]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: always disable irqs in intel_pipe_update_start
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct i915_gtt *ggtt = &dev_priv->gtt;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = dev_priv->gtt.base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 page_cache_release(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(obj->base.dev);
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 obj->has_dma_mapping = true;
221 return 0;
222 }
223
224 static void
225 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
226 {
227 int ret;
228
229 BUG_ON(obj->madv == __I915_MADV_PURGED);
230
231 ret = i915_gem_object_set_to_cpu_domain(obj, true);
232 if (ret) {
233 /* In the event of a disaster, abandon all caches and
234 * hope for the best.
235 */
236 WARN_ON(ret != -EIO);
237 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
238 }
239
240 if (obj->madv == I915_MADV_DONTNEED)
241 obj->dirty = 0;
242
243 if (obj->dirty) {
244 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
245 char *vaddr = obj->phys_handle->vaddr;
246 int i;
247
248 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
249 struct page *page;
250 char *dst;
251
252 page = shmem_read_mapping_page(mapping, i);
253 if (IS_ERR(page))
254 continue;
255
256 dst = kmap_atomic(page);
257 drm_clflush_virt_range(vaddr, PAGE_SIZE);
258 memcpy(dst, vaddr, PAGE_SIZE);
259 kunmap_atomic(dst);
260
261 set_page_dirty(page);
262 if (obj->madv == I915_MADV_WILLNEED)
263 mark_page_accessed(page);
264 page_cache_release(page);
265 vaddr += PAGE_SIZE;
266 }
267 obj->dirty = 0;
268 }
269
270 sg_free_table(obj->pages);
271 kfree(obj->pages);
272
273 obj->has_dma_mapping = false;
274 }
275
276 static void
277 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
278 {
279 drm_pci_free(obj->base.dev, obj->phys_handle);
280 }
281
282 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
283 .get_pages = i915_gem_object_get_pages_phys,
284 .put_pages = i915_gem_object_put_pages_phys,
285 .release = i915_gem_object_release_phys,
286 };
287
288 static int
289 drop_pages(struct drm_i915_gem_object *obj)
290 {
291 struct i915_vma *vma, *next;
292 int ret;
293
294 drm_gem_object_reference(&obj->base);
295 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
296 if (i915_vma_unbind(vma))
297 break;
298
299 ret = i915_gem_object_put_pages(obj);
300 drm_gem_object_unreference(&obj->base);
301
302 return ret;
303 }
304
305 int
306 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
307 int align)
308 {
309 drm_dma_handle_t *phys;
310 int ret;
311
312 if (obj->phys_handle) {
313 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
314 return -EBUSY;
315
316 return 0;
317 }
318
319 if (obj->madv != I915_MADV_WILLNEED)
320 return -EFAULT;
321
322 if (obj->base.filp == NULL)
323 return -EINVAL;
324
325 ret = drop_pages(obj);
326 if (ret)
327 return ret;
328
329 /* create a new object */
330 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
331 if (!phys)
332 return -ENOMEM;
333
334 obj->phys_handle = phys;
335 obj->ops = &i915_gem_phys_ops;
336
337 return i915_gem_object_get_pages(obj);
338 }
339
340 static int
341 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
342 struct drm_i915_gem_pwrite *args,
343 struct drm_file *file_priv)
344 {
345 struct drm_device *dev = obj->base.dev;
346 void *vaddr = obj->phys_handle->vaddr + args->offset;
347 char __user *user_data = to_user_ptr(args->data_ptr);
348 int ret = 0;
349
350 /* We manually control the domain here and pretend that it
351 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
352 */
353 ret = i915_gem_object_wait_rendering(obj, false);
354 if (ret)
355 return ret;
356
357 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
358 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
359 unsigned long unwritten;
360
361 /* The physical object once assigned is fixed for the lifetime
362 * of the obj, so we can safely drop the lock and continue
363 * to access vaddr.
364 */
365 mutex_unlock(&dev->struct_mutex);
366 unwritten = copy_from_user(vaddr, user_data, args->size);
367 mutex_lock(&dev->struct_mutex);
368 if (unwritten) {
369 ret = -EFAULT;
370 goto out;
371 }
372 }
373
374 drm_clflush_virt_range(vaddr, args->size);
375 i915_gem_chipset_flush(dev);
376
377 out:
378 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
379 return ret;
380 }
381
382 void *i915_gem_object_alloc(struct drm_device *dev)
383 {
384 struct drm_i915_private *dev_priv = dev->dev_private;
385 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
386 }
387
388 void i915_gem_object_free(struct drm_i915_gem_object *obj)
389 {
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->objects, obj);
392 }
393
394 static int
395 i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
399 {
400 struct drm_i915_gem_object *obj;
401 int ret;
402 u32 handle;
403
404 size = roundup(size, PAGE_SIZE);
405 if (size == 0)
406 return -EINVAL;
407
408 /* Allocate the new object */
409 obj = i915_gem_alloc_object(dev, size);
410 if (obj == NULL)
411 return -ENOMEM;
412
413 ret = drm_gem_handle_create(file, &obj->base, &handle);
414 /* drop reference from allocate - handle holds it now */
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
418
419 *handle_p = handle;
420 return 0;
421 }
422
423 int
424 i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427 {
428 /* have to work out size/pitch and return them */
429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
432 args->size, &args->handle);
433 }
434
435 /**
436 * Creates a new mm object and returns a handle to it.
437 */
438 int
439 i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441 {
442 struct drm_i915_gem_create *args = data;
443
444 return i915_gem_create(file, dev,
445 args->size, &args->handle);
446 }
447
448 static inline int
449 __copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452 {
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472 }
473
474 static inline int
475 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
477 int length)
478 {
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498 }
499
500 /*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507 {
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
525 }
526
527 ret = i915_gem_object_get_pages(obj);
528 if (ret)
529 return ret;
530
531 i915_gem_object_pin_pages(obj);
532
533 return ret;
534 }
535
536 /* Per-page copy function for the shmem pread fastpath.
537 * Flushes invalid cachelines before reading the target if
538 * needs_clflush is set. */
539 static int
540 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
541 char __user *user_data,
542 bool page_do_bit17_swizzling, bool needs_clflush)
543 {
544 char *vaddr;
545 int ret;
546
547 if (unlikely(page_do_bit17_swizzling))
548 return -EINVAL;
549
550 vaddr = kmap_atomic(page);
551 if (needs_clflush)
552 drm_clflush_virt_range(vaddr + shmem_page_offset,
553 page_length);
554 ret = __copy_to_user_inatomic(user_data,
555 vaddr + shmem_page_offset,
556 page_length);
557 kunmap_atomic(vaddr);
558
559 return ret ? -EFAULT : 0;
560 }
561
562 static void
563 shmem_clflush_swizzled_range(char *addr, unsigned long length,
564 bool swizzled)
565 {
566 if (unlikely(swizzled)) {
567 unsigned long start = (unsigned long) addr;
568 unsigned long end = (unsigned long) addr + length;
569
570 /* For swizzling simply ensure that we always flush both
571 * channels. Lame, but simple and it works. Swizzled
572 * pwrite/pread is far from a hotpath - current userspace
573 * doesn't use it at all. */
574 start = round_down(start, 128);
575 end = round_up(end, 128);
576
577 drm_clflush_virt_range((void *)start, end - start);
578 } else {
579 drm_clflush_virt_range(addr, length);
580 }
581
582 }
583
584 /* Only difference to the fast-path function is that this can handle bit17
585 * and uses non-atomic copy and kmap functions. */
586 static int
587 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
588 char __user *user_data,
589 bool page_do_bit17_swizzling, bool needs_clflush)
590 {
591 char *vaddr;
592 int ret;
593
594 vaddr = kmap(page);
595 if (needs_clflush)
596 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
597 page_length,
598 page_do_bit17_swizzling);
599
600 if (page_do_bit17_swizzling)
601 ret = __copy_to_user_swizzled(user_data,
602 vaddr, shmem_page_offset,
603 page_length);
604 else
605 ret = __copy_to_user(user_data,
606 vaddr + shmem_page_offset,
607 page_length);
608 kunmap(page);
609
610 return ret ? - EFAULT : 0;
611 }
612
613 static int
614 i915_gem_shmem_pread(struct drm_device *dev,
615 struct drm_i915_gem_object *obj,
616 struct drm_i915_gem_pread *args,
617 struct drm_file *file)
618 {
619 char __user *user_data;
620 ssize_t remain;
621 loff_t offset;
622 int shmem_page_offset, page_length, ret = 0;
623 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
624 int prefaulted = 0;
625 int needs_clflush = 0;
626 struct sg_page_iter sg_iter;
627
628 user_data = to_user_ptr(args->data_ptr);
629 remain = args->size;
630
631 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
632
633 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
634 if (ret)
635 return ret;
636
637 offset = args->offset;
638
639 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
640 offset >> PAGE_SHIFT) {
641 struct page *page = sg_page_iter_page(&sg_iter);
642
643 if (remain <= 0)
644 break;
645
646 /* Operation in this page
647 *
648 * shmem_page_offset = offset within page in shmem file
649 * page_length = bytes to copy for this page
650 */
651 shmem_page_offset = offset_in_page(offset);
652 page_length = remain;
653 if ((shmem_page_offset + page_length) > PAGE_SIZE)
654 page_length = PAGE_SIZE - shmem_page_offset;
655
656 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
657 (page_to_phys(page) & (1 << 17)) != 0;
658
659 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
660 user_data, page_do_bit17_swizzling,
661 needs_clflush);
662 if (ret == 0)
663 goto next_page;
664
665 mutex_unlock(&dev->struct_mutex);
666
667 if (likely(!i915.prefault_disable) && !prefaulted) {
668 ret = fault_in_multipages_writeable(user_data, remain);
669 /* Userspace is tricking us, but we've already clobbered
670 * its pages with the prefault and promised to write the
671 * data up to the first fault. Hence ignore any errors
672 * and just continue. */
673 (void)ret;
674 prefaulted = 1;
675 }
676
677 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
678 user_data, page_do_bit17_swizzling,
679 needs_clflush);
680
681 mutex_lock(&dev->struct_mutex);
682
683 if (ret)
684 goto out;
685
686 next_page:
687 remain -= page_length;
688 user_data += page_length;
689 offset += page_length;
690 }
691
692 out:
693 i915_gem_object_unpin_pages(obj);
694
695 return ret;
696 }
697
698 /**
699 * Reads data from the object referenced by handle.
700 *
701 * On error, the contents of *data are undefined.
702 */
703 int
704 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
705 struct drm_file *file)
706 {
707 struct drm_i915_gem_pread *args = data;
708 struct drm_i915_gem_object *obj;
709 int ret = 0;
710
711 if (args->size == 0)
712 return 0;
713
714 if (!access_ok(VERIFY_WRITE,
715 to_user_ptr(args->data_ptr),
716 args->size))
717 return -EFAULT;
718
719 ret = i915_mutex_lock_interruptible(dev);
720 if (ret)
721 return ret;
722
723 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
724 if (&obj->base == NULL) {
725 ret = -ENOENT;
726 goto unlock;
727 }
728
729 /* Bounds check source. */
730 if (args->offset > obj->base.size ||
731 args->size > obj->base.size - args->offset) {
732 ret = -EINVAL;
733 goto out;
734 }
735
736 /* prime objects have no backing filp to GEM pread/pwrite
737 * pages from.
738 */
739 if (!obj->base.filp) {
740 ret = -EINVAL;
741 goto out;
742 }
743
744 trace_i915_gem_object_pread(obj, args->offset, args->size);
745
746 ret = i915_gem_shmem_pread(dev, obj, args, file);
747
748 out:
749 drm_gem_object_unreference(&obj->base);
750 unlock:
751 mutex_unlock(&dev->struct_mutex);
752 return ret;
753 }
754
755 /* This is the fast write path which cannot handle
756 * page faults in the source data
757 */
758
759 static inline int
760 fast_user_write(struct io_mapping *mapping,
761 loff_t page_base, int page_offset,
762 char __user *user_data,
763 int length)
764 {
765 void __iomem *vaddr_atomic;
766 void *vaddr;
767 unsigned long unwritten;
768
769 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
770 /* We can use the cpu mem copy function because this is X86. */
771 vaddr = (void __force*)vaddr_atomic + page_offset;
772 unwritten = __copy_from_user_inatomic_nocache(vaddr,
773 user_data, length);
774 io_mapping_unmap_atomic(vaddr_atomic);
775 return unwritten;
776 }
777
778 /**
779 * This is the fast pwrite path, where we copy the data directly from the
780 * user into the GTT, uncached.
781 */
782 static int
783 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
784 struct drm_i915_gem_object *obj,
785 struct drm_i915_gem_pwrite *args,
786 struct drm_file *file)
787 {
788 struct drm_i915_private *dev_priv = dev->dev_private;
789 ssize_t remain;
790 loff_t offset, page_base;
791 char __user *user_data;
792 int page_offset, page_length, ret;
793
794 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
795 if (ret)
796 goto out;
797
798 ret = i915_gem_object_set_to_gtt_domain(obj, true);
799 if (ret)
800 goto out_unpin;
801
802 ret = i915_gem_object_put_fence(obj);
803 if (ret)
804 goto out_unpin;
805
806 user_data = to_user_ptr(args->data_ptr);
807 remain = args->size;
808
809 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
810
811 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
819 */
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
826 /* If we get a fault while copying data, then (presumably) our
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
829 */
830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_flush;
834 }
835
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
839 }
840
841 out_flush:
842 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
843 out_unpin:
844 i915_gem_object_ggtt_unpin(obj);
845 out:
846 return ret;
847 }
848
849 /* Per-page copy function for the shmem pwrite fastpath.
