]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
a2b8a74168d7288adf1cc1d4a75fa31c7e18da2d
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
70 {
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
73 size, 0,
74 I915_COLOR_UNEVICTABLE,
75 0, ggtt->mappable_end,
76 DRM_MM_SEARCH_DEFAULT,
77 DRM_MM_CREATE_DEFAULT);
78 }
79
80 static void
81 remove_mappable_node(struct drm_mm_node *node)
82 {
83 drm_mm_remove_node(node);
84 }
85
86 /* some bookkeeping */
87 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
88 u64 size)
89 {
90 spin_lock(&dev_priv->mm.object_stat_lock);
91 dev_priv->mm.object_count++;
92 dev_priv->mm.object_memory += size;
93 spin_unlock(&dev_priv->mm.object_stat_lock);
94 }
95
96 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
97 u64 size)
98 {
99 spin_lock(&dev_priv->mm.object_stat_lock);
100 dev_priv->mm.object_count--;
101 dev_priv->mm.object_memory -= size;
102 spin_unlock(&dev_priv->mm.object_stat_lock);
103 }
104
105 static int
106 i915_gem_wait_for_error(struct i915_gpu_error *error)
107 {
108 int ret;
109
110 might_sleep();
111
112 if (!i915_reset_in_progress(error))
113 return 0;
114
115 /*
116 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
117 * userspace. If it takes that long something really bad is going on and
118 * we should simply try to bail out and fail as gracefully as possible.
119 */
120 ret = wait_event_interruptible_timeout(error->reset_queue,
121 !i915_reset_in_progress(error),
122 I915_RESET_TIMEOUT);
123 if (ret == 0) {
124 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
125 return -EIO;
126 } else if (ret < 0) {
127 return ret;
128 } else {
129 return 0;
130 }
131 }
132
133 int i915_mutex_lock_interruptible(struct drm_device *dev)
134 {
135 struct drm_i915_private *dev_priv = to_i915(dev);
136 int ret;
137
138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
139 if (ret)
140 return ret;
141
142 ret = mutex_lock_interruptible(&dev->struct_mutex);
143 if (ret)
144 return ret;
145
146 return 0;
147 }
148
149 int
150 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
151 struct drm_file *file)
152 {
153 struct drm_i915_private *dev_priv = to_i915(dev);
154 struct i915_ggtt *ggtt = &dev_priv->ggtt;
155 struct drm_i915_gem_get_aperture *args = data;
156 struct i915_vma *vma;
157 size_t pinned;
158
159 pinned = 0;
160 mutex_lock(&dev->struct_mutex);
161 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
162 if (i915_vma_is_pinned(vma))
163 pinned += vma->node.size;
164 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
165 if (i915_vma_is_pinned(vma))
166 pinned += vma->node.size;
167 mutex_unlock(&dev->struct_mutex);
168
169 args->aper_size = ggtt->base.total;
170 args->aper_available_size = args->aper_size - pinned;
171
172 return 0;
173 }
174
175 static struct sg_table *
176 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
177 {
178 struct address_space *mapping = obj->base.filp->f_mapping;
179 drm_dma_handle_t *phys;
180 struct sg_table *st;
181 struct scatterlist *sg;
182 char *vaddr;
183 int i;
184
185 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
186 return ERR_PTR(-EINVAL);
187
188 /* Always aligning to the object size, allows a single allocation
189 * to handle all possible callers, and given typical object sizes,
190 * the alignment of the buddy allocation will naturally match.
191 */
192 phys = drm_pci_alloc(obj->base.dev,
193 obj->base.size,
194 roundup_pow_of_two(obj->base.size));
195 if (!phys)
196 return ERR_PTR(-ENOMEM);
197
198 vaddr = phys->vaddr;
199 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
200 struct page *page;
201 char *src;
202
203 page = shmem_read_mapping_page(mapping, i);
204 if (IS_ERR(page)) {
205 st = ERR_CAST(page);
206 goto err_phys;
207 }
208
209 src = kmap_atomic(page);
210 memcpy(vaddr, src, PAGE_SIZE);
211 drm_clflush_virt_range(vaddr, PAGE_SIZE);
212 kunmap_atomic(src);
213
214 put_page(page);
215 vaddr += PAGE_SIZE;
216 }
217
218 i915_gem_chipset_flush(to_i915(obj->base.dev));
219
220 st = kmalloc(sizeof(*st), GFP_KERNEL);
221 if (!st) {
222 st = ERR_PTR(-ENOMEM);
223 goto err_phys;
224 }
225
226 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
227 kfree(st);
228 st = ERR_PTR(-ENOMEM);
229 goto err_phys;
230 }
231
232 sg = st->sgl;
233 sg->offset = 0;
234 sg->length = obj->base.size;
235
236 sg_dma_address(sg) = phys->busaddr;
237 sg_dma_len(sg) = obj->base.size;
238
239 obj->phys_handle = phys;
240 return st;
241
242 err_phys:
243 drm_pci_free(obj->base.dev, phys);
244 return st;
245 }
246
247 static void
248 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
249 struct sg_table *pages,
250 bool needs_clflush)
251 {
252 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
253
254 if (obj->mm.madv == I915_MADV_DONTNEED)
255 obj->mm.dirty = false;
256
257 if (needs_clflush &&
258 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
259 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
260 drm_clflush_sg(pages);
261
262 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
263 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
264 }
265
266 static void
267 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
268 struct sg_table *pages)
269 {
270 __i915_gem_object_release_shmem(obj, pages, false);
271
272 if (obj->mm.dirty) {
273 struct address_space *mapping = obj->base.filp->f_mapping;
274 char *vaddr = obj->phys_handle->vaddr;
275 int i;
276
277 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
278 struct page *page;
279 char *dst;
280
281 page = shmem_read_mapping_page(mapping, i);
282 if (IS_ERR(page))
283 continue;
284
285 dst = kmap_atomic(page);
286 drm_clflush_virt_range(vaddr, PAGE_SIZE);
287 memcpy(dst, vaddr, PAGE_SIZE);
288 kunmap_atomic(dst);
289
290 set_page_dirty(page);
291 if (obj->mm.madv == I915_MADV_WILLNEED)
292 mark_page_accessed(page);
293 put_page(page);
294 vaddr += PAGE_SIZE;
295 }
296 obj->mm.dirty = false;
297 }
298
299 sg_free_table(pages);
300 kfree(pages);
301
302 drm_pci_free(obj->base.dev, obj->phys_handle);
303 }
304
305 static void
306 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
307 {
308 i915_gem_object_unpin_pages(obj);
309 }
310
311 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
312 .get_pages = i915_gem_object_get_pages_phys,
313 .put_pages = i915_gem_object_put_pages_phys,
314 .release = i915_gem_object_release_phys,
315 };
316
317 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
318 {
319 struct i915_vma *vma;
320 LIST_HEAD(still_in_list);
321 int ret;
322
323 lockdep_assert_held(&obj->base.dev->struct_mutex);
324
325 /* Closed vma are removed from the obj->vma_list - but they may
326 * still have an active binding on the object. To remove those we
327 * must wait for all rendering to complete to the object (as unbinding
328 * must anyway), and retire the requests.
329 */
330 ret = i915_gem_object_wait(obj,
331 I915_WAIT_INTERRUPTIBLE |
332 I915_WAIT_LOCKED |
333 I915_WAIT_ALL,
334 MAX_SCHEDULE_TIMEOUT,
335 NULL);
336 if (ret)
337 return ret;
338
339 i915_gem_retire_requests(to_i915(obj->base.dev));
340
341 while ((vma = list_first_entry_or_null(&obj->vma_list,
342 struct i915_vma,
343 obj_link))) {
344 list_move_tail(&vma->obj_link, &still_in_list);
345 ret = i915_vma_unbind(vma);
346 if (ret)
347 break;
348 }
349 list_splice(&still_in_list, &obj->vma_list);
350
351 return ret;
352 }
353
354 static long
355 i915_gem_object_wait_fence(struct dma_fence *fence,
356 unsigned int flags,
357 long timeout,
358 struct intel_rps_client *rps)
359 {
360 struct drm_i915_gem_request *rq;
361
362 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
363
364 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365 return timeout;
366
367 if (!dma_fence_is_i915(fence))
368 return dma_fence_wait_timeout(fence,
369 flags & I915_WAIT_INTERRUPTIBLE,
370 timeout);
371
372 rq = to_request(fence);
373 if (i915_gem_request_completed(rq))
374 goto out;
375
376 /* This client is about to stall waiting for the GPU. In many cases
377 * this is undesirable and limits the throughput of the system, as
378 * many clients cannot continue processing user input/output whilst
379 * blocked. RPS autotuning may take tens of milliseconds to respond
380 * to the GPU load and thus incurs additional latency for the client.
381 * We can circumvent that by promoting the GPU frequency to maximum
382 * before we wait. This makes the GPU throttle up much more quickly
383 * (good for benchmarks and user experience, e.g. window animations),
384 * but at a cost of spending more power processing the workload
385 * (bad for battery). Not all clients even want their results
386 * immediately and for them we should just let the GPU select its own
387 * frequency to maximise efficiency. To prevent a single client from
388 * forcing the clocks too high for the whole system, we only allow
389 * each client to waitboost once in a busy period.
390 */
391 if (rps) {
392 if (INTEL_GEN(rq->i915) >= 6)
393 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
394 else
395 rps = NULL;
396 }
397
398 timeout = i915_wait_request(rq, flags, timeout);
399
400 out:
401 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
402 i915_gem_request_retire_upto(rq);
403
404 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
405 /* The GPU is now idle and this client has stalled.
406 * Since no other client has submitted a request in the
407 * meantime, assume that this client is the only one
408 * supplying work to the GPU but is unable to keep that
409 * work supplied because it is waiting. Since the GPU is
410 * then never kept fully busy, RPS autoclocking will
411 * keep the clocks relatively low, causing further delays.
412 * Compensate by giving the synchronous client credit for
413 * a waitboost next time.
414 */
415 spin_lock(&rq->i915->rps.client_lock);
416 list_del_init(&rps->link);
417 spin_unlock(&rq->i915->rps.client_lock);
418 }
419
420 return timeout;
421 }
422
423 static long
424 i915_gem_object_wait_reservation(struct reservation_object *resv,
425 unsigned int flags,
426 long timeout,
427 struct intel_rps_client *rps)
428 {
429 struct dma_fence *excl;
430
431 if (flags & I915_WAIT_ALL) {
432 struct dma_fence **shared;
433 unsigned int count, i;
434 int ret;
435
436 ret = reservation_object_get_fences_rcu(resv,
437 &excl, &count, &shared);
438 if (ret)
439 return ret;
440
441 for (i = 0; i < count; i++) {
442 timeout = i915_gem_object_wait_fence(shared[i],
443 flags, timeout,
444 rps);
445 if (timeout <= 0)
446 break;
447
448 dma_fence_put(shared[i]);
449 }
450
451 for (; i < count; i++)
452 dma_fence_put(shared[i]);
453 kfree(shared);
454 } else {
455 excl = reservation_object_get_excl_rcu(resv);
456 }
457
458 if (excl && timeout > 0)
459 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
460
461 dma_fence_put(excl);
462
463 return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500 {
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528 }
529
530 /**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
536 */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
542 {
543 might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548 #endif
549 GEM_BUG_ON(timeout < 0);
550
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562 }
563
564 int
565 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
566 int align)
567 {
568 int ret;
569
570 if (align > obj->base.size)
571 return -EINVAL;
572
573 if (obj->ops == &i915_gem_phys_ops)
574 return 0;
575
576 if (obj->mm.madv != I915_MADV_WILLNEED)
577 return -EFAULT;
578
579 if (obj->base.filp == NULL)
580 return -EINVAL;
581
582 ret = i915_gem_object_unbind(obj);
583 if (ret)
584 return ret;
585
586 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 if (obj->mm.pages)
588 return -EBUSY;
589
590 obj->ops = &i915_gem_phys_ops;
591
592 return i915_gem_object_pin_pages(obj);
593 }
594
595 static int
596 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
597 struct drm_i915_gem_pwrite *args,
598 struct drm_file *file)
599 {
600 void *vaddr = obj->phys_handle->vaddr + args->offset;
601 char __user *user_data = u64_to_user_ptr(args->data_ptr);
602
603 /* We manually control the domain here and pretend that it
604 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
605 */
606 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
607 if (copy_from_user(vaddr, user_data, args->size))
608 return -EFAULT;
609
610 drm_clflush_virt_range(vaddr, args->size);
611 i915_gem_chipset_flush(to_i915(obj->base.dev));
612
613 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
614 return 0;
615 }
616
617 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
618 {
619 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
620 }
621
622 void i915_gem_object_free(struct drm_i915_gem_object *obj)
623 {
624 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
625 kmem_cache_free(dev_priv->objects, obj);
626 }
627
628 static int
629 i915_gem_create(struct drm_file *file,
630 struct drm_i915_private *dev_priv,
631 uint64_t size,
632 uint32_t *handle_p)
633 {
634 struct drm_i915_gem_object *obj;
635 int ret;
636 u32 handle;
637
638 size = roundup(size, PAGE_SIZE);
639 if (size == 0)
640 return -EINVAL;
641
642 /* Allocate the new object */
643 obj = i915_gem_object_create(dev_priv, size);
644 if (IS_ERR(obj))
645 return PTR_ERR(obj);
646
647 ret = drm_gem_handle_create(file, &obj->base, &handle);
648 /* drop reference from allocate - handle holds it now */
649 i915_gem_object_put(obj);
650 if (ret)
651 return ret;
652
653 *handle_p = handle;
654 return 0;
655 }
656
657 int
658 i915_gem_dumb_create(struct drm_file *file,
659 struct drm_device *dev,
660 struct drm_mode_create_dumb *args)
661 {
662 /* have to work out size/pitch and return them */
663 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
664 args->size = args->pitch * args->height;
665 return i915_gem_create(file, to_i915(dev),
666 args->size, &args->handle);
667 }
668
669 /**
670 * Creates a new mm object and returns a handle to it.
671 * @dev: drm device pointer
672 * @data: ioctl data blob
673 * @file: drm file pointer
674 */
675 int
676 i915_gem_create_ioctl(struct drm_device *dev, void *data,
677 struct drm_file *file)
678 {
679 struct drm_i915_private *dev_priv = to_i915(dev);
680 struct drm_i915_gem_create *args = data;
681
682 i915_gem_flush_free_objects(dev_priv);
683
684 return i915_gem_create(file, dev_priv,
685 args->size, &args->handle);
686 }
687
688 static inline int
689 __copy_to_user_swizzled(char __user *cpu_vaddr,
690 const char *gpu_vaddr, int gpu_offset,
691 int length)
692 {
693 int ret, cpu_offset = 0;
694
695 while (length > 0) {
696 int cacheline_end = ALIGN(gpu_offset + 1, 64);
697 int this_length = min(cacheline_end - gpu_offset, length);
698 int swizzled_gpu_offset = gpu_offset ^ 64;
699
700 ret = __copy_to_user(cpu_vaddr + cpu_offset,
701 gpu_vaddr + swizzled_gpu_offset,
702 this_length);
703 if (ret)
704 return ret + length;
705
706 cpu_offset += this_length;
707 gpu_offset += this_length;
708 length -= this_length;
709 }
710
711 return 0;
712 }
713
714 static inline int
715 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
716 const char __user *cpu_vaddr,
717 int length)
718 {
719 int ret, cpu_offset = 0;
720
721 while (length > 0) {
722 int cacheline_end = ALIGN(gpu_offset + 1, 64);
723 int this_length = min(cacheline_end - gpu_offset, length);
724 int swizzled_gpu_offset = gpu_offset ^ 64;
725
726 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
727 cpu_vaddr + cpu_offset,
728 this_length);
729 if (ret)
730 return ret + length;
731
732 cpu_offset += this_length;
733 gpu_offset += this_length;
734 length -= this_length;
735 }
736
737 return 0;
738 }
739
740 /*
741 * Pins the specified object's pages and synchronizes the object with
742 * GPU accesses. Sets needs_clflush to non-zero if the caller should
743 * flush the object from the CPU cache.
744 */
745 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
746 unsigned int *needs_clflush)
747 {
748 int ret;
749
750 lockdep_assert_held(&obj->base.dev->struct_mutex);
751
752 *needs_clflush = 0;
753 if (!i915_gem_object_has_struct_page(obj))
754 return -ENODEV;
755
756 ret = i915_gem_object_wait(obj,
757 I915_WAIT_INTERRUPTIBLE |
758 I915_WAIT_LOCKED,
759 MAX_SCHEDULE_TIMEOUT,
760 NULL);
761 if (ret)
762 return ret;
763
764 ret = i915_gem_object_pin_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_flush_gtt_write_domain(obj);
769
770 /* If we're not in the cpu read domain, set ourself into the gtt
771 * read domain and manually flush cachelines (if required). This
772 * optimizes for the case when the gpu will dirty the data
773 * anyway again before the next pread happens.
774 */
775 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
776 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
777 obj->cache_level);
778
779 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
780 ret = i915_gem_object_set_to_cpu_domain(obj, false);
781 if (ret)
782 goto err_unpin;
783
784 *needs_clflush = 0;
785 }
786
787 /* return with the pages pinned */
788 return 0;
789
790 err_unpin:
791 i915_gem_object_unpin_pages(obj);
792 return ret;
793 }
794
795 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
796 unsigned int *needs_clflush)
797 {
798 int ret;
799
800 lockdep_assert_held(&obj->base.dev->struct_mutex);
801
802 *needs_clflush = 0;
803 if (!i915_gem_object_has_struct_page(obj))
804 return -ENODEV;
805
806 ret = i915_gem_object_wait(obj,
807 I915_WAIT_INTERRUPTIBLE |
808 I915_WAIT_LOCKED |
809 I915_WAIT_ALL,
810 MAX_SCHEDULE_TIMEOUT,
811 NULL);
812 if (ret)
813 return ret;
814
815 ret = i915_gem_object_pin_pages(obj);
816 if (ret)
817 return ret;
818
819 i915_gem_object_flush_gtt_write_domain(obj);
820
821 /* If we're not in the cpu write domain, set ourself into the
822 * gtt write domain and manually flush cachelines (as required).
