_page_offset + page_length) > PAGE_SIZE)
491 page_length = PAGE_SIZE - shmem_page_offset;
492
493 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
494 (page_to_phys(page) & (1 << 17)) != 0;
495
496 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
497 user_data, page_do_bit17_swizzling,
498 needs_clflush);
499 if (ret == 0)
500 goto next_page;
501
502 mutex_unlock(&dev->struct_mutex);
503
504 if (likely(!i915.prefault_disable) && !prefaulted) {
505 ret = fault_in_multipages_writeable(user_data, remain);
506 /* Userspace is tricking us, but we've already clobbered
507 * its pages with the prefault and promised to write the
508 * data up to the first fault. Hence ignore any errors
509 * and just continue. */
510 (void)ret;
511 prefaulted = 1;
512 }
513
514 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
515 user_data, page_do_bit17_swizzling,
516 needs_clflush);
517
518 mutex_lock(&dev->struct_mutex);
519
520 if (ret)
521 goto out;
522
523 next_page:
524 remain -= page_length;
525 user_data += page_length;
526 offset += page_length;
527 }
528
529 out:
530 i915_gem_object_unpin_pages(obj);
531
532 return ret;
533 }
534
535 /**
536 * Reads data from the object referenced by handle.
537 *
538 * On error, the contents of *data are undefined.
539 */
540 int
541 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
542 struct drm_file *file)
543 {
544 struct drm_i915_gem_pread *args = data;
545 struct drm_i915_gem_object *obj;
546 int ret = 0;
547
548 if (args->size == 0)
549 return 0;
550
551 if (!access_ok(VERIFY_WRITE,
552 to_user_ptr(args->data_ptr),
553 args->size))
554 return -EFAULT;
555
556 ret = i915_mutex_lock_interruptible(dev);
557 if (ret)
558 return ret;
559
560 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
561 if (&obj->base == NULL) {
562 ret = -ENOENT;
563 goto unlock;
564 }
565
566 /* Bounds check source. */
567 if (args->offset > obj->base.size ||
568 args->size > obj->base.size - args->offset) {
569 ret = -EINVAL;
570 goto out;
571 }
572
573 /* prime objects have no backing filp to GEM pread/pwrite
574 * pages from.
575 */
576 if (!obj->base.filp) {
577 ret = -EINVAL;
578 goto out;
579 }
580
581 trace_i915_gem_object_pread(obj, args->offset, args->size);
582
583 ret = i915_gem_shmem_pread(dev, obj, args, file);
584
585 out:
586 drm_gem_object_unreference(&obj->base);
587 unlock:
588 mutex_unlock(&dev->struct_mutex);
589 return ret;
590 }
591
592 /* This is the fast write path which cannot handle
593 * page faults in the source data
594 */
595
596 static inline int
597 fast_user_write(struct io_mapping *mapping,
598 loff_t page_base, int page_offset,
599 char __user *user_data,
600 int length)
601 {
602 void __iomem *vaddr_atomic;
603 void *vaddr;
604 unsigned long unwritten;
605
606 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
607 /* We can use the cpu mem copy function because this is X86. */
608 vaddr = (void __force*)vaddr_atomic + page_offset;
609 unwritten = __copy_from_user_inatomic_nocache(vaddr,
610 user_data, length);
611 io_mapping_unmap_atomic(vaddr_atomic);
612 return unwritten;
613 }
614
615 /**
616 * This is the fast pwrite path, where we copy the data directly from the
617 * user into the GTT, uncached.
618 */
619 static int
620 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
621 struct drm_i915_gem_object *obj,
622 struct drm_i915_gem_pwrite *args,
623 struct drm_file *file)
624 {
625 struct drm_i915_private *dev_priv = dev->dev_private;
626 ssize_t remain;
627 loff_t offset, page_base;
628 char __user *user_data;
629 int page_offset, page_length, ret;
630
631 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
632 if (ret)
633 goto out;
634
635 ret = i915_gem_object_set_to_gtt_domain(obj, true);
636 if (ret)
637 goto out_unpin;
638
639 ret = i915_gem_object_put_fence(obj);
640 if (ret)
641 goto out_unpin;
642
643 user_data = to_user_ptr(args->data_ptr);
644 remain = args->size;
645
646 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
647
648 while (remain > 0) {
649 /* Operation in this page
650 *
651 * page_base = page offset within aperture
652 * page_offset = offset within page
653 * page_length = bytes to copy for this page
654 */
655 page_base = offset & PAGE_MASK;
656 page_offset = offset_in_page(offset);
657 page_length = remain;
658 if ((page_offset + remain) > PAGE_SIZE)
659 page_length = PAGE_SIZE - page_offset;
660
661 /* If we get a fault while copying data, then (presumably) our
662 * source page isn't available. Return the error and we'll
663 * retry in the slow path.
664 */
665 if (fast_user_write(dev_priv->gtt.mappable, page_base,
666 page_offset, user_data, page_length)) {
667 ret = -EFAULT;
668 goto out_unpin;
669 }
670
671 remain -= page_length;
672 user_data += page_length;
673 offset += page_length;
674 }
675
676 out_unpin:
677 i915_gem_object_ggtt_unpin(obj);
678 out:
679 return ret;
680 }
681
682 /* Per-page copy function for the shmem pwrite fastpath.
683 * Flushes invalid cachelines before writing to the target if
684 * needs_clflush_before is set and flushes out any written cachelines after
685 * writing if needs_clflush is set. */
686 static int
687 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
688 char __user *user_data,
689 bool page_do_bit17_swizzling,
690 bool needs_clflush_before,
691 bool needs_clflush_after)
692 {
693 char *vaddr;
694 int ret;
695
696 if (unlikely(page_do_bit17_swizzling))
697 return -EINVAL;
698
699 vaddr = kmap_atomic(page);
700 if (needs_clflush_before)
701 drm_clflush_virt_range(vaddr + shmem_page_offset,
702 page_length);
703 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
704 user_data, page_length);
705 if (needs_clflush_after)
706 drm_clflush_virt_range(vaddr + shmem_page_offset,
707 page_length);
708 kunmap_atomic(vaddr);
709
710 return ret ? -EFAULT : 0;
711 }
712
713 /* Only difference to the fast-path function is that this can handle bit17
714 * and uses non-atomic copy and kmap functions. */
715 static int
716 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
717 char __user *user_data,
718 bool page_do_bit17_swizzling,
719 bool needs_clflush_before,
720 bool needs_clflush_after)
721 {
722 char *vaddr;
723 int ret;
724
725 vaddr = kmap(page);
726 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
727 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
728 page_length,
729 page_do_bit17_swizzling);
730 if (page_do_bit17_swizzling)
731 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
732 user_data,
733 page_length);
734 else
735 ret = __copy_from_user(vaddr + shmem_page_offset,
736 user_data,
737 page_length);
738 if (needs_clflush_after)
739 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
740 page_length,
741 page_do_bit17_swizzling);
742 kunmap(page);
743
744 return ret ? -EFAULT : 0;
745 }
746
747 static int
748 i915_gem_shmem_pwrite(struct drm_device *dev,
749 struct drm_i915_gem_object *obj,
750 struct drm_i915_gem_pwrite *args,
751 struct drm_file *file)
752 {
753 ssize_t remain;
754 loff_t offset;
755 char __user *user_data;
756 int shmem_page_offset, page_length, ret = 0;
757 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
758 int hit_slowpath = 0;
759 int needs_clflush_after = 0;
760 int needs_clflush_before = 0;
761 struct sg_page_iter sg_iter;
762
763 user_data = to_user_ptr(args->data_ptr);
764 remain = args->size;
765
766 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
767
768 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
769 /* If we're not in the cpu write domain, set ourself into the gtt
770 * write domain and manually flush cachelines (if required). This
771 * optimizes for the case when the gpu will use the data
772 * right away and we therefore have to clflush anyway. */
773 needs_clflush_after = cpu_write_needs_clflush(obj);
774 ret = i915_gem_object_wait_rendering(obj, false);
775 if (ret)
776 return ret;
777
778 i915_gem_object_retire(obj);
779 }
780 /* Same trick applies to invalidate partially written cachelines read
781 * before writing. */
782 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
783 needs_clflush_before =
784 !cpu_cache_is_coherent(dev, obj->cache_level);
785
786 ret = i915_gem_object_get_pages(obj);
787 if (ret)
788 return ret;
789
790 i915_gem_object_pin_pages(obj);
791
792 offset = args->offset;
793 obj->dirty = 1;
794
795 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
796 offset >> PAGE_SHIFT) {
797 struct page *page = sg_page_iter_page(&sg_iter);
798 int partial_cacheline_write;
799
800 if (remain <= 0)
801 break;
802
803 /* Operation in this page
804 *
805 * shmem_page_offset = offset within page in shmem file
806 * page_length = bytes to copy for this page
807 */
808 shmem_page_offset = offset_in_page(offset);
809
810 page_length = remain;
811 if ((shmem_page_offset + page_length) > PAGE_SIZE)
812 page_length = PAGE_SIZE - shmem_page_offset;
813
814 /* If we don't overwrite a cacheline completely we need to be
815 * careful to have up-to-date data by first clflushing. Don't
816 * overcomplicate things and flush the entire patch. */
817 partial_cacheline_write = needs_clflush_before &&
818 ((shmem_page_offset | page_length)
819 & (boot_cpu_data.x86_clflush_size - 1));
820
821 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
822 (page_to_phys(page) & (1 << 17)) != 0;
823
824 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
828 if (ret == 0)
829 goto next_page;
830
831 hit_slowpath = 1;
832 mutex_unlock(&dev->struct_mutex);
833 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
834 user_data, page_do_bit17_swizzling,
835 partial_cacheline_write,
836 needs_clflush_after);
837
838 mutex_lock(&dev->struct_mutex);
839
840 if (ret)
841 goto out;
842
843 next_page:
844 remain -= page_length;
845 user_data += page_length;
846 offset += page_length;
847 }
848
849 out:
850 i915_gem_object_unpin_pages(obj);
851
852 if (hit_slowpath) {
853 /*
854 * Fixup: Flush cpu caches in case we didn't flush the dirty
855 * cachelines in-line while writing and the object moved
856 * out of the cpu write domain while we've dropped the lock.
857 */
858 if (!needs_clflush_after &&
859 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
860 if (i915_gem_clflush_object(obj, obj->pin_display))
861 i915_gem_chipset_flush(dev);
862 }
863 }
864
865 if (needs_clflush_after)
866 i915_gem_chipset_flush(dev);
867
868 return ret;
869 }
870
871 /**
872 * Writes data to the object referenced by handle.
873 *
874 * On error, the contents of the buffer that were to be modified are undefined.
875 */
876 int
877 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
878 struct drm_file *file)
879 {
880 struct drm_i915_gem_pwrite *args = data;
881 struct drm_i915_gem_object *obj;
882 int ret;
883
884 if (args->size == 0)
885 return 0;
886
887 if (!access_ok(VERIFY_READ,
888 to_user_ptr(args->data_ptr),
889 args->size))
890 return -EFAULT;
891
892 if (likely(!i915.prefault_disable)) {
893 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
894 args->size);
895 if (ret)
896 return -EFAULT;
897 }
898
899 ret = i915_mutex_lock_interruptible(dev);
900 if (ret)
901 return ret;
902
903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
904 if (&obj->base == NULL) {
905 ret = -ENOENT;
906 goto unlock;
907 }
908
909 /* Bounds check destination. */
910 if (args->offset > obj->base.size ||
911 args->size > obj->base.size - args->offset) {
912 ret = -EINVAL;
913 goto out;
914 }
915
916 /* prime objects have no backing filp to GEM pread/pwrite
917 * pages from.
918 */
919 if (!obj->base.filp) {
920 ret = -EINVAL;
921 goto out;
922 }
923
924 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
925
926 ret = -EFAULT;
927 /* We can only do the GTT pwrite on untiled buffers, as otherwise
928 * it would end up going through the fenced access, and we'll get
929 * different detiling behavior between reading and writing.
930 * pread/pwrite currently are reading and writing from the CPU
931 * perspective, requiring manual detiling by the client.
932 */
933 if (obj->phys_obj) {
934 ret = i915_gem_phys_pwrite(dev, obj, args, file);
935 goto out;
936 }
937
938 if (obj->tiling_mode == I915_TILING_NONE &&
939 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
940 cpu_write_needs_clflush(obj)) {
941 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
942 /* Note that the gtt paths might fail with non-page-backed user
943 * pointers (e.g. gtt mappings when moving data between
944 * textures). Fallback to the shmem path in that case. */
945 }
946
947 if (ret == -EFAULT || ret == -ENOSPC)
948 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
949
950 out:
951 drm_gem_object_unreference(&obj->base);
952 unlock:
953 mutex_unlock(&dev->struct_mutex);
954 return ret;
955 }
956
957 int
958 i915_gem_check_wedge(struct i915_gpu_error *error,
959 bool interruptible)
960 {
961 if (i915_reset_in_progress(error)) {
962 /* Non-interruptible callers can't handle -EAGAIN, hence return
963 * -EIO unconditionally for these. */
964 if (!interruptible)
965 return -EIO;
966
967 /* Recovery complete, but the reset failed ... */
968 if (i915_terminally_wedged(error))
969 return -EIO;
970
971 return -EAGAIN;
972 }
973
974 return 0;
975 }
976
977 /*
978 * Compare seqno against outstanding lazy request. Emit a request if they are
979 * equal.
980 */
981 static int
982 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
983 {
984 int ret;
985
986 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
987
988 ret = 0;
989 if (seqno == ring->outstanding_lazy_seqno)
990 ret = i915_add_request(ring, NULL);
991
992 return ret;
993 }
994
995 static void fake_irq(unsigned long data)
996 {
997 wake_up_process((struct task_struct *)data);
998 }
999
1000 static bool missed_irq(struct drm_i915_private *dev_priv,
1001 struct intel_engine_cs *ring)
1002 {
1003 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1004 }
1005
1006 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1007 {
1008 if (file_priv == NULL)
1009 return true;
1010
1011 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1012 }
1013
1014 /**
1015 * __wait_seqno - wait until execution of seqno has finished
1016 * @ring: the ring expected to report seqno
1017 * @seqno: duh!
1018 * @reset_counter: reset sequence associated with the given seqno
1019 * @interruptible: do an interruptible wait (normally yes)
1020 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1021 *
1022 * Note: It is of utmost importance that the passed in seqno and reset_counter
1023 * values have been read by the caller in an smp safe manner. Where read-side
1024 * locks are involved, it is sufficient to read the reset_counter before
1025 * unlocking the lock that protects the seqno. For lockless tricks, the
1026 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1027 * inserted.
1028 *
1029 * Returns 0 if the seqno was found within the alloted time. Else returns the
1030 * errno with remaining time filled in timeout argument.
1031 */
1032 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1033 unsigned reset_counter,
1034 bool interruptible,
1035 struct timespec *timeout,
1036 struct drm_i915_file_private *file_priv)
1037 {
1038 struct drm_device *dev = ring->dev;
1039 struct drm_i915_private *dev_priv = dev->dev_private;
1040 const bool irq_test_in_progress =
1041 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1042 struct timespec before, now;
1043 DEFINE_WAIT(wait);
1044 unsigned long timeout_expire;
1045 int ret;
1046
1047 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1048
1049 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1050 return 0;
1051
1052 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1053
1054 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1055 gen6_rps_boost(dev_priv);
1056 if (file_priv)
1057 mod_delayed_work(dev_priv->wq,
1058 &file_priv->mm.idle_work,
1059 msecs_to_jiffies(100));
1060 }
1061
1062 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1063 return -ENODEV;
1064
1065 /* Record current time in case interrupted by signal, or wedged */
1066 trace_i915_gem_request_wait_begin(ring, seqno);
1067 getrawmonotonic(&before);
1068 for (;;) {
1069 struct timer_list timer;
1070
1071 prepare_to_wait(&ring->irq_queue, &wait,
1072 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1073
1074 /* We need to check whether any gpu reset happened in between
1075 * the caller grabbing the seqno and now ... */
1076 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1077 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1078 * is truely gone. */
1079 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1080 if (ret == 0)
1081 ret = -EAGAIN;
1082 break;
1083 }
1084
1085 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1086 ret = 0;
1087 break;
1088 }
1089
1090 if (interruptible && signal_pending(current)) {
1091 ret = -ERESTARTSYS;
1092 break;
1093 }
1094
1095 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1096 ret = -ETIME;
1097 break;
1098 }
1099
1100 timer.function = NULL;
1101 if (timeout || missed_irq(dev_priv, ring)) {
1102 unsigned long expire;
1103
1104 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1105 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1106 mod_timer(&timer, expire);
1107 }
1108
1109 io_schedule();
1110
1111 if (timer.function) {
1112 del_singleshot_timer_sync(&timer);
1113 destroy_timer_on_stack(&timer);
1114 }
1115 }
1116 getrawmonotonic(&now);
1117 trace_i915_gem_request_wait_end(ring, seqno);
1118
1119 if (!irq_test_in_progress)
1120 ring->irq_put(ring);
1121
1122 finish_wait(&ring->irq_queue, &wait);
1123
1124 if (timeout) {
1125 struct timespec sleep_time = timespec_sub(now, before);
1126 *timeout = timespec_sub(*timeout, sleep_time);
1127 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1128 set_normalized_timespec(timeout, 0, 0);
1129 }
1130
1131 return ret;
1132 }
1133
1134 /**
1135 * Waits for a sequence number to be signaled, and cleans up the
1136 * request and object lists appropriately for that event.