850 * Flushes invalid cachelines before writing to the target if
851 * needs_clflush_before is set and flushes out any written cachelines after
852 * writing if needs_clflush is set. */
853 static int
854 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
855 char __user *user_data,
856 bool page_do_bit17_swizzling,
857 bool needs_clflush_before,
858 bool needs_clflush_after)
859 {
860 char *vaddr;
861 int ret;
862
863 if (unlikely(page_do_bit17_swizzling))
864 return -EINVAL;
865
866 vaddr = kmap_atomic(page);
867 if (needs_clflush_before)
868 drm_clflush_virt_range(vaddr + shmem_page_offset,
869 page_length);
870 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
871 user_data, page_length);
872 if (needs_clflush_after)
873 drm_clflush_virt_range(vaddr + shmem_page_offset,
874 page_length);
875 kunmap_atomic(vaddr);
876
877 return ret ? -EFAULT : 0;
878 }
879
880 /* Only difference to the fast-path function is that this can handle bit17
881 * and uses non-atomic copy and kmap functions. */
882 static int
883 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
884 char __user *user_data,
885 bool page_do_bit17_swizzling,
886 bool needs_clflush_before,
887 bool needs_clflush_after)
888 {
889 char *vaddr;
890 int ret;
891
892 vaddr = kmap(page);
893 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
894 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
895 page_length,
896 page_do_bit17_swizzling);
897 if (page_do_bit17_swizzling)
898 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
899 user_data,
900 page_length);
901 else
902 ret = __copy_from_user(vaddr + shmem_page_offset,
903 user_data,
904 page_length);
905 if (needs_clflush_after)
906 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
907 page_length,
908 page_do_bit17_swizzling);
909 kunmap(page);
910
911 return ret ? -EFAULT : 0;
912 }
913
914 static int
915 i915_gem_shmem_pwrite(struct drm_device *dev,
916 struct drm_i915_gem_object *obj,
917 struct drm_i915_gem_pwrite *args,
918 struct drm_file *file)
919 {
920 ssize_t remain;
921 loff_t offset;
922 char __user *user_data;
923 int shmem_page_offset, page_length, ret = 0;
924 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
925 int hit_slowpath = 0;
926 int needs_clflush_after = 0;
927 int needs_clflush_before = 0;
928 struct sg_page_iter sg_iter;
929
930 user_data = to_user_ptr(args->data_ptr);
931 remain = args->size;
932
933 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
934
935 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
936 /* If we're not in the cpu write domain, set ourself into the gtt
937 * write domain and manually flush cachelines (if required). This
938 * optimizes for the case when the gpu will use the data
939 * right away and we therefore have to clflush anyway. */
940 needs_clflush_after = cpu_write_needs_clflush(obj);
941 ret = i915_gem_object_wait_rendering(obj, false);
942 if (ret)
943 return ret;
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 static void fake_irq(unsigned long data)
1157 {
1158 wake_up_process((struct task_struct *)data);
1159 }
1160
1161 static bool missed_irq(struct drm_i915_private *dev_priv,
1162 struct intel_engine_cs *ring)
1163 {
1164 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1165 }
1166
1167 static int __i915_spin_request(struct drm_i915_gem_request *req)
1168 {
1169 unsigned long timeout;
1170
1171 if (i915_gem_request_get_ring(req)->irq_refcount)
1172 return -EBUSY;
1173
1174 timeout = jiffies + 1;
1175 while (!need_resched()) {
1176 if (i915_gem_request_completed(req, true))
1177 return 0;
1178
1179 if (time_after_eq(jiffies, timeout))
1180 break;
1181
1182 cpu_relax_lowlatency();
1183 }
1184 if (i915_gem_request_completed(req, false))
1185 return 0;
1186
1187 return -EAGAIN;
1188 }
1189
1190 /**
1191 * __i915_wait_request - wait until execution of request has finished
1192 * @req: duh!
1193 * @reset_counter: reset sequence associated with the given request
1194 * @interruptible: do an interruptible wait (normally yes)
1195 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1196 *
1197 * Note: It is of utmost importance that the passed in seqno and reset_counter
1198 * values have been read by the caller in an smp safe manner. Where read-side
1199 * locks are involved, it is sufficient to read the reset_counter before
1200 * unlocking the lock that protects the seqno. For lockless tricks, the
1201 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1202 * inserted.
1203 *
1204 * Returns 0 if the request was found within the alloted time. Else returns the
1205 * errno with remaining time filled in timeout argument.
1206 */
1207 int __i915_wait_request(struct drm_i915_gem_request *req,
1208 unsigned reset_counter,
1209 bool interruptible,
1210 s64 *timeout,
1211 struct intel_rps_client *rps)
1212 {
1213 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1214 struct drm_device *dev = ring->dev;
1215 struct drm_i915_private *dev_priv = dev->dev_private;
1216 const bool irq_test_in_progress =
1217 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1218 DEFINE_WAIT(wait);
1219 unsigned long timeout_expire;
1220 s64 before, now;
1221 int ret;
1222
1223 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1224
1225 if (list_empty(&req->list))
1226 return 0;
1227
1228 if (i915_gem_request_completed(req, true))
1229 return 0;
1230
1231 timeout_expire = timeout ?
1232 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1233
1234 if (INTEL_INFO(dev_priv)->gen >= 6)
1235 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1236
1237 /* Record current time in case interrupted by signal, or wedged */
1238 trace_i915_gem_request_wait_begin(req);
1239 before = ktime_get_raw_ns();
1240
1241 /* Optimistic spin for the next jiffie before touching IRQs */
1242 ret = __i915_spin_request(req);
1243 if (ret == 0)
1244 goto out;
1245
1246 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1247 ret = -ENODEV;
1248 goto out;
1249 }
1250
1251 for (;;) {
1252 struct timer_list timer;
1253
1254 prepare_to_wait(&ring->irq_queue, &wait,
1255 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1256
1257 /* We need to check whether any gpu reset happened in between
1258 * the caller grabbing the seqno and now ... */
1259 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1260 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1261 * is truely gone. */
1262 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1263 if (ret == 0)
1264 ret = -EAGAIN;
1265 break;
1266 }
1267
1268 if (i915_gem_request_completed(req, false)) {
1269 ret = 0;
1270 break;
1271 }
1272
1273 if (interruptible && signal_pending(current)) {
1274 ret = -ERESTARTSYS;
1275 break;
1276 }
1277
1278 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1279 ret = -ETIME;
1280 break;
1281 }
1282
1283 timer.function = NULL;
1284 if (timeout || missed_irq(dev_priv, ring)) {
1285 unsigned long expire;
1286
1287 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1288 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1289 mod_timer(&timer, expire);
1290 }
1291
1292 io_schedule();
1293
1294 if (timer.function) {
1295 del_singleshot_timer_sync(&timer);
1296 destroy_timer_on_stack(&timer);
1297 }
1298 }
1299 if (!irq_test_in_progress)
1300 ring->irq_put(ring);
1301
1302 finish_wait(&ring->irq_queue, &wait);
1303
1304 out:
1305 now = ktime_get_raw_ns();
1306 trace_i915_gem_request_wait_end(req);
1307
1308 if (timeout) {
1309 s64 tres = *timeout - (now - before);
1310
1311 *timeout = tres < 0 ? 0 : tres;
1312
1313 /*
1314 * Apparently ktime isn't accurate enough and occasionally has a
1315 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1316 * things up to make the test happy. We allow up to 1 jiffy.
1317 *
1318 * This is a regrssion from the timespec->ktime conversion.
1319 */
1320 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1321 *timeout = 0;
1322 }
1323
1324 return ret;
1325 }
1326
1327 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1328 struct drm_file *file)
1329 {
1330 struct drm_i915_private *dev_private;
1331 struct drm_i915_file_private *file_priv;
1332
1333 WARN_ON(!req || !file || req->file_priv);
1334
1335 if (!req || !file)
1336 return -EINVAL;
1337
1338 if (req->file_priv)
1339 return -EINVAL;
1340
1341 dev_private = req->ring->dev->dev_private;
1342 file_priv = file->driver_priv;
1343
1344 spin_lock(&file_priv->mm.lock);
1345 req->file_priv = file_priv;
1346 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1347 spin_unlock(&file_priv->mm.lock);
1348
1349 req->pid = get_pid(task_pid(current));
1350
1351 return 0;
1352 }
1353
1354 static inline void
1355 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1356 {
1357 struct drm_i915_file_private *file_priv = request->file_priv;
1358
1359 if (!file_priv)
1360 return;
1361
1362 spin_lock(&file_priv->mm.lock);
1363 list_del(&request->client_list);
1364 request->file_priv = NULL;
1365 spin_unlock(&file_priv->mm.lock);
1366
1367 put_pid(request->pid);
1368 request->pid = NULL;
1369 }
1370
1371 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1372 {
1373 trace_i915_gem_request_retire(request);
1374
1375 /* We know the GPU must have read the request to have
1376 * sent us the seqno + interrupt, so use the position
1377 * of tail of the request to update the last known position
1378 * of the GPU head.
1379 *
1380 * Note this requires that we are always called in request
1381 * completion order.
1382 */
1383 request->ringbuf->last_retired_head = request->postfix;
1384
1385 list_del_init(&request->list);
1386 i915_gem_request_remove_from_client(request);
1387
1388 i915_gem_request_unreference(request);
1389 }
1390
1391 static void
1392 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1393 {
1394 struct intel_engine_cs *engine = req->ring;
1395 struct drm_i915_gem_request *tmp;
1396
1397 lockdep_assert_held(&engine->dev->struct_mutex);
1398
1399 if (list_empty(&req->list))
1400 return;
1401
1402 do {
1403 tmp = list_first_entry(&engine->request_list,
1404 typeof(*tmp), list);
1405
1406 i915_gem_request_retire(tmp);
1407 } while (tmp != req);
1408
1409 WARN_ON(i915_verify_lists(engine->dev));
1410 }
1411
1412 /**
1413 * Waits for a request to be signaled, and cleans up the
1414 * request and object lists appropriately for that event.
1415 */
1416 int
1417 i915_wait_request(struct drm_i915_gem_request *req)
1418 {
1419 struct drm_device *dev;
1420 struct drm_i915_private *dev_priv;
1421 bool interruptible;
1422 int ret;
1423
1424 BUG_ON(req == NULL);
1425
1426 dev = req->ring->dev;
1427 dev_priv = dev->dev_private;
1428 interruptible = dev_priv->mm.interruptible;
1429
1430 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1431
1432 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1433 if (ret)
1434 return ret;
1435
1436 ret = __i915_wait_request(req,
1437 atomic_read(&dev_priv->gpu_error.reset_counter),
1438 interruptible, NULL, NULL);
1439 if (ret)
1440 return ret;
1441
1442 __i915_gem_request_retire__upto(req);
1443 return 0;
1444 }
1445
1446 /**
1447 * Ensures that all rendering to the object has completed and the object is
1448 * safe to unbind from the GTT or access from the CPU.
1449 */
1450 int
1451 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1452 bool readonly)
1453 {
1454 int ret, i;
1455
1456 if (!obj->active)
1457 return 0;
1458
1459 if (readonly) {
1460 if (obj->last_write_req != NULL) {
1461 ret = i915_wait_request(obj->last_write_req);
1462 if (ret)
1463 return ret;
1464
1465 i = obj->last_write_req->ring->id;
1466 if (obj->last_read_req[i] == obj->last_write_req)
1467 i915_gem_object_retire__read(obj, i);
1468 else
1469 i915_gem_object_retire__write(obj);
1470 }
1471 } else {
1472 for (i = 0; i < I915_NUM_RINGS; i++) {
1473 if (obj->last_read_req[i] == NULL)
1474 continue;
1475
1476 ret = i915_wait_request(obj->last_read_req[i]);
1477 if (ret)
1478 return ret;
1479
1480 i915_gem_object_retire__read(obj, i);
1481 }
1482 RQ_BUG_ON(obj->active);
1483 }
1484
1485 return 0;
1486 }
1487
1488 static void
1489 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1490 struct drm_i915_gem_request *req)
1491 {
1492 int ring = req->ring->id;
1493
1494 if (obj->last_read_req[ring] == req)
1495 i915_gem_object_retire__read(obj, ring);
1496 else if (obj->last_write_req == req)
1497 i915_gem_object_retire__write(obj);
1498
1499 __i915_gem_request_retire__upto(req);
1500 }
1501
1502 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1503 * as the object state may change during this call.
1504 */
1505 static __must_check int
1506 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1507 struct intel_rps_client *rps,
1508 bool readonly)
1509 {
1510 struct drm_device *dev = obj->base.dev;
1511 struct drm_i915_private *dev_priv = dev->dev_private;
1512 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1513 unsigned reset_counter;
1514 int ret, i, n = 0;
1515
1516 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1517 BUG_ON(!dev_priv->mm.interruptible);
1518
1519 if (!obj->active)
1520 return 0;
1521
1522 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1523 if (ret)
1524 return ret;
1525
1526 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1527
1528 if (readonly) {
1529 struct drm_i915_gem_request *req;
1530
1531 req = obj->last_write_req;
1532 if (req == NULL)
1533 return 0;
1534
1535 requests[n++] = i915_gem_request_reference(req);
1536 } else {
1537 for (i = 0; i < I915_NUM_RINGS; i++) {
1538 struct drm_i915_gem_request *req;
1539
1540 req = obj->last_read_req[i];
1541 if (req == NULL)
1542 continue;
1543
1544 requests[n++] = i915_gem_request_reference(req);
1545 }
1546 }
1547
1548 mutex_unlock(&dev->struct_mutex);
1549 for (i = 0; ret == 0 && i < n; i++)
1550 ret = __i915_wait_request(requests[i], reset_counter, true,
1551 NULL, rps);
1552 mutex_lock(&dev->struct_mutex);
1553
1554 for (i = 0; i < n; i++) {
1555 if (ret == 0)
1556 i915_gem_object_retire_request(obj, requests[i]);
1557 i915_gem_request_unreference(requests[i]);
1558 }
1559
1560 return ret;
1561 }
1562
1563 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1564 {
1565 struct drm_i915_file_private *fpriv = file->driver_priv;
1566 return &fpriv->rps;
1567 }
1568
1569 /**
1570 * Called when user space prepares to use an object with the CPU, either
1571 * through the mmap ioctl's mapping or a GTT mapping.
1572 */
1573 int
1574 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1575 struct drm_file *file)
1576 {
1577 struct drm_i915_gem_set_domain *args = data;
1578 struct drm_i915_gem_object *obj;
1579 uint32_t read_domains = args->read_domains;
1580 uint32_t write_domain = args->write_domain;
1581 int ret;
1582
1583 /* Only handle setting domains to types used by the CPU. */
1584 if (write_domain & I915_GEM_GPU_DOMAINS)
1585 return -EINVAL;
1586
1587 if (read_domains & I915_GEM_GPU_DOMAINS)
1588 return -EINVAL;
1589
1590 /* Having something in the write domain implies it's in the read
1591 * domain, and only that read domain. Enforce that in the request.
1592 */
1593 if (write_domain != 0 && read_domains != write_domain)
1594 return -EINVAL;
1595
1596 ret = i915_mutex_lock_interruptible(dev);
1597 if (ret)
1598 return ret;
1599
1600 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1601 if (&obj->base == NULL) {
1602 ret = -ENOENT;
1603 goto unlock;
1604 }
1605
1606 /* Try to flush the object off the GPU without holding the lock.
1607 * We will repeat the flush holding the lock in the normal manner
1608 * to catch cases where we are gazumped.
1609 */
1610 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1611 to_rps_client(file),
1612 !write_domain);
1613 if (ret)
1614 goto unref;
1615
1616 if (read_domains & I915_GEM_DOMAIN_GTT)
1617 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1618 else
1619 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1620
1621 if (write_domain != 0)
1622 intel_fb_obj_invalidate(obj,
1623 write_domain == I915_GEM_DOMAIN_GTT ?