823 * This optimizes for the case when the gpu will use the data
824 * right away and we therefore have to clflush anyway.
825 */
826 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
827 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
828
829 /* Same trick applies to invalidate partially written cachelines read
830 * before writing.
831 */
832 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
833 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
834 obj->cache_level);
835
836 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
837 ret = i915_gem_object_set_to_cpu_domain(obj, true);
838 if (ret)
839 goto err_unpin;
840
841 *needs_clflush = 0;
842 }
843
844 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
845 obj->cache_dirty = true;
846
847 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
848 obj->mm.dirty = true;
849 /* return with the pages pinned */
850 return 0;
851
852 err_unpin:
853 i915_gem_object_unpin_pages(obj);
854 return ret;
855 }
856
857 static void
858 shmem_clflush_swizzled_range(char *addr, unsigned long length,
859 bool swizzled)
860 {
861 if (unlikely(swizzled)) {
862 unsigned long start = (unsigned long) addr;
863 unsigned long end = (unsigned long) addr + length;
864
865 /* For swizzling simply ensure that we always flush both
866 * channels. Lame, but simple and it works. Swizzled
867 * pwrite/pread is far from a hotpath - current userspace
868 * doesn't use it at all. */
869 start = round_down(start, 128);
870 end = round_up(end, 128);
871
872 drm_clflush_virt_range((void *)start, end - start);
873 } else {
874 drm_clflush_virt_range(addr, length);
875 }
876
877 }
878
879 /* Only difference to the fast-path function is that this can handle bit17
880 * and uses non-atomic copy and kmap functions. */
881 static int
882 shmem_pread_slow(struct page *page, int offset, int length,
883 char __user *user_data,
884 bool page_do_bit17_swizzling, bool needs_clflush)
885 {
886 char *vaddr;
887 int ret;
888
889 vaddr = kmap(page);
890 if (needs_clflush)
891 shmem_clflush_swizzled_range(vaddr + offset, length,
892 page_do_bit17_swizzling);
893
894 if (page_do_bit17_swizzling)
895 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
896 else
897 ret = __copy_to_user(user_data, vaddr + offset, length);
898 kunmap(page);
899
900 return ret ? - EFAULT : 0;
901 }
902
903 static int
904 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
905 bool page_do_bit17_swizzling, bool needs_clflush)
906 {
907 int ret;
908
909 ret = -ENODEV;
910 if (!page_do_bit17_swizzling) {
911 char *vaddr = kmap_atomic(page);
912
913 if (needs_clflush)
914 drm_clflush_virt_range(vaddr + offset, length);
915 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
916 kunmap_atomic(vaddr);
917 }
918 if (ret == 0)
919 return 0;
920
921 return shmem_pread_slow(page, offset, length, user_data,
922 page_do_bit17_swizzling, needs_clflush);
923 }
924
925 static int
926 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
927 struct drm_i915_gem_pread *args)
928 {
929 char __user *user_data;
930 u64 remain;
931 unsigned int obj_do_bit17_swizzling;
932 unsigned int needs_clflush;
933 unsigned int idx, offset;
934 int ret;
935
936 obj_do_bit17_swizzling = 0;
937 if (i915_gem_object_needs_bit17_swizzle(obj))
938 obj_do_bit17_swizzling = BIT(17);
939
940 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
941 if (ret)
942 return ret;
943
944 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
945 mutex_unlock(&obj->base.dev->struct_mutex);
946 if (ret)
947 return ret;
948
949 remain = args->size;
950 user_data = u64_to_user_ptr(args->data_ptr);
951 offset = offset_in_page(args->offset);
952 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
953 struct page *page = i915_gem_object_get_page(obj, idx);
954 int length;
955
956 length = remain;
957 if (offset + length > PAGE_SIZE)
958 length = PAGE_SIZE - offset;
959
960 ret = shmem_pread(page, offset, length, user_data,
961 page_to_phys(page) & obj_do_bit17_swizzling,
962 needs_clflush);
963 if (ret)
964 break;
965
966 remain -= length;
967 user_data += length;
968 offset = 0;
969 }
970
971 i915_gem_obj_finish_shmem_access(obj);
972 return ret;
973 }
974
975 static inline bool
976 gtt_user_read(struct io_mapping *mapping,
977 loff_t base, int offset,
978 char __user *user_data, int length)
979 {
980 void *vaddr;
981 unsigned long unwritten;
982
983 /* We can use the cpu mem copy function because this is X86. */
984 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
985 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
986 io_mapping_unmap_atomic(vaddr);
987 if (unwritten) {
988 vaddr = (void __force *)
989 io_mapping_map_wc(mapping, base, PAGE_SIZE);
990 unwritten = copy_to_user(user_data, vaddr + offset, length);
991 io_mapping_unmap(vaddr);
992 }
993 return unwritten;
994 }
995
996 static int
997 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
998 const struct drm_i915_gem_pread *args)
999 {
1000 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1001 struct i915_ggtt *ggtt = &i915->ggtt;
1002 struct drm_mm_node node;
1003 struct i915_vma *vma;
1004 void __user *user_data;
1005 u64 remain, offset;
1006 int ret;
1007
1008 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1009 if (ret)
1010 return ret;
1011
1012 intel_runtime_pm_get(i915);
1013 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1014 PIN_MAPPABLE | PIN_NONBLOCK);
1015 if (!IS_ERR(vma)) {
1016 node.start = i915_ggtt_offset(vma);
1017 node.allocated = false;
1018 ret = i915_vma_put_fence(vma);
1019 if (ret) {
1020 i915_vma_unpin(vma);
1021 vma = ERR_PTR(ret);
1022 }
1023 }
1024 if (IS_ERR(vma)) {
1025 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1026 if (ret)
1027 goto out_unlock;
1028 GEM_BUG_ON(!node.allocated);
1029 }
1030
1031 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1032 if (ret)
1033 goto out_unpin;
1034
1035 mutex_unlock(&i915->drm.struct_mutex);
1036
1037 user_data = u64_to_user_ptr(args->data_ptr);
1038 remain = args->size;
1039 offset = args->offset;
1040
1041 while (remain > 0) {
1042 /* Operation in this page
1043 *
1044 * page_base = page offset within aperture
1045 * page_offset = offset within page
1046 * page_length = bytes to copy for this page
1047 */
1048 u32 page_base = node.start;
1049 unsigned page_offset = offset_in_page(offset);
1050 unsigned page_length = PAGE_SIZE - page_offset;
1051 page_length = remain < page_length ? remain : page_length;
1052 if (node.allocated) {
1053 wmb();
1054 ggtt->base.insert_page(&ggtt->base,
1055 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1056 node.start, I915_CACHE_NONE, 0);
1057 wmb();
1058 } else {
1059 page_base += offset & PAGE_MASK;
1060 }
1061
1062 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1063 user_data, page_length)) {
1064 ret = -EFAULT;
1065 break;
1066 }
1067
1068 remain -= page_length;
1069 user_data += page_length;
1070 offset += page_length;
1071 }
1072
1073 mutex_lock(&i915->drm.struct_mutex);
1074 out_unpin:
1075 if (node.allocated) {
1076 wmb();
1077 ggtt->base.clear_range(&ggtt->base,
1078 node.start, node.size);
1079 remove_mappable_node(&node);
1080 } else {
1081 i915_vma_unpin(vma);
1082 }
1083 out_unlock:
1084 intel_runtime_pm_put(i915);
1085 mutex_unlock(&i915->drm.struct_mutex);
1086
1087 return ret;
1088 }
1089
1090 /**
1091 * Reads data from the object referenced by handle.
1092 * @dev: drm device pointer
1093 * @data: ioctl data blob
1094 * @file: drm file pointer
1095 *
1096 * On error, the contents of *data are undefined.
1097 */
1098 int
1099 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1100 struct drm_file *file)
1101 {
1102 struct drm_i915_gem_pread *args = data;
1103 struct drm_i915_gem_object *obj;
1104 int ret;
1105
1106 if (args->size == 0)
1107 return 0;
1108
1109 if (!access_ok(VERIFY_WRITE,
1110 u64_to_user_ptr(args->data_ptr),
1111 args->size))
1112 return -EFAULT;
1113
1114 obj = i915_gem_object_lookup(file, args->handle);
1115 if (!obj)
1116 return -ENOENT;
1117
1118 /* Bounds check source. */
1119 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1120 ret = -EINVAL;
1121 goto out;
1122 }
1123
1124 trace_i915_gem_object_pread(obj, args->offset, args->size);
1125
1126 ret = i915_gem_object_wait(obj,
1127 I915_WAIT_INTERRUPTIBLE,
1128 MAX_SCHEDULE_TIMEOUT,
1129 to_rps_client(file));
1130 if (ret)
1131 goto out;
1132
1133 ret = i915_gem_object_pin_pages(obj);
1134 if (ret)
1135 goto out;
1136
1137 ret = i915_gem_shmem_pread(obj, args);
1138 if (ret == -EFAULT || ret == -ENODEV)
1139 ret = i915_gem_gtt_pread(obj, args);
1140
1141 i915_gem_object_unpin_pages(obj);
1142 out:
1143 i915_gem_object_put(obj);
1144 return ret;
1145 }
1146
1147 /* This is the fast write path which cannot handle
1148 * page faults in the source data
1149 */
1150
1151 static inline bool
1152 ggtt_write(struct io_mapping *mapping,
1153 loff_t base, int offset,
1154 char __user *user_data, int length)
1155 {
1156 void *vaddr;
1157 unsigned long unwritten;
1158
1159 /* We can use the cpu mem copy function because this is X86. */
1160 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1161 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1162 user_data, length);
1163 io_mapping_unmap_atomic(vaddr);
1164 if (unwritten) {
1165 vaddr = (void __force *)
1166 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1167 unwritten = copy_from_user(vaddr + offset, user_data, length);
1168 io_mapping_unmap(vaddr);
1169 }
1170
1171 return unwritten;
1172 }
1173
1174 /**
1175 * This is the fast pwrite path, where we copy the data directly from the
1176 * user into the GTT, uncached.
1177 * @obj: i915 GEM object
1178 * @args: pwrite arguments structure
1179 */
1180 static int
1181 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1182 const struct drm_i915_gem_pwrite *args)
1183 {
1184 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1185 struct i915_ggtt *ggtt = &i915->ggtt;
1186 struct drm_mm_node node;
1187 struct i915_vma *vma;
1188 u64 remain, offset;
1189 void __user *user_data;
1190 int ret;
1191
1192 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1193 if (ret)
1194 return ret;
1195
1196 intel_runtime_pm_get(i915);
1197 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1198 PIN_MAPPABLE | PIN_NONBLOCK);
1199 if (!IS_ERR(vma)) {
1200 node.start = i915_ggtt_offset(vma);
1201 node.allocated = false;
1202 ret = i915_vma_put_fence(vma);
1203 if (ret) {
1204 i915_vma_unpin(vma);
1205 vma = ERR_PTR(ret);
1206 }
1207 }
1208 if (IS_ERR(vma)) {
1209 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1210 if (ret)
1211 goto out_unlock;
1212 GEM_BUG_ON(!node.allocated);
1213 }
1214
1215 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1216 if (ret)
1217 goto out_unpin;
1218
1219 mutex_unlock(&i915->drm.struct_mutex);
1220
1221 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1222
1223 user_data = u64_to_user_ptr(args->data_ptr);
1224 offset = args->offset;
1225 remain = args->size;
1226 while (remain) {
1227 /* Operation in this page
1228 *
1229 * page_base = page offset within aperture
1230 * page_offset = offset within page
1231 * page_length = bytes to copy for this page
1232 */
1233 u32 page_base = node.start;
1234 unsigned int page_offset = offset_in_page(offset);
1235 unsigned int page_length = PAGE_SIZE - page_offset;
1236 page_length = remain < page_length ? remain : page_length;
1237 if (node.allocated) {
1238 wmb(); /* flush the write before we modify the GGTT */
1239 ggtt->base.insert_page(&ggtt->base,
1240 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1241 node.start, I915_CACHE_NONE, 0);
1242 wmb(); /* flush modifications to the GGTT (insert_page) */
1243 } else {
1244 page_base += offset & PAGE_MASK;
1245 }
1246 /* If we get a fault while copying data, then (presumably) our
1247 * source page isn't available. Return the error and we'll
1248 * retry in the slow path.
1249 * If the object is non-shmem backed, we retry again with the
1250 * path that handles page fault.
1251 */
1252 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1253 user_data, page_length)) {
1254 ret = -EFAULT;
1255 break;
1256 }
1257
1258 remain -= page_length;
1259 user_data += page_length;
1260 offset += page_length;
1261 }
1262 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1263
1264 mutex_lock(&i915->drm.struct_mutex);
1265 out_unpin:
1266 if (node.allocated) {
1267 wmb();
1268 ggtt->base.clear_range(&ggtt->base,
1269 node.start, node.size);
1270 remove_mappable_node(&node);
1271 } else {
1272 i915_vma_unpin(vma);
1273 }
1274 out_unlock:
1275 intel_runtime_pm_put(i915);
1276 mutex_unlock(&i915->drm.struct_mutex);
1277 return ret;
1278 }
1279
1280 static int
1281 shmem_pwrite_slow(struct page *page, int offset, int length,
1282 char __user *user_data,
1283 bool page_do_bit17_swizzling,
1284 bool needs_clflush_before,
1285 bool needs_clflush_after)
1286 {
1287 char *vaddr;
1288 int ret;
1289
1290 vaddr = kmap(page);
1291 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1292 shmem_clflush_swizzled_range(vaddr + offset, length,
1293 page_do_bit17_swizzling);
1294 if (page_do_bit17_swizzling)
1295 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1296 length);
1297 else
1298 ret = __copy_from_user(vaddr + offset, user_data, length);
1299 if (needs_clflush_after)
1300 shmem_clflush_swizzled_range(vaddr + offset, length,
1301 page_do_bit17_swizzling);
1302 kunmap(page);
1303
1304 return ret ? -EFAULT : 0;
1305 }
1306
1307 /* Per-page copy function for the shmem pwrite fastpath.
1308 * Flushes invalid cachelines before writing to the target if
1309 * needs_clflush_before is set and flushes out any written cachelines after
1310 * writing if needs_clflush is set.
1311 */
1312 static int
1313 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1314 bool page_do_bit17_swizzling,
1315 bool needs_clflush_before,
1316 bool needs_clflush_after)
1317 {
1318 int ret;
1319
1320 ret = -ENODEV;
1321 if (!page_do_bit17_swizzling) {
1322 char *vaddr = kmap_atomic(page);
1323
1324 if (needs_clflush_before)
1325 drm_clflush_virt_range(vaddr + offset, len);
1326 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1327 if (needs_clflush_after)
1328 drm_clflush_virt_range(vaddr + offset, len);
1329
1330 kunmap_atomic(vaddr);
1331 }
1332 if (ret == 0)
1333 return ret;
1334
1335 return shmem_pwrite_slow(page, offset, len, user_data,
1336 page_do_bit17_swizzling,
1337 needs_clflush_before,
1338 needs_clflush_after);
1339 }
1340
1341 static int
1342 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1343 const struct drm_i915_gem_pwrite *args)
1344 {
1345 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1346 void __user *user_data;
1347 u64 remain;
1348 unsigned int obj_do_bit17_swizzling;
1349 unsigned int partial_cacheline_write;
1350 unsigned int needs_clflush;
1351 unsigned int offset, idx;
1352 int ret;
1353
1354 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1355 if (ret)
1356 return ret;
1357
1358 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1359 mutex_unlock(&i915->drm.struct_mutex);
1360 if (ret)
1361 return ret;
1362
1363 obj_do_bit17_swizzling = 0;
1364 if (i915_gem_object_needs_bit17_swizzle(obj))
1365 obj_do_bit17_swizzling = BIT(17);
1366
1367 /* If we don't overwrite a cacheline completely we need to be
1368 * careful to have up-to-date data by first clflushing. Don't
1369 * overcomplicate things and flush the entire patch.
1370 */
1371 partial_cacheline_write = 0;
1372 if (needs_clflush & CLFLUSH_BEFORE)
1373 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1374
1375 user_data = u64_to_user_ptr(args->data_ptr);
1376 remain = args->size;
1377 offset = offset_in_page(args->offset);
1378 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1379 struct page *page = i915_gem_object_get_page(obj, idx);
1380 int length;
1381
1382 length = remain;
1383 if (offset + length > PAGE_SIZE)
1384 length = PAGE_SIZE - offset;
1385
1386 ret = shmem_pwrite(page, offset, length, user_data,
1387 page_to_phys(page) & obj_do_bit17_swizzling,
1388 (offset | length) & partial_cacheline_write,
1389 needs_clflush & CLFLUSH_AFTER);
1390 if (ret)
1391 break;
1392
1393 remain -= length;
1394 user_data += length;
1395 offset = 0;
1396 }
1397
1398 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1399 i915_gem_obj_finish_shmem_access(obj);
1400 return ret;
1401 }
1402
1403 /**
1404 * Writes data to the object referenced by handle.
1405 * @dev: drm device
1406 * @data: ioctl data blob
1407 * @file: drm file
1408 *
1409 * On error, the contents of the buffer that were to be modified are undefined.