1137 */
1138 int
1139 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1140 {
1141 struct drm_device *dev = ring->dev;
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 bool interruptible = dev_priv->mm.interruptible;
1144 int ret;
1145
1146 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1147 BUG_ON(seqno == 0);
1148
1149 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1150 if (ret)
1151 return ret;
1152
1153 ret = i915_gem_check_olr(ring, seqno);
1154 if (ret)
1155 return ret;
1156
1157 return __wait_seqno(ring, seqno,
1158 atomic_read(&dev_priv->gpu_error.reset_counter),
1159 interruptible, NULL, NULL);
1160 }
1161
1162 static int
1163 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1164 struct intel_engine_cs *ring)
1165 {
1166 if (!obj->active)
1167 return 0;
1168
1169 /* Manually manage the write flush as we may have not yet
1170 * retired the buffer.
1171 *
1172 * Note that the last_write_seqno is always the earlier of
1173 * the two (read/write) seqno, so if we haved successfully waited,
1174 * we know we have passed the last write.
1175 */
1176 obj->last_write_seqno = 0;
1177
1178 return 0;
1179 }
1180
1181 /**
1182 * Ensures that all rendering to the object has completed and the object is
1183 * safe to unbind from the GTT or access from the CPU.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1187 bool readonly)
1188 {
1189 struct intel_engine_cs *ring = obj->ring;
1190 u32 seqno;
1191 int ret;
1192
1193 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1194 if (seqno == 0)
1195 return 0;
1196
1197 ret = i915_wait_seqno(ring, seqno);
1198 if (ret)
1199 return ret;
1200
1201 return i915_gem_object_wait_rendering__tail(obj, ring);
1202 }
1203
1204 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1205 * as the object state may change during this call.
1206 */
1207 static __must_check int
1208 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1209 struct drm_i915_file_private *file_priv,
1210 bool readonly)
1211 {
1212 struct drm_device *dev = obj->base.dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 struct intel_engine_cs *ring = obj->ring;
1215 unsigned reset_counter;
1216 u32 seqno;
1217 int ret;
1218
1219 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1220 BUG_ON(!dev_priv->mm.interruptible);
1221
1222 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1223 if (seqno == 0)
1224 return 0;
1225
1226 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1227 if (ret)
1228 return ret;
1229
1230 ret = i915_gem_check_olr(ring, seqno);
1231 if (ret)
1232 return ret;
1233
1234 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1235 mutex_unlock(&dev->struct_mutex);
1236 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1237 mutex_lock(&dev->struct_mutex);
1238 if (ret)
1239 return ret;
1240
1241 return i915_gem_object_wait_rendering__tail(obj, ring);
1242 }
1243
1244 /**
1245 * Called when user space prepares to use an object with the CPU, either
1246 * through the mmap ioctl's mapping or a GTT mapping.
1247 */
1248 int
1249 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1250 struct drm_file *file)
1251 {
1252 struct drm_i915_gem_set_domain *args = data;
1253 struct drm_i915_gem_object *obj;
1254 uint32_t read_domains = args->read_domains;
1255 uint32_t write_domain = args->write_domain;
1256 int ret;
1257
1258 /* Only handle setting domains to types used by the CPU. */
1259 if (write_domain & I915_GEM_GPU_DOMAINS)
1260 return -EINVAL;
1261
1262 if (read_domains & I915_GEM_GPU_DOMAINS)
1263 return -EINVAL;
1264
1265 /* Having something in the write domain implies it's in the read
1266 * domain, and only that read domain. Enforce that in the request.
1267 */
1268 if (write_domain != 0 && read_domains != write_domain)
1269 return -EINVAL;
1270
1271 ret = i915_mutex_lock_interruptible(dev);
1272 if (ret)
1273 return ret;
1274
1275 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1276 if (&obj->base == NULL) {
1277 ret = -ENOENT;
1278 goto unlock;
1279 }
1280
1281 /* Try to flush the object off the GPU without holding the lock.
1282 * We will repeat the flush holding the lock in the normal manner
1283 * to catch cases where we are gazumped.
1284 */
1285 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1286 file->driver_priv,
1287 !write_domain);
1288 if (ret)
1289 goto unref;
1290
1291 if (read_domains & I915_GEM_DOMAIN_GTT) {
1292 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1293
1294 /* Silently promote "you're not bound, there was nothing to do"
1295 * to success, since the client was just asking us to
1296 * make sure everything was done.
1297 */
1298 if (ret == -EINVAL)
1299 ret = 0;
1300 } else {
1301 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1302 }
1303
1304 unref:
1305 drm_gem_object_unreference(&obj->base);
1306 unlock:
1307 mutex_unlock(&dev->struct_mutex);
1308 return ret;
1309 }
1310
1311 /**
1312 * Called when user space has done writes to this buffer
1313 */
1314 int
1315 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1316 struct drm_file *file)
1317 {
1318 struct drm_i915_gem_sw_finish *args = data;
1319 struct drm_i915_gem_object *obj;
1320 int ret = 0;
1321
1322 ret = i915_mutex_lock_interruptible(dev);
1323 if (ret)
1324 return ret;
1325
1326 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1327 if (&obj->base == NULL) {
1328 ret = -ENOENT;
1329 goto unlock;
1330 }
1331
1332 /* Pinned buffers may be scanout, so flush the cache */
1333 if (obj->pin_display)
1334 i915_gem_object_flush_cpu_write_domain(obj, true);
1335
1336 drm_gem_object_unreference(&obj->base);
1337 unlock:
1338 mutex_unlock(&dev->struct_mutex);
1339 return ret;
1340 }
1341
1342 /**
1343 * Maps the contents of an object, returning the address it is mapped
1344 * into.
1345 *
1346 * While the mapping holds a reference on the contents of the object, it doesn't
1347 * imply a ref on the object itself.
1348 */
1349 int
1350 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1351 struct drm_file *file)
1352 {
1353 struct drm_i915_gem_mmap *args = data;
1354 struct drm_gem_object *obj;
1355 unsigned long addr;
1356
1357 obj = drm_gem_object_lookup(dev, file, args->handle);
1358 if (obj == NULL)
1359 return -ENOENT;
1360
1361 /* prime objects have no backing filp to GEM mmap
1362 * pages from.
1363 */
1364 if (!obj->filp) {
1365 drm_gem_object_unreference_unlocked(obj);
1366 return -EINVAL;
1367 }
1368
1369 addr = vm_mmap(obj->filp, 0, args->size,
1370 PROT_READ | PROT_WRITE, MAP_SHARED,
1371 args->offset);
1372 drm_gem_object_unreference_unlocked(obj);
1373 if (IS_ERR((void *)addr))
1374 return addr;
1375
1376 args->addr_ptr = (uint64_t) addr;
1377
1378 return 0;
1379 }
1380
1381 /**
1382 * i915_gem_fault - fault a page into the GTT
1383 * vma: VMA in question
1384 * vmf: fault info
1385 *
1386 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1387 * from userspace. The fault handler takes care of binding the object to
1388 * the GTT (if needed), allocating and programming a fence register (again,
1389 * only if needed based on whether the old reg is still valid or the object
1390 * is tiled) and inserting a new PTE into the faulting process.
1391 *
1392 * Note that the faulting process may involve evicting existing objects
1393 * from the GTT and/or fence registers to make room. So performance may
1394 * suffer if the GTT working set is large or there are few fence registers
1395 * left.
1396 */
1397 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1398 {
1399 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1400 struct drm_device *dev = obj->base.dev;
1401 struct drm_i915_private *dev_priv = dev->dev_private;
1402 pgoff_t page_offset;
1403 unsigned long pfn;
1404 int ret = 0;
1405 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1406
1407 intel_runtime_pm_get(dev_priv);
1408
1409 /* We don't use vmf->pgoff since that has the fake offset */
1410 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1411 PAGE_SHIFT;
1412
1413 ret = i915_mutex_lock_interruptible(dev);
1414 if (ret)
1415 goto out;
1416
1417 trace_i915_gem_object_fault(obj, page_offset, true, write);
1418
1419 /* Try to flush the object off the GPU first without holding the lock.
1420 * Upon reacquiring the lock, we will perform our sanity checks and then
1421 * repeat the flush holding the lock in the normal manner to catch cases
1422 * where we are gazumped.
1423 */
1424 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1425 if (ret)
1426 goto unlock;
1427
1428 /* Access to snoopable pages through the GTT is incoherent. */
1429 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1430 ret = -EINVAL;
1431 goto unlock;
1432 }
1433
1434 /* Now bind it into the GTT if needed */
1435 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1436 if (ret)
1437 goto unlock;
1438
1439 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1440 if (ret)
1441 goto unpin;
1442
1443 ret = i915_gem_object_get_fence(obj);
1444 if (ret)
1445 goto unpin;
1446
1447 obj->fault_mappable = true;
1448
1449 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1450 pfn >>= PAGE_SHIFT;
1451 pfn += page_offset;
1452
1453 /* Finally, remap it using the new GTT offset */
1454 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1455 unpin:
1456 i915_gem_object_ggtt_unpin(obj);
1457 unlock:
1458 mutex_unlock(&dev->struct_mutex);
1459 out:
1460 switch (ret) {
1461 case -EIO:
1462 /* If this -EIO is due to a gpu hang, give the reset code a
1463 * chance to clean up the mess. Otherwise return the proper
1464 * SIGBUS. */
1465 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1466 ret = VM_FAULT_SIGBUS;
1467 break;
1468 }
1469 case -EAGAIN:
1470 /*
1471 * EAGAIN means the gpu is hung and we'll wait for the error
1472 * handler to reset everything when re-faulting in
1473 * i915_mutex_lock_interruptible.
1474 */
1475 case 0:
1476 case -ERESTARTSYS:
1477 case -EINTR:
1478 case -EBUSY:
1479 /*
1480 * EBUSY is ok: this just means that another thread
1481 * already did the job.
1482 */
1483 ret = VM_FAULT_NOPAGE;
1484 break;
1485 case -ENOMEM:
1486 ret = VM_FAULT_OOM;
1487 break;
1488 case -ENOSPC:
1489 case -EFAULT:
1490 ret = VM_FAULT_SIGBUS;
1491 break;
1492 default:
1493 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1494 ret = VM_FAULT_SIGBUS;
1495 break;
1496 }
1497
1498 intel_runtime_pm_put(dev_priv);
1499 return ret;
1500 }
1501
1502 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1503 {
1504 struct i915_vma *vma;
1505
1506 /*
1507 * Only the global gtt is relevant for gtt memory mappings, so restrict
1508 * list traversal to objects bound into the global address space. Note
1509 * that the active list should be empty, but better safe than sorry.
1510 */
1511 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1512 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1513 i915_gem_release_mmap(vma->obj);
1514 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1515 i915_gem_release_mmap(vma->obj);
1516 }
1517
1518 /**
1519 * i915_gem_release_mmap - remove physical page mappings
1520 * @obj: obj in question
1521 *
1522 * Preserve the reservation of the mmapping with the DRM core code, but
1523 * relinquish ownership of the pages back to the system.
1524 *
1525 * It is vital that we remove the page mapping if we have mapped a tiled
1526 * object through the GTT and then lose the fence register due to
1527 * resource pressure. Similarly if the object has been moved out of the
1528 * aperture, than pages mapped into userspace must be revoked. Removing the
1529 * mapping will then trigger a page fault on the next user access, allowing
1530 * fixup by i915_gem_fault().
1531 */
1532 void
1533 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1534 {
1535 if (!obj->fault_mappable)
1536 return;
1537
1538 drm_vma_node_unmap(&obj->base.vma_node,
1539 obj->base.dev->anon_inode->i_mapping);
1540 obj->fault_mappable = false;
1541 }
1542
1543 uint32_t
1544 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1545 {
1546 uint32_t gtt_size;
1547
1548 if (INTEL_INFO(dev)->gen >= 4 ||
1549 tiling_mode == I915_TILING_NONE)
1550 return size;
1551
1552 /* Previous chips need a power-of-two fence region when tiling */
1553 if (INTEL_INFO(dev)->gen == 3)
1554 gtt_size = 1024*1024;
1555 else
1556 gtt_size = 512*1024;
1557
1558 while (gtt_size < size)
1559 gtt_size <<= 1;
1560
1561 return gtt_size;
1562 }
1563
1564 /**
1565 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1566 * @obj: object to check
1567 *
1568 * Return the required GTT alignment for an object, taking into account
1569 * potential fence register mapping.
1570 */
1571 uint32_t
1572 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1573 int tiling_mode, bool fenced)
1574 {
1575 /*
1576 * Minimum alignment is 4k (GTT page size), but might be greater
1577 * if a fence register is needed for the object.
1578 */
1579 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1580 tiling_mode == I915_TILING_NONE)
1581 return 4096;
1582
1583 /*
1584 * Previous chips need to be aligned to the size of the smallest
1585 * fence register that can contain the object.
1586 */
1587 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1588 }
1589
1590 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1591 {
1592 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1593 int ret;
1594
1595 if (drm_vma_node_has_offset(&obj->base.vma_node))
1596 return 0;
1597
1598 dev_priv->mm.shrinker_no_lock_stealing = true;
1599
1600 ret = drm_gem_create_mmap_offset(&obj->base);
1601 if (ret != -ENOSPC)
1602 goto out;
1603
1604 /* Badly fragmented mmap space? The only way we can recover
1605 * space is by destroying unwanted objects. We can't randomly release
1606 * mmap_offsets as userspace expects them to be persistent for the
1607 * lifetime of the objects. The closest we can is to release the
1608 * offsets on purgeable objects by truncating it and marking it purged,
1609 * which prevents userspace from ever using that object again.
1610 */
1611 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1612 ret = drm_gem_create_mmap_offset(&obj->base);
1613 if (ret != -ENOSPC)
1614 goto out;
1615
1616 i915_gem_shrink_all(dev_priv);
1617 ret = drm_gem_create_mmap_offset(&obj->base);
1618 out:
1619 dev_priv->mm.shrinker_no_lock_stealing = false;
1620
1621 return ret;
1622 }
1623
1624 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1625 {
1626 drm_gem_free_mmap_offset(&obj->base);
1627 }
1628
1629 int
1630 i915_gem_mmap_gtt(struct drm_file *file,
1631 struct drm_device *dev,
1632 uint32_t handle,
1633 uint64_t *offset)
1634 {
1635 struct drm_i915_private *dev_priv = dev->dev_private;
1636 struct drm_i915_gem_object *obj;
1637 int ret;
1638
1639 ret = i915_mutex_lock_interruptible(dev);
1640 if (ret)
1641 return ret;
1642
1643 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1644 if (&obj->base == NULL) {
1645 ret = -ENOENT;
1646 goto unlock;
1647 }
1648
1649 if (obj->base.size > dev_priv->gtt.mappable_end) {
1650 ret = -E2BIG;
1651 goto out;
1652 }
1653
1654 if (obj->madv != I915_MADV_WILLNEED) {
1655 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1656 ret = -EFAULT;
1657 goto out;
1658 }
1659
1660 ret = i915_gem_object_create_mmap_offset(obj);
1661 if (ret)
1662 goto out;
1663
1664 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1665
1666 out:
1667 drm_gem_object_unreference(&obj->base);
1668 unlock:
1669 mutex_unlock(&dev->struct_mutex);
1670 return ret;
1671 }
1672
1673 /**
1674 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1675 * @dev: DRM device
1676 * @data: GTT mapping ioctl data
1677 * @file: GEM object info
1678 *
1679 * Simply returns the fake offset to userspace so it can mmap it.
1680 * The mmap call will end up in drm_gem_mmap(), which will set things
1681 * up so we can get faults in the handler above.
1682 *
1683 * The fault handler will take care of binding the object into the GTT
1684 * (since it may have been evicted to make room for something), allocating
1685 * a fence register, and mapping the appropriate aperture address into
1686 * userspace.
1687 */
1688 int
1689 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1690 struct drm_file *file)
1691 {
1692 struct drm_i915_gem_mmap_gtt *args = data;
1693
1694 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1695 }
1696
1697 static inline int
1698 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1699 {
1700 return obj->madv == I915_MADV_DONTNEED;
1701 }
1702
1703 /* Immediately discard the backing storage */
1704 static void
1705 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1706 {
1707 i915_gem_object_free_mmap_offset(obj);
1708
1709 if (obj->base.filp == NULL)
1710 return;
1711
1712 /* Our goal here is to return as much of the memory as
1713 * is possible back to the system as we are called from OOM.
