]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 if (obj->cache_dirty)
55 return false;
56
57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 return true;
59
60 return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 u64 size)
83 {
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 u64 size)
92 {
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 int ret;
103
104 might_sleep();
105
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
111 ret = wait_event_interruptible_timeout(error->reset_queue,
112 !i915_reset_backoff(error),
113 I915_RESET_TIMEOUT);
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
118 return ret;
119 } else {
120 return 0;
121 }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = to_i915(dev);
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 GEM_TRACE("\n");
143
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
167 i915_timelines_park(i915);
168
169 i915_pmu_gt_parked(i915);
170 i915_vma_parked(i915);
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 GEM_TRACE("\n");
187
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 GEM_TRACE("\n");
201
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_private *dev_priv = to_i915(dev);
247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 struct drm_i915_gem_get_aperture *args = data;
249 struct i915_vma *vma;
250 u64 pinned;
251
252 pinned = ggtt->vm.reserved;
253 mutex_lock(&dev->struct_mutex);
254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 if (i915_vma_is_pinned(vma))
256 pinned += vma->node.size;
257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 if (i915_vma_is_pinned(vma))
259 pinned += vma->node.size;
260 mutex_unlock(&dev->struct_mutex);
261
262 args->aper_size = ggtt->vm.total;
263 args->aper_available_size = args->aper_size - pinned;
264
265 return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 struct address_space *mapping = obj->base.filp->f_mapping;
271 drm_dma_handle_t *phys;
272 struct sg_table *st;
273 struct scatterlist *sg;
274 char *vaddr;
275 int i;
276 int err;
277
278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 return -EINVAL;
280
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
286 roundup_pow_of_two(obj->base.size),
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
289 return -ENOMEM;
290
291 vaddr = phys->vaddr;
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
297 if (IS_ERR(page)) {
298 err = PTR_ERR(page);
299 goto err_phys;
300 }
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
307 put_page(page);
308 vaddr += PAGE_SIZE;
309 }
310
311 i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
314 if (!st) {
315 err = -ENOMEM;
316 goto err_phys;
317 }
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
321 err = -ENOMEM;
322 goto err_phys;
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
328
329 sg_dma_address(sg) = phys->busaddr;
330 sg_dma_len(sg) = obj->base.size;
331
332 obj->phys_handle = phys;
333
334 __i915_gem_object_set_pages(obj, st, sg->length);
335
336 return 0;
337
338 err_phys:
339 drm_pci_free(obj->base.dev, phys);
340
341 return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 struct sg_table *pages,
355 bool needs_clflush)
356 {
357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
361
362 if (needs_clflush &&
363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 drm_clflush_sg(pages);
366
367 __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373 {
374 __i915_gem_object_release_shmem(obj, pages, false);
375
376 if (obj->mm.dirty) {
377 struct address_space *mapping = obj->base.filp->f_mapping;
378 char *vaddr = obj->phys_handle->vaddr;
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
395 if (obj->mm.madv == I915_MADV_WILLNEED)
396 mark_page_accessed(page);
397 put_page(page);
398 vaddr += PAGE_SIZE;
399 }
400 obj->mm.dirty = false;
401 }
402
403 sg_free_table(pages);
404 kfree(pages);
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
435 */
436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 if (ret)
438 return ret;
439
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
457 struct intel_rps_client *rps_client)
458 {
459 struct i915_request *rq;
460
461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
472 if (i915_request_completed(rq))
473 goto out;
474
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
491 if (rps_client && !i915_request_started(rq)) {
492 if (INTEL_GEN(rq->i915) >= 6)
493 gen6_rps_boost(rq, rps_client);
494 }
495
496 timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
501
502 return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
509 struct intel_rps_client *rps_client)
510 {
511 unsigned int seq = __read_seqcount_begin(&resv->seq);
512 struct dma_fence *excl;
513 bool prune_fences = false;
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
518 int ret;
519
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
522 if (ret)
523 return ret;
524
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
528 rps_client);
529 if (timeout < 0)
530 break;
531
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
538
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
548 prune_fences = count && timeout >= 0;
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
551 }
552
553 if (excl && timeout >= 0)
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
556
557 dma_fence_put(excl);
558
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
570 }
571
572 return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
577 {
578 struct i915_request *rq;
579 struct intel_engine_cs *engine;
580
581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
586
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 if (engine->schedule)
590 engine->schedule(rq, attr);
591 rcu_read_unlock();
592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
597 {
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
604 __fence_set_priority(array->fences[i], attr);
605 } else {
606 __fence_set_priority(fence, attr);
607 }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
613 const struct i915_sched_attr *attr)
614 {
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
628 fence_set_priority(shared[i], attr);
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
638 fence_set_priority(excl, attr);
639 dma_fence_put(excl);
640 }
641 return 0;
642 }
643
644 /**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
649 * @rps_client: client (user process) to charge for any waitboosting
650 */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
655 struct intel_rps_client *rps_client)
656 {
657 might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662 #endif
663 GEM_BUG_ON(timeout < 0);
664
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
667 rps_client);
668 return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
675 return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
681 struct drm_file *file)
682 {
683 void *vaddr = obj->phys_handle->vaddr + args->offset;
684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
692
693 drm_clflush_virt_range(vaddr, args->size);
694 i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696 intel_fb_obj_flush(obj, ORIGIN_CPU);
697 return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713 struct drm_i915_private *dev_priv,
714 uint64_t size,
715 uint32_t *handle_p)
716 {
717 struct drm_i915_gem_object *obj;
718 int ret;
719 u32 handle;
720
721 size = roundup(size, PAGE_SIZE);
722 if (size == 0)
723 return -EINVAL;
724
725 /* Allocate the new object */
726 obj = i915_gem_object_create(dev_priv, size);
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
729
730 ret = drm_gem_handle_create(file, &obj->base, &handle);
731 /* drop reference from allocate - handle holds it now */
732 i915_gem_object_put(obj);
733 if (ret)
734 return ret;
735
736 *handle_p = handle;
737 return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744 {
745 /* have to work out size/pitch and return them */
746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 args->size = args->pitch * args->height;
748 return i915_gem_create(file, to_i915(dev),
749 args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759 * Creates a new mm object and returns a handle to it.
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
763 */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct drm_i915_gem_create *args = data;
770
771 i915_gem_flush_free_objects(dev_priv);
772
773 return i915_gem_create(file, dev_priv,
774 args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
803 */
804
805 wmb();
806
807 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 return;
809
810 i915_gem_chipset_flush(dev_priv);
811
812 intel_runtime_pm_get(dev_priv);
813 spin_lock_irq(&dev_priv->uncore.lock);
814
815 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817 spin_unlock_irq(&dev_priv->uncore.lock);
818 intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 struct i915_vma *vma;
826
827 if (!(obj->write_domain & flush_domains))
828 return;
829
830 switch (obj->write_domain) {
831 case I915_GEM_DOMAIN_GTT:
832 i915_gem_flush_ggtt_writes(dev_priv);
833
834 intel_fb_obj_flush(obj,
835 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837 for_each_ggtt_vma(vma, obj) {
838 if (vma->iomap)
839 continue;
840
841 i915_vma_unset_ggtt_write(vma);
842 }
843 break;
844
845 case I915_GEM_DOMAIN_WC:
846 wmb();
847 break;
848
849 case I915_GEM_DOMAIN_CPU:
850 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 break;
852
853 case I915_GEM_DOMAIN_RENDER:
854 if (gpu_write_needs_clflush(obj))
855 obj->cache_dirty = true;
856 break;
857 }
858
859 obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 const char *gpu_vaddr, int gpu_offset,
865 int length)
866 {
867 int ret, cpu_offset = 0;
868
869 while (length > 0) {
870 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 int this_length = min(cacheline_end - gpu_offset, length);
872 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 gpu_vaddr + swizzled_gpu_offset,
876 this_length);
877 if (ret)
878 return ret + length;
879
880 cpu_offset += this_length;
881 gpu_offset += this_length;
882 length -= this_length;
883 }
884
885 return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 const char __user *cpu_vaddr,
891 int length)
892 {
893 int ret, cpu_offset = 0;
894
895 while (length > 0) {
896 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 int this_length = min(cacheline_end - gpu_offset, length);
898 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 cpu_vaddr + cpu_offset,
902 this_length);
903 if (ret)
904 return ret + length;
905
906 cpu_offset += this_length;
907 gpu_offset += this_length;
908 length -= this_length;
909 }
910
911 return 0;
912 }
913
914 /*
915 * Pins the specified object's pages and synchronizes the object with
916 * GPU accesses. Sets needs_clflush to non-zero if the caller should
917 * flush the object from the CPU cache.
918 */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 unsigned int *needs_clflush)
921 {
922 int ret;
923
924 lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926 *needs_clflush = 0;
927 if (!i915_gem_object_has_struct_page(obj))
928 return -ENODEV;
929
930 ret = i915_gem_object_wait(obj,
931 I915_WAIT_INTERRUPTIBLE |
932 I915_WAIT_LOCKED,
933 MAX_SCHEDULE_TIMEOUT,
934 NULL);
935 if (ret)
936 return ret;
937
938 ret = i915_gem_object_pin_pages(obj);
939 if (ret)
940 return ret;
941
942 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 if (ret)
946 goto err_unpin;
947 else
948 goto out;
949 }
950
951 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953 /* If we're not in the cpu read domain, set ourself into the gtt
954 * read domain and manually flush cachelines (if required). This
955 * optimizes for the case when the gpu will dirty the data
956 * anyway again before the next pread happens.
957 */
958 if (!obj->cache_dirty &&
959 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963 /* return with the pages pinned */
964 return 0;
965
966 err_unpin:
967 i915_gem_object_unpin_pages(obj);
968 return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 unsigned int *needs_clflush)
973 {
974 int ret;
975
976 lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978 *needs_clflush = 0;
979 if (!i915_gem_object_has_struct_page(obj))
980 return -ENODEV;
981
982 ret = i915_gem_object_wait(obj,
983 I915_WAIT_INTERRUPTIBLE |
984 I915_WAIT_LOCKED |
985 I915_WAIT_ALL,
986 MAX_SCHEDULE_TIMEOUT,
987 NULL);
988 if (ret)
989 return ret;
990
991 ret = i915_gem_object_pin_pages(obj);
992 if (ret)
993 return ret;
994
995 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 if (ret)
999 goto err_unpin;
1000 else
1001 goto out;
1002 }
1003
1004 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006 /* If we're not in the cpu write domain, set ourself into the
1007 * gtt write domain and manually flush cachelines (as required).
1008 * This optimizes for the case when the gpu will use the data
1009 * right away and we therefore have to clflush anyway.
1010 */
1011 if (!obj->cache_dirty) {
1012 *needs_clflush |= CLFLUSH_AFTER;
1013
1014 /*
1015 * Same trick applies to invalidate partially written
1016 * cachelines read before writing.
1017 */
1018 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 *needs_clflush |= CLFLUSH_BEFORE;
1020 }
1021
1022 out:
1023 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 obj->mm.dirty = true;
1025 /* return with the pages pinned */
1026 return 0;
1027
1028 err_unpin:
1029 i915_gem_object_unpin_pages(obj);
1030 return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 bool swizzled)
1036 {
1037 if (unlikely(swizzled)) {
1038 unsigned long start = (unsigned long) addr;
1039 unsigned long end = (unsigned long) addr + length;
1040
1041 /* For swizzling simply ensure that we always flush both
1042 * channels. Lame, but simple and it works. Swizzled
1043 * pwrite/pread is far from a hotpath - current userspace
1044 * doesn't use it at all. */
1045 start = round_down(start, 128);
1046 end = round_up(end, 128);
1047
1048 drm_clflush_virt_range((void *)start, end - start);
1049 } else {
1050 drm_clflush_virt_range(addr, length);
1051 }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056 * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 char __user *user_data,
1060 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 char *vaddr;
1063 int ret;
1064
1065 vaddr = kmap(page);
1066 if (needs_clflush)
1067 shmem_clflush_swizzled_range(vaddr + offset, length,
1068 page_do_bit17_swizzling);
1069
1070 if (page_do_bit17_swizzling)
1071 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 else
1073 ret = __copy_to_user(user_data, vaddr + offset, length);
1074 kunmap(page);
1075
1076 return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 int ret;
1084
1085 ret = -ENODEV;
1086 if (!page_do_bit17_swizzling) {
1087 char *vaddr = kmap_atomic(page);
1088
1089 if (needs_clflush)
1090 drm_clflush_virt_range(vaddr + offset, length);
1091 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 kunmap_atomic(vaddr);
1093 }
1094 if (ret == 0)
1095 return 0;
1096
1097 return shmem_pread_slow(page, offset, length, user_data,
1098 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 struct drm_i915_gem_pread *args)
1104 {
1105 char __user *user_data;
1106 u64 remain;
1107 unsigned int obj_do_bit17_swizzling;
1108 unsigned int needs_clflush;
1109 unsigned int idx, offset;
1110 int ret;
1111
1112 obj_do_bit17_swizzling = 0;
1113 if (i915_gem_object_needs_bit17_swizzle(obj))
1114 obj_do_bit17_swizzling = BIT(17);
1115
1116 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 mutex_unlock(&obj->base.dev->struct_mutex);
1122 if (ret)
1123 return ret;
1124
1125 remain = args->size;
1126 user_data = u64_to_user_ptr(args->data_ptr);
1127 offset = offset_in_page(args->offset);
1128 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 struct page *page = i915_gem_object_get_page(obj, idx);
1130 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131
1132 ret = shmem_pread(page, offset, length, user_data,
1133 page_to_phys(page) & obj_do_bit17_swizzling,
1134 needs_clflush);
1135 if (ret)
1136 break;
1137
1138 remain -= length;
1139 user_data += length;
1140 offset = 0;
1141 }
1142
1143 i915_gem_obj_finish_shmem_access(obj);
1144 return ret;
1145 }
1146
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 loff_t base, int offset,
1150 char __user *user_data, int length)
1151 {
1152 void __iomem *vaddr;
1153 unsigned long unwritten;
1154
1155 /* We can use the cpu mem copy function because this is X86. */
1156 vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 unwritten = __copy_to_user_inatomic(user_data,
1158 (void __force *)vaddr + offset,
1159 length);
1160 io_mapping_unmap_atomic(vaddr);
1161 if (unwritten) {
1162 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 unwritten = copy_to_user(user_data,
1164 (void __force *)vaddr + offset,
1165 length);
1166 io_mapping_unmap(vaddr);
1167 }
1168 return unwritten;
1169 }
1170
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 const struct drm_i915_gem_pread *args)
1174 {
1175 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 struct i915_ggtt *ggtt = &i915->ggtt;
1177 struct drm_mm_node node;
1178 struct i915_vma *vma;
1179 void __user *user_data;
1180 u64 remain, offset;
1181 int ret;
1182
1183 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 if (ret)
1185 return ret;
1186
1187 intel_runtime_pm_get(i915);
1188 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 PIN_MAPPABLE |
1190 PIN_NONFAULT |
1191 PIN_NONBLOCK);
1192 if (!IS_ERR(vma)) {
1193 node.start = i915_ggtt_offset(vma);
1194 node.allocated = false;
1195 ret = i915_vma_put_fence(vma);
1196 if (ret) {
1197 i915_vma_unpin(vma);
1198 vma = ERR_PTR(ret);
1199 }
1200 }
1201 if (IS_ERR(vma)) {
1202 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 if (ret)
1204 goto out_unlock;
1205 GEM_BUG_ON(!node.allocated);
1206 }
1207
1208 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 if (ret)
1210 goto out_unpin;
1211
1212 mutex_unlock(&i915->drm.struct_mutex);
1213
1214 user_data = u64_to_user_ptr(args->data_ptr);
1215 remain = args->size;
1216 offset = args->offset;
1217
1218 while (remain > 0) {
1219 /* Operation in this page
1220 *
1221 * page_base = page offset within aperture
1222 * page_offset = offset within page
1223 * page_length = bytes to copy for this page
1224 */
1225 u32 page_base = node.start;
1226 unsigned page_offset = offset_in_page(offset);
1227 unsigned page_length = PAGE_SIZE - page_offset;
1228 page_length = remain < page_length ? remain : page_length;
1229 if (node.allocated) {
1230 wmb();
1231 ggtt->vm.insert_page(&ggtt->vm,
1232 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 node.start, I915_CACHE_NONE, 0);
1234 wmb();
1235 } else {
1236 page_base += offset & PAGE_MASK;
1237 }
1238
1239 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 user_data, page_length)) {
1241 ret = -EFAULT;
1242 break;
1243 }
1244
1245 remain -= page_length;
1246 user_data += page_length;
1247 offset += page_length;
1248 }
1249
1250 mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 if (node.allocated) {
1253 wmb();
1254 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 remove_mappable_node(&node);
1256 } else {
1257 i915_vma_unpin(vma);
1258 }
1259 out_unlock:
1260 intel_runtime_pm_put(i915);
1261 mutex_unlock(&i915->drm.struct_mutex);
1262
1263 return ret;
1264 }
1265
1266 /**
1267 * Reads data from the object referenced by handle.
1268 * @dev: drm device pointer
1269 * @data: ioctl data blob
1270 * @file: drm file pointer
1271 *
1272 * On error, the contents of *data are undefined.
1273 */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_pread *args = data;
1279 struct drm_i915_gem_object *obj;
1280 int ret;
1281
1282 if (args->size == 0)
1283 return 0;
1284
1285 if (!access_ok(VERIFY_WRITE,
1286 u64_to_user_ptr(args->data_ptr),
1287 args->size))
1288 return -EFAULT;
1289
1290 obj = i915_gem_object_lookup(file, args->handle);
1291 if (!obj)
1292 return -ENOENT;
1293
1294 /* Bounds check source. */
1295 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296 ret = -EINVAL;
1297 goto out;
1298 }
1299
1300 trace_i915_gem_object_pread(obj, args->offset, args->size);
1301
1302 ret = i915_gem_object_wait(obj,
1303 I915_WAIT_INTERRUPTIBLE,
1304 MAX_SCHEDULE_TIMEOUT,
1305 to_rps_client(file));
1306 if (ret)
1307 goto out;
1308
1309 ret = i915_gem_object_pin_pages(obj);
1310 if (ret)
1311 goto out;
1312
1313 ret = i915_gem_shmem_pread(obj, args);
1314 if (ret == -EFAULT || ret == -ENODEV)
1315 ret = i915_gem_gtt_pread(obj, args);
1316
1317 i915_gem_object_unpin_pages(obj);
1318 out:
1319 i915_gem_object_put(obj);
1320 return ret;
1321 }
1322
1323 /* This is the fast write path which cannot handle
1324 * page faults in the source data
1325 */
1326
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329 loff_t base, int offset,
1330 char __user *user_data, int length)
1331 {
1332 void __iomem *vaddr;
1333 unsigned long unwritten;
1334
1335 /* We can use the cpu mem copy function because this is X86. */
1336 vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338 user_data, length);
1339 io_mapping_unmap_atomic(vaddr);
1340 if (unwritten) {
1341 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 unwritten = copy_from_user((void __force *)vaddr + offset,
1343 user_data, length);
1344 io_mapping_unmap(vaddr);
1345 }
1346
1347 return unwritten;
1348 }
1349
1350 /**
1351 * This is the fast pwrite path, where we copy the data directly from the
1352 * user into the GTT, uncached.
1353 * @obj: i915 GEM object
1354 * @args: pwrite arguments structure
1355 */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 const struct drm_i915_gem_pwrite *args)
1359 {
1360 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 struct i915_ggtt *ggtt = &i915->ggtt;
1362 struct drm_mm_node node;
1363 struct i915_vma *vma;
1364 u64 remain, offset;
1365 void __user *user_data;
1366 int ret;
1367
1368 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 if (ret)
1370 return ret;
1371
1372 if (i915_gem_object_has_struct_page(obj)) {
1373 /*
1374 * Avoid waking the device up if we can fallback, as
1375 * waking/resuming is very slow (worst-case 10-100 ms
1376 * depending on PCI sleeps and our own resume time).
1377 * This easily dwarfs any performance advantage from
1378 * using the cache bypass of indirect GGTT access.
1379 */
1380 if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 ret = -EFAULT;
1382 goto out_unlock;
1383 }
1384 } else {
1385 /* No backing pages, no fallback, we must force GGTT access */
1386 intel_runtime_pm_get(i915);
1387 }
1388
1389 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 PIN_MAPPABLE |
1391 PIN_NONFAULT |
1392 PIN_NONBLOCK);
1393 if (!IS_ERR(vma)) {
1394 node.start = i915_ggtt_offset(vma);
1395 node.allocated = false;
1396 ret = i915_vma_put_fence(vma);
1397 if (ret) {
1398 i915_vma_unpin(vma);
1399 vma = ERR_PTR(ret);
1400 }
1401 }
1402 if (IS_ERR(vma)) {
1403 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404 if (ret)
1405 goto out_rpm;
1406 GEM_BUG_ON(!node.allocated);
1407 }
1408
1409 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 if (ret)
1411 goto out_unpin;
1412
1413 mutex_unlock(&i915->drm.struct_mutex);
1414
1415 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416
1417 user_data = u64_to_user_ptr(args->data_ptr);
1418 offset = args->offset;
1419 remain = args->size;
1420 while (remain) {
1421 /* Operation in this page
1422 *
1423 * page_base = page offset within aperture
1424 * page_offset = offset within page
1425 * page_length = bytes to copy for this page
1426 */
1427 u32 page_base = node.start;
1428 unsigned int page_offset = offset_in_page(offset);
1429 unsigned int page_length = PAGE_SIZE - page_offset;
1430 page_length = remain < page_length ? remain : page_length;
1431 if (node.allocated) {
1432 wmb(); /* flush the write before we modify the GGTT */
1433 ggtt->vm.insert_page(&ggtt->vm,
1434 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 node.start, I915_CACHE_NONE, 0);
1436 wmb(); /* flush modifications to the GGTT (insert_page) */
1437 } else {
1438 page_base += offset & PAGE_MASK;
1439 }
1440 /* If we get a fault while copying data, then (presumably) our
1441 * source page isn't available. Return the error and we'll
1442 * retry in the slow path.