1410 */
1411 int
1412 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1413 struct drm_file *file)
1414 {
1415 struct drm_i915_gem_pwrite *args = data;
1416 struct drm_i915_gem_object *obj;
1417 int ret;
1418
1419 if (args->size == 0)
1420 return 0;
1421
1422 if (!access_ok(VERIFY_READ,
1423 u64_to_user_ptr(args->data_ptr),
1424 args->size))
1425 return -EFAULT;
1426
1427 obj = i915_gem_object_lookup(file, args->handle);
1428 if (!obj)
1429 return -ENOENT;
1430
1431 /* Bounds check destination. */
1432 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1433 ret = -EINVAL;
1434 goto err;
1435 }
1436
1437 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1438
1439 ret = i915_gem_object_wait(obj,
1440 I915_WAIT_INTERRUPTIBLE |
1441 I915_WAIT_ALL,
1442 MAX_SCHEDULE_TIMEOUT,
1443 to_rps_client(file));
1444 if (ret)
1445 goto err;
1446
1447 ret = i915_gem_object_pin_pages(obj);
1448 if (ret)
1449 goto err;
1450
1451 ret = -EFAULT;
1452 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1453 * it would end up going through the fenced access, and we'll get
1454 * different detiling behavior between reading and writing.
1455 * pread/pwrite currently are reading and writing from the CPU
1456 * perspective, requiring manual detiling by the client.
1457 */
1458 if (!i915_gem_object_has_struct_page(obj) ||
1459 cpu_write_needs_clflush(obj))
1460 /* Note that the gtt paths might fail with non-page-backed user
1461 * pointers (e.g. gtt mappings when moving data between
1462 * textures). Fallback to the shmem path in that case.
1463 */
1464 ret = i915_gem_gtt_pwrite_fast(obj, args);
1465
1466 if (ret == -EFAULT || ret == -ENOSPC) {
1467 if (obj->phys_handle)
1468 ret = i915_gem_phys_pwrite(obj, args, file);
1469 else
1470 ret = i915_gem_shmem_pwrite(obj, args);
1471 }
1472
1473 i915_gem_object_unpin_pages(obj);
1474 err:
1475 i915_gem_object_put(obj);
1476 return ret;
1477 }
1478
1479 static inline enum fb_op_origin
1480 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1481 {
1482 return (domain == I915_GEM_DOMAIN_GTT ?
1483 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1484 }
1485
1486 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1487 {
1488 struct drm_i915_private *i915;
1489 struct list_head *list;
1490 struct i915_vma *vma;
1491
1492 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1493 if (!i915_vma_is_ggtt(vma))
1494 break;
1495
1496 if (i915_vma_is_active(vma))
1497 continue;
1498
1499 if (!drm_mm_node_allocated(&vma->node))
1500 continue;
1501
1502 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1503 }
1504
1505 i915 = to_i915(obj->base.dev);
1506 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1507 list_move_tail(&obj->global_link, list);
1508 }
1509
1510 /**
1511 * Called when user space prepares to use an object with the CPU, either
1512 * through the mmap ioctl's mapping or a GTT mapping.
1513 * @dev: drm device
1514 * @data: ioctl data blob
1515 * @file: drm file
1516 */
1517 int
1518 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1519 struct drm_file *file)
1520 {
1521 struct drm_i915_gem_set_domain *args = data;
1522 struct drm_i915_gem_object *obj;
1523 uint32_t read_domains = args->read_domains;
1524 uint32_t write_domain = args->write_domain;
1525 int err;
1526
1527 /* Only handle setting domains to types used by the CPU. */
1528 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1529 return -EINVAL;
1530
1531 /* Having something in the write domain implies it's in the read
1532 * domain, and only that read domain. Enforce that in the request.
1533 */
1534 if (write_domain != 0 && read_domains != write_domain)
1535 return -EINVAL;
1536
1537 obj = i915_gem_object_lookup(file, args->handle);
1538 if (!obj)
1539 return -ENOENT;
1540
1541 /* Try to flush the object off the GPU without holding the lock.
1542 * We will repeat the flush holding the lock in the normal manner
1543 * to catch cases where we are gazumped.
1544 */
1545 err = i915_gem_object_wait(obj,
1546 I915_WAIT_INTERRUPTIBLE |
1547 (write_domain ? I915_WAIT_ALL : 0),
1548 MAX_SCHEDULE_TIMEOUT,
1549 to_rps_client(file));
1550 if (err)
1551 goto out;
1552
1553 /* Flush and acquire obj->pages so that we are coherent through
1554 * direct access in memory with previous cached writes through
1555 * shmemfs and that our cache domain tracking remains valid.
1556 * For example, if the obj->filp was moved to swap without us
1557 * being notified and releasing the pages, we would mistakenly
1558 * continue to assume that the obj remained out of the CPU cached
1559 * domain.
1560 */
1561 err = i915_gem_object_pin_pages(obj);
1562 if (err)
1563 goto out;
1564
1565 err = i915_mutex_lock_interruptible(dev);
1566 if (err)
1567 goto out_unpin;
1568
1569 if (read_domains & I915_GEM_DOMAIN_GTT)
1570 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1571 else
1572 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1573
1574 /* And bump the LRU for this access */
1575 i915_gem_object_bump_inactive_ggtt(obj);
1576
1577 mutex_unlock(&dev->struct_mutex);
1578
1579 if (write_domain != 0)
1580 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1581
1582 out_unpin:
1583 i915_gem_object_unpin_pages(obj);
1584 out:
1585 i915_gem_object_put(obj);
1586 return err;
1587 }
1588
1589 /**
1590 * Called when user space has done writes to this buffer
1591 * @dev: drm device
1592 * @data: ioctl data blob
1593 * @file: drm file
1594 */
1595 int
1596 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1597 struct drm_file *file)
1598 {
1599 struct drm_i915_gem_sw_finish *args = data;
1600 struct drm_i915_gem_object *obj;
1601 int err = 0;
1602
1603 obj = i915_gem_object_lookup(file, args->handle);
1604 if (!obj)
1605 return -ENOENT;
1606
1607 /* Pinned buffers may be scanout, so flush the cache */
1608 if (READ_ONCE(obj->pin_display)) {
1609 err = i915_mutex_lock_interruptible(dev);
1610 if (!err) {
1611 i915_gem_object_flush_cpu_write_domain(obj);
1612 mutex_unlock(&dev->struct_mutex);
1613 }
1614 }
1615
1616 i915_gem_object_put(obj);
1617 return err;
1618 }
1619
1620 /**
1621 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1622 * it is mapped to.
1623 * @dev: drm device
1624 * @data: ioctl data blob
1625 * @file: drm file
1626 *
1627 * While the mapping holds a reference on the contents of the object, it doesn't
1628 * imply a ref on the object itself.
1629 *
1630 * IMPORTANT:
1631 *
1632 * DRM driver writers who look a this function as an example for how to do GEM
1633 * mmap support, please don't implement mmap support like here. The modern way
1634 * to implement DRM mmap support is with an mmap offset ioctl (like
1635 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1636 * That way debug tooling like valgrind will understand what's going on, hiding
1637 * the mmap call in a driver private ioctl will break that. The i915 driver only
1638 * does cpu mmaps this way because we didn't know better.
1639 */
1640 int
1641 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1642 struct drm_file *file)
1643 {
1644 struct drm_i915_gem_mmap *args = data;
1645 struct drm_i915_gem_object *obj;
1646 unsigned long addr;
1647
1648 if (args->flags & ~(I915_MMAP_WC))
1649 return -EINVAL;
1650
1651 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1652 return -ENODEV;
1653
1654 obj = i915_gem_object_lookup(file, args->handle);
1655 if (!obj)
1656 return -ENOENT;
1657
1658 /* prime objects have no backing filp to GEM mmap
1659 * pages from.
1660 */
1661 if (!obj->base.filp) {
1662 i915_gem_object_put(obj);
1663 return -EINVAL;
1664 }
1665
1666 addr = vm_mmap(obj->base.filp, 0, args->size,
1667 PROT_READ | PROT_WRITE, MAP_SHARED,
1668 args->offset);
1669 if (args->flags & I915_MMAP_WC) {
1670 struct mm_struct *mm = current->mm;
1671 struct vm_area_struct *vma;
1672
1673 if (down_write_killable(&mm->mmap_sem)) {
1674 i915_gem_object_put(obj);
1675 return -EINTR;
1676 }
1677 vma = find_vma(mm, addr);
1678 if (vma)
1679 vma->vm_page_prot =
1680 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1681 else
1682 addr = -ENOMEM;
1683 up_write(&mm->mmap_sem);
1684
1685 /* This may race, but that's ok, it only gets set */
1686 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1687 }
1688 i915_gem_object_put(obj);
1689 if (IS_ERR((void *)addr))
1690 return addr;
1691
1692 args->addr_ptr = (uint64_t) addr;
1693
1694 return 0;
1695 }
1696
1697 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1698 {
1699 u64 size;
1700
1701 size = i915_gem_object_get_stride(obj);
1702 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1703
1704 return size >> PAGE_SHIFT;
1705 }
1706
1707 /**
1708 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1709 *
1710 * A history of the GTT mmap interface:
1711 *
1712 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1713 * aligned and suitable for fencing, and still fit into the available
1714 * mappable space left by the pinned display objects. A classic problem
1715 * we called the page-fault-of-doom where we would ping-pong between
1716 * two objects that could not fit inside the GTT and so the memcpy
1717 * would page one object in at the expense of the other between every
1718 * single byte.
1719 *
1720 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1721 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1722 * object is too large for the available space (or simply too large
1723 * for the mappable aperture!), a view is created instead and faulted
1724 * into userspace. (This view is aligned and sized appropriately for
1725 * fenced access.)
1726 *
1727 * Restrictions:
1728 *
1729 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1730 * hangs on some architectures, corruption on others. An attempt to service
1731 * a GTT page fault from a snoopable object will generate a SIGBUS.
1732 *
1733 * * the object must be able to fit into RAM (physical memory, though no
1734 * limited to the mappable aperture).
1735 *
1736 *
1737 * Caveats:
1738 *
1739 * * a new GTT page fault will synchronize rendering from the GPU and flush
1740 * all data to system memory. Subsequent access will not be synchronized.
1741 *
1742 * * all mappings are revoked on runtime device suspend.
1743 *
1744 * * there are only 8, 16 or 32 fence registers to share between all users
1745 * (older machines require fence register for display and blitter access
1746 * as well). Contention of the fence registers will cause the previous users
1747 * to be unmapped and any new access will generate new page faults.
1748 *
1749 * * running out of memory while servicing a fault may generate a SIGBUS,
1750 * rather than the expected SIGSEGV.
1751 */
1752 int i915_gem_mmap_gtt_version(void)
1753 {
1754 return 1;
1755 }
1756
1757 /**
1758 * i915_gem_fault - fault a page into the GTT
1759 * @area: CPU VMA in question
1760 * @vmf: fault info
1761 *
1762 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1763 * from userspace. The fault handler takes care of binding the object to
1764 * the GTT (if needed), allocating and programming a fence register (again,
1765 * only if needed based on whether the old reg is still valid or the object
1766 * is tiled) and inserting a new PTE into the faulting process.
1767 *
1768 * Note that the faulting process may involve evicting existing objects
1769 * from the GTT and/or fence registers to make room. So performance may
1770 * suffer if the GTT working set is large or there are few fence registers
1771 * left.
1772 *
1773 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1774 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1775 */
1776 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1777 {
1778 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1779 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1780 struct drm_device *dev = obj->base.dev;
1781 struct drm_i915_private *dev_priv = to_i915(dev);
1782 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1783 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1784 struct i915_vma *vma;
1785 pgoff_t page_offset;
1786 unsigned int flags;
1787 int ret;
1788
1789 /* We don't use vmf->pgoff since that has the fake offset */
1790 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1791
1792 trace_i915_gem_object_fault(obj, page_offset, true, write);
1793
1794 /* Try to flush the object off the GPU first without holding the lock.
1795 * Upon acquiring the lock, we will perform our sanity checks and then
1796 * repeat the flush holding the lock in the normal manner to catch cases
1797 * where we are gazumped.
1798 */
1799 ret = i915_gem_object_wait(obj,
1800 I915_WAIT_INTERRUPTIBLE,
1801 MAX_SCHEDULE_TIMEOUT,
1802 NULL);
1803 if (ret)
1804 goto err;
1805
1806 ret = i915_gem_object_pin_pages(obj);
1807 if (ret)
1808 goto err;
1809
1810 intel_runtime_pm_get(dev_priv);
1811
1812 ret = i915_mutex_lock_interruptible(dev);
1813 if (ret)
1814 goto err_rpm;
1815
1816 /* Access to snoopable pages through the GTT is incoherent. */
1817 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1818 ret = -EFAULT;
1819 goto err_unlock;
1820 }
1821
1822 /* If the object is smaller than a couple of partial vma, it is
1823 * not worth only creating a single partial vma - we may as well
1824 * clear enough space for the full object.
1825 */
1826 flags = PIN_MAPPABLE;
1827 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1828 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1829
1830 /* Now pin it into the GTT as needed */
1831 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1832 if (IS_ERR(vma)) {
1833 struct i915_ggtt_view view;
1834 unsigned int chunk_size;
1835
1836 /* Use a partial view if it is bigger than available space */
1837 chunk_size = MIN_CHUNK_PAGES;
1838 if (i915_gem_object_is_tiled(obj))
1839 chunk_size = roundup(chunk_size, tile_row_pages(obj));
1840
1841 memset(&view, 0, sizeof(view));
1842 view.type = I915_GGTT_VIEW_PARTIAL;
1843 view.params.partial.offset = rounddown(page_offset, chunk_size);
1844 view.params.partial.size =
1845 min_t(unsigned int, chunk_size,
1846 vma_pages(area) - view.params.partial.offset);
1847
1848 /* If the partial covers the entire object, just create a
1849 * normal VMA.
1850 */
1851 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1852 view.type = I915_GGTT_VIEW_NORMAL;
1853
1854 /* Userspace is now writing through an untracked VMA, abandon
1855 * all hope that the hardware is able to track future writes.
1856 */
1857 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1858
1859 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1860 }
1861 if (IS_ERR(vma)) {
1862 ret = PTR_ERR(vma);
1863 goto err_unlock;
1864 }
1865
1866 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1867 if (ret)
1868 goto err_unpin;
1869
1870 ret = i915_vma_get_fence(vma);
1871 if (ret)
1872 goto err_unpin;
1873
1874 /* Mark as being mmapped into userspace for later revocation */
1875 assert_rpm_wakelock_held(dev_priv);
1876 if (list_empty(&obj->userfault_link))
1877 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1878
1879 /* Finally, remap it using the new GTT offset */
1880 ret = remap_io_mapping(area,
1881 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1882 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1883 min_t(u64, vma->size, area->vm_end - area->vm_start),
1884 &ggtt->mappable);
1885
1886 err_unpin:
1887 __i915_vma_unpin(vma);
1888 err_unlock:
1889 mutex_unlock(&dev->struct_mutex);
1890 err_rpm:
1891 intel_runtime_pm_put(dev_priv);
1892 i915_gem_object_unpin_pages(obj);
1893 err:
1894 switch (ret) {
1895 case -EIO:
1896 /*
1897 * We eat errors when the gpu is terminally wedged to avoid
1898 * userspace unduly crashing (gl has no provisions for mmaps to
1899 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1900 * and so needs to be reported.
1901 */
1902 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1903 ret = VM_FAULT_SIGBUS;
1904 break;
1905 }
1906 case -EAGAIN:
1907 /*
1908 * EAGAIN means the gpu is hung and we'll wait for the error
1909 * handler to reset everything when re-faulting in
1910 * i915_mutex_lock_interruptible.
1911 */
1912 case 0:
1913 case -ERESTARTSYS:
1914 case -EINTR:
1915 case -EBUSY:
1916 /*
1917 * EBUSY is ok: this just means that another thread
1918 * already did the job.
1919 */
1920 ret = VM_FAULT_NOPAGE;
1921 break;
1922 case -ENOMEM:
1923 ret = VM_FAULT_OOM;
1924 break;
1925 case -ENOSPC:
1926 case -EFAULT:
1927 ret = VM_FAULT_SIGBUS;
1928 break;
1929 default:
1930 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1931 ret = VM_FAULT_SIGBUS;
1932 break;
1933 }
1934 return ret;
1935 }
1936
1937 /**
1938 * i915_gem_release_mmap - remove physical page mappings
1939 * @obj: obj in question
1940 *
1941 * Preserve the reservation of the mmapping with the DRM core code, but
1942 * relinquish ownership of the pages back to the system.
1943 *
1944 * It is vital that we remove the page mapping if we have mapped a tiled
1945 * object through the GTT and then lose the fence register due to
1946 * resource pressure. Similarly if the object has been moved out of the
1947 * aperture, than pages mapped into userspace must be revoked. Removing the
1948 * mapping will then trigger a page fault on the next user access, allowing
1949 * fixup by i915_gem_fault().
1950 */
1951 void
1952 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1953 {
1954 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1955
1956 /* Serialisation between user GTT access and our code depends upon
1957 * revoking the CPU's PTE whilst the mutex is held. The next user
1958 * pagefault then has to wait until we release the mutex.
1959 *
1960 * Note that RPM complicates somewhat by adding an additional
1961 * requirement that operations to the GGTT be made holding the RPM
1962 * wakeref.
1963 */
1964 lockdep_assert_held(&i915->drm.struct_mutex);
1965 intel_runtime_pm_get(i915);
1966
1967 if (list_empty(&obj->userfault_link))
1968 goto out;
1969
1970 list_del_init(&obj->userfault_link);
1971 drm_vma_node_unmap(&obj->base.vma_node,
1972 obj->base.dev->anon_inode->i_mapping);
1973
1974 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1975 * memory transactions from userspace before we return. The TLB
1976 * flushing implied above by changing the PTE above *should* be
1977 * sufficient, an extra barrier here just provides us with a bit
1978 * of paranoid documentation about our requirement to serialise
1979 * memory writes before touching registers / GSM.
1980 */
1981 wmb();
1982
1983 out:
1984 intel_runtime_pm_put(i915);
1985 }
1986
1987 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1988 {
1989 struct drm_i915_gem_object *obj, *on;
1990 int i;
1991
1992 /*
1993 * Only called during RPM suspend. All users of the userfault_list
1994 * must be holding an RPM wakeref to ensure that this can not
1995 * run concurrently with themselves (and use the struct_mutex for
1996 * protection between themselves).