1714 * To do this we must instruct the shmfs to drop all of its
1715 * backing pages, *now*.
1716 */
1717 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1718 obj->madv = __I915_MADV_PURGED;
1719 }
1720
1721 /* Try to discard unwanted pages */
1722 static void
1723 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1724 {
1725 struct address_space *mapping;
1726
1727 switch (obj->madv) {
1728 case I915_MADV_DONTNEED:
1729 i915_gem_object_truncate(obj);
1730 case __I915_MADV_PURGED:
1731 return;
1732 }
1733
1734 if (obj->base.filp == NULL)
1735 return;
1736
1737 mapping = file_inode(obj->base.filp)->i_mapping,
1738 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1739 }
1740
1741 static void
1742 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744 struct sg_page_iter sg_iter;
1745 int ret;
1746
1747 BUG_ON(obj->madv == __I915_MADV_PURGED);
1748
1749 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1750 if (ret) {
1751 /* In the event of a disaster, abandon all caches and
1752 * hope for the best.
1753 */
1754 WARN_ON(ret != -EIO);
1755 i915_gem_clflush_object(obj, true);
1756 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1757 }
1758
1759 if (i915_gem_object_needs_bit17_swizzle(obj))
1760 i915_gem_object_save_bit_17_swizzle(obj);
1761
1762 if (obj->madv == I915_MADV_DONTNEED)
1763 obj->dirty = 0;
1764
1765 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1766 struct page *page = sg_page_iter_page(&sg_iter);
1767
1768 if (obj->dirty)
1769 set_page_dirty(page);
1770
1771 if (obj->madv == I915_MADV_WILLNEED)
1772 mark_page_accessed(page);
1773
1774 page_cache_release(page);
1775 }
1776 obj->dirty = 0;
1777
1778 sg_free_table(obj->pages);
1779 kfree(obj->pages);
1780 }
1781
1782 int
1783 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1784 {
1785 const struct drm_i915_gem_object_ops *ops = obj->ops;
1786
1787 if (obj->pages == NULL)
1788 return 0;
1789
1790 if (obj->pages_pin_count)
1791 return -EBUSY;
1792
1793 BUG_ON(i915_gem_obj_bound_any(obj));
1794
1795 /* ->put_pages might need to allocate memory for the bit17 swizzle
1796 * array, hence protect them from being reaped by removing them from gtt
1797 * lists early. */
1798 list_del(&obj->global_list);
1799
1800 ops->put_pages(obj);
1801 obj->pages = NULL;
1802
1803 i915_gem_object_invalidate(obj);
1804
1805 return 0;
1806 }
1807
1808 static unsigned long
1809 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1810 bool purgeable_only)
1811 {
1812 struct list_head still_in_list;
1813 struct drm_i915_gem_object *obj;
1814 unsigned long count = 0;
1815
1816 /*
1817 * As we may completely rewrite the (un)bound list whilst unbinding
1818 * (due to retiring requests) we have to strictly process only
1819 * one element of the list at the time, and recheck the list
1820 * on every iteration.
1821 *
1822 * In particular, we must hold a reference whilst removing the
1823 * object as we may end up waiting for and/or retiring the objects.
1824 * This might release the final reference (held by the active list)
1825 * and result in the object being freed from under us. This is
1826 * similar to the precautions the eviction code must take whilst
1827 * removing objects.
1828 *
1829 * Also note that although these lists do not hold a reference to
1830 * the object we can safely grab one here: The final object
1831 * unreferencing and the bound_list are both protected by the
1832 * dev->struct_mutex and so we won't ever be able to observe an
1833 * object on the bound_list with a reference count equals 0.
1834 */
1835 INIT_LIST_HEAD(&still_in_list);
1836 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1837 obj = list_first_entry(&dev_priv->mm.unbound_list,
1838 typeof(*obj), global_list);
1839 list_move_tail(&obj->global_list, &still_in_list);
1840
1841 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1842 continue;
1843
1844 drm_gem_object_reference(&obj->base);
1845
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 count += obj->base.size >> PAGE_SHIFT;
1848
1849 drm_gem_object_unreference(&obj->base);
1850 }
1851 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1852
1853 INIT_LIST_HEAD(&still_in_list);
1854 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1855 struct i915_vma *vma, *v;
1856
1857 obj = list_first_entry(&dev_priv->mm.bound_list,
1858 typeof(*obj), global_list);
1859 list_move_tail(&obj->global_list, &still_in_list);
1860
1861 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1862 continue;
1863
1864 drm_gem_object_reference(&obj->base);
1865
1866 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1867 if (i915_vma_unbind(vma))
1868 break;
1869
1870 if (i915_gem_object_put_pages(obj) == 0)
1871 count += obj->base.size >> PAGE_SHIFT;
1872
1873 drm_gem_object_unreference(&obj->base);
1874 }
1875 list_splice(&still_in_list, &dev_priv->mm.bound_list);
1876
1877 return count;
1878 }
1879
1880 static unsigned long
1881 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1882 {
1883 return __i915_gem_shrink(dev_priv, target, true);
1884 }
1885
1886 static unsigned long
1887 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1888 {
1889 i915_gem_evict_everything(dev_priv->dev);
1890 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
1891 }
1892
1893 static int
1894 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1895 {
1896 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1897 int page_count, i;
1898 struct address_space *mapping;
1899 struct sg_table *st;
1900 struct scatterlist *sg;
1901 struct sg_page_iter sg_iter;
1902 struct page *page;
1903 unsigned long last_pfn = 0; /* suppress gcc warning */
1904 gfp_t gfp;
1905
1906 /* Assert that the object is not currently in any GPU domain. As it
1907 * wasn't in the GTT, there shouldn't be any way it could have been in
1908 * a GPU cache
1909 */
1910 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1911 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1912
1913 st = kmalloc(sizeof(*st), GFP_KERNEL);
1914 if (st == NULL)
1915 return -ENOMEM;
1916
1917 page_count = obj->base.size / PAGE_SIZE;
1918 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1919 kfree(st);
1920 return -ENOMEM;
1921 }
1922
1923 /* Get the list of pages out of our struct file. They'll be pinned
1924 * at this point until we release them.
1925 *
1926 * Fail silently without starting the shrinker
1927 */
1928 mapping = file_inode(obj->base.filp)->i_mapping;
1929 gfp = mapping_gfp_mask(mapping);
1930 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1931 gfp &= ~(__GFP_IO | __GFP_WAIT);
1932 sg = st->sgl;
1933 st->nents = 0;
1934 for (i = 0; i < page_count; i++) {
1935 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1936 if (IS_ERR(page)) {
1937 i915_gem_purge(dev_priv, page_count);
1938 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1939 }
1940 if (IS_ERR(page)) {
1941 /* We've tried hard to allocate the memory by reaping
1942 * our own buffer, now let the real VM do its job and
1943 * go down in flames if truly OOM.
1944 */
1945 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1946 gfp |= __GFP_IO | __GFP_WAIT;
1947
1948 i915_gem_shrink_all(dev_priv);
1949 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1950 if (IS_ERR(page))
1951 goto err_pages;
1952
1953 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1954 gfp &= ~(__GFP_IO | __GFP_WAIT);
1955 }
1956 #ifdef CONFIG_SWIOTLB
1957 if (swiotlb_nr_tbl()) {
1958 st->nents++;
1959 sg_set_page(sg, page, PAGE_SIZE, 0);
1960 sg = sg_next(sg);
1961 continue;
1962 }
1963 #endif
1964 if (!i || page_to_pfn(page) != last_pfn + 1) {
1965 if (i)
1966 sg = sg_next(sg);
1967 st->nents++;
1968 sg_set_page(sg, page, PAGE_SIZE, 0);
1969 } else {
1970 sg->length += PAGE_SIZE;
1971 }
1972 last_pfn = page_to_pfn(page);
1973
1974 /* Check that the i965g/gm workaround works. */
1975 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1976 }
1977 #ifdef CONFIG_SWIOTLB
1978 if (!swiotlb_nr_tbl())
1979 #endif
1980 sg_mark_end(sg);
1981 obj->pages = st;
1982
1983 if (i915_gem_object_needs_bit17_swizzle(obj))
1984 i915_gem_object_do_bit_17_swizzle(obj);
1985
1986 return 0;
1987
1988 err_pages:
1989 sg_mark_end(sg);
1990 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1991 page_cache_release(sg_page_iter_page(&sg_iter));
1992 sg_free_table(st);
1993 kfree(st);
1994
1995 /* shmemfs first checks if there is enough memory to allocate the page
1996 * and reports ENOSPC should there be insufficient, along with the usual
1997 * ENOMEM for a genuine allocation failure.
1998 *
1999 * We use ENOSPC in our driver to mean that we have run out of aperture
2000 * space and so want to translate the error from shmemfs back to our
2001 * usual understanding of ENOMEM.
2002 */
2003 if (PTR_ERR(page) == -ENOSPC)
2004 return -ENOMEM;
2005 else
2006 return PTR_ERR(page);
2007 }
2008
2009 /* Ensure that the associated pages are gathered from the backing storage
2010 * and pinned into our object. i915_gem_object_get_pages() may be called
2011 * multiple times before they are released by a single call to
2012 * i915_gem_object_put_pages() - once the pages are no longer referenced
2013 * either as a result of memory pressure (reaping pages under the shrinker)
2014 * or as the object is itself released.
2015 */
2016 int
2017 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2018 {
2019 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2020 const struct drm_i915_gem_object_ops *ops = obj->ops;
2021 int ret;
2022
2023 if (obj->pages)
2024 return 0;
2025
2026 if (obj->madv != I915_MADV_WILLNEED) {
2027 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2028 return -EFAULT;
2029 }
2030
2031 BUG_ON(obj->pages_pin_count);
2032
2033 ret = ops->get_pages(obj);
2034 if (ret)
2035 return ret;
2036
2037 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2038 return 0;
2039 }
2040
2041 static void
2042 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2043 struct intel_engine_cs *ring)
2044 {
2045 struct drm_device *dev = obj->base.dev;
2046 struct drm_i915_private *dev_priv = dev->dev_private;
2047 u32 seqno = intel_ring_get_seqno(ring);
2048
2049 BUG_ON(ring == NULL);
2050 if (obj->ring != ring && obj->last_write_seqno) {
2051 /* Keep the seqno relative to the current ring */
2052 obj->last_write_seqno = seqno;
2053 }
2054 obj->ring = ring;
2055
2056 /* Add a reference if we're newly entering the active list. */
2057 if (!obj->active) {
2058 drm_gem_object_reference(&obj->base);
2059 obj->active = 1;
2060 }
2061
2062 list_move_tail(&obj->ring_list, &ring->active_list);
2063
2064 obj->last_read_seqno = seqno;
2065
2066 if (obj->fenced_gpu_access) {
2067 obj->last_fenced_seqno = seqno;
2068
2069 /* Bump MRU to take account of the delayed flush */
2070 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2071 struct drm_i915_fence_reg *reg;
2072
2073 reg = &dev_priv->fence_regs[obj->fence_reg];
2074 list_move_tail(&reg->lru_list,
2075 &dev_priv->mm.fence_list);
2076 }
2077 }
2078 }
2079
2080 void i915_vma_move_to_active(struct i915_vma *vma,
2081 struct intel_engine_cs *ring)
2082 {
2083 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2084 return i915_gem_object_move_to_active(vma->obj, ring);
2085 }
2086
2087 static void
2088 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2089 {
2090 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2091 struct i915_address_space *vm;
2092 struct i915_vma *vma;
2093
2094 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2095 BUG_ON(!obj->active);
2096
2097 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2098 vma = i915_gem_obj_to_vma(obj, vm);
2099 if (vma && !list_empty(&vma->mm_list))
2100 list_move_tail(&vma->mm_list, &vm->inactive_list);
2101 }
2102
2103 list_del_init(&obj->ring_list);
2104 obj->ring = NULL;
2105
2106 obj->last_read_seqno = 0;
2107 obj->last_write_seqno = 0;
2108 obj->base.write_domain = 0;
2109
2110 obj->last_fenced_seqno = 0;
2111 obj->fenced_gpu_access = false;
2112
2113 obj->active = 0;
2114 drm_gem_object_unreference(&obj->base);
2115
2116 WARN_ON(i915_verify_lists(dev));
2117 }
2118
2119 static void
2120 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2121 {
2122 struct intel_engine_cs *ring = obj->ring;
2123
2124 if (ring == NULL)
2125 return;
2126
2127 if (i915_seqno_passed(ring->get_seqno(ring, true),
2128 obj->last_read_seqno))
2129 i915_gem_object_move_to_inactive(obj);
2130 }
2131
2132 static int
2133 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2134 {
2135 struct drm_i915_private *dev_priv = dev->dev_private;
2136 struct intel_engine_cs *ring;
2137 int ret, i, j;
2138
2139 /* Carefully retire all requests without writing to the rings */
2140 for_each_ring(ring, dev_priv, i) {
2141 ret = intel_ring_idle(ring);
2142 if (ret)
2143 return ret;
2144 }
2145 i915_gem_retire_requests(dev);
2146
2147 /* Finally reset hw state */
2148 for_each_ring(ring, dev_priv, i) {
2149 intel_ring_init_seqno(ring, seqno);
2150
2151 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2152 ring->semaphore.sync_seqno[j] = 0;
2153 }
2154
2155 return 0;
2156 }
2157
2158 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2159 {
2160 struct drm_i915_private *dev_priv = dev->dev_private;
2161 int ret;
2162
2163 if (seqno == 0)
2164 return -EINVAL;
2165
2166 /* HWS page needs to be set less than what we
2167 * will inject to ring
2168 */
2169 ret = i915_gem_init_seqno(dev, seqno - 1);
2170 if (ret)
2171 return ret;
2172
2173 /* Carefully set the last_seqno value so that wrap
2174 * detection still works
2175 */
2176 dev_priv->next_seqno = seqno;
2177 dev_priv->last_seqno = seqno - 1;
2178 if (dev_priv->last_seqno == 0)
2179 dev_priv->last_seqno--;
2180
2181 return 0;
2182 }
2183
2184 int
2185 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2186 {
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188
2189 /* reserve 0 for non-seqno */
2190 if (dev_priv->next_seqno == 0) {
2191 int ret = i915_gem_init_seqno(dev, 0);
2192 if (ret)
2193 return ret;
2194
2195 dev_priv->next_seqno = 1;
2196 }
2197
2198 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2199 return 0;
2200 }
2201
2202 int __i915_add_request(struct intel_engine_cs *ring,
2203 struct drm_file *file,
2204 struct drm_i915_gem_object *obj,
2205 u32 *out_seqno)
2206 {
2207 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2208 struct drm_i915_gem_request *request;
2209 u32 request_ring_position, request_start;
2210 int ret;
2211
2212 request_start = intel_ring_get_tail(ring);
2213 /*
2214 * Emit any outstanding flushes - execbuf can fail to emit the flush
2215 * after having emitted the batchbuffer command. Hence we need to fix
2216 * things up similar to emitting the lazy request. The difference here
2217 * is that the flush _must_ happen before the next request, no matter
2218 * what.
2219 */
2220 ret = intel_ring_flush_all_caches(ring);
2221 if (ret)
2222 return ret;
2223
2224 request = ring->preallocated_lazy_request;
2225 if (WARN_ON(request == NULL))
2226 return -ENOMEM;
2227
2228 /* Record the position of the start of the request so that
2229 * should we detect the updated seqno part-way through the
2230 * GPU processing the request, we never over-estimate the
2231 * position of the head.
2232 */
2233 request_ring_position = intel_ring_get_tail(ring);
2234
2235 ret = ring->add_request(ring);
2236 if (ret)
2237 return ret;
2238
2239 request->seqno = intel_ring_get_seqno(ring);
2240 request->ring = ring;
2241 request->head = request_start;
2242 request->tail = request_ring_position;
2243
2244 /* Whilst this request exists, batch_obj will be on the
2245 * active_list, and so will hold the active reference. Only when this
2246 * request is retired will the the batch_obj be moved onto the
2247 * inactive_list and lose its active reference. Hence we do not need
2248 * to explicitly hold another reference here.
2249 */
2250 request->batch_obj = obj;
2251
2252 /* Hold a reference to the current context so that we can inspect
2253 * it later in case a hangcheck error event fires.