1624 ORIGIN_GTT : ORIGIN_CPU);
1625
1626 unref:
1627 drm_gem_object_unreference(&obj->base);
1628 unlock:
1629 mutex_unlock(&dev->struct_mutex);
1630 return ret;
1631 }
1632
1633 /**
1634 * Called when user space has done writes to this buffer
1635 */
1636 int
1637 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1638 struct drm_file *file)
1639 {
1640 struct drm_i915_gem_sw_finish *args = data;
1641 struct drm_i915_gem_object *obj;
1642 int ret = 0;
1643
1644 ret = i915_mutex_lock_interruptible(dev);
1645 if (ret)
1646 return ret;
1647
1648 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1649 if (&obj->base == NULL) {
1650 ret = -ENOENT;
1651 goto unlock;
1652 }
1653
1654 /* Pinned buffers may be scanout, so flush the cache */
1655 if (obj->pin_display)
1656 i915_gem_object_flush_cpu_write_domain(obj);
1657
1658 drm_gem_object_unreference(&obj->base);
1659 unlock:
1660 mutex_unlock(&dev->struct_mutex);
1661 return ret;
1662 }
1663
1664 /**
1665 * Maps the contents of an object, returning the address it is mapped
1666 * into.
1667 *
1668 * While the mapping holds a reference on the contents of the object, it doesn't
1669 * imply a ref on the object itself.
1670 *
1671 * IMPORTANT:
1672 *
1673 * DRM driver writers who look a this function as an example for how to do GEM
1674 * mmap support, please don't implement mmap support like here. The modern way
1675 * to implement DRM mmap support is with an mmap offset ioctl (like
1676 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1677 * That way debug tooling like valgrind will understand what's going on, hiding
1678 * the mmap call in a driver private ioctl will break that. The i915 driver only
1679 * does cpu mmaps this way because we didn't know better.
1680 */
1681 int
1682 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1683 struct drm_file *file)
1684 {
1685 struct drm_i915_gem_mmap *args = data;
1686 struct drm_gem_object *obj;
1687 unsigned long addr;
1688
1689 if (args->flags & ~(I915_MMAP_WC))
1690 return -EINVAL;
1691
1692 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1693 return -ENODEV;
1694
1695 obj = drm_gem_object_lookup(dev, file, args->handle);
1696 if (obj == NULL)
1697 return -ENOENT;
1698
1699 /* prime objects have no backing filp to GEM mmap
1700 * pages from.
1701 */
1702 if (!obj->filp) {
1703 drm_gem_object_unreference_unlocked(obj);
1704 return -EINVAL;
1705 }
1706
1707 addr = vm_mmap(obj->filp, 0, args->size,
1708 PROT_READ | PROT_WRITE, MAP_SHARED,
1709 args->offset);
1710 if (args->flags & I915_MMAP_WC) {
1711 struct mm_struct *mm = current->mm;
1712 struct vm_area_struct *vma;
1713
1714 down_write(&mm->mmap_sem);
1715 vma = find_vma(mm, addr);
1716 if (vma)
1717 vma->vm_page_prot =
1718 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1719 else
1720 addr = -ENOMEM;
1721 up_write(&mm->mmap_sem);
1722 }
1723 drm_gem_object_unreference_unlocked(obj);
1724 if (IS_ERR((void *)addr))
1725 return addr;
1726
1727 args->addr_ptr = (uint64_t) addr;
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * i915_gem_fault - fault a page into the GTT
1734 * vma: VMA in question
1735 * vmf: fault info
1736 *
1737 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1738 * from userspace. The fault handler takes care of binding the object to
1739 * the GTT (if needed), allocating and programming a fence register (again,
1740 * only if needed based on whether the old reg is still valid or the object
1741 * is tiled) and inserting a new PTE into the faulting process.
1742 *
1743 * Note that the faulting process may involve evicting existing objects
1744 * from the GTT and/or fence registers to make room. So performance may
1745 * suffer if the GTT working set is large or there are few fence registers
1746 * left.
1747 */
1748 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1749 {
1750 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1751 struct drm_device *dev = obj->base.dev;
1752 struct drm_i915_private *dev_priv = dev->dev_private;
1753 struct i915_ggtt_view view = i915_ggtt_view_normal;
1754 pgoff_t page_offset;
1755 unsigned long pfn;
1756 int ret = 0;
1757 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1758
1759 intel_runtime_pm_get(dev_priv);
1760
1761 /* We don't use vmf->pgoff since that has the fake offset */
1762 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1763 PAGE_SHIFT;
1764
1765 ret = i915_mutex_lock_interruptible(dev);
1766 if (ret)
1767 goto out;
1768
1769 trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
1771 /* Try to flush the object off the GPU first without holding the lock.
1772 * Upon reacquiring the lock, we will perform our sanity checks and then
1773 * repeat the flush holding the lock in the normal manner to catch cases
1774 * where we are gazumped.
1775 */
1776 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1777 if (ret)
1778 goto unlock;
1779
1780 /* Access to snoopable pages through the GTT is incoherent. */
1781 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1782 ret = -EFAULT;
1783 goto unlock;
1784 }
1785
1786 /* Use a partial view if the object is bigger than the aperture. */
1787 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1788 obj->tiling_mode == I915_TILING_NONE) {
1789 static const unsigned int chunk_size = 256; // 1 MiB
1790
1791 memset(&view, 0, sizeof(view));
1792 view.type = I915_GGTT_VIEW_PARTIAL;
1793 view.params.partial.offset = rounddown(page_offset, chunk_size);
1794 view.params.partial.size =
1795 min_t(unsigned int,
1796 chunk_size,
1797 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1798 view.params.partial.offset);
1799 }
1800
1801 /* Now pin it into the GTT if needed */
1802 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1803 if (ret)
1804 goto unlock;
1805
1806 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1807 if (ret)
1808 goto unpin;
1809
1810 ret = i915_gem_object_get_fence(obj);
1811 if (ret)
1812 goto unpin;
1813
1814 /* Finally, remap it using the new GTT offset */
1815 pfn = dev_priv->gtt.mappable_base +
1816 i915_gem_obj_ggtt_offset_view(obj, &view);
1817 pfn >>= PAGE_SHIFT;
1818
1819 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1820 /* Overriding existing pages in partial view does not cause
1821 * us any trouble as TLBs are still valid because the fault
1822 * is due to userspace losing part of the mapping or never
1823 * having accessed it before (at this partials' range).
1824 */
1825 unsigned long base = vma->vm_start +
1826 (view.params.partial.offset << PAGE_SHIFT);
1827 unsigned int i;
1828
1829 for (i = 0; i < view.params.partial.size; i++) {
1830 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1831 if (ret)
1832 break;
1833 }
1834
1835 obj->fault_mappable = true;
1836 } else {
1837 if (!obj->fault_mappable) {
1838 unsigned long size = min_t(unsigned long,
1839 vma->vm_end - vma->vm_start,
1840 obj->base.size);
1841 int i;
1842
1843 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1844 ret = vm_insert_pfn(vma,
1845 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1846 pfn + i);
1847 if (ret)
1848 break;
1849 }
1850
1851 obj->fault_mappable = true;
1852 } else
1853 ret = vm_insert_pfn(vma,
1854 (unsigned long)vmf->virtual_address,
1855 pfn + page_offset);
1856 }
1857 unpin:
1858 i915_gem_object_ggtt_unpin_view(obj, &view);
1859 unlock:
1860 mutex_unlock(&dev->struct_mutex);
1861 out:
1862 switch (ret) {
1863 case -EIO:
1864 /*
1865 * We eat errors when the gpu is terminally wedged to avoid
1866 * userspace unduly crashing (gl has no provisions for mmaps to
1867 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868 * and so needs to be reported.
1869 */
1870 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871 ret = VM_FAULT_SIGBUS;
1872 break;
1873 }
1874 case -EAGAIN:
1875 /*
1876 * EAGAIN means the gpu is hung and we'll wait for the error
1877 * handler to reset everything when re-faulting in
1878 * i915_mutex_lock_interruptible.
1879 */
1880 case 0:
1881 case -ERESTARTSYS:
1882 case -EINTR:
1883 case -EBUSY:
1884 /*
1885 * EBUSY is ok: this just means that another thread
1886 * already did the job.
1887 */
1888 ret = VM_FAULT_NOPAGE;
1889 break;
1890 case -ENOMEM:
1891 ret = VM_FAULT_OOM;
1892 break;
1893 case -ENOSPC:
1894 case -EFAULT:
1895 ret = VM_FAULT_SIGBUS;
1896 break;
1897 default:
1898 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899 ret = VM_FAULT_SIGBUS;
1900 break;
1901 }
1902
1903 intel_runtime_pm_put(dev_priv);
1904 return ret;
1905 }
1906
1907 /**
1908 * i915_gem_release_mmap - remove physical page mappings
1909 * @obj: obj in question
1910 *
1911 * Preserve the reservation of the mmapping with the DRM core code, but
1912 * relinquish ownership of the pages back to the system.
1913 *
1914 * It is vital that we remove the page mapping if we have mapped a tiled
1915 * object through the GTT and then lose the fence register due to
1916 * resource pressure. Similarly if the object has been moved out of the
1917 * aperture, than pages mapped into userspace must be revoked. Removing the
1918 * mapping will then trigger a page fault on the next user access, allowing
1919 * fixup by i915_gem_fault().
1920 */
1921 void
1922 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1923 {
1924 if (!obj->fault_mappable)
1925 return;
1926
1927 drm_vma_node_unmap(&obj->base.vma_node,
1928 obj->base.dev->anon_inode->i_mapping);
1929 obj->fault_mappable = false;
1930 }
1931
1932 void
1933 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1934 {
1935 struct drm_i915_gem_object *obj;
1936
1937 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1938 i915_gem_release_mmap(obj);
1939 }
1940
1941 uint32_t
1942 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1943 {
1944 uint32_t gtt_size;
1945
1946 if (INTEL_INFO(dev)->gen >= 4 ||
1947 tiling_mode == I915_TILING_NONE)
1948 return size;
1949
1950 /* Previous chips need a power-of-two fence region when tiling */
1951 if (INTEL_INFO(dev)->gen == 3)
1952 gtt_size = 1024*1024;
1953 else
1954 gtt_size = 512*1024;
1955
1956 while (gtt_size < size)
1957 gtt_size <<= 1;
1958
1959 return gtt_size;
1960 }
1961
1962 /**
1963 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1964 * @obj: object to check
1965 *
1966 * Return the required GTT alignment for an object, taking into account
1967 * potential fence register mapping.
1968 */
1969 uint32_t
1970 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1971 int tiling_mode, bool fenced)
1972 {
1973 /*
1974 * Minimum alignment is 4k (GTT page size), but might be greater
1975 * if a fence register is needed for the object.
1976 */
1977 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1978 tiling_mode == I915_TILING_NONE)
1979 return 4096;
1980
1981 /*
1982 * Previous chips need to be aligned to the size of the smallest
1983 * fence register that can contain the object.
1984 */
1985 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1986 }
1987
1988 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1989 {
1990 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1991 int ret;
1992
1993 if (drm_vma_node_has_offset(&obj->base.vma_node))
1994 return 0;
1995
1996 dev_priv->mm.shrinker_no_lock_stealing = true;
1997
1998 ret = drm_gem_create_mmap_offset(&obj->base);
1999 if (ret != -ENOSPC)
2000 goto out;
2001
2002 /* Badly fragmented mmap space? The only way we can recover
2003 * space is by destroying unwanted objects. We can't randomly release
2004 * mmap_offsets as userspace expects them to be persistent for the
2005 * lifetime of the objects. The closest we can is to release the
2006 * offsets on purgeable objects by truncating it and marking it purged,
2007 * which prevents userspace from ever using that object again.
2008 */
2009 i915_gem_shrink(dev_priv,
2010 obj->base.size >> PAGE_SHIFT,
2011 I915_SHRINK_BOUND |
2012 I915_SHRINK_UNBOUND |
2013 I915_SHRINK_PURGEABLE);
2014 ret = drm_gem_create_mmap_offset(&obj->base);
2015 if (ret != -ENOSPC)
2016 goto out;
2017
2018 i915_gem_shrink_all(dev_priv);
2019 ret = drm_gem_create_mmap_offset(&obj->base);
2020 out:
2021 dev_priv->mm.shrinker_no_lock_stealing = false;
2022
2023 return ret;
2024 }
2025
2026 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2027 {
2028 drm_gem_free_mmap_offset(&obj->base);
2029 }
2030
2031 int
2032 i915_gem_mmap_gtt(struct drm_file *file,
2033 struct drm_device *dev,
2034 uint32_t handle,
2035 uint64_t *offset)
2036 {
2037 struct drm_i915_gem_object *obj;
2038 int ret;
2039
2040 ret = i915_mutex_lock_interruptible(dev);
2041 if (ret)
2042 return ret;
2043
2044 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2045 if (&obj->base == NULL) {
2046 ret = -ENOENT;
2047 goto unlock;
2048 }
2049
2050 if (obj->madv != I915_MADV_WILLNEED) {
2051 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2052 ret = -EFAULT;
2053 goto out;
2054 }
2055
2056 ret = i915_gem_object_create_mmap_offset(obj);
2057 if (ret)
2058 goto out;
2059
2060 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2061
2062 out:
2063 drm_gem_object_unreference(&obj->base);
2064 unlock:
2065 mutex_unlock(&dev->struct_mutex);
2066 return ret;
2067 }
2068
2069 /**
2070 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2071 * @dev: DRM device
2072 * @data: GTT mapping ioctl data
2073 * @file: GEM object info
2074 *
2075 * Simply returns the fake offset to userspace so it can mmap it.
2076 * The mmap call will end up in drm_gem_mmap(), which will set things
2077 * up so we can get faults in the handler above.
2078 *
2079 * The fault handler will take care of binding the object into the GTT
2080 * (since it may have been evicted to make room for something), allocating
2081 * a fence register, and mapping the appropriate aperture address into
2082 * userspace.
2083 */
2084 int
2085 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2086 struct drm_file *file)
2087 {
2088 struct drm_i915_gem_mmap_gtt *args = data;
2089
2090 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2091 }
2092
2093 /* Immediately discard the backing storage */
2094 static void
2095 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2096 {
2097 i915_gem_object_free_mmap_offset(obj);
2098
2099 if (obj->base.filp == NULL)
2100 return;
2101
2102 /* Our goal here is to return as much of the memory as
2103 * is possible back to the system as we are called from OOM.
2104 * To do this we must instruct the shmfs to drop all of its
2105 * backing pages, *now*.
2106 */
2107 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2108 obj->madv = __I915_MADV_PURGED;
2109 }
2110
2111 /* Try to discard unwanted pages */
2112 static void
2113 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2114 {
2115 struct address_space *mapping;
2116
2117 switch (obj->madv) {
2118 case I915_MADV_DONTNEED:
2119 i915_gem_object_truncate(obj);
2120 case __I915_MADV_PURGED:
2121 return;
2122 }
2123
2124 if (obj->base.filp == NULL)
2125 return;
2126
2127 mapping = file_inode(obj->base.filp)->i_mapping,
2128 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2129 }
2130
2131 static void
2132 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2133 {
2134 struct sg_page_iter sg_iter;
2135 int ret;
2136
2137 BUG_ON(obj->madv == __I915_MADV_PURGED);
2138
2139 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2140 if (ret) {
2141 /* In the event of a disaster, abandon all caches and
2142 * hope for the best.