1443 * If the object is non-shmem backed, we retry again with the
1444 * path that handles page fault.
1445 */
1446 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 user_data, page_length)) {
1448 ret = -EFAULT;
1449 break;
1450 }
1451
1452 remain -= page_length;
1453 user_data += page_length;
1454 offset += page_length;
1455 }
1456 intel_fb_obj_flush(obj, ORIGIN_CPU);
1457
1458 mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460 if (node.allocated) {
1461 wmb();
1462 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 remove_mappable_node(&node);
1464 } else {
1465 i915_vma_unpin(vma);
1466 }
1467 out_rpm:
1468 intel_runtime_pm_put(i915);
1469 out_unlock:
1470 mutex_unlock(&i915->drm.struct_mutex);
1471 return ret;
1472 }
1473
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476 char __user *user_data,
1477 bool page_do_bit17_swizzling,
1478 bool needs_clflush_before,
1479 bool needs_clflush_after)
1480 {
1481 char *vaddr;
1482 int ret;
1483
1484 vaddr = kmap(page);
1485 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486 shmem_clflush_swizzled_range(vaddr + offset, length,
1487 page_do_bit17_swizzling);
1488 if (page_do_bit17_swizzling)
1489 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 length);
1491 else
1492 ret = __copy_from_user(vaddr + offset, user_data, length);
1493 if (needs_clflush_after)
1494 shmem_clflush_swizzled_range(vaddr + offset, length,
1495 page_do_bit17_swizzling);
1496 kunmap(page);
1497
1498 return ret ? -EFAULT : 0;
1499 }
1500
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502 * Flushes invalid cachelines before writing to the target if
1503 * needs_clflush_before is set and flushes out any written cachelines after
1504 * writing if needs_clflush is set.
1505 */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 bool page_do_bit17_swizzling,
1509 bool needs_clflush_before,
1510 bool needs_clflush_after)
1511 {
1512 int ret;
1513
1514 ret = -ENODEV;
1515 if (!page_do_bit17_swizzling) {
1516 char *vaddr = kmap_atomic(page);
1517
1518 if (needs_clflush_before)
1519 drm_clflush_virt_range(vaddr + offset, len);
1520 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 if (needs_clflush_after)
1522 drm_clflush_virt_range(vaddr + offset, len);
1523
1524 kunmap_atomic(vaddr);
1525 }
1526 if (ret == 0)
1527 return ret;
1528
1529 return shmem_pwrite_slow(page, offset, len, user_data,
1530 page_do_bit17_swizzling,
1531 needs_clflush_before,
1532 needs_clflush_after);
1533 }
1534
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 const struct drm_i915_gem_pwrite *args)
1538 {
1539 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 void __user *user_data;
1541 u64 remain;
1542 unsigned int obj_do_bit17_swizzling;
1543 unsigned int partial_cacheline_write;
1544 unsigned int needs_clflush;
1545 unsigned int offset, idx;
1546 int ret;
1547
1548 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 if (ret)
1550 return ret;
1551
1552 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 mutex_unlock(&i915->drm.struct_mutex);
1554 if (ret)
1555 return ret;
1556
1557 obj_do_bit17_swizzling = 0;
1558 if (i915_gem_object_needs_bit17_swizzle(obj))
1559 obj_do_bit17_swizzling = BIT(17);
1560
1561 /* If we don't overwrite a cacheline completely we need to be
1562 * careful to have up-to-date data by first clflushing. Don't
1563 * overcomplicate things and flush the entire patch.
1564 */
1565 partial_cacheline_write = 0;
1566 if (needs_clflush & CLFLUSH_BEFORE)
1567 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568
1569 user_data = u64_to_user_ptr(args->data_ptr);
1570 remain = args->size;
1571 offset = offset_in_page(args->offset);
1572 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 struct page *page = i915_gem_object_get_page(obj, idx);
1574 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575
1576 ret = shmem_pwrite(page, offset, length, user_data,
1577 page_to_phys(page) & obj_do_bit17_swizzling,
1578 (offset | length) & partial_cacheline_write,
1579 needs_clflush & CLFLUSH_AFTER);
1580 if (ret)
1581 break;
1582
1583 remain -= length;
1584 user_data += length;
1585 offset = 0;
1586 }
1587
1588 intel_fb_obj_flush(obj, ORIGIN_CPU);
1589 i915_gem_obj_finish_shmem_access(obj);
1590 return ret;
1591 }
1592
1593 /**
1594 * Writes data to the object referenced by handle.
1595 * @dev: drm device
1596 * @data: ioctl data blob
1597 * @file: drm file
1598 *
1599 * On error, the contents of the buffer that were to be modified are undefined.
1600 */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603 struct drm_file *file)
1604 {
1605 struct drm_i915_gem_pwrite *args = data;
1606 struct drm_i915_gem_object *obj;
1607 int ret;
1608
1609 if (args->size == 0)
1610 return 0;
1611
1612 if (!access_ok(VERIFY_READ,
1613 u64_to_user_ptr(args->data_ptr),
1614 args->size))
1615 return -EFAULT;
1616
1617 obj = i915_gem_object_lookup(file, args->handle);
1618 if (!obj)
1619 return -ENOENT;
1620
1621 /* Bounds check destination. */
1622 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623 ret = -EINVAL;
1624 goto err;
1625 }
1626
1627 /* Writes not allowed into this read-only object */
1628 if (i915_gem_object_is_readonly(obj)) {
1629 ret = -EINVAL;
1630 goto err;
1631 }
1632
1633 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634
1635 ret = -ENODEV;
1636 if (obj->ops->pwrite)
1637 ret = obj->ops->pwrite(obj, args);
1638 if (ret != -ENODEV)
1639 goto err;
1640
1641 ret = i915_gem_object_wait(obj,
1642 I915_WAIT_INTERRUPTIBLE |
1643 I915_WAIT_ALL,
1644 MAX_SCHEDULE_TIMEOUT,
1645 to_rps_client(file));
1646 if (ret)
1647 goto err;
1648
1649 ret = i915_gem_object_pin_pages(obj);
1650 if (ret)
1651 goto err;
1652
1653 ret = -EFAULT;
1654 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 * it would end up going through the fenced access, and we'll get
1656 * different detiling behavior between reading and writing.
1657 * pread/pwrite currently are reading and writing from the CPU
1658 * perspective, requiring manual detiling by the client.
1659 */
1660 if (!i915_gem_object_has_struct_page(obj) ||
1661 cpu_write_needs_clflush(obj))
1662 /* Note that the gtt paths might fail with non-page-backed user
1663 * pointers (e.g. gtt mappings when moving data between
1664 * textures). Fallback to the shmem path in that case.
1665 */
1666 ret = i915_gem_gtt_pwrite_fast(obj, args);
1667
1668 if (ret == -EFAULT || ret == -ENOSPC) {
1669 if (obj->phys_handle)
1670 ret = i915_gem_phys_pwrite(obj, args, file);
1671 else
1672 ret = i915_gem_shmem_pwrite(obj, args);
1673 }
1674
1675 i915_gem_object_unpin_pages(obj);
1676 err:
1677 i915_gem_object_put(obj);
1678 return ret;
1679 }
1680
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683 struct drm_i915_private *i915;
1684 struct list_head *list;
1685 struct i915_vma *vma;
1686
1687 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688
1689 for_each_ggtt_vma(vma, obj) {
1690 if (i915_vma_is_active(vma))
1691 continue;
1692
1693 if (!drm_mm_node_allocated(&vma->node))
1694 continue;
1695
1696 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 }
1698
1699 i915 = to_i915(obj->base.dev);
1700 spin_lock(&i915->mm.obj_lock);
1701 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 list_move_tail(&obj->mm.link, list);
1703 spin_unlock(&i915->mm.obj_lock);
1704 }
1705
1706 /**
1707 * Called when user space prepares to use an object with the CPU, either
1708 * through the mmap ioctl's mapping or a GTT mapping.
1709 * @dev: drm device
1710 * @data: ioctl data blob
1711 * @file: drm file
1712 */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715 struct drm_file *file)
1716 {
1717 struct drm_i915_gem_set_domain *args = data;
1718 struct drm_i915_gem_object *obj;
1719 uint32_t read_domains = args->read_domains;
1720 uint32_t write_domain = args->write_domain;
1721 int err;
1722
1723 /* Only handle setting domains to types used by the CPU. */
1724 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 return -EINVAL;
1726
1727 /* Having something in the write domain implies it's in the read
1728 * domain, and only that read domain. Enforce that in the request.
1729 */
1730 if (write_domain != 0 && read_domains != write_domain)
1731 return -EINVAL;
1732
1733 obj = i915_gem_object_lookup(file, args->handle);
1734 if (!obj)
1735 return -ENOENT;
1736
1737 /* Try to flush the object off the GPU without holding the lock.
1738 * We will repeat the flush holding the lock in the normal manner
1739 * to catch cases where we are gazumped.
1740 */
1741 err = i915_gem_object_wait(obj,
1742 I915_WAIT_INTERRUPTIBLE |
1743 I915_WAIT_PRIORITY |
1744 (write_domain ? I915_WAIT_ALL : 0),
1745 MAX_SCHEDULE_TIMEOUT,
1746 to_rps_client(file));
1747 if (err)
1748 goto out;
1749
1750 /*
1751 * Proxy objects do not control access to the backing storage, ergo
1752 * they cannot be used as a means to manipulate the cache domain
1753 * tracking for that backing storage. The proxy object is always
1754 * considered to be outside of any cache domain.
1755 */
1756 if (i915_gem_object_is_proxy(obj)) {
1757 err = -ENXIO;
1758 goto out;
1759 }
1760
1761 /*
1762 * Flush and acquire obj->pages so that we are coherent through
1763 * direct access in memory with previous cached writes through
1764 * shmemfs and that our cache domain tracking remains valid.
1765 * For example, if the obj->filp was moved to swap without us
1766 * being notified and releasing the pages, we would mistakenly
1767 * continue to assume that the obj remained out of the CPU cached
1768 * domain.
1769 */
1770 err = i915_gem_object_pin_pages(obj);
1771 if (err)
1772 goto out;
1773
1774 err = i915_mutex_lock_interruptible(dev);
1775 if (err)
1776 goto out_unpin;
1777
1778 if (read_domains & I915_GEM_DOMAIN_WC)
1779 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1780 else if (read_domains & I915_GEM_DOMAIN_GTT)
1781 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1782 else
1783 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1784
1785 /* And bump the LRU for this access */
1786 i915_gem_object_bump_inactive_ggtt(obj);
1787
1788 mutex_unlock(&dev->struct_mutex);
1789
1790 if (write_domain != 0)
1791 intel_fb_obj_invalidate(obj,
1792 fb_write_origin(obj, write_domain));
1793
1794 out_unpin:
1795 i915_gem_object_unpin_pages(obj);
1796 out:
1797 i915_gem_object_put(obj);
1798 return err;
1799 }
1800
1801 /**
1802 * Called when user space has done writes to this buffer
1803 * @dev: drm device
1804 * @data: ioctl data blob
1805 * @file: drm file
1806 */
1807 int
1808 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1809 struct drm_file *file)
1810 {
1811 struct drm_i915_gem_sw_finish *args = data;
1812 struct drm_i915_gem_object *obj;
1813
1814 obj = i915_gem_object_lookup(file, args->handle);
1815 if (!obj)
1816 return -ENOENT;
1817
1818 /*
1819 * Proxy objects are barred from CPU access, so there is no
1820 * need to ban sw_finish as it is a nop.
1821 */
1822
1823 /* Pinned buffers may be scanout, so flush the cache */
1824 i915_gem_object_flush_if_display(obj);
1825 i915_gem_object_put(obj);
1826
1827 return 0;
1828 }
1829
1830 /**
1831 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1832 * it is mapped to.
1833 * @dev: drm device
1834 * @data: ioctl data blob
1835 * @file: drm file
1836 *
1837 * While the mapping holds a reference on the contents of the object, it doesn't
1838 * imply a ref on the object itself.
1839 *
1840 * IMPORTANT:
1841 *
1842 * DRM driver writers who look a this function as an example for how to do GEM
1843 * mmap support, please don't implement mmap support like here. The modern way
1844 * to implement DRM mmap support is with an mmap offset ioctl (like
1845 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1846 * That way debug tooling like valgrind will understand what's going on, hiding
1847 * the mmap call in a driver private ioctl will break that. The i915 driver only
1848 * does cpu mmaps this way because we didn't know better.
1849 */
1850 int
1851 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1852 struct drm_file *file)
1853 {
1854 struct drm_i915_gem_mmap *args = data;
1855 struct drm_i915_gem_object *obj;
1856 unsigned long addr;
1857
1858 if (args->flags & ~(I915_MMAP_WC))
1859 return -EINVAL;
1860
1861 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1862 return -ENODEV;
1863
1864 obj = i915_gem_object_lookup(file, args->handle);
1865 if (!obj)
1866 return -ENOENT;
1867
1868 /* prime objects have no backing filp to GEM mmap
1869 * pages from.
1870 */
1871 if (!obj->base.filp) {
1872 i915_gem_object_put(obj);
1873 return -ENXIO;
1874 }
1875
1876 addr = vm_mmap(obj->base.filp, 0, args->size,
1877 PROT_READ | PROT_WRITE, MAP_SHARED,
1878 args->offset);
1879 if (args->flags & I915_MMAP_WC) {
1880 struct mm_struct *mm = current->mm;
1881 struct vm_area_struct *vma;
1882
1883 if (down_write_killable(&mm->mmap_sem)) {
1884 i915_gem_object_put(obj);
1885 return -EINTR;
1886 }
1887 vma = find_vma(mm, addr);
1888 if (vma)
1889 vma->vm_page_prot =
1890 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1891 else
1892 addr = -ENOMEM;
1893 up_write(&mm->mmap_sem);
1894
1895 /* This may race, but that's ok, it only gets set */
1896 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1897 }
1898 i915_gem_object_put(obj);
1899 if (IS_ERR((void *)addr))
1900 return addr;
1901
1902 args->addr_ptr = (uint64_t) addr;
1903
1904 return 0;
1905 }
1906
1907 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1908 {
1909 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1910 }
1911
1912 /**
1913 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1914 *
1915 * A history of the GTT mmap interface:
1916 *
1917 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1918 * aligned and suitable for fencing, and still fit into the available
1919 * mappable space left by the pinned display objects. A classic problem
1920 * we called the page-fault-of-doom where we would ping-pong between
1921 * two objects that could not fit inside the GTT and so the memcpy
1922 * would page one object in at the expense of the other between every
1923 * single byte.
1924 *
1925 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1926 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1927 * object is too large for the available space (or simply too large
1928 * for the mappable aperture!), a view is created instead and faulted
1929 * into userspace. (This view is aligned and sized appropriately for
1930 * fenced access.)
1931 *
1932 * 2 - Recognise WC as a separate cache domain so that we can flush the
1933 * delayed writes via GTT before performing direct access via WC.
1934 *
1935 * Restrictions:
1936 *
1937 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1938 * hangs on some architectures, corruption on others. An attempt to service
1939 * a GTT page fault from a snoopable object will generate a SIGBUS.
1940 *
1941 * * the object must be able to fit into RAM (physical memory, though no
1942 * limited to the mappable aperture).
1943 *
1944 *
1945 * Caveats:
1946 *
1947 * * a new GTT page fault will synchronize rendering from the GPU and flush
1948 * all data to system memory. Subsequent access will not be synchronized.
1949 *
1950 * * all mappings are revoked on runtime device suspend.
1951 *
1952 * * there are only 8, 16 or 32 fence registers to share between all users
1953 * (older machines require fence register for display and blitter access
1954 * as well). Contention of the fence registers will cause the previous users
1955 * to be unmapped and any new access will generate new page faults.
1956 *
1957 * * running out of memory while servicing a fault may generate a SIGBUS,
1958 * rather than the expected SIGSEGV.
1959 */
1960 int i915_gem_mmap_gtt_version(void)
1961 {
1962 return 2;
1963 }
1964
1965 static inline struct i915_ggtt_view
1966 compute_partial_view(const struct drm_i915_gem_object *obj,
1967 pgoff_t page_offset,
1968 unsigned int chunk)
1969 {
1970 struct i915_ggtt_view view;
1971
1972 if (i915_gem_object_is_tiled(obj))
1973 chunk = roundup(chunk, tile_row_pages(obj));
1974
1975 view.type = I915_GGTT_VIEW_PARTIAL;
1976 view.partial.offset = rounddown(page_offset, chunk);
1977 view.partial.size =
1978 min_t(unsigned int, chunk,
1979 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1980
1981 /* If the partial covers the entire object, just create a normal VMA. */
1982 if (chunk >= obj->base.size >> PAGE_SHIFT)
1983 view.type = I915_GGTT_VIEW_NORMAL;
1984
1985 return view;
1986 }
1987
1988 /**
1989 * i915_gem_fault - fault a page into the GTT
1990 * @vmf: fault info
1991 *
1992 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1993 * from userspace. The fault handler takes care of binding the object to
1994 * the GTT (if needed), allocating and programming a fence register (again,
1995 * only if needed based on whether the old reg is still valid or the object
1996 * is tiled) and inserting a new PTE into the faulting process.
1997 *
1998 * Note that the faulting process may involve evicting existing objects
1999 * from the GTT and/or fence registers to make room. So performance may
2000 * suffer if the GTT working set is large or there are few fence registers
2001 * left.
2002 *
2003 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2004 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2005 */
2006 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2007 {
2008 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2009 struct vm_area_struct *area = vmf->vma;
2010 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2011 struct drm_device *dev = obj->base.dev;
2012 struct drm_i915_private *dev_priv = to_i915(dev);
2013 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014 bool write = area->vm_flags & VM_WRITE;
2015 struct i915_vma *vma;
2016 pgoff_t page_offset;
2017 int ret;
2018
2019 /* Sanity check that we allow writing into this object */
2020 if (i915_gem_object_is_readonly(obj) && write)
2021 return VM_FAULT_SIGBUS;
2022
2023 /* We don't use vmf->pgoff since that has the fake offset */
2024 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2025
2026 trace_i915_gem_object_fault(obj, page_offset, true, write);
2027
2028 /* Try to flush the object off the GPU first without holding the lock.
2029 * Upon acquiring the lock, we will perform our sanity checks and then
2030 * repeat the flush holding the lock in the normal manner to catch cases
2031 * where we are gazumped.
2032 */
2033 ret = i915_gem_object_wait(obj,
2034 I915_WAIT_INTERRUPTIBLE,
2035 MAX_SCHEDULE_TIMEOUT,
2036 NULL);
2037 if (ret)
2038 goto err;
2039
2040 ret = i915_gem_object_pin_pages(obj);
2041 if (ret)
2042 goto err;
2043
2044 intel_runtime_pm_get(dev_priv);
2045
2046 ret = i915_mutex_lock_interruptible(dev);
2047 if (ret)
2048 goto err_rpm;
2049
2050 /* Access to snoopable pages through the GTT is incoherent. */
2051 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2052 ret = -EFAULT;
2053 goto err_unlock;
2054 }
2055
2056
2057 /* Now pin it into the GTT as needed */
2058 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2059 PIN_MAPPABLE |
2060 PIN_NONBLOCK |
2061 PIN_NONFAULT);
2062 if (IS_ERR(vma)) {
2063 /* Use a partial view if it is bigger than available space */
2064 struct i915_ggtt_view view =
2065 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2066 unsigned int flags;
2067
2068 flags = PIN_MAPPABLE;
2069 if (view.type == I915_GGTT_VIEW_NORMAL)
2070 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2071
2072 /*
2073 * Userspace is now writing through an untracked VMA, abandon
2074 * all hope that the hardware is able to track future writes.
2075 */
2076 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2077
2078 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2079 if (IS_ERR(vma) && !view.type) {
2080 flags = PIN_MAPPABLE;
2081 view.type = I915_GGTT_VIEW_PARTIAL;
2082 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2083 }
2084 }
2085 if (IS_ERR(vma)) {
2086 ret = PTR_ERR(vma);
2087 goto err_unlock;
2088 }
2089
2090 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2091 if (ret)
2092 goto err_unpin;
2093
2094 ret = i915_vma_pin_fence(vma);
2095 if (ret)
2096 goto err_unpin;
2097
2098 /* Finally, remap it using the new GTT offset */
2099 ret = remap_io_mapping(area,
2100 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2101 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2102 min_t(u64, vma->size, area->vm_end - area->vm_start),
2103 &ggtt->iomap);
2104 if (ret)
2105 goto err_fence;
2106
2107 /* Mark as being mmapped into userspace for later revocation */
2108 assert_rpm_wakelock_held(dev_priv);
2109 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2110 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2111 GEM_BUG_ON(!obj->userfault_count);
2112
2113 i915_vma_set_ggtt_write(vma);
2114
2115 err_fence:
2116 i915_vma_unpin_fence(vma);
2117 err_unpin:
2118 __i915_vma_unpin(vma);
2119 err_unlock:
2120 mutex_unlock(&dev->struct_mutex);
2121 err_rpm:
2122 intel_runtime_pm_put(dev_priv);
2123 i915_gem_object_unpin_pages(obj);
2124 err:
2125 switch (ret) {
2126 case -EIO:
2127 /*
2128 * We eat errors when the gpu is terminally wedged to avoid
2129 * userspace unduly crashing (gl has no provisions for mmaps to
2130 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2131 * and so needs to be reported.