2254 */
2255 request->ctx = ring->last_context;
2256 if (request->ctx)
2257 i915_gem_context_reference(request->ctx);
2258
2259 request->emitted_jiffies = jiffies;
2260 list_add_tail(&request->list, &ring->request_list);
2261 request->file_priv = NULL;
2262
2263 if (file) {
2264 struct drm_i915_file_private *file_priv = file->driver_priv;
2265
2266 spin_lock(&file_priv->mm.lock);
2267 request->file_priv = file_priv;
2268 list_add_tail(&request->client_list,
2269 &file_priv->mm.request_list);
2270 spin_unlock(&file_priv->mm.lock);
2271 }
2272
2273 trace_i915_gem_request_add(ring, request->seqno);
2274 ring->outstanding_lazy_seqno = 0;
2275 ring->preallocated_lazy_request = NULL;
2276
2277 if (!dev_priv->ums.mm_suspended) {
2278 i915_queue_hangcheck(ring->dev);
2279
2280 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2281 queue_delayed_work(dev_priv->wq,
2282 &dev_priv->mm.retire_work,
2283 round_jiffies_up_relative(HZ));
2284 intel_mark_busy(dev_priv->dev);
2285 }
2286
2287 if (out_seqno)
2288 *out_seqno = request->seqno;
2289 return 0;
2290 }
2291
2292 static inline void
2293 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2294 {
2295 struct drm_i915_file_private *file_priv = request->file_priv;
2296
2297 if (!file_priv)
2298 return;
2299
2300 spin_lock(&file_priv->mm.lock);
2301 list_del(&request->client_list);
2302 request->file_priv = NULL;
2303 spin_unlock(&file_priv->mm.lock);
2304 }
2305
2306 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2307 const struct intel_context *ctx)
2308 {
2309 unsigned long elapsed;
2310
2311 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2312
2313 if (ctx->hang_stats.banned)
2314 return true;
2315
2316 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2317 if (!i915_gem_context_is_default(ctx)) {
2318 DRM_DEBUG("context hanging too fast, banning!\n");
2319 return true;
2320 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2321 if (i915_stop_ring_allow_warn(dev_priv))
2322 DRM_ERROR("gpu hanging too fast, banning!\n");
2323 return true;
2324 }
2325 }
2326
2327 return false;
2328 }
2329
2330 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2331 struct intel_context *ctx,
2332 const bool guilty)
2333 {
2334 struct i915_ctx_hang_stats *hs;
2335
2336 if (WARN_ON(!ctx))
2337 return;
2338
2339 hs = &ctx->hang_stats;
2340
2341 if (guilty) {
2342 hs->banned = i915_context_is_banned(dev_priv, ctx);
2343 hs->batch_active++;
2344 hs->guilty_ts = get_seconds();
2345 } else {
2346 hs->batch_pending++;
2347 }
2348 }
2349
2350 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2351 {
2352 list_del(&request->list);
2353 i915_gem_request_remove_from_client(request);
2354
2355 if (request->ctx)
2356 i915_gem_context_unreference(request->ctx);
2357
2358 kfree(request);
2359 }
2360
2361 struct drm_i915_gem_request *
2362 i915_gem_find_active_request(struct intel_engine_cs *ring)
2363 {
2364 struct drm_i915_gem_request *request;
2365 u32 completed_seqno;
2366
2367 completed_seqno = ring->get_seqno(ring, false);
2368
2369 list_for_each_entry(request, &ring->request_list, list) {
2370 if (i915_seqno_passed(completed_seqno, request->seqno))
2371 continue;
2372
2373 return request;
2374 }
2375
2376 return NULL;
2377 }
2378
2379 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2380 struct intel_engine_cs *ring)
2381 {
2382 struct drm_i915_gem_request *request;
2383 bool ring_hung;
2384
2385 request = i915_gem_find_active_request(ring);
2386
2387 if (request == NULL)
2388 return;
2389
2390 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2391
2392 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2393
2394 list_for_each_entry_continue(request, &ring->request_list, list)
2395 i915_set_reset_status(dev_priv, request->ctx, false);
2396 }
2397
2398 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2399 struct intel_engine_cs *ring)
2400 {
2401 while (!list_empty(&ring->active_list)) {
2402 struct drm_i915_gem_object *obj;
2403
2404 obj = list_first_entry(&ring->active_list,
2405 struct drm_i915_gem_object,
2406 ring_list);
2407
2408 i915_gem_object_move_to_inactive(obj);
2409 }
2410
2411 /*
2412 * We must free the requests after all the corresponding objects have
2413 * been moved off active lists. Which is the same order as the normal
2414 * retire_requests function does. This is important if object hold
2415 * implicit references on things like e.g. ppgtt address spaces through
2416 * the request.
2417 */
2418 while (!list_empty(&ring->request_list)) {
2419 struct drm_i915_gem_request *request;
2420
2421 request = list_first_entry(&ring->request_list,
2422 struct drm_i915_gem_request,
2423 list);
2424
2425 i915_gem_free_request(request);
2426 }
2427
2428 /* These may not have been flush before the reset, do so now */
2429 kfree(ring->preallocated_lazy_request);
2430 ring->preallocated_lazy_request = NULL;
2431 ring->outstanding_lazy_seqno = 0;
2432 }
2433
2434 void i915_gem_restore_fences(struct drm_device *dev)
2435 {
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 int i;
2438
2439 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2440 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2441
2442 /*
2443 * Commit delayed tiling changes if we have an object still
2444 * attached to the fence, otherwise just clear the fence.
2445 */
2446 if (reg->obj) {
2447 i915_gem_object_update_fence(reg->obj, reg,
2448 reg->obj->tiling_mode);
2449 } else {
2450 i915_gem_write_fence(dev, i, NULL);
2451 }
2452 }
2453 }
2454
2455 void i915_gem_reset(struct drm_device *dev)
2456 {
2457 struct drm_i915_private *dev_priv = dev->dev_private;
2458 struct intel_engine_cs *ring;
2459 int i;
2460
2461 /*
2462 * Before we free the objects from the requests, we need to inspect
2463 * them for finding the guilty party. As the requests only borrow
2464 * their reference to the objects, the inspection must be done first.
2465 */
2466 for_each_ring(ring, dev_priv, i)
2467 i915_gem_reset_ring_status(dev_priv, ring);
2468
2469 for_each_ring(ring, dev_priv, i)
2470 i915_gem_reset_ring_cleanup(dev_priv, ring);
2471
2472 i915_gem_context_reset(dev);
2473
2474 i915_gem_restore_fences(dev);
2475 }
2476
2477 /**
2478 * This function clears the request list as sequence numbers are passed.
2479 */
2480 void
2481 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2482 {
2483 uint32_t seqno;
2484
2485 if (list_empty(&ring->request_list))
2486 return;
2487
2488 WARN_ON(i915_verify_lists(ring->dev));
2489
2490 seqno = ring->get_seqno(ring, true);
2491
2492 /* Move any buffers on the active list that are no longer referenced
2493 * by the ringbuffer to the flushing/inactive lists as appropriate,
2494 * before we free the context associated with the requests.
2495 */
2496 while (!list_empty(&ring->active_list)) {
2497 struct drm_i915_gem_object *obj;
2498
2499 obj = list_first_entry(&ring->active_list,
2500 struct drm_i915_gem_object,
2501 ring_list);
2502
2503 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2504 break;
2505
2506 i915_gem_object_move_to_inactive(obj);
2507 }
2508
2509
2510 while (!list_empty(&ring->request_list)) {
2511 struct drm_i915_gem_request *request;
2512
2513 request = list_first_entry(&ring->request_list,
2514 struct drm_i915_gem_request,
2515 list);
2516
2517 if (!i915_seqno_passed(seqno, request->seqno))
2518 break;
2519
2520 trace_i915_gem_request_retire(ring, request->seqno);
2521 /* We know the GPU must have read the request to have
2522 * sent us the seqno + interrupt, so use the position
2523 * of tail of the request to update the last known position
2524 * of the GPU head.
2525 */
2526 ring->buffer->last_retired_head = request->tail;
2527
2528 i915_gem_free_request(request);
2529 }
2530
2531 if (unlikely(ring->trace_irq_seqno &&
2532 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2533 ring->irq_put(ring);
2534 ring->trace_irq_seqno = 0;
2535 }
2536
2537 WARN_ON(i915_verify_lists(ring->dev));
2538 }
2539
2540 bool
2541 i915_gem_retire_requests(struct drm_device *dev)
2542 {
2543 struct drm_i915_private *dev_priv = dev->dev_private;
2544 struct intel_engine_cs *ring;
2545 bool idle = true;
2546 int i;
2547
2548 for_each_ring(ring, dev_priv, i) {
2549 i915_gem_retire_requests_ring(ring);
2550 idle &= list_empty(&ring->request_list);
2551 }
2552
2553 if (idle)
2554 mod_delayed_work(dev_priv->wq,
2555 &dev_priv->mm.idle_work,
2556 msecs_to_jiffies(100));
2557
2558 return idle;
2559 }
2560
2561 static void
2562 i915_gem_retire_work_handler(struct work_struct *work)
2563 {
2564 struct drm_i915_private *dev_priv =
2565 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2566 struct drm_device *dev = dev_priv->dev;
2567 bool idle;
2568
2569 /* Come back later if the device is busy... */
2570 idle = false;
2571 if (mutex_trylock(&dev->struct_mutex)) {
2572 idle = i915_gem_retire_requests(dev);
2573 mutex_unlock(&dev->struct_mutex);
2574 }
2575 if (!idle)
2576 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2577 round_jiffies_up_relative(HZ));
2578 }
2579
2580 static void
2581 i915_gem_idle_work_handler(struct work_struct *work)
2582 {
2583 struct drm_i915_private *dev_priv =
2584 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2585
2586 intel_mark_idle(dev_priv->dev);
2587 }
2588
2589 /**
2590 * Ensures that an object will eventually get non-busy by flushing any required
2591 * write domains, emitting any outstanding lazy request and retiring and
2592 * completed requests.
2593 */
2594 static int
2595 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2596 {
2597 int ret;
2598
2599 if (obj->active) {
2600 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2601 if (ret)
2602 return ret;
2603
2604 i915_gem_retire_requests_ring(obj->ring);
2605 }
2606
2607 return 0;
2608 }
2609
2610 /**
2611 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2612 * @DRM_IOCTL_ARGS: standard ioctl arguments
2613 *
2614 * Returns 0 if successful, else an error is returned with the remaining time in
2615 * the timeout parameter.
2616 * -ETIME: object is still busy after timeout
2617 * -ERESTARTSYS: signal interrupted the wait
2618 * -ENONENT: object doesn't exist
2619 * Also possible, but rare:
2620 * -EAGAIN: GPU wedged
2621 * -ENOMEM: damn
2622 * -ENODEV: Internal IRQ fail
2623 * -E?: The add request failed
2624 *
2625 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2626 * non-zero timeout parameter the wait ioctl will wait for the given number of
2627 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2628 * without holding struct_mutex the object may become re-busied before this
2629 * function completes. A similar but shorter * race condition exists in the busy
2630 * ioctl
2631 */
2632 int
2633 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2634 {
2635 struct drm_i915_private *dev_priv = dev->dev_private;
2636 struct drm_i915_gem_wait *args = data;
2637 struct drm_i915_gem_object *obj;
2638 struct intel_engine_cs *ring = NULL;
2639 struct timespec timeout_stack, *timeout = NULL;
2640 unsigned reset_counter;
2641 u32 seqno = 0;
2642 int ret = 0;
2643
2644 if (args->timeout_ns >= 0) {
2645 timeout_stack = ns_to_timespec(args->timeout_ns);
2646 timeout = &timeout_stack;
2647 }
2648
2649 ret = i915_mutex_lock_interruptible(dev);
2650 if (ret)
2651 return ret;
2652
2653 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2654 if (&obj->base == NULL) {
2655 mutex_unlock(&dev->struct_mutex);
2656 return -ENOENT;
2657 }
2658
2659 /* Need to make sure the object gets inactive eventually. */
2660 ret = i915_gem_object_flush_active(obj);
2661 if (ret)
2662 goto out;
2663
2664 if (obj->active) {
2665 seqno = obj->last_read_seqno;
2666 ring = obj->ring;
2667 }
2668
2669 if (seqno == 0)
2670 goto out;
2671
2672 /* Do this after OLR check to make sure we make forward progress polling
2673 * on this IOCTL with a 0 timeout (like busy ioctl)
2674 */
2675 if (!args->timeout_ns) {
2676 ret = -ETIME;
2677 goto out;
2678 }
2679
2680 drm_gem_object_unreference(&obj->base);
2681 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2682 mutex_unlock(&dev->struct_mutex);
2683
2684 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2685 if (timeout)
2686 args->timeout_ns = timespec_to_ns(timeout);
2687 return ret;
2688
2689 out:
2690 drm_gem_object_unreference(&obj->base);
2691 mutex_unlock(&dev->struct_mutex);
2692 return ret;
2693 }
2694
2695 /**
2696 * i915_gem_object_sync - sync an object to a ring.
2697 *
2698 * @obj: object which may be in use on another ring.
2699 * @to: ring we wish to use the object on. May be NULL.
2700 *
2701 * This code is meant to abstract object synchronization with the GPU.
2702 * Calling with NULL implies synchronizing the object with the CPU
2703 * rather than a particular GPU ring.
2704 *
2705 * Returns 0 if successful, else propagates up the lower layer error.
2706 */
2707 int
2708 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2709 struct intel_engine_cs *to)
2710 {
2711 struct intel_engine_cs *from = obj->ring;
2712 u32 seqno;
2713 int ret, idx;
2714
2715 if (from == NULL || to == from)
2716 return 0;
2717
2718 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2719 return i915_gem_object_wait_rendering(obj, false);
2720
2721 idx = intel_ring_sync_index(from, to);
2722
2723 seqno = obj->last_read_seqno;
2724 if (seqno <= from->semaphore.sync_seqno[idx])
2725 return 0;
2726
2727 ret = i915_gem_check_olr(obj->ring, seqno);
2728 if (ret)
2729 return ret;
2730
2731 trace_i915_gem_ring_sync_to(from, to, seqno);
2732 ret = to->semaphore.sync_to(to, from, seqno);
2733 if (!ret)
2734 /* We use last_read_seqno because sync_to()
2735 * might have just caused seqno wrap under
2736 * the radar.
2737 */
2738 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2739
2740 return ret;
2741 }
2742
2743 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2744 {
2745 u32 old_write_domain, old_read_domains;
2746
2747 /* Force a pagefault for domain tracking on next user access */
2748 i915_gem_release_mmap(obj);
2749
2750 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2751 return;
2752
2753 /* Wait for any direct GTT access to complete */
2754 mb();
2755
2756 old_read_domains = obj->base.read_domains;
2757 old_write_domain = obj->base.write_domain;
2758
2759 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2760 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2761
2762 trace_i915_gem_object_change_domain(obj,
2763 old_read_domains,
2764 old_write_domain);
2765 }
2766
2767 int i915_vma_unbind(struct i915_vma *vma)
2768 {
2769 struct drm_i915_gem_object *obj = vma->obj;
2770 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2771 int ret;
2772
2773 if (list_empty(&vma->vma_link))
2774 return 0;
2775
2776 if (!drm_mm_node_allocated(&vma->node)) {
2777 i915_gem_vma_destroy(vma);
2778 return 0;
2779 }
2780
2781 if (vma->pin_count)
2782 return -EBUSY;
2783
2784 BUG_ON(obj->pages == NULL);
2785
2786 ret = i915_gem_object_finish_gpu(obj);
2787 if (ret)
2788 return ret;
2789 /* Continue on if we fail due to EIO, the GPU is hung so we
2790 * should be safe and we need to cleanup or else we might
2791 * cause memory corruption through use-after-free.
2792 */
2793
2794 if (i915_is_ggtt(vma->vm)) {
2795 i915_gem_object_finish_gtt(obj);
2796
2797 /* release the fence reg _after_ flushing */
2798 ret = i915_gem_object_put_fence(obj);
2799 if (ret)
2800 return ret;
2801 }
2802
2803 trace_i915_vma_unbind(vma);
2804
2805 vma->unbind_vma(vma);
2806
2807 i915_gem_gtt_finish_object(obj);
2808
2809 list_del_init(&vma->mm_list);
2810 /* Avoid an unnecessary call to unbind on rebind. */
2811 if (i915_is_ggtt(vma->vm))
2812 obj->map_and_fenceable = true;
2813
2814 drm_mm_remove_node(&vma->node);
2815 i915_gem_vma_destroy(vma);
2816
2817 /* Since the unbound list is global, only move to that list if
2818 * no more VMAs exist. */
2819 if (list_empty(&obj->vma_list))
2820 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2821
2822 /* And finally now the object is completely decoupled from this vma,
2823 * we can drop its hold on the backing storage and allow it to be
2824 * reaped by the shrinker.
2825 */
2826 i915_gem_object_unpin_pages(obj);
2827
2828 return 0;
2829 }
2830
2831 int i915_gpu_idle(struct drm_device *dev)
2832 {
2833 struct drm_i915_private *dev_priv = dev->dev_private;
2834 struct intel_engine_cs *ring;
2835 int ret, i;
2836
2837 /* Flush everything onto the inactive list. */
2838 for_each_ring(ring, dev_priv, i) {
2839 ret = i915_switch_context(ring, ring->default_context);
2840 if (ret)
2841 return ret;
2842
2843 ret = intel_ring_idle(ring);
2844 if (ret)
2845 return ret;
2846 }
2847
2848 return 0;
2849 }
2850
2851 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2852 struct drm_i915_gem_object *obj)
2853 {
2854 struct drm_i915_private *dev_priv = dev->dev_private;
2855 int fence_reg;
2856 int fence_pitch_shift;
2857
2858 if (INTEL_INFO(dev)->gen >= 6) {
2859 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2860 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2861 } else {
2862 fence_reg = FENCE_REG_965_0;
2863 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2864 }
2865
2866 fence_reg += reg * 8;
2867
2868 /* To w/a incoherency with non-atomic 64-bit register updates,
2869 * we split the 64-bit update into two 32-bit writes. In order
2870 * for a partial fence not to be evaluated between writes, we
2871 * precede the update with write to turn off the fence register,
2872 * and only enable the fence as the last step.
