]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branches 'for-4.4/upstream-fixes', 'for-4.5/async-suspend', 'for-4.5/container...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151 unsigned long timeout;
1152
1153 if (i915_gem_request_get_ring(req)->irq_refcount)
1154 return -EBUSY;
1155
1156 timeout = jiffies + 1;
1157 while (!need_resched()) {
1158 if (i915_gem_request_completed(req, true))
1159 return 0;
1160
1161 if (time_after_eq(jiffies, timeout))
1162 break;
1163
1164 cpu_relax_lowlatency();
1165 }
1166 if (i915_gem_request_completed(req, false))
1167 return 0;
1168
1169 return -EAGAIN;
1170 }
1171
1172 /**
1173 * __i915_wait_request - wait until execution of request has finished
1174 * @req: duh!
1175 * @reset_counter: reset sequence associated with the given request
1176 * @interruptible: do an interruptible wait (normally yes)
1177 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178 *
1179 * Note: It is of utmost importance that the passed in seqno and reset_counter
1180 * values have been read by the caller in an smp safe manner. Where read-side
1181 * locks are involved, it is sufficient to read the reset_counter before
1182 * unlocking the lock that protects the seqno. For lockless tricks, the
1183 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184 * inserted.
1185 *
1186 * Returns 0 if the request was found within the alloted time. Else returns the
1187 * errno with remaining time filled in timeout argument.
1188 */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190 unsigned reset_counter,
1191 bool interruptible,
1192 s64 *timeout,
1193 struct intel_rps_client *rps)
1194 {
1195 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196 struct drm_device *dev = ring->dev;
1197 struct drm_i915_private *dev_priv = dev->dev_private;
1198 const bool irq_test_in_progress =
1199 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200 DEFINE_WAIT(wait);
1201 unsigned long timeout_expire;
1202 s64 before, now;
1203 int ret;
1204
1205 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207 if (list_empty(&req->list))
1208 return 0;
1209
1210 if (i915_gem_request_completed(req, true))
1211 return 0;
1212
1213 timeout_expire = timeout ?
1214 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1215
1216 if (INTEL_INFO(dev_priv)->gen >= 6)
1217 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1218
1219 /* Record current time in case interrupted by signal, or wedged */
1220 trace_i915_gem_request_wait_begin(req);
1221 before = ktime_get_raw_ns();
1222
1223 /* Optimistic spin for the next jiffie before touching IRQs */
1224 ret = __i915_spin_request(req);
1225 if (ret == 0)
1226 goto out;
1227
1228 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1229 ret = -ENODEV;
1230 goto out;
1231 }
1232
1233 for (;;) {
1234 struct timer_list timer;
1235
1236 prepare_to_wait(&ring->irq_queue, &wait,
1237 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1238
1239 /* We need to check whether any gpu reset happened in between
1240 * the caller grabbing the seqno and now ... */
1241 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1242 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1243 * is truely gone. */
1244 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1245 if (ret == 0)
1246 ret = -EAGAIN;
1247 break;
1248 }
1249
1250 if (i915_gem_request_completed(req, false)) {
1251 ret = 0;
1252 break;
1253 }
1254
1255 if (interruptible && signal_pending(current)) {
1256 ret = -ERESTARTSYS;
1257 break;
1258 }
1259
1260 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1261 ret = -ETIME;
1262 break;
1263 }
1264
1265 timer.function = NULL;
1266 if (timeout || missed_irq(dev_priv, ring)) {
1267 unsigned long expire;
1268
1269 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1270 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1271 mod_timer(&timer, expire);
1272 }
1273
1274 io_schedule();
1275
1276 if (timer.function) {
1277 del_singleshot_timer_sync(&timer);
1278 destroy_timer_on_stack(&timer);
1279 }
1280 }
1281 if (!irq_test_in_progress)
1282 ring->irq_put(ring);
1283
1284 finish_wait(&ring->irq_queue, &wait);
1285
1286 out:
1287 now = ktime_get_raw_ns();
1288 trace_i915_gem_request_wait_end(req);
1289
1290 if (timeout) {
1291 s64 tres = *timeout - (now - before);
1292
1293 *timeout = tres < 0 ? 0 : tres;
1294
1295 /*
1296 * Apparently ktime isn't accurate enough and occasionally has a
1297 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1298 * things up to make the test happy. We allow up to 1 jiffy.
1299 *
1300 * This is a regrssion from the timespec->ktime conversion.
1301 */
1302 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1303 *timeout = 0;
1304 }
1305
1306 return ret;
1307 }
1308
1309 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1310 struct drm_file *file)
1311 {
1312 struct drm_i915_private *dev_private;
1313 struct drm_i915_file_private *file_priv;
1314
1315 WARN_ON(!req || !file || req->file_priv);
1316
1317 if (!req || !file)
1318 return -EINVAL;
1319
1320 if (req->file_priv)
1321 return -EINVAL;
1322
1323 dev_private = req->ring->dev->dev_private;
1324 file_priv = file->driver_priv;
1325
1326 spin_lock(&file_priv->mm.lock);
1327 req->file_priv = file_priv;
1328 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1329 spin_unlock(&file_priv->mm.lock);
1330
1331 req->pid = get_pid(task_pid(current));
1332
1333 return 0;
1334 }
1335
1336 static inline void
1337 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1338 {
1339 struct drm_i915_file_private *file_priv = request->file_priv;
1340
1341 if (!file_priv)
1342 return;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 list_del(&request->client_list);
1346 request->file_priv = NULL;
1347 spin_unlock(&file_priv->mm.lock);
1348
1349 put_pid(request->pid);
1350 request->pid = NULL;
1351 }
1352
1353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1354 {
1355 trace_i915_gem_request_retire(request);
1356
1357 /* We know the GPU must have read the request to have
1358 * sent us the seqno + interrupt, so use the position
1359 * of tail of the request to update the last known position
1360 * of the GPU head.
1361 *
1362 * Note this requires that we are always called in request
1363 * completion order.
1364 */
1365 request->ringbuf->last_retired_head = request->postfix;
1366
1367 list_del_init(&request->list);
1368 i915_gem_request_remove_from_client(request);
1369
1370 i915_gem_request_unreference(request);
1371 }
1372
1373 static void
1374 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375 {
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392 }
1393
1394 /**
1395 * Waits for a request to be signaled, and cleans up the
1396 * request and object lists appropriately for that event.
1397 */
1398 int
1399 i915_wait_request(struct drm_i915_gem_request *req)
1400 {
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
1404 int ret;
1405
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 if (ret)
1416 return ret;
1417
1418 ret = __i915_wait_request(req,
1419 atomic_read(&dev_priv->gpu_error.reset_counter),
1420 interruptible, NULL, NULL);
1421 if (ret)
1422 return ret;
1423
1424 __i915_gem_request_retire__upto(req);
1425 return 0;
1426 }
1427
1428 /**
1429 * Ensures that all rendering to the object has completed and the object is
1430 * safe to unbind from the GTT or access from the CPU.
1431 */
1432 int
1433 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1434 bool readonly)
1435 {
1436 int ret, i;
1437
1438 if (!obj->active)
1439 return 0;
1440
1441 if (readonly) {
1442 if (obj->last_write_req != NULL) {
1443 ret = i915_wait_request(obj->last_write_req);
1444 if (ret)
1445 return ret;
1446
1447 i = obj->last_write_req->ring->id;
1448 if (obj->last_read_req[i] == obj->last_write_req)
1449 i915_gem_object_retire__read(obj, i);
1450 else
1451 i915_gem_object_retire__write(obj);
1452 }
1453 } else {
1454 for (i = 0; i < I915_NUM_RINGS; i++) {
1455 if (obj->last_read_req[i] == NULL)
1456 continue;
1457
1458 ret = i915_wait_request(obj->last_read_req[i]);
1459 if (ret)
1460 return ret;
1461
1462 i915_gem_object_retire__read(obj, i);
1463 }
1464 RQ_BUG_ON(obj->active);
1465 }
1466
1467 return 0;
1468 }
1469
1470 static void
1471 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1472 struct drm_i915_gem_request *req)
1473 {
1474 int ring = req->ring->id;
1475
1476 if (obj->last_read_req[ring] == req)
1477 i915_gem_object_retire__read(obj, ring);
1478 else if (obj->last_write_req == req)
1479 i915_gem_object_retire__write(obj);
1480
1481 __i915_gem_request_retire__upto(req);
1482 }
1483
1484 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1485 * as the object state may change during this call.
1486 */
1487 static __must_check int
1488 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1489 struct intel_rps_client *rps,
1490 bool readonly)
1491 {
1492 struct drm_device *dev = obj->base.dev;
1493 struct drm_i915_private *dev_priv = dev->dev_private;
1494 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1495 unsigned reset_counter;
1496 int ret, i, n = 0;
1497
1498 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1499 BUG_ON(!dev_priv->mm.interruptible);
1500
1501 if (!obj->active)
1502 return 0;
1503
1504 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1505 if (ret)
1506 return ret;
1507
1508 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1509
1510 if (readonly) {
1511 struct drm_i915_gem_request *req;
1512
1513 req = obj->last_write_req;
1514 if (req == NULL)
1515 return 0;
1516
1517 requests[n++] = i915_gem_request_reference(req);
1518 } else {
1519 for (i = 0; i < I915_NUM_RINGS; i++) {
1520 struct drm_i915_gem_request *req;
1521
1522 req = obj->last_read_req[i];
1523 if (req == NULL)
1524 continue;
1525
1526 requests[n++] = i915_gem_request_reference(req);
1527 }
1528 }
1529
1530 mutex_unlock(&dev->struct_mutex);
1531 for (i = 0; ret == 0 && i < n; i++)
1532 ret = __i915_wait_request(requests[i], reset_counter, true,
1533 NULL, rps);
1534 mutex_lock(&dev->struct_mutex);
1535
1536 for (i = 0; i < n; i++) {
1537 if (ret == 0)
1538 i915_gem_object_retire_request(obj, requests[i]);
1539 i915_gem_request_unreference(requests[i]);
1540 }
1541
1542 return ret;
1543 }
1544
1545 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1546 {
1547 struct drm_i915_file_private *fpriv = file->driver_priv;
1548 return &fpriv->rps;
1549 }
1550
1551 /**
1552 * Called when user space prepares to use an object with the CPU, either
1553 * through the mmap ioctl's mapping or a GTT mapping.
1554 */
1555 int
1556 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557 struct drm_file *file)
1558 {
1559 struct drm_i915_gem_set_domain *args = data;
1560 struct drm_i915_gem_object *obj;
1561 uint32_t read_domains = args->read_domains;
1562 uint32_t write_domain = args->write_domain;
1563 int ret;
1564
1565 /* Only handle setting domains to types used by the CPU. */
1566 if (write_domain & I915_GEM_GPU_DOMAINS)
1567 return -EINVAL;
1568
1569 if (read_domains & I915_GEM_GPU_DOMAINS)
1570 return -EINVAL;
1571
1572 /* Having something in the write domain implies it's in the read
1573 * domain, and only that read domain. Enforce that in the request.
1574 */
1575 if (write_domain != 0 && read_domains != write_domain)
1576 return -EINVAL;
1577
1578 ret = i915_mutex_lock_interruptible(dev);
1579 if (ret)
1580 return ret;
1581
1582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1583 if (&obj->base == NULL) {
1584 ret = -ENOENT;
1585 goto unlock;
1586 }
1587
1588 /* Try to flush the object off the GPU without holding the lock.
1589 * We will repeat the flush holding the lock in the normal manner
1590 * to catch cases where we are gazumped.
1591 */
1592 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1593 to_rps_client(file),
1594 !write_domain);
1595 if (ret)
1596 goto unref;
1597
1598 if (read_domains & I915_GEM_DOMAIN_GTT)
1599 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1600 else
1601 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1602
1603 if (write_domain != 0)
1604 intel_fb_obj_invalidate(obj,
1605 write_domain == I915_GEM_DOMAIN_GTT ?
1606 ORIGIN_GTT : ORIGIN_CPU);
1607
1608 unref:
1609 drm_gem_object_unreference(&obj->base);
1610 unlock:
1611 mutex_unlock(&dev->struct_mutex);
1612 return ret;
1613 }
1614
1615 /**
1616 * Called when user space has done writes to this buffer
1617 */
1618 int
1619 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1620 struct drm_file *file)
1621 {
1622 struct drm_i915_gem_sw_finish *args = data;
1623 struct drm_i915_gem_object *obj;
1624 int ret = 0;
1625
1626 ret = i915_mutex_lock_interruptible(dev);
1627 if (ret)
1628 return ret;
1629
1630 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1631 if (&obj->base == NULL) {
1632 ret = -ENOENT;
1633 goto unlock;
1634 }
1635
1636 /* Pinned buffers may be scanout, so flush the cache */
1637 if (obj->pin_display)
1638 i915_gem_object_flush_cpu_write_domain(obj);
1639
1640 drm_gem_object_unreference(&obj->base);
1641 unlock:
1642 mutex_unlock(&dev->struct_mutex);
1643 return ret;
1644 }
1645
1646 /**
1647 * Maps the contents of an object, returning the address it is mapped
1648 * into.
1649 *
1650 * While the mapping holds a reference on the contents of the object, it doesn't
1651 * imply a ref on the object itself.
1652 *
1653 * IMPORTANT:
1654 *
1655 * DRM driver writers who look a this function as an example for how to do GEM
1656 * mmap support, please don't implement mmap support like here. The modern way
1657 * to implement DRM mmap support is with an mmap offset ioctl (like
1658 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1659 * That way debug tooling like valgrind will understand what's going on, hiding
1660 * the mmap call in a driver private ioctl will break that. The i915 driver only
1661 * does cpu mmaps this way because we didn't know better.
1662 */
1663 int
1664 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1665 struct drm_file *file)
1666 {
1667 struct drm_i915_gem_mmap *args = data;
1668 struct drm_gem_object *obj;
1669 unsigned long addr;
1670
1671 if (args->flags & ~(I915_MMAP_WC))
1672 return -EINVAL;
1673
1674 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1675 return -ENODEV;
1676
1677 obj = drm_gem_object_lookup(dev, file, args->handle);
1678 if (obj == NULL)
1679 return -ENOENT;
1680
1681 /* prime objects have no backing filp to GEM mmap
1682 * pages from.