2132 */
2133 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2134 return VM_FAULT_SIGBUS;
2135 /* else: fall through */
2136 case -EAGAIN:
2137 /*
2138 * EAGAIN means the gpu is hung and we'll wait for the error
2139 * handler to reset everything when re-faulting in
2140 * i915_mutex_lock_interruptible.
2141 */
2142 case 0:
2143 case -ERESTARTSYS:
2144 case -EINTR:
2145 case -EBUSY:
2146 /*
2147 * EBUSY is ok: this just means that another thread
2148 * already did the job.
2149 */
2150 return VM_FAULT_NOPAGE;
2151 case -ENOMEM:
2152 return VM_FAULT_OOM;
2153 case -ENOSPC:
2154 case -EFAULT:
2155 return VM_FAULT_SIGBUS;
2156 default:
2157 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2158 return VM_FAULT_SIGBUS;
2159 }
2160 }
2161
2162 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2163 {
2164 struct i915_vma *vma;
2165
2166 GEM_BUG_ON(!obj->userfault_count);
2167
2168 obj->userfault_count = 0;
2169 list_del(&obj->userfault_link);
2170 drm_vma_node_unmap(&obj->base.vma_node,
2171 obj->base.dev->anon_inode->i_mapping);
2172
2173 for_each_ggtt_vma(vma, obj)
2174 i915_vma_unset_userfault(vma);
2175 }
2176
2177 /**
2178 * i915_gem_release_mmap - remove physical page mappings
2179 * @obj: obj in question
2180 *
2181 * Preserve the reservation of the mmapping with the DRM core code, but
2182 * relinquish ownership of the pages back to the system.
2183 *
2184 * It is vital that we remove the page mapping if we have mapped a tiled
2185 * object through the GTT and then lose the fence register due to
2186 * resource pressure. Similarly if the object has been moved out of the
2187 * aperture, than pages mapped into userspace must be revoked. Removing the
2188 * mapping will then trigger a page fault on the next user access, allowing
2189 * fixup by i915_gem_fault().
2190 */
2191 void
2192 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2195
2196 /* Serialisation between user GTT access and our code depends upon
2197 * revoking the CPU's PTE whilst the mutex is held. The next user
2198 * pagefault then has to wait until we release the mutex.
2199 *
2200 * Note that RPM complicates somewhat by adding an additional
2201 * requirement that operations to the GGTT be made holding the RPM
2202 * wakeref.
2203 */
2204 lockdep_assert_held(&i915->drm.struct_mutex);
2205 intel_runtime_pm_get(i915);
2206
2207 if (!obj->userfault_count)
2208 goto out;
2209
2210 __i915_gem_object_release_mmap(obj);
2211
2212 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2213 * memory transactions from userspace before we return. The TLB
2214 * flushing implied above by changing the PTE above *should* be
2215 * sufficient, an extra barrier here just provides us with a bit
2216 * of paranoid documentation about our requirement to serialise
2217 * memory writes before touching registers / GSM.
2218 */
2219 wmb();
2220
2221 out:
2222 intel_runtime_pm_put(i915);
2223 }
2224
2225 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2226 {
2227 struct drm_i915_gem_object *obj, *on;
2228 int i;
2229
2230 /*
2231 * Only called during RPM suspend. All users of the userfault_list
2232 * must be holding an RPM wakeref to ensure that this can not
2233 * run concurrently with themselves (and use the struct_mutex for
2234 * protection between themselves).
2235 */
2236
2237 list_for_each_entry_safe(obj, on,
2238 &dev_priv->mm.userfault_list, userfault_link)
2239 __i915_gem_object_release_mmap(obj);
2240
2241 /* The fence will be lost when the device powers down. If any were
2242 * in use by hardware (i.e. they are pinned), we should not be powering
2243 * down! All other fences will be reacquired by the user upon waking.
2244 */
2245 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2246 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2247
2248 /* Ideally we want to assert that the fence register is not
2249 * live at this point (i.e. that no piece of code will be
2250 * trying to write through fence + GTT, as that both violates
2251 * our tracking of activity and associated locking/barriers,
2252 * but also is illegal given that the hw is powered down).
2253 *
2254 * Previously we used reg->pin_count as a "liveness" indicator.
2255 * That is not sufficient, and we need a more fine-grained
2256 * tool if we want to have a sanity check here.
2257 */
2258
2259 if (!reg->vma)
2260 continue;
2261
2262 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2263 reg->dirty = true;
2264 }
2265 }
2266
2267 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2268 {
2269 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2270 int err;
2271
2272 err = drm_gem_create_mmap_offset(&obj->base);
2273 if (likely(!err))
2274 return 0;
2275
2276 /* Attempt to reap some mmap space from dead objects */
2277 do {
2278 err = i915_gem_wait_for_idle(dev_priv,
2279 I915_WAIT_INTERRUPTIBLE,
2280 MAX_SCHEDULE_TIMEOUT);
2281 if (err)
2282 break;
2283
2284 i915_gem_drain_freed_objects(dev_priv);
2285 err = drm_gem_create_mmap_offset(&obj->base);
2286 if (!err)
2287 break;
2288
2289 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2290
2291 return err;
2292 }
2293
2294 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2295 {
2296 drm_gem_free_mmap_offset(&obj->base);
2297 }
2298
2299 int
2300 i915_gem_mmap_gtt(struct drm_file *file,
2301 struct drm_device *dev,
2302 uint32_t handle,
2303 uint64_t *offset)
2304 {
2305 struct drm_i915_gem_object *obj;
2306 int ret;
2307
2308 obj = i915_gem_object_lookup(file, handle);
2309 if (!obj)
2310 return -ENOENT;
2311
2312 ret = i915_gem_object_create_mmap_offset(obj);
2313 if (ret == 0)
2314 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2315
2316 i915_gem_object_put(obj);
2317 return ret;
2318 }
2319
2320 /**
2321 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2322 * @dev: DRM device
2323 * @data: GTT mapping ioctl data
2324 * @file: GEM object info
2325 *
2326 * Simply returns the fake offset to userspace so it can mmap it.
2327 * The mmap call will end up in drm_gem_mmap(), which will set things
2328 * up so we can get faults in the handler above.
2329 *
2330 * The fault handler will take care of binding the object into the GTT
2331 * (since it may have been evicted to make room for something), allocating
2332 * a fence register, and mapping the appropriate aperture address into
2333 * userspace.
2334 */
2335 int
2336 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2337 struct drm_file *file)
2338 {
2339 struct drm_i915_gem_mmap_gtt *args = data;
2340
2341 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2342 }
2343
2344 /* Immediately discard the backing storage */
2345 static void
2346 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2347 {
2348 i915_gem_object_free_mmap_offset(obj);
2349
2350 if (obj->base.filp == NULL)
2351 return;
2352
2353 /* Our goal here is to return as much of the memory as
2354 * is possible back to the system as we are called from OOM.
2355 * To do this we must instruct the shmfs to drop all of its
2356 * backing pages, *now*.
2357 */
2358 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2359 obj->mm.madv = __I915_MADV_PURGED;
2360 obj->mm.pages = ERR_PTR(-EFAULT);
2361 }
2362
2363 /* Try to discard unwanted pages */
2364 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2365 {
2366 struct address_space *mapping;
2367
2368 lockdep_assert_held(&obj->mm.lock);
2369 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2370
2371 switch (obj->mm.madv) {
2372 case I915_MADV_DONTNEED:
2373 i915_gem_object_truncate(obj);
2374 case __I915_MADV_PURGED:
2375 return;
2376 }
2377
2378 if (obj->base.filp == NULL)
2379 return;
2380
2381 mapping = obj->base.filp->f_mapping,
2382 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2383 }
2384
2385 /*
2386 * Move pages to appropriate lru and release the pagevec, decrementing the
2387 * ref count of those pages.
2388 */
2389 static void check_release_pagevec(struct pagevec *pvec)
2390 {
2391 check_move_unevictable_pages(pvec);
2392 __pagevec_release(pvec);
2393 cond_resched();
2394 }
2395
2396 static void
2397 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2398 struct sg_table *pages)
2399 {
2400 struct sgt_iter sgt_iter;
2401 struct pagevec pvec;
2402 struct page *page;
2403
2404 __i915_gem_object_release_shmem(obj, pages, true);
2405
2406 i915_gem_gtt_finish_pages(obj, pages);
2407
2408 if (i915_gem_object_needs_bit17_swizzle(obj))
2409 i915_gem_object_save_bit_17_swizzle(obj, pages);
2410
2411 mapping_clear_unevictable(file_inode(obj->base.filp)->i_mapping);
2412
2413 pagevec_init(&pvec);
2414 for_each_sgt_page(page, sgt_iter, pages) {
2415 if (obj->mm.dirty)
2416 set_page_dirty(page);
2417
2418 if (obj->mm.madv == I915_MADV_WILLNEED)
2419 mark_page_accessed(page);
2420
2421 if (!pagevec_add(&pvec, page))
2422 check_release_pagevec(&pvec);
2423 }
2424 if (pagevec_count(&pvec))
2425 check_release_pagevec(&pvec);
2426 obj->mm.dirty = false;
2427
2428 sg_free_table(pages);
2429 kfree(pages);
2430 }
2431
2432 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2433 {
2434 struct radix_tree_iter iter;
2435 void __rcu **slot;
2436
2437 rcu_read_lock();
2438 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2439 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2440 rcu_read_unlock();
2441 }
2442
2443 static struct sg_table *
2444 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2445 {
2446 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2447 struct sg_table *pages;
2448
2449 pages = fetch_and_zero(&obj->mm.pages);
2450 if (!pages)
2451 return NULL;
2452
2453 spin_lock(&i915->mm.obj_lock);
2454 list_del(&obj->mm.link);
2455 spin_unlock(&i915->mm.obj_lock);
2456
2457 if (obj->mm.mapping) {
2458 void *ptr;
2459
2460 ptr = page_mask_bits(obj->mm.mapping);
2461 if (is_vmalloc_addr(ptr))
2462 vunmap(ptr);
2463 else
2464 kunmap(kmap_to_page(ptr));
2465
2466 obj->mm.mapping = NULL;
2467 }
2468
2469 __i915_gem_object_reset_page_iter(obj);
2470 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2471
2472 return pages;
2473 }
2474
2475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2476 enum i915_mm_subclass subclass)
2477 {
2478 struct sg_table *pages;
2479
2480 if (i915_gem_object_has_pinned_pages(obj))
2481 return;
2482
2483 GEM_BUG_ON(obj->bind_count);
2484 if (!i915_gem_object_has_pages(obj))
2485 return;
2486
2487 /* May be called by shrinker from within get_pages() (on another bo) */
2488 mutex_lock_nested(&obj->mm.lock, subclass);
2489 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2490 goto unlock;
2491
2492 /*
2493 * ->put_pages might need to allocate memory for the bit17 swizzle
2494 * array, hence protect them from being reaped by removing them from gtt
2495 * lists early.
2496 */
2497 pages = __i915_gem_object_unset_pages(obj);
2498 if (!IS_ERR(pages))
2499 obj->ops->put_pages(obj, pages);
2500
2501 unlock:
2502 mutex_unlock(&obj->mm.lock);
2503 }
2504
2505 bool i915_sg_trim(struct sg_table *orig_st)
2506 {
2507 struct sg_table new_st;
2508 struct scatterlist *sg, *new_sg;
2509 unsigned int i;
2510
2511 if (orig_st->nents == orig_st->orig_nents)
2512 return false;
2513
2514 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2515 return false;
2516
2517 new_sg = new_st.sgl;
2518 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2519 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2520 sg_dma_address(new_sg) = sg_dma_address(sg);
2521 sg_dma_len(new_sg) = sg_dma_len(sg);
2522
2523 new_sg = sg_next(new_sg);
2524 }
2525 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2526
2527 sg_free_table(orig_st);
2528
2529 *orig_st = new_st;
2530 return true;
2531 }
2532
2533 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2534 {
2535 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2536 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2537 unsigned long i;
2538 struct address_space *mapping;
2539 struct sg_table *st;
2540 struct scatterlist *sg;
2541 struct sgt_iter sgt_iter;
2542 struct page *page;
2543 unsigned long last_pfn = 0; /* suppress gcc warning */
2544 unsigned int max_segment = i915_sg_segment_size();
2545 unsigned int sg_page_sizes;
2546 struct pagevec pvec;
2547 gfp_t noreclaim;
2548 int ret;
2549
2550 /*
2551 * Assert that the object is not currently in any GPU domain. As it
2552 * wasn't in the GTT, there shouldn't be any way it could have been in
2553 * a GPU cache
2554 */
2555 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2556 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2557
2558 /*
2559 * If there's no chance of allocating enough pages for the whole
2560 * object, bail early.
2561 */
2562 if (page_count > totalram_pages())
2563 return -ENOMEM;
2564
2565 st = kmalloc(sizeof(*st), GFP_KERNEL);
2566 if (st == NULL)
2567 return -ENOMEM;
2568
2569 rebuild_st:
2570 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2571 kfree(st);
2572 return -ENOMEM;
2573 }
2574
2575 /*
2576 * Get the list of pages out of our struct file. They'll be pinned
2577 * at this point until we release them.
2578 *
2579 * Fail silently without starting the shrinker
2580 */
2581 mapping = obj->base.filp->f_mapping;
2582 mapping_set_unevictable(mapping);
2583 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2584 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2585
2586 sg = st->sgl;
2587 st->nents = 0;
2588 sg_page_sizes = 0;
2589 for (i = 0; i < page_count; i++) {
2590 const unsigned int shrink[] = {
2591 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2592 0,
2593 }, *s = shrink;
2594 gfp_t gfp = noreclaim;
2595
2596 do {
2597 cond_resched();
2598 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2599 if (likely(!IS_ERR(page)))
2600 break;
2601
2602 if (!*s) {
2603 ret = PTR_ERR(page);
2604 goto err_sg;
2605 }
2606
2607 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2608
2609 /*
2610 * We've tried hard to allocate the memory by reaping
2611 * our own buffer, now let the real VM do its job and
2612 * go down in flames if truly OOM.
2613 *
2614 * However, since graphics tend to be disposable,
2615 * defer the oom here by reporting the ENOMEM back
2616 * to userspace.
2617 */
2618 if (!*s) {
2619 /* reclaim and warn, but no oom */
2620 gfp = mapping_gfp_mask(mapping);
2621
2622 /*
2623 * Our bo are always dirty and so we require
2624 * kswapd to reclaim our pages (direct reclaim
2625 * does not effectively begin pageout of our
2626 * buffers on its own). However, direct reclaim
2627 * only waits for kswapd when under allocation
2628 * congestion. So as a result __GFP_RECLAIM is
2629 * unreliable and fails to actually reclaim our
2630 * dirty pages -- unless you try over and over
2631 * again with !__GFP_NORETRY. However, we still
2632 * want to fail this allocation rather than
2633 * trigger the out-of-memory killer and for
2634 * this we want __GFP_RETRY_MAYFAIL.
2635 */
2636 gfp |= __GFP_RETRY_MAYFAIL;
2637 }
2638 } while (1);
2639
2640 if (!i ||
2641 sg->length >= max_segment ||
2642 page_to_pfn(page) != last_pfn + 1) {
2643 if (i) {
2644 sg_page_sizes |= sg->length;
2645 sg = sg_next(sg);
2646 }
2647 st->nents++;
2648 sg_set_page(sg, page, PAGE_SIZE, 0);
2649 } else {
2650 sg->length += PAGE_SIZE;
2651 }
2652 last_pfn = page_to_pfn(page);
2653
2654 /* Check that the i965g/gm workaround works. */
2655 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2656 }
2657 if (sg) { /* loop terminated early; short sg table */
2658 sg_page_sizes |= sg->length;
2659 sg_mark_end(sg);
2660 }
2661
2662 /* Trim unused sg entries to avoid wasting memory. */
2663 i915_sg_trim(st);
2664
2665 ret = i915_gem_gtt_prepare_pages(obj, st);
2666 if (ret) {
2667 /*
2668 * DMA remapping failed? One possible cause is that
2669 * it could not reserve enough large entries, asking
2670 * for PAGE_SIZE chunks instead may be helpful.
2671 */
2672 if (max_segment > PAGE_SIZE) {
2673 for_each_sgt_page(page, sgt_iter, st)
2674 put_page(page);
2675 sg_free_table(st);
2676
2677 max_segment = PAGE_SIZE;
2678 goto rebuild_st;
2679 } else {
2680 dev_warn(&dev_priv->drm.pdev->dev,
2681 "Failed to DMA remap %lu pages\n",
2682 page_count);
2683 goto err_pages;
2684 }
2685 }
2686
2687 if (i915_gem_object_needs_bit17_swizzle(obj))
2688 i915_gem_object_do_bit_17_swizzle(obj, st);
2689
2690 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2691
2692 return 0;
2693
2694 err_sg:
2695 sg_mark_end(sg);
2696 err_pages:
2697 mapping_clear_unevictable(mapping);
2698 pagevec_init(&pvec);
2699 for_each_sgt_page(page, sgt_iter, st) {
2700 if (!pagevec_add(&pvec, page))
2701 check_release_pagevec(&pvec);
2702 }
2703 if (pagevec_count(&pvec))
2704 check_release_pagevec(&pvec);
2705 sg_free_table(st);
2706 kfree(st);
2707
2708 /*
2709 * shmemfs first checks if there is enough memory to allocate the page
2710 * and reports ENOSPC should there be insufficient, along with the usual
2711 * ENOMEM for a genuine allocation failure.
2712 *
2713 * We use ENOSPC in our driver to mean that we have run out of aperture
2714 * space and so want to translate the error from shmemfs back to our
2715 * usual understanding of ENOMEM.
2716 */
2717 if (ret == -ENOSPC)
2718 ret = -ENOMEM;
2719
2720 return ret;
2721 }
2722
2723 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2724 struct sg_table *pages,
2725 unsigned int sg_page_sizes)
2726 {
2727 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2728 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2729 int i;
2730
2731 lockdep_assert_held(&obj->mm.lock);
2732
2733 obj->mm.get_page.sg_pos = pages->sgl;
2734 obj->mm.get_page.sg_idx = 0;
2735
2736 obj->mm.pages = pages;
2737
2738 if (i915_gem_object_is_tiled(obj) &&
2739 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2740 GEM_BUG_ON(obj->mm.quirked);
2741 __i915_gem_object_pin_pages(obj);
2742 obj->mm.quirked = true;
2743 }
2744
2745 GEM_BUG_ON(!sg_page_sizes);
2746 obj->mm.page_sizes.phys = sg_page_sizes;
2747
2748 /*
2749 * Calculate the supported page-sizes which fit into the given
2750 * sg_page_sizes. This will give us the page-sizes which we may be able
2751 * to use opportunistically when later inserting into the GTT. For
2752 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2753 * 64K or 4K pages, although in practice this will depend on a number of
2754 * other factors.
2755 */
2756 obj->mm.page_sizes.sg = 0;
2757 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2758 if (obj->mm.page_sizes.phys & ~0u << i)
2759 obj->mm.page_sizes.sg |= BIT(i);
2760 }
2761 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2762
2763 spin_lock(&i915->mm.obj_lock);
2764 list_add(&obj->mm.link, &i915->mm.unbound_list);
2765 spin_unlock(&i915->mm.obj_lock);
2766 }
2767
2768 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2769 {
2770 int err;
2771
2772 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2773 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2774 return -EFAULT;
2775 }
2776
2777 err = obj->ops->get_pages(obj);
2778 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2779
2780 return err;
2781 }
2782
2783 /* Ensure that the associated pages are gathered from the backing storage
2784 * and pinned into our object. i915_gem_object_pin_pages() may be called
2785 * multiple times before they are released by a single call to
2786 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2787 * either as a result of memory pressure (reaping pages under the shrinker)
2788 * or as the object is itself released.