2873 *
2874 * For extra levels of paranoia, we make sure each step lands
2875 * before applying the next step.
2876 */
2877 I915_WRITE(fence_reg, 0);
2878 POSTING_READ(fence_reg);
2879
2880 if (obj) {
2881 u32 size = i915_gem_obj_ggtt_size(obj);
2882 uint64_t val;
2883
2884 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2885 0xfffff000) << 32;
2886 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2887 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2888 if (obj->tiling_mode == I915_TILING_Y)
2889 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2890 val |= I965_FENCE_REG_VALID;
2891
2892 I915_WRITE(fence_reg + 4, val >> 32);
2893 POSTING_READ(fence_reg + 4);
2894
2895 I915_WRITE(fence_reg + 0, val);
2896 POSTING_READ(fence_reg);
2897 } else {
2898 I915_WRITE(fence_reg + 4, 0);
2899 POSTING_READ(fence_reg + 4);
2900 }
2901 }
2902
2903 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2904 struct drm_i915_gem_object *obj)
2905 {
2906 struct drm_i915_private *dev_priv = dev->dev_private;
2907 u32 val;
2908
2909 if (obj) {
2910 u32 size = i915_gem_obj_ggtt_size(obj);
2911 int pitch_val;
2912 int tile_width;
2913
2914 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2915 (size & -size) != size ||
2916 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2917 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2918 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2919
2920 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2921 tile_width = 128;
2922 else
2923 tile_width = 512;
2924
2925 /* Note: pitch better be a power of two tile widths */
2926 pitch_val = obj->stride / tile_width;
2927 pitch_val = ffs(pitch_val) - 1;
2928
2929 val = i915_gem_obj_ggtt_offset(obj);
2930 if (obj->tiling_mode == I915_TILING_Y)
2931 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2932 val |= I915_FENCE_SIZE_BITS(size);
2933 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2934 val |= I830_FENCE_REG_VALID;
2935 } else
2936 val = 0;
2937
2938 if (reg < 8)
2939 reg = FENCE_REG_830_0 + reg * 4;
2940 else
2941 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2942
2943 I915_WRITE(reg, val);
2944 POSTING_READ(reg);
2945 }
2946
2947 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2948 struct drm_i915_gem_object *obj)
2949 {
2950 struct drm_i915_private *dev_priv = dev->dev_private;
2951 uint32_t val;
2952
2953 if (obj) {
2954 u32 size = i915_gem_obj_ggtt_size(obj);
2955 uint32_t pitch_val;
2956
2957 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2958 (size & -size) != size ||
2959 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2960 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2961 i915_gem_obj_ggtt_offset(obj), size);
2962
2963 pitch_val = obj->stride / 128;
2964 pitch_val = ffs(pitch_val) - 1;
2965
2966 val = i915_gem_obj_ggtt_offset(obj);
2967 if (obj->tiling_mode == I915_TILING_Y)
2968 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2969 val |= I830_FENCE_SIZE_BITS(size);
2970 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2971 val |= I830_FENCE_REG_VALID;
2972 } else
2973 val = 0;
2974
2975 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2976 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2977 }
2978
2979 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2980 {
2981 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2982 }
2983
2984 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2985 struct drm_i915_gem_object *obj)
2986 {
2987 struct drm_i915_private *dev_priv = dev->dev_private;
2988
2989 /* Ensure that all CPU reads are completed before installing a fence
2990 * and all writes before removing the fence.
2991 */
2992 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2993 mb();
2994
2995 WARN(obj && (!obj->stride || !obj->tiling_mode),
2996 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2997 obj->stride, obj->tiling_mode);
2998
2999 switch (INTEL_INFO(dev)->gen) {
3000 case 8:
3001 case 7:
3002 case 6:
3003 case 5:
3004 case 4: i965_write_fence_reg(dev, reg, obj); break;
3005 case 3: i915_write_fence_reg(dev, reg, obj); break;
3006 case 2: i830_write_fence_reg(dev, reg, obj); break;
3007 default: BUG();
3008 }
3009
3010 /* And similarly be paranoid that no direct access to this region
3011 * is reordered to before the fence is installed.
3012 */
3013 if (i915_gem_object_needs_mb(obj))
3014 mb();
3015 }
3016
3017 static inline int fence_number(struct drm_i915_private *dev_priv,
3018 struct drm_i915_fence_reg *fence)
3019 {
3020 return fence - dev_priv->fence_regs;
3021 }
3022
3023 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3024 struct drm_i915_fence_reg *fence,
3025 bool enable)
3026 {
3027 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3028 int reg = fence_number(dev_priv, fence);
3029
3030 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3031
3032 if (enable) {
3033 obj->fence_reg = reg;
3034 fence->obj = obj;
3035 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3036 } else {
3037 obj->fence_reg = I915_FENCE_REG_NONE;
3038 fence->obj = NULL;
3039 list_del_init(&fence->lru_list);
3040 }
3041 obj->fence_dirty = false;
3042 }
3043
3044 static int
3045 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3046 {
3047 if (obj->last_fenced_seqno) {
3048 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3049 if (ret)
3050 return ret;
3051
3052 obj->last_fenced_seqno = 0;
3053 }
3054
3055 obj->fenced_gpu_access = false;
3056 return 0;
3057 }
3058
3059 int
3060 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3061 {
3062 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3063 struct drm_i915_fence_reg *fence;
3064 int ret;
3065
3066 ret = i915_gem_object_wait_fence(obj);
3067 if (ret)
3068 return ret;
3069
3070 if (obj->fence_reg == I915_FENCE_REG_NONE)
3071 return 0;
3072
3073 fence = &dev_priv->fence_regs[obj->fence_reg];
3074
3075 if (WARN_ON(fence->pin_count))
3076 return -EBUSY;
3077
3078 i915_gem_object_fence_lost(obj);
3079 i915_gem_object_update_fence(obj, fence, false);
3080
3081 return 0;
3082 }
3083
3084 static struct drm_i915_fence_reg *
3085 i915_find_fence_reg(struct drm_device *dev)
3086 {
3087 struct drm_i915_private *dev_priv = dev->dev_private;
3088 struct drm_i915_fence_reg *reg, *avail;
3089 int i;
3090
3091 /* First try to find a free reg */
3092 avail = NULL;
3093 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3094 reg = &dev_priv->fence_regs[i];
3095 if (!reg->obj)
3096 return reg;
3097
3098 if (!reg->pin_count)
3099 avail = reg;
3100 }
3101
3102 if (avail == NULL)
3103 goto deadlock;
3104
3105 /* None available, try to steal one or wait for a user to finish */
3106 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3107 if (reg->pin_count)
3108 continue;
3109
3110 return reg;
3111 }
3112
3113 deadlock:
3114 /* Wait for completion of pending flips which consume fences */
3115 if (intel_has_pending_fb_unpin(dev))
3116 return ERR_PTR(-EAGAIN);
3117
3118 return ERR_PTR(-EDEADLK);
3119 }
3120
3121 /**
3122 * i915_gem_object_get_fence - set up fencing for an object
3123 * @obj: object to map through a fence reg
3124 *
3125 * When mapping objects through the GTT, userspace wants to be able to write
3126 * to them without having to worry about swizzling if the object is tiled.
3127 * This function walks the fence regs looking for a free one for @obj,
3128 * stealing one if it can't find any.
3129 *
3130 * It then sets up the reg based on the object's properties: address, pitch
3131 * and tiling format.
3132 *
3133 * For an untiled surface, this removes any existing fence.
3134 */
3135 int
3136 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3137 {
3138 struct drm_device *dev = obj->base.dev;
3139 struct drm_i915_private *dev_priv = dev->dev_private;
3140 bool enable = obj->tiling_mode != I915_TILING_NONE;
3141 struct drm_i915_fence_reg *reg;
3142 int ret;
3143
3144 /* Have we updated the tiling parameters upon the object and so
3145 * will need to serialise the write to the associated fence register?
3146 */
3147 if (obj->fence_dirty) {
3148 ret = i915_gem_object_wait_fence(obj);
3149 if (ret)
3150 return ret;
3151 }
3152
3153 /* Just update our place in the LRU if our fence is getting reused. */
3154 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3155 reg = &dev_priv->fence_regs[obj->fence_reg];
3156 if (!obj->fence_dirty) {
3157 list_move_tail(&reg->lru_list,
3158 &dev_priv->mm.fence_list);
3159 return 0;
3160 }
3161 } else if (enable) {
3162 reg = i915_find_fence_reg(dev);
3163 if (IS_ERR(reg))
3164 return PTR_ERR(reg);
3165
3166 if (reg->obj) {
3167 struct drm_i915_gem_object *old = reg->obj;
3168
3169 ret = i915_gem_object_wait_fence(old);
3170 if (ret)
3171 return ret;
3172
3173 i915_gem_object_fence_lost(old);
3174 }
3175 } else
3176 return 0;
3177
3178 i915_gem_object_update_fence(obj, reg, enable);
3179
3180 return 0;
3181 }
3182
3183 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3184 struct drm_mm_node *gtt_space,
3185 unsigned long cache_level)
3186 {
3187 struct drm_mm_node *other;
3188
3189 /* On non-LLC machines we have to be careful when putting differing
3190 * types of snoopable memory together to avoid the prefetcher
3191 * crossing memory domains and dying.
3192 */
3193 if (HAS_LLC(dev))
3194 return true;
3195
3196 if (!drm_mm_node_allocated(gtt_space))
3197 return true;
3198
3199 if (list_empty(&gtt_space->node_list))
3200 return true;
3201
3202 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3203 if (other->allocated && !other->hole_follows && other->color != cache_level)
3204 return false;
3205
3206 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3207 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3208 return false;
3209
3210 return true;
3211 }
3212
3213 static void i915_gem_verify_gtt(struct drm_device *dev)
3214 {
3215 #if WATCH_GTT
3216 struct drm_i915_private *dev_priv = dev->dev_private;
3217 struct drm_i915_gem_object *obj;
3218 int err = 0;
3219
3220 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3221 if (obj->gtt_space == NULL) {
3222 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3223 err++;
3224 continue;
3225 }
3226
3227 if (obj->cache_level != obj->gtt_space->color) {
3228 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3229 i915_gem_obj_ggtt_offset(obj),
3230 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3231 obj->cache_level,
3232 obj->gtt_space->color);
3233 err++;
3234 continue;
3235 }
3236
3237 if (!i915_gem_valid_gtt_space(dev,
3238 obj->gtt_space,
3239 obj->cache_level)) {
3240 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3241 i915_gem_obj_ggtt_offset(obj),
3242 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3243 obj->cache_level);
3244 err++;
3245 continue;
3246 }
3247 }
3248
3249 WARN_ON(err);
3250 #endif
3251 }
3252
3253 /**
3254 * Finds free space in the GTT aperture and binds the object there.
3255 */
3256 static struct i915_vma *
3257 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3258 struct i915_address_space *vm,
3259 unsigned alignment,
3260 unsigned flags)
3261 {
3262 struct drm_device *dev = obj->base.dev;
3263 struct drm_i915_private *dev_priv = dev->dev_private;
3264 u32 size, fence_size, fence_alignment, unfenced_alignment;
3265 size_t gtt_max =
3266 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3267 struct i915_vma *vma;
3268 int ret;
3269
3270 fence_size = i915_gem_get_gtt_size(dev,
3271 obj->base.size,
3272 obj->tiling_mode);
3273 fence_alignment = i915_gem_get_gtt_alignment(dev,
3274 obj->base.size,
3275 obj->tiling_mode, true);
3276 unfenced_alignment =
3277 i915_gem_get_gtt_alignment(dev,
3278 obj->base.size,
3279 obj->tiling_mode, false);
3280
3281 if (alignment == 0)
3282 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3283 unfenced_alignment;
3284 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3285 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3286 return ERR_PTR(-EINVAL);
3287 }
3288
3289 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3290
3291 /* If the object is bigger than the entire aperture, reject it early
3292 * before evicting everything in a vain attempt to find space.
3293 */
3294 if (obj->base.size > gtt_max) {
3295 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3296 obj->base.size,
3297 flags & PIN_MAPPABLE ? "mappable" : "total",
3298 gtt_max);
3299 return ERR_PTR(-E2BIG);
3300 }
3301
3302 ret = i915_gem_object_get_pages(obj);
3303 if (ret)
3304 return ERR_PTR(ret);
3305
3306 i915_gem_object_pin_pages(obj);
3307
3308 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3309 if (IS_ERR(vma))
3310 goto err_unpin;
3311
3312 search_free:
3313 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3314 size, alignment,
3315 obj->cache_level, 0, gtt_max,
3316 DRM_MM_SEARCH_DEFAULT,
3317 DRM_MM_CREATE_DEFAULT);
3318 if (ret) {
3319 ret = i915_gem_evict_something(dev, vm, size, alignment,
3320 obj->cache_level, flags);
3321 if (ret == 0)
3322 goto search_free;
3323
3324 goto err_free_vma;
3325 }
3326 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3327 obj->cache_level))) {
3328 ret = -EINVAL;
3329 goto err_remove_node;
3330 }
3331
3332 ret = i915_gem_gtt_prepare_object(obj);
3333 if (ret)
3334 goto err_remove_node;
3335
3336 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3337 list_add_tail(&vma->mm_list, &vm->inactive_list);
3338
3339 if (i915_is_ggtt(vm)) {
3340 bool mappable, fenceable;
3341
3342 fenceable = (vma->node.size == fence_size &&
3343 (vma->node.start & (fence_alignment - 1)) == 0);
3344
3345 mappable = (vma->node.start + obj->base.size <=
3346 dev_priv->gtt.mappable_end);
3347
3348 obj->map_and_fenceable = mappable && fenceable;
3349 }
3350
3351 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3352
3353 trace_i915_vma_bind(vma, flags);
3354 vma->bind_vma(vma, obj->cache_level,
3355 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3356
3357 i915_gem_verify_gtt(dev);
3358 return vma;
3359
3360 err_remove_node:
3361 drm_mm_remove_node(&vma->node);
3362 err_free_vma:
3363 i915_gem_vma_destroy(vma);
3364 vma = ERR_PTR(ret);
3365 err_unpin:
3366 i915_gem_object_unpin_pages(obj);
3367 return vma;
3368 }
3369
3370 bool
3371 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3372 bool force)
3373 {
3374 /* If we don't have a page list set up, then we're not pinned
3375 * to GPU, and we can ignore the cache flush because it'll happen
3376 * again at bind time.
3377 */
3378 if (obj->pages == NULL)
3379 return false;
3380
3381 /*
3382 * Stolen memory is always coherent with the GPU as it is explicitly
3383 * marked as wc by the system, or the system is cache-coherent.
3384 */
3385 if (obj->stolen)
3386 return false;
3387
3388 /* If the GPU is snooping the contents of the CPU cache,
3389 * we do not need to manually clear the CPU cache lines. However,
3390 * the caches are only snooped when the render cache is
3391 * flushed/invalidated. As we always have to emit invalidations
3392 * and flushes when moving into and out of the RENDER domain, correct
3393 * snooping behaviour occurs naturally as the result of our domain
3394 * tracking.
3395 */
3396 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3397 return false;
3398
3399 trace_i915_gem_object_clflush(obj);
3400 drm_clflush_sg(obj->pages);
3401
3402 return true;
3403 }
3404
3405 /** Flushes the GTT write domain for the object if it's dirty. */
3406 static void
3407 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3408 {
3409 uint32_t old_write_domain;
3410
3411 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3412 return;
3413
3414 /* No actual flushing is required for the GTT write domain. Writes
3415 * to it immediately go to main memory as far as we know, so there's
3416 * no chipset flush. It also doesn't land in render cache.
3417 *
3418 * However, we do have to enforce the order so that all writes through
3419 * the GTT land before any writes to the device, such as updates to
3420 * the GATT itself.
3421 */
3422 wmb();
3423
3424 old_write_domain = obj->base.write_domain;
3425 obj->base.write_domain = 0;
3426
3427 trace_i915_gem_object_change_domain(obj,
3428 obj->base.read_domains,
3429 old_write_domain);
3430 }
3431
3432 /** Flushes the CPU write domain for the object if it's dirty. */
3433 static void
3434 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3435 bool force)
3436 {
3437 uint32_t old_write_domain;
3438
3439 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3440 return;
3441
3442 if (i915_gem_clflush_object(obj, force))
3443 i915_gem_chipset_flush(obj->base.dev);
3444
3445 old_write_domain = obj->base.write_domain;
3446 obj->base.write_domain = 0;
3447
3448 trace_i915_gem_object_change_domain(obj,
3449 obj->base.read_domains,
3450 old_write_domain);
3451 }
3452
3453 /**
3454 * Moves a single object to the GTT read, and possibly write domain.