1683 */
1684 if (!obj->filp) {
1685 drm_gem_object_unreference_unlocked(obj);
1686 return -EINVAL;
1687 }
1688
1689 addr = vm_mmap(obj->filp, 0, args->size,
1690 PROT_READ | PROT_WRITE, MAP_SHARED,
1691 args->offset);
1692 if (args->flags & I915_MMAP_WC) {
1693 struct mm_struct *mm = current->mm;
1694 struct vm_area_struct *vma;
1695
1696 down_write(&mm->mmap_sem);
1697 vma = find_vma(mm, addr);
1698 if (vma)
1699 vma->vm_page_prot =
1700 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1701 else
1702 addr = -ENOMEM;
1703 up_write(&mm->mmap_sem);
1704 }
1705 drm_gem_object_unreference_unlocked(obj);
1706 if (IS_ERR((void *)addr))
1707 return addr;
1708
1709 args->addr_ptr = (uint64_t) addr;
1710
1711 return 0;
1712 }
1713
1714 /**
1715 * i915_gem_fault - fault a page into the GTT
1716 * @vma: VMA in question
1717 * @vmf: fault info
1718 *
1719 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1720 * from userspace. The fault handler takes care of binding the object to
1721 * the GTT (if needed), allocating and programming a fence register (again,
1722 * only if needed based on whether the old reg is still valid or the object
1723 * is tiled) and inserting a new PTE into the faulting process.
1724 *
1725 * Note that the faulting process may involve evicting existing objects
1726 * from the GTT and/or fence registers to make room. So performance may
1727 * suffer if the GTT working set is large or there are few fence registers
1728 * left.
1729 */
1730 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1731 {
1732 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1733 struct drm_device *dev = obj->base.dev;
1734 struct drm_i915_private *dev_priv = dev->dev_private;
1735 struct i915_ggtt_view view = i915_ggtt_view_normal;
1736 pgoff_t page_offset;
1737 unsigned long pfn;
1738 int ret = 0;
1739 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1740
1741 intel_runtime_pm_get(dev_priv);
1742
1743 /* We don't use vmf->pgoff since that has the fake offset */
1744 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1745 PAGE_SHIFT;
1746
1747 ret = i915_mutex_lock_interruptible(dev);
1748 if (ret)
1749 goto out;
1750
1751 trace_i915_gem_object_fault(obj, page_offset, true, write);
1752
1753 /* Try to flush the object off the GPU first without holding the lock.
1754 * Upon reacquiring the lock, we will perform our sanity checks and then
1755 * repeat the flush holding the lock in the normal manner to catch cases
1756 * where we are gazumped.
1757 */
1758 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1759 if (ret)
1760 goto unlock;
1761
1762 /* Access to snoopable pages through the GTT is incoherent. */
1763 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1764 ret = -EFAULT;
1765 goto unlock;
1766 }
1767
1768 /* Use a partial view if the object is bigger than the aperture. */
1769 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1770 obj->tiling_mode == I915_TILING_NONE) {
1771 static const unsigned int chunk_size = 256; // 1 MiB
1772
1773 memset(&view, 0, sizeof(view));
1774 view.type = I915_GGTT_VIEW_PARTIAL;
1775 view.params.partial.offset = rounddown(page_offset, chunk_size);
1776 view.params.partial.size =
1777 min_t(unsigned int,
1778 chunk_size,
1779 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1780 view.params.partial.offset);
1781 }
1782
1783 /* Now pin it into the GTT if needed */
1784 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1785 if (ret)
1786 goto unlock;
1787
1788 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1789 if (ret)
1790 goto unpin;
1791
1792 ret = i915_gem_object_get_fence(obj);
1793 if (ret)
1794 goto unpin;
1795
1796 /* Finally, remap it using the new GTT offset */
1797 pfn = dev_priv->gtt.mappable_base +
1798 i915_gem_obj_ggtt_offset_view(obj, &view);
1799 pfn >>= PAGE_SHIFT;
1800
1801 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1802 /* Overriding existing pages in partial view does not cause
1803 * us any trouble as TLBs are still valid because the fault
1804 * is due to userspace losing part of the mapping or never
1805 * having accessed it before (at this partials' range).
1806 */
1807 unsigned long base = vma->vm_start +
1808 (view.params.partial.offset << PAGE_SHIFT);
1809 unsigned int i;
1810
1811 for (i = 0; i < view.params.partial.size; i++) {
1812 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1813 if (ret)
1814 break;
1815 }
1816
1817 obj->fault_mappable = true;
1818 } else {
1819 if (!obj->fault_mappable) {
1820 unsigned long size = min_t(unsigned long,
1821 vma->vm_end - vma->vm_start,
1822 obj->base.size);
1823 int i;
1824
1825 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1826 ret = vm_insert_pfn(vma,
1827 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1828 pfn + i);
1829 if (ret)
1830 break;
1831 }
1832
1833 obj->fault_mappable = true;
1834 } else
1835 ret = vm_insert_pfn(vma,
1836 (unsigned long)vmf->virtual_address,
1837 pfn + page_offset);
1838 }
1839 unpin:
1840 i915_gem_object_ggtt_unpin_view(obj, &view);
1841 unlock:
1842 mutex_unlock(&dev->struct_mutex);
1843 out:
1844 switch (ret) {
1845 case -EIO:
1846 /*
1847 * We eat errors when the gpu is terminally wedged to avoid
1848 * userspace unduly crashing (gl has no provisions for mmaps to
1849 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1850 * and so needs to be reported.
1851 */
1852 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1853 ret = VM_FAULT_SIGBUS;
1854 break;
1855 }
1856 case -EAGAIN:
1857 /*
1858 * EAGAIN means the gpu is hung and we'll wait for the error
1859 * handler to reset everything when re-faulting in
1860 * i915_mutex_lock_interruptible.
1861 */
1862 case 0:
1863 case -ERESTARTSYS:
1864 case -EINTR:
1865 case -EBUSY:
1866 /*
1867 * EBUSY is ok: this just means that another thread
1868 * already did the job.
1869 */
1870 ret = VM_FAULT_NOPAGE;
1871 break;
1872 case -ENOMEM:
1873 ret = VM_FAULT_OOM;
1874 break;
1875 case -ENOSPC:
1876 case -EFAULT:
1877 ret = VM_FAULT_SIGBUS;
1878 break;
1879 default:
1880 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1881 ret = VM_FAULT_SIGBUS;
1882 break;
1883 }
1884
1885 intel_runtime_pm_put(dev_priv);
1886 return ret;
1887 }
1888
1889 /**
1890 * i915_gem_release_mmap - remove physical page mappings
1891 * @obj: obj in question
1892 *
1893 * Preserve the reservation of the mmapping with the DRM core code, but
1894 * relinquish ownership of the pages back to the system.
1895 *
1896 * It is vital that we remove the page mapping if we have mapped a tiled
1897 * object through the GTT and then lose the fence register due to
1898 * resource pressure. Similarly if the object has been moved out of the
1899 * aperture, than pages mapped into userspace must be revoked. Removing the
1900 * mapping will then trigger a page fault on the next user access, allowing
1901 * fixup by i915_gem_fault().
1902 */
1903 void
1904 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1905 {
1906 if (!obj->fault_mappable)
1907 return;
1908
1909 drm_vma_node_unmap(&obj->base.vma_node,
1910 obj->base.dev->anon_inode->i_mapping);
1911 obj->fault_mappable = false;
1912 }
1913
1914 void
1915 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1916 {
1917 struct drm_i915_gem_object *obj;
1918
1919 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1920 i915_gem_release_mmap(obj);
1921 }
1922
1923 uint32_t
1924 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1925 {
1926 uint32_t gtt_size;
1927
1928 if (INTEL_INFO(dev)->gen >= 4 ||
1929 tiling_mode == I915_TILING_NONE)
1930 return size;
1931
1932 /* Previous chips need a power-of-two fence region when tiling */
1933 if (INTEL_INFO(dev)->gen == 3)
1934 gtt_size = 1024*1024;
1935 else
1936 gtt_size = 512*1024;
1937
1938 while (gtt_size < size)
1939 gtt_size <<= 1;
1940
1941 return gtt_size;
1942 }
1943
1944 /**
1945 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1946 * @obj: object to check
1947 *
1948 * Return the required GTT alignment for an object, taking into account
1949 * potential fence register mapping.
1950 */
1951 uint32_t
1952 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1953 int tiling_mode, bool fenced)
1954 {
1955 /*
1956 * Minimum alignment is 4k (GTT page size), but might be greater
1957 * if a fence register is needed for the object.
1958 */
1959 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1960 tiling_mode == I915_TILING_NONE)
1961 return 4096;
1962
1963 /*
1964 * Previous chips need to be aligned to the size of the smallest
1965 * fence register that can contain the object.
1966 */
1967 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1968 }
1969
1970 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1971 {
1972 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1973 int ret;
1974
1975 if (drm_vma_node_has_offset(&obj->base.vma_node))
1976 return 0;
1977
1978 dev_priv->mm.shrinker_no_lock_stealing = true;
1979
1980 ret = drm_gem_create_mmap_offset(&obj->base);
1981 if (ret != -ENOSPC)
1982 goto out;
1983
1984 /* Badly fragmented mmap space? The only way we can recover
1985 * space is by destroying unwanted objects. We can't randomly release
1986 * mmap_offsets as userspace expects them to be persistent for the
1987 * lifetime of the objects. The closest we can is to release the
1988 * offsets on purgeable objects by truncating it and marking it purged,
1989 * which prevents userspace from ever using that object again.
1990 */
1991 i915_gem_shrink(dev_priv,
1992 obj->base.size >> PAGE_SHIFT,
1993 I915_SHRINK_BOUND |
1994 I915_SHRINK_UNBOUND |
1995 I915_SHRINK_PURGEABLE);
1996 ret = drm_gem_create_mmap_offset(&obj->base);
1997 if (ret != -ENOSPC)
1998 goto out;
1999
2000 i915_gem_shrink_all(dev_priv);
2001 ret = drm_gem_create_mmap_offset(&obj->base);
2002 out:
2003 dev_priv->mm.shrinker_no_lock_stealing = false;
2004
2005 return ret;
2006 }
2007
2008 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2009 {
2010 drm_gem_free_mmap_offset(&obj->base);
2011 }
2012
2013 int
2014 i915_gem_mmap_gtt(struct drm_file *file,
2015 struct drm_device *dev,
2016 uint32_t handle,
2017 uint64_t *offset)
2018 {
2019 struct drm_i915_gem_object *obj;
2020 int ret;
2021
2022 ret = i915_mutex_lock_interruptible(dev);
2023 if (ret)
2024 return ret;
2025
2026 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2027 if (&obj->base == NULL) {
2028 ret = -ENOENT;
2029 goto unlock;
2030 }
2031
2032 if (obj->madv != I915_MADV_WILLNEED) {
2033 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2034 ret = -EFAULT;
2035 goto out;
2036 }
2037
2038 ret = i915_gem_object_create_mmap_offset(obj);
2039 if (ret)
2040 goto out;
2041
2042 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2043
2044 out:
2045 drm_gem_object_unreference(&obj->base);
2046 unlock:
2047 mutex_unlock(&dev->struct_mutex);
2048 return ret;
2049 }
2050
2051 /**
2052 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2053 * @dev: DRM device
2054 * @data: GTT mapping ioctl data
2055 * @file: GEM object info
2056 *
2057 * Simply returns the fake offset to userspace so it can mmap it.
2058 * The mmap call will end up in drm_gem_mmap(), which will set things
2059 * up so we can get faults in the handler above.
2060 *
2061 * The fault handler will take care of binding the object into the GTT
2062 * (since it may have been evicted to make room for something), allocating
2063 * a fence register, and mapping the appropriate aperture address into
2064 * userspace.
2065 */
2066 int
2067 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2068 struct drm_file *file)
2069 {
2070 struct drm_i915_gem_mmap_gtt *args = data;
2071
2072 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2073 }
2074
2075 /* Immediately discard the backing storage */
2076 static void
2077 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2078 {
2079 i915_gem_object_free_mmap_offset(obj);
2080
2081 if (obj->base.filp == NULL)
2082 return;
2083
2084 /* Our goal here is to return as much of the memory as
2085 * is possible back to the system as we are called from OOM.
2086 * To do this we must instruct the shmfs to drop all of its
2087 * backing pages, *now*.
2088 */
2089 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2090 obj->madv = __I915_MADV_PURGED;
2091 }
2092
2093 /* Try to discard unwanted pages */
2094 static void
2095 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2096 {
2097 struct address_space *mapping;
2098
2099 switch (obj->madv) {
2100 case I915_MADV_DONTNEED:
2101 i915_gem_object_truncate(obj);
2102 case __I915_MADV_PURGED:
2103 return;
2104 }
2105
2106 if (obj->base.filp == NULL)
2107 return;
2108
2109 mapping = file_inode(obj->base.filp)->i_mapping,
2110 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2111 }
2112
2113 static void
2114 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2115 {
2116 struct sg_page_iter sg_iter;
2117 int ret;
2118
2119 BUG_ON(obj->madv == __I915_MADV_PURGED);
2120
2121 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2122 if (ret) {
2123 /* In the event of a disaster, abandon all caches and
2124 * hope for the best.
2125 */
2126 WARN_ON(ret != -EIO);
2127 i915_gem_clflush_object(obj, true);
2128 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2129 }
2130
2131 i915_gem_gtt_finish_object(obj);
2132
2133 if (i915_gem_object_needs_bit17_swizzle(obj))
2134 i915_gem_object_save_bit_17_swizzle(obj);
2135
2136 if (obj->madv == I915_MADV_DONTNEED)
2137 obj->dirty = 0;
2138
2139 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2140 struct page *page = sg_page_iter_page(&sg_iter);
2141
2142 if (obj->dirty)
2143 set_page_dirty(page);
2144
2145 if (obj->madv == I915_MADV_WILLNEED)
2146 mark_page_accessed(page);
2147
2148 page_cache_release(page);
2149 }
2150 obj->dirty = 0;
2151
2152 sg_free_table(obj->pages);
2153 kfree(obj->pages);
2154 }
2155
2156 int
2157 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2158 {
2159 const struct drm_i915_gem_object_ops *ops = obj->ops;
2160
2161 if (obj->pages == NULL)
2162 return 0;
2163
2164 if (obj->pages_pin_count)
2165 return -EBUSY;
2166
2167 BUG_ON(i915_gem_obj_bound_any(obj));
2168
2169 /* ->put_pages might need to allocate memory for the bit17 swizzle
2170 * array, hence protect them from being reaped by removing them from gtt
2171 * lists early. */
2172 list_del(&obj->global_list);
2173
2174 ops->put_pages(obj);
2175 obj->pages = NULL;
2176
2177 i915_gem_object_invalidate(obj);
2178
2179 return 0;
2180 }
2181
2182 static int
2183 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2184 {
2185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 int page_count, i;
2187 struct address_space *mapping;
2188 struct sg_table *st;
2189 struct scatterlist *sg;
2190 struct sg_page_iter sg_iter;
2191 struct page *page;
2192 unsigned long last_pfn = 0; /* suppress gcc warning */
2193 int ret;
2194 gfp_t gfp;
2195
2196 /* Assert that the object is not currently in any GPU domain. As it
2197 * wasn't in the GTT, there shouldn't be any way it could have been in
2198 * a GPU cache
2199 */
2200 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2201 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2202
2203 st = kmalloc(sizeof(*st), GFP_KERNEL);
2204 if (st == NULL)
2205 return -ENOMEM;
2206
2207 page_count = obj->base.size / PAGE_SIZE;
2208 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2209 kfree(st);
2210 return -ENOMEM;
2211 }
2212
2213 /* Get the list of pages out of our struct file. They'll be pinned
2214 * at this point until we release them.