2789 */
2790 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2791 {
2792 int err;
2793
2794 err = mutex_lock_interruptible(&obj->mm.lock);
2795 if (err)
2796 return err;
2797
2798 if (unlikely(!i915_gem_object_has_pages(obj))) {
2799 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2800
2801 err = ____i915_gem_object_get_pages(obj);
2802 if (err)
2803 goto unlock;
2804
2805 smp_mb__before_atomic();
2806 }
2807 atomic_inc(&obj->mm.pages_pin_count);
2808
2809 unlock:
2810 mutex_unlock(&obj->mm.lock);
2811 return err;
2812 }
2813
2814 /* The 'mapping' part of i915_gem_object_pin_map() below */
2815 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2816 enum i915_map_type type)
2817 {
2818 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2819 struct sg_table *sgt = obj->mm.pages;
2820 struct sgt_iter sgt_iter;
2821 struct page *page;
2822 struct page *stack_pages[32];
2823 struct page **pages = stack_pages;
2824 unsigned long i = 0;
2825 pgprot_t pgprot;
2826 void *addr;
2827
2828 /* A single page can always be kmapped */
2829 if (n_pages == 1 && type == I915_MAP_WB)
2830 return kmap(sg_page(sgt->sgl));
2831
2832 if (n_pages > ARRAY_SIZE(stack_pages)) {
2833 /* Too big for stack -- allocate temporary array instead */
2834 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2835 if (!pages)
2836 return NULL;
2837 }
2838
2839 for_each_sgt_page(page, sgt_iter, sgt)
2840 pages[i++] = page;
2841
2842 /* Check that we have the expected number of pages */
2843 GEM_BUG_ON(i != n_pages);
2844
2845 switch (type) {
2846 default:
2847 MISSING_CASE(type);
2848 /* fallthrough to use PAGE_KERNEL anyway */
2849 case I915_MAP_WB:
2850 pgprot = PAGE_KERNEL;
2851 break;
2852 case I915_MAP_WC:
2853 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2854 break;
2855 }
2856 addr = vmap(pages, n_pages, 0, pgprot);
2857
2858 if (pages != stack_pages)
2859 kvfree(pages);
2860
2861 return addr;
2862 }
2863
2864 /* get, pin, and map the pages of the object into kernel space */
2865 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2866 enum i915_map_type type)
2867 {
2868 enum i915_map_type has_type;
2869 bool pinned;
2870 void *ptr;
2871 int ret;
2872
2873 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2874 return ERR_PTR(-ENXIO);
2875
2876 ret = mutex_lock_interruptible(&obj->mm.lock);
2877 if (ret)
2878 return ERR_PTR(ret);
2879
2880 pinned = !(type & I915_MAP_OVERRIDE);
2881 type &= ~I915_MAP_OVERRIDE;
2882
2883 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2884 if (unlikely(!i915_gem_object_has_pages(obj))) {
2885 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2886
2887 ret = ____i915_gem_object_get_pages(obj);
2888 if (ret)
2889 goto err_unlock;
2890
2891 smp_mb__before_atomic();
2892 }
2893 atomic_inc(&obj->mm.pages_pin_count);
2894 pinned = false;
2895 }
2896 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2897
2898 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2899 if (ptr && has_type != type) {
2900 if (pinned) {
2901 ret = -EBUSY;
2902 goto err_unpin;
2903 }
2904
2905 if (is_vmalloc_addr(ptr))
2906 vunmap(ptr);
2907 else
2908 kunmap(kmap_to_page(ptr));
2909
2910 ptr = obj->mm.mapping = NULL;
2911 }
2912
2913 if (!ptr) {
2914 ptr = i915_gem_object_map(obj, type);
2915 if (!ptr) {
2916 ret = -ENOMEM;
2917 goto err_unpin;
2918 }
2919
2920 obj->mm.mapping = page_pack_bits(ptr, type);
2921 }
2922
2923 out_unlock:
2924 mutex_unlock(&obj->mm.lock);
2925 return ptr;
2926
2927 err_unpin:
2928 atomic_dec(&obj->mm.pages_pin_count);
2929 err_unlock:
2930 ptr = ERR_PTR(ret);
2931 goto out_unlock;
2932 }
2933
2934 static int
2935 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2936 const struct drm_i915_gem_pwrite *arg)
2937 {
2938 struct address_space *mapping = obj->base.filp->f_mapping;
2939 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2940 u64 remain, offset;
2941 unsigned int pg;
2942
2943 /* Before we instantiate/pin the backing store for our use, we
2944 * can prepopulate the shmemfs filp efficiently using a write into
2945 * the pagecache. We avoid the penalty of instantiating all the
2946 * pages, important if the user is just writing to a few and never
2947 * uses the object on the GPU, and using a direct write into shmemfs
2948 * allows it to avoid the cost of retrieving a page (either swapin
2949 * or clearing-before-use) before it is overwritten.
2950 */
2951 if (i915_gem_object_has_pages(obj))
2952 return -ENODEV;
2953
2954 if (obj->mm.madv != I915_MADV_WILLNEED)
2955 return -EFAULT;
2956
2957 /* Before the pages are instantiated the object is treated as being
2958 * in the CPU domain. The pages will be clflushed as required before
2959 * use, and we can freely write into the pages directly. If userspace
2960 * races pwrite with any other operation; corruption will ensue -
2961 * that is userspace's prerogative!
2962 */
2963
2964 remain = arg->size;
2965 offset = arg->offset;
2966 pg = offset_in_page(offset);
2967
2968 do {
2969 unsigned int len, unwritten;
2970 struct page *page;
2971 void *data, *vaddr;
2972 int err;
2973
2974 len = PAGE_SIZE - pg;
2975 if (len > remain)
2976 len = remain;
2977
2978 err = pagecache_write_begin(obj->base.filp, mapping,
2979 offset, len, 0,
2980 &page, &data);
2981 if (err < 0)
2982 return err;
2983
2984 vaddr = kmap(page);
2985 unwritten = copy_from_user(vaddr + pg, user_data, len);
2986 kunmap(page);
2987
2988 err = pagecache_write_end(obj->base.filp, mapping,
2989 offset, len, len - unwritten,
2990 page, data);
2991 if (err < 0)
2992 return err;
2993
2994 if (unwritten)
2995 return -EFAULT;
2996
2997 remain -= len;
2998 user_data += len;
2999 offset += len;
3000 pg = 0;
3001 } while (remain);
3002
3003 return 0;
3004 }
3005
3006 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
3007 const struct i915_gem_context *ctx)
3008 {
3009 unsigned int score;
3010 unsigned long prev_hang;
3011
3012 if (i915_gem_context_is_banned(ctx))
3013 score = I915_CLIENT_SCORE_CONTEXT_BAN;
3014 else
3015 score = 0;
3016
3017 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
3018 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
3019 score += I915_CLIENT_SCORE_HANG_FAST;
3020
3021 if (score) {
3022 atomic_add(score, &file_priv->ban_score);
3023
3024 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
3025 ctx->name, score,
3026 atomic_read(&file_priv->ban_score));
3027 }
3028 }
3029
3030 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3031 {
3032 unsigned int score;
3033 bool banned, bannable;
3034
3035 atomic_inc(&ctx->guilty_count);
3036
3037 bannable = i915_gem_context_is_bannable(ctx);
3038 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3039 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3040
3041 /* Cool contexts don't accumulate client ban score */
3042 if (!bannable)
3043 return;
3044
3045 if (banned) {
3046 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3047 ctx->name, atomic_read(&ctx->guilty_count),
3048 score);
3049 i915_gem_context_set_banned(ctx);
3050 }
3051
3052 if (!IS_ERR_OR_NULL(ctx->file_priv))
3053 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3054 }
3055
3056 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3057 {
3058 atomic_inc(&ctx->active_count);
3059 }
3060
3061 struct i915_request *
3062 i915_gem_find_active_request(struct intel_engine_cs *engine)
3063 {
3064 struct i915_request *request, *active = NULL;
3065 unsigned long flags;
3066
3067 /*
3068 * We are called by the error capture, reset and to dump engine
3069 * state at random points in time. In particular, note that neither is
3070 * crucially ordered with an interrupt. After a hang, the GPU is dead
3071 * and we assume that no more writes can happen (we waited long enough
3072 * for all writes that were in transaction to be flushed) - adding an
3073 * extra delay for a recent interrupt is pointless. Hence, we do
3074 * not need an engine->irq_seqno_barrier() before the seqno reads.
3075 * At all other times, we must assume the GPU is still running, but
3076 * we only care about the snapshot of this moment.
3077 */
3078 spin_lock_irqsave(&engine->timeline.lock, flags);
3079 list_for_each_entry(request, &engine->timeline.requests, link) {
3080 if (__i915_request_completed(request, request->global_seqno))
3081 continue;
3082
3083 active = request;
3084 break;
3085 }
3086 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3087
3088 return active;
3089 }
3090
3091 /*
3092 * Ensure irq handler finishes, and not run again.
3093 * Also return the active request so that we only search for it once.
3094 */
3095 struct i915_request *
3096 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3097 {
3098 struct i915_request *request;
3099
3100 /*
3101 * During the reset sequence, we must prevent the engine from
3102 * entering RC6. As the context state is undefined until we restart
3103 * the engine, if it does enter RC6 during the reset, the state
3104 * written to the powercontext is undefined and so we may lose
3105 * GPU state upon resume, i.e. fail to restart after a reset.
3106 */
3107 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3108
3109 request = engine->reset.prepare(engine);
3110 if (request && request->fence.error == -EIO)
3111 request = ERR_PTR(-EIO); /* Previous reset failed! */
3112
3113 return request;
3114 }
3115
3116 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3117 {
3118 struct intel_engine_cs *engine;
3119 struct i915_request *request;
3120 enum intel_engine_id id;
3121 int err = 0;
3122
3123 for_each_engine(engine, dev_priv, id) {
3124 request = i915_gem_reset_prepare_engine(engine);
3125 if (IS_ERR(request)) {
3126 err = PTR_ERR(request);
3127 continue;
3128 }
3129
3130 engine->hangcheck.active_request = request;
3131 }
3132
3133 i915_gem_revoke_fences(dev_priv);
3134 intel_uc_sanitize(dev_priv);
3135
3136 return err;
3137 }
3138
3139 static void engine_skip_context(struct i915_request *request)
3140 {
3141 struct intel_engine_cs *engine = request->engine;
3142 struct i915_gem_context *hung_ctx = request->gem_context;
3143 struct i915_timeline *timeline = request->timeline;
3144 unsigned long flags;
3145
3146 GEM_BUG_ON(timeline == &engine->timeline);
3147
3148 spin_lock_irqsave(&engine->timeline.lock, flags);
3149 spin_lock(&timeline->lock);
3150
3151 list_for_each_entry_continue(request, &engine->timeline.requests, link)
3152 if (request->gem_context == hung_ctx)
3153 i915_request_skip(request, -EIO);
3154
3155 list_for_each_entry(request, &timeline->requests, link)
3156 i915_request_skip(request, -EIO);
3157
3158 spin_unlock(&timeline->lock);
3159 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3160 }
3161
3162 /* Returns the request if it was guilty of the hang */
3163 static struct i915_request *
3164 i915_gem_reset_request(struct intel_engine_cs *engine,
3165 struct i915_request *request,
3166 bool stalled)
3167 {
3168 /* The guilty request will get skipped on a hung engine.
3169 *
3170 * Users of client default contexts do not rely on logical
3171 * state preserved between batches so it is safe to execute
3172 * queued requests following the hang. Non default contexts
3173 * rely on preserved state, so skipping a batch loses the
3174 * evolution of the state and it needs to be considered corrupted.
3175 * Executing more queued batches on top of corrupted state is
3176 * risky. But we take the risk by trying to advance through
3177 * the queued requests in order to make the client behaviour
3178 * more predictable around resets, by not throwing away random
3179 * amount of batches it has prepared for execution. Sophisticated
3180 * clients can use gem_reset_stats_ioctl and dma fence status
3181 * (exported via sync_file info ioctl on explicit fences) to observe
3182 * when it loses the context state and should rebuild accordingly.
3183 *
3184 * The context ban, and ultimately the client ban, mechanism are safety
3185 * valves if client submission ends up resulting in nothing more than
3186 * subsequent hangs.
3187 */
3188
3189 if (i915_request_completed(request)) {
3190 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3191 engine->name, request->global_seqno,
3192 request->fence.context, request->fence.seqno,
3193 intel_engine_get_seqno(engine));
3194 stalled = false;
3195 }
3196
3197 if (stalled) {
3198 i915_gem_context_mark_guilty(request->gem_context);
3199 i915_request_skip(request, -EIO);
3200
3201 /* If this context is now banned, skip all pending requests. */
3202 if (i915_gem_context_is_banned(request->gem_context))
3203 engine_skip_context(request);
3204 } else {
3205 /*
3206 * Since this is not the hung engine, it may have advanced
3207 * since the hang declaration. Double check by refinding
3208 * the active request at the time of the reset.
3209 */
3210 request = i915_gem_find_active_request(engine);
3211 if (request) {
3212 unsigned long flags;
3213
3214 i915_gem_context_mark_innocent(request->gem_context);
3215 dma_fence_set_error(&request->fence, -EAGAIN);
3216
3217 /* Rewind the engine to replay the incomplete rq */
3218 spin_lock_irqsave(&engine->timeline.lock, flags);
3219 request = list_prev_entry(request, link);
3220 if (&request->link == &engine->timeline.requests)
3221 request = NULL;
3222 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3223 }
3224 }
3225
3226 return request;
3227 }
3228
3229 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3230 struct i915_request *request,
3231 bool stalled)
3232 {
3233 /*
3234 * Make sure this write is visible before we re-enable the interrupt
3235 * handlers on another CPU, as tasklet_enable() resolves to just
3236 * a compiler barrier which is insufficient for our purpose here.
3237 */
3238 smp_store_mb(engine->irq_posted, 0);
3239
3240 if (request)
3241 request = i915_gem_reset_request(engine, request, stalled);
3242
3243 /* Setup the CS to resume from the breadcrumb of the hung request */
3244 engine->reset.reset(engine, request);
3245 }
3246
3247 void i915_gem_reset(struct drm_i915_private *dev_priv,
3248 unsigned int stalled_mask)
3249 {
3250 struct intel_engine_cs *engine;
3251 enum intel_engine_id id;
3252
3253 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3254
3255 i915_retire_requests(dev_priv);
3256
3257 for_each_engine(engine, dev_priv, id) {
3258 struct intel_context *ce;
3259
3260 i915_gem_reset_engine(engine,
3261 engine->hangcheck.active_request,
3262 stalled_mask & ENGINE_MASK(id));
3263 ce = fetch_and_zero(&engine->last_retired_context);
3264 if (ce)
3265 intel_context_unpin(ce);
3266
3267 /*
3268 * Ostensibily, we always want a context loaded for powersaving,
3269 * so if the engine is idle after the reset, send a request
3270 * to load our scratch kernel_context.
3271 *
3272 * More mysteriously, if we leave the engine idle after a reset,
3273 * the next userspace batch may hang, with what appears to be
3274 * an incoherent read by the CS (presumably stale TLB). An
3275 * empty request appears sufficient to paper over the glitch.
3276 */
3277 if (intel_engine_is_idle(engine)) {
3278 struct i915_request *rq;
3279
3280 rq = i915_request_alloc(engine,
3281 dev_priv->kernel_context);
3282 if (!IS_ERR(rq))
3283 i915_request_add(rq);
3284 }
3285 }
3286
3287 i915_gem_restore_fences(dev_priv);
3288 }
3289
3290 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3291 {
3292 engine->reset.finish(engine);
3293
3294 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3295 }
3296
3297 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3298 {
3299 struct intel_engine_cs *engine;
3300 enum intel_engine_id id;
3301
3302 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3303
3304 for_each_engine(engine, dev_priv, id) {
3305 engine->hangcheck.active_request = NULL;
3306 i915_gem_reset_finish_engine(engine);
3307 }
3308 }
3309
3310 static void nop_submit_request(struct i915_request *request)
3311 {
3312 unsigned long flags;
3313
3314 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3315 request->engine->name,
3316 request->fence.context, request->fence.seqno);
3317 dma_fence_set_error(&request->fence, -EIO);
3318
3319 spin_lock_irqsave(&request->engine->timeline.lock, flags);
3320 __i915_request_submit(request);
3321 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3322 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3323 }
3324
3325 void i915_gem_set_wedged(struct drm_i915_private *i915)
3326 {
3327 struct intel_engine_cs *engine;
3328 enum intel_engine_id id;
3329
3330 GEM_TRACE("start\n");
3331
3332 if (GEM_SHOW_DEBUG()) {
3333 struct drm_printer p = drm_debug_printer(__func__);
3334
3335 for_each_engine(engine, i915, id)
3336 intel_engine_dump(engine, &p, "%s\n", engine->name);
3337 }
3338
3339 if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3340 goto out;
3341
3342 /*
3343 * First, stop submission to hw, but do not yet complete requests by
3344 * rolling the global seqno forward (since this would complete requests
3345 * for which we haven't set the fence error to EIO yet).
3346 */
3347 for_each_engine(engine, i915, id)
3348 i915_gem_reset_prepare_engine(engine);
3349
3350 /* Even if the GPU reset fails, it should still stop the engines */
3351 if (INTEL_GEN(i915) >= 5)
3352 intel_gpu_reset(i915, ALL_ENGINES);
3353
3354 for_each_engine(engine, i915, id) {
3355 engine->submit_request = nop_submit_request;
3356 engine->schedule = NULL;
3357 }
3358 i915->caps.scheduler = 0;
3359
3360 /*
3361 * Make sure no request can slip through without getting completed by
3362 * either this call here to intel_engine_init_global_seqno, or the one
3363 * in nop_submit_request.
3364 */
3365 synchronize_rcu();
3366
3367 /* Mark all executing requests as skipped */
3368 for_each_engine(engine, i915, id)
3369 engine->cancel_requests(engine);
3370
3371 for_each_engine(engine, i915, id) {
3372 i915_gem_reset_finish_engine(engine);
3373 intel_engine_wakeup(engine);
3374 }
3375
3376 out:
3377 GEM_TRACE("end\n");
3378
3379 wake_up_all(&i915->gpu_error.reset_queue);
3380 }
3381
3382 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3383 {
3384 struct i915_timeline *tl;
3385
3386 lockdep_assert_held(&i915->drm.struct_mutex);
3387 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3388 return true;
3389
3390 GEM_TRACE("start\n");
3391
3392 /*
3393 * Before unwedging, make sure that all pending operations
3394 * are flushed and errored out - we may have requests waiting upon
3395 * third party fences. We marked all inflight requests as EIO, and
3396 * every execbuf since returned EIO, for consistency we want all
3397 * the currently pending requests to also be marked as EIO, which
3398 * is done inside our nop_submit_request - and so we must wait.
3399 *
3400 * No more can be submitted until we reset the wedged bit.
3401 */
3402 list_for_each_entry(tl, &i915->gt.timelines, link) {
3403 struct i915_request *rq;
3404
3405 rq = i915_gem_active_peek(&tl->last_request,
3406 &i915->drm.struct_mutex);
3407 if (!rq)
3408 continue;
3409
3410 /*
3411 * We can't use our normal waiter as we want to
3412 * avoid recursively trying to handle the current
3413 * reset. The basic dma_fence_default_wait() installs
3414 * a callback for dma_fence_signal(), which is
3415 * triggered by our nop handler (indirectly, the
3416 * callback enables the signaler thread which is
3417 * woken by the nop_submit_request() advancing the seqno
3418 * and when the seqno passes the fence, the signaler
3419 * then signals the fence waking us up).
3420 */
3421 if (dma_fence_default_wait(&rq->fence, true,
3422 MAX_SCHEDULE_TIMEOUT) < 0)
3423 return false;
3424 }
3425 i915_retire_requests(i915);
3426 GEM_BUG_ON(i915->gt.active_requests);
3427
3428 if (!intel_gpu_reset(i915, ALL_ENGINES))
3429 intel_engines_sanitize(i915);
3430
3431 /*
3432 * Undo nop_submit_request. We prevent all new i915 requests from
3433 * being queued (by disallowing execbuf whilst wedged) so having
3434 * waited for all active requests above, we know the system is idle
3435 * and do not have to worry about a thread being inside
3436 * engine->submit_request() as we swap over. So unlike installing
3437 * the nop_submit_request on reset, we can do this from normal
3438 * context and do not require stop_machine().
3439 */
3440 intel_engines_reset_default_submission(i915);
3441 i915_gem_contexts_lost(i915);
3442
3443 GEM_TRACE("end\n");
3444
3445 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3446 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3447
3448 return true;
3449 }
3450
3451 static void
3452 i915_gem_retire_work_handler(struct work_struct *work)
3453 {
3454 struct drm_i915_private *dev_priv =
3455 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3456 struct drm_device *dev = &dev_priv->drm;
3457
3458 /* Come back later if the device is busy... */
3459 if (mutex_trylock(&dev->struct_mutex)) {
3460 i915_retire_requests(dev_priv);
3461 mutex_unlock(&dev->struct_mutex);
3462 }
3463
3464 /*
3465 * Keep the retire handler running until we are finally idle.
3466 * We do not need to do this test under locking as in the worst-case
3467 * we queue the retire worker once too often.
3468 */
3469 if (READ_ONCE(dev_priv->gt.awake))
3470 queue_delayed_work(dev_priv->wq,
3471 &dev_priv->gt.retire_work,
3472 round_jiffies_up_relative(HZ));
3473 }
3474
3475 static void shrink_caches(struct drm_i915_private *i915)
3476 {
3477 /*
3478 * kmem_cache_shrink() discards empty slabs and reorders partially
3479 * filled slabs to prioritise allocating from the mostly full slabs,
3480 * with the aim of reducing fragmentation.