2143 */
2144 WARN_ON(ret != -EIO);
2145 i915_gem_clflush_object(obj, true);
2146 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2147 }
2148
2149 if (i915_gem_object_needs_bit17_swizzle(obj))
2150 i915_gem_object_save_bit_17_swizzle(obj);
2151
2152 if (obj->madv == I915_MADV_DONTNEED)
2153 obj->dirty = 0;
2154
2155 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2156 struct page *page = sg_page_iter_page(&sg_iter);
2157
2158 if (obj->dirty)
2159 set_page_dirty(page);
2160
2161 if (obj->madv == I915_MADV_WILLNEED)
2162 mark_page_accessed(page);
2163
2164 page_cache_release(page);
2165 }
2166 obj->dirty = 0;
2167
2168 sg_free_table(obj->pages);
2169 kfree(obj->pages);
2170 }
2171
2172 int
2173 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2174 {
2175 const struct drm_i915_gem_object_ops *ops = obj->ops;
2176
2177 if (obj->pages == NULL)
2178 return 0;
2179
2180 if (obj->pages_pin_count)
2181 return -EBUSY;
2182
2183 BUG_ON(i915_gem_obj_bound_any(obj));
2184
2185 /* ->put_pages might need to allocate memory for the bit17 swizzle
2186 * array, hence protect them from being reaped by removing them from gtt
2187 * lists early. */
2188 list_del(&obj->global_list);
2189
2190 ops->put_pages(obj);
2191 obj->pages = NULL;
2192
2193 i915_gem_object_invalidate(obj);
2194
2195 return 0;
2196 }
2197
2198 static int
2199 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2200 {
2201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2202 int page_count, i;
2203 struct address_space *mapping;
2204 struct sg_table *st;
2205 struct scatterlist *sg;
2206 struct sg_page_iter sg_iter;
2207 struct page *page;
2208 unsigned long last_pfn = 0; /* suppress gcc warning */
2209 gfp_t gfp;
2210
2211 /* Assert that the object is not currently in any GPU domain. As it
2212 * wasn't in the GTT, there shouldn't be any way it could have been in
2213 * a GPU cache
2214 */
2215 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2216 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2217
2218 st = kmalloc(sizeof(*st), GFP_KERNEL);
2219 if (st == NULL)
2220 return -ENOMEM;
2221
2222 page_count = obj->base.size / PAGE_SIZE;
2223 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2224 kfree(st);
2225 return -ENOMEM;
2226 }
2227
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 *
2231 * Fail silently without starting the shrinker
2232 */
2233 mapping = file_inode(obj->base.filp)->i_mapping;
2234 gfp = mapping_gfp_mask(mapping);
2235 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2236 gfp &= ~(__GFP_IO | __GFP_WAIT);
2237 sg = st->sgl;
2238 st->nents = 0;
2239 for (i = 0; i < page_count; i++) {
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 if (IS_ERR(page)) {
2242 i915_gem_shrink(dev_priv,
2243 page_count,
2244 I915_SHRINK_BOUND |
2245 I915_SHRINK_UNBOUND |
2246 I915_SHRINK_PURGEABLE);
2247 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2248 }
2249 if (IS_ERR(page)) {
2250 /* We've tried hard to allocate the memory by reaping
2251 * our own buffer, now let the real VM do its job and
2252 * go down in flames if truly OOM.
2253 */
2254 i915_gem_shrink_all(dev_priv);
2255 page = shmem_read_mapping_page(mapping, i);
2256 if (IS_ERR(page))
2257 goto err_pages;
2258 }
2259 #ifdef CONFIG_SWIOTLB
2260 if (swiotlb_nr_tbl()) {
2261 st->nents++;
2262 sg_set_page(sg, page, PAGE_SIZE, 0);
2263 sg = sg_next(sg);
2264 continue;
2265 }
2266 #endif
2267 if (!i || page_to_pfn(page) != last_pfn + 1) {
2268 if (i)
2269 sg = sg_next(sg);
2270 st->nents++;
2271 sg_set_page(sg, page, PAGE_SIZE, 0);
2272 } else {
2273 sg->length += PAGE_SIZE;
2274 }
2275 last_pfn = page_to_pfn(page);
2276
2277 /* Check that the i965g/gm workaround works. */
2278 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2279 }
2280 #ifdef CONFIG_SWIOTLB
2281 if (!swiotlb_nr_tbl())
2282 #endif
2283 sg_mark_end(sg);
2284 obj->pages = st;
2285
2286 if (i915_gem_object_needs_bit17_swizzle(obj))
2287 i915_gem_object_do_bit_17_swizzle(obj);
2288
2289 if (obj->tiling_mode != I915_TILING_NONE &&
2290 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2291 i915_gem_object_pin_pages(obj);
2292
2293 return 0;
2294
2295 err_pages:
2296 sg_mark_end(sg);
2297 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2298 page_cache_release(sg_page_iter_page(&sg_iter));
2299 sg_free_table(st);
2300 kfree(st);
2301
2302 /* shmemfs first checks if there is enough memory to allocate the page
2303 * and reports ENOSPC should there be insufficient, along with the usual
2304 * ENOMEM for a genuine allocation failure.
2305 *
2306 * We use ENOSPC in our driver to mean that we have run out of aperture
2307 * space and so want to translate the error from shmemfs back to our
2308 * usual understanding of ENOMEM.
2309 */
2310 if (PTR_ERR(page) == -ENOSPC)
2311 return -ENOMEM;
2312 else
2313 return PTR_ERR(page);
2314 }
2315
2316 /* Ensure that the associated pages are gathered from the backing storage
2317 * and pinned into our object. i915_gem_object_get_pages() may be called
2318 * multiple times before they are released by a single call to
2319 * i915_gem_object_put_pages() - once the pages are no longer referenced
2320 * either as a result of memory pressure (reaping pages under the shrinker)
2321 * or as the object is itself released.
2322 */
2323 int
2324 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2325 {
2326 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2327 const struct drm_i915_gem_object_ops *ops = obj->ops;
2328 int ret;
2329
2330 if (obj->pages)
2331 return 0;
2332
2333 if (obj->madv != I915_MADV_WILLNEED) {
2334 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2335 return -EFAULT;
2336 }
2337
2338 BUG_ON(obj->pages_pin_count);
2339
2340 ret = ops->get_pages(obj);
2341 if (ret)
2342 return ret;
2343
2344 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2345
2346 obj->get_page.sg = obj->pages->sgl;
2347 obj->get_page.last = 0;
2348
2349 return 0;
2350 }
2351
2352 void i915_vma_move_to_active(struct i915_vma *vma,
2353 struct drm_i915_gem_request *req)
2354 {
2355 struct drm_i915_gem_object *obj = vma->obj;
2356 struct intel_engine_cs *ring;
2357
2358 ring = i915_gem_request_get_ring(req);
2359
2360 /* Add a reference if we're newly entering the active list. */
2361 if (obj->active == 0)
2362 drm_gem_object_reference(&obj->base);
2363 obj->active |= intel_ring_flag(ring);
2364
2365 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2366 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2367
2368 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2369 }
2370
2371 static void
2372 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2373 {
2374 RQ_BUG_ON(obj->last_write_req == NULL);
2375 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2376
2377 i915_gem_request_assign(&obj->last_write_req, NULL);
2378 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2379 }
2380
2381 static void
2382 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2383 {
2384 struct i915_vma *vma;
2385
2386 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2387 RQ_BUG_ON(!(obj->active & (1 << ring)));
2388
2389 list_del_init(&obj->ring_list[ring]);
2390 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2391
2392 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2393 i915_gem_object_retire__write(obj);
2394
2395 obj->active &= ~(1 << ring);
2396 if (obj->active)
2397 return;
2398
2399 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2400 if (!list_empty(&vma->mm_list))
2401 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2402 }
2403
2404 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2405 drm_gem_object_unreference(&obj->base);
2406 }
2407
2408 static int
2409 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2410 {
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 struct intel_engine_cs *ring;
2413 int ret, i, j;
2414
2415 /* Carefully retire all requests without writing to the rings */
2416 for_each_ring(ring, dev_priv, i) {
2417 ret = intel_ring_idle(ring);
2418 if (ret)
2419 return ret;
2420 }
2421 i915_gem_retire_requests(dev);
2422
2423 /* Finally reset hw state */
2424 for_each_ring(ring, dev_priv, i) {
2425 intel_ring_init_seqno(ring, seqno);
2426
2427 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2428 ring->semaphore.sync_seqno[j] = 0;
2429 }
2430
2431 return 0;
2432 }
2433
2434 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2435 {
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 int ret;
2438
2439 if (seqno == 0)
2440 return -EINVAL;
2441
2442 /* HWS page needs to be set less than what we
2443 * will inject to ring
2444 */
2445 ret = i915_gem_init_seqno(dev, seqno - 1);
2446 if (ret)
2447 return ret;
2448
2449 /* Carefully set the last_seqno value so that wrap
2450 * detection still works
2451 */
2452 dev_priv->next_seqno = seqno;
2453 dev_priv->last_seqno = seqno - 1;
2454 if (dev_priv->last_seqno == 0)
2455 dev_priv->last_seqno--;
2456
2457 return 0;
2458 }
2459
2460 int
2461 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2462 {
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464
2465 /* reserve 0 for non-seqno */
2466 if (dev_priv->next_seqno == 0) {
2467 int ret = i915_gem_init_seqno(dev, 0);
2468 if (ret)
2469 return ret;
2470
2471 dev_priv->next_seqno = 1;
2472 }
2473
2474 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2475 return 0;
2476 }
2477
2478 /*
2479 * NB: This function is not allowed to fail. Doing so would mean the the
2480 * request is not being tracked for completion but the work itself is
2481 * going to happen on the hardware. This would be a Bad Thing(tm).
2482 */
2483 void __i915_add_request(struct drm_i915_gem_request *request,
2484 struct drm_i915_gem_object *obj,
2485 bool flush_caches)
2486 {
2487 struct intel_engine_cs *ring;
2488 struct drm_i915_private *dev_priv;
2489 struct intel_ringbuffer *ringbuf;
2490 u32 request_start;
2491 int ret;
2492
2493 if (WARN_ON(request == NULL))
2494 return;
2495
2496 ring = request->ring;
2497 dev_priv = ring->dev->dev_private;
2498 ringbuf = request->ringbuf;
2499
2500 /*
2501 * To ensure that this call will not fail, space for its emissions
2502 * should already have been reserved in the ring buffer. Let the ring
2503 * know that it is time to use that space up.
2504 */
2505 intel_ring_reserved_space_use(ringbuf);
2506
2507 request_start = intel_ring_get_tail(ringbuf);
2508 /*
2509 * Emit any outstanding flushes - execbuf can fail to emit the flush
2510 * after having emitted the batchbuffer command. Hence we need to fix
2511 * things up similar to emitting the lazy request. The difference here
2512 * is that the flush _must_ happen before the next request, no matter
2513 * what.
2514 */
2515 if (flush_caches) {
2516 if (i915.enable_execlists)
2517 ret = logical_ring_flush_all_caches(request);
2518 else
2519 ret = intel_ring_flush_all_caches(request);
2520 /* Not allowed to fail! */
2521 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2522 }
2523
2524 /* Record the position of the start of the request so that
2525 * should we detect the updated seqno part-way through the
2526 * GPU processing the request, we never over-estimate the
2527 * position of the head.
2528 */
2529 request->postfix = intel_ring_get_tail(ringbuf);
2530
2531 if (i915.enable_execlists)
2532 ret = ring->emit_request(request);
2533 else {
2534 ret = ring->add_request(request);
2535
2536 request->tail = intel_ring_get_tail(ringbuf);
2537 }
2538 /* Not allowed to fail! */
2539 WARN(ret, "emit|add_request failed: %d!\n", ret);
2540
2541 request->head = request_start;
2542
2543 /* Whilst this request exists, batch_obj will be on the
2544 * active_list, and so will hold the active reference. Only when this
2545 * request is retired will the the batch_obj be moved onto the
2546 * inactive_list and lose its active reference. Hence we do not need
2547 * to explicitly hold another reference here.
2548 */
2549 request->batch_obj = obj;
2550
2551 request->emitted_jiffies = jiffies;
2552 list_add_tail(&request->list, &ring->request_list);
2553
2554 trace_i915_gem_request_add(request);
2555
2556 i915_queue_hangcheck(ring->dev);
2557
2558 queue_delayed_work(dev_priv->wq,
2559 &dev_priv->mm.retire_work,
2560 round_jiffies_up_relative(HZ));
2561 intel_mark_busy(dev_priv->dev);
2562
2563 /* Sanity check that the reserved size was large enough. */
2564 intel_ring_reserved_space_end(ringbuf);
2565 }
2566
2567 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2568 const struct intel_context *ctx)
2569 {
2570 unsigned long elapsed;
2571
2572 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2573
2574 if (ctx->hang_stats.banned)
2575 return true;
2576
2577 if (ctx->hang_stats.ban_period_seconds &&
2578 elapsed <= ctx->hang_stats.ban_period_seconds) {
2579 if (!i915_gem_context_is_default(ctx)) {
2580 DRM_DEBUG("context hanging too fast, banning!\n");
2581 return true;
2582 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2583 if (i915_stop_ring_allow_warn(dev_priv))
2584 DRM_ERROR("gpu hanging too fast, banning!\n");
2585 return true;
2586 }
2587 }
2588
2589 return false;
2590 }
2591
2592 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2593 struct intel_context *ctx,
2594 const bool guilty)
2595 {
2596 struct i915_ctx_hang_stats *hs;
2597
2598 if (WARN_ON(!ctx))
2599 return;
2600
2601 hs = &ctx->hang_stats;
2602
2603 if (guilty) {
2604 hs->banned = i915_context_is_banned(dev_priv, ctx);
2605 hs->batch_active++;
2606 hs->guilty_ts = get_seconds();
2607 } else {
2608 hs->batch_pending++;
2609 }
2610 }
2611
2612 void i915_gem_request_free(struct kref *req_ref)
2613 {
2614 struct drm_i915_gem_request *req = container_of(req_ref,
2615 typeof(*req), ref);
2616 struct intel_context *ctx = req->ctx;
2617
2618 if (req->file_priv)
2619 i915_gem_request_remove_from_client(req);
2620
2621 if (ctx) {
2622 if (i915.enable_execlists) {
2623 if (ctx != req->ring->default_context)
2624 intel_lr_context_unpin(req);
2625 }
2626
2627 i915_gem_context_unreference(ctx);
2628 }
2629
2630 kmem_cache_free(req->i915->requests, req);
2631 }
2632
2633 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2634 struct intel_context *ctx,
2635 struct drm_i915_gem_request **req_out)
2636 {
2637 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2638 struct drm_i915_gem_request *req;
2639 int ret;
2640
2641 if (!req_out)
2642 return -EINVAL;
2643
2644 *req_out = NULL;
2645
2646 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2647 if (req == NULL)
2648 return -ENOMEM;
2649
2650 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2651 if (ret)
2652 goto err;
2653
2654 kref_init(&req->ref);
2655 req->i915 = dev_priv;
2656 req->ring = ring;
2657 req->ctx = ctx;
2658 i915_gem_context_reference(req->ctx);
2659
2660 if (i915.enable_execlists)
2661 ret = intel_logical_ring_alloc_request_extras(req);
2662 else
2663 ret = intel_ring_alloc_request_extras(req);
2664 if (ret) {
2665 i915_gem_context_unreference(req->ctx);
2666 goto err;
2667 }
2668
2669 /*
2670 * Reserve space in the ring buffer for all the commands required to
2671 * eventually emit this request. This is to guarantee that the
2672 * i915_add_request() call can't fail. Note that the reserve may need
2673 * to be redone if the request is not actually submitted straight
2674 * away, e.g. because a GPU scheduler has deferred it.