1997 */
1998
1999 list_for_each_entry_safe(obj, on,
2000 &dev_priv->mm.userfault_list, userfault_link) {
2001 list_del_init(&obj->userfault_link);
2002 drm_vma_node_unmap(&obj->base.vma_node,
2003 obj->base.dev->anon_inode->i_mapping);
2004 }
2005
2006 /* The fence will be lost when the device powers down. If any were
2007 * in use by hardware (i.e. they are pinned), we should not be powering
2008 * down! All other fences will be reacquired by the user upon waking.
2009 */
2010 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2011 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2012
2013 if (WARN_ON(reg->pin_count))
2014 continue;
2015
2016 if (!reg->vma)
2017 continue;
2018
2019 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2020 reg->dirty = true;
2021 }
2022 }
2023
2024 /**
2025 * i915_gem_get_ggtt_size - return required global GTT size for an object
2026 * @dev_priv: i915 device
2027 * @size: object size
2028 * @tiling_mode: tiling mode
2029 *
2030 * Return the required global GTT size for an object, taking into account
2031 * potential fence register mapping.
2032 */
2033 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2034 u64 size, int tiling_mode)
2035 {
2036 u64 ggtt_size;
2037
2038 GEM_BUG_ON(size == 0);
2039
2040 if (INTEL_GEN(dev_priv) >= 4 ||
2041 tiling_mode == I915_TILING_NONE)
2042 return size;
2043
2044 /* Previous chips need a power-of-two fence region when tiling */
2045 if (IS_GEN3(dev_priv))
2046 ggtt_size = 1024*1024;
2047 else
2048 ggtt_size = 512*1024;
2049
2050 while (ggtt_size < size)
2051 ggtt_size <<= 1;
2052
2053 return ggtt_size;
2054 }
2055
2056 /**
2057 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2058 * @dev_priv: i915 device
2059 * @size: object size
2060 * @tiling_mode: tiling mode
2061 * @fenced: is fenced alignment required or not
2062 *
2063 * Return the required global GTT alignment for an object, taking into account
2064 * potential fence register mapping.
2065 */
2066 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2067 int tiling_mode, bool fenced)
2068 {
2069 GEM_BUG_ON(size == 0);
2070
2071 /*
2072 * Minimum alignment is 4k (GTT page size), but might be greater
2073 * if a fence register is needed for the object.
2074 */
2075 if (INTEL_GEN(dev_priv) >= 4 ||
2076 (!fenced && (IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))) ||
2077 tiling_mode == I915_TILING_NONE)
2078 return 4096;
2079
2080 /*
2081 * Previous chips need to be aligned to the size of the smallest
2082 * fence register that can contain the object.
2083 */
2084 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2085 }
2086
2087 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2088 {
2089 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2090 int err;
2091
2092 err = drm_gem_create_mmap_offset(&obj->base);
2093 if (!err)
2094 return 0;
2095
2096 /* We can idle the GPU locklessly to flush stale objects, but in order
2097 * to claim that space for ourselves, we need to take the big
2098 * struct_mutex to free the requests+objects and allocate our slot.
2099 */
2100 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2101 if (err)
2102 return err;
2103
2104 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2105 if (!err) {
2106 i915_gem_retire_requests(dev_priv);
2107 err = drm_gem_create_mmap_offset(&obj->base);
2108 mutex_unlock(&dev_priv->drm.struct_mutex);
2109 }
2110
2111 return err;
2112 }
2113
2114 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2115 {
2116 drm_gem_free_mmap_offset(&obj->base);
2117 }
2118
2119 int
2120 i915_gem_mmap_gtt(struct drm_file *file,
2121 struct drm_device *dev,
2122 uint32_t handle,
2123 uint64_t *offset)
2124 {
2125 struct drm_i915_gem_object *obj;
2126 int ret;
2127
2128 obj = i915_gem_object_lookup(file, handle);
2129 if (!obj)
2130 return -ENOENT;
2131
2132 ret = i915_gem_object_create_mmap_offset(obj);
2133 if (ret == 0)
2134 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2135
2136 i915_gem_object_put(obj);
2137 return ret;
2138 }
2139
2140 /**
2141 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2142 * @dev: DRM device
2143 * @data: GTT mapping ioctl data
2144 * @file: GEM object info
2145 *
2146 * Simply returns the fake offset to userspace so it can mmap it.
2147 * The mmap call will end up in drm_gem_mmap(), which will set things
2148 * up so we can get faults in the handler above.
2149 *
2150 * The fault handler will take care of binding the object into the GTT
2151 * (since it may have been evicted to make room for something), allocating
2152 * a fence register, and mapping the appropriate aperture address into
2153 * userspace.
2154 */
2155 int
2156 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2157 struct drm_file *file)
2158 {
2159 struct drm_i915_gem_mmap_gtt *args = data;
2160
2161 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2162 }
2163
2164 /* Immediately discard the backing storage */
2165 static void
2166 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2167 {
2168 i915_gem_object_free_mmap_offset(obj);
2169
2170 if (obj->base.filp == NULL)
2171 return;
2172
2173 /* Our goal here is to return as much of the memory as
2174 * is possible back to the system as we are called from OOM.
2175 * To do this we must instruct the shmfs to drop all of its
2176 * backing pages, *now*.
2177 */
2178 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2179 obj->mm.madv = __I915_MADV_PURGED;
2180 }
2181
2182 /* Try to discard unwanted pages */
2183 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2184 {
2185 struct address_space *mapping;
2186
2187 lockdep_assert_held(&obj->mm.lock);
2188 GEM_BUG_ON(obj->mm.pages);
2189
2190 switch (obj->mm.madv) {
2191 case I915_MADV_DONTNEED:
2192 i915_gem_object_truncate(obj);
2193 case __I915_MADV_PURGED:
2194 return;
2195 }
2196
2197 if (obj->base.filp == NULL)
2198 return;
2199
2200 mapping = obj->base.filp->f_mapping,
2201 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2202 }
2203
2204 static void
2205 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2206 struct sg_table *pages)
2207 {
2208 struct sgt_iter sgt_iter;
2209 struct page *page;
2210
2211 __i915_gem_object_release_shmem(obj, pages, true);
2212
2213 i915_gem_gtt_finish_pages(obj, pages);
2214
2215 if (i915_gem_object_needs_bit17_swizzle(obj))
2216 i915_gem_object_save_bit_17_swizzle(obj, pages);
2217
2218 for_each_sgt_page(page, sgt_iter, pages) {
2219 if (obj->mm.dirty)
2220 set_page_dirty(page);
2221
2222 if (obj->mm.madv == I915_MADV_WILLNEED)
2223 mark_page_accessed(page);
2224
2225 put_page(page);
2226 }
2227 obj->mm.dirty = false;
2228
2229 sg_free_table(pages);
2230 kfree(pages);
2231 }
2232
2233 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2234 {
2235 struct radix_tree_iter iter;
2236 void **slot;
2237
2238 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2239 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2240 }
2241
2242 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2243 enum i915_mm_subclass subclass)
2244 {
2245 struct sg_table *pages;
2246
2247 if (i915_gem_object_has_pinned_pages(obj))
2248 return;
2249
2250 GEM_BUG_ON(obj->bind_count);
2251 if (!READ_ONCE(obj->mm.pages))
2252 return;
2253
2254 /* May be called by shrinker from within get_pages() (on another bo) */
2255 mutex_lock_nested(&obj->mm.lock, subclass);
2256 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2257 goto unlock;
2258
2259 /* ->put_pages might need to allocate memory for the bit17 swizzle
2260 * array, hence protect them from being reaped by removing them from gtt
2261 * lists early. */
2262 pages = fetch_and_zero(&obj->mm.pages);
2263 GEM_BUG_ON(!pages);
2264
2265 if (obj->mm.mapping) {
2266 void *ptr;
2267
2268 ptr = ptr_mask_bits(obj->mm.mapping);
2269 if (is_vmalloc_addr(ptr))
2270 vunmap(ptr);
2271 else
2272 kunmap(kmap_to_page(ptr));
2273
2274 obj->mm.mapping = NULL;
2275 }
2276
2277 __i915_gem_object_reset_page_iter(obj);
2278
2279 obj->ops->put_pages(obj, pages);
2280 unlock:
2281 mutex_unlock(&obj->mm.lock);
2282 }
2283
2284 static unsigned int swiotlb_max_size(void)
2285 {
2286 #if IS_ENABLED(CONFIG_SWIOTLB)
2287 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2288 #else
2289 return 0;
2290 #endif
2291 }
2292
2293 static void i915_sg_trim(struct sg_table *orig_st)
2294 {
2295 struct sg_table new_st;
2296 struct scatterlist *sg, *new_sg;
2297 unsigned int i;
2298
2299 if (orig_st->nents == orig_st->orig_nents)
2300 return;
2301
2302 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2303 return;
2304
2305 new_sg = new_st.sgl;
2306 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2307 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2308 /* called before being DMA mapped, no need to copy sg->dma_* */
2309 new_sg = sg_next(new_sg);
2310 }
2311 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2312
2313 sg_free_table(orig_st);
2314
2315 *orig_st = new_st;
2316 }
2317
2318 static struct sg_table *
2319 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2320 {
2321 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2322 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2323 unsigned long i;
2324 struct address_space *mapping;
2325 struct sg_table *st;
2326 struct scatterlist *sg;
2327 struct sgt_iter sgt_iter;
2328 struct page *page;
2329 unsigned long last_pfn = 0; /* suppress gcc warning */
2330 unsigned int max_segment;
2331 int ret;
2332 gfp_t gfp;
2333
2334 /* Assert that the object is not currently in any GPU domain. As it
2335 * wasn't in the GTT, there shouldn't be any way it could have been in
2336 * a GPU cache
2337 */
2338 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2339 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2340
2341 max_segment = swiotlb_max_size();
2342 if (!max_segment)
2343 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2344
2345 st = kmalloc(sizeof(*st), GFP_KERNEL);
2346 if (st == NULL)
2347 return ERR_PTR(-ENOMEM);
2348
2349 rebuild_st:
2350 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2351 kfree(st);
2352 return ERR_PTR(-ENOMEM);
2353 }
2354
2355 /* Get the list of pages out of our struct file. They'll be pinned
2356 * at this point until we release them.
2357 *
2358 * Fail silently without starting the shrinker
2359 */
2360 mapping = obj->base.filp->f_mapping;
2361 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2362 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2363 sg = st->sgl;
2364 st->nents = 0;
2365 for (i = 0; i < page_count; i++) {
2366 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2367 if (IS_ERR(page)) {
2368 i915_gem_shrink(dev_priv,
2369 page_count,
2370 I915_SHRINK_BOUND |
2371 I915_SHRINK_UNBOUND |
2372 I915_SHRINK_PURGEABLE);
2373 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2374 }
2375 if (IS_ERR(page)) {
2376 /* We've tried hard to allocate the memory by reaping
2377 * our own buffer, now let the real VM do its job and
2378 * go down in flames if truly OOM.
2379 */
2380 page = shmem_read_mapping_page(mapping, i);
2381 if (IS_ERR(page)) {
2382 ret = PTR_ERR(page);
2383 goto err_sg;
2384 }
2385 }
2386 if (!i ||
2387 sg->length >= max_segment ||
2388 page_to_pfn(page) != last_pfn + 1) {
2389 if (i)
2390 sg = sg_next(sg);
2391 st->nents++;
2392 sg_set_page(sg, page, PAGE_SIZE, 0);
2393 } else {
2394 sg->length += PAGE_SIZE;
2395 }
2396 last_pfn = page_to_pfn(page);
2397
2398 /* Check that the i965g/gm workaround works. */
2399 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2400 }
2401 if (sg) /* loop terminated early; short sg table */
2402 sg_mark_end(sg);
2403
2404 /* Trim unused sg entries to avoid wasting memory. */
2405 i915_sg_trim(st);
2406
2407 ret = i915_gem_gtt_prepare_pages(obj, st);
2408 if (ret) {
2409 /* DMA remapping failed? One possible cause is that
2410 * it could not reserve enough large entries, asking
2411 * for PAGE_SIZE chunks instead may be helpful.
2412 */
2413 if (max_segment > PAGE_SIZE) {
2414 for_each_sgt_page(page, sgt_iter, st)
2415 put_page(page);
2416 sg_free_table(st);
2417
2418 max_segment = PAGE_SIZE;
2419 goto rebuild_st;
2420 } else {
2421 dev_warn(&dev_priv->drm.pdev->dev,
2422 "Failed to DMA remap %lu pages\n",
2423 page_count);
2424 goto err_pages;
2425 }
2426 }
2427
2428 if (i915_gem_object_needs_bit17_swizzle(obj))
2429 i915_gem_object_do_bit_17_swizzle(obj, st);
2430
2431 return st;
2432
2433 err_sg:
2434 sg_mark_end(sg);
2435 err_pages:
2436 for_each_sgt_page(page, sgt_iter, st)
2437 put_page(page);
2438 sg_free_table(st);
2439 kfree(st);
2440
2441 /* shmemfs first checks if there is enough memory to allocate the page
2442 * and reports ENOSPC should there be insufficient, along with the usual
2443 * ENOMEM for a genuine allocation failure.
2444 *
2445 * We use ENOSPC in our driver to mean that we have run out of aperture
2446 * space and so want to translate the error from shmemfs back to our
2447 * usual understanding of ENOMEM.
2448 */
2449 if (ret == -ENOSPC)
2450 ret = -ENOMEM;
2451
2452 return ERR_PTR(ret);
2453 }
2454
2455 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2456 struct sg_table *pages)
2457 {
2458 lockdep_assert_held(&obj->mm.lock);
2459
2460 obj->mm.get_page.sg_pos = pages->sgl;
2461 obj->mm.get_page.sg_idx = 0;
2462
2463 obj->mm.pages = pages;
2464
2465 if (i915_gem_object_is_tiled(obj) &&
2466 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2467 GEM_BUG_ON(obj->mm.quirked);
2468 __i915_gem_object_pin_pages(obj);
2469 obj->mm.quirked = true;
2470 }
2471 }
2472
2473 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2474 {
2475 struct sg_table *pages;
2476
2477 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2478
2479 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2480 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2481 return -EFAULT;
2482 }
2483
2484 pages = obj->ops->get_pages(obj);
2485 if (unlikely(IS_ERR(pages)))
2486 return PTR_ERR(pages);
2487
2488 __i915_gem_object_set_pages(obj, pages);
2489 return 0;
2490 }
2491
2492 /* Ensure that the associated pages are gathered from the backing storage
2493 * and pinned into our object. i915_gem_object_pin_pages() may be called
2494 * multiple times before they are released by a single call to
2495 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2496 * either as a result of memory pressure (reaping pages under the shrinker)
2497 * or as the object is itself released.
2498 */
2499 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2500 {
2501 int err;
2502
2503 err = mutex_lock_interruptible(&obj->mm.lock);
2504 if (err)
2505 return err;
2506
2507 if (unlikely(!obj->mm.pages)) {
2508 err = ____i915_gem_object_get_pages(obj);
2509 if (err)
2510 goto unlock;
2511
2512 smp_mb__before_atomic();
2513 }
2514 atomic_inc(&obj->mm.pages_pin_count);
2515
2516 unlock:
2517 mutex_unlock(&obj->mm.lock);
2518 return err;
2519 }
2520
2521 /* The 'mapping' part of i915_gem_object_pin_map() below */
2522 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2523 enum i915_map_type type)
2524 {
2525 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2526 struct sg_table *sgt = obj->mm.pages;
2527 struct sgt_iter sgt_iter;
2528 struct page *page;
2529 struct page *stack_pages[32];
2530 struct page **pages = stack_pages;
2531 unsigned long i = 0;
2532 pgprot_t pgprot;
2533 void *addr;
2534
2535 /* A single page can always be kmapped */
2536 if (n_pages == 1 && type == I915_MAP_WB)
2537 return kmap(sg_page(sgt->sgl));
2538
2539 if (n_pages > ARRAY_SIZE(stack_pages)) {
2540 /* Too big for stack -- allocate temporary array instead */
2541 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2542 if (!pages)
2543 return NULL;
2544 }
2545
2546 for_each_sgt_page(page, sgt_iter, sgt)
2547 pages[i++] = page;
2548
2549 /* Check that we have the expected number of pages */
2550 GEM_BUG_ON(i != n_pages);
2551
2552 switch (type) {
2553 case I915_MAP_WB:
2554 pgprot = PAGE_KERNEL;
2555 break;
2556 case I915_MAP_WC:
2557 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2558 break;
2559 }
2560 addr = vmap(pages, n_pages, 0, pgprot);
2561
2562 if (pages != stack_pages)
2563 drm_free_large(pages);
2564
2565 return addr;
2566 }
2567
2568 /* get, pin, and map the pages of the object into kernel space */
2569 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2570 enum i915_map_type type)
2571 {
2572 enum i915_map_type has_type;
2573 bool pinned;
2574 void *ptr;
2575 int ret;
2576
2577 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2578
2579 ret = mutex_lock_interruptible(&obj->mm.lock);
2580 if (ret)
2581 return ERR_PTR(ret);
2582
2583 pinned = true;
2584 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2585 if (unlikely(!obj->mm.pages)) {
2586 ret = ____i915_gem_object_get_pages(obj);
2587 if (ret)
2588 goto err_unlock;
2589
2590 smp_mb__before_atomic();
2591 }
2592 atomic_inc(&obj->mm.pages_pin_count);
2593 pinned = false;
2594 }
2595 GEM_BUG_ON(!obj->mm.pages);
2596
2597 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2598 if (ptr && has_type != type) {
2599 if (pinned) {
2600 ret = -EBUSY;
2601 goto err_unpin;
2602 }
2603
2604 if (is_vmalloc_addr(ptr))
2605 vunmap(ptr);
2606 else
2607 kunmap(kmap_to_page(ptr));
2608
2609 ptr = obj->mm.mapping = NULL;
2610 }
2611
2612 if (!ptr) {
2613 ptr = i915_gem_object_map(obj, type);
2614 if (!ptr) {
2615 ret = -ENOMEM;
2616 goto err_unpin;
2617 }
2618
2619 obj->mm.mapping = ptr_pack_bits(ptr, type);
2620 }
2621
2622 out_unlock:
2623 mutex_unlock(&obj->mm.lock);
2624 return ptr;
2625
2626 err_unpin:
2627 atomic_dec(&obj->mm.pages_pin_count);
2628 err_unlock:
2629 ptr = ERR_PTR(ret);
2630 goto out_unlock;
2631 }
2632
2633 static bool ban_context(const struct i915_gem_context *ctx)
2634 {
2635 return (i915_gem_context_is_bannable(ctx) &&
2636 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2637 }
2638
2639 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2640 {
2641 ctx->guilty_count++;
2642 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2643 if (ban_context(ctx))
2644 i915_gem_context_set_banned(ctx);
2645
2646 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2647 ctx->name, ctx->ban_score,
2648 yesno(i915_gem_context_is_banned(ctx)));
2649
2650 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2651 return;
2652
2653 ctx->file_priv->context_bans++;
2654 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2655 ctx->name, ctx->file_priv->context_bans);
2656 }
2657
2658 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2659 {
2660 ctx->active_count++;
2661 }
2662
2663 struct drm_i915_gem_request *
2664 i915_gem_find_active_request(struct intel_engine_cs *engine)
2665 {
2666 struct drm_i915_gem_request *request;
2667
2668 /* We are called by the error capture and reset at a random
2669 * point in time. In particular, note that neither is crucially
2670 * ordered with an interrupt. After a hang, the GPU is dead and we
2671 * assume that no more writes can happen (we waited long enough for
2672 * all writes that were in transaction to be flushed) - adding an
2673 * extra delay for a recent interrupt is pointless. Hence, we do
2674 * not need an engine->irq_seqno_barrier() before the seqno reads.