3481 */
3482 kmem_cache_shrink(i915->priorities);
3483 kmem_cache_shrink(i915->dependencies);
3484 kmem_cache_shrink(i915->requests);
3485 kmem_cache_shrink(i915->luts);
3486 kmem_cache_shrink(i915->vmas);
3487 kmem_cache_shrink(i915->objects);
3488 }
3489
3490 struct sleep_rcu_work {
3491 union {
3492 struct rcu_head rcu;
3493 struct work_struct work;
3494 };
3495 struct drm_i915_private *i915;
3496 unsigned int epoch;
3497 };
3498
3499 static inline bool
3500 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3501 {
3502 /*
3503 * There is a small chance that the epoch wrapped since we started
3504 * sleeping. If we assume that epoch is at least a u32, then it will
3505 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3506 */
3507 return epoch == READ_ONCE(i915->gt.epoch);
3508 }
3509
3510 static void __sleep_work(struct work_struct *work)
3511 {
3512 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3513 struct drm_i915_private *i915 = s->i915;
3514 unsigned int epoch = s->epoch;
3515
3516 kfree(s);
3517 if (same_epoch(i915, epoch))
3518 shrink_caches(i915);
3519 }
3520
3521 static void __sleep_rcu(struct rcu_head *rcu)
3522 {
3523 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3524 struct drm_i915_private *i915 = s->i915;
3525
3526 destroy_rcu_head(&s->rcu);
3527
3528 if (same_epoch(i915, s->epoch)) {
3529 INIT_WORK(&s->work, __sleep_work);
3530 queue_work(i915->wq, &s->work);
3531 } else {
3532 kfree(s);
3533 }
3534 }
3535
3536 static inline bool
3537 new_requests_since_last_retire(const struct drm_i915_private *i915)
3538 {
3539 return (READ_ONCE(i915->gt.active_requests) ||
3540 work_pending(&i915->gt.idle_work.work));
3541 }
3542
3543 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3544 {
3545 struct intel_engine_cs *engine;
3546 enum intel_engine_id id;
3547
3548 if (i915_terminally_wedged(&i915->gpu_error))
3549 return;
3550
3551 GEM_BUG_ON(i915->gt.active_requests);
3552 for_each_engine(engine, i915, id) {
3553 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3554 GEM_BUG_ON(engine->last_retired_context !=
3555 to_intel_context(i915->kernel_context, engine));
3556 }
3557 }
3558
3559 static void
3560 i915_gem_idle_work_handler(struct work_struct *work)
3561 {
3562 struct drm_i915_private *dev_priv =
3563 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3564 unsigned int epoch = I915_EPOCH_INVALID;
3565 bool rearm_hangcheck;
3566
3567 if (!READ_ONCE(dev_priv->gt.awake))
3568 return;
3569
3570 if (READ_ONCE(dev_priv->gt.active_requests))
3571 return;
3572
3573 /*
3574 * Flush out the last user context, leaving only the pinned
3575 * kernel context resident. When we are idling on the kernel_context,
3576 * no more new requests (with a context switch) are emitted and we
3577 * can finally rest. A consequence is that the idle work handler is
3578 * always called at least twice before idling (and if the system is
3579 * idle that implies a round trip through the retire worker).
3580 */
3581 mutex_lock(&dev_priv->drm.struct_mutex);
3582 i915_gem_switch_to_kernel_context(dev_priv);
3583 mutex_unlock(&dev_priv->drm.struct_mutex);
3584
3585 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3586 READ_ONCE(dev_priv->gt.active_requests));
3587
3588 /*
3589 * Wait for last execlists context complete, but bail out in case a
3590 * new request is submitted. As we don't trust the hardware, we
3591 * continue on if the wait times out. This is necessary to allow
3592 * the machine to suspend even if the hardware dies, and we will
3593 * try to recover in resume (after depriving the hardware of power,
3594 * it may be in a better mmod).
3595 */
3596 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3597 intel_engines_are_idle(dev_priv),
3598 I915_IDLE_ENGINES_TIMEOUT * 1000,
3599 10, 500);
3600
3601 rearm_hangcheck =
3602 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3603
3604 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3605 /* Currently busy, come back later */
3606 mod_delayed_work(dev_priv->wq,
3607 &dev_priv->gt.idle_work,
3608 msecs_to_jiffies(50));
3609 goto out_rearm;
3610 }
3611
3612 /*
3613 * New request retired after this work handler started, extend active
3614 * period until next instance of the work.
3615 */
3616 if (new_requests_since_last_retire(dev_priv))
3617 goto out_unlock;
3618
3619 epoch = __i915_gem_park(dev_priv);
3620
3621 assert_kernel_context_is_current(dev_priv);
3622
3623 rearm_hangcheck = false;
3624 out_unlock:
3625 mutex_unlock(&dev_priv->drm.struct_mutex);
3626
3627 out_rearm:
3628 if (rearm_hangcheck) {
3629 GEM_BUG_ON(!dev_priv->gt.awake);
3630 i915_queue_hangcheck(dev_priv);
3631 }
3632
3633 /*
3634 * When we are idle, it is an opportune time to reap our caches.
3635 * However, we have many objects that utilise RCU and the ordered
3636 * i915->wq that this work is executing on. To try and flush any
3637 * pending frees now we are idle, we first wait for an RCU grace
3638 * period, and then queue a task (that will run last on the wq) to
3639 * shrink and re-optimize the caches.
3640 */
3641 if (same_epoch(dev_priv, epoch)) {
3642 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3643 if (s) {
3644 init_rcu_head(&s->rcu);
3645 s->i915 = dev_priv;
3646 s->epoch = epoch;
3647 call_rcu(&s->rcu, __sleep_rcu);
3648 }
3649 }
3650 }
3651
3652 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3653 {
3654 struct drm_i915_private *i915 = to_i915(gem->dev);
3655 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3656 struct drm_i915_file_private *fpriv = file->driver_priv;
3657 struct i915_lut_handle *lut, *ln;
3658
3659 mutex_lock(&i915->drm.struct_mutex);
3660
3661 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3662 struct i915_gem_context *ctx = lut->ctx;
3663 struct i915_vma *vma;
3664
3665 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3666 if (ctx->file_priv != fpriv)
3667 continue;
3668
3669 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3670 GEM_BUG_ON(vma->obj != obj);
3671
3672 /* We allow the process to have multiple handles to the same
3673 * vma, in the same fd namespace, by virtue of flink/open.
3674 */
3675 GEM_BUG_ON(!vma->open_count);
3676 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3677 i915_vma_close(vma);
3678
3679 list_del(&lut->obj_link);
3680 list_del(&lut->ctx_link);
3681
3682 kmem_cache_free(i915->luts, lut);
3683 __i915_gem_object_release_unless_active(obj);
3684 }
3685
3686 mutex_unlock(&i915->drm.struct_mutex);
3687 }
3688
3689 static unsigned long to_wait_timeout(s64 timeout_ns)
3690 {
3691 if (timeout_ns < 0)
3692 return MAX_SCHEDULE_TIMEOUT;
3693
3694 if (timeout_ns == 0)
3695 return 0;
3696
3697 return nsecs_to_jiffies_timeout(timeout_ns);
3698 }
3699
3700 /**
3701 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3702 * @dev: drm device pointer
3703 * @data: ioctl data blob
3704 * @file: drm file pointer
3705 *
3706 * Returns 0 if successful, else an error is returned with the remaining time in
3707 * the timeout parameter.
3708 * -ETIME: object is still busy after timeout
3709 * -ERESTARTSYS: signal interrupted the wait
3710 * -ENONENT: object doesn't exist
3711 * Also possible, but rare:
3712 * -EAGAIN: incomplete, restart syscall
3713 * -ENOMEM: damn
3714 * -ENODEV: Internal IRQ fail
3715 * -E?: The add request failed
3716 *
3717 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3718 * non-zero timeout parameter the wait ioctl will wait for the given number of
3719 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3720 * without holding struct_mutex the object may become re-busied before this
3721 * function completes. A similar but shorter * race condition exists in the busy
3722 * ioctl
3723 */
3724 int
3725 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3726 {
3727 struct drm_i915_gem_wait *args = data;
3728 struct drm_i915_gem_object *obj;
3729 ktime_t start;
3730 long ret;
3731
3732 if (args->flags != 0)
3733 return -EINVAL;
3734
3735 obj = i915_gem_object_lookup(file, args->bo_handle);
3736 if (!obj)
3737 return -ENOENT;
3738
3739 start = ktime_get();
3740
3741 ret = i915_gem_object_wait(obj,
3742 I915_WAIT_INTERRUPTIBLE |
3743 I915_WAIT_PRIORITY |
3744 I915_WAIT_ALL,
3745 to_wait_timeout(args->timeout_ns),
3746 to_rps_client(file));
3747
3748 if (args->timeout_ns > 0) {
3749 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3750 if (args->timeout_ns < 0)
3751 args->timeout_ns = 0;
3752
3753 /*
3754 * Apparently ktime isn't accurate enough and occasionally has a
3755 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3756 * things up to make the test happy. We allow up to 1 jiffy.
3757 *
3758 * This is a regression from the timespec->ktime conversion.
3759 */
3760 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3761 args->timeout_ns = 0;
3762
3763 /* Asked to wait beyond the jiffie/scheduler precision? */
3764 if (ret == -ETIME && args->timeout_ns)
3765 ret = -EAGAIN;
3766 }
3767
3768 i915_gem_object_put(obj);
3769 return ret;
3770 }
3771
3772 static long wait_for_timeline(struct i915_timeline *tl,
3773 unsigned int flags, long timeout)
3774 {
3775 struct i915_request *rq;
3776
3777 rq = i915_gem_active_get_unlocked(&tl->last_request);
3778 if (!rq)
3779 return timeout;
3780
3781 /*
3782 * "Race-to-idle".
3783 *
3784 * Switching to the kernel context is often used a synchronous
3785 * step prior to idling, e.g. in suspend for flushing all
3786 * current operations to memory before sleeping. These we
3787 * want to complete as quickly as possible to avoid prolonged
3788 * stalls, so allow the gpu to boost to maximum clocks.
3789 */
3790 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3791 gen6_rps_boost(rq, NULL);
3792
3793 timeout = i915_request_wait(rq, flags, timeout);
3794 i915_request_put(rq);
3795
3796 return timeout;
3797 }
3798
3799 static int wait_for_engines(struct drm_i915_private *i915)
3800 {
3801 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3802 dev_err(i915->drm.dev,
3803 "Failed to idle engines, declaring wedged!\n");
3804 GEM_TRACE_DUMP();
3805 i915_gem_set_wedged(i915);
3806 return -EIO;
3807 }
3808
3809 return 0;
3810 }
3811
3812 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3813 unsigned int flags, long timeout)
3814 {
3815 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3816 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3817 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3818
3819 /* If the device is asleep, we have no requests outstanding */
3820 if (!READ_ONCE(i915->gt.awake))
3821 return 0;
3822
3823 if (flags & I915_WAIT_LOCKED) {
3824 struct i915_timeline *tl;
3825 int err;
3826
3827 lockdep_assert_held(&i915->drm.struct_mutex);
3828
3829 list_for_each_entry(tl, &i915->gt.timelines, link) {
3830 timeout = wait_for_timeline(tl, flags, timeout);
3831 if (timeout < 0)
3832 return timeout;
3833 }
3834 if (GEM_SHOW_DEBUG() && !timeout) {
3835 /* Presume that timeout was non-zero to begin with! */
3836 dev_warn(&i915->drm.pdev->dev,
3837 "Missed idle-completion interrupt!\n");
3838 GEM_TRACE_DUMP();
3839 }
3840
3841 err = wait_for_engines(i915);
3842 if (err)
3843 return err;
3844
3845 i915_retire_requests(i915);
3846 GEM_BUG_ON(i915->gt.active_requests);
3847 } else {
3848 struct intel_engine_cs *engine;
3849 enum intel_engine_id id;
3850
3851 for_each_engine(engine, i915, id) {
3852 struct i915_timeline *tl = &engine->timeline;
3853
3854 timeout = wait_for_timeline(tl, flags, timeout);
3855 if (timeout < 0)
3856 return timeout;
3857 }
3858 }
3859
3860 return 0;
3861 }
3862
3863 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3864 {
3865 /*
3866 * We manually flush the CPU domain so that we can override and
3867 * force the flush for the display, and perform it asyncrhonously.
3868 */
3869 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3870 if (obj->cache_dirty)
3871 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3872 obj->write_domain = 0;
3873 }
3874
3875 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3876 {
3877 if (!READ_ONCE(obj->pin_global))
3878 return;
3879
3880 mutex_lock(&obj->base.dev->struct_mutex);
3881 __i915_gem_object_flush_for_display(obj);
3882 mutex_unlock(&obj->base.dev->struct_mutex);
3883 }
3884
3885 /**
3886 * Moves a single object to the WC read, and possibly write domain.
3887 * @obj: object to act on
3888 * @write: ask for write access or read only
3889 *
3890 * This function returns when the move is complete, including waiting on
3891 * flushes to occur.
3892 */
3893 int
3894 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3895 {
3896 int ret;
3897
3898 lockdep_assert_held(&obj->base.dev->struct_mutex);
3899
3900 ret = i915_gem_object_wait(obj,
3901 I915_WAIT_INTERRUPTIBLE |
3902 I915_WAIT_LOCKED |
3903 (write ? I915_WAIT_ALL : 0),
3904 MAX_SCHEDULE_TIMEOUT,
3905 NULL);
3906 if (ret)
3907 return ret;
3908
3909 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3910 return 0;
3911
3912 /* Flush and acquire obj->pages so that we are coherent through
3913 * direct access in memory with previous cached writes through
3914 * shmemfs and that our cache domain tracking remains valid.
3915 * For example, if the obj->filp was moved to swap without us
3916 * being notified and releasing the pages, we would mistakenly
3917 * continue to assume that the obj remained out of the CPU cached
3918 * domain.
3919 */
3920 ret = i915_gem_object_pin_pages(obj);
3921 if (ret)
3922 return ret;
3923
3924 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3925
3926 /* Serialise direct access to this object with the barriers for
3927 * coherent writes from the GPU, by effectively invalidating the
3928 * WC domain upon first access.
3929 */
3930 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3931 mb();
3932
3933 /* It should now be out of any other write domains, and we can update
3934 * the domain values for our changes.
3935 */
3936 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3937 obj->read_domains |= I915_GEM_DOMAIN_WC;
3938 if (write) {
3939 obj->read_domains = I915_GEM_DOMAIN_WC;
3940 obj->write_domain = I915_GEM_DOMAIN_WC;
3941 obj->mm.dirty = true;
3942 }
3943
3944 i915_gem_object_unpin_pages(obj);
3945 return 0;
3946 }
3947
3948 /**
3949 * Moves a single object to the GTT read, and possibly write domain.
3950 * @obj: object to act on
3951 * @write: ask for write access or read only
3952 *
3953 * This function returns when the move is complete, including waiting on
3954 * flushes to occur.
3955 */
3956 int
3957 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3958 {
3959 int ret;
3960
3961 lockdep_assert_held(&obj->base.dev->struct_mutex);
3962
3963 ret = i915_gem_object_wait(obj,
3964 I915_WAIT_INTERRUPTIBLE |
3965 I915_WAIT_LOCKED |
3966 (write ? I915_WAIT_ALL : 0),
3967 MAX_SCHEDULE_TIMEOUT,
3968 NULL);
3969 if (ret)
3970 return ret;
3971
3972 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3973 return 0;
3974
3975 /* Flush and acquire obj->pages so that we are coherent through
3976 * direct access in memory with previous cached writes through
3977 * shmemfs and that our cache domain tracking remains valid.
3978 * For example, if the obj->filp was moved to swap without us
3979 * being notified and releasing the pages, we would mistakenly
3980 * continue to assume that the obj remained out of the CPU cached
3981 * domain.
3982 */
3983 ret = i915_gem_object_pin_pages(obj);
3984 if (ret)
3985 return ret;
3986
3987 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3988
3989 /* Serialise direct access to this object with the barriers for
3990 * coherent writes from the GPU, by effectively invalidating the
3991 * GTT domain upon first access.
3992 */
3993 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3994 mb();
3995
3996 /* It should now be out of any other write domains, and we can update
3997 * the domain values for our changes.
3998 */
3999 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4000 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4001 if (write) {
4002 obj->read_domains = I915_GEM_DOMAIN_GTT;
4003 obj->write_domain = I915_GEM_DOMAIN_GTT;
4004 obj->mm.dirty = true;
4005 }
4006
4007 i915_gem_object_unpin_pages(obj);
4008 return 0;
4009 }
4010
4011 /**
4012 * Changes the cache-level of an object across all VMA.
4013 * @obj: object to act on
4014 * @cache_level: new cache level to set for the object
4015 *
4016 * After this function returns, the object will be in the new cache-level
4017 * across all GTT and the contents of the backing storage will be coherent,
4018 * with respect to the new cache-level. In order to keep the backing storage
4019 * coherent for all users, we only allow a single cache level to be set
4020 * globally on the object and prevent it from being changed whilst the
4021 * hardware is reading from the object. That is if the object is currently
4022 * on the scanout it will be set to uncached (or equivalent display
4023 * cache coherency) and all non-MOCS GPU access will also be uncached so
4024 * that all direct access to the scanout remains coherent.
4025 */
4026 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4027 enum i915_cache_level cache_level)
4028 {
4029 struct i915_vma *vma;
4030 int ret;
4031
4032 lockdep_assert_held(&obj->base.dev->struct_mutex);
4033
4034 if (obj->cache_level == cache_level)
4035 return 0;
4036
4037 /* Inspect the list of currently bound VMA and unbind any that would
4038 * be invalid given the new cache-level. This is principally to
4039 * catch the issue of the CS prefetch crossing page boundaries and
4040 * reading an invalid PTE on older architectures.
4041 */
4042 restart:
4043 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4044 if (!drm_mm_node_allocated(&vma->node))
4045 continue;
4046
4047 if (i915_vma_is_pinned(vma)) {
4048 DRM_DEBUG("can not change the cache level of pinned objects\n");
4049 return -EBUSY;
4050 }
4051
4052 if (!i915_vma_is_closed(vma) &&
4053 i915_gem_valid_gtt_space(vma, cache_level))
4054 continue;
4055
4056 ret = i915_vma_unbind(vma);
4057 if (ret)
4058 return ret;
4059
4060 /* As unbinding may affect other elements in the
4061 * obj->vma_list (due to side-effects from retiring
4062 * an active vma), play safe and restart the iterator.
4063 */
4064 goto restart;
4065 }
4066
4067 /* We can reuse the existing drm_mm nodes but need to change the
4068 * cache-level on the PTE. We could simply unbind them all and
4069 * rebind with the correct cache-level on next use. However since
4070 * we already have a valid slot, dma mapping, pages etc, we may as
4071 * rewrite the PTE in the belief that doing so tramples upon less
4072 * state and so involves less work.
4073 */
4074 if (obj->bind_count) {
4075 /* Before we change the PTE, the GPU must not be accessing it.
4076 * If we wait upon the object, we know that all the bound
4077 * VMA are no longer active.
4078 */
4079 ret = i915_gem_object_wait(obj,
4080 I915_WAIT_INTERRUPTIBLE |
4081 I915_WAIT_LOCKED |
4082 I915_WAIT_ALL,
4083 MAX_SCHEDULE_TIMEOUT,
4084 NULL);
4085 if (ret)
4086 return ret;
4087
4088 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4089 cache_level != I915_CACHE_NONE) {
4090 /* Access to snoopable pages through the GTT is
4091 * incoherent and on some machines causes a hard
4092 * lockup. Relinquish the CPU mmaping to force
4093 * userspace to refault in the pages and we can
4094 * then double check if the GTT mapping is still
4095 * valid for that pointer access.
4096 */
4097 i915_gem_release_mmap(obj);
4098
4099 /* As we no longer need a fence for GTT access,
4100 * we can relinquish it now (and so prevent having
4101 * to steal a fence from someone else on the next
4102 * fence request). Note GPU activity would have
4103 * dropped the fence as all snoopable access is
4104 * supposed to be linear.
4105 */
4106 for_each_ggtt_vma(vma, obj) {
4107 ret = i915_vma_put_fence(vma);
4108 if (ret)
4109 return ret;
4110 }
4111 } else {
4112 /* We either have incoherent backing store and
4113 * so no GTT access or the architecture is fully
4114 * coherent. In such cases, existing GTT mmaps
4115 * ignore the cache bit in the PTE and we can
4116 * rewrite it without confusing the GPU or having
4117 * to force userspace to fault back in its mmaps.
4118 */
4119 }
4120
4121 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4122 if (!drm_mm_node_allocated(&vma->node))
4123 continue;
4124
4125 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4126 if (ret)
4127 return ret;
4128 }
4129 }
4130
4131 list_for_each_entry(vma, &obj->vma_list, obj_link)
4132 vma->node.color = cache_level;
4133 i915_gem_object_set_cache_coherency(obj, cache_level);
4134 obj->cache_dirty = true; /* Always invalidate stale cachelines */
4135
4136 return 0;
4137 }
4138
4139 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4140 struct drm_file *file)
4141 {
4142 struct drm_i915_gem_caching *args = data;
4143 struct drm_i915_gem_object *obj;
4144 int err = 0;
4145
4146 rcu_read_lock();
4147 obj = i915_gem_object_lookup_rcu(file, args->handle);
4148 if (!obj) {
4149 err = -ENOENT;
4150 goto out;
4151 }
4152
4153 switch (obj->cache_level) {
4154 case I915_CACHE_LLC:
4155 case I915_CACHE_L3_LLC:
4156 args->caching = I915_CACHING_CACHED;
4157 break;
4158
4159 case I915_CACHE_WT:
4160 args->caching = I915_CACHING_DISPLAY;
4161 break;
4162
4163 default:
4164 args->caching = I915_CACHING_NONE;
4165 break;
4166 }
4167 out:
4168 rcu_read_unlock();
4169 return err;
4170 }
4171
4172 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4173 struct drm_file *file)
4174 {
4175 struct drm_i915_private *i915 = to_i915(dev);
4176 struct drm_i915_gem_caching *args = data;
4177 struct drm_i915_gem_object *obj;
4178 enum i915_cache_level level;
4179 int ret = 0;
4180
4181 switch (args->caching) {
4182 case I915_CACHING_NONE:
4183 level = I915_CACHE_NONE;
4184 break;
4185 case I915_CACHING_CACHED:
4186 /*
4187 * Due to a HW issue on BXT A stepping, GPU stores via a
4188 * snooped mapping may leave stale data in a corresponding CPU
4189 * cacheline, whereas normally such cachelines would get
4190 * invalidated.