2675 */
2676 if (i915.enable_execlists)
2677 ret = intel_logical_ring_reserve_space(req);
2678 else
2679 ret = intel_ring_reserve_space(req);
2680 if (ret) {
2681 /*
2682 * At this point, the request is fully allocated even if not
2683 * fully prepared. Thus it can be cleaned up using the proper
2684 * free code.
2685 */
2686 i915_gem_request_cancel(req);
2687 return ret;
2688 }
2689
2690 *req_out = req;
2691 return 0;
2692
2693 err:
2694 kmem_cache_free(dev_priv->requests, req);
2695 return ret;
2696 }
2697
2698 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2699 {
2700 intel_ring_reserved_space_cancel(req->ringbuf);
2701
2702 i915_gem_request_unreference(req);
2703 }
2704
2705 struct drm_i915_gem_request *
2706 i915_gem_find_active_request(struct intel_engine_cs *ring)
2707 {
2708 struct drm_i915_gem_request *request;
2709
2710 list_for_each_entry(request, &ring->request_list, list) {
2711 if (i915_gem_request_completed(request, false))
2712 continue;
2713
2714 return request;
2715 }
2716
2717 return NULL;
2718 }
2719
2720 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2721 struct intel_engine_cs *ring)
2722 {
2723 struct drm_i915_gem_request *request;
2724 bool ring_hung;
2725
2726 request = i915_gem_find_active_request(ring);
2727
2728 if (request == NULL)
2729 return;
2730
2731 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2732
2733 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2734
2735 list_for_each_entry_continue(request, &ring->request_list, list)
2736 i915_set_reset_status(dev_priv, request->ctx, false);
2737 }
2738
2739 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2740 struct intel_engine_cs *ring)
2741 {
2742 while (!list_empty(&ring->active_list)) {
2743 struct drm_i915_gem_object *obj;
2744
2745 obj = list_first_entry(&ring->active_list,
2746 struct drm_i915_gem_object,
2747 ring_list[ring->id]);
2748
2749 i915_gem_object_retire__read(obj, ring->id);
2750 }
2751
2752 /*
2753 * Clear the execlists queue up before freeing the requests, as those
2754 * are the ones that keep the context and ringbuffer backing objects
2755 * pinned in place.
2756 */
2757 while (!list_empty(&ring->execlist_queue)) {
2758 struct drm_i915_gem_request *submit_req;
2759
2760 submit_req = list_first_entry(&ring->execlist_queue,
2761 struct drm_i915_gem_request,
2762 execlist_link);
2763 list_del(&submit_req->execlist_link);
2764
2765 if (submit_req->ctx != ring->default_context)
2766 intel_lr_context_unpin(submit_req);
2767
2768 i915_gem_request_unreference(submit_req);
2769 }
2770
2771 /*
2772 * We must free the requests after all the corresponding objects have
2773 * been moved off active lists. Which is the same order as the normal
2774 * retire_requests function does. This is important if object hold
2775 * implicit references on things like e.g. ppgtt address spaces through
2776 * the request.
2777 */
2778 while (!list_empty(&ring->request_list)) {
2779 struct drm_i915_gem_request *request;
2780
2781 request = list_first_entry(&ring->request_list,
2782 struct drm_i915_gem_request,
2783 list);
2784
2785 i915_gem_request_retire(request);
2786 }
2787 }
2788
2789 void i915_gem_restore_fences(struct drm_device *dev)
2790 {
2791 struct drm_i915_private *dev_priv = dev->dev_private;
2792 int i;
2793
2794 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2795 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2796
2797 /*
2798 * Commit delayed tiling changes if we have an object still
2799 * attached to the fence, otherwise just clear the fence.
2800 */
2801 if (reg->obj) {
2802 i915_gem_object_update_fence(reg->obj, reg,
2803 reg->obj->tiling_mode);
2804 } else {
2805 i915_gem_write_fence(dev, i, NULL);
2806 }
2807 }
2808 }
2809
2810 void i915_gem_reset(struct drm_device *dev)
2811 {
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 struct intel_engine_cs *ring;
2814 int i;
2815
2816 /*
2817 * Before we free the objects from the requests, we need to inspect
2818 * them for finding the guilty party. As the requests only borrow
2819 * their reference to the objects, the inspection must be done first.
2820 */
2821 for_each_ring(ring, dev_priv, i)
2822 i915_gem_reset_ring_status(dev_priv, ring);
2823
2824 for_each_ring(ring, dev_priv, i)
2825 i915_gem_reset_ring_cleanup(dev_priv, ring);
2826
2827 i915_gem_context_reset(dev);
2828
2829 i915_gem_restore_fences(dev);
2830
2831 WARN_ON(i915_verify_lists(dev));
2832 }
2833
2834 /**
2835 * This function clears the request list as sequence numbers are passed.
2836 */
2837 void
2838 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2839 {
2840 WARN_ON(i915_verify_lists(ring->dev));
2841
2842 /* Retire requests first as we use it above for the early return.
2843 * If we retire requests last, we may use a later seqno and so clear
2844 * the requests lists without clearing the active list, leading to
2845 * confusion.
2846 */
2847 while (!list_empty(&ring->request_list)) {
2848 struct drm_i915_gem_request *request;
2849
2850 request = list_first_entry(&ring->request_list,
2851 struct drm_i915_gem_request,
2852 list);
2853
2854 if (!i915_gem_request_completed(request, true))
2855 break;
2856
2857 i915_gem_request_retire(request);
2858 }
2859
2860 /* Move any buffers on the active list that are no longer referenced
2861 * by the ringbuffer to the flushing/inactive lists as appropriate,
2862 * before we free the context associated with the requests.
2863 */
2864 while (!list_empty(&ring->active_list)) {
2865 struct drm_i915_gem_object *obj;
2866
2867 obj = list_first_entry(&ring->active_list,
2868 struct drm_i915_gem_object,
2869 ring_list[ring->id]);
2870
2871 if (!list_empty(&obj->last_read_req[ring->id]->list))
2872 break;
2873
2874 i915_gem_object_retire__read(obj, ring->id);
2875 }
2876
2877 if (unlikely(ring->trace_irq_req &&
2878 i915_gem_request_completed(ring->trace_irq_req, true))) {
2879 ring->irq_put(ring);
2880 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2881 }
2882
2883 WARN_ON(i915_verify_lists(ring->dev));
2884 }
2885
2886 bool
2887 i915_gem_retire_requests(struct drm_device *dev)
2888 {
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 struct intel_engine_cs *ring;
2891 bool idle = true;
2892 int i;
2893
2894 for_each_ring(ring, dev_priv, i) {
2895 i915_gem_retire_requests_ring(ring);
2896 idle &= list_empty(&ring->request_list);
2897 if (i915.enable_execlists) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&ring->execlist_lock, flags);
2901 idle &= list_empty(&ring->execlist_queue);
2902 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2903
2904 intel_execlists_retire_requests(ring);
2905 }
2906 }
2907
2908 if (idle)
2909 mod_delayed_work(dev_priv->wq,
2910 &dev_priv->mm.idle_work,
2911 msecs_to_jiffies(100));
2912
2913 return idle;
2914 }
2915
2916 static void
2917 i915_gem_retire_work_handler(struct work_struct *work)
2918 {
2919 struct drm_i915_private *dev_priv =
2920 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2921 struct drm_device *dev = dev_priv->dev;
2922 bool idle;
2923
2924 /* Come back later if the device is busy... */
2925 idle = false;
2926 if (mutex_trylock(&dev->struct_mutex)) {
2927 idle = i915_gem_retire_requests(dev);
2928 mutex_unlock(&dev->struct_mutex);
2929 }
2930 if (!idle)
2931 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2932 round_jiffies_up_relative(HZ));
2933 }
2934
2935 static void
2936 i915_gem_idle_work_handler(struct work_struct *work)
2937 {
2938 struct drm_i915_private *dev_priv =
2939 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2940 struct drm_device *dev = dev_priv->dev;
2941 struct intel_engine_cs *ring;
2942 int i;
2943
2944 for_each_ring(ring, dev_priv, i)
2945 if (!list_empty(&ring->request_list))
2946 return;
2947
2948 intel_mark_idle(dev);
2949
2950 if (mutex_trylock(&dev->struct_mutex)) {
2951 struct intel_engine_cs *ring;
2952 int i;
2953
2954 for_each_ring(ring, dev_priv, i)
2955 i915_gem_batch_pool_fini(&ring->batch_pool);
2956
2957 mutex_unlock(&dev->struct_mutex);
2958 }
2959 }
2960
2961 /**
2962 * Ensures that an object will eventually get non-busy by flushing any required
2963 * write domains, emitting any outstanding lazy request and retiring and
2964 * completed requests.
2965 */
2966 static int
2967 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2968 {
2969 int i;
2970
2971 if (!obj->active)
2972 return 0;
2973
2974 for (i = 0; i < I915_NUM_RINGS; i++) {
2975 struct drm_i915_gem_request *req;
2976
2977 req = obj->last_read_req[i];
2978 if (req == NULL)
2979 continue;
2980
2981 if (list_empty(&req->list))
2982 goto retire;
2983
2984 if (i915_gem_request_completed(req, true)) {
2985 __i915_gem_request_retire__upto(req);
2986 retire:
2987 i915_gem_object_retire__read(obj, i);
2988 }
2989 }
2990
2991 return 0;
2992 }
2993
2994 /**
2995 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2996 * @DRM_IOCTL_ARGS: standard ioctl arguments
2997 *
2998 * Returns 0 if successful, else an error is returned with the remaining time in
2999 * the timeout parameter.
3000 * -ETIME: object is still busy after timeout
3001 * -ERESTARTSYS: signal interrupted the wait
3002 * -ENONENT: object doesn't exist
3003 * Also possible, but rare:
3004 * -EAGAIN: GPU wedged
3005 * -ENOMEM: damn
3006 * -ENODEV: Internal IRQ fail
3007 * -E?: The add request failed
3008 *
3009 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3010 * non-zero timeout parameter the wait ioctl will wait for the given number of
3011 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3012 * without holding struct_mutex the object may become re-busied before this
3013 * function completes. A similar but shorter * race condition exists in the busy
3014 * ioctl
3015 */
3016 int
3017 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3018 {
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct drm_i915_gem_wait *args = data;
3021 struct drm_i915_gem_object *obj;
3022 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3023 unsigned reset_counter;
3024 int i, n = 0;
3025 int ret;
3026
3027 if (args->flags != 0)
3028 return -EINVAL;
3029
3030 ret = i915_mutex_lock_interruptible(dev);
3031 if (ret)
3032 return ret;
3033
3034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3035 if (&obj->base == NULL) {
3036 mutex_unlock(&dev->struct_mutex);
3037 return -ENOENT;
3038 }
3039
3040 /* Need to make sure the object gets inactive eventually. */
3041 ret = i915_gem_object_flush_active(obj);
3042 if (ret)
3043 goto out;
3044
3045 if (!obj->active)
3046 goto out;
3047
3048 /* Do this after OLR check to make sure we make forward progress polling
3049 * on this IOCTL with a timeout == 0 (like busy ioctl)
3050 */
3051 if (args->timeout_ns == 0) {
3052 ret = -ETIME;
3053 goto out;
3054 }
3055
3056 drm_gem_object_unreference(&obj->base);
3057 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3058
3059 for (i = 0; i < I915_NUM_RINGS; i++) {
3060 if (obj->last_read_req[i] == NULL)
3061 continue;
3062
3063 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3064 }
3065
3066 mutex_unlock(&dev->struct_mutex);
3067
3068 for (i = 0; i < n; i++) {
3069 if (ret == 0)
3070 ret = __i915_wait_request(req[i], reset_counter, true,
3071 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3072 file->driver_priv);
3073 i915_gem_request_unreference__unlocked(req[i]);
3074 }
3075 return ret;
3076
3077 out:
3078 drm_gem_object_unreference(&obj->base);
3079 mutex_unlock(&dev->struct_mutex);
3080 return ret;
3081 }
3082
3083 static int
3084 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3085 struct intel_engine_cs *to,
3086 struct drm_i915_gem_request *from_req,
3087 struct drm_i915_gem_request **to_req)
3088 {
3089 struct intel_engine_cs *from;
3090 int ret;
3091
3092 from = i915_gem_request_get_ring(from_req);
3093 if (to == from)
3094 return 0;
3095
3096 if (i915_gem_request_completed(from_req, true))
3097 return 0;
3098
3099 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3100 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3101 ret = __i915_wait_request(from_req,
3102 atomic_read(&i915->gpu_error.reset_counter),
3103 i915->mm.interruptible,
3104 NULL,
3105 &i915->rps.semaphores);
3106 if (ret)
3107 return ret;
3108
3109 i915_gem_object_retire_request(obj, from_req);
3110 } else {
3111 int idx = intel_ring_sync_index(from, to);
3112 u32 seqno = i915_gem_request_get_seqno(from_req);
3113
3114 WARN_ON(!to_req);
3115
3116 if (seqno <= from->semaphore.sync_seqno[idx])
3117 return 0;
3118
3119 if (*to_req == NULL) {
3120 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3121 if (ret)
3122 return ret;
3123 }
3124
3125 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3126 ret = to->semaphore.sync_to(*to_req, from, seqno);
3127 if (ret)
3128 return ret;
3129
3130 /* We use last_read_req because sync_to()
3131 * might have just caused seqno wrap under
3132 * the radar.
3133 */
3134 from->semaphore.sync_seqno[idx] =
3135 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3136 }
3137
3138 return 0;
3139 }
3140
3141 /**
3142 * i915_gem_object_sync - sync an object to a ring.
3143 *
3144 * @obj: object which may be in use on another ring.
3145 * @to: ring we wish to use the object on. May be NULL.
3146 * @to_req: request we wish to use the object for. See below.
3147 * This will be allocated and returned if a request is
3148 * required but not passed in.