2215 *
2216 * Fail silently without starting the shrinker
2217 */
2218 mapping = file_inode(obj->base.filp)->i_mapping;
2219 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2220 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2221 sg = st->sgl;
2222 st->nents = 0;
2223 for (i = 0; i < page_count; i++) {
2224 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2225 if (IS_ERR(page)) {
2226 i915_gem_shrink(dev_priv,
2227 page_count,
2228 I915_SHRINK_BOUND |
2229 I915_SHRINK_UNBOUND |
2230 I915_SHRINK_PURGEABLE);
2231 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2232 }
2233 if (IS_ERR(page)) {
2234 /* We've tried hard to allocate the memory by reaping
2235 * our own buffer, now let the real VM do its job and
2236 * go down in flames if truly OOM.
2237 */
2238 i915_gem_shrink_all(dev_priv);
2239 page = shmem_read_mapping_page(mapping, i);
2240 if (IS_ERR(page)) {
2241 ret = PTR_ERR(page);
2242 goto err_pages;
2243 }
2244 }
2245 #ifdef CONFIG_SWIOTLB
2246 if (swiotlb_nr_tbl()) {
2247 st->nents++;
2248 sg_set_page(sg, page, PAGE_SIZE, 0);
2249 sg = sg_next(sg);
2250 continue;
2251 }
2252 #endif
2253 if (!i || page_to_pfn(page) != last_pfn + 1) {
2254 if (i)
2255 sg = sg_next(sg);
2256 st->nents++;
2257 sg_set_page(sg, page, PAGE_SIZE, 0);
2258 } else {
2259 sg->length += PAGE_SIZE;
2260 }
2261 last_pfn = page_to_pfn(page);
2262
2263 /* Check that the i965g/gm workaround works. */
2264 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2265 }
2266 #ifdef CONFIG_SWIOTLB
2267 if (!swiotlb_nr_tbl())
2268 #endif
2269 sg_mark_end(sg);
2270 obj->pages = st;
2271
2272 ret = i915_gem_gtt_prepare_object(obj);
2273 if (ret)
2274 goto err_pages;
2275
2276 if (i915_gem_object_needs_bit17_swizzle(obj))
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
2283 return 0;
2284
2285 err_pages:
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288 page_cache_release(sg_page_iter_page(&sg_iter));
2289 sg_free_table(st);
2290 kfree(st);
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (ret == -ENOSPC)
2301 ret = -ENOMEM;
2302
2303 return ret;
2304 }
2305
2306 /* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313 int
2314 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315 {
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2320 if (obj->pages)
2321 return 0;
2322
2323 if (obj->madv != I915_MADV_WILLNEED) {
2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325 return -EFAULT;
2326 }
2327
2328 BUG_ON(obj->pages_pin_count);
2329
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
2339 return 0;
2340 }
2341
2342 void i915_vma_move_to_active(struct i915_vma *vma,
2343 struct drm_i915_gem_request *req)
2344 {
2345 struct drm_i915_gem_object *obj = vma->obj;
2346 struct intel_engine_cs *ring;
2347
2348 ring = i915_gem_request_get_ring(req);
2349
2350 /* Add a reference if we're newly entering the active list. */
2351 if (obj->active == 0)
2352 drm_gem_object_reference(&obj->base);
2353 obj->active |= intel_ring_flag(ring);
2354
2355 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2356 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2357
2358 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2359 }
2360
2361 static void
2362 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2363 {
2364 RQ_BUG_ON(obj->last_write_req == NULL);
2365 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2366
2367 i915_gem_request_assign(&obj->last_write_req, NULL);
2368 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2369 }
2370
2371 static void
2372 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2373 {
2374 struct i915_vma *vma;
2375
2376 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2377 RQ_BUG_ON(!(obj->active & (1 << ring)));
2378
2379 list_del_init(&obj->ring_list[ring]);
2380 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2381
2382 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2383 i915_gem_object_retire__write(obj);
2384
2385 obj->active &= ~(1 << ring);
2386 if (obj->active)
2387 return;
2388
2389 /* Bump our place on the bound list to keep it roughly in LRU order
2390 * so that we don't steal from recently used but inactive objects
2391 * (unless we are forced to ofc!)
2392 */
2393 list_move_tail(&obj->global_list,
2394 &to_i915(obj->base.dev)->mm.bound_list);
2395
2396 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2397 if (!list_empty(&vma->mm_list))
2398 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2399 }
2400
2401 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2402 drm_gem_object_unreference(&obj->base);
2403 }
2404
2405 static int
2406 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2407 {
2408 struct drm_i915_private *dev_priv = dev->dev_private;
2409 struct intel_engine_cs *ring;
2410 int ret, i, j;
2411
2412 /* Carefully retire all requests without writing to the rings */
2413 for_each_ring(ring, dev_priv, i) {
2414 ret = intel_ring_idle(ring);
2415 if (ret)
2416 return ret;
2417 }
2418 i915_gem_retire_requests(dev);
2419
2420 /* Finally reset hw state */
2421 for_each_ring(ring, dev_priv, i) {
2422 intel_ring_init_seqno(ring, seqno);
2423
2424 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2425 ring->semaphore.sync_seqno[j] = 0;
2426 }
2427
2428 return 0;
2429 }
2430
2431 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2432 {
2433 struct drm_i915_private *dev_priv = dev->dev_private;
2434 int ret;
2435
2436 if (seqno == 0)
2437 return -EINVAL;
2438
2439 /* HWS page needs to be set less than what we
2440 * will inject to ring
2441 */
2442 ret = i915_gem_init_seqno(dev, seqno - 1);
2443 if (ret)
2444 return ret;
2445
2446 /* Carefully set the last_seqno value so that wrap
2447 * detection still works
2448 */
2449 dev_priv->next_seqno = seqno;
2450 dev_priv->last_seqno = seqno - 1;
2451 if (dev_priv->last_seqno == 0)
2452 dev_priv->last_seqno--;
2453
2454 return 0;
2455 }
2456
2457 int
2458 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2459 {
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461
2462 /* reserve 0 for non-seqno */
2463 if (dev_priv->next_seqno == 0) {
2464 int ret = i915_gem_init_seqno(dev, 0);
2465 if (ret)
2466 return ret;
2467
2468 dev_priv->next_seqno = 1;
2469 }
2470
2471 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2472 return 0;
2473 }
2474
2475 /*
2476 * NB: This function is not allowed to fail. Doing so would mean the the
2477 * request is not being tracked for completion but the work itself is
2478 * going to happen on the hardware. This would be a Bad Thing(tm).
2479 */
2480 void __i915_add_request(struct drm_i915_gem_request *request,
2481 struct drm_i915_gem_object *obj,
2482 bool flush_caches)
2483 {
2484 struct intel_engine_cs *ring;
2485 struct drm_i915_private *dev_priv;
2486 struct intel_ringbuffer *ringbuf;
2487 u32 request_start;
2488 int ret;
2489
2490 if (WARN_ON(request == NULL))
2491 return;
2492
2493 ring = request->ring;
2494 dev_priv = ring->dev->dev_private;
2495 ringbuf = request->ringbuf;
2496
2497 /*
2498 * To ensure that this call will not fail, space for its emissions
2499 * should already have been reserved in the ring buffer. Let the ring
2500 * know that it is time to use that space up.
2501 */
2502 intel_ring_reserved_space_use(ringbuf);
2503
2504 request_start = intel_ring_get_tail(ringbuf);
2505 /*
2506 * Emit any outstanding flushes - execbuf can fail to emit the flush
2507 * after having emitted the batchbuffer command. Hence we need to fix
2508 * things up similar to emitting the lazy request. The difference here
2509 * is that the flush _must_ happen before the next request, no matter
2510 * what.
2511 */
2512 if (flush_caches) {
2513 if (i915.enable_execlists)
2514 ret = logical_ring_flush_all_caches(request);
2515 else
2516 ret = intel_ring_flush_all_caches(request);
2517 /* Not allowed to fail! */
2518 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2519 }
2520
2521 /* Record the position of the start of the request so that
2522 * should we detect the updated seqno part-way through the
2523 * GPU processing the request, we never over-estimate the
2524 * position of the head.
2525 */
2526 request->postfix = intel_ring_get_tail(ringbuf);
2527
2528 if (i915.enable_execlists)
2529 ret = ring->emit_request(request);
2530 else {
2531 ret = ring->add_request(request);
2532
2533 request->tail = intel_ring_get_tail(ringbuf);
2534 }
2535 /* Not allowed to fail! */
2536 WARN(ret, "emit|add_request failed: %d!\n", ret);
2537
2538 request->head = request_start;
2539
2540 /* Whilst this request exists, batch_obj will be on the
2541 * active_list, and so will hold the active reference. Only when this
2542 * request is retired will the the batch_obj be moved onto the
2543 * inactive_list and lose its active reference. Hence we do not need
2544 * to explicitly hold another reference here.
2545 */
2546 request->batch_obj = obj;
2547
2548 request->emitted_jiffies = jiffies;
2549 ring->last_submitted_seqno = request->seqno;
2550 list_add_tail(&request->list, &ring->request_list);
2551
2552 trace_i915_gem_request_add(request);
2553
2554 i915_queue_hangcheck(ring->dev);
2555
2556 queue_delayed_work(dev_priv->wq,
2557 &dev_priv->mm.retire_work,
2558 round_jiffies_up_relative(HZ));
2559 intel_mark_busy(dev_priv->dev);
2560
2561 /* Sanity check that the reserved size was large enough. */
2562 intel_ring_reserved_space_end(ringbuf);
2563 }
2564
2565 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2566 const struct intel_context *ctx)
2567 {
2568 unsigned long elapsed;
2569
2570 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2571
2572 if (ctx->hang_stats.banned)
2573 return true;
2574
2575 if (ctx->hang_stats.ban_period_seconds &&
2576 elapsed <= ctx->hang_stats.ban_period_seconds) {
2577 if (!i915_gem_context_is_default(ctx)) {
2578 DRM_DEBUG("context hanging too fast, banning!\n");
2579 return true;
2580 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2581 if (i915_stop_ring_allow_warn(dev_priv))
2582 DRM_ERROR("gpu hanging too fast, banning!\n");
2583 return true;
2584 }
2585 }
2586
2587 return false;
2588 }
2589
2590 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2591 struct intel_context *ctx,
2592 const bool guilty)
2593 {
2594 struct i915_ctx_hang_stats *hs;
2595
2596 if (WARN_ON(!ctx))
2597 return;
2598
2599 hs = &ctx->hang_stats;
2600
2601 if (guilty) {
2602 hs->banned = i915_context_is_banned(dev_priv, ctx);
2603 hs->batch_active++;
2604 hs->guilty_ts = get_seconds();
2605 } else {
2606 hs->batch_pending++;
2607 }
2608 }
2609
2610 void i915_gem_request_free(struct kref *req_ref)
2611 {
2612 struct drm_i915_gem_request *req = container_of(req_ref,
2613 typeof(*req), ref);
2614 struct intel_context *ctx = req->ctx;
2615
2616 if (req->file_priv)
2617 i915_gem_request_remove_from_client(req);
2618
2619 if (ctx) {
2620 if (i915.enable_execlists) {
2621 if (ctx != req->ring->default_context)
2622 intel_lr_context_unpin(req);
2623 }
2624
2625 i915_gem_context_unreference(ctx);
2626 }
2627
2628 kmem_cache_free(req->i915->requests, req);
2629 }
2630
2631 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2632 struct intel_context *ctx,
2633 struct drm_i915_gem_request **req_out)
2634 {
2635 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2636 struct drm_i915_gem_request *req;
2637 int ret;
2638
2639 if (!req_out)
2640 return -EINVAL;
2641
2642 *req_out = NULL;
2643
2644 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2645 if (req == NULL)
2646 return -ENOMEM;
2647
2648 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2649 if (ret)
2650 goto err;
2651
2652 kref_init(&req->ref);
2653 req->i915 = dev_priv;
2654 req->ring = ring;
2655 req->ctx = ctx;
2656 i915_gem_context_reference(req->ctx);
2657
2658 if (i915.enable_execlists)
2659 ret = intel_logical_ring_alloc_request_extras(req);
2660 else
2661 ret = intel_ring_alloc_request_extras(req);
2662 if (ret) {
2663 i915_gem_context_unreference(req->ctx);
2664 goto err;
2665 }
2666
2667 /*
2668 * Reserve space in the ring buffer for all the commands required to
2669 * eventually emit this request. This is to guarantee that the
2670 * i915_add_request() call can't fail. Note that the reserve may need
2671 * to be redone if the request is not actually submitted straight
2672 * away, e.g. because a GPU scheduler has deferred it.
2673 */
2674 if (i915.enable_execlists)
2675 ret = intel_logical_ring_reserve_space(req);
2676 else
2677 ret = intel_ring_reserve_space(req);
2678 if (ret) {
2679 /*
2680 * At this point, the request is fully allocated even if not
2681 * fully prepared. Thus it can be cleaned up using the proper
2682 * free code.