2675 */
2676 list_for_each_entry(request, &engine->timeline->requests, link) {
2677 if (__i915_gem_request_completed(request))
2678 continue;
2679
2680 return request;
2681 }
2682
2683 return NULL;
2684 }
2685
2686 static void reset_request(struct drm_i915_gem_request *request)
2687 {
2688 void *vaddr = request->ring->vaddr;
2689 u32 head;
2690
2691 /* As this request likely depends on state from the lost
2692 * context, clear out all the user operations leaving the
2693 * breadcrumb at the end (so we get the fence notifications).
2694 */
2695 head = request->head;
2696 if (request->postfix < head) {
2697 memset(vaddr + head, 0, request->ring->size - head);
2698 head = 0;
2699 }
2700 memset(vaddr + head, 0, request->postfix - head);
2701 }
2702
2703 void i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2704 {
2705 i915_gem_revoke_fences(dev_priv);
2706 }
2707
2708 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2709 {
2710 struct drm_i915_gem_request *request;
2711 struct i915_gem_context *hung_ctx;
2712 struct intel_timeline *timeline;
2713 unsigned long flags;
2714 bool ring_hung;
2715
2716 if (engine->irq_seqno_barrier)
2717 engine->irq_seqno_barrier(engine);
2718
2719 request = i915_gem_find_active_request(engine);
2720 if (!request)
2721 return;
2722
2723 hung_ctx = request->ctx;
2724
2725 ring_hung = engine->hangcheck.stalled;
2726 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2727 DRM_DEBUG_DRIVER("%s pardoned, was guilty? %s\n",
2728 engine->name,
2729 yesno(ring_hung));
2730 ring_hung = false;
2731 }
2732
2733 if (ring_hung)
2734 i915_gem_context_mark_guilty(hung_ctx);
2735 else
2736 i915_gem_context_mark_innocent(hung_ctx);
2737
2738 if (!ring_hung)
2739 return;
2740
2741 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2742 engine->name, request->global_seqno);
2743
2744 /* Setup the CS to resume from the breadcrumb of the hung request */
2745 engine->reset_hw(engine, request);
2746
2747 /* If this context is now banned, skip all of its pending requests. */
2748 if (!i915_gem_context_is_banned(hung_ctx))
2749 return;
2750
2751 /* Users of the default context do not rely on logical state
2752 * preserved between batches. They have to emit full state on
2753 * every batch and so it is safe to execute queued requests following
2754 * the hang.
2755 *
2756 * Other contexts preserve state, now corrupt. We want to skip all
2757 * queued requests that reference the corrupt context.
2758 */
2759 if (i915_gem_context_is_default(hung_ctx))
2760 return;
2761
2762 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2763
2764 spin_lock_irqsave(&engine->timeline->lock, flags);
2765 spin_lock(&timeline->lock);
2766
2767 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2768 if (request->ctx == hung_ctx)
2769 reset_request(request);
2770
2771 list_for_each_entry(request, &timeline->requests, link)
2772 reset_request(request);
2773
2774 spin_unlock(&timeline->lock);
2775 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776 }
2777
2778 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2779 {
2780 struct intel_engine_cs *engine;
2781 enum intel_engine_id id;
2782
2783 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2784
2785 i915_gem_retire_requests(dev_priv);
2786
2787 for_each_engine(engine, dev_priv, id)
2788 i915_gem_reset_engine(engine);
2789
2790 i915_gem_restore_fences(dev_priv);
2791
2792 if (dev_priv->gt.awake) {
2793 intel_sanitize_gt_powersave(dev_priv);
2794 intel_enable_gt_powersave(dev_priv);
2795 if (INTEL_GEN(dev_priv) >= 6)
2796 gen6_rps_busy(dev_priv);
2797 }
2798 }
2799
2800 static void nop_submit_request(struct drm_i915_gem_request *request)
2801 {
2802 i915_gem_request_submit(request);
2803 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2804 }
2805
2806 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2807 {
2808 /* We need to be sure that no thread is running the old callback as
2809 * we install the nop handler (otherwise we would submit a request
2810 * to hardware that will never complete). In order to prevent this
2811 * race, we wait until the machine is idle before making the swap
2812 * (using stop_machine()).
2813 */
2814 engine->submit_request = nop_submit_request;
2815
2816 /* Mark all pending requests as complete so that any concurrent
2817 * (lockless) lookup doesn't try and wait upon the request as we
2818 * reset it.
2819 */
2820 intel_engine_init_global_seqno(engine,
2821 intel_engine_last_submit(engine));
2822
2823 /*
2824 * Clear the execlists queue up before freeing the requests, as those
2825 * are the ones that keep the context and ringbuffer backing objects
2826 * pinned in place.
2827 */
2828
2829 if (i915.enable_execlists) {
2830 unsigned long flags;
2831
2832 spin_lock_irqsave(&engine->timeline->lock, flags);
2833
2834 i915_gem_request_put(engine->execlist_port[0].request);
2835 i915_gem_request_put(engine->execlist_port[1].request);
2836 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2837 engine->execlist_queue = RB_ROOT;
2838 engine->execlist_first = NULL;
2839
2840 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2841 }
2842 }
2843
2844 static int __i915_gem_set_wedged_BKL(void *data)
2845 {
2846 struct drm_i915_private *i915 = data;
2847 struct intel_engine_cs *engine;
2848 enum intel_engine_id id;
2849
2850 for_each_engine(engine, i915, id)
2851 i915_gem_cleanup_engine(engine);
2852
2853 return 0;
2854 }
2855
2856 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2857 {
2858 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2859 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2860
2861 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2862
2863 i915_gem_context_lost(dev_priv);
2864 i915_gem_retire_requests(dev_priv);
2865
2866 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2867 }
2868
2869 static void
2870 i915_gem_retire_work_handler(struct work_struct *work)
2871 {
2872 struct drm_i915_private *dev_priv =
2873 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2874 struct drm_device *dev = &dev_priv->drm;
2875
2876 /* Come back later if the device is busy... */
2877 if (mutex_trylock(&dev->struct_mutex)) {
2878 i915_gem_retire_requests(dev_priv);
2879 mutex_unlock(&dev->struct_mutex);
2880 }
2881
2882 /* Keep the retire handler running until we are finally idle.
2883 * We do not need to do this test under locking as in the worst-case
2884 * we queue the retire worker once too often.
2885 */
2886 if (READ_ONCE(dev_priv->gt.awake)) {
2887 i915_queue_hangcheck(dev_priv);
2888 queue_delayed_work(dev_priv->wq,
2889 &dev_priv->gt.retire_work,
2890 round_jiffies_up_relative(HZ));
2891 }
2892 }
2893
2894 static void
2895 i915_gem_idle_work_handler(struct work_struct *work)
2896 {
2897 struct drm_i915_private *dev_priv =
2898 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2899 struct drm_device *dev = &dev_priv->drm;
2900 struct intel_engine_cs *engine;
2901 enum intel_engine_id id;
2902 bool rearm_hangcheck;
2903
2904 if (!READ_ONCE(dev_priv->gt.awake))
2905 return;
2906
2907 /*
2908 * Wait for last execlists context complete, but bail out in case a
2909 * new request is submitted.
2910 */
2911 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2912 intel_execlists_idle(dev_priv), 10);
2913
2914 if (READ_ONCE(dev_priv->gt.active_requests))
2915 return;
2916
2917 rearm_hangcheck =
2918 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2919
2920 if (!mutex_trylock(&dev->struct_mutex)) {
2921 /* Currently busy, come back later */
2922 mod_delayed_work(dev_priv->wq,
2923 &dev_priv->gt.idle_work,
2924 msecs_to_jiffies(50));
2925 goto out_rearm;
2926 }
2927
2928 /*
2929 * New request retired after this work handler started, extend active
2930 * period until next instance of the work.
2931 */
2932 if (work_pending(work))
2933 goto out_unlock;
2934
2935 if (dev_priv->gt.active_requests)
2936 goto out_unlock;
2937
2938 if (wait_for(intel_execlists_idle(dev_priv), 10))
2939 DRM_ERROR("Timeout waiting for engines to idle\n");
2940
2941 for_each_engine(engine, dev_priv, id)
2942 i915_gem_batch_pool_fini(&engine->batch_pool);
2943
2944 GEM_BUG_ON(!dev_priv->gt.awake);
2945 dev_priv->gt.awake = false;
2946 rearm_hangcheck = false;
2947
2948 if (INTEL_GEN(dev_priv) >= 6)
2949 gen6_rps_idle(dev_priv);
2950 intel_runtime_pm_put(dev_priv);
2951 out_unlock:
2952 mutex_unlock(&dev->struct_mutex);
2953
2954 out_rearm:
2955 if (rearm_hangcheck) {
2956 GEM_BUG_ON(!dev_priv->gt.awake);
2957 i915_queue_hangcheck(dev_priv);
2958 }
2959 }
2960
2961 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2962 {
2963 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2964 struct drm_i915_file_private *fpriv = file->driver_priv;
2965 struct i915_vma *vma, *vn;
2966
2967 mutex_lock(&obj->base.dev->struct_mutex);
2968 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2969 if (vma->vm->file == fpriv)
2970 i915_vma_close(vma);
2971
2972 if (i915_gem_object_is_active(obj) &&
2973 !i915_gem_object_has_active_reference(obj)) {
2974 i915_gem_object_set_active_reference(obj);
2975 i915_gem_object_get(obj);
2976 }
2977 mutex_unlock(&obj->base.dev->struct_mutex);
2978 }
2979
2980 static unsigned long to_wait_timeout(s64 timeout_ns)
2981 {
2982 if (timeout_ns < 0)
2983 return MAX_SCHEDULE_TIMEOUT;
2984
2985 if (timeout_ns == 0)
2986 return 0;
2987
2988 return nsecs_to_jiffies_timeout(timeout_ns);
2989 }
2990
2991 /**
2992 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2993 * @dev: drm device pointer
2994 * @data: ioctl data blob
2995 * @file: drm file pointer
2996 *
2997 * Returns 0 if successful, else an error is returned with the remaining time in
2998 * the timeout parameter.
2999 * -ETIME: object is still busy after timeout
3000 * -ERESTARTSYS: signal interrupted the wait
3001 * -ENONENT: object doesn't exist
3002 * Also possible, but rare:
3003 * -EAGAIN: GPU wedged
3004 * -ENOMEM: damn
3005 * -ENODEV: Internal IRQ fail
3006 * -E?: The add request failed
3007 *
3008 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3009 * non-zero timeout parameter the wait ioctl will wait for the given number of
3010 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3011 * without holding struct_mutex the object may become re-busied before this
3012 * function completes. A similar but shorter * race condition exists in the busy
3013 * ioctl
3014 */
3015 int
3016 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3017 {
3018 struct drm_i915_gem_wait *args = data;
3019 struct drm_i915_gem_object *obj;
3020 ktime_t start;
3021 long ret;
3022
3023 if (args->flags != 0)
3024 return -EINVAL;
3025
3026 obj = i915_gem_object_lookup(file, args->bo_handle);
3027 if (!obj)
3028 return -ENOENT;
3029
3030 start = ktime_get();
3031
3032 ret = i915_gem_object_wait(obj,
3033 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3034 to_wait_timeout(args->timeout_ns),
3035 to_rps_client(file));
3036
3037 if (args->timeout_ns > 0) {
3038 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3039 if (args->timeout_ns < 0)
3040 args->timeout_ns = 0;
3041 }
3042
3043 i915_gem_object_put(obj);
3044 return ret;
3045 }
3046
3047 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3048 {
3049 int ret, i;
3050
3051 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3052 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3053 if (ret)
3054 return ret;
3055 }
3056
3057 return 0;
3058 }
3059
3060 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3061 {
3062 int ret;
3063
3064 if (flags & I915_WAIT_LOCKED) {
3065 struct i915_gem_timeline *tl;
3066
3067 lockdep_assert_held(&i915->drm.struct_mutex);
3068
3069 list_for_each_entry(tl, &i915->gt.timelines, link) {
3070 ret = wait_for_timeline(tl, flags);
3071 if (ret)
3072 return ret;
3073 }
3074 } else {
3075 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3076 if (ret)
3077 return ret;
3078 }
3079
3080 return 0;
3081 }
3082
3083 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3084 bool force)
3085 {
3086 /* If we don't have a page list set up, then we're not pinned
3087 * to GPU, and we can ignore the cache flush because it'll happen
3088 * again at bind time.
3089 */
3090 if (!obj->mm.pages)
3091 return;
3092
3093 /*
3094 * Stolen memory is always coherent with the GPU as it is explicitly
3095 * marked as wc by the system, or the system is cache-coherent.
3096 */
3097 if (obj->stolen || obj->phys_handle)
3098 return;
3099
3100 /* If the GPU is snooping the contents of the CPU cache,
3101 * we do not need to manually clear the CPU cache lines. However,
3102 * the caches are only snooped when the render cache is
3103 * flushed/invalidated. As we always have to emit invalidations
3104 * and flushes when moving into and out of the RENDER domain, correct
3105 * snooping behaviour occurs naturally as the result of our domain
3106 * tracking.
3107 */
3108 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3109 obj->cache_dirty = true;
3110 return;
3111 }
3112
3113 trace_i915_gem_object_clflush(obj);
3114 drm_clflush_sg(obj->mm.pages);
3115 obj->cache_dirty = false;
3116 }
3117
3118 /** Flushes the GTT write domain for the object if it's dirty. */
3119 static void
3120 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3121 {
3122 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3123
3124 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3125 return;
3126
3127 /* No actual flushing is required for the GTT write domain. Writes
3128 * to it "immediately" go to main memory as far as we know, so there's
3129 * no chipset flush. It also doesn't land in render cache.
3130 *
3131 * However, we do have to enforce the order so that all writes through
3132 * the GTT land before any writes to the device, such as updates to
3133 * the GATT itself.
3134 *
3135 * We also have to wait a bit for the writes to land from the GTT.
3136 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3137 * timing. This issue has only been observed when switching quickly
3138 * between GTT writes and CPU reads from inside the kernel on recent hw,
3139 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3140 * system agents we cannot reproduce this behaviour).
3141 */
3142 wmb();
3143 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3144 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3145
3146 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3147
3148 obj->base.write_domain = 0;
3149 trace_i915_gem_object_change_domain(obj,
3150 obj->base.read_domains,
3151 I915_GEM_DOMAIN_GTT);
3152 }
3153
3154 /** Flushes the CPU write domain for the object if it's dirty. */
3155 static void
3156 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3157 {
3158 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3159 return;
3160
3161 i915_gem_clflush_object(obj, obj->pin_display);
3162 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3163
3164 obj->base.write_domain = 0;
3165 trace_i915_gem_object_change_domain(obj,
3166 obj->base.read_domains,
3167 I915_GEM_DOMAIN_CPU);
3168 }
3169
3170 /**
3171 * Moves a single object to the GTT read, and possibly write domain.
3172 * @obj: object to act on
3173 * @write: ask for write access or read only
3174 *
3175 * This function returns when the move is complete, including waiting on
3176 * flushes to occur.
3177 */
3178 int
3179 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3180 {
3181 uint32_t old_write_domain, old_read_domains;
3182 int ret;
3183
3184 lockdep_assert_held(&obj->base.dev->struct_mutex);
3185
3186 ret = i915_gem_object_wait(obj,
3187 I915_WAIT_INTERRUPTIBLE |
3188 I915_WAIT_LOCKED |
3189 (write ? I915_WAIT_ALL : 0),
3190 MAX_SCHEDULE_TIMEOUT,
3191 NULL);
3192 if (ret)
3193 return ret;
3194
3195 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3196 return 0;
3197
3198 /* Flush and acquire obj->pages so that we are coherent through
3199 * direct access in memory with previous cached writes through
3200 * shmemfs and that our cache domain tracking remains valid.
3201 * For example, if the obj->filp was moved to swap without us
3202 * being notified and releasing the pages, we would mistakenly
3203 * continue to assume that the obj remained out of the CPU cached
3204 * domain.
3205 */
3206 ret = i915_gem_object_pin_pages(obj);
3207 if (ret)
3208 return ret;
3209
3210 i915_gem_object_flush_cpu_write_domain(obj);
3211
3212 /* Serialise direct access to this object with the barriers for
3213 * coherent writes from the GPU, by effectively invalidating the
3214 * GTT domain upon first access.