3455 *
3456 * This function returns when the move is complete, including waiting on
3457 * flushes to occur.
3458 */
3459 int
3460 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3461 {
3462 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3463 uint32_t old_write_domain, old_read_domains;
3464 int ret;
3465
3466 /* Not valid to be called on unbound objects. */
3467 if (!i915_gem_obj_bound_any(obj))
3468 return -EINVAL;
3469
3470 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3471 return 0;
3472
3473 ret = i915_gem_object_wait_rendering(obj, !write);
3474 if (ret)
3475 return ret;
3476
3477 i915_gem_object_retire(obj);
3478 i915_gem_object_flush_cpu_write_domain(obj, false);
3479
3480 /* Serialise direct access to this object with the barriers for
3481 * coherent writes from the GPU, by effectively invalidating the
3482 * GTT domain upon first access.
3483 */
3484 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3485 mb();
3486
3487 old_write_domain = obj->base.write_domain;
3488 old_read_domains = obj->base.read_domains;
3489
3490 /* It should now be out of any other write domains, and we can update
3491 * the domain values for our changes.
3492 */
3493 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3494 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3495 if (write) {
3496 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3497 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3498 obj->dirty = 1;
3499 }
3500
3501 trace_i915_gem_object_change_domain(obj,
3502 old_read_domains,
3503 old_write_domain);
3504
3505 /* And bump the LRU for this access */
3506 if (i915_gem_object_is_inactive(obj)) {
3507 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3508 if (vma)
3509 list_move_tail(&vma->mm_list,
3510 &dev_priv->gtt.base.inactive_list);
3511
3512 }
3513
3514 return 0;
3515 }
3516
3517 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3518 enum i915_cache_level cache_level)
3519 {
3520 struct drm_device *dev = obj->base.dev;
3521 struct i915_vma *vma, *next;
3522 int ret;
3523
3524 if (obj->cache_level == cache_level)
3525 return 0;
3526
3527 if (i915_gem_obj_is_pinned(obj)) {
3528 DRM_DEBUG("can not change the cache level of pinned objects\n");
3529 return -EBUSY;
3530 }
3531
3532 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3533 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3534 ret = i915_vma_unbind(vma);
3535 if (ret)
3536 return ret;
3537 }
3538 }
3539
3540 if (i915_gem_obj_bound_any(obj)) {
3541 ret = i915_gem_object_finish_gpu(obj);
3542 if (ret)
3543 return ret;
3544
3545 i915_gem_object_finish_gtt(obj);
3546
3547 /* Before SandyBridge, you could not use tiling or fence
3548 * registers with snooped memory, so relinquish any fences
3549 * currently pointing to our region in the aperture.
3550 */
3551 if (INTEL_INFO(dev)->gen < 6) {
3552 ret = i915_gem_object_put_fence(obj);
3553 if (ret)
3554 return ret;
3555 }
3556
3557 list_for_each_entry(vma, &obj->vma_list, vma_link)
3558 if (drm_mm_node_allocated(&vma->node))
3559 vma->bind_vma(vma, cache_level,
3560 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3561 }
3562
3563 list_for_each_entry(vma, &obj->vma_list, vma_link)
3564 vma->node.color = cache_level;
3565 obj->cache_level = cache_level;
3566
3567 if (cpu_write_needs_clflush(obj)) {
3568 u32 old_read_domains, old_write_domain;
3569
3570 /* If we're coming from LLC cached, then we haven't
3571 * actually been tracking whether the data is in the
3572 * CPU cache or not, since we only allow one bit set
3573 * in obj->write_domain and have been skipping the clflushes.
3574 * Just set it to the CPU cache for now.
3575 */
3576 i915_gem_object_retire(obj);
3577 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3578
3579 old_read_domains = obj->base.read_domains;
3580 old_write_domain = obj->base.write_domain;
3581
3582 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3583 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3584
3585 trace_i915_gem_object_change_domain(obj,
3586 old_read_domains,
3587 old_write_domain);
3588 }
3589
3590 i915_gem_verify_gtt(dev);
3591 return 0;
3592 }
3593
3594 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3595 struct drm_file *file)
3596 {
3597 struct drm_i915_gem_caching *args = data;
3598 struct drm_i915_gem_object *obj;
3599 int ret;
3600
3601 ret = i915_mutex_lock_interruptible(dev);
3602 if (ret)
3603 return ret;
3604
3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 if (&obj->base == NULL) {
3607 ret = -ENOENT;
3608 goto unlock;
3609 }
3610
3611 switch (obj->cache_level) {
3612 case I915_CACHE_LLC:
3613 case I915_CACHE_L3_LLC:
3614 args->caching = I915_CACHING_CACHED;
3615 break;
3616
3617 case I915_CACHE_WT:
3618 args->caching = I915_CACHING_DISPLAY;
3619 break;
3620
3621 default:
3622 args->caching = I915_CACHING_NONE;
3623 break;
3624 }
3625
3626 drm_gem_object_unreference(&obj->base);
3627 unlock:
3628 mutex_unlock(&dev->struct_mutex);
3629 return ret;
3630 }
3631
3632 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3633 struct drm_file *file)
3634 {
3635 struct drm_i915_gem_caching *args = data;
3636 struct drm_i915_gem_object *obj;
3637 enum i915_cache_level level;
3638 int ret;
3639
3640 switch (args->caching) {
3641 case I915_CACHING_NONE:
3642 level = I915_CACHE_NONE;
3643 break;
3644 case I915_CACHING_CACHED:
3645 level = I915_CACHE_LLC;
3646 break;
3647 case I915_CACHING_DISPLAY:
3648 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3649 break;
3650 default:
3651 return -EINVAL;
3652 }
3653
3654 ret = i915_mutex_lock_interruptible(dev);
3655 if (ret)
3656 return ret;
3657
3658 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3659 if (&obj->base == NULL) {
3660 ret = -ENOENT;
3661 goto unlock;
3662 }
3663
3664 ret = i915_gem_object_set_cache_level(obj, level);
3665
3666 drm_gem_object_unreference(&obj->base);
3667 unlock:
3668 mutex_unlock(&dev->struct_mutex);
3669 return ret;
3670 }
3671
3672 static bool is_pin_display(struct drm_i915_gem_object *obj)
3673 {
3674 struct i915_vma *vma;
3675
3676 if (list_empty(&obj->vma_list))
3677 return false;
3678
3679 vma = i915_gem_obj_to_ggtt(obj);
3680 if (!vma)
3681 return false;
3682
3683 /* There are 3 sources that pin objects:
3684 * 1. The display engine (scanouts, sprites, cursors);
3685 * 2. Reservations for execbuffer;
3686 * 3. The user.
3687 *
3688 * We can ignore reservations as we hold the struct_mutex and
3689 * are only called outside of the reservation path. The user
3690 * can only increment pin_count once, and so if after
3691 * subtracting the potential reference by the user, any pin_count
3692 * remains, it must be due to another use by the display engine.
3693 */
3694 return vma->pin_count - !!obj->user_pin_count;
3695 }
3696
3697 /*
3698 * Prepare buffer for display plane (scanout, cursors, etc).
3699 * Can be called from an uninterruptible phase (modesetting) and allows
3700 * any flushes to be pipelined (for pageflips).
3701 */
3702 int
3703 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3704 u32 alignment,
3705 struct intel_engine_cs *pipelined)
3706 {
3707 u32 old_read_domains, old_write_domain;
3708 bool was_pin_display;
3709 int ret;
3710
3711 if (pipelined != obj->ring) {
3712 ret = i915_gem_object_sync(obj, pipelined);
3713 if (ret)
3714 return ret;
3715 }
3716
3717 /* Mark the pin_display early so that we account for the
3718 * display coherency whilst setting up the cache domains.
3719 */
3720 was_pin_display = obj->pin_display;
3721 obj->pin_display = true;
3722
3723 /* The display engine is not coherent with the LLC cache on gen6. As
3724 * a result, we make sure that the pinning that is about to occur is
3725 * done with uncached PTEs. This is lowest common denominator for all
3726 * chipsets.
3727 *
3728 * However for gen6+, we could do better by using the GFDT bit instead
3729 * of uncaching, which would allow us to flush all the LLC-cached data
3730 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3731 */
3732 ret = i915_gem_object_set_cache_level(obj,
3733 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3734 if (ret)
3735 goto err_unpin_display;
3736
3737 /* As the user may map the buffer once pinned in the display plane
3738 * (e.g. libkms for the bootup splash), we have to ensure that we
3739 * always use map_and_fenceable for all scanout buffers.
3740 */
3741 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3742 if (ret)
3743 goto err_unpin_display;
3744
3745 i915_gem_object_flush_cpu_write_domain(obj, true);
3746
3747 old_write_domain = obj->base.write_domain;
3748 old_read_domains = obj->base.read_domains;
3749
3750 /* It should now be out of any other write domains, and we can update
3751 * the domain values for our changes.
3752 */
3753 obj->base.write_domain = 0;
3754 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755
3756 trace_i915_gem_object_change_domain(obj,
3757 old_read_domains,
3758 old_write_domain);
3759
3760 return 0;
3761
3762 err_unpin_display:
3763 WARN_ON(was_pin_display != is_pin_display(obj));
3764 obj->pin_display = was_pin_display;
3765 return ret;
3766 }
3767
3768 void
3769 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3770 {
3771 i915_gem_object_ggtt_unpin(obj);
3772 obj->pin_display = is_pin_display(obj);
3773 }
3774
3775 int
3776 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3777 {
3778 int ret;
3779
3780 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3781 return 0;
3782
3783 ret = i915_gem_object_wait_rendering(obj, false);
3784 if (ret)
3785 return ret;
3786
3787 /* Ensure that we invalidate the GPU's caches and TLBs. */
3788 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3789 return 0;
3790 }
3791
3792 /**
3793 * Moves a single object to the CPU read, and possibly write domain.
3794 *
3795 * This function returns when the move is complete, including waiting on
3796 * flushes to occur.
3797 */
3798 int
3799 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3800 {
3801 uint32_t old_write_domain, old_read_domains;
3802 int ret;
3803
3804 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3805 return 0;
3806
3807 ret = i915_gem_object_wait_rendering(obj, !write);
3808 if (ret)
3809 return ret;
3810
3811 i915_gem_object_retire(obj);
3812 i915_gem_object_flush_gtt_write_domain(obj);
3813
3814 old_write_domain = obj->base.write_domain;
3815 old_read_domains = obj->base.read_domains;
3816
3817 /* Flush the CPU cache if it's still invalid. */
3818 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3819 i915_gem_clflush_object(obj, false);
3820
3821 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3822 }
3823
3824 /* It should now be out of any other write domains, and we can update
3825 * the domain values for our changes.
3826 */
3827 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3828
3829 /* If we're writing through the CPU, then the GPU read domains will
3830 * need to be invalidated at next use.
3831 */
3832 if (write) {
3833 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3834 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3835 }
3836
3837 trace_i915_gem_object_change_domain(obj,
3838 old_read_domains,
3839 old_write_domain);
3840
3841 return 0;
3842 }
3843
3844 /* Throttle our rendering by waiting until the ring has completed our requests
3845 * emitted over 20 msec ago.
3846 *
3847 * Note that if we were to use the current jiffies each time around the loop,
3848 * we wouldn't escape the function with any frames outstanding if the time to
3849 * render a frame was over 20ms.
3850 *
3851 * This should get us reasonable parallelism between CPU and GPU but also
3852 * relatively low latency when blocking on a particular request to finish.
3853 */
3854 static int
3855 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3856 {
3857 struct drm_i915_private *dev_priv = dev->dev_private;
3858 struct drm_i915_file_private *file_priv = file->driver_priv;
3859 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3860 struct drm_i915_gem_request *request;
3861 struct intel_engine_cs *ring = NULL;
3862 unsigned reset_counter;
3863 u32 seqno = 0;
3864 int ret;
3865
3866 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3867 if (ret)
3868 return ret;
3869
3870 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3871 if (ret)
3872 return ret;
3873
3874 spin_lock(&file_priv->mm.lock);
3875 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3876 if (time_after_eq(request->emitted_jiffies, recent_enough))
3877 break;
3878
3879 ring = request->ring;
3880 seqno = request->seqno;
3881 }
3882 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3883 spin_unlock(&file_priv->mm.lock);
3884
3885 if (seqno == 0)
3886 return 0;
3887
3888 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3889 if (ret == 0)
3890 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3891
3892 return ret;
3893 }
3894
3895 int
3896 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3897 struct i915_address_space *vm,
3898 uint32_t alignment,
3899 unsigned flags)
3900 {
3901 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3902 struct i915_vma *vma;
3903 int ret;
3904
3905 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
3906 return -ENODEV;
3907
3908 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3909 return -EINVAL;
3910
3911 vma = i915_gem_obj_to_vma(obj, vm);
3912 if (vma) {
3913 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3914 return -EBUSY;
3915
3916 if ((alignment &&
3917 vma->node.start & (alignment - 1)) ||
3918 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3919 WARN(vma->pin_count,
3920 "bo is already pinned with incorrect alignment:"
3921 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3922 " obj->map_and_fenceable=%d\n",
3923 i915_gem_obj_offset(obj, vm), alignment,
3924 flags & PIN_MAPPABLE,
3925 obj->map_and_fenceable);
3926 ret = i915_vma_unbind(vma);
3927 if (ret)
3928 return ret;
3929
3930 vma = NULL;
3931 }
3932 }
3933
3934 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3935 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3936 if (IS_ERR(vma))
3937 return PTR_ERR(vma);
3938 }
3939
3940 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3941 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3942
3943 vma->pin_count++;
3944 if (flags & PIN_MAPPABLE)
3945 obj->pin_mappable |= true;
3946
3947 return 0;
3948 }
3949
3950 void
3951 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3952 {
3953 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3954
3955 BUG_ON(!vma);
3956 BUG_ON(vma->pin_count == 0);
3957 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3958
3959 if (--vma->pin_count == 0)
3960 obj->pin_mappable = false;
3961 }
3962
3963 bool
3964 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
3965 {
3966 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3967 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3968 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
3969
3970 WARN_ON(!ggtt_vma ||
3971 dev_priv->fence_regs[obj->fence_reg].pin_count >
3972 ggtt_vma->pin_count);
3973 dev_priv->fence_regs[obj->fence_reg].pin_count++;
3974 return true;
3975 } else
3976 return false;
3977 }
3978
3979 void
3980 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
3981 {
3982 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3983 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3984 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
3985 dev_priv->fence_regs[obj->fence_reg].pin_count--;
3986 }
3987 }
3988
3989 int
3990 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3992 {
3993 struct drm_i915_gem_pin *args = data;
3994 struct drm_i915_gem_object *obj;
3995 int ret;
3996
3997 if (INTEL_INFO(dev)->gen >= 6)
3998 return -ENODEV;
3999
4000 ret = i915_mutex_lock_interruptible(dev);
4001 if (ret)
4002 return ret;
4003
4004 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4005 if (&obj->base == NULL) {
4006 ret = -ENOENT;
4007 goto unlock;
4008 }
4009
4010 if (obj->madv != I915_MADV_WILLNEED) {
4011 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4012 ret = -EFAULT;
4013 goto out;
4014 }
4015
4016 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4017 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4018 args->handle);
4019 ret = -EINVAL;
4020 goto out;
4021 }
4022
4023 if (obj->user_pin_count == ULONG_MAX) {
4024 ret = -EBUSY;
4025 goto out;
4026 }
4027
4028 if (obj->user_pin_count == 0) {
4029 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4030 if (ret)
4031 goto out;
4032 }
4033
4034 obj->user_pin_count++;
4035 obj->pin_filp = file;
4036
4037 args->offset = i915_gem_obj_ggtt_offset(obj);
4038 out:
4039 drm_gem_object_unreference(&obj->base);
4040 unlock:
4041 mutex_unlock(&dev->struct_mutex);
4042 return ret;
4043 }
4044
4045 int
4046 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4047 struct drm_file *file)
4048 {
4049 struct drm_i915_gem_pin *args = data;
4050 struct drm_i915_gem_object *obj;
4051 int ret;
4052
4053 ret = i915_mutex_lock_interruptible(dev);
4054 if (ret)
4055 return ret;
4056
4057 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4058 if (&obj->base == NULL) {
4059 ret = -ENOENT;
4060 goto unlock;
4061 }
4062
4063 if (obj->pin_filp != file) {
4064 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4065 args->handle);
4066 ret = -EINVAL;
4067 goto out;
4068 }
4069 obj->user_pin_count--;
4070 if (obj->user_pin_count == 0) {
4071 obj->pin_filp = NULL;
4072 i915_gem_object_ggtt_unpin(obj);
4073 }
4074
4075 out:
4076 drm_gem_object_unreference(&obj->base);
4077 unlock:
4078 mutex_unlock(&dev->struct_mutex);
4079 return ret;
4080 }
4081
4082 int
4083 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4084 struct drm_file *file)
4085 {
4086 struct drm_i915_gem_busy *args = data;
4087 struct drm_i915_gem_object *obj;
4088 int ret;
4089
4090 ret = i915_mutex_lock_interruptible(dev);
4091 if (ret)
4092 return ret;
4093
4094 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4095 if (&obj->base == NULL) {
4096 ret = -ENOENT;
4097 goto unlock;
4098 }
4099
4100 /* Count all active objects as busy, even if they are currently not used
4101 * by the gpu. Users of this interface expect objects to eventually
4102 * become non-busy without any further actions, therefore emit any
4103 * necessary flushes here.