2683 */
2684 i915_gem_request_cancel(req);
2685 return ret;
2686 }
2687
2688 *req_out = req;
2689 return 0;
2690
2691 err:
2692 kmem_cache_free(dev_priv->requests, req);
2693 return ret;
2694 }
2695
2696 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2697 {
2698 intel_ring_reserved_space_cancel(req->ringbuf);
2699
2700 i915_gem_request_unreference(req);
2701 }
2702
2703 struct drm_i915_gem_request *
2704 i915_gem_find_active_request(struct intel_engine_cs *ring)
2705 {
2706 struct drm_i915_gem_request *request;
2707
2708 list_for_each_entry(request, &ring->request_list, list) {
2709 if (i915_gem_request_completed(request, false))
2710 continue;
2711
2712 return request;
2713 }
2714
2715 return NULL;
2716 }
2717
2718 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2719 struct intel_engine_cs *ring)
2720 {
2721 struct drm_i915_gem_request *request;
2722 bool ring_hung;
2723
2724 request = i915_gem_find_active_request(ring);
2725
2726 if (request == NULL)
2727 return;
2728
2729 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2730
2731 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2732
2733 list_for_each_entry_continue(request, &ring->request_list, list)
2734 i915_set_reset_status(dev_priv, request->ctx, false);
2735 }
2736
2737 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2738 struct intel_engine_cs *ring)
2739 {
2740 while (!list_empty(&ring->active_list)) {
2741 struct drm_i915_gem_object *obj;
2742
2743 obj = list_first_entry(&ring->active_list,
2744 struct drm_i915_gem_object,
2745 ring_list[ring->id]);
2746
2747 i915_gem_object_retire__read(obj, ring->id);
2748 }
2749
2750 /*
2751 * Clear the execlists queue up before freeing the requests, as those
2752 * are the ones that keep the context and ringbuffer backing objects
2753 * pinned in place.
2754 */
2755 while (!list_empty(&ring->execlist_queue)) {
2756 struct drm_i915_gem_request *submit_req;
2757
2758 submit_req = list_first_entry(&ring->execlist_queue,
2759 struct drm_i915_gem_request,
2760 execlist_link);
2761 list_del(&submit_req->execlist_link);
2762
2763 if (submit_req->ctx != ring->default_context)
2764 intel_lr_context_unpin(submit_req);
2765
2766 i915_gem_request_unreference(submit_req);
2767 }
2768
2769 /*
2770 * We must free the requests after all the corresponding objects have
2771 * been moved off active lists. Which is the same order as the normal
2772 * retire_requests function does. This is important if object hold
2773 * implicit references on things like e.g. ppgtt address spaces through
2774 * the request.
2775 */
2776 while (!list_empty(&ring->request_list)) {
2777 struct drm_i915_gem_request *request;
2778
2779 request = list_first_entry(&ring->request_list,
2780 struct drm_i915_gem_request,
2781 list);
2782
2783 i915_gem_request_retire(request);
2784 }
2785 }
2786
2787 void i915_gem_reset(struct drm_device *dev)
2788 {
2789 struct drm_i915_private *dev_priv = dev->dev_private;
2790 struct intel_engine_cs *ring;
2791 int i;
2792
2793 /*
2794 * Before we free the objects from the requests, we need to inspect
2795 * them for finding the guilty party. As the requests only borrow
2796 * their reference to the objects, the inspection must be done first.
2797 */
2798 for_each_ring(ring, dev_priv, i)
2799 i915_gem_reset_ring_status(dev_priv, ring);
2800
2801 for_each_ring(ring, dev_priv, i)
2802 i915_gem_reset_ring_cleanup(dev_priv, ring);
2803
2804 i915_gem_context_reset(dev);
2805
2806 i915_gem_restore_fences(dev);
2807
2808 WARN_ON(i915_verify_lists(dev));
2809 }
2810
2811 /**
2812 * This function clears the request list as sequence numbers are passed.
2813 */
2814 void
2815 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2816 {
2817 WARN_ON(i915_verify_lists(ring->dev));
2818
2819 /* Retire requests first as we use it above for the early return.
2820 * If we retire requests last, we may use a later seqno and so clear
2821 * the requests lists without clearing the active list, leading to
2822 * confusion.
2823 */
2824 while (!list_empty(&ring->request_list)) {
2825 struct drm_i915_gem_request *request;
2826
2827 request = list_first_entry(&ring->request_list,
2828 struct drm_i915_gem_request,
2829 list);
2830
2831 if (!i915_gem_request_completed(request, true))
2832 break;
2833
2834 i915_gem_request_retire(request);
2835 }
2836
2837 /* Move any buffers on the active list that are no longer referenced
2838 * by the ringbuffer to the flushing/inactive lists as appropriate,
2839 * before we free the context associated with the requests.
2840 */
2841 while (!list_empty(&ring->active_list)) {
2842 struct drm_i915_gem_object *obj;
2843
2844 obj = list_first_entry(&ring->active_list,
2845 struct drm_i915_gem_object,
2846 ring_list[ring->id]);
2847
2848 if (!list_empty(&obj->last_read_req[ring->id]->list))
2849 break;
2850
2851 i915_gem_object_retire__read(obj, ring->id);
2852 }
2853
2854 if (unlikely(ring->trace_irq_req &&
2855 i915_gem_request_completed(ring->trace_irq_req, true))) {
2856 ring->irq_put(ring);
2857 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2858 }
2859
2860 WARN_ON(i915_verify_lists(ring->dev));
2861 }
2862
2863 bool
2864 i915_gem_retire_requests(struct drm_device *dev)
2865 {
2866 struct drm_i915_private *dev_priv = dev->dev_private;
2867 struct intel_engine_cs *ring;
2868 bool idle = true;
2869 int i;
2870
2871 for_each_ring(ring, dev_priv, i) {
2872 i915_gem_retire_requests_ring(ring);
2873 idle &= list_empty(&ring->request_list);
2874 if (i915.enable_execlists) {
2875 unsigned long flags;
2876
2877 spin_lock_irqsave(&ring->execlist_lock, flags);
2878 idle &= list_empty(&ring->execlist_queue);
2879 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2880
2881 intel_execlists_retire_requests(ring);
2882 }
2883 }
2884
2885 if (idle)
2886 mod_delayed_work(dev_priv->wq,
2887 &dev_priv->mm.idle_work,
2888 msecs_to_jiffies(100));
2889
2890 return idle;
2891 }
2892
2893 static void
2894 i915_gem_retire_work_handler(struct work_struct *work)
2895 {
2896 struct drm_i915_private *dev_priv =
2897 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2898 struct drm_device *dev = dev_priv->dev;
2899 bool idle;
2900
2901 /* Come back later if the device is busy... */
2902 idle = false;
2903 if (mutex_trylock(&dev->struct_mutex)) {
2904 idle = i915_gem_retire_requests(dev);
2905 mutex_unlock(&dev->struct_mutex);
2906 }
2907 if (!idle)
2908 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2909 round_jiffies_up_relative(HZ));
2910 }
2911
2912 static void
2913 i915_gem_idle_work_handler(struct work_struct *work)
2914 {
2915 struct drm_i915_private *dev_priv =
2916 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2917 struct drm_device *dev = dev_priv->dev;
2918 struct intel_engine_cs *ring;
2919 int i;
2920
2921 for_each_ring(ring, dev_priv, i)
2922 if (!list_empty(&ring->request_list))
2923 return;
2924
2925 intel_mark_idle(dev);
2926
2927 if (mutex_trylock(&dev->struct_mutex)) {
2928 struct intel_engine_cs *ring;
2929 int i;
2930
2931 for_each_ring(ring, dev_priv, i)
2932 i915_gem_batch_pool_fini(&ring->batch_pool);
2933
2934 mutex_unlock(&dev->struct_mutex);
2935 }
2936 }
2937
2938 /**
2939 * Ensures that an object will eventually get non-busy by flushing any required
2940 * write domains, emitting any outstanding lazy request and retiring and
2941 * completed requests.
2942 */
2943 static int
2944 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2945 {
2946 int i;
2947
2948 if (!obj->active)
2949 return 0;
2950
2951 for (i = 0; i < I915_NUM_RINGS; i++) {
2952 struct drm_i915_gem_request *req;
2953
2954 req = obj->last_read_req[i];
2955 if (req == NULL)
2956 continue;
2957
2958 if (list_empty(&req->list))
2959 goto retire;
2960
2961 if (i915_gem_request_completed(req, true)) {
2962 __i915_gem_request_retire__upto(req);
2963 retire:
2964 i915_gem_object_retire__read(obj, i);
2965 }
2966 }
2967
2968 return 0;
2969 }
2970
2971 /**
2972 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2973 * @DRM_IOCTL_ARGS: standard ioctl arguments
2974 *
2975 * Returns 0 if successful, else an error is returned with the remaining time in
2976 * the timeout parameter.
2977 * -ETIME: object is still busy after timeout
2978 * -ERESTARTSYS: signal interrupted the wait
2979 * -ENONENT: object doesn't exist
2980 * Also possible, but rare:
2981 * -EAGAIN: GPU wedged
2982 * -ENOMEM: damn
2983 * -ENODEV: Internal IRQ fail
2984 * -E?: The add request failed
2985 *
2986 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2987 * non-zero timeout parameter the wait ioctl will wait for the given number of
2988 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2989 * without holding struct_mutex the object may become re-busied before this
2990 * function completes. A similar but shorter * race condition exists in the busy
2991 * ioctl
2992 */
2993 int
2994 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2995 {
2996 struct drm_i915_private *dev_priv = dev->dev_private;
2997 struct drm_i915_gem_wait *args = data;
2998 struct drm_i915_gem_object *obj;
2999 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3000 unsigned reset_counter;
3001 int i, n = 0;
3002 int ret;
3003
3004 if (args->flags != 0)
3005 return -EINVAL;
3006
3007 ret = i915_mutex_lock_interruptible(dev);
3008 if (ret)
3009 return ret;
3010
3011 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3012 if (&obj->base == NULL) {
3013 mutex_unlock(&dev->struct_mutex);
3014 return -ENOENT;
3015 }
3016
3017 /* Need to make sure the object gets inactive eventually. */
3018 ret = i915_gem_object_flush_active(obj);
3019 if (ret)
3020 goto out;
3021
3022 if (!obj->active)
3023 goto out;
3024
3025 /* Do this after OLR check to make sure we make forward progress polling
3026 * on this IOCTL with a timeout == 0 (like busy ioctl)
3027 */
3028 if (args->timeout_ns == 0) {
3029 ret = -ETIME;
3030 goto out;
3031 }
3032
3033 drm_gem_object_unreference(&obj->base);
3034 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3035
3036 for (i = 0; i < I915_NUM_RINGS; i++) {
3037 if (obj->last_read_req[i] == NULL)
3038 continue;
3039
3040 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3041 }
3042
3043 mutex_unlock(&dev->struct_mutex);
3044
3045 for (i = 0; i < n; i++) {
3046 if (ret == 0)
3047 ret = __i915_wait_request(req[i], reset_counter, true,
3048 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3049 file->driver_priv);
3050 i915_gem_request_unreference__unlocked(req[i]);
3051 }
3052 return ret;
3053
3054 out:
3055 drm_gem_object_unreference(&obj->base);
3056 mutex_unlock(&dev->struct_mutex);
3057 return ret;
3058 }
3059
3060 static int
3061 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3062 struct intel_engine_cs *to,
3063 struct drm_i915_gem_request *from_req,
3064 struct drm_i915_gem_request **to_req)
3065 {
3066 struct intel_engine_cs *from;
3067 int ret;
3068
3069 from = i915_gem_request_get_ring(from_req);
3070 if (to == from)
3071 return 0;
3072
3073 if (i915_gem_request_completed(from_req, true))
3074 return 0;
3075
3076 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3077 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3078 ret = __i915_wait_request(from_req,
3079 atomic_read(&i915->gpu_error.reset_counter),
3080 i915->mm.interruptible,
3081 NULL,
3082 &i915->rps.semaphores);
3083 if (ret)
3084 return ret;
3085
3086 i915_gem_object_retire_request(obj, from_req);
3087 } else {
3088 int idx = intel_ring_sync_index(from, to);
3089 u32 seqno = i915_gem_request_get_seqno(from_req);
3090
3091 WARN_ON(!to_req);
3092
3093 if (seqno <= from->semaphore.sync_seqno[idx])
3094 return 0;
3095
3096 if (*to_req == NULL) {
3097 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3098 if (ret)
3099 return ret;
3100 }
3101
3102 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3103 ret = to->semaphore.sync_to(*to_req, from, seqno);
3104 if (ret)
3105 return ret;
3106
3107 /* We use last_read_req because sync_to()
3108 * might have just caused seqno wrap under
3109 * the radar.
3110 */
3111 from->semaphore.sync_seqno[idx] =
3112 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3113 }
3114
3115 return 0;
3116 }
3117
3118 /**
3119 * i915_gem_object_sync - sync an object to a ring.
3120 *
3121 * @obj: object which may be in use on another ring.
3122 * @to: ring we wish to use the object on. May be NULL.
3123 * @to_req: request we wish to use the object for. See below.
3124 * This will be allocated and returned if a request is
3125 * required but not passed in.
3126 *
3127 * This code is meant to abstract object synchronization with the GPU.
3128 * Calling with NULL implies synchronizing the object with the CPU
3129 * rather than a particular GPU ring. Conceptually we serialise writes
3130 * between engines inside the GPU. We only allow one engine to write
3131 * into a buffer at any time, but multiple readers. To ensure each has
3132 * a coherent view of memory, we must:
3133 *
3134 * - If there is an outstanding write request to the object, the new
3135 * request must wait for it to complete (either CPU or in hw, requests
3136 * on the same ring will be naturally ordered).
3137 *
3138 * - If we are a write request (pending_write_domain is set), the new
3139 * request must wait for outstanding read requests to complete.
3140 *
3141 * For CPU synchronisation (NULL to) no request is required. For syncing with
3142 * rings to_req must be non-NULL. However, a request does not have to be
3143 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3144 * request will be allocated automatically and returned through *to_req. Note
3145 * that it is not guaranteed that commands will be emitted (because the system
3146 * might already be idle). Hence there is no need to create a request that
3147 * might never have any work submitted. Note further that if a request is
3148 * returned in *to_req, it is the responsibility of the caller to submit
3149 * that request (after potentially adding more work to it).
3150 *
3151 * Returns 0 if successful, else propagates up the lower layer error.