3149 *
3150 * This code is meant to abstract object synchronization with the GPU.
3151 * Calling with NULL implies synchronizing the object with the CPU
3152 * rather than a particular GPU ring. Conceptually we serialise writes
3153 * between engines inside the GPU. We only allow one engine to write
3154 * into a buffer at any time, but multiple readers. To ensure each has
3155 * a coherent view of memory, we must:
3156 *
3157 * - If there is an outstanding write request to the object, the new
3158 * request must wait for it to complete (either CPU or in hw, requests
3159 * on the same ring will be naturally ordered).
3160 *
3161 * - If we are a write request (pending_write_domain is set), the new
3162 * request must wait for outstanding read requests to complete.
3163 *
3164 * For CPU synchronisation (NULL to) no request is required. For syncing with
3165 * rings to_req must be non-NULL. However, a request does not have to be
3166 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3167 * request will be allocated automatically and returned through *to_req. Note
3168 * that it is not guaranteed that commands will be emitted (because the system
3169 * might already be idle). Hence there is no need to create a request that
3170 * might never have any work submitted. Note further that if a request is
3171 * returned in *to_req, it is the responsibility of the caller to submit
3172 * that request (after potentially adding more work to it).
3173 *
3174 * Returns 0 if successful, else propagates up the lower layer error.
3175 */
3176 int
3177 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3178 struct intel_engine_cs *to,
3179 struct drm_i915_gem_request **to_req)
3180 {
3181 const bool readonly = obj->base.pending_write_domain == 0;
3182 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3183 int ret, i, n;
3184
3185 if (!obj->active)
3186 return 0;
3187
3188 if (to == NULL)
3189 return i915_gem_object_wait_rendering(obj, readonly);
3190
3191 n = 0;
3192 if (readonly) {
3193 if (obj->last_write_req)
3194 req[n++] = obj->last_write_req;
3195 } else {
3196 for (i = 0; i < I915_NUM_RINGS; i++)
3197 if (obj->last_read_req[i])
3198 req[n++] = obj->last_read_req[i];
3199 }
3200 for (i = 0; i < n; i++) {
3201 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3202 if (ret)
3203 return ret;
3204 }
3205
3206 return 0;
3207 }
3208
3209 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3210 {
3211 u32 old_write_domain, old_read_domains;
3212
3213 /* Force a pagefault for domain tracking on next user access */
3214 i915_gem_release_mmap(obj);
3215
3216 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3217 return;
3218
3219 /* Wait for any direct GTT access to complete */
3220 mb();
3221
3222 old_read_domains = obj->base.read_domains;
3223 old_write_domain = obj->base.write_domain;
3224
3225 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3226 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3227
3228 trace_i915_gem_object_change_domain(obj,
3229 old_read_domains,
3230 old_write_domain);
3231 }
3232
3233 int i915_vma_unbind(struct i915_vma *vma)
3234 {
3235 struct drm_i915_gem_object *obj = vma->obj;
3236 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3237 int ret;
3238
3239 if (list_empty(&vma->vma_link))
3240 return 0;
3241
3242 if (!drm_mm_node_allocated(&vma->node)) {
3243 i915_gem_vma_destroy(vma);
3244 return 0;
3245 }
3246
3247 if (vma->pin_count)
3248 return -EBUSY;
3249
3250 BUG_ON(obj->pages == NULL);
3251
3252 ret = i915_gem_object_wait_rendering(obj, false);
3253 if (ret)
3254 return ret;
3255 /* Continue on if we fail due to EIO, the GPU is hung so we
3256 * should be safe and we need to cleanup or else we might
3257 * cause memory corruption through use-after-free.
3258 */
3259
3260 if (i915_is_ggtt(vma->vm) &&
3261 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3262 i915_gem_object_finish_gtt(obj);
3263
3264 /* release the fence reg _after_ flushing */
3265 ret = i915_gem_object_put_fence(obj);
3266 if (ret)
3267 return ret;
3268 }
3269
3270 trace_i915_vma_unbind(vma);
3271
3272 vma->vm->unbind_vma(vma);
3273 vma->bound = 0;
3274
3275 list_del_init(&vma->mm_list);
3276 if (i915_is_ggtt(vma->vm)) {
3277 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3278 obj->map_and_fenceable = false;
3279 } else if (vma->ggtt_view.pages) {
3280 sg_free_table(vma->ggtt_view.pages);
3281 kfree(vma->ggtt_view.pages);
3282 vma->ggtt_view.pages = NULL;
3283 }
3284 }
3285
3286 drm_mm_remove_node(&vma->node);
3287 i915_gem_vma_destroy(vma);
3288
3289 /* Since the unbound list is global, only move to that list if
3290 * no more VMAs exist. */
3291 if (list_empty(&obj->vma_list)) {
3292 i915_gem_gtt_finish_object(obj);
3293 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3294 }
3295
3296 /* And finally now the object is completely decoupled from this vma,
3297 * we can drop its hold on the backing storage and allow it to be
3298 * reaped by the shrinker.
3299 */
3300 i915_gem_object_unpin_pages(obj);
3301
3302 return 0;
3303 }
3304
3305 int i915_gpu_idle(struct drm_device *dev)
3306 {
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct intel_engine_cs *ring;
3309 int ret, i;
3310
3311 /* Flush everything onto the inactive list. */
3312 for_each_ring(ring, dev_priv, i) {
3313 if (!i915.enable_execlists) {
3314 struct drm_i915_gem_request *req;
3315
3316 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3317 if (ret)
3318 return ret;
3319
3320 ret = i915_switch_context(req);
3321 if (ret) {
3322 i915_gem_request_cancel(req);
3323 return ret;
3324 }
3325
3326 i915_add_request_no_flush(req);
3327 }
3328
3329 ret = intel_ring_idle(ring);
3330 if (ret)
3331 return ret;
3332 }
3333
3334 WARN_ON(i915_verify_lists(dev));
3335 return 0;
3336 }
3337
3338 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3339 struct drm_i915_gem_object *obj)
3340 {
3341 struct drm_i915_private *dev_priv = dev->dev_private;
3342 int fence_reg;
3343 int fence_pitch_shift;
3344
3345 if (INTEL_INFO(dev)->gen >= 6) {
3346 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3347 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3348 } else {
3349 fence_reg = FENCE_REG_965_0;
3350 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3351 }
3352
3353 fence_reg += reg * 8;
3354
3355 /* To w/a incoherency with non-atomic 64-bit register updates,
3356 * we split the 64-bit update into two 32-bit writes. In order
3357 * for a partial fence not to be evaluated between writes, we
3358 * precede the update with write to turn off the fence register,
3359 * and only enable the fence as the last step.
3360 *
3361 * For extra levels of paranoia, we make sure each step lands
3362 * before applying the next step.
3363 */
3364 I915_WRITE(fence_reg, 0);
3365 POSTING_READ(fence_reg);
3366
3367 if (obj) {
3368 u32 size = i915_gem_obj_ggtt_size(obj);
3369 uint64_t val;
3370
3371 /* Adjust fence size to match tiled area */
3372 if (obj->tiling_mode != I915_TILING_NONE) {
3373 uint32_t row_size = obj->stride *
3374 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3375 size = (size / row_size) * row_size;
3376 }
3377
3378 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3379 0xfffff000) << 32;
3380 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3381 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3382 if (obj->tiling_mode == I915_TILING_Y)
3383 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3384 val |= I965_FENCE_REG_VALID;
3385
3386 I915_WRITE(fence_reg + 4, val >> 32);
3387 POSTING_READ(fence_reg + 4);
3388
3389 I915_WRITE(fence_reg + 0, val);
3390 POSTING_READ(fence_reg);
3391 } else {
3392 I915_WRITE(fence_reg + 4, 0);
3393 POSTING_READ(fence_reg + 4);
3394 }
3395 }
3396
3397 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3398 struct drm_i915_gem_object *obj)
3399 {
3400 struct drm_i915_private *dev_priv = dev->dev_private;
3401 u32 val;
3402
3403 if (obj) {
3404 u32 size = i915_gem_obj_ggtt_size(obj);
3405 int pitch_val;
3406 int tile_width;
3407
3408 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3409 (size & -size) != size ||
3410 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3411 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3412 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3413
3414 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3415 tile_width = 128;
3416 else
3417 tile_width = 512;
3418
3419 /* Note: pitch better be a power of two tile widths */
3420 pitch_val = obj->stride / tile_width;
3421 pitch_val = ffs(pitch_val) - 1;
3422
3423 val = i915_gem_obj_ggtt_offset(obj);
3424 if (obj->tiling_mode == I915_TILING_Y)
3425 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3426 val |= I915_FENCE_SIZE_BITS(size);
3427 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3428 val |= I830_FENCE_REG_VALID;
3429 } else
3430 val = 0;
3431
3432 if (reg < 8)
3433 reg = FENCE_REG_830_0 + reg * 4;
3434 else
3435 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3436
3437 I915_WRITE(reg, val);
3438 POSTING_READ(reg);
3439 }
3440
3441 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3442 struct drm_i915_gem_object *obj)
3443 {
3444 struct drm_i915_private *dev_priv = dev->dev_private;
3445 uint32_t val;
3446
3447 if (obj) {
3448 u32 size = i915_gem_obj_ggtt_size(obj);
3449 uint32_t pitch_val;
3450
3451 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3452 (size & -size) != size ||
3453 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3454 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3455 i915_gem_obj_ggtt_offset(obj), size);
3456
3457 pitch_val = obj->stride / 128;
3458 pitch_val = ffs(pitch_val) - 1;
3459
3460 val = i915_gem_obj_ggtt_offset(obj);
3461 if (obj->tiling_mode == I915_TILING_Y)
3462 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3463 val |= I830_FENCE_SIZE_BITS(size);
3464 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3465 val |= I830_FENCE_REG_VALID;
3466 } else
3467 val = 0;
3468
3469 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3470 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3471 }
3472
3473 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3474 {
3475 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3476 }
3477
3478 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3479 struct drm_i915_gem_object *obj)
3480 {
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482
3483 /* Ensure that all CPU reads are completed before installing a fence
3484 * and all writes before removing the fence.
3485 */
3486 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3487 mb();
3488
3489 WARN(obj && (!obj->stride || !obj->tiling_mode),
3490 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3491 obj->stride, obj->tiling_mode);
3492
3493 if (IS_GEN2(dev))
3494 i830_write_fence_reg(dev, reg, obj);
3495 else if (IS_GEN3(dev))
3496 i915_write_fence_reg(dev, reg, obj);
3497 else if (INTEL_INFO(dev)->gen >= 4)
3498 i965_write_fence_reg(dev, reg, obj);
3499
3500 /* And similarly be paranoid that no direct access to this region
3501 * is reordered to before the fence is installed.
3502 */
3503 if (i915_gem_object_needs_mb(obj))
3504 mb();
3505 }
3506
3507 static inline int fence_number(struct drm_i915_private *dev_priv,
3508 struct drm_i915_fence_reg *fence)
3509 {
3510 return fence - dev_priv->fence_regs;
3511 }
3512
3513 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3514 struct drm_i915_fence_reg *fence,
3515 bool enable)
3516 {
3517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3518 int reg = fence_number(dev_priv, fence);
3519
3520 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3521
3522 if (enable) {
3523 obj->fence_reg = reg;
3524 fence->obj = obj;
3525 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3526 } else {
3527 obj->fence_reg = I915_FENCE_REG_NONE;
3528 fence->obj = NULL;
3529 list_del_init(&fence->lru_list);
3530 }
3531 obj->fence_dirty = false;
3532 }
3533
3534 static int
3535 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3536 {
3537 if (obj->last_fenced_req) {
3538 int ret = i915_wait_request(obj->last_fenced_req);
3539 if (ret)
3540 return ret;
3541
3542 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3543 }
3544
3545 return 0;
3546 }
3547
3548 int
3549 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3550 {
3551 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3552 struct drm_i915_fence_reg *fence;
3553 int ret;
3554
3555 ret = i915_gem_object_wait_fence(obj);
3556 if (ret)
3557 return ret;
3558
3559 if (obj->fence_reg == I915_FENCE_REG_NONE)
3560 return 0;
3561
3562 fence = &dev_priv->fence_regs[obj->fence_reg];
3563
3564 if (WARN_ON(fence->pin_count))
3565 return -EBUSY;
3566
3567 i915_gem_object_fence_lost(obj);
3568 i915_gem_object_update_fence(obj, fence, false);
3569
3570 return 0;
3571 }
3572
3573 static struct drm_i915_fence_reg *
3574 i915_find_fence_reg(struct drm_device *dev)
3575 {
3576 struct drm_i915_private *dev_priv = dev->dev_private;
3577 struct drm_i915_fence_reg *reg, *avail;
3578 int i;
3579
3580 /* First try to find a free reg */
3581 avail = NULL;
3582 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3583 reg = &dev_priv->fence_regs[i];
3584 if (!reg->obj)
3585 return reg;
3586
3587 if (!reg->pin_count)
3588 avail = reg;
3589 }
3590
3591 if (avail == NULL)
3592 goto deadlock;
3593
3594 /* None available, try to steal one or wait for a user to finish */
3595 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3596 if (reg->pin_count)
3597 continue;
3598
3599 return reg;
3600 }
3601
3602 deadlock:
3603 /* Wait for completion of pending flips which consume fences */
3604 if (intel_has_pending_fb_unpin(dev))
3605 return ERR_PTR(-EAGAIN);
3606
3607 return ERR_PTR(-EDEADLK);
3608 }
3609
3610 /**
3611 * i915_gem_object_get_fence - set up fencing for an object
3612 * @obj: object to map through a fence reg
3613 *
3614 * When mapping objects through the GTT, userspace wants to be able to write
3615 * to them without having to worry about swizzling if the object is tiled.
3616 * This function walks the fence regs looking for a free one for @obj,
3617 * stealing one if it can't find any.
3618 *
3619 * It then sets up the reg based on the object's properties: address, pitch
3620 * and tiling format.
3621 *
3622 * For an untiled surface, this removes any existing fence.
3623 */
3624 int
3625 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3626 {
3627 struct drm_device *dev = obj->base.dev;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629 bool enable = obj->tiling_mode != I915_TILING_NONE;
3630 struct drm_i915_fence_reg *reg;
3631 int ret;
3632
3633 /* Have we updated the tiling parameters upon the object and so
3634 * will need to serialise the write to the associated fence register?