4104 */
4105 ret = i915_gem_object_flush_active(obj);
4106
4107 args->busy = obj->active;
4108 if (obj->ring) {
4109 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4110 args->busy |= intel_ring_flag(obj->ring) << 16;
4111 }
4112
4113 drm_gem_object_unreference(&obj->base);
4114 unlock:
4115 mutex_unlock(&dev->struct_mutex);
4116 return ret;
4117 }
4118
4119 int
4120 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4121 struct drm_file *file_priv)
4122 {
4123 return i915_gem_ring_throttle(dev, file_priv);
4124 }
4125
4126 int
4127 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4128 struct drm_file *file_priv)
4129 {
4130 struct drm_i915_gem_madvise *args = data;
4131 struct drm_i915_gem_object *obj;
4132 int ret;
4133
4134 switch (args->madv) {
4135 case I915_MADV_DONTNEED:
4136 case I915_MADV_WILLNEED:
4137 break;
4138 default:
4139 return -EINVAL;
4140 }
4141
4142 ret = i915_mutex_lock_interruptible(dev);
4143 if (ret)
4144 return ret;
4145
4146 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4147 if (&obj->base == NULL) {
4148 ret = -ENOENT;
4149 goto unlock;
4150 }
4151
4152 if (i915_gem_obj_is_pinned(obj)) {
4153 ret = -EINVAL;
4154 goto out;
4155 }
4156
4157 if (obj->madv != __I915_MADV_PURGED)
4158 obj->madv = args->madv;
4159
4160 /* if the object is no longer attached, discard its backing storage */
4161 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4162 i915_gem_object_truncate(obj);
4163
4164 args->retained = obj->madv != __I915_MADV_PURGED;
4165
4166 out:
4167 drm_gem_object_unreference(&obj->base);
4168 unlock:
4169 mutex_unlock(&dev->struct_mutex);
4170 return ret;
4171 }
4172
4173 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4174 const struct drm_i915_gem_object_ops *ops)
4175 {
4176 INIT_LIST_HEAD(&obj->global_list);
4177 INIT_LIST_HEAD(&obj->ring_list);
4178 INIT_LIST_HEAD(&obj->obj_exec_link);
4179 INIT_LIST_HEAD(&obj->vma_list);
4180
4181 obj->ops = ops;
4182
4183 obj->fence_reg = I915_FENCE_REG_NONE;
4184 obj->madv = I915_MADV_WILLNEED;
4185 /* Avoid an unnecessary call to unbind on the first bind. */
4186 obj->map_and_fenceable = true;
4187
4188 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4189 }
4190
4191 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4192 .get_pages = i915_gem_object_get_pages_gtt,
4193 .put_pages = i915_gem_object_put_pages_gtt,
4194 };
4195
4196 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4197 size_t size)
4198 {
4199 struct drm_i915_gem_object *obj;
4200 struct address_space *mapping;
4201 gfp_t mask;
4202
4203 obj = i915_gem_object_alloc(dev);
4204 if (obj == NULL)
4205 return NULL;
4206
4207 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4208 i915_gem_object_free(obj);
4209 return NULL;
4210 }
4211
4212 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4213 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4214 /* 965gm cannot relocate objects above 4GiB. */
4215 mask &= ~__GFP_HIGHMEM;
4216 mask |= __GFP_DMA32;
4217 }
4218
4219 mapping = file_inode(obj->base.filp)->i_mapping;
4220 mapping_set_gfp_mask(mapping, mask);
4221
4222 i915_gem_object_init(obj, &i915_gem_object_ops);
4223
4224 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4225 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4226
4227 if (HAS_LLC(dev)) {
4228 /* On some devices, we can have the GPU use the LLC (the CPU
4229 * cache) for about a 10% performance improvement
4230 * compared to uncached. Graphics requests other than
4231 * display scanout are coherent with the CPU in
4232 * accessing this cache. This means in this mode we
4233 * don't need to clflush on the CPU side, and on the
4234 * GPU side we only need to flush internal caches to
4235 * get data visible to the CPU.
4236 *
4237 * However, we maintain the display planes as UC, and so
4238 * need to rebind when first used as such.
4239 */
4240 obj->cache_level = I915_CACHE_LLC;
4241 } else
4242 obj->cache_level = I915_CACHE_NONE;
4243
4244 trace_i915_gem_object_create(obj);
4245
4246 return obj;
4247 }
4248
4249 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4250 {
4251 /* If we are the last user of the backing storage (be it shmemfs
4252 * pages or stolen etc), we know that the pages are going to be
4253 * immediately released. In this case, we can then skip copying
4254 * back the contents from the GPU.
4255 */
4256
4257 if (obj->madv != I915_MADV_WILLNEED)
4258 return false;
4259
4260 if (obj->base.filp == NULL)
4261 return true;
4262
4263 /* At first glance, this looks racy, but then again so would be
4264 * userspace racing mmap against close. However, the first external
4265 * reference to the filp can only be obtained through the
4266 * i915_gem_mmap_ioctl() which safeguards us against the user
4267 * acquiring such a reference whilst we are in the middle of
4268 * freeing the object.
4269 */
4270 return atomic_long_read(&obj->base.filp->f_count) == 1;
4271 }
4272
4273 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4274 {
4275 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4276 struct drm_device *dev = obj->base.dev;
4277 struct drm_i915_private *dev_priv = dev->dev_private;
4278 struct i915_vma *vma, *next;
4279
4280 intel_runtime_pm_get(dev_priv);
4281
4282 trace_i915_gem_object_destroy(obj);
4283
4284 if (obj->phys_obj)
4285 i915_gem_detach_phys_object(dev, obj);
4286
4287 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4288 int ret;
4289
4290 vma->pin_count = 0;
4291 ret = i915_vma_unbind(vma);
4292 if (WARN_ON(ret == -ERESTARTSYS)) {
4293 bool was_interruptible;
4294
4295 was_interruptible = dev_priv->mm.interruptible;
4296 dev_priv->mm.interruptible = false;
4297
4298 WARN_ON(i915_vma_unbind(vma));
4299
4300 dev_priv->mm.interruptible = was_interruptible;
4301 }
4302 }
4303
4304 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4305 * before progressing. */
4306 if (obj->stolen)
4307 i915_gem_object_unpin_pages(obj);
4308
4309 if (WARN_ON(obj->pages_pin_count))
4310 obj->pages_pin_count = 0;
4311 if (discard_backing_storage(obj))
4312 obj->madv = I915_MADV_DONTNEED;
4313 i915_gem_object_put_pages(obj);
4314 i915_gem_object_free_mmap_offset(obj);
4315 i915_gem_object_release_stolen(obj);
4316
4317 BUG_ON(obj->pages);
4318
4319 if (obj->base.import_attach)
4320 drm_prime_gem_destroy(&obj->base, NULL);
4321
4322 if (obj->ops->release)
4323 obj->ops->release(obj);
4324
4325 drm_gem_object_release(&obj->base);
4326 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4327
4328 kfree(obj->bit_17);
4329 i915_gem_object_free(obj);
4330
4331 intel_runtime_pm_put(dev_priv);
4332 }
4333
4334 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4335 struct i915_address_space *vm)
4336 {
4337 struct i915_vma *vma;
4338 list_for_each_entry(vma, &obj->vma_list, vma_link)
4339 if (vma->vm == vm)
4340 return vma;
4341
4342 return NULL;
4343 }
4344
4345 void i915_gem_vma_destroy(struct i915_vma *vma)
4346 {
4347 WARN_ON(vma->node.allocated);
4348
4349 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4350 if (!list_empty(&vma->exec_list))
4351 return;
4352
4353 list_del(&vma->vma_link);
4354
4355 kfree(vma);
4356 }
4357
4358 static void
4359 i915_gem_stop_ringbuffers(struct drm_device *dev)
4360 {
4361 struct drm_i915_private *dev_priv = dev->dev_private;
4362 struct intel_engine_cs *ring;
4363 int i;
4364
4365 for_each_ring(ring, dev_priv, i)
4366 intel_stop_ring_buffer(ring);
4367 }
4368
4369 int
4370 i915_gem_suspend(struct drm_device *dev)
4371 {
4372 struct drm_i915_private *dev_priv = dev->dev_private;
4373 int ret = 0;
4374
4375 mutex_lock(&dev->struct_mutex);
4376 if (dev_priv->ums.mm_suspended)
4377 goto err;
4378
4379 ret = i915_gpu_idle(dev);
4380 if (ret)
4381 goto err;
4382
4383 i915_gem_retire_requests(dev);
4384
4385 /* Under UMS, be paranoid and evict. */
4386 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4387 i915_gem_evict_everything(dev);
4388
4389 i915_kernel_lost_context(dev);
4390 i915_gem_stop_ringbuffers(dev);
4391
4392 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4393 * We need to replace this with a semaphore, or something.
4394 * And not confound ums.mm_suspended!
4395 */
4396 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4397 DRIVER_MODESET);
4398 mutex_unlock(&dev->struct_mutex);
4399
4400 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4401 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4402 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4403
4404 return 0;
4405
4406 err:
4407 mutex_unlock(&dev->struct_mutex);
4408 return ret;
4409 }
4410
4411 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4412 {
4413 struct drm_device *dev = ring->dev;
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4415 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4416 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4417 int i, ret;
4418
4419 if (!HAS_L3_DPF(dev) || !remap_info)
4420 return 0;
4421
4422 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4423 if (ret)
4424 return ret;
4425
4426 /*
4427 * Note: We do not worry about the concurrent register cacheline hang
4428 * here because no other code should access these registers other than
4429 * at initialization time.
4430 */
4431 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4432 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4433 intel_ring_emit(ring, reg_base + i);
4434 intel_ring_emit(ring, remap_info[i/4]);
4435 }
4436
4437 intel_ring_advance(ring);
4438
4439 return ret;
4440 }
4441
4442 void i915_gem_init_swizzling(struct drm_device *dev)
4443 {
4444 struct drm_i915_private *dev_priv = dev->dev_private;
4445
4446 if (INTEL_INFO(dev)->gen < 5 ||
4447 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4448 return;
4449
4450 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4451 DISP_TILE_SURFACE_SWIZZLING);
4452
4453 if (IS_GEN5(dev))
4454 return;
4455
4456 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4457 if (IS_GEN6(dev))
4458 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4459 else if (IS_GEN7(dev))
4460 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4461 else if (IS_GEN8(dev))
4462 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4463 else
4464 BUG();
4465 }
4466
4467 static bool
4468 intel_enable_blt(struct drm_device *dev)
4469 {
4470 if (!HAS_BLT(dev))
4471 return false;
4472
4473 /* The blitter was dysfunctional on early prototypes */
4474 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4475 DRM_INFO("BLT not supported on this pre-production hardware;"
4476 " graphics performance will be degraded.\n");
4477 return false;
4478 }
4479
4480 return true;
4481 }
4482
4483 static int i915_gem_init_rings(struct drm_device *dev)
4484 {
4485 struct drm_i915_private *dev_priv = dev->dev_private;
4486 int ret;
4487
4488 ret = intel_init_render_ring_buffer(dev);
4489 if (ret)
4490 return ret;
4491
4492 if (HAS_BSD(dev)) {
4493 ret = intel_init_bsd_ring_buffer(dev);
4494 if (ret)
4495 goto cleanup_render_ring;
4496 }
4497
4498 if (intel_enable_blt(dev)) {
4499 ret = intel_init_blt_ring_buffer(dev);
4500 if (ret)
4501 goto cleanup_bsd_ring;
4502 }
4503
4504 if (HAS_VEBOX(dev)) {
4505 ret = intel_init_vebox_ring_buffer(dev);
4506 if (ret)
4507 goto cleanup_blt_ring;
4508 }
4509
4510 if (HAS_BSD2(dev)) {
4511 ret = intel_init_bsd2_ring_buffer(dev);
4512 if (ret)
4513 goto cleanup_vebox_ring;
4514 }
4515
4516 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4517 if (ret)
4518 goto cleanup_bsd2_ring;
4519
4520 return 0;
4521
4522 cleanup_bsd2_ring:
4523 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4524 cleanup_vebox_ring:
4525 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4526 cleanup_blt_ring:
4527 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4528 cleanup_bsd_ring:
4529 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4530 cleanup_render_ring:
4531 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4532
4533 return ret;
4534 }
4535
4536 int
4537 i915_gem_init_hw(struct drm_device *dev)
4538 {
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 int ret, i;
4541
4542 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4543 return -EIO;
4544
4545 if (dev_priv->ellc_size)
4546 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4547
4548 if (IS_HASWELL(dev))
4549 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4550 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4551
4552 if (HAS_PCH_NOP(dev)) {
4553 if (IS_IVYBRIDGE(dev)) {
4554 u32 temp = I915_READ(GEN7_MSG_CTL);
4555 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4556 I915_WRITE(GEN7_MSG_CTL, temp);
4557 } else if (INTEL_INFO(dev)->gen >= 7) {
4558 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4559 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4560 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4561 }
4562 }
4563
4564 i915_gem_init_swizzling(dev);
4565
4566 ret = i915_gem_init_rings(dev);
4567 if (ret)
4568 return ret;
4569
4570 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4571 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4572
4573 /*
4574 * XXX: Contexts should only be initialized once. Doing a switch to the
4575 * default context switch however is something we'd like to do after
4576 * reset or thaw (the latter may not actually be necessary for HW, but
4577 * goes with our code better). Context switching requires rings (for
4578 * the do_switch), but before enabling PPGTT. So don't move this.
4579 */
4580 ret = i915_gem_context_enable(dev_priv);
4581 if (ret && ret != -EIO) {
4582 DRM_ERROR("Context enable failed %d\n", ret);
4583 i915_gem_cleanup_ringbuffer(dev);
4584 }
4585
4586 return ret;
4587 }
4588
4589 int i915_gem_init(struct drm_device *dev)
4590 {
4591 struct drm_i915_private *dev_priv = dev->dev_private;
4592 int ret;
4593
4594 mutex_lock(&dev->struct_mutex);
4595
4596 if (IS_VALLEYVIEW(dev)) {
4597 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4598 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4599 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4600 VLV_GTLC_ALLOWWAKEACK), 10))
4601 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4602 }
4603
4604 i915_gem_init_userptr(dev);
4605 i915_gem_init_global_gtt(dev);
4606
4607 ret = i915_gem_context_init(dev);
4608 if (ret) {
4609 mutex_unlock(&dev->struct_mutex);
4610 return ret;
4611 }
4612
4613 ret = i915_gem_init_hw(dev);
4614 if (ret == -EIO) {
4615 /* Allow ring initialisation to fail by marking the GPU as
4616 * wedged. But we only want to do this where the GPU is angry,
4617 * for all other failure, such as an allocation failure, bail.