3152 */
3153 int
3154 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3155 struct intel_engine_cs *to,
3156 struct drm_i915_gem_request **to_req)
3157 {
3158 const bool readonly = obj->base.pending_write_domain == 0;
3159 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3160 int ret, i, n;
3161
3162 if (!obj->active)
3163 return 0;
3164
3165 if (to == NULL)
3166 return i915_gem_object_wait_rendering(obj, readonly);
3167
3168 n = 0;
3169 if (readonly) {
3170 if (obj->last_write_req)
3171 req[n++] = obj->last_write_req;
3172 } else {
3173 for (i = 0; i < I915_NUM_RINGS; i++)
3174 if (obj->last_read_req[i])
3175 req[n++] = obj->last_read_req[i];
3176 }
3177 for (i = 0; i < n; i++) {
3178 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3179 if (ret)
3180 return ret;
3181 }
3182
3183 return 0;
3184 }
3185
3186 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3187 {
3188 u32 old_write_domain, old_read_domains;
3189
3190 /* Force a pagefault for domain tracking on next user access */
3191 i915_gem_release_mmap(obj);
3192
3193 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3194 return;
3195
3196 /* Wait for any direct GTT access to complete */
3197 mb();
3198
3199 old_read_domains = obj->base.read_domains;
3200 old_write_domain = obj->base.write_domain;
3201
3202 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3203 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3204
3205 trace_i915_gem_object_change_domain(obj,
3206 old_read_domains,
3207 old_write_domain);
3208 }
3209
3210 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3211 {
3212 struct drm_i915_gem_object *obj = vma->obj;
3213 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3214 int ret;
3215
3216 if (list_empty(&vma->vma_link))
3217 return 0;
3218
3219 if (!drm_mm_node_allocated(&vma->node)) {
3220 i915_gem_vma_destroy(vma);
3221 return 0;
3222 }
3223
3224 if (vma->pin_count)
3225 return -EBUSY;
3226
3227 BUG_ON(obj->pages == NULL);
3228
3229 if (wait) {
3230 ret = i915_gem_object_wait_rendering(obj, false);
3231 if (ret)
3232 return ret;
3233 }
3234
3235 if (i915_is_ggtt(vma->vm) &&
3236 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3237 i915_gem_object_finish_gtt(obj);
3238
3239 /* release the fence reg _after_ flushing */
3240 ret = i915_gem_object_put_fence(obj);
3241 if (ret)
3242 return ret;
3243 }
3244
3245 trace_i915_vma_unbind(vma);
3246
3247 vma->vm->unbind_vma(vma);
3248 vma->bound = 0;
3249
3250 list_del_init(&vma->mm_list);
3251 if (i915_is_ggtt(vma->vm)) {
3252 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3253 obj->map_and_fenceable = false;
3254 } else if (vma->ggtt_view.pages) {
3255 sg_free_table(vma->ggtt_view.pages);
3256 kfree(vma->ggtt_view.pages);
3257 }
3258 vma->ggtt_view.pages = NULL;
3259 }
3260
3261 drm_mm_remove_node(&vma->node);
3262 i915_gem_vma_destroy(vma);
3263
3264 /* Since the unbound list is global, only move to that list if
3265 * no more VMAs exist. */
3266 if (list_empty(&obj->vma_list))
3267 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3268
3269 /* And finally now the object is completely decoupled from this vma,
3270 * we can drop its hold on the backing storage and allow it to be
3271 * reaped by the shrinker.
3272 */
3273 i915_gem_object_unpin_pages(obj);
3274
3275 return 0;
3276 }
3277
3278 int i915_vma_unbind(struct i915_vma *vma)
3279 {
3280 return __i915_vma_unbind(vma, true);
3281 }
3282
3283 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3284 {
3285 return __i915_vma_unbind(vma, false);
3286 }
3287
3288 int i915_gpu_idle(struct drm_device *dev)
3289 {
3290 struct drm_i915_private *dev_priv = dev->dev_private;
3291 struct intel_engine_cs *ring;
3292 int ret, i;
3293
3294 /* Flush everything onto the inactive list. */
3295 for_each_ring(ring, dev_priv, i) {
3296 if (!i915.enable_execlists) {
3297 struct drm_i915_gem_request *req;
3298
3299 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3300 if (ret)
3301 return ret;
3302
3303 ret = i915_switch_context(req);
3304 if (ret) {
3305 i915_gem_request_cancel(req);
3306 return ret;
3307 }
3308
3309 i915_add_request_no_flush(req);
3310 }
3311
3312 ret = intel_ring_idle(ring);
3313 if (ret)
3314 return ret;
3315 }
3316
3317 WARN_ON(i915_verify_lists(dev));
3318 return 0;
3319 }
3320
3321 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3322 unsigned long cache_level)
3323 {
3324 struct drm_mm_node *gtt_space = &vma->node;
3325 struct drm_mm_node *other;
3326
3327 /*
3328 * On some machines we have to be careful when putting differing types
3329 * of snoopable memory together to avoid the prefetcher crossing memory
3330 * domains and dying. During vm initialisation, we decide whether or not
3331 * these constraints apply and set the drm_mm.color_adjust
3332 * appropriately.
3333 */
3334 if (vma->vm->mm.color_adjust == NULL)
3335 return true;
3336
3337 if (!drm_mm_node_allocated(gtt_space))
3338 return true;
3339
3340 if (list_empty(&gtt_space->node_list))
3341 return true;
3342
3343 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3344 if (other->allocated && !other->hole_follows && other->color != cache_level)
3345 return false;
3346
3347 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3348 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3349 return false;
3350
3351 return true;
3352 }
3353
3354 /**
3355 * Finds free space in the GTT aperture and binds the object or a view of it
3356 * there.
3357 */
3358 static struct i915_vma *
3359 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3360 struct i915_address_space *vm,
3361 const struct i915_ggtt_view *ggtt_view,
3362 unsigned alignment,
3363 uint64_t flags)
3364 {
3365 struct drm_device *dev = obj->base.dev;
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 u32 fence_alignment, unfenced_alignment;
3368 u32 search_flag, alloc_flag;
3369 u64 start, end;
3370 u64 size, fence_size;
3371 struct i915_vma *vma;
3372 int ret;
3373
3374 if (i915_is_ggtt(vm)) {
3375 u32 view_size;
3376
3377 if (WARN_ON(!ggtt_view))
3378 return ERR_PTR(-EINVAL);
3379
3380 view_size = i915_ggtt_view_size(obj, ggtt_view);
3381
3382 fence_size = i915_gem_get_gtt_size(dev,
3383 view_size,
3384 obj->tiling_mode);
3385 fence_alignment = i915_gem_get_gtt_alignment(dev,
3386 view_size,
3387 obj->tiling_mode,
3388 true);
3389 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3390 view_size,
3391 obj->tiling_mode,
3392 false);
3393 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3394 } else {
3395 fence_size = i915_gem_get_gtt_size(dev,
3396 obj->base.size,
3397 obj->tiling_mode);
3398 fence_alignment = i915_gem_get_gtt_alignment(dev,
3399 obj->base.size,
3400 obj->tiling_mode,
3401 true);
3402 unfenced_alignment =
3403 i915_gem_get_gtt_alignment(dev,
3404 obj->base.size,
3405 obj->tiling_mode,
3406 false);
3407 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3408 }
3409
3410 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3411 end = vm->total;
3412 if (flags & PIN_MAPPABLE)
3413 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3414 if (flags & PIN_ZONE_4G)
3415 end = min_t(u64, end, (1ULL << 32));
3416
3417 if (alignment == 0)
3418 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3419 unfenced_alignment;
3420 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3421 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3422 ggtt_view ? ggtt_view->type : 0,
3423 alignment);
3424 return ERR_PTR(-EINVAL);
3425 }
3426
3427 /* If binding the object/GGTT view requires more space than the entire
3428 * aperture has, reject it early before evicting everything in a vain
3429 * attempt to find space.
3430 */
3431 if (size > end) {
3432 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3433 ggtt_view ? ggtt_view->type : 0,
3434 size,
3435 flags & PIN_MAPPABLE ? "mappable" : "total",
3436 end);
3437 return ERR_PTR(-E2BIG);
3438 }
3439
3440 ret = i915_gem_object_get_pages(obj);
3441 if (ret)
3442 return ERR_PTR(ret);
3443
3444 i915_gem_object_pin_pages(obj);
3445
3446 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3447 i915_gem_obj_lookup_or_create_vma(obj, vm);
3448
3449 if (IS_ERR(vma))
3450 goto err_unpin;
3451
3452 if (flags & PIN_HIGH) {
3453 search_flag = DRM_MM_SEARCH_BELOW;
3454 alloc_flag = DRM_MM_CREATE_TOP;
3455 } else {
3456 search_flag = DRM_MM_SEARCH_DEFAULT;
3457 alloc_flag = DRM_MM_CREATE_DEFAULT;
3458 }
3459
3460 search_free:
3461 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3462 size, alignment,
3463 obj->cache_level,
3464 start, end,
3465 search_flag,
3466 alloc_flag);
3467 if (ret) {
3468 ret = i915_gem_evict_something(dev, vm, size, alignment,
3469 obj->cache_level,
3470 start, end,
3471 flags);
3472 if (ret == 0)
3473 goto search_free;
3474
3475 goto err_free_vma;
3476 }
3477 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3478 ret = -EINVAL;
3479 goto err_remove_node;
3480 }
3481
3482 trace_i915_vma_bind(vma, flags);
3483 ret = i915_vma_bind(vma, obj->cache_level, flags);
3484 if (ret)
3485 goto err_remove_node;
3486
3487 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3488 list_add_tail(&vma->mm_list, &vm->inactive_list);
3489
3490 return vma;
3491
3492 err_remove_node:
3493 drm_mm_remove_node(&vma->node);
3494 err_free_vma:
3495 i915_gem_vma_destroy(vma);
3496 vma = ERR_PTR(ret);
3497 err_unpin:
3498 i915_gem_object_unpin_pages(obj);
3499 return vma;
3500 }
3501
3502 bool
3503 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3504 bool force)
3505 {
3506 /* If we don't have a page list set up, then we're not pinned
3507 * to GPU, and we can ignore the cache flush because it'll happen
3508 * again at bind time.
3509 */
3510 if (obj->pages == NULL)
3511 return false;
3512
3513 /*
3514 * Stolen memory is always coherent with the GPU as it is explicitly
3515 * marked as wc by the system, or the system is cache-coherent.
3516 */
3517 if (obj->stolen || obj->phys_handle)
3518 return false;
3519
3520 /* If the GPU is snooping the contents of the CPU cache,
3521 * we do not need to manually clear the CPU cache lines. However,
3522 * the caches are only snooped when the render cache is
3523 * flushed/invalidated. As we always have to emit invalidations
3524 * and flushes when moving into and out of the RENDER domain, correct
3525 * snooping behaviour occurs naturally as the result of our domain
3526 * tracking.
3527 */
3528 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3529 obj->cache_dirty = true;
3530 return false;
3531 }
3532
3533 trace_i915_gem_object_clflush(obj);
3534 drm_clflush_sg(obj->pages);
3535 obj->cache_dirty = false;
3536
3537 return true;
3538 }
3539
3540 /** Flushes the GTT write domain for the object if it's dirty. */
3541 static void
3542 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3543 {
3544 uint32_t old_write_domain;
3545
3546 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3547 return;
3548
3549 /* No actual flushing is required for the GTT write domain. Writes
3550 * to it immediately go to main memory as far as we know, so there's
3551 * no chipset flush. It also doesn't land in render cache.
3552 *
3553 * However, we do have to enforce the order so that all writes through
3554 * the GTT land before any writes to the device, such as updates to
3555 * the GATT itself.
3556 */
3557 wmb();
3558
3559 old_write_domain = obj->base.write_domain;
3560 obj->base.write_domain = 0;
3561
3562 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3563
3564 trace_i915_gem_object_change_domain(obj,
3565 obj->base.read_domains,
3566 old_write_domain);
3567 }
3568
3569 /** Flushes the CPU write domain for the object if it's dirty. */
3570 static void
3571 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3572 {
3573 uint32_t old_write_domain;
3574
3575 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3576 return;
3577
3578 if (i915_gem_clflush_object(obj, obj->pin_display))
3579 i915_gem_chipset_flush(obj->base.dev);
3580
3581 old_write_domain = obj->base.write_domain;
3582 obj->base.write_domain = 0;
3583
3584 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3585
3586 trace_i915_gem_object_change_domain(obj,
3587 obj->base.read_domains,
3588 old_write_domain);
3589 }
3590
3591 /**
3592 * Moves a single object to the GTT read, and possibly write domain.
3593 *
3594 * This function returns when the move is complete, including waiting on
3595 * flushes to occur.
3596 */
3597 int
3598 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3599 {
3600 uint32_t old_write_domain, old_read_domains;
3601 struct i915_vma *vma;
3602 int ret;
3603
3604 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3605 return 0;
3606
3607 ret = i915_gem_object_wait_rendering(obj, !write);
3608 if (ret)
3609 return ret;
3610
3611 /* Flush and acquire obj->pages so that we are coherent through
3612 * direct access in memory with previous cached writes through
3613 * shmemfs and that our cache domain tracking remains valid.
3614 * For example, if the obj->filp was moved to swap without us
3615 * being notified and releasing the pages, we would mistakenly
3616 * continue to assume that the obj remained out of the CPU cached
3617 * domain.
3618 */
3619 ret = i915_gem_object_get_pages(obj);
3620 if (ret)
3621 return ret;
3622
3623 i915_gem_object_flush_cpu_write_domain(obj);
3624
3625 /* Serialise direct access to this object with the barriers for
3626 * coherent writes from the GPU, by effectively invalidating the
3627 * GTT domain upon first access.
3628 */
3629 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3630 mb();
3631
3632 old_write_domain = obj->base.write_domain;
3633 old_read_domains = obj->base.read_domains;
3634
3635 /* It should now be out of any other write domains, and we can update
3636 * the domain values for our changes.
3637 */
3638 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3639 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3640 if (write) {
3641 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3642 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3643 obj->dirty = 1;
3644 }
3645
3646 trace_i915_gem_object_change_domain(obj,
3647 old_read_domains,
3648 old_write_domain);
3649
3650 /* And bump the LRU for this access */
3651 vma = i915_gem_obj_to_ggtt(obj);
3652 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3653 list_move_tail(&vma->mm_list,
3654 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3655
3656 return 0;
3657 }
3658
3659 /**
3660 * Changes the cache-level of an object across all VMA.
3661 *
3662 * After this function returns, the object will be in the new cache-level
3663 * across all GTT and the contents of the backing storage will be coherent,
3664 * with respect to the new cache-level. In order to keep the backing storage
3665 * coherent for all users, we only allow a single cache level to be set
3666 * globally on the object and prevent it from being changed whilst the
3667 * hardware is reading from the object. That is if the object is currently
3668 * on the scanout it will be set to uncached (or equivalent display
3669 * cache coherency) and all non-MOCS GPU access will also be uncached so
3670 * that all direct access to the scanout remains coherent.
3671 */
3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3673 enum i915_cache_level cache_level)
3674 {
3675 struct drm_device *dev = obj->base.dev;
3676 struct i915_vma *vma, *next;
3677 bool bound = false;
3678 int ret = 0;
3679
3680 if (obj->cache_level == cache_level)
3681 goto out;
3682
3683 /* Inspect the list of currently bound VMA and unbind any that would
3684 * be invalid given the new cache-level. This is principally to
3685 * catch the issue of the CS prefetch crossing page boundaries and
3686 * reading an invalid PTE on older architectures.