3635 */
3636 if (obj->fence_dirty) {
3637 ret = i915_gem_object_wait_fence(obj);
3638 if (ret)
3639 return ret;
3640 }
3641
3642 /* Just update our place in the LRU if our fence is getting reused. */
3643 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3644 reg = &dev_priv->fence_regs[obj->fence_reg];
3645 if (!obj->fence_dirty) {
3646 list_move_tail(&reg->lru_list,
3647 &dev_priv->mm.fence_list);
3648 return 0;
3649 }
3650 } else if (enable) {
3651 if (WARN_ON(!obj->map_and_fenceable))
3652 return -EINVAL;
3653
3654 reg = i915_find_fence_reg(dev);
3655 if (IS_ERR(reg))
3656 return PTR_ERR(reg);
3657
3658 if (reg->obj) {
3659 struct drm_i915_gem_object *old = reg->obj;
3660
3661 ret = i915_gem_object_wait_fence(old);
3662 if (ret)
3663 return ret;
3664
3665 i915_gem_object_fence_lost(old);
3666 }
3667 } else
3668 return 0;
3669
3670 i915_gem_object_update_fence(obj, reg, enable);
3671
3672 return 0;
3673 }
3674
3675 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3676 unsigned long cache_level)
3677 {
3678 struct drm_mm_node *gtt_space = &vma->node;
3679 struct drm_mm_node *other;
3680
3681 /*
3682 * On some machines we have to be careful when putting differing types
3683 * of snoopable memory together to avoid the prefetcher crossing memory
3684 * domains and dying. During vm initialisation, we decide whether or not
3685 * these constraints apply and set the drm_mm.color_adjust
3686 * appropriately.
3687 */
3688 if (vma->vm->mm.color_adjust == NULL)
3689 return true;
3690
3691 if (!drm_mm_node_allocated(gtt_space))
3692 return true;
3693
3694 if (list_empty(&gtt_space->node_list))
3695 return true;
3696
3697 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3698 if (other->allocated && !other->hole_follows && other->color != cache_level)
3699 return false;
3700
3701 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3702 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3703 return false;
3704
3705 return true;
3706 }
3707
3708 /**
3709 * Finds free space in the GTT aperture and binds the object or a view of it
3710 * there.
3711 */
3712 static struct i915_vma *
3713 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3714 struct i915_address_space *vm,
3715 const struct i915_ggtt_view *ggtt_view,
3716 unsigned alignment,
3717 uint64_t flags)
3718 {
3719 struct drm_device *dev = obj->base.dev;
3720 struct drm_i915_private *dev_priv = dev->dev_private;
3721 u32 size, fence_size, fence_alignment, unfenced_alignment;
3722 u64 start =
3723 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3724 u64 end =
3725 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3726 struct i915_vma *vma;
3727 int ret;
3728
3729 if (i915_is_ggtt(vm)) {
3730 u32 view_size;
3731
3732 if (WARN_ON(!ggtt_view))
3733 return ERR_PTR(-EINVAL);
3734
3735 view_size = i915_ggtt_view_size(obj, ggtt_view);
3736
3737 fence_size = i915_gem_get_gtt_size(dev,
3738 view_size,
3739 obj->tiling_mode);
3740 fence_alignment = i915_gem_get_gtt_alignment(dev,
3741 view_size,
3742 obj->tiling_mode,
3743 true);
3744 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3745 view_size,
3746 obj->tiling_mode,
3747 false);
3748 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3749 } else {
3750 fence_size = i915_gem_get_gtt_size(dev,
3751 obj->base.size,
3752 obj->tiling_mode);
3753 fence_alignment = i915_gem_get_gtt_alignment(dev,
3754 obj->base.size,
3755 obj->tiling_mode,
3756 true);
3757 unfenced_alignment =
3758 i915_gem_get_gtt_alignment(dev,
3759 obj->base.size,
3760 obj->tiling_mode,
3761 false);
3762 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3763 }
3764
3765 if (alignment == 0)
3766 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3767 unfenced_alignment;
3768 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3769 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3770 ggtt_view ? ggtt_view->type : 0,
3771 alignment);
3772 return ERR_PTR(-EINVAL);
3773 }
3774
3775 /* If binding the object/GGTT view requires more space than the entire
3776 * aperture has, reject it early before evicting everything in a vain
3777 * attempt to find space.
3778 */
3779 if (size > end) {
3780 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3781 ggtt_view ? ggtt_view->type : 0,
3782 size,
3783 flags & PIN_MAPPABLE ? "mappable" : "total",
3784 end);
3785 return ERR_PTR(-E2BIG);
3786 }
3787
3788 ret = i915_gem_object_get_pages(obj);
3789 if (ret)
3790 return ERR_PTR(ret);
3791
3792 i915_gem_object_pin_pages(obj);
3793
3794 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3795 i915_gem_obj_lookup_or_create_vma(obj, vm);
3796
3797 if (IS_ERR(vma))
3798 goto err_unpin;
3799
3800 search_free:
3801 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3802 size, alignment,
3803 obj->cache_level,
3804 start, end,
3805 DRM_MM_SEARCH_DEFAULT,
3806 DRM_MM_CREATE_DEFAULT);
3807 if (ret) {
3808 ret = i915_gem_evict_something(dev, vm, size, alignment,
3809 obj->cache_level,
3810 start, end,
3811 flags);
3812 if (ret == 0)
3813 goto search_free;
3814
3815 goto err_free_vma;
3816 }
3817 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3818 ret = -EINVAL;
3819 goto err_remove_node;
3820 }
3821
3822 ret = i915_gem_gtt_prepare_object(obj);
3823 if (ret)
3824 goto err_remove_node;
3825
3826 trace_i915_vma_bind(vma, flags);
3827 ret = i915_vma_bind(vma, obj->cache_level, flags);
3828 if (ret)
3829 goto err_finish_gtt;
3830
3831 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3832 list_add_tail(&vma->mm_list, &vm->inactive_list);
3833
3834 return vma;
3835
3836 err_finish_gtt:
3837 i915_gem_gtt_finish_object(obj);
3838 err_remove_node:
3839 drm_mm_remove_node(&vma->node);
3840 err_free_vma:
3841 i915_gem_vma_destroy(vma);
3842 vma = ERR_PTR(ret);
3843 err_unpin:
3844 i915_gem_object_unpin_pages(obj);
3845 return vma;
3846 }
3847
3848 bool
3849 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3850 bool force)
3851 {
3852 /* If we don't have a page list set up, then we're not pinned
3853 * to GPU, and we can ignore the cache flush because it'll happen
3854 * again at bind time.
3855 */
3856 if (obj->pages == NULL)
3857 return false;
3858
3859 /*
3860 * Stolen memory is always coherent with the GPU as it is explicitly
3861 * marked as wc by the system, or the system is cache-coherent.
3862 */
3863 if (obj->stolen || obj->phys_handle)
3864 return false;
3865
3866 /* If the GPU is snooping the contents of the CPU cache,
3867 * we do not need to manually clear the CPU cache lines. However,
3868 * the caches are only snooped when the render cache is
3869 * flushed/invalidated. As we always have to emit invalidations
3870 * and flushes when moving into and out of the RENDER domain, correct
3871 * snooping behaviour occurs naturally as the result of our domain
3872 * tracking.
3873 */
3874 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3875 obj->cache_dirty = true;
3876 return false;
3877 }
3878
3879 trace_i915_gem_object_clflush(obj);
3880 drm_clflush_sg(obj->pages);
3881 obj->cache_dirty = false;
3882
3883 return true;
3884 }
3885
3886 /** Flushes the GTT write domain for the object if it's dirty. */
3887 static void
3888 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3889 {
3890 uint32_t old_write_domain;
3891
3892 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3893 return;
3894
3895 /* No actual flushing is required for the GTT write domain. Writes
3896 * to it immediately go to main memory as far as we know, so there's
3897 * no chipset flush. It also doesn't land in render cache.
3898 *
3899 * However, we do have to enforce the order so that all writes through
3900 * the GTT land before any writes to the device, such as updates to
3901 * the GATT itself.
3902 */
3903 wmb();
3904
3905 old_write_domain = obj->base.write_domain;
3906 obj->base.write_domain = 0;
3907
3908 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3909
3910 trace_i915_gem_object_change_domain(obj,
3911 obj->base.read_domains,
3912 old_write_domain);
3913 }
3914
3915 /** Flushes the CPU write domain for the object if it's dirty. */
3916 static void
3917 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3918 {
3919 uint32_t old_write_domain;
3920
3921 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3922 return;
3923
3924 if (i915_gem_clflush_object(obj, obj->pin_display))
3925 i915_gem_chipset_flush(obj->base.dev);
3926
3927 old_write_domain = obj->base.write_domain;
3928 obj->base.write_domain = 0;
3929
3930 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3931
3932 trace_i915_gem_object_change_domain(obj,
3933 obj->base.read_domains,
3934 old_write_domain);
3935 }
3936
3937 /**
3938 * Moves a single object to the GTT read, and possibly write domain.
3939 *
3940 * This function returns when the move is complete, including waiting on
3941 * flushes to occur.
3942 */
3943 int
3944 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3945 {
3946 uint32_t old_write_domain, old_read_domains;
3947 struct i915_vma *vma;
3948 int ret;
3949
3950 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3951 return 0;
3952
3953 ret = i915_gem_object_wait_rendering(obj, !write);
3954 if (ret)
3955 return ret;
3956
3957 /* Flush and acquire obj->pages so that we are coherent through
3958 * direct access in memory with previous cached writes through
3959 * shmemfs and that our cache domain tracking remains valid.
3960 * For example, if the obj->filp was moved to swap without us
3961 * being notified and releasing the pages, we would mistakenly
3962 * continue to assume that the obj remained out of the CPU cached
3963 * domain.
3964 */
3965 ret = i915_gem_object_get_pages(obj);
3966 if (ret)
3967 return ret;
3968
3969 i915_gem_object_flush_cpu_write_domain(obj);
3970
3971 /* Serialise direct access to this object with the barriers for
3972 * coherent writes from the GPU, by effectively invalidating the
3973 * GTT domain upon first access.
3974 */
3975 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3976 mb();
3977
3978 old_write_domain = obj->base.write_domain;
3979 old_read_domains = obj->base.read_domains;
3980
3981 /* It should now be out of any other write domains, and we can update
3982 * the domain values for our changes.
3983 */
3984 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3985 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3986 if (write) {
3987 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3988 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3989 obj->dirty = 1;
3990 }
3991
3992 trace_i915_gem_object_change_domain(obj,
3993 old_read_domains,
3994 old_write_domain);
3995
3996 /* And bump the LRU for this access */
3997 vma = i915_gem_obj_to_ggtt(obj);
3998 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3999 list_move_tail(&vma->mm_list,
4000 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4001
4002 return 0;
4003 }
4004
4005 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4006 enum i915_cache_level cache_level)
4007 {
4008 struct drm_device *dev = obj->base.dev;
4009 struct i915_vma *vma, *next;
4010 int ret;
4011
4012 if (obj->cache_level == cache_level)
4013 return 0;
4014
4015 if (i915_gem_obj_is_pinned(obj)) {
4016 DRM_DEBUG("can not change the cache level of pinned objects\n");
4017 return -EBUSY;
4018 }
4019
4020 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4021 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4022 ret = i915_vma_unbind(vma);
4023 if (ret)
4024 return ret;
4025 }
4026 }
4027
4028 if (i915_gem_obj_bound_any(obj)) {
4029 ret = i915_gem_object_wait_rendering(obj, false);
4030 if (ret)
4031 return ret;
4032
4033 i915_gem_object_finish_gtt(obj);
4034
4035 /* Before SandyBridge, you could not use tiling or fence
4036 * registers with snooped memory, so relinquish any fences
4037 * currently pointing to our region in the aperture.
4038 */
4039 if (INTEL_INFO(dev)->gen < 6) {
4040 ret = i915_gem_object_put_fence(obj);
4041 if (ret)
4042 return ret;
4043 }
4044
4045 list_for_each_entry(vma, &obj->vma_list, vma_link)
4046 if (drm_mm_node_allocated(&vma->node)) {
4047 ret = i915_vma_bind(vma, cache_level,
4048 PIN_UPDATE);
4049 if (ret)
4050 return ret;
4051 }
4052 }
4053
4054 list_for_each_entry(vma, &obj->vma_list, vma_link)
4055 vma->node.color = cache_level;
4056 obj->cache_level = cache_level;
4057
4058 if (obj->cache_dirty &&
4059 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4060 cpu_write_needs_clflush(obj)) {
4061 if (i915_gem_clflush_object(obj, true))
4062 i915_gem_chipset_flush(obj->base.dev);
4063 }
4064
4065 return 0;
4066 }
4067
4068 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4069 struct drm_file *file)
4070 {
4071 struct drm_i915_gem_caching *args = data;
4072 struct drm_i915_gem_object *obj;
4073
4074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4075 if (&obj->base == NULL)
4076 return -ENOENT;
4077
4078 switch (obj->cache_level) {
4079 case I915_CACHE_LLC:
4080 case I915_CACHE_L3_LLC:
4081 args->caching = I915_CACHING_CACHED;
4082 break;
4083
4084 case I915_CACHE_WT:
4085 args->caching = I915_CACHING_DISPLAY;
4086 break;
4087
4088 default:
4089 args->caching = I915_CACHING_NONE;
4090 break;
4091 }
4092
4093 drm_gem_object_unreference_unlocked(&obj->base);
4094 return 0;
4095 }
4096
4097 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4098 struct drm_file *file)
4099 {
4100 struct drm_i915_gem_caching *args = data;
4101 struct drm_i915_gem_object *obj;
4102 enum i915_cache_level level;
4103 int ret;
4104
4105 switch (args->caching) {
4106 case I915_CACHING_NONE:
4107 level = I915_CACHE_NONE;
4108 break;
4109 case I915_CACHING_CACHED:
4110 level = I915_CACHE_LLC;
4111 break;
4112 case I915_CACHING_DISPLAY:
4113 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4114 break;
4115 default:
4116 return -EINVAL;
4117 }
4118
4119 ret = i915_mutex_lock_interruptible(dev);
4120 if (ret)
4121 return ret;
4122
4123 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4124 if (&obj->base == NULL) {
4125 ret = -ENOENT;
4126 goto unlock;
4127 }
4128
4129 ret = i915_gem_object_set_cache_level(obj, level);
4130
4131 drm_gem_object_unreference(&obj->base);
4132 unlock:
4133 mutex_unlock(&dev->struct_mutex);
4134 return ret;
4135 }
4136
4137 /*
4138 * Prepare buffer for display plane (scanout, cursors, etc).
4139 * Can be called from an uninterruptible phase (modesetting) and allows
4140 * any flushes to be pipelined (for pageflips).
4141 */
4142 int
4143 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4144 u32 alignment,
4145 struct intel_engine_cs *pipelined,
4146 struct drm_i915_gem_request **pipelined_request,
4147 const struct i915_ggtt_view *view)
4148 {
4149 u32 old_read_domains, old_write_domain;
4150 int ret;
4151
4152 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4153 if (ret)
4154 return ret;
4155
4156 /* Mark the pin_display early so that we account for the
4157 * display coherency whilst setting up the cache domains.
4158 */
4159 obj->pin_display++;
4160
4161 /* The display engine is not coherent with the LLC cache on gen6. As
4162 * a result, we make sure that the pinning that is about to occur is
4163 * done with uncached PTEs. This is lowest common denominator for all
4164 * chipsets.