3215 */
3216 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3217 mb();
3218
3219 old_write_domain = obj->base.write_domain;
3220 old_read_domains = obj->base.read_domains;
3221
3222 /* It should now be out of any other write domains, and we can update
3223 * the domain values for our changes.
3224 */
3225 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3226 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3227 if (write) {
3228 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3229 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3230 obj->mm.dirty = true;
3231 }
3232
3233 trace_i915_gem_object_change_domain(obj,
3234 old_read_domains,
3235 old_write_domain);
3236
3237 i915_gem_object_unpin_pages(obj);
3238 return 0;
3239 }
3240
3241 /**
3242 * Changes the cache-level of an object across all VMA.
3243 * @obj: object to act on
3244 * @cache_level: new cache level to set for the object
3245 *
3246 * After this function returns, the object will be in the new cache-level
3247 * across all GTT and the contents of the backing storage will be coherent,
3248 * with respect to the new cache-level. In order to keep the backing storage
3249 * coherent for all users, we only allow a single cache level to be set
3250 * globally on the object and prevent it from being changed whilst the
3251 * hardware is reading from the object. That is if the object is currently
3252 * on the scanout it will be set to uncached (or equivalent display
3253 * cache coherency) and all non-MOCS GPU access will also be uncached so
3254 * that all direct access to the scanout remains coherent.
3255 */
3256 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3257 enum i915_cache_level cache_level)
3258 {
3259 struct i915_vma *vma;
3260 int ret;
3261
3262 lockdep_assert_held(&obj->base.dev->struct_mutex);
3263
3264 if (obj->cache_level == cache_level)
3265 return 0;
3266
3267 /* Inspect the list of currently bound VMA and unbind any that would
3268 * be invalid given the new cache-level. This is principally to
3269 * catch the issue of the CS prefetch crossing page boundaries and
3270 * reading an invalid PTE on older architectures.
3271 */
3272 restart:
3273 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3274 if (!drm_mm_node_allocated(&vma->node))
3275 continue;
3276
3277 if (i915_vma_is_pinned(vma)) {
3278 DRM_DEBUG("can not change the cache level of pinned objects\n");
3279 return -EBUSY;
3280 }
3281
3282 if (i915_gem_valid_gtt_space(vma, cache_level))
3283 continue;
3284
3285 ret = i915_vma_unbind(vma);
3286 if (ret)
3287 return ret;
3288
3289 /* As unbinding may affect other elements in the
3290 * obj->vma_list (due to side-effects from retiring
3291 * an active vma), play safe and restart the iterator.
3292 */
3293 goto restart;
3294 }
3295
3296 /* We can reuse the existing drm_mm nodes but need to change the
3297 * cache-level on the PTE. We could simply unbind them all and
3298 * rebind with the correct cache-level on next use. However since
3299 * we already have a valid slot, dma mapping, pages etc, we may as
3300 * rewrite the PTE in the belief that doing so tramples upon less
3301 * state and so involves less work.
3302 */
3303 if (obj->bind_count) {
3304 /* Before we change the PTE, the GPU must not be accessing it.
3305 * If we wait upon the object, we know that all the bound
3306 * VMA are no longer active.
3307 */
3308 ret = i915_gem_object_wait(obj,
3309 I915_WAIT_INTERRUPTIBLE |
3310 I915_WAIT_LOCKED |
3311 I915_WAIT_ALL,
3312 MAX_SCHEDULE_TIMEOUT,
3313 NULL);
3314 if (ret)
3315 return ret;
3316
3317 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3318 cache_level != I915_CACHE_NONE) {
3319 /* Access to snoopable pages through the GTT is
3320 * incoherent and on some machines causes a hard
3321 * lockup. Relinquish the CPU mmaping to force
3322 * userspace to refault in the pages and we can
3323 * then double check if the GTT mapping is still
3324 * valid for that pointer access.
3325 */
3326 i915_gem_release_mmap(obj);
3327
3328 /* As we no longer need a fence for GTT access,
3329 * we can relinquish it now (and so prevent having
3330 * to steal a fence from someone else on the next
3331 * fence request). Note GPU activity would have
3332 * dropped the fence as all snoopable access is
3333 * supposed to be linear.
3334 */
3335 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3336 ret = i915_vma_put_fence(vma);
3337 if (ret)
3338 return ret;
3339 }
3340 } else {
3341 /* We either have incoherent backing store and
3342 * so no GTT access or the architecture is fully
3343 * coherent. In such cases, existing GTT mmaps
3344 * ignore the cache bit in the PTE and we can
3345 * rewrite it without confusing the GPU or having
3346 * to force userspace to fault back in its mmaps.
3347 */
3348 }
3349
3350 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3351 if (!drm_mm_node_allocated(&vma->node))
3352 continue;
3353
3354 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3355 if (ret)
3356 return ret;
3357 }
3358 }
3359
3360 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3361 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3362 obj->cache_dirty = true;
3363
3364 list_for_each_entry(vma, &obj->vma_list, obj_link)
3365 vma->node.color = cache_level;
3366 obj->cache_level = cache_level;
3367
3368 return 0;
3369 }
3370
3371 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3372 struct drm_file *file)
3373 {
3374 struct drm_i915_gem_caching *args = data;
3375 struct drm_i915_gem_object *obj;
3376 int err = 0;
3377
3378 rcu_read_lock();
3379 obj = i915_gem_object_lookup_rcu(file, args->handle);
3380 if (!obj) {
3381 err = -ENOENT;
3382 goto out;
3383 }
3384
3385 switch (obj->cache_level) {
3386 case I915_CACHE_LLC:
3387 case I915_CACHE_L3_LLC:
3388 args->caching = I915_CACHING_CACHED;
3389 break;
3390
3391 case I915_CACHE_WT:
3392 args->caching = I915_CACHING_DISPLAY;
3393 break;
3394
3395 default:
3396 args->caching = I915_CACHING_NONE;
3397 break;
3398 }
3399 out:
3400 rcu_read_unlock();
3401 return err;
3402 }
3403
3404 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file)
3406 {
3407 struct drm_i915_private *i915 = to_i915(dev);
3408 struct drm_i915_gem_caching *args = data;
3409 struct drm_i915_gem_object *obj;
3410 enum i915_cache_level level;
3411 int ret;
3412
3413 switch (args->caching) {
3414 case I915_CACHING_NONE:
3415 level = I915_CACHE_NONE;
3416 break;
3417 case I915_CACHING_CACHED:
3418 /*
3419 * Due to a HW issue on BXT A stepping, GPU stores via a
3420 * snooped mapping may leave stale data in a corresponding CPU
3421 * cacheline, whereas normally such cachelines would get
3422 * invalidated.
3423 */
3424 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3425 return -ENODEV;
3426
3427 level = I915_CACHE_LLC;
3428 break;
3429 case I915_CACHING_DISPLAY:
3430 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3431 break;
3432 default:
3433 return -EINVAL;
3434 }
3435
3436 ret = i915_mutex_lock_interruptible(dev);
3437 if (ret)
3438 return ret;
3439
3440 obj = i915_gem_object_lookup(file, args->handle);
3441 if (!obj) {
3442 ret = -ENOENT;
3443 goto unlock;
3444 }
3445
3446 ret = i915_gem_object_set_cache_level(obj, level);
3447 i915_gem_object_put(obj);
3448 unlock:
3449 mutex_unlock(&dev->struct_mutex);
3450 return ret;
3451 }
3452
3453 /*
3454 * Prepare buffer for display plane (scanout, cursors, etc).
3455 * Can be called from an uninterruptible phase (modesetting) and allows
3456 * any flushes to be pipelined (for pageflips).
3457 */
3458 struct i915_vma *
3459 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3460 u32 alignment,
3461 const struct i915_ggtt_view *view)
3462 {
3463 struct i915_vma *vma;
3464 u32 old_read_domains, old_write_domain;
3465 int ret;
3466
3467 lockdep_assert_held(&obj->base.dev->struct_mutex);
3468
3469 /* Mark the pin_display early so that we account for the
3470 * display coherency whilst setting up the cache domains.
3471 */
3472 obj->pin_display++;
3473
3474 /* The display engine is not coherent with the LLC cache on gen6. As
3475 * a result, we make sure that the pinning that is about to occur is
3476 * done with uncached PTEs. This is lowest common denominator for all
3477 * chipsets.
3478 *
3479 * However for gen6+, we could do better by using the GFDT bit instead
3480 * of uncaching, which would allow us to flush all the LLC-cached data
3481 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3482 */
3483 ret = i915_gem_object_set_cache_level(obj,
3484 HAS_WT(to_i915(obj->base.dev)) ?
3485 I915_CACHE_WT : I915_CACHE_NONE);
3486 if (ret) {
3487 vma = ERR_PTR(ret);
3488 goto err_unpin_display;
3489 }
3490
3491 /* As the user may map the buffer once pinned in the display plane
3492 * (e.g. libkms for the bootup splash), we have to ensure that we
3493 * always use map_and_fenceable for all scanout buffers. However,
3494 * it may simply be too big to fit into mappable, in which case
3495 * put it anyway and hope that userspace can cope (but always first
3496 * try to preserve the existing ABI).
3497 */
3498 vma = ERR_PTR(-ENOSPC);
3499 if (view->type == I915_GGTT_VIEW_NORMAL)
3500 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3501 PIN_MAPPABLE | PIN_NONBLOCK);
3502 if (IS_ERR(vma)) {
3503 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3504 unsigned int flags;
3505
3506 /* Valleyview is definitely limited to scanning out the first
3507 * 512MiB. Lets presume this behaviour was inherited from the
3508 * g4x display engine and that all earlier gen are similarly
3509 * limited. Testing suggests that it is a little more
3510 * complicated than this. For example, Cherryview appears quite
3511 * happy to scanout from anywhere within its global aperture.
3512 */
3513 flags = 0;
3514 if (HAS_GMCH_DISPLAY(i915))
3515 flags = PIN_MAPPABLE;
3516 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3517 }
3518 if (IS_ERR(vma))
3519 goto err_unpin_display;
3520
3521 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3522
3523 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3524 if (obj->cache_dirty) {
3525 i915_gem_clflush_object(obj, true);
3526 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3527 }
3528
3529 old_write_domain = obj->base.write_domain;
3530 old_read_domains = obj->base.read_domains;
3531
3532 /* It should now be out of any other write domains, and we can update
3533 * the domain values for our changes.
3534 */
3535 obj->base.write_domain = 0;
3536 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3537
3538 trace_i915_gem_object_change_domain(obj,
3539 old_read_domains,
3540 old_write_domain);
3541
3542 return vma;
3543
3544 err_unpin_display:
3545 obj->pin_display--;
3546 return vma;
3547 }
3548
3549 void
3550 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3551 {
3552 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3553
3554 if (WARN_ON(vma->obj->pin_display == 0))
3555 return;
3556
3557 if (--vma->obj->pin_display == 0)
3558 vma->display_alignment = 0;
3559
3560 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3561 if (!i915_vma_is_active(vma))
3562 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3563
3564 i915_vma_unpin(vma);
3565 }
3566
3567 /**
3568 * Moves a single object to the CPU read, and possibly write domain.
3569 * @obj: object to act on
3570 * @write: requesting write or read-only access
3571 *
3572 * This function returns when the move is complete, including waiting on
3573 * flushes to occur.
3574 */
3575 int
3576 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3577 {
3578 uint32_t old_write_domain, old_read_domains;
3579 int ret;
3580
3581 lockdep_assert_held(&obj->base.dev->struct_mutex);
3582
3583 ret = i915_gem_object_wait(obj,
3584 I915_WAIT_INTERRUPTIBLE |
3585 I915_WAIT_LOCKED |
3586 (write ? I915_WAIT_ALL : 0),
3587 MAX_SCHEDULE_TIMEOUT,
3588 NULL);
3589 if (ret)
3590 return ret;
3591
3592 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3593 return 0;
3594
3595 i915_gem_object_flush_gtt_write_domain(obj);
3596
3597 old_write_domain = obj->base.write_domain;
3598 old_read_domains = obj->base.read_domains;
3599
3600 /* Flush the CPU cache if it's still invalid. */
3601 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3602 i915_gem_clflush_object(obj, false);
3603
3604 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3605 }
3606
3607 /* It should now be out of any other write domains, and we can update
3608 * the domain values for our changes.
3609 */
3610 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3611
3612 /* If we're writing through the CPU, then the GPU read domains will
3613 * need to be invalidated at next use.
3614 */
3615 if (write) {
3616 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3617 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3618 }
3619
3620 trace_i915_gem_object_change_domain(obj,
3621 old_read_domains,
3622 old_write_domain);
3623
3624 return 0;
3625 }
3626
3627 /* Throttle our rendering by waiting until the ring has completed our requests
3628 * emitted over 20 msec ago.
3629 *
3630 * Note that if we were to use the current jiffies each time around the loop,
3631 * we wouldn't escape the function with any frames outstanding if the time to
3632 * render a frame was over 20ms.
3633 *
3634 * This should get us reasonable parallelism between CPU and GPU but also
3635 * relatively low latency when blocking on a particular request to finish.
3636 */
3637 static int
3638 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3639 {
3640 struct drm_i915_private *dev_priv = to_i915(dev);
3641 struct drm_i915_file_private *file_priv = file->driver_priv;
3642 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3643 struct drm_i915_gem_request *request, *target = NULL;
3644 long ret;
3645
3646 /* ABI: return -EIO if already wedged */
3647 if (i915_terminally_wedged(&dev_priv->gpu_error))
3648 return -EIO;
3649
3650 spin_lock(&file_priv->mm.lock);
3651 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3652 if (time_after_eq(request->emitted_jiffies, recent_enough))
3653 break;
3654
3655 /*
3656 * Note that the request might not have been submitted yet.
3657 * In which case emitted_jiffies will be zero.
3658 */
3659 if (!request->emitted_jiffies)
3660 continue;
3661
3662 target = request;
3663 }
3664 if (target)
3665 i915_gem_request_get(target);
3666 spin_unlock(&file_priv->mm.lock);
3667
3668 if (target == NULL)
3669 return 0;
3670
3671 ret = i915_wait_request(target,
3672 I915_WAIT_INTERRUPTIBLE,
3673 MAX_SCHEDULE_TIMEOUT);
3674 i915_gem_request_put(target);
3675
3676 return ret < 0 ? ret : 0;
3677 }
3678
3679 struct i915_vma *
3680 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3681 const struct i915_ggtt_view *view,
3682 u64 size,
3683 u64 alignment,
3684 u64 flags)
3685 {
3686 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3687 struct i915_address_space *vm = &dev_priv->ggtt.base;
3688 struct i915_vma *vma;
3689 int ret;
3690
3691 lockdep_assert_held(&obj->base.dev->struct_mutex);
3692
3693 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3694 if (IS_ERR(vma))
3695 return vma;
3696
3697 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3698 if (flags & PIN_NONBLOCK &&
3699 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3700 return ERR_PTR(-ENOSPC);
3701
3702 if (flags & PIN_MAPPABLE) {
3703 u32 fence_size;
3704
3705 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3706 i915_gem_object_get_tiling(obj));
3707 /* If the required space is larger than the available
3708 * aperture, we will not able to find a slot for the
3709 * object and unbinding the object now will be in
3710 * vain. Worse, doing so may cause us to ping-pong
3711 * the object in and out of the Global GTT and
3712 * waste a lot of cycles under the mutex.
3713 */
3714 if (fence_size > dev_priv->ggtt.mappable_end)
3715 return ERR_PTR(-E2BIG);
3716
3717 /* If NONBLOCK is set the caller is optimistically
3718 * trying to cache the full object within the mappable
3719 * aperture, and *must* have a fallback in place for
3720 * situations where we cannot bind the object. We
3721 * can be a little more lax here and use the fallback
3722 * more often to avoid costly migrations of ourselves
3723 * and other objects within the aperture.
3724 *
3725 * Half-the-aperture is used as a simple heuristic.
3726 * More interesting would to do search for a free
3727 * block prior to making the commitment to unbind.
3728 * That caters for the self-harm case, and with a
3729 * little more heuristics (e.g. NOFAULT, NOEVICT)
3730 * we could try to minimise harm to others.
3731 */
3732 if (flags & PIN_NONBLOCK &&
3733 fence_size > dev_priv->ggtt.mappable_end / 2)
3734 return ERR_PTR(-ENOSPC);
3735 }
3736
3737 WARN(i915_vma_is_pinned(vma),
3738 "bo is already pinned in ggtt with incorrect alignment:"
3739 " offset=%08x, req.alignment=%llx,"
3740 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3741 i915_ggtt_offset(vma), alignment,
3742 !!(flags & PIN_MAPPABLE),
3743 i915_vma_is_map_and_fenceable(vma));
3744 ret = i915_vma_unbind(vma);
3745 if (ret)
3746 return ERR_PTR(ret);
3747 }
3748
3749 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3750 if (ret)
3751 return ERR_PTR(ret);
3752
3753 return vma;
3754 }
3755
3756 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3757 {
3758 /* Note that we could alias engines in the execbuf API, but
3759 * that would be very unwise as it prevents userspace from
3760 * fine control over engine selection. Ahem.
3761 *
3762 * This should be something like EXEC_MAX_ENGINE instead of
3763 * I915_NUM_ENGINES.
3764 */
3765 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3766 return 0x10000 << id;
3767 }
3768
3769 static __always_inline unsigned int __busy_write_id(unsigned int id)
3770 {
3771 /* The uABI guarantees an active writer is also amongst the read
3772 * engines. This would be true if we accessed the activity tracking
3773 * under the lock, but as we perform the lookup of the object and
3774 * its activity locklessly we can not guarantee that the last_write
3775 * being active implies that we have set the same engine flag from
3776 * last_read - hence we always set both read and write busy for
3777 * last_write.