4618 */
4619 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4620 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4621 ret = 0;
4622 }
4623 mutex_unlock(&dev->struct_mutex);
4624
4625 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4626 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4627 dev_priv->dri1.allow_batchbuffer = 1;
4628 return ret;
4629 }
4630
4631 void
4632 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4633 {
4634 struct drm_i915_private *dev_priv = dev->dev_private;
4635 struct intel_engine_cs *ring;
4636 int i;
4637
4638 for_each_ring(ring, dev_priv, i)
4639 intel_cleanup_ring_buffer(ring);
4640 }
4641
4642 int
4643 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4644 struct drm_file *file_priv)
4645 {
4646 struct drm_i915_private *dev_priv = dev->dev_private;
4647 int ret;
4648
4649 if (drm_core_check_feature(dev, DRIVER_MODESET))
4650 return 0;
4651
4652 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4653 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4654 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4655 }
4656
4657 mutex_lock(&dev->struct_mutex);
4658 dev_priv->ums.mm_suspended = 0;
4659
4660 ret = i915_gem_init_hw(dev);
4661 if (ret != 0) {
4662 mutex_unlock(&dev->struct_mutex);
4663 return ret;
4664 }
4665
4666 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4667
4668 ret = drm_irq_install(dev, dev->pdev->irq);
4669 if (ret)
4670 goto cleanup_ringbuffer;
4671 mutex_unlock(&dev->struct_mutex);
4672
4673 return 0;
4674
4675 cleanup_ringbuffer:
4676 i915_gem_cleanup_ringbuffer(dev);
4677 dev_priv->ums.mm_suspended = 1;
4678 mutex_unlock(&dev->struct_mutex);
4679
4680 return ret;
4681 }
4682
4683 int
4684 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4685 struct drm_file *file_priv)
4686 {
4687 if (drm_core_check_feature(dev, DRIVER_MODESET))
4688 return 0;
4689
4690 mutex_lock(&dev->struct_mutex);
4691 drm_irq_uninstall(dev);
4692 mutex_unlock(&dev->struct_mutex);
4693
4694 return i915_gem_suspend(dev);
4695 }
4696
4697 void
4698 i915_gem_lastclose(struct drm_device *dev)
4699 {
4700 int ret;
4701
4702 if (drm_core_check_feature(dev, DRIVER_MODESET))
4703 return;
4704
4705 ret = i915_gem_suspend(dev);
4706 if (ret)
4707 DRM_ERROR("failed to idle hardware: %d\n", ret);
4708 }
4709
4710 static void
4711 init_ring_lists(struct intel_engine_cs *ring)
4712 {
4713 INIT_LIST_HEAD(&ring->active_list);
4714 INIT_LIST_HEAD(&ring->request_list);
4715 }
4716
4717 void i915_init_vm(struct drm_i915_private *dev_priv,
4718 struct i915_address_space *vm)
4719 {
4720 if (!i915_is_ggtt(vm))
4721 drm_mm_init(&vm->mm, vm->start, vm->total);
4722 vm->dev = dev_priv->dev;
4723 INIT_LIST_HEAD(&vm->active_list);
4724 INIT_LIST_HEAD(&vm->inactive_list);
4725 INIT_LIST_HEAD(&vm->global_link);
4726 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4727 }
4728
4729 void
4730 i915_gem_load(struct drm_device *dev)
4731 {
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733 int i;
4734
4735 dev_priv->slab =
4736 kmem_cache_create("i915_gem_object",
4737 sizeof(struct drm_i915_gem_object), 0,
4738 SLAB_HWCACHE_ALIGN,
4739 NULL);
4740
4741 INIT_LIST_HEAD(&dev_priv->vm_list);
4742 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4743
4744 INIT_LIST_HEAD(&dev_priv->context_list);
4745 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4746 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4747 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4748 for (i = 0; i < I915_NUM_RINGS; i++)
4749 init_ring_lists(&dev_priv->ring[i]);
4750 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4751 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4752 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4753 i915_gem_retire_work_handler);
4754 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4755 i915_gem_idle_work_handler);
4756 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4757
4758 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4759 if (IS_GEN3(dev)) {
4760 I915_WRITE(MI_ARB_STATE,
4761 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4762 }
4763
4764 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4765
4766 /* Old X drivers will take 0-2 for front, back, depth buffers */
4767 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4768 dev_priv->fence_reg_start = 3;
4769
4770 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4771 dev_priv->num_fence_regs = 32;
4772 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4773 dev_priv->num_fence_regs = 16;
4774 else
4775 dev_priv->num_fence_regs = 8;
4776
4777 /* Initialize fence registers to zero */
4778 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4779 i915_gem_restore_fences(dev);
4780
4781 i915_gem_detect_bit_6_swizzle(dev);
4782 init_waitqueue_head(&dev_priv->pending_flip_queue);
4783
4784 dev_priv->mm.interruptible = true;
4785
4786 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4787 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4788 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4789 register_shrinker(&dev_priv->mm.shrinker);
4790
4791 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4792 register_oom_notifier(&dev_priv->mm.oom_notifier);
4793 }
4794
4795 /*
4796 * Create a physically contiguous memory object for this object
4797 * e.g. for cursor + overlay regs
4798 */
4799 static int i915_gem_init_phys_object(struct drm_device *dev,
4800 int id, int size, int align)
4801 {
4802 struct drm_i915_private *dev_priv = dev->dev_private;
4803 struct drm_i915_gem_phys_object *phys_obj;
4804 int ret;
4805
4806 if (dev_priv->mm.phys_objs[id - 1] || !size)
4807 return 0;
4808
4809 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4810 if (!phys_obj)
4811 return -ENOMEM;
4812
4813 phys_obj->id = id;
4814
4815 phys_obj->handle = drm_pci_alloc(dev, size, align);
4816 if (!phys_obj->handle) {
4817 ret = -ENOMEM;
4818 goto kfree_obj;
4819 }
4820 #ifdef CONFIG_X86
4821 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4822 #endif
4823
4824 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4825
4826 return 0;
4827 kfree_obj:
4828 kfree(phys_obj);
4829 return ret;
4830 }
4831
4832 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4833 {
4834 struct drm_i915_private *dev_priv = dev->dev_private;
4835 struct drm_i915_gem_phys_object *phys_obj;
4836
4837 if (!dev_priv->mm.phys_objs[id - 1])
4838 return;
4839
4840 phys_obj = dev_priv->mm.phys_objs[id - 1];
4841 if (phys_obj->cur_obj) {
4842 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4843 }
4844
4845 #ifdef CONFIG_X86
4846 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4847 #endif
4848 drm_pci_free(dev, phys_obj->handle);
4849 kfree(phys_obj);
4850 dev_priv->mm.phys_objs[id - 1] = NULL;
4851 }
4852
4853 void i915_gem_free_all_phys_object(struct drm_device *dev)
4854 {
4855 int i;
4856
4857 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4858 i915_gem_free_phys_object(dev, i);
4859 }
4860
4861 void i915_gem_detach_phys_object(struct drm_device *dev,
4862 struct drm_i915_gem_object *obj)
4863 {
4864 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4865 char *vaddr;
4866 int i;
4867 int page_count;
4868
4869 if (!obj->phys_obj)
4870 return;
4871 vaddr = obj->phys_obj->handle->vaddr;
4872
4873 page_count = obj->base.size / PAGE_SIZE;
4874 for (i = 0; i < page_count; i++) {
4875 struct page *page = shmem_read_mapping_page(mapping, i);
4876 if (!IS_ERR(page)) {
4877 char *dst = kmap_atomic(page);
4878 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4879 kunmap_atomic(dst);
4880
4881 drm_clflush_pages(&page, 1);
4882
4883 set_page_dirty(page);
4884 mark_page_accessed(page);
4885 page_cache_release(page);
4886 }
4887 }
4888 i915_gem_chipset_flush(dev);
4889
4890 obj->phys_obj->cur_obj = NULL;
4891 obj->phys_obj = NULL;
4892 }
4893
4894 int
4895 i915_gem_attach_phys_object(struct drm_device *dev,
4896 struct drm_i915_gem_object *obj,
4897 int id,
4898 int align)
4899 {
4900 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4901 struct drm_i915_private *dev_priv = dev->dev_private;
4902 int ret = 0;
4903 int page_count;
4904 int i;
4905
4906 if (id > I915_MAX_PHYS_OBJECT)
4907 return -EINVAL;
4908
4909 if (obj->phys_obj) {
4910 if (obj->phys_obj->id == id)
4911 return 0;
4912 i915_gem_detach_phys_object(dev, obj);
4913 }
4914
4915 /* create a new object */
4916 if (!dev_priv->mm.phys_objs[id - 1]) {
4917 ret = i915_gem_init_phys_object(dev, id,
4918 obj->base.size, align);
4919 if (ret) {
4920 DRM_ERROR("failed to init phys object %d size: %zu\n",
4921 id, obj->base.size);
4922 return ret;
4923 }
4924 }
4925
4926 /* bind to the object */
4927 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4928 obj->phys_obj->cur_obj = obj;
4929
4930 page_count = obj->base.size / PAGE_SIZE;
4931
4932 for (i = 0; i < page_count; i++) {
4933 struct page *page;
4934 char *dst, *src;
4935
4936 page = shmem_read_mapping_page(mapping, i);
4937 if (IS_ERR(page))
4938 return PTR_ERR(page);
4939
4940 src = kmap_atomic(page);
4941 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4942 memcpy(dst, src, PAGE_SIZE);
4943 kunmap_atomic(src);
4944
4945 mark_page_accessed(page);
4946 page_cache_release(page);
4947 }
4948
4949 return 0;
4950 }
4951
4952 static int
4953 i915_gem_phys_pwrite(struct drm_device *dev,
4954 struct drm_i915_gem_object *obj,
4955 struct drm_i915_gem_pwrite *args,
4956 struct drm_file *file_priv)
4957 {
4958 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4959 char __user *user_data = to_user_ptr(args->data_ptr);
4960
4961 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4962 unsigned long unwritten;
4963
4964 /* The physical object once assigned is fixed for the lifetime
4965 * of the obj, so we can safely drop the lock and continue
4966 * to access vaddr.
4967 */
4968 mutex_unlock(&dev->struct_mutex);
4969 unwritten = copy_from_user(vaddr, user_data, args->size);
4970 mutex_lock(&dev->struct_mutex);
4971 if (unwritten)
4972 return -EFAULT;
4973 }
4974
4975 i915_gem_chipset_flush(dev);
4976 return 0;
4977 }
4978
4979 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4980 {
4981 struct drm_i915_file_private *file_priv = file->driver_priv;
4982
4983 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4984
4985 /* Clean up our request list when the client is going away, so that
4986 * later retire_requests won't dereference our soon-to-be-gone
4987 * file_priv.
4988 */
4989 spin_lock(&file_priv->mm.lock);
4990 while (!list_empty(&file_priv->mm.request_list)) {
4991 struct drm_i915_gem_request *request;
4992
4993 request = list_first_entry(&file_priv->mm.request_list,
4994 struct drm_i915_gem_request,
4995 client_list);
4996 list_del(&request->client_list);
4997 request->file_priv = NULL;
4998 }
4999 spin_unlock(&file_priv->mm.lock);
5000 }
5001
5002 static void
5003 i915_gem_file_idle_work_handler(struct work_struct *work)
5004 {
5005 struct drm_i915_file_private *file_priv =
5006 container_of(work, typeof(*file_priv), mm.idle_work.work);
5007
5008 atomic_set(&file_priv->rps_wait_boost, false);
5009 }
5010
5011 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5012 {
5013 struct drm_i915_file_private *file_priv;
5014 int ret;
5015
5016 DRM_DEBUG_DRIVER("\n");
5017
5018 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5019 if (!file_priv)
5020 return -ENOMEM;
5021
5022 file->driver_priv = file_priv;
5023 file_priv->dev_priv = dev->dev_private;
5024 file_priv->file = file;
5025
5026 spin_lock_init(&file_priv->mm.lock);
5027 INIT_LIST_HEAD(&file_priv->mm.request_list);
5028 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5029 i915_gem_file_idle_work_handler);
5030
5031 ret = i915_gem_context_open(dev, file);
5032 if (ret)
5033 kfree(file_priv);
5034
5035 return ret;
5036 }
5037
5038 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5039 {
5040 if (!mutex_is_locked(mutex))
5041 return false;
5042
5043 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5044 return mutex->owner == task;
5045 #else
5046 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5047 return false;
5048 #endif
5049 }
5050
5051 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5052 {
5053 if (!mutex_trylock(&dev->struct_mutex)) {
5054 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5055 return false;
5056
5057 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5058 return false;
5059
5060 *unlock = false;
5061 } else
5062 *unlock = true;
5063
5064 return true;
5065 }
5066
5067 static int num_vma_bound(struct drm_i915_gem_object *obj)
5068 {
5069 struct i915_vma *vma;
5070 int count = 0;
5071
5072 list_for_each_entry(vma, &obj->vma_list, vma_link)
5073 if (drm_mm_node_allocated(&vma->node))
5074 count++;
5075
5076 return count;
5077 }
5078
5079 static unsigned long
5080 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5081 {
5082 struct drm_i915_private *dev_priv =
5083 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5084 struct drm_device *dev = dev_priv->dev;
5085 struct drm_i915_gem_object *obj;
5086 unsigned long count;
5087 bool unlock;
5088
5089 if (!i915_gem_shrinker_lock(dev, &unlock))
5090 return 0;
5091
5092 count = 0;
5093 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5094 if (obj->pages_pin_count == 0)
5095 count += obj->base.size >> PAGE_SHIFT;
5096
5097 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5098 if (!i915_gem_obj_is_pinned(obj) &&
5099 obj->pages_pin_count == num_vma_bound(obj))
5100 count += obj->base.size >> PAGE_SHIFT;
5101 }
5102
5103 if (unlock)
5104 mutex_unlock(&dev->struct_mutex);
5105
5106 return count;
5107 }
5108
5109 /* All the new VM stuff */
5110 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5111 struct i915_address_space *vm)
5112 {
5113 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5114 struct i915_vma *vma;
5115
5116 if (!dev_priv->mm.aliasing_ppgtt ||
5117 vm == &dev_priv->mm.aliasing_ppgtt->base)
5118 vm = &dev_priv->gtt.base;
5119
5120 BUG_ON(list_empty(&o->vma_list));
5121 list_for_each_entry(vma, &o->vma_list, vma_link) {
5122 if (vma->vm == vm)
5123 return vma->node.start;
5124
5125 }
5126 return -1;
5127 }
5128
5129 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5130 struct i915_address_space *vm)
5131 {
5132 struct i915_vma *vma;
5133
5134 list_for_each_entry(vma, &o->vma_list, vma_link)
5135 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5136 return true;
5137
5138 return false;
5139 }
5140
5141 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5142 {
5143 struct i915_vma *vma;
5144
5145 list_for_each_entry(vma, &o->vma_list, vma_link)
5146 if (drm_mm_node_allocated(&vma->node))
5147 return true;
5148
5149 return false;
5150 }
5151
5152 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5153 struct i915_address_space *vm)
5154 {
5155 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5156 struct i915_vma *vma;
5157
5158 if (!dev_priv->mm.aliasing_ppgtt ||
5159 vm == &dev_priv->mm.aliasing_ppgtt->base)
5160 vm = &dev_priv->gtt.base;
5161
5162 BUG_ON(list_empty(&o->vma_list));
5163
5164 list_for_each_entry(vma, &o->vma_list, vma_link)
5165 if (vma->vm == vm)
5166 return vma->node.size;
5167
5168 return 0;
5169 }
5170
5171 static unsigned long
5172 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5173 {
5174 struct drm_i915_private *dev_priv =
5175 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5176 struct drm_device *dev = dev_priv->dev;
5177 unsigned long freed;
5178 bool unlock;
5179
5180 if (!i915_gem_shrinker_lock(dev, &unlock))
5181 return SHRINK_STOP;
5182
5183 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5184 if (freed < sc->nr_to_scan)
5185 freed += __i915_gem_shrink(dev_priv,
5186 sc->nr_to_scan - freed,
5187 false);
5188 if (unlock)
5189 mutex_unlock(&dev->struct_mutex);
5190
5191 return freed;
5192 }
5193
5194 static int
5195 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5196 {
5197 struct drm_i915_private *dev_priv =
5198 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5199 struct drm_device *dev = dev_priv->dev;
5200 struct drm_i915_gem_object *obj;
5201 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5202 unsigned long pinned, bound, unbound, freed;
5203 bool was_interruptible;
5204 bool unlock;
5205
5206 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5207 schedule_timeout_killable(1);
5208 if (timeout == 0) {
5209 pr_err("Unable to purge GPU memory due lock contention.\n");
5210 return NOTIFY_DONE;
5211 }
5212
5213 was_interruptible = dev_priv->mm.interruptible;
5214 dev_priv->mm.interruptible = false;
5215
5216 freed = i915_gem_shrink_all(dev_priv);
5217
5218 dev_priv->mm.interruptible = was_interruptible;
5219
5220 /* Because we may be allocating inside our own driver, we cannot
5221 * assert that there are no objects with pinned pages that are not
5222 * being pointed to by hardware.
5223 */
5224 unbound = bound = pinned = 0;
5225 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5226 if (!obj->base.filp) /* not backed by a freeable object */
5227 continue;
5228
5229 if (obj->pages_pin_count)
5230 pinned += obj->base.size;
5231 else
5232 unbound += obj->base.size;
5233 }
5234 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5235 if (!obj->base.filp)
5236 continue;
5237
5238 if (obj->pages_pin_count)
5239 pinned += obj->base.size;
5240 else
5241 bound += obj->base.size;
5242 }
5243
5244 if (unlock)
5245 mutex_unlock(&dev->struct_mutex);
5246
5247 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5248 freed, pinned);
5249 if (unbound || bound)
5250 pr_err("%lu and %lu bytes still available in the "
5251 "bound and unbound GPU page lists.\n",
5252 bound, unbound);
5253
5254 *(unsigned long *)ptr += freed;
5255 return NOTIFY_DONE;
5256 }
5257
5258 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5259 {
5260 struct i915_vma *vma;
5261
5262 /* This WARN has probably outlived its usefulness (callers already
5263 * WARN if they don't find the GGTT vma they expect). When removing,
5264 * remember to remove the pre-check in is_pin_display() as well */
5265 if (WARN_ON(list_empty(&obj->vma_list)))
5266 return NULL;
5267
5268 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5269 if (vma->vm != obj_to_ggtt(obj))
5270 return NULL;
5271
5272 return vma;
5273 }