3687 */
3688 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3689 if (!drm_mm_node_allocated(&vma->node))
3690 continue;
3691
3692 if (vma->pin_count) {
3693 DRM_DEBUG("can not change the cache level of pinned objects\n");
3694 return -EBUSY;
3695 }
3696
3697 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3698 ret = i915_vma_unbind(vma);
3699 if (ret)
3700 return ret;
3701 } else
3702 bound = true;
3703 }
3704
3705 /* We can reuse the existing drm_mm nodes but need to change the
3706 * cache-level on the PTE. We could simply unbind them all and
3707 * rebind with the correct cache-level on next use. However since
3708 * we already have a valid slot, dma mapping, pages etc, we may as
3709 * rewrite the PTE in the belief that doing so tramples upon less
3710 * state and so involves less work.
3711 */
3712 if (bound) {
3713 /* Before we change the PTE, the GPU must not be accessing it.
3714 * If we wait upon the object, we know that all the bound
3715 * VMA are no longer active.
3716 */
3717 ret = i915_gem_object_wait_rendering(obj, false);
3718 if (ret)
3719 return ret;
3720
3721 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3722 /* Access to snoopable pages through the GTT is
3723 * incoherent and on some machines causes a hard
3724 * lockup. Relinquish the CPU mmaping to force
3725 * userspace to refault in the pages and we can
3726 * then double check if the GTT mapping is still
3727 * valid for that pointer access.
3728 */
3729 i915_gem_release_mmap(obj);
3730
3731 /* As we no longer need a fence for GTT access,
3732 * we can relinquish it now (and so prevent having
3733 * to steal a fence from someone else on the next
3734 * fence request). Note GPU activity would have
3735 * dropped the fence as all snoopable access is
3736 * supposed to be linear.
3737 */
3738 ret = i915_gem_object_put_fence(obj);
3739 if (ret)
3740 return ret;
3741 } else {
3742 /* We either have incoherent backing store and
3743 * so no GTT access or the architecture is fully
3744 * coherent. In such cases, existing GTT mmaps
3745 * ignore the cache bit in the PTE and we can
3746 * rewrite it without confusing the GPU or having
3747 * to force userspace to fault back in its mmaps.
3748 */
3749 }
3750
3751 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3752 if (!drm_mm_node_allocated(&vma->node))
3753 continue;
3754
3755 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3756 if (ret)
3757 return ret;
3758 }
3759 }
3760
3761 list_for_each_entry(vma, &obj->vma_list, vma_link)
3762 vma->node.color = cache_level;
3763 obj->cache_level = cache_level;
3764
3765 out:
3766 /* Flush the dirty CPU caches to the backing storage so that the
3767 * object is now coherent at its new cache level (with respect
3768 * to the access domain).
3769 */
3770 if (obj->cache_dirty &&
3771 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3772 cpu_write_needs_clflush(obj)) {
3773 if (i915_gem_clflush_object(obj, true))
3774 i915_gem_chipset_flush(obj->base.dev);
3775 }
3776
3777 return 0;
3778 }
3779
3780 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3781 struct drm_file *file)
3782 {
3783 struct drm_i915_gem_caching *args = data;
3784 struct drm_i915_gem_object *obj;
3785
3786 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3787 if (&obj->base == NULL)
3788 return -ENOENT;
3789
3790 switch (obj->cache_level) {
3791 case I915_CACHE_LLC:
3792 case I915_CACHE_L3_LLC:
3793 args->caching = I915_CACHING_CACHED;
3794 break;
3795
3796 case I915_CACHE_WT:
3797 args->caching = I915_CACHING_DISPLAY;
3798 break;
3799
3800 default:
3801 args->caching = I915_CACHING_NONE;
3802 break;
3803 }
3804
3805 drm_gem_object_unreference_unlocked(&obj->base);
3806 return 0;
3807 }
3808
3809 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3810 struct drm_file *file)
3811 {
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3813 struct drm_i915_gem_caching *args = data;
3814 struct drm_i915_gem_object *obj;
3815 enum i915_cache_level level;
3816 int ret;
3817
3818 switch (args->caching) {
3819 case I915_CACHING_NONE:
3820 level = I915_CACHE_NONE;
3821 break;
3822 case I915_CACHING_CACHED:
3823 /*
3824 * Due to a HW issue on BXT A stepping, GPU stores via a
3825 * snooped mapping may leave stale data in a corresponding CPU
3826 * cacheline, whereas normally such cachelines would get
3827 * invalidated.
3828 */
3829 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3830 return -ENODEV;
3831
3832 level = I915_CACHE_LLC;
3833 break;
3834 case I915_CACHING_DISPLAY:
3835 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3836 break;
3837 default:
3838 return -EINVAL;
3839 }
3840
3841 intel_runtime_pm_get(dev_priv);
3842
3843 ret = i915_mutex_lock_interruptible(dev);
3844 if (ret)
3845 goto rpm_put;
3846
3847 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3848 if (&obj->base == NULL) {
3849 ret = -ENOENT;
3850 goto unlock;
3851 }
3852
3853 ret = i915_gem_object_set_cache_level(obj, level);
3854
3855 drm_gem_object_unreference(&obj->base);
3856 unlock:
3857 mutex_unlock(&dev->struct_mutex);
3858 rpm_put:
3859 intel_runtime_pm_put(dev_priv);
3860
3861 return ret;
3862 }
3863
3864 /*
3865 * Prepare buffer for display plane (scanout, cursors, etc).
3866 * Can be called from an uninterruptible phase (modesetting) and allows
3867 * any flushes to be pipelined (for pageflips).
3868 */
3869 int
3870 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3871 u32 alignment,
3872 struct intel_engine_cs *pipelined,
3873 struct drm_i915_gem_request **pipelined_request,
3874 const struct i915_ggtt_view *view)
3875 {
3876 u32 old_read_domains, old_write_domain;
3877 int ret;
3878
3879 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3880 if (ret)
3881 return ret;
3882
3883 /* Mark the pin_display early so that we account for the
3884 * display coherency whilst setting up the cache domains.
3885 */
3886 obj->pin_display++;
3887
3888 /* The display engine is not coherent with the LLC cache on gen6. As
3889 * a result, we make sure that the pinning that is about to occur is
3890 * done with uncached PTEs. This is lowest common denominator for all
3891 * chipsets.
3892 *
3893 * However for gen6+, we could do better by using the GFDT bit instead
3894 * of uncaching, which would allow us to flush all the LLC-cached data
3895 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3896 */
3897 ret = i915_gem_object_set_cache_level(obj,
3898 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3899 if (ret)
3900 goto err_unpin_display;
3901
3902 /* As the user may map the buffer once pinned in the display plane
3903 * (e.g. libkms for the bootup splash), we have to ensure that we
3904 * always use map_and_fenceable for all scanout buffers.
3905 */
3906 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3907 view->type == I915_GGTT_VIEW_NORMAL ?
3908 PIN_MAPPABLE : 0);
3909 if (ret)
3910 goto err_unpin_display;
3911
3912 i915_gem_object_flush_cpu_write_domain(obj);
3913
3914 old_write_domain = obj->base.write_domain;
3915 old_read_domains = obj->base.read_domains;
3916
3917 /* It should now be out of any other write domains, and we can update
3918 * the domain values for our changes.
3919 */
3920 obj->base.write_domain = 0;
3921 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3922
3923 trace_i915_gem_object_change_domain(obj,
3924 old_read_domains,
3925 old_write_domain);
3926
3927 return 0;
3928
3929 err_unpin_display:
3930 obj->pin_display--;
3931 return ret;
3932 }
3933
3934 void
3935 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3936 const struct i915_ggtt_view *view)
3937 {
3938 if (WARN_ON(obj->pin_display == 0))
3939 return;
3940
3941 i915_gem_object_ggtt_unpin_view(obj, view);
3942
3943 obj->pin_display--;
3944 }
3945
3946 /**
3947 * Moves a single object to the CPU read, and possibly write domain.
3948 *
3949 * This function returns when the move is complete, including waiting on
3950 * flushes to occur.
3951 */
3952 int
3953 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3954 {
3955 uint32_t old_write_domain, old_read_domains;
3956 int ret;
3957
3958 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3959 return 0;
3960
3961 ret = i915_gem_object_wait_rendering(obj, !write);
3962 if (ret)
3963 return ret;
3964
3965 i915_gem_object_flush_gtt_write_domain(obj);
3966
3967 old_write_domain = obj->base.write_domain;
3968 old_read_domains = obj->base.read_domains;
3969
3970 /* Flush the CPU cache if it's still invalid. */
3971 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3972 i915_gem_clflush_object(obj, false);
3973
3974 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3975 }
3976
3977 /* It should now be out of any other write domains, and we can update
3978 * the domain values for our changes.
3979 */
3980 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3981
3982 /* If we're writing through the CPU, then the GPU read domains will
3983 * need to be invalidated at next use.
3984 */
3985 if (write) {
3986 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3987 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3988 }
3989
3990 trace_i915_gem_object_change_domain(obj,
3991 old_read_domains,
3992 old_write_domain);
3993
3994 return 0;
3995 }
3996
3997 /* Throttle our rendering by waiting until the ring has completed our requests
3998 * emitted over 20 msec ago.
3999 *
4000 * Note that if we were to use the current jiffies each time around the loop,
4001 * we wouldn't escape the function with any frames outstanding if the time to
4002 * render a frame was over 20ms.
4003 *
4004 * This should get us reasonable parallelism between CPU and GPU but also
4005 * relatively low latency when blocking on a particular request to finish.
4006 */
4007 static int
4008 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4009 {
4010 struct drm_i915_private *dev_priv = dev->dev_private;
4011 struct drm_i915_file_private *file_priv = file->driver_priv;
4012 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4013 struct drm_i915_gem_request *request, *target = NULL;
4014 unsigned reset_counter;
4015 int ret;
4016
4017 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4018 if (ret)
4019 return ret;
4020
4021 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4022 if (ret)
4023 return ret;
4024
4025 spin_lock(&file_priv->mm.lock);
4026 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4027 if (time_after_eq(request->emitted_jiffies, recent_enough))
4028 break;
4029
4030 /*
4031 * Note that the request might not have been submitted yet.
4032 * In which case emitted_jiffies will be zero.
4033 */
4034 if (!request->emitted_jiffies)
4035 continue;
4036
4037 target = request;
4038 }
4039 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4040 if (target)
4041 i915_gem_request_reference(target);
4042 spin_unlock(&file_priv->mm.lock);
4043
4044 if (target == NULL)
4045 return 0;
4046
4047 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4048 if (ret == 0)
4049 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4050
4051 i915_gem_request_unreference__unlocked(target);
4052
4053 return ret;
4054 }
4055
4056 static bool
4057 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4058 {
4059 struct drm_i915_gem_object *obj = vma->obj;
4060
4061 if (alignment &&
4062 vma->node.start & (alignment - 1))
4063 return true;
4064
4065 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4066 return true;
4067
4068 if (flags & PIN_OFFSET_BIAS &&
4069 vma->node.start < (flags & PIN_OFFSET_MASK))
4070 return true;
4071
4072 return false;
4073 }
4074
4075 static int
4076 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4077 struct i915_address_space *vm,
4078 const struct i915_ggtt_view *ggtt_view,
4079 uint32_t alignment,
4080 uint64_t flags)
4081 {
4082 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4083 struct i915_vma *vma;
4084 unsigned bound;
4085 int ret;
4086
4087 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4088 return -ENODEV;
4089
4090 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4091 return -EINVAL;
4092
4093 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4094 return -EINVAL;
4095
4096 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4097 return -EINVAL;
4098
4099 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4100 i915_gem_obj_to_vma(obj, vm);
4101
4102 if (IS_ERR(vma))
4103 return PTR_ERR(vma);
4104
4105 if (vma) {
4106 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4107 return -EBUSY;
4108
4109 if (i915_vma_misplaced(vma, alignment, flags)) {
4110 WARN(vma->pin_count,
4111 "bo is already pinned in %s with incorrect alignment:"
4112 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4113 " obj->map_and_fenceable=%d\n",
4114 ggtt_view ? "ggtt" : "ppgtt",
4115 upper_32_bits(vma->node.start),
4116 lower_32_bits(vma->node.start),
4117 alignment,
4118 !!(flags & PIN_MAPPABLE),
4119 obj->map_and_fenceable);
4120 ret = i915_vma_unbind(vma);
4121 if (ret)
4122 return ret;
4123
4124 vma = NULL;
4125 }
4126 }
4127
4128 bound = vma ? vma->bound : 0;
4129 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4130 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4131 flags);
4132 if (IS_ERR(vma))
4133 return PTR_ERR(vma);
4134 } else {
4135 ret = i915_vma_bind(vma, obj->cache_level, flags);
4136 if (ret)
4137 return ret;
4138 }
4139
4140 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4141 (bound ^ vma->bound) & GLOBAL_BIND) {
4142 bool mappable, fenceable;
4143 u32 fence_size, fence_alignment;
4144
4145 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4146 obj->base.size,
4147 obj->tiling_mode);
4148 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4149 obj->base.size,
4150 obj->tiling_mode,
4151 true);
4152
4153 fenceable = (vma->node.size == fence_size &&
4154 (vma->node.start & (fence_alignment - 1)) == 0);
4155
4156 mappable = (vma->node.start + fence_size <=
4157 dev_priv->gtt.mappable_end);
4158
4159 obj->map_and_fenceable = mappable && fenceable;
4160
4161 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4162 }
4163
4164 vma->pin_count++;
4165 return 0;
4166 }
4167
4168 int
4169 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4170 struct i915_address_space *vm,
4171 uint32_t alignment,
4172 uint64_t flags)
4173 {
4174 return i915_gem_object_do_pin(obj, vm,
4175 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4176 alignment, flags);
4177 }
4178
4179 int
4180 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4181 const struct i915_ggtt_view *view,
4182 uint32_t alignment,
4183 uint64_t flags)
4184 {
4185 if (WARN_ONCE(!view, "no view specified"))
4186 return -EINVAL;
4187
4188 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4189 alignment, flags | PIN_GLOBAL);
4190 }
4191
4192 void
4193 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4194 const struct i915_ggtt_view *view)
4195 {
4196 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4197
4198 BUG_ON(!vma);
4199 WARN_ON(vma->pin_count == 0);
4200 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4201
4202 --vma->pin_count;
4203 }
4204
4205 int
4206 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4207 struct drm_file *file)
4208 {
4209 struct drm_i915_gem_busy *args = data;
4210 struct drm_i915_gem_object *obj;
4211 int ret;
4212
4213 ret = i915_mutex_lock_interruptible(dev);
4214 if (ret)
4215 return ret;
4216
4217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4218 if (&obj->base == NULL) {
4219 ret = -ENOENT;
4220 goto unlock;
4221 }
4222
4223 /* Count all active objects as busy, even if they are currently not used
4224 * by the gpu. Users of this interface expect objects to eventually
4225 * become non-busy without any further actions, therefore emit any
4226 * necessary flushes here.