3778 */
3779 return id | __busy_read_flag(id);
3780 }
3781
3782 static __always_inline unsigned int
3783 __busy_set_if_active(const struct dma_fence *fence,
3784 unsigned int (*flag)(unsigned int id))
3785 {
3786 struct drm_i915_gem_request *rq;
3787
3788 /* We have to check the current hw status of the fence as the uABI
3789 * guarantees forward progress. We could rely on the idle worker
3790 * to eventually flush us, but to minimise latency just ask the
3791 * hardware.
3792 *
3793 * Note we only report on the status of native fences.
3794 */
3795 if (!dma_fence_is_i915(fence))
3796 return 0;
3797
3798 /* opencode to_request() in order to avoid const warnings */
3799 rq = container_of(fence, struct drm_i915_gem_request, fence);
3800 if (i915_gem_request_completed(rq))
3801 return 0;
3802
3803 return flag(rq->engine->exec_id);
3804 }
3805
3806 static __always_inline unsigned int
3807 busy_check_reader(const struct dma_fence *fence)
3808 {
3809 return __busy_set_if_active(fence, __busy_read_flag);
3810 }
3811
3812 static __always_inline unsigned int
3813 busy_check_writer(const struct dma_fence *fence)
3814 {
3815 if (!fence)
3816 return 0;
3817
3818 return __busy_set_if_active(fence, __busy_write_id);
3819 }
3820
3821 int
3822 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3823 struct drm_file *file)
3824 {
3825 struct drm_i915_gem_busy *args = data;
3826 struct drm_i915_gem_object *obj;
3827 struct reservation_object_list *list;
3828 unsigned int seq;
3829 int err;
3830
3831 err = -ENOENT;
3832 rcu_read_lock();
3833 obj = i915_gem_object_lookup_rcu(file, args->handle);
3834 if (!obj)
3835 goto out;
3836
3837 /* A discrepancy here is that we do not report the status of
3838 * non-i915 fences, i.e. even though we may report the object as idle,
3839 * a call to set-domain may still stall waiting for foreign rendering.
3840 * This also means that wait-ioctl may report an object as busy,
3841 * where busy-ioctl considers it idle.
3842 *
3843 * We trade the ability to warn of foreign fences to report on which
3844 * i915 engines are active for the object.
3845 *
3846 * Alternatively, we can trade that extra information on read/write
3847 * activity with
3848 * args->busy =
3849 * !reservation_object_test_signaled_rcu(obj->resv, true);
3850 * to report the overall busyness. This is what the wait-ioctl does.
3851 *
3852 */
3853 retry:
3854 seq = raw_read_seqcount(&obj->resv->seq);
3855
3856 /* Translate the exclusive fence to the READ *and* WRITE engine */
3857 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3858
3859 /* Translate shared fences to READ set of engines */
3860 list = rcu_dereference(obj->resv->fence);
3861 if (list) {
3862 unsigned int shared_count = list->shared_count, i;
3863
3864 for (i = 0; i < shared_count; ++i) {
3865 struct dma_fence *fence =
3866 rcu_dereference(list->shared[i]);
3867
3868 args->busy |= busy_check_reader(fence);
3869 }
3870 }
3871
3872 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3873 goto retry;
3874
3875 err = 0;
3876 out:
3877 rcu_read_unlock();
3878 return err;
3879 }
3880
3881 int
3882 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3883 struct drm_file *file_priv)
3884 {
3885 return i915_gem_ring_throttle(dev, file_priv);
3886 }
3887
3888 int
3889 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3890 struct drm_file *file_priv)
3891 {
3892 struct drm_i915_private *dev_priv = to_i915(dev);
3893 struct drm_i915_gem_madvise *args = data;
3894 struct drm_i915_gem_object *obj;
3895 int err;
3896
3897 switch (args->madv) {
3898 case I915_MADV_DONTNEED:
3899 case I915_MADV_WILLNEED:
3900 break;
3901 default:
3902 return -EINVAL;
3903 }
3904
3905 obj = i915_gem_object_lookup(file_priv, args->handle);
3906 if (!obj)
3907 return -ENOENT;
3908
3909 err = mutex_lock_interruptible(&obj->mm.lock);
3910 if (err)
3911 goto out;
3912
3913 if (obj->mm.pages &&
3914 i915_gem_object_is_tiled(obj) &&
3915 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3916 if (obj->mm.madv == I915_MADV_WILLNEED) {
3917 GEM_BUG_ON(!obj->mm.quirked);
3918 __i915_gem_object_unpin_pages(obj);
3919 obj->mm.quirked = false;
3920 }
3921 if (args->madv == I915_MADV_WILLNEED) {
3922 GEM_BUG_ON(obj->mm.quirked);
3923 __i915_gem_object_pin_pages(obj);
3924 obj->mm.quirked = true;
3925 }
3926 }
3927
3928 if (obj->mm.madv != __I915_MADV_PURGED)
3929 obj->mm.madv = args->madv;
3930
3931 /* if the object is no longer attached, discard its backing storage */
3932 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3933 i915_gem_object_truncate(obj);
3934
3935 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3936 mutex_unlock(&obj->mm.lock);
3937
3938 out:
3939 i915_gem_object_put(obj);
3940 return err;
3941 }
3942
3943 static void
3944 frontbuffer_retire(struct i915_gem_active *active,
3945 struct drm_i915_gem_request *request)
3946 {
3947 struct drm_i915_gem_object *obj =
3948 container_of(active, typeof(*obj), frontbuffer_write);
3949
3950 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3951 }
3952
3953 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3954 const struct drm_i915_gem_object_ops *ops)
3955 {
3956 mutex_init(&obj->mm.lock);
3957
3958 INIT_LIST_HEAD(&obj->global_link);
3959 INIT_LIST_HEAD(&obj->userfault_link);
3960 INIT_LIST_HEAD(&obj->obj_exec_link);
3961 INIT_LIST_HEAD(&obj->vma_list);
3962 INIT_LIST_HEAD(&obj->batch_pool_link);
3963
3964 obj->ops = ops;
3965
3966 reservation_object_init(&obj->__builtin_resv);
3967 obj->resv = &obj->__builtin_resv;
3968
3969 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3970 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3971
3972 obj->mm.madv = I915_MADV_WILLNEED;
3973 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3974 mutex_init(&obj->mm.get_page.lock);
3975
3976 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3977 }
3978
3979 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3980 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3981 I915_GEM_OBJECT_IS_SHRINKABLE,
3982 .get_pages = i915_gem_object_get_pages_gtt,
3983 .put_pages = i915_gem_object_put_pages_gtt,
3984 };
3985
3986 struct drm_i915_gem_object *
3987 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3988 {
3989 struct drm_i915_gem_object *obj;
3990 struct address_space *mapping;
3991 gfp_t mask;
3992 int ret;
3993
3994 /* There is a prevalence of the assumption that we fit the object's
3995 * page count inside a 32bit _signed_ variable. Let's document this and
3996 * catch if we ever need to fix it. In the meantime, if you do spot
3997 * such a local variable, please consider fixing!
3998 */
3999 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4000 return ERR_PTR(-E2BIG);
4001
4002 if (overflows_type(size, obj->base.size))
4003 return ERR_PTR(-E2BIG);
4004
4005 obj = i915_gem_object_alloc(dev_priv);
4006 if (obj == NULL)
4007 return ERR_PTR(-ENOMEM);
4008
4009 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4010 if (ret)
4011 goto fail;
4012
4013 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4014 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4015 /* 965gm cannot relocate objects above 4GiB. */
4016 mask &= ~__GFP_HIGHMEM;
4017 mask |= __GFP_DMA32;
4018 }
4019
4020 mapping = obj->base.filp->f_mapping;
4021 mapping_set_gfp_mask(mapping, mask);
4022
4023 i915_gem_object_init(obj, &i915_gem_object_ops);
4024
4025 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4026 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4027
4028 if (HAS_LLC(dev_priv)) {
4029 /* On some devices, we can have the GPU use the LLC (the CPU
4030 * cache) for about a 10% performance improvement
4031 * compared to uncached. Graphics requests other than
4032 * display scanout are coherent with the CPU in
4033 * accessing this cache. This means in this mode we
4034 * don't need to clflush on the CPU side, and on the
4035 * GPU side we only need to flush internal caches to
4036 * get data visible to the CPU.
4037 *
4038 * However, we maintain the display planes as UC, and so
4039 * need to rebind when first used as such.
4040 */
4041 obj->cache_level = I915_CACHE_LLC;
4042 } else
4043 obj->cache_level = I915_CACHE_NONE;
4044
4045 trace_i915_gem_object_create(obj);
4046
4047 return obj;
4048
4049 fail:
4050 i915_gem_object_free(obj);
4051 return ERR_PTR(ret);
4052 }
4053
4054 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4055 {
4056 /* If we are the last user of the backing storage (be it shmemfs
4057 * pages or stolen etc), we know that the pages are going to be
4058 * immediately released. In this case, we can then skip copying
4059 * back the contents from the GPU.
4060 */
4061
4062 if (obj->mm.madv != I915_MADV_WILLNEED)
4063 return false;
4064
4065 if (obj->base.filp == NULL)
4066 return true;
4067
4068 /* At first glance, this looks racy, but then again so would be
4069 * userspace racing mmap against close. However, the first external
4070 * reference to the filp can only be obtained through the
4071 * i915_gem_mmap_ioctl() which safeguards us against the user
4072 * acquiring such a reference whilst we are in the middle of
4073 * freeing the object.
4074 */
4075 return atomic_long_read(&obj->base.filp->f_count) == 1;
4076 }
4077
4078 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4079 struct llist_node *freed)
4080 {
4081 struct drm_i915_gem_object *obj, *on;
4082
4083 mutex_lock(&i915->drm.struct_mutex);
4084 intel_runtime_pm_get(i915);
4085 llist_for_each_entry(obj, freed, freed) {
4086 struct i915_vma *vma, *vn;
4087
4088 trace_i915_gem_object_destroy(obj);
4089
4090 GEM_BUG_ON(i915_gem_object_is_active(obj));
4091 list_for_each_entry_safe(vma, vn,
4092 &obj->vma_list, obj_link) {
4093 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4094 GEM_BUG_ON(i915_vma_is_active(vma));
4095 vma->flags &= ~I915_VMA_PIN_MASK;
4096 i915_vma_close(vma);
4097 }
4098 GEM_BUG_ON(!list_empty(&obj->vma_list));
4099 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4100
4101 list_del(&obj->global_link);
4102 }
4103 intel_runtime_pm_put(i915);
4104 mutex_unlock(&i915->drm.struct_mutex);
4105
4106 llist_for_each_entry_safe(obj, on, freed, freed) {
4107 GEM_BUG_ON(obj->bind_count);
4108 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4109
4110 if (obj->ops->release)
4111 obj->ops->release(obj);
4112
4113 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4114 atomic_set(&obj->mm.pages_pin_count, 0);
4115 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4116 GEM_BUG_ON(obj->mm.pages);
4117
4118 if (obj->base.import_attach)
4119 drm_prime_gem_destroy(&obj->base, NULL);
4120
4121 reservation_object_fini(&obj->__builtin_resv);
4122 drm_gem_object_release(&obj->base);
4123 i915_gem_info_remove_obj(i915, obj->base.size);
4124
4125 kfree(obj->bit_17);
4126 i915_gem_object_free(obj);
4127 }
4128 }
4129
4130 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4131 {
4132 struct llist_node *freed;
4133
4134 freed = llist_del_all(&i915->mm.free_list);
4135 if (unlikely(freed))
4136 __i915_gem_free_objects(i915, freed);
4137 }
4138
4139 static void __i915_gem_free_work(struct work_struct *work)
4140 {
4141 struct drm_i915_private *i915 =
4142 container_of(work, struct drm_i915_private, mm.free_work);
4143 struct llist_node *freed;
4144
4145 /* All file-owned VMA should have been released by this point through
4146 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4147 * However, the object may also be bound into the global GTT (e.g.
4148 * older GPUs without per-process support, or for direct access through
4149 * the GTT either for the user or for scanout). Those VMA still need to
4150 * unbound now.
4151 */
4152
4153 while ((freed = llist_del_all(&i915->mm.free_list)))
4154 __i915_gem_free_objects(i915, freed);
4155 }
4156
4157 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4158 {
4159 struct drm_i915_gem_object *obj =
4160 container_of(head, typeof(*obj), rcu);
4161 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4162
4163 /* We can't simply use call_rcu() from i915_gem_free_object()
4164 * as we need to block whilst unbinding, and the call_rcu
4165 * task may be called from softirq context. So we take a
4166 * detour through a worker.
4167 */
4168 if (llist_add(&obj->freed, &i915->mm.free_list))
4169 schedule_work(&i915->mm.free_work);
4170 }
4171
4172 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4173 {
4174 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4175
4176 if (obj->mm.quirked)
4177 __i915_gem_object_unpin_pages(obj);
4178
4179 if (discard_backing_storage(obj))
4180 obj->mm.madv = I915_MADV_DONTNEED;
4181
4182 /* Before we free the object, make sure any pure RCU-only
4183 * read-side critical sections are complete, e.g.
4184 * i915_gem_busy_ioctl(). For the corresponding synchronized
4185 * lookup see i915_gem_object_lookup_rcu().
4186 */
4187 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4188 }
4189
4190 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4191 {
4192 lockdep_assert_held(&obj->base.dev->struct_mutex);
4193
4194 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4195 if (i915_gem_object_is_active(obj))
4196 i915_gem_object_set_active_reference(obj);
4197 else
4198 i915_gem_object_put(obj);
4199 }
4200
4201 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4202 {
4203 struct intel_engine_cs *engine;
4204 enum intel_engine_id id;
4205
4206 for_each_engine(engine, dev_priv, id)
4207 GEM_BUG_ON(!i915_gem_context_is_kernel(engine->last_retired_context));
4208 }
4209
4210 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4211 {
4212 struct drm_device *dev = &dev_priv->drm;
4213 int ret;
4214
4215 intel_suspend_gt_powersave(dev_priv);
4216
4217 mutex_lock(&dev->struct_mutex);
4218
4219 /* We have to flush all the executing contexts to main memory so
4220 * that they can saved in the hibernation image. To ensure the last
4221 * context image is coherent, we have to switch away from it. That
4222 * leaves the dev_priv->kernel_context still active when
4223 * we actually suspend, and its image in memory may not match the GPU
4224 * state. Fortunately, the kernel_context is disposable and we do
4225 * not rely on its state.
4226 */
4227 ret = i915_gem_switch_to_kernel_context(dev_priv);
4228 if (ret)
4229 goto err;
4230
4231 ret = i915_gem_wait_for_idle(dev_priv,
4232 I915_WAIT_INTERRUPTIBLE |
4233 I915_WAIT_LOCKED);
4234 if (ret)
4235 goto err;
4236
4237 i915_gem_retire_requests(dev_priv);
4238 GEM_BUG_ON(dev_priv->gt.active_requests);
4239
4240 assert_kernel_context_is_current(dev_priv);
4241 i915_gem_context_lost(dev_priv);
4242 mutex_unlock(&dev->struct_mutex);
4243
4244 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4245 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4246
4247 /* As the idle_work is rearming if it detects a race, play safe and
4248 * repeat the flush until it is definitely idle.
4249 */
4250 while (flush_delayed_work(&dev_priv->gt.idle_work))
4251 ;
4252
4253 i915_gem_drain_freed_objects(dev_priv);
4254
4255 /* Assert that we sucessfully flushed all the work and
4256 * reset the GPU back to its idle, low power state.
4257 */
4258 WARN_ON(dev_priv->gt.awake);
4259 WARN_ON(!intel_execlists_idle(dev_priv));
4260
4261 /*
4262 * Neither the BIOS, ourselves or any other kernel
4263 * expects the system to be in execlists mode on startup,
4264 * so we need to reset the GPU back to legacy mode. And the only
4265 * known way to disable logical contexts is through a GPU reset.
4266 *
4267 * So in order to leave the system in a known default configuration,
4268 * always reset the GPU upon unload and suspend. Afterwards we then
4269 * clean up the GEM state tracking, flushing off the requests and
4270 * leaving the system in a known idle state.
4271 *
4272 * Note that is of the upmost importance that the GPU is idle and
4273 * all stray writes are flushed *before* we dismantle the backing
4274 * storage for the pinned objects.
4275 *
4276 * However, since we are uncertain that resetting the GPU on older
4277 * machines is a good idea, we don't - just in case it leaves the
4278 * machine in an unusable condition.
4279 */
4280 if (HAS_HW_CONTEXTS(dev_priv)) {
4281 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4282 WARN_ON(reset && reset != -ENODEV);
4283 }
4284
4285 return 0;
4286
4287 err:
4288 mutex_unlock(&dev->struct_mutex);
4289 return ret;
4290 }
4291
4292 void i915_gem_resume(struct drm_i915_private *dev_priv)
4293 {
4294 struct drm_device *dev = &dev_priv->drm;
4295
4296 WARN_ON(dev_priv->gt.awake);
4297
4298 mutex_lock(&dev->struct_mutex);
4299 i915_gem_restore_gtt_mappings(dev_priv);
4300
4301 /* As we didn't flush the kernel context before suspend, we cannot
4302 * guarantee that the context image is complete. So let's just reset
4303 * it and start again.