4191 */
4192 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4193 return -ENODEV;
4194
4195 level = I915_CACHE_LLC;
4196 break;
4197 case I915_CACHING_DISPLAY:
4198 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4199 break;
4200 default:
4201 return -EINVAL;
4202 }
4203
4204 obj = i915_gem_object_lookup(file, args->handle);
4205 if (!obj)
4206 return -ENOENT;
4207
4208 /*
4209 * The caching mode of proxy object is handled by its generator, and
4210 * not allowed to be changed by userspace.
4211 */
4212 if (i915_gem_object_is_proxy(obj)) {
4213 ret = -ENXIO;
4214 goto out;
4215 }
4216
4217 if (obj->cache_level == level)
4218 goto out;
4219
4220 ret = i915_gem_object_wait(obj,
4221 I915_WAIT_INTERRUPTIBLE,
4222 MAX_SCHEDULE_TIMEOUT,
4223 to_rps_client(file));
4224 if (ret)
4225 goto out;
4226
4227 ret = i915_mutex_lock_interruptible(dev);
4228 if (ret)
4229 goto out;
4230
4231 ret = i915_gem_object_set_cache_level(obj, level);
4232 mutex_unlock(&dev->struct_mutex);
4233
4234 out:
4235 i915_gem_object_put(obj);
4236 return ret;
4237 }
4238
4239 /*
4240 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4241 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4242 * (for pageflips). We only flush the caches while preparing the buffer for
4243 * display, the callers are responsible for frontbuffer flush.
4244 */
4245 struct i915_vma *
4246 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4247 u32 alignment,
4248 const struct i915_ggtt_view *view,
4249 unsigned int flags)
4250 {
4251 struct i915_vma *vma;
4252 int ret;
4253
4254 lockdep_assert_held(&obj->base.dev->struct_mutex);
4255
4256 /* Mark the global pin early so that we account for the
4257 * display coherency whilst setting up the cache domains.
4258 */
4259 obj->pin_global++;
4260
4261 /* The display engine is not coherent with the LLC cache on gen6. As
4262 * a result, we make sure that the pinning that is about to occur is
4263 * done with uncached PTEs. This is lowest common denominator for all
4264 * chipsets.
4265 *
4266 * However for gen6+, we could do better by using the GFDT bit instead
4267 * of uncaching, which would allow us to flush all the LLC-cached data
4268 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4269 */
4270 ret = i915_gem_object_set_cache_level(obj,
4271 HAS_WT(to_i915(obj->base.dev)) ?
4272 I915_CACHE_WT : I915_CACHE_NONE);
4273 if (ret) {
4274 vma = ERR_PTR(ret);
4275 goto err_unpin_global;
4276 }
4277
4278 /* As the user may map the buffer once pinned in the display plane
4279 * (e.g. libkms for the bootup splash), we have to ensure that we
4280 * always use map_and_fenceable for all scanout buffers. However,
4281 * it may simply be too big to fit into mappable, in which case
4282 * put it anyway and hope that userspace can cope (but always first
4283 * try to preserve the existing ABI).
4284 */
4285 vma = ERR_PTR(-ENOSPC);
4286 if ((flags & PIN_MAPPABLE) == 0 &&
4287 (!view || view->type == I915_GGTT_VIEW_NORMAL))
4288 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4289 flags |
4290 PIN_MAPPABLE |
4291 PIN_NONBLOCK);
4292 if (IS_ERR(vma))
4293 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4294 if (IS_ERR(vma))
4295 goto err_unpin_global;
4296
4297 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4298
4299 __i915_gem_object_flush_for_display(obj);
4300
4301 /* It should now be out of any other write domains, and we can update
4302 * the domain values for our changes.
4303 */
4304 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4305
4306 return vma;
4307
4308 err_unpin_global:
4309 obj->pin_global--;
4310 return vma;
4311 }
4312
4313 void
4314 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4315 {
4316 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4317
4318 if (WARN_ON(vma->obj->pin_global == 0))
4319 return;
4320
4321 if (--vma->obj->pin_global == 0)
4322 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4323
4324 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4325 i915_gem_object_bump_inactive_ggtt(vma->obj);
4326
4327 i915_vma_unpin(vma);
4328 }
4329
4330 /**
4331 * Moves a single object to the CPU read, and possibly write domain.
4332 * @obj: object to act on
4333 * @write: requesting write or read-only access
4334 *
4335 * This function returns when the move is complete, including waiting on
4336 * flushes to occur.
4337 */
4338 int
4339 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4340 {
4341 int ret;
4342
4343 lockdep_assert_held(&obj->base.dev->struct_mutex);
4344
4345 ret = i915_gem_object_wait(obj,
4346 I915_WAIT_INTERRUPTIBLE |
4347 I915_WAIT_LOCKED |
4348 (write ? I915_WAIT_ALL : 0),
4349 MAX_SCHEDULE_TIMEOUT,
4350 NULL);
4351 if (ret)
4352 return ret;
4353
4354 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4355
4356 /* Flush the CPU cache if it's still invalid. */
4357 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4358 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4359 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4360 }
4361
4362 /* It should now be out of any other write domains, and we can update
4363 * the domain values for our changes.
4364 */
4365 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4366
4367 /* If we're writing through the CPU, then the GPU read domains will
4368 * need to be invalidated at next use.
4369 */
4370 if (write)
4371 __start_cpu_write(obj);
4372
4373 return 0;
4374 }
4375
4376 /* Throttle our rendering by waiting until the ring has completed our requests
4377 * emitted over 20 msec ago.
4378 *
4379 * Note that if we were to use the current jiffies each time around the loop,
4380 * we wouldn't escape the function with any frames outstanding if the time to
4381 * render a frame was over 20ms.
4382 *
4383 * This should get us reasonable parallelism between CPU and GPU but also
4384 * relatively low latency when blocking on a particular request to finish.
4385 */
4386 static int
4387 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4388 {
4389 struct drm_i915_private *dev_priv = to_i915(dev);
4390 struct drm_i915_file_private *file_priv = file->driver_priv;
4391 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4392 struct i915_request *request, *target = NULL;
4393 long ret;
4394
4395 /* ABI: return -EIO if already wedged */
4396 if (i915_terminally_wedged(&dev_priv->gpu_error))
4397 return -EIO;
4398
4399 spin_lock(&file_priv->mm.lock);
4400 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4401 if (time_after_eq(request->emitted_jiffies, recent_enough))
4402 break;
4403
4404 if (target) {
4405 list_del(&target->client_link);
4406 target->file_priv = NULL;
4407 }
4408
4409 target = request;
4410 }
4411 if (target)
4412 i915_request_get(target);
4413 spin_unlock(&file_priv->mm.lock);
4414
4415 if (target == NULL)
4416 return 0;
4417
4418 ret = i915_request_wait(target,
4419 I915_WAIT_INTERRUPTIBLE,
4420 MAX_SCHEDULE_TIMEOUT);
4421 i915_request_put(target);
4422
4423 return ret < 0 ? ret : 0;
4424 }
4425
4426 struct i915_vma *
4427 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4428 const struct i915_ggtt_view *view,
4429 u64 size,
4430 u64 alignment,
4431 u64 flags)
4432 {
4433 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4434 struct i915_address_space *vm = &dev_priv->ggtt.vm;
4435 struct i915_vma *vma;
4436 int ret;
4437
4438 lockdep_assert_held(&obj->base.dev->struct_mutex);
4439
4440 if (flags & PIN_MAPPABLE &&
4441 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4442 /* If the required space is larger than the available
4443 * aperture, we will not able to find a slot for the
4444 * object and unbinding the object now will be in
4445 * vain. Worse, doing so may cause us to ping-pong
4446 * the object in and out of the Global GTT and
4447 * waste a lot of cycles under the mutex.
4448 */
4449 if (obj->base.size > dev_priv->ggtt.mappable_end)
4450 return ERR_PTR(-E2BIG);
4451
4452 /* If NONBLOCK is set the caller is optimistically
4453 * trying to cache the full object within the mappable
4454 * aperture, and *must* have a fallback in place for
4455 * situations where we cannot bind the object. We
4456 * can be a little more lax here and use the fallback
4457 * more often to avoid costly migrations of ourselves
4458 * and other objects within the aperture.
4459 *
4460 * Half-the-aperture is used as a simple heuristic.
4461 * More interesting would to do search for a free
4462 * block prior to making the commitment to unbind.
4463 * That caters for the self-harm case, and with a
4464 * little more heuristics (e.g. NOFAULT, NOEVICT)
4465 * we could try to minimise harm to others.
4466 */
4467 if (flags & PIN_NONBLOCK &&
4468 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4469 return ERR_PTR(-ENOSPC);
4470 }
4471
4472 vma = i915_vma_instance(obj, vm, view);
4473 if (unlikely(IS_ERR(vma)))
4474 return vma;
4475
4476 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4477 if (flags & PIN_NONBLOCK) {
4478 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4479 return ERR_PTR(-ENOSPC);
4480
4481 if (flags & PIN_MAPPABLE &&
4482 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4483 return ERR_PTR(-ENOSPC);
4484 }
4485
4486 WARN(i915_vma_is_pinned(vma),
4487 "bo is already pinned in ggtt with incorrect alignment:"
4488 " offset=%08x, req.alignment=%llx,"
4489 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4490 i915_ggtt_offset(vma), alignment,
4491 !!(flags & PIN_MAPPABLE),
4492 i915_vma_is_map_and_fenceable(vma));
4493 ret = i915_vma_unbind(vma);
4494 if (ret)
4495 return ERR_PTR(ret);
4496 }
4497
4498 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4499 if (ret)
4500 return ERR_PTR(ret);
4501
4502 return vma;
4503 }
4504
4505 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4506 {
4507 /* Note that we could alias engines in the execbuf API, but
4508 * that would be very unwise as it prevents userspace from
4509 * fine control over engine selection. Ahem.
4510 *
4511 * This should be something like EXEC_MAX_ENGINE instead of
4512 * I915_NUM_ENGINES.
4513 */
4514 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4515 return 0x10000 << id;
4516 }
4517
4518 static __always_inline unsigned int __busy_write_id(unsigned int id)
4519 {
4520 /* The uABI guarantees an active writer is also amongst the read
4521 * engines. This would be true if we accessed the activity tracking
4522 * under the lock, but as we perform the lookup of the object and
4523 * its activity locklessly we can not guarantee that the last_write
4524 * being active implies that we have set the same engine flag from
4525 * last_read - hence we always set both read and write busy for
4526 * last_write.
4527 */
4528 return id | __busy_read_flag(id);
4529 }
4530
4531 static __always_inline unsigned int
4532 __busy_set_if_active(const struct dma_fence *fence,
4533 unsigned int (*flag)(unsigned int id))
4534 {
4535 struct i915_request *rq;
4536
4537 /* We have to check the current hw status of the fence as the uABI
4538 * guarantees forward progress. We could rely on the idle worker
4539 * to eventually flush us, but to minimise latency just ask the
4540 * hardware.
4541 *
4542 * Note we only report on the status of native fences.
4543 */
4544 if (!dma_fence_is_i915(fence))
4545 return 0;
4546
4547 /* opencode to_request() in order to avoid const warnings */
4548 rq = container_of(fence, struct i915_request, fence);
4549 if (i915_request_completed(rq))
4550 return 0;
4551
4552 return flag(rq->engine->uabi_id);
4553 }
4554
4555 static __always_inline unsigned int
4556 busy_check_reader(const struct dma_fence *fence)
4557 {
4558 return __busy_set_if_active(fence, __busy_read_flag);
4559 }
4560
4561 static __always_inline unsigned int
4562 busy_check_writer(const struct dma_fence *fence)
4563 {
4564 if (!fence)
4565 return 0;
4566
4567 return __busy_set_if_active(fence, __busy_write_id);
4568 }
4569
4570 int
4571 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4572 struct drm_file *file)
4573 {
4574 struct drm_i915_gem_busy *args = data;
4575 struct drm_i915_gem_object *obj;
4576 struct reservation_object_list *list;
4577 unsigned int seq;
4578 int err;
4579
4580 err = -ENOENT;
4581 rcu_read_lock();
4582 obj = i915_gem_object_lookup_rcu(file, args->handle);
4583 if (!obj)
4584 goto out;
4585
4586 /* A discrepancy here is that we do not report the status of
4587 * non-i915 fences, i.e. even though we may report the object as idle,
4588 * a call to set-domain may still stall waiting for foreign rendering.
4589 * This also means that wait-ioctl may report an object as busy,
4590 * where busy-ioctl considers it idle.
4591 *
4592 * We trade the ability to warn of foreign fences to report on which
4593 * i915 engines are active for the object.
4594 *
4595 * Alternatively, we can trade that extra information on read/write
4596 * activity with
4597 * args->busy =
4598 * !reservation_object_test_signaled_rcu(obj->resv, true);
4599 * to report the overall busyness. This is what the wait-ioctl does.
4600 *
4601 */
4602 retry:
4603 seq = raw_read_seqcount(&obj->resv->seq);
4604
4605 /* Translate the exclusive fence to the READ *and* WRITE engine */
4606 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4607
4608 /* Translate shared fences to READ set of engines */
4609 list = rcu_dereference(obj->resv->fence);
4610 if (list) {
4611 unsigned int shared_count = list->shared_count, i;
4612
4613 for (i = 0; i < shared_count; ++i) {
4614 struct dma_fence *fence =
4615 rcu_dereference(list->shared[i]);
4616
4617 args->busy |= busy_check_reader(fence);
4618 }
4619 }
4620
4621 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4622 goto retry;
4623
4624 err = 0;
4625 out:
4626 rcu_read_unlock();
4627 return err;
4628 }
4629
4630 int
4631 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4632 struct drm_file *file_priv)
4633 {
4634 return i915_gem_ring_throttle(dev, file_priv);
4635 }
4636
4637 int
4638 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4639 struct drm_file *file_priv)
4640 {
4641 struct drm_i915_private *dev_priv = to_i915(dev);
4642 struct drm_i915_gem_madvise *args = data;
4643 struct drm_i915_gem_object *obj;
4644 int err;
4645
4646 switch (args->madv) {
4647 case I915_MADV_DONTNEED:
4648 case I915_MADV_WILLNEED:
4649 break;
4650 default:
4651 return -EINVAL;
4652 }
4653
4654 obj = i915_gem_object_lookup(file_priv, args->handle);
4655 if (!obj)
4656 return -ENOENT;
4657
4658 err = mutex_lock_interruptible(&obj->mm.lock);
4659 if (err)
4660 goto out;
4661
4662 if (i915_gem_object_has_pages(obj) &&
4663 i915_gem_object_is_tiled(obj) &&
4664 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4665 if (obj->mm.madv == I915_MADV_WILLNEED) {
4666 GEM_BUG_ON(!obj->mm.quirked);
4667 __i915_gem_object_unpin_pages(obj);
4668 obj->mm.quirked = false;
4669 }
4670 if (args->madv == I915_MADV_WILLNEED) {
4671 GEM_BUG_ON(obj->mm.quirked);
4672 __i915_gem_object_pin_pages(obj);
4673 obj->mm.quirked = true;
4674 }
4675 }
4676
4677 if (obj->mm.madv != __I915_MADV_PURGED)
4678 obj->mm.madv = args->madv;
4679
4680 /* if the object is no longer attached, discard its backing storage */
4681 if (obj->mm.madv == I915_MADV_DONTNEED &&
4682 !i915_gem_object_has_pages(obj))
4683 i915_gem_object_truncate(obj);
4684
4685 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4686 mutex_unlock(&obj->mm.lock);
4687
4688 out:
4689 i915_gem_object_put(obj);
4690 return err;
4691 }
4692
4693 static void
4694 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4695 {
4696 struct drm_i915_gem_object *obj =
4697 container_of(active, typeof(*obj), frontbuffer_write);
4698
4699 intel_fb_obj_flush(obj, ORIGIN_CS);
4700 }
4701
4702 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4703 const struct drm_i915_gem_object_ops *ops)
4704 {
4705 mutex_init(&obj->mm.lock);
4706
4707 INIT_LIST_HEAD(&obj->vma_list);
4708 INIT_LIST_HEAD(&obj->lut_list);
4709 INIT_LIST_HEAD(&obj->batch_pool_link);
4710
4711 init_rcu_head(&obj->rcu);
4712
4713 obj->ops = ops;
4714
4715 reservation_object_init(&obj->__builtin_resv);
4716 obj->resv = &obj->__builtin_resv;
4717
4718 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4720
4721 obj->mm.madv = I915_MADV_WILLNEED;
4722 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723 mutex_init(&obj->mm.get_page.lock);
4724
4725 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 }
4727
4728 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730 I915_GEM_OBJECT_IS_SHRINKABLE,
4731
4732 .get_pages = i915_gem_object_get_pages_gtt,
4733 .put_pages = i915_gem_object_put_pages_gtt,
4734
4735 .pwrite = i915_gem_object_pwrite_gtt,
4736 };
4737
4738 static int i915_gem_object_create_shmem(struct drm_device *dev,
4739 struct drm_gem_object *obj,
4740 size_t size)
4741 {
4742 struct drm_i915_private *i915 = to_i915(dev);
4743 unsigned long flags = VM_NORESERVE;
4744 struct file *filp;
4745
4746 drm_gem_private_object_init(dev, obj, size);
4747
4748 if (i915->mm.gemfs)
4749 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750 flags);
4751 else
4752 filp = shmem_file_setup("i915", size, flags);
4753
4754 if (IS_ERR(filp))
4755 return PTR_ERR(filp);
4756
4757 obj->filp = filp;
4758
4759 return 0;
4760 }
4761
4762 struct drm_i915_gem_object *
4763 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764 {
4765 struct drm_i915_gem_object *obj;
4766 struct address_space *mapping;
4767 unsigned int cache_level;
4768 gfp_t mask;
4769 int ret;
4770
4771 /* There is a prevalence of the assumption that we fit the object's
4772 * page count inside a 32bit _signed_ variable. Let's document this and
4773 * catch if we ever need to fix it. In the meantime, if you do spot
4774 * such a local variable, please consider fixing!
4775 */
4776 if (size >> PAGE_SHIFT > INT_MAX)
4777 return ERR_PTR(-E2BIG);
4778
4779 if (overflows_type(size, obj->base.size))
4780 return ERR_PTR(-E2BIG);
4781
4782 obj = i915_gem_object_alloc(dev_priv);
4783 if (obj == NULL)
4784 return ERR_PTR(-ENOMEM);
4785
4786 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787 if (ret)
4788 goto fail;
4789
4790 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792 /* 965gm cannot relocate objects above 4GiB. */
4793 mask &= ~__GFP_HIGHMEM;
4794 mask |= __GFP_DMA32;
4795 }
4796
4797 mapping = obj->base.filp->f_mapping;
4798 mapping_set_gfp_mask(mapping, mask);
4799 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800
4801 i915_gem_object_init(obj, &i915_gem_object_ops);
4802
4803 obj->write_domain = I915_GEM_DOMAIN_CPU;
4804 obj->read_domains = I915_GEM_DOMAIN_CPU;
4805
4806 if (HAS_LLC(dev_priv))
4807 /* On some devices, we can have the GPU use the LLC (the CPU
4808 * cache) for about a 10% performance improvement
4809 * compared to uncached. Graphics requests other than
4810 * display scanout are coherent with the CPU in
4811 * accessing this cache. This means in this mode we
4812 * don't need to clflush on the CPU side, and on the
4813 * GPU side we only need to flush internal caches to
4814 * get data visible to the CPU.
4815 *
4816 * However, we maintain the display planes as UC, and so
4817 * need to rebind when first used as such.
4818 */
4819 cache_level = I915_CACHE_LLC;
4820 else
4821 cache_level = I915_CACHE_NONE;
4822
4823 i915_gem_object_set_cache_coherency(obj, cache_level);
4824
4825 trace_i915_gem_object_create(obj);
4826
4827 return obj;
4828
4829 fail:
4830 i915_gem_object_free(obj);
4831 return ERR_PTR(ret);
4832 }
4833
4834 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835 {
4836 /* If we are the last user of the backing storage (be it shmemfs
4837 * pages or stolen etc), we know that the pages are going to be
4838 * immediately released. In this case, we can then skip copying
4839 * back the contents from the GPU.
4840 */
4841
4842 if (obj->mm.madv != I915_MADV_WILLNEED)
4843 return false;
4844
4845 if (obj->base.filp == NULL)
4846 return true;
4847
4848 /* At first glance, this looks racy, but then again so would be
4849 * userspace racing mmap against close. However, the first external
4850 * reference to the filp can only be obtained through the
4851 * i915_gem_mmap_ioctl() which safeguards us against the user
4852 * acquiring such a reference whilst we are in the middle of
4853 * freeing the object.
4854 */
4855 return atomic_long_read(&obj->base.filp->f_count) == 1;
4856 }
4857
4858 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859 struct llist_node *freed)
4860 {
4861 struct drm_i915_gem_object *obj, *on;
4862
4863 intel_runtime_pm_get(i915);
4864 llist_for_each_entry_safe(obj, on, freed, freed) {
4865 struct i915_vma *vma, *vn;
4866
4867 trace_i915_gem_object_destroy(obj);
4868
4869 mutex_lock(&i915->drm.struct_mutex);
4870
4871 GEM_BUG_ON(i915_gem_object_is_active(obj));
4872 list_for_each_entry_safe(vma, vn,
4873 &obj->vma_list, obj_link) {
4874 GEM_BUG_ON(i915_vma_is_active(vma));
4875 vma->flags &= ~I915_VMA_PIN_MASK;
4876 i915_vma_destroy(vma);
4877 }
4878 GEM_BUG_ON(!list_empty(&obj->vma_list));
4879 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880
4881 /* This serializes freeing with the shrinker. Since the free
4882 * is delayed, first by RCU then by the workqueue, we want the
4883 * shrinker to be able to free pages of unreferenced objects,
4884 * or else we may oom whilst there are plenty of deferred
4885 * freed objects.