4227 */
4228 ret = i915_gem_object_flush_active(obj);
4229 if (ret)
4230 goto unref;
4231
4232 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4233 args->busy = obj->active << 16;
4234 if (obj->last_write_req)
4235 args->busy |= obj->last_write_req->ring->id;
4236
4237 unref:
4238 drm_gem_object_unreference(&obj->base);
4239 unlock:
4240 mutex_unlock(&dev->struct_mutex);
4241 return ret;
4242 }
4243
4244 int
4245 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4246 struct drm_file *file_priv)
4247 {
4248 return i915_gem_ring_throttle(dev, file_priv);
4249 }
4250
4251 int
4252 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4253 struct drm_file *file_priv)
4254 {
4255 struct drm_i915_private *dev_priv = dev->dev_private;
4256 struct drm_i915_gem_madvise *args = data;
4257 struct drm_i915_gem_object *obj;
4258 int ret;
4259
4260 switch (args->madv) {
4261 case I915_MADV_DONTNEED:
4262 case I915_MADV_WILLNEED:
4263 break;
4264 default:
4265 return -EINVAL;
4266 }
4267
4268 ret = i915_mutex_lock_interruptible(dev);
4269 if (ret)
4270 return ret;
4271
4272 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4273 if (&obj->base == NULL) {
4274 ret = -ENOENT;
4275 goto unlock;
4276 }
4277
4278 if (i915_gem_obj_is_pinned(obj)) {
4279 ret = -EINVAL;
4280 goto out;
4281 }
4282
4283 if (obj->pages &&
4284 obj->tiling_mode != I915_TILING_NONE &&
4285 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4286 if (obj->madv == I915_MADV_WILLNEED)
4287 i915_gem_object_unpin_pages(obj);
4288 if (args->madv == I915_MADV_WILLNEED)
4289 i915_gem_object_pin_pages(obj);
4290 }
4291
4292 if (obj->madv != __I915_MADV_PURGED)
4293 obj->madv = args->madv;
4294
4295 /* if the object is no longer attached, discard its backing storage */
4296 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4297 i915_gem_object_truncate(obj);
4298
4299 args->retained = obj->madv != __I915_MADV_PURGED;
4300
4301 out:
4302 drm_gem_object_unreference(&obj->base);
4303 unlock:
4304 mutex_unlock(&dev->struct_mutex);
4305 return ret;
4306 }
4307
4308 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4309 const struct drm_i915_gem_object_ops *ops)
4310 {
4311 int i;
4312
4313 INIT_LIST_HEAD(&obj->global_list);
4314 for (i = 0; i < I915_NUM_RINGS; i++)
4315 INIT_LIST_HEAD(&obj->ring_list[i]);
4316 INIT_LIST_HEAD(&obj->obj_exec_link);
4317 INIT_LIST_HEAD(&obj->vma_list);
4318 INIT_LIST_HEAD(&obj->batch_pool_link);
4319
4320 obj->ops = ops;
4321
4322 obj->fence_reg = I915_FENCE_REG_NONE;
4323 obj->madv = I915_MADV_WILLNEED;
4324
4325 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4326 }
4327
4328 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4329 .get_pages = i915_gem_object_get_pages_gtt,
4330 .put_pages = i915_gem_object_put_pages_gtt,
4331 };
4332
4333 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4334 size_t size)
4335 {
4336 struct drm_i915_gem_object *obj;
4337 struct address_space *mapping;
4338 gfp_t mask;
4339
4340 obj = i915_gem_object_alloc(dev);
4341 if (obj == NULL)
4342 return NULL;
4343
4344 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4345 i915_gem_object_free(obj);
4346 return NULL;
4347 }
4348
4349 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4350 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4351 /* 965gm cannot relocate objects above 4GiB. */
4352 mask &= ~__GFP_HIGHMEM;
4353 mask |= __GFP_DMA32;
4354 }
4355
4356 mapping = file_inode(obj->base.filp)->i_mapping;
4357 mapping_set_gfp_mask(mapping, mask);
4358
4359 i915_gem_object_init(obj, &i915_gem_object_ops);
4360
4361 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4362 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4363
4364 if (HAS_LLC(dev)) {
4365 /* On some devices, we can have the GPU use the LLC (the CPU
4366 * cache) for about a 10% performance improvement
4367 * compared to uncached. Graphics requests other than
4368 * display scanout are coherent with the CPU in
4369 * accessing this cache. This means in this mode we
4370 * don't need to clflush on the CPU side, and on the
4371 * GPU side we only need to flush internal caches to
4372 * get data visible to the CPU.
4373 *
4374 * However, we maintain the display planes as UC, and so
4375 * need to rebind when first used as such.
4376 */
4377 obj->cache_level = I915_CACHE_LLC;
4378 } else
4379 obj->cache_level = I915_CACHE_NONE;
4380
4381 trace_i915_gem_object_create(obj);
4382
4383 return obj;
4384 }
4385
4386 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4387 {
4388 /* If we are the last user of the backing storage (be it shmemfs
4389 * pages or stolen etc), we know that the pages are going to be
4390 * immediately released. In this case, we can then skip copying
4391 * back the contents from the GPU.
4392 */
4393
4394 if (obj->madv != I915_MADV_WILLNEED)
4395 return false;
4396
4397 if (obj->base.filp == NULL)
4398 return true;
4399
4400 /* At first glance, this looks racy, but then again so would be
4401 * userspace racing mmap against close. However, the first external
4402 * reference to the filp can only be obtained through the
4403 * i915_gem_mmap_ioctl() which safeguards us against the user
4404 * acquiring such a reference whilst we are in the middle of
4405 * freeing the object.
4406 */
4407 return atomic_long_read(&obj->base.filp->f_count) == 1;
4408 }
4409
4410 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4411 {
4412 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4413 struct drm_device *dev = obj->base.dev;
4414 struct drm_i915_private *dev_priv = dev->dev_private;
4415 struct i915_vma *vma, *next;
4416
4417 intel_runtime_pm_get(dev_priv);
4418
4419 trace_i915_gem_object_destroy(obj);
4420
4421 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4422 int ret;
4423
4424 vma->pin_count = 0;
4425 ret = i915_vma_unbind(vma);
4426 if (WARN_ON(ret == -ERESTARTSYS)) {
4427 bool was_interruptible;
4428
4429 was_interruptible = dev_priv->mm.interruptible;
4430 dev_priv->mm.interruptible = false;
4431
4432 WARN_ON(i915_vma_unbind(vma));
4433
4434 dev_priv->mm.interruptible = was_interruptible;
4435 }
4436 }
4437
4438 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4439 * before progressing. */
4440 if (obj->stolen)
4441 i915_gem_object_unpin_pages(obj);
4442
4443 WARN_ON(obj->frontbuffer_bits);
4444
4445 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4446 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4447 obj->tiling_mode != I915_TILING_NONE)
4448 i915_gem_object_unpin_pages(obj);
4449
4450 if (WARN_ON(obj->pages_pin_count))
4451 obj->pages_pin_count = 0;
4452 if (discard_backing_storage(obj))
4453 obj->madv = I915_MADV_DONTNEED;
4454 i915_gem_object_put_pages(obj);
4455 i915_gem_object_free_mmap_offset(obj);
4456
4457 BUG_ON(obj->pages);
4458
4459 if (obj->base.import_attach)
4460 drm_prime_gem_destroy(&obj->base, NULL);
4461
4462 if (obj->ops->release)
4463 obj->ops->release(obj);
4464
4465 drm_gem_object_release(&obj->base);
4466 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4467
4468 kfree(obj->bit_17);
4469 i915_gem_object_free(obj);
4470
4471 intel_runtime_pm_put(dev_priv);
4472 }
4473
4474 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4475 struct i915_address_space *vm)
4476 {
4477 struct i915_vma *vma;
4478 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4479 if (i915_is_ggtt(vma->vm) &&
4480 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4481 continue;
4482 if (vma->vm == vm)
4483 return vma;
4484 }
4485 return NULL;
4486 }
4487
4488 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4489 const struct i915_ggtt_view *view)
4490 {
4491 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4492 struct i915_vma *vma;
4493
4494 if (WARN_ONCE(!view, "no view specified"))
4495 return ERR_PTR(-EINVAL);
4496
4497 list_for_each_entry(vma, &obj->vma_list, vma_link)
4498 if (vma->vm == ggtt &&
4499 i915_ggtt_view_equal(&vma->ggtt_view, view))
4500 return vma;
4501 return NULL;
4502 }
4503
4504 void i915_gem_vma_destroy(struct i915_vma *vma)
4505 {
4506 struct i915_address_space *vm = NULL;
4507 WARN_ON(vma->node.allocated);
4508
4509 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4510 if (!list_empty(&vma->exec_list))
4511 return;
4512
4513 vm = vma->vm;
4514
4515 if (!i915_is_ggtt(vm))
4516 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4517
4518 list_del(&vma->vma_link);
4519
4520 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4521 }
4522
4523 static void
4524 i915_gem_stop_ringbuffers(struct drm_device *dev)
4525 {
4526 struct drm_i915_private *dev_priv = dev->dev_private;
4527 struct intel_engine_cs *ring;
4528 int i;
4529
4530 for_each_ring(ring, dev_priv, i)
4531 dev_priv->gt.stop_ring(ring);
4532 }
4533
4534 int
4535 i915_gem_suspend(struct drm_device *dev)
4536 {
4537 struct drm_i915_private *dev_priv = dev->dev_private;
4538 int ret = 0;
4539
4540 mutex_lock(&dev->struct_mutex);
4541 ret = i915_gpu_idle(dev);
4542 if (ret)
4543 goto err;
4544
4545 i915_gem_retire_requests(dev);
4546
4547 i915_gem_stop_ringbuffers(dev);
4548 mutex_unlock(&dev->struct_mutex);
4549
4550 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4551 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4552 flush_delayed_work(&dev_priv->mm.idle_work);
4553
4554 /* Assert that we sucessfully flushed all the work and
4555 * reset the GPU back to its idle, low power state.
4556 */
4557 WARN_ON(dev_priv->mm.busy);
4558
4559 return 0;
4560
4561 err:
4562 mutex_unlock(&dev->struct_mutex);
4563 return ret;
4564 }
4565
4566 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4567 {
4568 struct intel_engine_cs *ring = req->ring;
4569 struct drm_device *dev = ring->dev;
4570 struct drm_i915_private *dev_priv = dev->dev_private;
4571 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4572 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4573 int i, ret;
4574
4575 if (!HAS_L3_DPF(dev) || !remap_info)
4576 return 0;
4577
4578 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4579 if (ret)
4580 return ret;
4581
4582 /*
4583 * Note: We do not worry about the concurrent register cacheline hang
4584 * here because no other code should access these registers other than
4585 * at initialization time.
4586 */
4587 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4588 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4589 intel_ring_emit(ring, reg_base + i);
4590 intel_ring_emit(ring, remap_info[i/4]);
4591 }
4592
4593 intel_ring_advance(ring);
4594
4595 return ret;
4596 }
4597
4598 void i915_gem_init_swizzling(struct drm_device *dev)
4599 {
4600 struct drm_i915_private *dev_priv = dev->dev_private;
4601
4602 if (INTEL_INFO(dev)->gen < 5 ||
4603 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4604 return;
4605
4606 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4607 DISP_TILE_SURFACE_SWIZZLING);
4608
4609 if (IS_GEN5(dev))
4610 return;
4611
4612 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4613 if (IS_GEN6(dev))
4614 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4615 else if (IS_GEN7(dev))
4616 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4617 else if (IS_GEN8(dev))
4618 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4619 else
4620 BUG();
4621 }
4622
4623 static void init_unused_ring(struct drm_device *dev, u32 base)
4624 {
4625 struct drm_i915_private *dev_priv = dev->dev_private;
4626
4627 I915_WRITE(RING_CTL(base), 0);
4628 I915_WRITE(RING_HEAD(base), 0);
4629 I915_WRITE(RING_TAIL(base), 0);
4630 I915_WRITE(RING_START(base), 0);
4631 }
4632
4633 static void init_unused_rings(struct drm_device *dev)
4634 {
4635 if (IS_I830(dev)) {
4636 init_unused_ring(dev, PRB1_BASE);
4637 init_unused_ring(dev, SRB0_BASE);
4638 init_unused_ring(dev, SRB1_BASE);
4639 init_unused_ring(dev, SRB2_BASE);
4640 init_unused_ring(dev, SRB3_BASE);
4641 } else if (IS_GEN2(dev)) {
4642 init_unused_ring(dev, SRB0_BASE);
4643 init_unused_ring(dev, SRB1_BASE);
4644 } else if (IS_GEN3(dev)) {
4645 init_unused_ring(dev, PRB1_BASE);
4646 init_unused_ring(dev, PRB2_BASE);
4647 }
4648 }
4649
4650 int i915_gem_init_rings(struct drm_device *dev)
4651 {
4652 struct drm_i915_private *dev_priv = dev->dev_private;
4653 int ret;
4654
4655 ret = intel_init_render_ring_buffer(dev);
4656 if (ret)
4657 return ret;
4658
4659 if (HAS_BSD(dev)) {
4660 ret = intel_init_bsd_ring_buffer(dev);
4661 if (ret)
4662 goto cleanup_render_ring;
4663 }
4664
4665 if (HAS_BLT(dev)) {
4666 ret = intel_init_blt_ring_buffer(dev);
4667 if (ret)
4668 goto cleanup_bsd_ring;
4669 }
4670
4671 if (HAS_VEBOX(dev)) {
4672 ret = intel_init_vebox_ring_buffer(dev);
4673 if (ret)
4674 goto cleanup_blt_ring;
4675 }
4676
4677 if (HAS_BSD2(dev)) {
4678 ret = intel_init_bsd2_ring_buffer(dev);
4679 if (ret)
4680 goto cleanup_vebox_ring;
4681 }
4682
4683 return 0;
4684
4685 cleanup_vebox_ring:
4686 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4687 cleanup_blt_ring:
4688 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4689 cleanup_bsd_ring:
4690 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4691 cleanup_render_ring:
4692 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4693
4694 return ret;
4695 }
4696
4697 int
4698 i915_gem_init_hw(struct drm_device *dev)
4699 {
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701 struct intel_engine_cs *ring;
4702 int ret, i, j;
4703
4704 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4705 return -EIO;
4706
4707 /* Double layer security blanket, see i915_gem_init() */
4708 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709
4710 if (dev_priv->ellc_size)
4711 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4712
4713 if (IS_HASWELL(dev))
4714 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4715 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4716
4717 if (HAS_PCH_NOP(dev)) {
4718 if (IS_IVYBRIDGE(dev)) {
4719 u32 temp = I915_READ(GEN7_MSG_CTL);
4720 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4721 I915_WRITE(GEN7_MSG_CTL, temp);
4722 } else if (INTEL_INFO(dev)->gen >= 7) {
4723 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4724 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4725 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4726 }
4727 }
4728
4729 i915_gem_init_swizzling(dev);
4730
4731 /*
4732 * At least 830 can leave some of the unused rings
4733 * "active" (ie. head != tail) after resume which
4734 * will prevent c3 entry. Makes sure all unused rings
4735 * are totally idle.