4304 */
4305 dev_priv->gt.resume(dev_priv);
4306
4307 mutex_unlock(&dev->struct_mutex);
4308 }
4309
4310 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4311 {
4312 if (INTEL_GEN(dev_priv) < 5 ||
4313 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4314 return;
4315
4316 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4317 DISP_TILE_SURFACE_SWIZZLING);
4318
4319 if (IS_GEN5(dev_priv))
4320 return;
4321
4322 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4323 if (IS_GEN6(dev_priv))
4324 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4325 else if (IS_GEN7(dev_priv))
4326 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4327 else if (IS_GEN8(dev_priv))
4328 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4329 else
4330 BUG();
4331 }
4332
4333 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4334 {
4335 I915_WRITE(RING_CTL(base), 0);
4336 I915_WRITE(RING_HEAD(base), 0);
4337 I915_WRITE(RING_TAIL(base), 0);
4338 I915_WRITE(RING_START(base), 0);
4339 }
4340
4341 static void init_unused_rings(struct drm_i915_private *dev_priv)
4342 {
4343 if (IS_I830(dev_priv)) {
4344 init_unused_ring(dev_priv, PRB1_BASE);
4345 init_unused_ring(dev_priv, SRB0_BASE);
4346 init_unused_ring(dev_priv, SRB1_BASE);
4347 init_unused_ring(dev_priv, SRB2_BASE);
4348 init_unused_ring(dev_priv, SRB3_BASE);
4349 } else if (IS_GEN2(dev_priv)) {
4350 init_unused_ring(dev_priv, SRB0_BASE);
4351 init_unused_ring(dev_priv, SRB1_BASE);
4352 } else if (IS_GEN3(dev_priv)) {
4353 init_unused_ring(dev_priv, PRB1_BASE);
4354 init_unused_ring(dev_priv, PRB2_BASE);
4355 }
4356 }
4357
4358 int
4359 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4360 {
4361 struct intel_engine_cs *engine;
4362 enum intel_engine_id id;
4363 int ret;
4364
4365 dev_priv->gt.last_init_time = ktime_get();
4366
4367 /* Double layer security blanket, see i915_gem_init() */
4368 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4369
4370 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4371 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4372
4373 if (IS_HASWELL(dev_priv))
4374 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4375 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4376
4377 if (HAS_PCH_NOP(dev_priv)) {
4378 if (IS_IVYBRIDGE(dev_priv)) {
4379 u32 temp = I915_READ(GEN7_MSG_CTL);
4380 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4381 I915_WRITE(GEN7_MSG_CTL, temp);
4382 } else if (INTEL_GEN(dev_priv) >= 7) {
4383 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4384 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4385 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4386 }
4387 }
4388
4389 i915_gem_init_swizzling(dev_priv);
4390
4391 /*
4392 * At least 830 can leave some of the unused rings
4393 * "active" (ie. head != tail) after resume which
4394 * will prevent c3 entry. Makes sure all unused rings
4395 * are totally idle.
4396 */
4397 init_unused_rings(dev_priv);
4398
4399 BUG_ON(!dev_priv->kernel_context);
4400
4401 ret = i915_ppgtt_init_hw(dev_priv);
4402 if (ret) {
4403 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4404 goto out;
4405 }
4406
4407 /* Need to do basic initialisation of all rings first: */
4408 for_each_engine(engine, dev_priv, id) {
4409 ret = engine->init_hw(engine);
4410 if (ret)
4411 goto out;
4412 }
4413
4414 intel_mocs_init_l3cc_table(dev_priv);
4415
4416 /* We can't enable contexts until all firmware is loaded */
4417 ret = intel_guc_setup(dev_priv);
4418 if (ret)
4419 goto out;
4420
4421 out:
4422 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4423 return ret;
4424 }
4425
4426 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4427 {
4428 if (INTEL_INFO(dev_priv)->gen < 6)
4429 return false;
4430
4431 /* TODO: make semaphores and Execlists play nicely together */
4432 if (i915.enable_execlists)
4433 return false;
4434
4435 if (value >= 0)
4436 return value;
4437
4438 #ifdef CONFIG_INTEL_IOMMU
4439 /* Enable semaphores on SNB when IO remapping is off */
4440 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4441 return false;
4442 #endif
4443
4444 return true;
4445 }
4446
4447 int i915_gem_init(struct drm_i915_private *dev_priv)
4448 {
4449 int ret;
4450
4451 mutex_lock(&dev_priv->drm.struct_mutex);
4452
4453 if (!i915.enable_execlists) {
4454 dev_priv->gt.resume = intel_legacy_submission_resume;
4455 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4456 } else {
4457 dev_priv->gt.resume = intel_lr_context_resume;
4458 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4459 }
4460
4461 /* This is just a security blanket to placate dragons.
4462 * On some systems, we very sporadically observe that the first TLBs
4463 * used by the CS may be stale, despite us poking the TLB reset. If
4464 * we hold the forcewake during initialisation these problems
4465 * just magically go away.
4466 */
4467 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4468
4469 i915_gem_init_userptr(dev_priv);
4470
4471 ret = i915_gem_init_ggtt(dev_priv);
4472 if (ret)
4473 goto out_unlock;
4474
4475 ret = i915_gem_context_init(dev_priv);
4476 if (ret)
4477 goto out_unlock;
4478
4479 ret = intel_engines_init(dev_priv);
4480 if (ret)
4481 goto out_unlock;
4482
4483 ret = i915_gem_init_hw(dev_priv);
4484 if (ret == -EIO) {
4485 /* Allow engine initialisation to fail by marking the GPU as
4486 * wedged. But we only want to do this where the GPU is angry,
4487 * for all other failure, such as an allocation failure, bail.
4488 */
4489 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4490 i915_gem_set_wedged(dev_priv);
4491 ret = 0;
4492 }
4493
4494 out_unlock:
4495 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4496 mutex_unlock(&dev_priv->drm.struct_mutex);
4497
4498 return ret;
4499 }
4500
4501 void
4502 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4503 {
4504 struct intel_engine_cs *engine;
4505 enum intel_engine_id id;
4506
4507 for_each_engine(engine, dev_priv, id)
4508 dev_priv->gt.cleanup_engine(engine);
4509 }
4510
4511 void
4512 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4513 {
4514 int i;
4515
4516 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4517 !IS_CHERRYVIEW(dev_priv))
4518 dev_priv->num_fence_regs = 32;
4519 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4520 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4521 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4522 dev_priv->num_fence_regs = 16;
4523 else
4524 dev_priv->num_fence_regs = 8;
4525
4526 if (intel_vgpu_active(dev_priv))
4527 dev_priv->num_fence_regs =
4528 I915_READ(vgtif_reg(avail_rs.fence_num));
4529
4530 /* Initialize fence registers to zero */
4531 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4532 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4533
4534 fence->i915 = dev_priv;
4535 fence->id = i;
4536 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4537 }
4538 i915_gem_restore_fences(dev_priv);
4539
4540 i915_gem_detect_bit_6_swizzle(dev_priv);
4541 }
4542
4543 int
4544 i915_gem_load_init(struct drm_i915_private *dev_priv)
4545 {
4546 int err = -ENOMEM;
4547
4548 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4549 if (!dev_priv->objects)
4550 goto err_out;
4551
4552 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4553 if (!dev_priv->vmas)
4554 goto err_objects;
4555
4556 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4557 SLAB_HWCACHE_ALIGN |
4558 SLAB_RECLAIM_ACCOUNT |
4559 SLAB_DESTROY_BY_RCU);
4560 if (!dev_priv->requests)
4561 goto err_vmas;
4562
4563 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4564 SLAB_HWCACHE_ALIGN |
4565 SLAB_RECLAIM_ACCOUNT);
4566 if (!dev_priv->dependencies)
4567 goto err_requests;
4568
4569 mutex_lock(&dev_priv->drm.struct_mutex);
4570 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4571 err = i915_gem_timeline_init__global(dev_priv);
4572 mutex_unlock(&dev_priv->drm.struct_mutex);
4573 if (err)
4574 goto err_dependencies;
4575
4576 INIT_LIST_HEAD(&dev_priv->context_list);
4577 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4578 init_llist_head(&dev_priv->mm.free_list);
4579 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4580 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4581 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4582 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4583 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4584 i915_gem_retire_work_handler);
4585 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4586 i915_gem_idle_work_handler);
4587 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4588 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4589
4590 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4591
4592 init_waitqueue_head(&dev_priv->pending_flip_queue);
4593
4594 dev_priv->mm.interruptible = true;
4595
4596 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4597
4598 spin_lock_init(&dev_priv->fb_tracking.lock);
4599
4600 return 0;
4601
4602 err_dependencies:
4603 kmem_cache_destroy(dev_priv->dependencies);
4604 err_requests:
4605 kmem_cache_destroy(dev_priv->requests);
4606 err_vmas:
4607 kmem_cache_destroy(dev_priv->vmas);
4608 err_objects:
4609 kmem_cache_destroy(dev_priv->objects);
4610 err_out:
4611 return err;
4612 }
4613
4614 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4615 {
4616 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4617
4618 mutex_lock(&dev_priv->drm.struct_mutex);
4619 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4620 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4621 mutex_unlock(&dev_priv->drm.struct_mutex);
4622
4623 kmem_cache_destroy(dev_priv->dependencies);
4624 kmem_cache_destroy(dev_priv->requests);
4625 kmem_cache_destroy(dev_priv->vmas);
4626 kmem_cache_destroy(dev_priv->objects);
4627
4628 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4629 rcu_barrier();
4630 }
4631
4632 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4633 {
4634 intel_runtime_pm_get(dev_priv);
4635
4636 mutex_lock(&dev_priv->drm.struct_mutex);
4637 i915_gem_shrink_all(dev_priv);
4638 mutex_unlock(&dev_priv->drm.struct_mutex);
4639
4640 intel_runtime_pm_put(dev_priv);
4641
4642 return 0;
4643 }
4644
4645 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4646 {
4647 struct drm_i915_gem_object *obj;
4648 struct list_head *phases[] = {
4649 &dev_priv->mm.unbound_list,
4650 &dev_priv->mm.bound_list,
4651 NULL
4652 }, **p;
4653
4654 /* Called just before we write the hibernation image.
4655 *
4656 * We need to update the domain tracking to reflect that the CPU
4657 * will be accessing all the pages to create and restore from the
4658 * hibernation, and so upon restoration those pages will be in the
4659 * CPU domain.
4660 *
4661 * To make sure the hibernation image contains the latest state,
4662 * we update that state just before writing out the image.
4663 *
4664 * To try and reduce the hibernation image, we manually shrink
4665 * the objects as well.
4666 */
4667
4668 mutex_lock(&dev_priv->drm.struct_mutex);
4669 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4670
4671 for (p = phases; *p; p++) {
4672 list_for_each_entry(obj, *p, global_link) {
4673 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4674 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4675 }
4676 }
4677 mutex_unlock(&dev_priv->drm.struct_mutex);
4678
4679 return 0;
4680 }
4681
4682 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4683 {
4684 struct drm_i915_file_private *file_priv = file->driver_priv;
4685 struct drm_i915_gem_request *request;
4686
4687 /* Clean up our request list when the client is going away, so that
4688 * later retire_requests won't dereference our soon-to-be-gone
4689 * file_priv.
4690 */
4691 spin_lock(&file_priv->mm.lock);
4692 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4693 request->file_priv = NULL;
4694 spin_unlock(&file_priv->mm.lock);
4695
4696 if (!list_empty(&file_priv->rps.link)) {
4697 spin_lock(&to_i915(dev)->rps.client_lock);
4698 list_del(&file_priv->rps.link);
4699 spin_unlock(&to_i915(dev)->rps.client_lock);
4700 }
4701 }
4702
4703 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4704 {
4705 struct drm_i915_file_private *file_priv;
4706 int ret;
4707
4708 DRM_DEBUG("\n");
4709
4710 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4711 if (!file_priv)
4712 return -ENOMEM;
4713
4714 file->driver_priv = file_priv;
4715 file_priv->dev_priv = to_i915(dev);
4716 file_priv->file = file;
4717 INIT_LIST_HEAD(&file_priv->rps.link);
4718
4719 spin_lock_init(&file_priv->mm.lock);
4720 INIT_LIST_HEAD(&file_priv->mm.request_list);
4721
4722 file_priv->bsd_engine = -1;
4723
4724 ret = i915_gem_context_open(dev, file);
4725 if (ret)
4726 kfree(file_priv);
4727
4728 return ret;
4729 }
4730
4731 /**
4732 * i915_gem_track_fb - update frontbuffer tracking
4733 * @old: current GEM buffer for the frontbuffer slots
4734 * @new: new GEM buffer for the frontbuffer slots
4735 * @frontbuffer_bits: bitmask of frontbuffer slots
4736 *
4737 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4738 * from @old and setting them in @new. Both @old and @new can be NULL.
4739 */
4740 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4741 struct drm_i915_gem_object *new,
4742 unsigned frontbuffer_bits)
4743 {
4744 /* Control of individual bits within the mask are guarded by
4745 * the owning plane->mutex, i.e. we can never see concurrent
4746 * manipulation of individual bits. But since the bitfield as a whole
4747 * is updated using RMW, we need to use atomics in order to update
4748 * the bits.
4749 */
4750 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4751 sizeof(atomic_t) * BITS_PER_BYTE);
4752
4753 if (old) {
4754 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4755 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4756 }
4757
4758 if (new) {
4759 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4760 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4761 }
4762 }
4763
4764 /* Allocate a new GEM object and fill it with the supplied data */
4765 struct drm_i915_gem_object *
4766 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4767 const void *data, size_t size)
4768 {
4769 struct drm_i915_gem_object *obj;
4770 struct sg_table *sg;
4771 size_t bytes;
4772 int ret;
4773
4774 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4775 if (IS_ERR(obj))
4776 return obj;
4777
4778 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4779 if (ret)
4780 goto fail;
4781
4782 ret = i915_gem_object_pin_pages(obj);
4783 if (ret)
4784 goto fail;
4785
4786 sg = obj->mm.pages;
4787 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4788 obj->mm.dirty = true; /* Backing store is now out of date */
4789 i915_gem_object_unpin_pages(obj);
4790
4791 if (WARN_ON(bytes != size)) {
4792 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4793 ret = -EFAULT;
4794 goto fail;
4795 }
4796
4797 return obj;
4798
4799 fail:
4800 i915_gem_object_put(obj);
4801 return ERR_PTR(ret);
4802 }
4803
4804 struct scatterlist *
4805 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4806 unsigned int n,
4807 unsigned int *offset)
4808 {
4809 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4810 struct scatterlist *sg;
4811 unsigned int idx, count;
4812
4813 might_sleep();
4814 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4815 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4816
4817 /* As we iterate forward through the sg, we record each entry in a
4818 * radixtree for quick repeated (backwards) lookups. If we have seen
4819 * this index previously, we will have an entry for it.
4820 *
4821 * Initial lookup is O(N), but this is amortized to O(1) for
4822 * sequential page access (where each new request is consecutive
4823 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4824 * i.e. O(1) with a large constant!
4825 */
4826 if (n < READ_ONCE(iter->sg_idx))
4827 goto lookup;
4828
4829 mutex_lock(&iter->lock);
4830
4831 /* We prefer to reuse the last sg so that repeated lookup of this
4832 * (or the subsequent) sg are fast - comparing against the last
4833 * sg is faster than going through the radixtree.
4834 */
4835
4836 sg = iter->sg_pos;
4837 idx = iter->sg_idx;
4838 count = __sg_page_count(sg);
4839
4840 while (idx + count <= n) {
4841 unsigned long exception, i;
4842 int ret;
4843
4844 /* If we cannot allocate and insert this entry, or the
4845 * individual pages from this range, cancel updating the
4846 * sg_idx so that on this lookup we are forced to linearly
4847 * scan onwards, but on future lookups we will try the
4848 * insertion again (in which case we need to be careful of
4849 * the error return reporting that we have already inserted
4850 * this index).
4851 */
4852 ret = radix_tree_insert(&iter->radix, idx, sg);
4853 if (ret && ret != -EEXIST)
4854 goto scan;
4855
4856 exception =
4857 RADIX_TREE_EXCEPTIONAL_ENTRY |
4858 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4859 for (i = 1; i < count; i++) {
4860 ret = radix_tree_insert(&iter->radix, idx + i,
4861 (void *)exception);
4862 if (ret && ret != -EEXIST)
4863 goto scan;
4864 }
4865
4866 idx += count;
4867 sg = ____sg_next(sg);
4868 count = __sg_page_count(sg);
4869 }
4870
4871 scan:
4872 iter->sg_pos = sg;
4873 iter->sg_idx = idx;
4874
4875 mutex_unlock(&iter->lock);
4876
4877 if (unlikely(n < idx)) /* insertion completed by another thread */
4878 goto lookup;
4879
4880 /* In case we failed to insert the entry into the radixtree, we need
4881 * to look beyond the current sg.
4882 */
4883 while (idx + count <= n) {
4884 idx += count;
4885 sg = ____sg_next(sg);
4886 count = __sg_page_count(sg);
4887 }
4888
4889 *offset = n - idx;
4890 return sg;
4891
4892 lookup:
4893 rcu_read_lock();
4894
4895 sg = radix_tree_lookup(&iter->radix, n);
4896 GEM_BUG_ON(!sg);
4897
4898 /* If this index is in the middle of multi-page sg entry,
4899 * the radixtree will contain an exceptional entry that points
4900 * to the start of that range. We will return the pointer to
4901 * the base page and the offset of this page within the
4902 * sg entry's range.
4903 */
4904 *offset = 0;
4905 if (unlikely(radix_tree_exception(sg))) {
4906 unsigned long base =
4907 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4908
4909 sg = radix_tree_lookup(&iter->radix, base);
4910 GEM_BUG_ON(!sg);
4911
4912 *offset = n - base;
4913 }
4914
4915 rcu_read_unlock();
4916
4917 return sg;
4918 }
4919
4920 struct page *
4921 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4922 {
4923 struct scatterlist *sg;
4924 unsigned int offset;
4925
4926 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4927
4928 sg = i915_gem_object_get_sg(obj, n, &offset);
4929 return nth_page(sg_page(sg), offset);
4930 }
4931
4932 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4933 struct page *
4934 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4935 unsigned int n)
4936 {
4937 struct page *page;
4938
4939 page = i915_gem_object_get_page(obj, n);
4940 if (!obj->mm.dirty)
4941 set_page_dirty(page);
4942
4943 return page;
4944 }
4945
4946 dma_addr_t
4947 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4948 unsigned long n)
4949 {
4950 struct scatterlist *sg;
4951 unsigned int offset;
4952
4953 sg = i915_gem_object_get_sg(obj, n, &offset);
4954 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4955 }