4886 */
4887 if (i915_gem_object_has_pages(obj)) {
4888 spin_lock(&i915->mm.obj_lock);
4889 list_del_init(&obj->mm.link);
4890 spin_unlock(&i915->mm.obj_lock);
4891 }
4892
4893 mutex_unlock(&i915->drm.struct_mutex);
4894
4895 GEM_BUG_ON(obj->bind_count);
4896 GEM_BUG_ON(obj->userfault_count);
4897 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898 GEM_BUG_ON(!list_empty(&obj->lut_list));
4899
4900 if (obj->ops->release)
4901 obj->ops->release(obj);
4902
4903 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904 atomic_set(&obj->mm.pages_pin_count, 0);
4905 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907
4908 if (obj->base.import_attach)
4909 drm_prime_gem_destroy(&obj->base, NULL);
4910
4911 reservation_object_fini(&obj->__builtin_resv);
4912 drm_gem_object_release(&obj->base);
4913 i915_gem_info_remove_obj(i915, obj->base.size);
4914
4915 kfree(obj->bit_17);
4916 i915_gem_object_free(obj);
4917
4918 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919 atomic_dec(&i915->mm.free_count);
4920
4921 if (on)
4922 cond_resched();
4923 }
4924 intel_runtime_pm_put(i915);
4925 }
4926
4927 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928 {
4929 struct llist_node *freed;
4930
4931 /* Free the oldest, most stale object to keep the free_list short */
4932 freed = NULL;
4933 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934 /* Only one consumer of llist_del_first() allowed */
4935 spin_lock(&i915->mm.free_lock);
4936 freed = llist_del_first(&i915->mm.free_list);
4937 spin_unlock(&i915->mm.free_lock);
4938 }
4939 if (unlikely(freed)) {
4940 freed->next = NULL;
4941 __i915_gem_free_objects(i915, freed);
4942 }
4943 }
4944
4945 static void __i915_gem_free_work(struct work_struct *work)
4946 {
4947 struct drm_i915_private *i915 =
4948 container_of(work, struct drm_i915_private, mm.free_work);
4949 struct llist_node *freed;
4950
4951 /*
4952 * All file-owned VMA should have been released by this point through
4953 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954 * However, the object may also be bound into the global GTT (e.g.
4955 * older GPUs without per-process support, or for direct access through
4956 * the GTT either for the user or for scanout). Those VMA still need to
4957 * unbound now.
4958 */
4959
4960 spin_lock(&i915->mm.free_lock);
4961 while ((freed = llist_del_all(&i915->mm.free_list))) {
4962 spin_unlock(&i915->mm.free_lock);
4963
4964 __i915_gem_free_objects(i915, freed);
4965 if (need_resched())
4966 return;
4967
4968 spin_lock(&i915->mm.free_lock);
4969 }
4970 spin_unlock(&i915->mm.free_lock);
4971 }
4972
4973 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974 {
4975 struct drm_i915_gem_object *obj =
4976 container_of(head, typeof(*obj), rcu);
4977 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978
4979 /*
4980 * We reuse obj->rcu for the freed list, so we had better not treat
4981 * it like a rcu_head from this point forwards. And we expect all
4982 * objects to be freed via this path.
4983 */
4984 destroy_rcu_head(&obj->rcu);
4985
4986 /*
4987 * Since we require blocking on struct_mutex to unbind the freed
4988 * object from the GPU before releasing resources back to the
4989 * system, we can not do that directly from the RCU callback (which may
4990 * be a softirq context), but must instead then defer that work onto a
4991 * kthread. We use the RCU callback rather than move the freed object
4992 * directly onto the work queue so that we can mix between using the
4993 * worker and performing frees directly from subsequent allocations for
4994 * crude but effective memory throttling.
4995 */
4996 if (llist_add(&obj->freed, &i915->mm.free_list))
4997 queue_work(i915->wq, &i915->mm.free_work);
4998 }
4999
5000 void i915_gem_free_object(struct drm_gem_object *gem_obj)
5001 {
5002 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
5003
5004 if (obj->mm.quirked)
5005 __i915_gem_object_unpin_pages(obj);
5006
5007 if (discard_backing_storage(obj))
5008 obj->mm.madv = I915_MADV_DONTNEED;
5009
5010 /*
5011 * Before we free the object, make sure any pure RCU-only
5012 * read-side critical sections are complete, e.g.
5013 * i915_gem_busy_ioctl(). For the corresponding synchronized
5014 * lookup see i915_gem_object_lookup_rcu().
5015 */
5016 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5017 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5018 }
5019
5020 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5021 {
5022 lockdep_assert_held(&obj->base.dev->struct_mutex);
5023
5024 if (!i915_gem_object_has_active_reference(obj) &&
5025 i915_gem_object_is_active(obj))
5026 i915_gem_object_set_active_reference(obj);
5027 else
5028 i915_gem_object_put(obj);
5029 }
5030
5031 void i915_gem_sanitize(struct drm_i915_private *i915)
5032 {
5033 int err;
5034
5035 GEM_TRACE("\n");
5036
5037 mutex_lock(&i915->drm.struct_mutex);
5038
5039 intel_runtime_pm_get(i915);
5040 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5041
5042 /*
5043 * As we have just resumed the machine and woken the device up from
5044 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5045 * back to defaults, recovering from whatever wedged state we left it
5046 * in and so worth trying to use the device once more.
5047 */
5048 if (i915_terminally_wedged(&i915->gpu_error))
5049 i915_gem_unset_wedged(i915);
5050
5051 /*
5052 * If we inherit context state from the BIOS or earlier occupants
5053 * of the GPU, the GPU may be in an inconsistent state when we
5054 * try to take over. The only way to remove the earlier state
5055 * is by resetting. However, resetting on earlier gen is tricky as
5056 * it may impact the display and we are uncertain about the stability
5057 * of the reset, so this could be applied to even earlier gen.
5058 */
5059 err = -ENODEV;
5060 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5061 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5062 if (!err)
5063 intel_engines_sanitize(i915);
5064
5065 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5066 intel_runtime_pm_put(i915);
5067
5068 i915_gem_contexts_lost(i915);
5069 mutex_unlock(&i915->drm.struct_mutex);
5070 }
5071
5072 int i915_gem_suspend(struct drm_i915_private *i915)
5073 {
5074 int ret;
5075
5076 GEM_TRACE("\n");
5077
5078 intel_runtime_pm_get(i915);
5079 intel_suspend_gt_powersave(i915);
5080
5081 mutex_lock(&i915->drm.struct_mutex);
5082
5083 /*
5084 * We have to flush all the executing contexts to main memory so
5085 * that they can saved in the hibernation image. To ensure the last
5086 * context image is coherent, we have to switch away from it. That
5087 * leaves the i915->kernel_context still active when
5088 * we actually suspend, and its image in memory may not match the GPU
5089 * state. Fortunately, the kernel_context is disposable and we do
5090 * not rely on its state.
5091 */
5092 if (!i915_terminally_wedged(&i915->gpu_error)) {
5093 ret = i915_gem_switch_to_kernel_context(i915);
5094 if (ret)
5095 goto err_unlock;
5096
5097 ret = i915_gem_wait_for_idle(i915,
5098 I915_WAIT_INTERRUPTIBLE |
5099 I915_WAIT_LOCKED |
5100 I915_WAIT_FOR_IDLE_BOOST,
5101 MAX_SCHEDULE_TIMEOUT);
5102 if (ret && ret != -EIO)
5103 goto err_unlock;
5104
5105 assert_kernel_context_is_current(i915);
5106 }
5107 i915_retire_requests(i915); /* ensure we flush after wedging */
5108
5109 mutex_unlock(&i915->drm.struct_mutex);
5110
5111 intel_uc_suspend(i915);
5112
5113 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5114 cancel_delayed_work_sync(&i915->gt.retire_work);
5115
5116 /*
5117 * As the idle_work is rearming if it detects a race, play safe and
5118 * repeat the flush until it is definitely idle.
5119 */
5120 drain_delayed_work(&i915->gt.idle_work);
5121
5122 /*
5123 * Assert that we successfully flushed all the work and
5124 * reset the GPU back to its idle, low power state.
5125 */
5126 WARN_ON(i915->gt.awake);
5127 if (WARN_ON(!intel_engines_are_idle(i915)))
5128 i915_gem_set_wedged(i915); /* no hope, discard everything */
5129
5130 intel_runtime_pm_put(i915);
5131 return 0;
5132
5133 err_unlock:
5134 mutex_unlock(&i915->drm.struct_mutex);
5135 intel_runtime_pm_put(i915);
5136 return ret;
5137 }
5138
5139 void i915_gem_suspend_late(struct drm_i915_private *i915)
5140 {
5141 struct drm_i915_gem_object *obj;
5142 struct list_head *phases[] = {
5143 &i915->mm.unbound_list,
5144 &i915->mm.bound_list,
5145 NULL
5146 }, **phase;
5147
5148 /*
5149 * Neither the BIOS, ourselves or any other kernel
5150 * expects the system to be in execlists mode on startup,
5151 * so we need to reset the GPU back to legacy mode. And the only
5152 * known way to disable logical contexts is through a GPU reset.
5153 *
5154 * So in order to leave the system in a known default configuration,
5155 * always reset the GPU upon unload and suspend. Afterwards we then
5156 * clean up the GEM state tracking, flushing off the requests and
5157 * leaving the system in a known idle state.
5158 *
5159 * Note that is of the upmost importance that the GPU is idle and
5160 * all stray writes are flushed *before* we dismantle the backing
5161 * storage for the pinned objects.
5162 *
5163 * However, since we are uncertain that resetting the GPU on older
5164 * machines is a good idea, we don't - just in case it leaves the
5165 * machine in an unusable condition.
5166 */
5167
5168 mutex_lock(&i915->drm.struct_mutex);
5169 for (phase = phases; *phase; phase++) {
5170 list_for_each_entry(obj, *phase, mm.link)
5171 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5172 }
5173 mutex_unlock(&i915->drm.struct_mutex);
5174
5175 intel_uc_sanitize(i915);
5176 i915_gem_sanitize(i915);
5177 }
5178
5179 void i915_gem_resume(struct drm_i915_private *i915)
5180 {
5181 GEM_TRACE("\n");
5182
5183 WARN_ON(i915->gt.awake);
5184
5185 mutex_lock(&i915->drm.struct_mutex);
5186 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5187
5188 i915_gem_restore_gtt_mappings(i915);
5189 i915_gem_restore_fences(i915);
5190
5191 /*
5192 * As we didn't flush the kernel context before suspend, we cannot
5193 * guarantee that the context image is complete. So let's just reset
5194 * it and start again.
5195 */
5196 i915->gt.resume(i915);
5197
5198 if (i915_gem_init_hw(i915))
5199 goto err_wedged;
5200
5201 intel_uc_resume(i915);
5202
5203 /* Always reload a context for powersaving. */
5204 if (i915_gem_switch_to_kernel_context(i915))
5205 goto err_wedged;
5206
5207 out_unlock:
5208 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5209 mutex_unlock(&i915->drm.struct_mutex);
5210 return;
5211
5212 err_wedged:
5213 if (!i915_terminally_wedged(&i915->gpu_error)) {
5214 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5215 i915_gem_set_wedged(i915);
5216 }
5217 goto out_unlock;
5218 }
5219
5220 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5221 {
5222 if (INTEL_GEN(dev_priv) < 5 ||
5223 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5224 return;
5225
5226 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5227 DISP_TILE_SURFACE_SWIZZLING);
5228
5229 if (IS_GEN5(dev_priv))
5230 return;
5231
5232 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5233 if (IS_GEN6(dev_priv))
5234 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5235 else if (IS_GEN7(dev_priv))
5236 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5237 else if (IS_GEN8(dev_priv))
5238 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5239 else
5240 BUG();
5241 }
5242
5243 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5244 {
5245 I915_WRITE(RING_CTL(base), 0);
5246 I915_WRITE(RING_HEAD(base), 0);
5247 I915_WRITE(RING_TAIL(base), 0);
5248 I915_WRITE(RING_START(base), 0);
5249 }
5250
5251 static void init_unused_rings(struct drm_i915_private *dev_priv)
5252 {
5253 if (IS_I830(dev_priv)) {
5254 init_unused_ring(dev_priv, PRB1_BASE);
5255 init_unused_ring(dev_priv, SRB0_BASE);
5256 init_unused_ring(dev_priv, SRB1_BASE);
5257 init_unused_ring(dev_priv, SRB2_BASE);
5258 init_unused_ring(dev_priv, SRB3_BASE);
5259 } else if (IS_GEN2(dev_priv)) {
5260 init_unused_ring(dev_priv, SRB0_BASE);
5261 init_unused_ring(dev_priv, SRB1_BASE);
5262 } else if (IS_GEN3(dev_priv)) {
5263 init_unused_ring(dev_priv, PRB1_BASE);
5264 init_unused_ring(dev_priv, PRB2_BASE);
5265 }
5266 }
5267
5268 static int __i915_gem_restart_engines(void *data)
5269 {
5270 struct drm_i915_private *i915 = data;
5271 struct intel_engine_cs *engine;
5272 enum intel_engine_id id;
5273 int err;
5274
5275 for_each_engine(engine, i915, id) {
5276 err = engine->init_hw(engine);
5277 if (err) {
5278 DRM_ERROR("Failed to restart %s (%d)\n",
5279 engine->name, err);
5280 return err;
5281 }
5282 }
5283
5284 return 0;
5285 }
5286
5287 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5288 {
5289 int ret;
5290
5291 dev_priv->gt.last_init_time = ktime_get();
5292
5293 /* Double layer security blanket, see i915_gem_init() */
5294 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5295
5296 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5297 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5298
5299 if (IS_HASWELL(dev_priv))
5300 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5301 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5302
5303 /* Apply the GT workarounds... */
5304 intel_gt_apply_workarounds(dev_priv);
5305 /* ...and determine whether they are sticking. */
5306 intel_gt_verify_workarounds(dev_priv, "init");
5307
5308 i915_gem_init_swizzling(dev_priv);
5309
5310 /*
5311 * At least 830 can leave some of the unused rings
5312 * "active" (ie. head != tail) after resume which
5313 * will prevent c3 entry. Makes sure all unused rings
5314 * are totally idle.
5315 */
5316 init_unused_rings(dev_priv);
5317
5318 BUG_ON(!dev_priv->kernel_context);
5319 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5320 ret = -EIO;
5321 goto out;
5322 }
5323
5324 ret = i915_ppgtt_init_hw(dev_priv);
5325 if (ret) {
5326 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5327 goto out;
5328 }
5329
5330 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5331 if (ret) {
5332 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5333 goto out;
5334 }
5335
5336 /* We can't enable contexts until all firmware is loaded */
5337 ret = intel_uc_init_hw(dev_priv);
5338 if (ret) {
5339 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5340 goto out;
5341 }
5342
5343 intel_mocs_init_l3cc_table(dev_priv);
5344
5345 /* Only when the HW is re-initialised, can we replay the requests */
5346 ret = __i915_gem_restart_engines(dev_priv);
5347 if (ret)
5348 goto cleanup_uc;
5349
5350 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5351
5352 return 0;
5353
5354 cleanup_uc:
5355 intel_uc_fini_hw(dev_priv);
5356 out:
5357 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5358
5359 return ret;
5360 }
5361
5362 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5363 {
5364 struct i915_gem_context *ctx;
5365 struct intel_engine_cs *engine;
5366 enum intel_engine_id id;
5367 int err;
5368
5369 /*
5370 * As we reset the gpu during very early sanitisation, the current
5371 * register state on the GPU should reflect its defaults values.
5372 * We load a context onto the hw (with restore-inhibit), then switch
5373 * over to a second context to save that default register state. We
5374 * can then prime every new context with that state so they all start
5375 * from the same default HW values.
5376 */
5377
5378 ctx = i915_gem_context_create_kernel(i915, 0);
5379 if (IS_ERR(ctx))
5380 return PTR_ERR(ctx);
5381
5382 for_each_engine(engine, i915, id) {
5383 struct i915_request *rq;
5384
5385 rq = i915_request_alloc(engine, ctx);
5386 if (IS_ERR(rq)) {
5387 err = PTR_ERR(rq);
5388 goto out_ctx;
5389 }
5390
5391 err = 0;
5392 if (engine->init_context)
5393 err = engine->init_context(rq);
5394
5395 i915_request_add(rq);
5396 if (err)
5397 goto err_active;
5398 }
5399
5400 err = i915_gem_switch_to_kernel_context(i915);
5401 if (err)
5402 goto err_active;
5403
5404 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5405 i915_gem_set_wedged(i915);
5406 err = -EIO; /* Caller will declare us wedged */
5407 goto err_active;
5408 }
5409
5410 assert_kernel_context_is_current(i915);
5411
5412 /*
5413 * Immediately park the GPU so that we enable powersaving and
5414 * treat it as idle. The next time we issue a request, we will
5415 * unpark and start using the engine->pinned_default_state, otherwise
5416 * it is in limbo and an early reset may fail.
5417 */
5418 __i915_gem_park(i915);
5419
5420 for_each_engine(engine, i915, id) {
5421 struct i915_vma *state;
5422 void *vaddr;
5423
5424 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5425
5426 state = to_intel_context(ctx, engine)->state;
5427 if (!state)
5428 continue;
5429
5430 /*
5431 * As we will hold a reference to the logical state, it will
5432 * not be torn down with the context, and importantly the
5433 * object will hold onto its vma (making it possible for a
5434 * stray GTT write to corrupt our defaults). Unmap the vma
5435 * from the GTT to prevent such accidents and reclaim the
5436 * space.
5437 */
5438 err = i915_vma_unbind(state);
5439 if (err)
5440 goto err_active;
5441
5442 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5443 if (err)
5444 goto err_active;
5445
5446 engine->default_state = i915_gem_object_get(state->obj);
5447
5448 /* Check we can acquire the image of the context state */
5449 vaddr = i915_gem_object_pin_map(engine->default_state,
5450 I915_MAP_FORCE_WB);
5451 if (IS_ERR(vaddr)) {
5452 err = PTR_ERR(vaddr);
5453 goto err_active;
5454 }
5455
5456 i915_gem_object_unpin_map(engine->default_state);
5457 }
5458
5459 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5460 unsigned int found = intel_engines_has_context_isolation(i915);
5461
5462 /*
5463 * Make sure that classes with multiple engine instances all
5464 * share the same basic configuration.
5465 */
5466 for_each_engine(engine, i915, id) {
5467 unsigned int bit = BIT(engine->uabi_class);
5468 unsigned int expected = engine->default_state ? bit : 0;
5469
5470 if ((found & bit) != expected) {
5471 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5472 engine->uabi_class, engine->name);
5473 }
5474 }
5475 }
5476
5477 out_ctx:
5478 i915_gem_context_set_closed(ctx);
5479 i915_gem_context_put(ctx);
5480 return err;
5481
5482 err_active:
5483 /*
5484 * If we have to abandon now, we expect the engines to be idle
5485 * and ready to be torn-down. First try to flush any remaining
5486 * request, ensure we are pointing at the kernel context and
5487 * then remove it.
5488 */
5489 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5490 goto out_ctx;
5491
5492 if (WARN_ON(i915_gem_wait_for_idle(i915,
5493 I915_WAIT_LOCKED,
5494 MAX_SCHEDULE_TIMEOUT)))
5495 goto out_ctx;
5496
5497 i915_gem_contexts_lost(i915);
5498 goto out_ctx;
5499 }
5500
5501 static int
5502 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5503 {
5504 struct drm_i915_gem_object *obj;
5505 struct i915_vma *vma;
5506 int ret;
5507
5508 obj = i915_gem_object_create_stolen(i915, size);
5509 if (!obj)
5510 obj = i915_gem_object_create_internal(i915, size);
5511 if (IS_ERR(obj)) {
5512 DRM_ERROR("Failed to allocate scratch page\n");
5513 return PTR_ERR(obj);
5514 }
5515
5516 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5517 if (IS_ERR(vma)) {
5518 ret = PTR_ERR(vma);
5519 goto err_unref;
5520 }
5521
5522 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5523 if (ret)
5524 goto err_unref;
5525
5526 i915->gt.scratch = vma;
5527 return 0;
5528
5529 err_unref:
5530 i915_gem_object_put(obj);
5531 return ret;
5532 }
5533
5534 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5535 {
5536 i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5537 }
5538
5539 int i915_gem_init(struct drm_i915_private *dev_priv)
5540 {
5541 int ret;
5542
5543 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5544 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5545 mkwrite_device_info(dev_priv)->page_sizes =
5546 I915_GTT_PAGE_SIZE_4K;
5547
5548 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5549
5550 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5551 dev_priv->gt.resume = intel_lr_context_resume;
5552 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5553 } else {
5554 dev_priv->gt.resume = intel_legacy_submission_resume;
5555 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5556 }
5557
5558 ret = i915_gem_init_userptr(dev_priv);
5559 if (ret)
5560 return ret;
5561
5562 ret = intel_uc_init_misc(dev_priv);
5563 if (ret)
5564 return ret;
5565
5566 ret = intel_wopcm_init(&dev_priv->wopcm);
5567 if (ret)
5568 goto err_uc_misc;
5569
5570 /* This is just a security blanket to placate dragons.