4736 */
4737 init_unused_rings(dev);
4738
4739 BUG_ON(!dev_priv->ring[RCS].default_context);
4740
4741 ret = i915_ppgtt_init_hw(dev);
4742 if (ret) {
4743 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4744 goto out;
4745 }
4746
4747 /* Need to do basic initialisation of all rings first: */
4748 for_each_ring(ring, dev_priv, i) {
4749 ret = ring->init_hw(ring);
4750 if (ret)
4751 goto out;
4752 }
4753
4754 /* We can't enable contexts until all firmware is loaded */
4755 if (HAS_GUC_UCODE(dev)) {
4756 ret = intel_guc_ucode_load(dev);
4757 if (ret) {
4758 /*
4759 * If we got an error and GuC submission is enabled, map
4760 * the error to -EIO so the GPU will be declared wedged.
4761 * OTOH, if we didn't intend to use the GuC anyway, just
4762 * discard the error and carry on.
4763 */
4764 DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4765 i915.enable_guc_submission ? "" :
4766 " (ignored)");
4767 ret = i915.enable_guc_submission ? -EIO : 0;
4768 if (ret)
4769 goto out;
4770 }
4771 }
4772
4773 /*
4774 * Increment the next seqno by 0x100 so we have a visible break
4775 * on re-initialisation
4776 */
4777 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4778 if (ret)
4779 goto out;
4780
4781 /* Now it is safe to go back round and do everything else: */
4782 for_each_ring(ring, dev_priv, i) {
4783 struct drm_i915_gem_request *req;
4784
4785 WARN_ON(!ring->default_context);
4786
4787 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4788 if (ret) {
4789 i915_gem_cleanup_ringbuffer(dev);
4790 goto out;
4791 }
4792
4793 if (ring->id == RCS) {
4794 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4795 i915_gem_l3_remap(req, j);
4796 }
4797
4798 ret = i915_ppgtt_init_ring(req);
4799 if (ret && ret != -EIO) {
4800 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4801 i915_gem_request_cancel(req);
4802 i915_gem_cleanup_ringbuffer(dev);
4803 goto out;
4804 }
4805
4806 ret = i915_gem_context_enable(req);
4807 if (ret && ret != -EIO) {
4808 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4809 i915_gem_request_cancel(req);
4810 i915_gem_cleanup_ringbuffer(dev);
4811 goto out;
4812 }
4813
4814 i915_add_request_no_flush(req);
4815 }
4816
4817 out:
4818 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4819 return ret;
4820 }
4821
4822 int i915_gem_init(struct drm_device *dev)
4823 {
4824 struct drm_i915_private *dev_priv = dev->dev_private;
4825 int ret;
4826
4827 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4828 i915.enable_execlists);
4829
4830 mutex_lock(&dev->struct_mutex);
4831
4832 if (IS_VALLEYVIEW(dev)) {
4833 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4834 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4835 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4836 VLV_GTLC_ALLOWWAKEACK), 10))
4837 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4838 }
4839
4840 if (!i915.enable_execlists) {
4841 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4842 dev_priv->gt.init_rings = i915_gem_init_rings;
4843 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4844 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4845 } else {
4846 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4847 dev_priv->gt.init_rings = intel_logical_rings_init;
4848 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4849 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4850 }
4851
4852 /* This is just a security blanket to placate dragons.
4853 * On some systems, we very sporadically observe that the first TLBs
4854 * used by the CS may be stale, despite us poking the TLB reset. If
4855 * we hold the forcewake during initialisation these problems
4856 * just magically go away.
4857 */
4858 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4859
4860 ret = i915_gem_init_userptr(dev);
4861 if (ret)
4862 goto out_unlock;
4863
4864 i915_gem_init_global_gtt(dev);
4865
4866 ret = i915_gem_context_init(dev);
4867 if (ret)
4868 goto out_unlock;
4869
4870 ret = dev_priv->gt.init_rings(dev);
4871 if (ret)
4872 goto out_unlock;
4873
4874 ret = i915_gem_init_hw(dev);
4875 if (ret == -EIO) {
4876 /* Allow ring initialisation to fail by marking the GPU as
4877 * wedged. But we only want to do this where the GPU is angry,
4878 * for all other failure, such as an allocation failure, bail.
4879 */
4880 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4881 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4882 ret = 0;
4883 }
4884
4885 out_unlock:
4886 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4887 mutex_unlock(&dev->struct_mutex);
4888
4889 return ret;
4890 }
4891
4892 void
4893 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4894 {
4895 struct drm_i915_private *dev_priv = dev->dev_private;
4896 struct intel_engine_cs *ring;
4897 int i;
4898
4899 for_each_ring(ring, dev_priv, i)
4900 dev_priv->gt.cleanup_ring(ring);
4901
4902 if (i915.enable_execlists)
4903 /*
4904 * Neither the BIOS, ourselves or any other kernel
4905 * expects the system to be in execlists mode on startup,
4906 * so we need to reset the GPU back to legacy mode.
4907 */
4908 intel_gpu_reset(dev);
4909 }
4910
4911 static void
4912 init_ring_lists(struct intel_engine_cs *ring)
4913 {
4914 INIT_LIST_HEAD(&ring->active_list);
4915 INIT_LIST_HEAD(&ring->request_list);
4916 }
4917
4918 void
4919 i915_gem_load(struct drm_device *dev)
4920 {
4921 struct drm_i915_private *dev_priv = dev->dev_private;
4922 int i;
4923
4924 dev_priv->objects =
4925 kmem_cache_create("i915_gem_object",
4926 sizeof(struct drm_i915_gem_object), 0,
4927 SLAB_HWCACHE_ALIGN,
4928 NULL);
4929 dev_priv->vmas =
4930 kmem_cache_create("i915_gem_vma",
4931 sizeof(struct i915_vma), 0,
4932 SLAB_HWCACHE_ALIGN,
4933 NULL);
4934 dev_priv->requests =
4935 kmem_cache_create("i915_gem_request",
4936 sizeof(struct drm_i915_gem_request), 0,
4937 SLAB_HWCACHE_ALIGN,
4938 NULL);
4939
4940 INIT_LIST_HEAD(&dev_priv->vm_list);
4941 INIT_LIST_HEAD(&dev_priv->context_list);
4942 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4943 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4944 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4945 for (i = 0; i < I915_NUM_RINGS; i++)
4946 init_ring_lists(&dev_priv->ring[i]);
4947 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4948 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4949 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4950 i915_gem_retire_work_handler);
4951 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4952 i915_gem_idle_work_handler);
4953 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4954
4955 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4956
4957 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4958 dev_priv->num_fence_regs = 32;
4959 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4960 dev_priv->num_fence_regs = 16;
4961 else
4962 dev_priv->num_fence_regs = 8;
4963
4964 if (intel_vgpu_active(dev))
4965 dev_priv->num_fence_regs =
4966 I915_READ(vgtif_reg(avail_rs.fence_num));
4967
4968 /*
4969 * Set initial sequence number for requests.
4970 * Using this number allows the wraparound to happen early,
4971 * catching any obvious problems.
4972 */
4973 dev_priv->next_seqno = ((u32)~0 - 0x1100);
4974 dev_priv->last_seqno = ((u32)~0 - 0x1101);
4975
4976 /* Initialize fence registers to zero */
4977 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4978 i915_gem_restore_fences(dev);
4979
4980 i915_gem_detect_bit_6_swizzle(dev);
4981 init_waitqueue_head(&dev_priv->pending_flip_queue);
4982
4983 dev_priv->mm.interruptible = true;
4984
4985 i915_gem_shrinker_init(dev_priv);
4986
4987 mutex_init(&dev_priv->fb_tracking.lock);
4988 }
4989
4990 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4991 {
4992 struct drm_i915_file_private *file_priv = file->driver_priv;
4993
4994 /* Clean up our request list when the client is going away, so that
4995 * later retire_requests won't dereference our soon-to-be-gone
4996 * file_priv.
4997 */
4998 spin_lock(&file_priv->mm.lock);
4999 while (!list_empty(&file_priv->mm.request_list)) {
5000 struct drm_i915_gem_request *request;
5001
5002 request = list_first_entry(&file_priv->mm.request_list,
5003 struct drm_i915_gem_request,
5004 client_list);
5005 list_del(&request->client_list);
5006 request->file_priv = NULL;
5007 }
5008 spin_unlock(&file_priv->mm.lock);
5009
5010 if (!list_empty(&file_priv->rps.link)) {
5011 spin_lock(&to_i915(dev)->rps.client_lock);
5012 list_del(&file_priv->rps.link);
5013 spin_unlock(&to_i915(dev)->rps.client_lock);
5014 }
5015 }
5016
5017 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5018 {
5019 struct drm_i915_file_private *file_priv;
5020 int ret;
5021
5022 DRM_DEBUG_DRIVER("\n");
5023
5024 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5025 if (!file_priv)
5026 return -ENOMEM;
5027
5028 file->driver_priv = file_priv;
5029 file_priv->dev_priv = dev->dev_private;
5030 file_priv->file = file;
5031 INIT_LIST_HEAD(&file_priv->rps.link);
5032
5033 spin_lock_init(&file_priv->mm.lock);
5034 INIT_LIST_HEAD(&file_priv->mm.request_list);
5035
5036 ret = i915_gem_context_open(dev, file);
5037 if (ret)
5038 kfree(file_priv);
5039
5040 return ret;
5041 }
5042
5043 /**
5044 * i915_gem_track_fb - update frontbuffer tracking
5045 * @old: current GEM buffer for the frontbuffer slots
5046 * @new: new GEM buffer for the frontbuffer slots
5047 * @frontbuffer_bits: bitmask of frontbuffer slots
5048 *
5049 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5050 * from @old and setting them in @new. Both @old and @new can be NULL.
5051 */
5052 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5053 struct drm_i915_gem_object *new,
5054 unsigned frontbuffer_bits)
5055 {
5056 if (old) {
5057 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5058 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5059 old->frontbuffer_bits &= ~frontbuffer_bits;
5060 }
5061
5062 if (new) {
5063 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5064 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5065 new->frontbuffer_bits |= frontbuffer_bits;
5066 }
5067 }
5068
5069 /* All the new VM stuff */
5070 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5071 struct i915_address_space *vm)
5072 {
5073 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5074 struct i915_vma *vma;
5075
5076 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5077
5078 list_for_each_entry(vma, &o->vma_list, vma_link) {
5079 if (i915_is_ggtt(vma->vm) &&
5080 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5081 continue;
5082 if (vma->vm == vm)
5083 return vma->node.start;
5084 }
5085
5086 WARN(1, "%s vma for this object not found.\n",
5087 i915_is_ggtt(vm) ? "global" : "ppgtt");
5088 return -1;
5089 }
5090
5091 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5092 const struct i915_ggtt_view *view)
5093 {
5094 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5095 struct i915_vma *vma;
5096
5097 list_for_each_entry(vma, &o->vma_list, vma_link)
5098 if (vma->vm == ggtt &&
5099 i915_ggtt_view_equal(&vma->ggtt_view, view))
5100 return vma->node.start;
5101
5102 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5103 return -1;
5104 }
5105
5106 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5107 struct i915_address_space *vm)
5108 {
5109 struct i915_vma *vma;
5110
5111 list_for_each_entry(vma, &o->vma_list, vma_link) {
5112 if (i915_is_ggtt(vma->vm) &&
5113 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5114 continue;
5115 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5116 return true;
5117 }
5118
5119 return false;
5120 }
5121
5122 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5123 const struct i915_ggtt_view *view)
5124 {
5125 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5126 struct i915_vma *vma;
5127
5128 list_for_each_entry(vma, &o->vma_list, vma_link)
5129 if (vma->vm == ggtt &&
5130 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5131 drm_mm_node_allocated(&vma->node))
5132 return true;
5133
5134 return false;
5135 }
5136
5137 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5138 {
5139 struct i915_vma *vma;
5140
5141 list_for_each_entry(vma, &o->vma_list, vma_link)
5142 if (drm_mm_node_allocated(&vma->node))
5143 return true;
5144
5145 return false;
5146 }
5147
5148 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5149 struct i915_address_space *vm)
5150 {
5151 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5152 struct i915_vma *vma;
5153
5154 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5155
5156 BUG_ON(list_empty(&o->vma_list));
5157
5158 list_for_each_entry(vma, &o->vma_list, vma_link) {
5159 if (i915_is_ggtt(vma->vm) &&
5160 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5161 continue;
5162 if (vma->vm == vm)
5163 return vma->node.size;
5164 }
5165 return 0;
5166 }
5167
5168 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5169 {
5170 struct i915_vma *vma;
5171 list_for_each_entry(vma, &obj->vma_list, vma_link)
5172 if (vma->pin_count > 0)
5173 return true;
5174
5175 return false;
5176 }
5177
5178 /* Allocate a new GEM object and fill it with the supplied data */
5179 struct drm_i915_gem_object *
5180 i915_gem_object_create_from_data(struct drm_device *dev,
5181 const void *data, size_t size)
5182 {
5183 struct drm_i915_gem_object *obj;
5184 struct sg_table *sg;
5185 size_t bytes;
5186 int ret;
5187
5188 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5189 if (IS_ERR_OR_NULL(obj))
5190 return obj;
5191
5192 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5193 if (ret)
5194 goto fail;
5195
5196 ret = i915_gem_object_get_pages(obj);
5197 if (ret)
5198 goto fail;
5199
5200 i915_gem_object_pin_pages(obj);
5201 sg = obj->pages;
5202 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5203 i915_gem_object_unpin_pages(obj);
5204
5205 if (WARN_ON(bytes != size)) {
5206 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5207 ret = -EFAULT;
5208 goto fail;
5209 }
5210
5211 return obj;
5212
5213 fail:
5214 drm_gem_object_unreference(&obj->base);
5215 return ERR_PTR(ret);
5216 }