5571 * On some systems, we very sporadically observe that the first TLBs
5572 * used by the CS may be stale, despite us poking the TLB reset. If
5573 * we hold the forcewake during initialisation these problems
5574 * just magically go away.
5575 */
5576 mutex_lock(&dev_priv->drm.struct_mutex);
5577 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5578
5579 ret = i915_gem_init_ggtt(dev_priv);
5580 if (ret) {
5581 GEM_BUG_ON(ret == -EIO);
5582 goto err_unlock;
5583 }
5584
5585 ret = i915_gem_init_scratch(dev_priv,
5586 IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5587 if (ret) {
5588 GEM_BUG_ON(ret == -EIO);
5589 goto err_ggtt;
5590 }
5591
5592 ret = i915_gem_contexts_init(dev_priv);
5593 if (ret) {
5594 GEM_BUG_ON(ret == -EIO);
5595 goto err_scratch;
5596 }
5597
5598 ret = intel_engines_init(dev_priv);
5599 if (ret) {
5600 GEM_BUG_ON(ret == -EIO);
5601 goto err_context;
5602 }
5603
5604 intel_init_gt_powersave(dev_priv);
5605
5606 ret = intel_uc_init(dev_priv);
5607 if (ret)
5608 goto err_pm;
5609
5610 ret = i915_gem_init_hw(dev_priv);
5611 if (ret)
5612 goto err_uc_init;
5613
5614 /*
5615 * Despite its name intel_init_clock_gating applies both display
5616 * clock gating workarounds; GT mmio workarounds and the occasional
5617 * GT power context workaround. Worse, sometimes it includes a context
5618 * register workaround which we need to apply before we record the
5619 * default HW state for all contexts.
5620 *
5621 * FIXME: break up the workarounds and apply them at the right time!
5622 */
5623 intel_init_clock_gating(dev_priv);
5624
5625 ret = __intel_engines_record_defaults(dev_priv);
5626 if (ret)
5627 goto err_init_hw;
5628
5629 if (i915_inject_load_failure()) {
5630 ret = -ENODEV;
5631 goto err_init_hw;
5632 }
5633
5634 if (i915_inject_load_failure()) {
5635 ret = -EIO;
5636 goto err_init_hw;
5637 }
5638
5639 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5640 mutex_unlock(&dev_priv->drm.struct_mutex);
5641
5642 return 0;
5643
5644 /*
5645 * Unwinding is complicated by that we want to handle -EIO to mean
5646 * disable GPU submission but keep KMS alive. We want to mark the
5647 * HW as irrevisibly wedged, but keep enough state around that the
5648 * driver doesn't explode during runtime.
5649 */
5650 err_init_hw:
5651 mutex_unlock(&dev_priv->drm.struct_mutex);
5652
5653 WARN_ON(i915_gem_suspend(dev_priv));
5654 i915_gem_suspend_late(dev_priv);
5655
5656 i915_gem_drain_workqueue(dev_priv);
5657
5658 mutex_lock(&dev_priv->drm.struct_mutex);
5659 intel_uc_fini_hw(dev_priv);
5660 err_uc_init:
5661 intel_uc_fini(dev_priv);
5662 err_pm:
5663 if (ret != -EIO) {
5664 intel_cleanup_gt_powersave(dev_priv);
5665 i915_gem_cleanup_engines(dev_priv);
5666 }
5667 err_context:
5668 if (ret != -EIO)
5669 i915_gem_contexts_fini(dev_priv);
5670 err_scratch:
5671 i915_gem_fini_scratch(dev_priv);
5672 err_ggtt:
5673 err_unlock:
5674 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5675 mutex_unlock(&dev_priv->drm.struct_mutex);
5676
5677 err_uc_misc:
5678 intel_uc_fini_misc(dev_priv);
5679
5680 if (ret != -EIO)
5681 i915_gem_cleanup_userptr(dev_priv);
5682
5683 if (ret == -EIO) {
5684 mutex_lock(&dev_priv->drm.struct_mutex);
5685
5686 /*
5687 * Allow engine initialisation to fail by marking the GPU as
5688 * wedged. But we only want to do this where the GPU is angry,
5689 * for all other failure, such as an allocation failure, bail.
5690 */
5691 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5692 i915_load_error(dev_priv,
5693 "Failed to initialize GPU, declaring it wedged!\n");
5694 i915_gem_set_wedged(dev_priv);
5695 }
5696
5697 /* Minimal basic recovery for KMS */
5698 ret = i915_ggtt_enable_hw(dev_priv);
5699 i915_gem_restore_gtt_mappings(dev_priv);
5700 i915_gem_restore_fences(dev_priv);
5701 intel_init_clock_gating(dev_priv);
5702
5703 mutex_unlock(&dev_priv->drm.struct_mutex);
5704 }
5705
5706 i915_gem_drain_freed_objects(dev_priv);
5707 return ret;
5708 }
5709
5710 void i915_gem_fini(struct drm_i915_private *dev_priv)
5711 {
5712 i915_gem_suspend_late(dev_priv);
5713 intel_disable_gt_powersave(dev_priv);
5714
5715 /* Flush any outstanding unpin_work. */
5716 i915_gem_drain_workqueue(dev_priv);
5717
5718 mutex_lock(&dev_priv->drm.struct_mutex);
5719 intel_uc_fini_hw(dev_priv);
5720 intel_uc_fini(dev_priv);
5721 i915_gem_cleanup_engines(dev_priv);
5722 i915_gem_contexts_fini(dev_priv);
5723 i915_gem_fini_scratch(dev_priv);
5724 mutex_unlock(&dev_priv->drm.struct_mutex);
5725
5726 intel_wa_list_free(&dev_priv->gt_wa_list);
5727
5728 intel_cleanup_gt_powersave(dev_priv);
5729
5730 intel_uc_fini_misc(dev_priv);
5731 i915_gem_cleanup_userptr(dev_priv);
5732
5733 i915_gem_drain_freed_objects(dev_priv);
5734
5735 WARN_ON(!list_empty(&dev_priv->contexts.list));
5736 }
5737
5738 void i915_gem_init_mmio(struct drm_i915_private *i915)
5739 {
5740 i915_gem_sanitize(i915);
5741 }
5742
5743 void
5744 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5745 {
5746 struct intel_engine_cs *engine;
5747 enum intel_engine_id id;
5748
5749 for_each_engine(engine, dev_priv, id)
5750 dev_priv->gt.cleanup_engine(engine);
5751 }
5752
5753 void
5754 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5755 {
5756 int i;
5757
5758 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5759 !IS_CHERRYVIEW(dev_priv))
5760 dev_priv->num_fence_regs = 32;
5761 else if (INTEL_GEN(dev_priv) >= 4 ||
5762 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5763 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5764 dev_priv->num_fence_regs = 16;
5765 else
5766 dev_priv->num_fence_regs = 8;
5767
5768 if (intel_vgpu_active(dev_priv))
5769 dev_priv->num_fence_regs =
5770 I915_READ(vgtif_reg(avail_rs.fence_num));
5771
5772 /* Initialize fence registers to zero */
5773 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5774 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5775
5776 fence->i915 = dev_priv;
5777 fence->id = i;
5778 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5779 }
5780 i915_gem_restore_fences(dev_priv);
5781
5782 i915_gem_detect_bit_6_swizzle(dev_priv);
5783 }
5784
5785 static void i915_gem_init__mm(struct drm_i915_private *i915)
5786 {
5787 spin_lock_init(&i915->mm.object_stat_lock);
5788 spin_lock_init(&i915->mm.obj_lock);
5789 spin_lock_init(&i915->mm.free_lock);
5790
5791 init_llist_head(&i915->mm.free_list);
5792
5793 INIT_LIST_HEAD(&i915->mm.unbound_list);
5794 INIT_LIST_HEAD(&i915->mm.bound_list);
5795 INIT_LIST_HEAD(&i915->mm.fence_list);
5796 INIT_LIST_HEAD(&i915->mm.userfault_list);
5797
5798 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5799 }
5800
5801 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5802 {
5803 int err = -ENOMEM;
5804
5805 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5806 if (!dev_priv->objects)
5807 goto err_out;
5808
5809 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5810 if (!dev_priv->vmas)
5811 goto err_objects;
5812
5813 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5814 if (!dev_priv->luts)
5815 goto err_vmas;
5816
5817 dev_priv->requests = KMEM_CACHE(i915_request,
5818 SLAB_HWCACHE_ALIGN |
5819 SLAB_RECLAIM_ACCOUNT |
5820 SLAB_TYPESAFE_BY_RCU);
5821 if (!dev_priv->requests)
5822 goto err_luts;
5823
5824 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5825 SLAB_HWCACHE_ALIGN |
5826 SLAB_RECLAIM_ACCOUNT);
5827 if (!dev_priv->dependencies)
5828 goto err_requests;
5829
5830 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5831 if (!dev_priv->priorities)
5832 goto err_dependencies;
5833
5834 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5835 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5836 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5837
5838 i915_gem_init__mm(dev_priv);
5839
5840 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5841 i915_gem_retire_work_handler);
5842 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5843 i915_gem_idle_work_handler);
5844 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5845 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5846
5847 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5848
5849 spin_lock_init(&dev_priv->fb_tracking.lock);
5850
5851 err = i915_gemfs_init(dev_priv);
5852 if (err)
5853 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5854
5855 return 0;
5856
5857 err_dependencies:
5858 kmem_cache_destroy(dev_priv->dependencies);
5859 err_requests:
5860 kmem_cache_destroy(dev_priv->requests);
5861 err_luts:
5862 kmem_cache_destroy(dev_priv->luts);
5863 err_vmas:
5864 kmem_cache_destroy(dev_priv->vmas);
5865 err_objects:
5866 kmem_cache_destroy(dev_priv->objects);
5867 err_out:
5868 return err;
5869 }
5870
5871 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5872 {
5873 i915_gem_drain_freed_objects(dev_priv);
5874 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5875 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5876 WARN_ON(dev_priv->mm.object_count);
5877 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5878
5879 kmem_cache_destroy(dev_priv->priorities);
5880 kmem_cache_destroy(dev_priv->dependencies);
5881 kmem_cache_destroy(dev_priv->requests);
5882 kmem_cache_destroy(dev_priv->luts);
5883 kmem_cache_destroy(dev_priv->vmas);
5884 kmem_cache_destroy(dev_priv->objects);
5885
5886 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5887 rcu_barrier();
5888
5889 i915_gemfs_fini(dev_priv);
5890 }
5891
5892 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5893 {
5894 /* Discard all purgeable objects, let userspace recover those as
5895 * required after resuming.
5896 */
5897 i915_gem_shrink_all(dev_priv);
5898
5899 return 0;
5900 }
5901
5902 int i915_gem_freeze_late(struct drm_i915_private *i915)
5903 {
5904 struct drm_i915_gem_object *obj;
5905 struct list_head *phases[] = {
5906 &i915->mm.unbound_list,
5907 &i915->mm.bound_list,
5908 NULL
5909 }, **phase;
5910
5911 /*
5912 * Called just before we write the hibernation image.
5913 *
5914 * We need to update the domain tracking to reflect that the CPU
5915 * will be accessing all the pages to create and restore from the
5916 * hibernation, and so upon restoration those pages will be in the
5917 * CPU domain.
5918 *
5919 * To make sure the hibernation image contains the latest state,
5920 * we update that state just before writing out the image.
5921 *
5922 * To try and reduce the hibernation image, we manually shrink
5923 * the objects as well, see i915_gem_freeze()
5924 */
5925
5926 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5927 i915_gem_drain_freed_objects(i915);
5928
5929 mutex_lock(&i915->drm.struct_mutex);
5930 for (phase = phases; *phase; phase++) {
5931 list_for_each_entry(obj, *phase, mm.link)
5932 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5933 }
5934 mutex_unlock(&i915->drm.struct_mutex);
5935
5936 return 0;
5937 }
5938
5939 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5940 {
5941 struct drm_i915_file_private *file_priv = file->driver_priv;
5942 struct i915_request *request;
5943
5944 /* Clean up our request list when the client is going away, so that
5945 * later retire_requests won't dereference our soon-to-be-gone
5946 * file_priv.
5947 */
5948 spin_lock(&file_priv->mm.lock);
5949 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5950 request->file_priv = NULL;
5951 spin_unlock(&file_priv->mm.lock);
5952 }
5953
5954 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5955 {
5956 struct drm_i915_file_private *file_priv;
5957 int ret;
5958
5959 DRM_DEBUG("\n");
5960
5961 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5962 if (!file_priv)
5963 return -ENOMEM;
5964
5965 file->driver_priv = file_priv;
5966 file_priv->dev_priv = i915;
5967 file_priv->file = file;
5968
5969 spin_lock_init(&file_priv->mm.lock);
5970 INIT_LIST_HEAD(&file_priv->mm.request_list);
5971
5972 file_priv->bsd_engine = -1;
5973 file_priv->hang_timestamp = jiffies;
5974
5975 ret = i915_gem_context_open(i915, file);
5976 if (ret)
5977 kfree(file_priv);
5978
5979 return ret;
5980 }
5981
5982 /**
5983 * i915_gem_track_fb - update frontbuffer tracking
5984 * @old: current GEM buffer for the frontbuffer slots
5985 * @new: new GEM buffer for the frontbuffer slots
5986 * @frontbuffer_bits: bitmask of frontbuffer slots
5987 *
5988 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5989 * from @old and setting them in @new. Both @old and @new can be NULL.
5990 */
5991 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5992 struct drm_i915_gem_object *new,
5993 unsigned frontbuffer_bits)
5994 {
5995 /* Control of individual bits within the mask are guarded by
5996 * the owning plane->mutex, i.e. we can never see concurrent
5997 * manipulation of individual bits. But since the bitfield as a whole
5998 * is updated using RMW, we need to use atomics in order to update
5999 * the bits.
6000 */
6001 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6002 BITS_PER_TYPE(atomic_t));
6003
6004 if (old) {
6005 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6006 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6007 }
6008
6009 if (new) {
6010 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6011 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6012 }
6013 }
6014
6015 /* Allocate a new GEM object and fill it with the supplied data */
6016 struct drm_i915_gem_object *
6017 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6018 const void *data, size_t size)
6019 {
6020 struct drm_i915_gem_object *obj;
6021 struct file *file;
6022 size_t offset;
6023 int err;
6024
6025 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6026 if (IS_ERR(obj))
6027 return obj;
6028
6029 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6030
6031 file = obj->base.filp;
6032 offset = 0;
6033 do {
6034 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6035 struct page *page;
6036 void *pgdata, *vaddr;
6037
6038 err = pagecache_write_begin(file, file->f_mapping,
6039 offset, len, 0,
6040 &page, &pgdata);
6041 if (err < 0)
6042 goto fail;
6043
6044 vaddr = kmap(page);
6045 memcpy(vaddr, data, len);
6046 kunmap(page);
6047
6048 err = pagecache_write_end(file, file->f_mapping,
6049 offset, len, len,
6050 page, pgdata);
6051 if (err < 0)
6052 goto fail;
6053
6054 size -= len;
6055 data += len;
6056 offset += len;
6057 } while (size);
6058
6059 return obj;
6060
6061 fail:
6062 i915_gem_object_put(obj);
6063 return ERR_PTR(err);
6064 }
6065
6066 struct scatterlist *
6067 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6068 unsigned int n,
6069 unsigned int *offset)
6070 {
6071 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6072 struct scatterlist *sg;
6073 unsigned int idx, count;
6074
6075 might_sleep();
6076 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6077 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6078
6079 /* As we iterate forward through the sg, we record each entry in a
6080 * radixtree for quick repeated (backwards) lookups. If we have seen
6081 * this index previously, we will have an entry for it.
6082 *
6083 * Initial lookup is O(N), but this is amortized to O(1) for
6084 * sequential page access (where each new request is consecutive
6085 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6086 * i.e. O(1) with a large constant!
6087 */
6088 if (n < READ_ONCE(iter->sg_idx))
6089 goto lookup;
6090
6091 mutex_lock(&iter->lock);
6092
6093 /* We prefer to reuse the last sg so that repeated lookup of this
6094 * (or the subsequent) sg are fast - comparing against the last
6095 * sg is faster than going through the radixtree.
6096 */
6097
6098 sg = iter->sg_pos;
6099 idx = iter->sg_idx;
6100 count = __sg_page_count(sg);
6101
6102 while (idx + count <= n) {
6103 void *entry;
6104 unsigned long i;
6105 int ret;
6106
6107 /* If we cannot allocate and insert this entry, or the
6108 * individual pages from this range, cancel updating the
6109 * sg_idx so that on this lookup we are forced to linearly
6110 * scan onwards, but on future lookups we will try the
6111 * insertion again (in which case we need to be careful of
6112 * the error return reporting that we have already inserted
6113 * this index).
6114 */
6115 ret = radix_tree_insert(&iter->radix, idx, sg);
6116 if (ret && ret != -EEXIST)
6117 goto scan;
6118
6119 entry = xa_mk_value(idx);
6120 for (i = 1; i < count; i++) {
6121 ret = radix_tree_insert(&iter->radix, idx + i, entry);
6122 if (ret && ret != -EEXIST)
6123 goto scan;
6124 }
6125
6126 idx += count;
6127 sg = ____sg_next(sg);
6128 count = __sg_page_count(sg);
6129 }
6130
6131 scan:
6132 iter->sg_pos = sg;
6133 iter->sg_idx = idx;
6134
6135 mutex_unlock(&iter->lock);
6136
6137 if (unlikely(n < idx)) /* insertion completed by another thread */
6138 goto lookup;
6139
6140 /* In case we failed to insert the entry into the radixtree, we need
6141 * to look beyond the current sg.
6142 */
6143 while (idx + count <= n) {
6144 idx += count;
6145 sg = ____sg_next(sg);
6146 count = __sg_page_count(sg);
6147 }
6148
6149 *offset = n - idx;
6150 return sg;
6151
6152 lookup:
6153 rcu_read_lock();
6154
6155 sg = radix_tree_lookup(&iter->radix, n);
6156 GEM_BUG_ON(!sg);
6157
6158 /* If this index is in the middle of multi-page sg entry,
6159 * the radix tree will contain a value entry that points
6160 * to the start of that range. We will return the pointer to
6161 * the base page and the offset of this page within the
6162 * sg entry's range.
6163 */
6164 *offset = 0;
6165 if (unlikely(xa_is_value(sg))) {
6166 unsigned long base = xa_to_value(sg);
6167
6168 sg = radix_tree_lookup(&iter->radix, base);
6169 GEM_BUG_ON(!sg);
6170
6171 *offset = n - base;
6172 }
6173
6174 rcu_read_unlock();
6175
6176 return sg;
6177 }
6178
6179 struct page *
6180 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6181 {
6182 struct scatterlist *sg;
6183 unsigned int offset;
6184
6185 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6186
6187 sg = i915_gem_object_get_sg(obj, n, &offset);
6188 return nth_page(sg_page(sg), offset);
6189 }
6190
6191 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6192 struct page *
6193 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6194 unsigned int n)
6195 {
6196 struct page *page;
6197
6198 page = i915_gem_object_get_page(obj, n);
6199 if (!obj->mm.dirty)
6200 set_page_dirty(page);
6201
6202 return page;
6203 }
6204
6205 dma_addr_t
6206 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6207 unsigned long n)
6208 {
6209 struct scatterlist *sg;
6210 unsigned int offset;
6211
6212 sg = i915_gem_object_get_sg(obj, n, &offset);
6213 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6214 }
6215
6216 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6217 {
6218 struct sg_table *pages;
6219 int err;
6220
6221 if (align > obj->base.size)
6222 return -EINVAL;
6223
6224 if (obj->ops == &i915_gem_phys_ops)
6225 return 0;
6226
6227 if (obj->ops != &i915_gem_object_ops)
6228 return -EINVAL;
6229
6230 err = i915_gem_object_unbind(obj);
6231 if (err)
6232 return err;
6233
6234 mutex_lock(&obj->mm.lock);
6235
6236 if (obj->mm.madv != I915_MADV_WILLNEED) {
6237 err = -EFAULT;
6238 goto err_unlock;
6239 }
6240
6241 if (obj->mm.quirked) {
6242 err = -EFAULT;
6243 goto err_unlock;
6244 }
6245
6246 if (obj->mm.mapping) {
6247 err = -EBUSY;
6248 goto err_unlock;
6249 }
6250
6251 pages = __i915_gem_object_unset_pages(obj);
6252
6253 obj->ops = &i915_gem_phys_ops;
6254
6255 err = ____i915_gem_object_get_pages(obj);
6256 if (err)
6257 goto err_xfer;
6258
6259 /* Perma-pin (until release) the physical set of pages */
6260 __i915_gem_object_pin_pages(obj);
6261
6262 if (!IS_ERR_OR_NULL(pages))
6263 i915_gem_object_ops.put_pages(obj, pages);
6264 mutex_unlock(&obj->mm.lock);
6265 return 0;
6266
6267 err_xfer:
6268 obj->ops = &i915_gem_object_ops;
6269 if (!IS_ERR_OR_NULL(pages)) {
6270 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6271
6272 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6273 }
6274 err_unlock:
6275 mutex_unlock(&obj->mm.lock);
6276 return err;
6277 }
6278
6279 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6280 #include "selftests/scatterlist.c"
6281 #include "selftests/mock_gem_device.c"
6282 #include "selftests/huge_gem_object.c"
6283 #include "selftests/huge_pages.c"
6284 #include "selftests/i915_gem_object.c"
6285 #include "selftests/i915_gem_coherency.c"
6286 #include "selftests/i915_gem.c"
6287 #endif