4165 *
4166 * However for gen6+, we could do better by using the GFDT bit instead
4167 * of uncaching, which would allow us to flush all the LLC-cached data
4168 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4169 */
4170 ret = i915_gem_object_set_cache_level(obj,
4171 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4172 if (ret)
4173 goto err_unpin_display;
4174
4175 /* As the user may map the buffer once pinned in the display plane
4176 * (e.g. libkms for the bootup splash), we have to ensure that we
4177 * always use map_and_fenceable for all scanout buffers.
4178 */
4179 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4180 view->type == I915_GGTT_VIEW_NORMAL ?
4181 PIN_MAPPABLE : 0);
4182 if (ret)
4183 goto err_unpin_display;
4184
4185 i915_gem_object_flush_cpu_write_domain(obj);
4186
4187 old_write_domain = obj->base.write_domain;
4188 old_read_domains = obj->base.read_domains;
4189
4190 /* It should now be out of any other write domains, and we can update
4191 * the domain values for our changes.
4192 */
4193 obj->base.write_domain = 0;
4194 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4195
4196 trace_i915_gem_object_change_domain(obj,
4197 old_read_domains,
4198 old_write_domain);
4199
4200 return 0;
4201
4202 err_unpin_display:
4203 obj->pin_display--;
4204 return ret;
4205 }
4206
4207 void
4208 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4209 const struct i915_ggtt_view *view)
4210 {
4211 if (WARN_ON(obj->pin_display == 0))
4212 return;
4213
4214 i915_gem_object_ggtt_unpin_view(obj, view);
4215
4216 obj->pin_display--;
4217 }
4218
4219 /**
4220 * Moves a single object to the CPU read, and possibly write domain.
4221 *
4222 * This function returns when the move is complete, including waiting on
4223 * flushes to occur.
4224 */
4225 int
4226 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4227 {
4228 uint32_t old_write_domain, old_read_domains;
4229 int ret;
4230
4231 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4232 return 0;
4233
4234 ret = i915_gem_object_wait_rendering(obj, !write);
4235 if (ret)
4236 return ret;
4237
4238 i915_gem_object_flush_gtt_write_domain(obj);
4239
4240 old_write_domain = obj->base.write_domain;
4241 old_read_domains = obj->base.read_domains;
4242
4243 /* Flush the CPU cache if it's still invalid. */
4244 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4245 i915_gem_clflush_object(obj, false);
4246
4247 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4248 }
4249
4250 /* It should now be out of any other write domains, and we can update
4251 * the domain values for our changes.
4252 */
4253 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4254
4255 /* If we're writing through the CPU, then the GPU read domains will
4256 * need to be invalidated at next use.
4257 */
4258 if (write) {
4259 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4260 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4261 }
4262
4263 trace_i915_gem_object_change_domain(obj,
4264 old_read_domains,
4265 old_write_domain);
4266
4267 return 0;
4268 }
4269
4270 /* Throttle our rendering by waiting until the ring has completed our requests
4271 * emitted over 20 msec ago.
4272 *
4273 * Note that if we were to use the current jiffies each time around the loop,
4274 * we wouldn't escape the function with any frames outstanding if the time to
4275 * render a frame was over 20ms.
4276 *
4277 * This should get us reasonable parallelism between CPU and GPU but also
4278 * relatively low latency when blocking on a particular request to finish.
4279 */
4280 static int
4281 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4282 {
4283 struct drm_i915_private *dev_priv = dev->dev_private;
4284 struct drm_i915_file_private *file_priv = file->driver_priv;
4285 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4286 struct drm_i915_gem_request *request, *target = NULL;
4287 unsigned reset_counter;
4288 int ret;
4289
4290 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4291 if (ret)
4292 return ret;
4293
4294 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4295 if (ret)
4296 return ret;
4297
4298 spin_lock(&file_priv->mm.lock);
4299 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4300 if (time_after_eq(request->emitted_jiffies, recent_enough))
4301 break;
4302
4303 /*
4304 * Note that the request might not have been submitted yet.
4305 * In which case emitted_jiffies will be zero.
4306 */
4307 if (!request->emitted_jiffies)
4308 continue;
4309
4310 target = request;
4311 }
4312 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4313 if (target)
4314 i915_gem_request_reference(target);
4315 spin_unlock(&file_priv->mm.lock);
4316
4317 if (target == NULL)
4318 return 0;
4319
4320 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4321 if (ret == 0)
4322 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4323
4324 i915_gem_request_unreference__unlocked(target);
4325
4326 return ret;
4327 }
4328
4329 static bool
4330 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4331 {
4332 struct drm_i915_gem_object *obj = vma->obj;
4333
4334 if (alignment &&
4335 vma->node.start & (alignment - 1))
4336 return true;
4337
4338 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4339 return true;
4340
4341 if (flags & PIN_OFFSET_BIAS &&
4342 vma->node.start < (flags & PIN_OFFSET_MASK))
4343 return true;
4344
4345 return false;
4346 }
4347
4348 static int
4349 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4350 struct i915_address_space *vm,
4351 const struct i915_ggtt_view *ggtt_view,
4352 uint32_t alignment,
4353 uint64_t flags)
4354 {
4355 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4356 struct i915_vma *vma;
4357 unsigned bound;
4358 int ret;
4359
4360 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4361 return -ENODEV;
4362
4363 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4364 return -EINVAL;
4365
4366 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4367 return -EINVAL;
4368
4369 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4370 return -EINVAL;
4371
4372 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4373 i915_gem_obj_to_vma(obj, vm);
4374
4375 if (IS_ERR(vma))
4376 return PTR_ERR(vma);
4377
4378 if (vma) {
4379 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4380 return -EBUSY;
4381
4382 if (i915_vma_misplaced(vma, alignment, flags)) {
4383 unsigned long offset;
4384 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4385 i915_gem_obj_offset(obj, vm);
4386 WARN(vma->pin_count,
4387 "bo is already pinned in %s with incorrect alignment:"
4388 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4389 " obj->map_and_fenceable=%d\n",
4390 ggtt_view ? "ggtt" : "ppgtt",
4391 offset,
4392 alignment,
4393 !!(flags & PIN_MAPPABLE),
4394 obj->map_and_fenceable);
4395 ret = i915_vma_unbind(vma);
4396 if (ret)
4397 return ret;
4398
4399 vma = NULL;
4400 }
4401 }
4402
4403 bound = vma ? vma->bound : 0;
4404 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4405 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4406 flags);
4407 if (IS_ERR(vma))
4408 return PTR_ERR(vma);
4409 } else {
4410 ret = i915_vma_bind(vma, obj->cache_level, flags);
4411 if (ret)
4412 return ret;
4413 }
4414
4415 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4416 (bound ^ vma->bound) & GLOBAL_BIND) {
4417 bool mappable, fenceable;
4418 u32 fence_size, fence_alignment;
4419
4420 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4421 obj->base.size,
4422 obj->tiling_mode);
4423 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4424 obj->base.size,
4425 obj->tiling_mode,
4426 true);
4427
4428 fenceable = (vma->node.size == fence_size &&
4429 (vma->node.start & (fence_alignment - 1)) == 0);
4430
4431 mappable = (vma->node.start + fence_size <=
4432 dev_priv->gtt.mappable_end);
4433
4434 obj->map_and_fenceable = mappable && fenceable;
4435
4436 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4437 }
4438
4439 vma->pin_count++;
4440 return 0;
4441 }
4442
4443 int
4444 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4445 struct i915_address_space *vm,
4446 uint32_t alignment,
4447 uint64_t flags)
4448 {
4449 return i915_gem_object_do_pin(obj, vm,
4450 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4451 alignment, flags);
4452 }
4453
4454 int
4455 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4456 const struct i915_ggtt_view *view,
4457 uint32_t alignment,
4458 uint64_t flags)
4459 {
4460 if (WARN_ONCE(!view, "no view specified"))
4461 return -EINVAL;
4462
4463 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4464 alignment, flags | PIN_GLOBAL);
4465 }
4466
4467 void
4468 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4469 const struct i915_ggtt_view *view)
4470 {
4471 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4472
4473 BUG_ON(!vma);
4474 WARN_ON(vma->pin_count == 0);
4475 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4476
4477 --vma->pin_count;
4478 }
4479
4480 bool
4481 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4482 {
4483 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4484 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4485 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4486
4487 WARN_ON(!ggtt_vma ||
4488 dev_priv->fence_regs[obj->fence_reg].pin_count >
4489 ggtt_vma->pin_count);
4490 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4491 return true;
4492 } else
4493 return false;
4494 }
4495
4496 void
4497 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4498 {
4499 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4500 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4501 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4502 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4503 }
4504 }
4505
4506 int
4507 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4508 struct drm_file *file)
4509 {
4510 struct drm_i915_gem_busy *args = data;
4511 struct drm_i915_gem_object *obj;
4512 int ret;
4513
4514 ret = i915_mutex_lock_interruptible(dev);
4515 if (ret)
4516 return ret;
4517
4518 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4519 if (&obj->base == NULL) {
4520 ret = -ENOENT;
4521 goto unlock;
4522 }
4523
4524 /* Count all active objects as busy, even if they are currently not used
4525 * by the gpu. Users of this interface expect objects to eventually
4526 * become non-busy without any further actions, therefore emit any
4527 * necessary flushes here.
4528 */
4529 ret = i915_gem_object_flush_active(obj);
4530 if (ret)
4531 goto unref;
4532
4533 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4534 args->busy = obj->active << 16;
4535 if (obj->last_write_req)
4536 args->busy |= obj->last_write_req->ring->id;
4537
4538 unref:
4539 drm_gem_object_unreference(&obj->base);
4540 unlock:
4541 mutex_unlock(&dev->struct_mutex);
4542 return ret;
4543 }
4544
4545 int
4546 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4547 struct drm_file *file_priv)
4548 {
4549 return i915_gem_ring_throttle(dev, file_priv);
4550 }
4551
4552 int
4553 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4554 struct drm_file *file_priv)
4555 {
4556 struct drm_i915_private *dev_priv = dev->dev_private;
4557 struct drm_i915_gem_madvise *args = data;
4558 struct drm_i915_gem_object *obj;
4559 int ret;
4560
4561 switch (args->madv) {
4562 case I915_MADV_DONTNEED:
4563 case I915_MADV_WILLNEED:
4564 break;
4565 default:
4566 return -EINVAL;
4567 }
4568
4569 ret = i915_mutex_lock_interruptible(dev);
4570 if (ret)
4571 return ret;
4572
4573 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4574 if (&obj->base == NULL) {
4575 ret = -ENOENT;
4576 goto unlock;
4577 }
4578
4579 if (i915_gem_obj_is_pinned(obj)) {
4580 ret = -EINVAL;
4581 goto out;
4582 }
4583
4584 if (obj->pages &&
4585 obj->tiling_mode != I915_TILING_NONE &&
4586 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4587 if (obj->madv == I915_MADV_WILLNEED)
4588 i915_gem_object_unpin_pages(obj);
4589 if (args->madv == I915_MADV_WILLNEED)
4590 i915_gem_object_pin_pages(obj);
4591 }
4592
4593 if (obj->madv != __I915_MADV_PURGED)
4594 obj->madv = args->madv;
4595
4596 /* if the object is no longer attached, discard its backing storage */
4597 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4598 i915_gem_object_truncate(obj);
4599
4600 args->retained = obj->madv != __I915_MADV_PURGED;
4601
4602 out:
4603 drm_gem_object_unreference(&obj->base);
4604 unlock:
4605 mutex_unlock(&dev->struct_mutex);
4606 return ret;
4607 }
4608
4609 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4610 const struct drm_i915_gem_object_ops *ops)
4611 {
4612 int i;
4613
4614 INIT_LIST_HEAD(&obj->global_list);
4615 for (i = 0; i < I915_NUM_RINGS; i++)
4616 INIT_LIST_HEAD(&obj->ring_list[i]);
4617 INIT_LIST_HEAD(&obj->obj_exec_link);
4618 INIT_LIST_HEAD(&obj->vma_list);
4619 INIT_LIST_HEAD(&obj->batch_pool_link);
4620
4621 obj->ops = ops;
4622
4623 obj->fence_reg = I915_FENCE_REG_NONE;
4624 obj->madv = I915_MADV_WILLNEED;
4625
4626 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4627 }
4628
4629 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4630 .get_pages = i915_gem_object_get_pages_gtt,
4631 .put_pages = i915_gem_object_put_pages_gtt,
4632 };
4633
4634 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4635 size_t size)
4636 {
4637 struct drm_i915_gem_object *obj;
4638 struct address_space *mapping;
4639 gfp_t mask;
4640
4641 obj = i915_gem_object_alloc(dev);
4642 if (obj == NULL)
4643 return NULL;
4644
4645 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4646 i915_gem_object_free(obj);
4647 return NULL;
4648 }
4649
4650 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4651 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4652 /* 965gm cannot relocate objects above 4GiB. */
4653 mask &= ~__GFP_HIGHMEM;
4654 mask |= __GFP_DMA32;
4655 }
4656
4657 mapping = file_inode(obj->base.filp)->i_mapping;
4658 mapping_set_gfp_mask(mapping, mask);
4659
4660 i915_gem_object_init(obj, &i915_gem_object_ops);
4661
4662 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4663 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4664
4665 if (HAS_LLC(dev)) {
4666 /* On some devices, we can have the GPU use the LLC (the CPU
4667 * cache) for about a 10% performance improvement
4668 * compared to uncached. Graphics requests other than
4669 * display scanout are coherent with the CPU in
4670 * accessing this cache. This means in this mode we
4671 * don't need to clflush on the CPU side, and on the
4672 * GPU side we only need to flush internal caches to
4673 * get data visible to the CPU.
4674 *
4675 * However, we maintain the display planes as UC, and so
4676 * need to rebind when first used as such.
4677 */
4678 obj->cache_level = I915_CACHE_LLC;
4679 } else
4680 obj->cache_level = I915_CACHE_NONE;
4681
4682 trace_i915_gem_object_create(obj);
4683
4684 return obj;
4685 }
4686
4687 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4688 {
4689 /* If we are the last user of the backing storage (be it shmemfs
4690 * pages or stolen etc), we know that the pages are going to be
4691 * immediately released. In this case, we can then skip copying
4692 * back the contents from the GPU.
4693 */
4694
4695 if (obj->madv != I915_MADV_WILLNEED)
4696 return false;
4697
4698 if (obj->base.filp == NULL)
4699 return true;
4700
4701 /* At first glance, this looks racy, but then again so would be
4702 * userspace racing mmap against close. However, the first external
4703 * reference to the filp can only be obtained through the
4704 * i915_gem_mmap_ioctl() which safeguards us against the user
4705 * acquiring such a reference whilst we are in the middle of
4706 * freeing the object.
4707 */
4708 return atomic_long_read(&obj->base.filp->f_count) == 1;
4709 }
4710
4711 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4712 {
4713 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4714 struct drm_device *dev = obj->base.dev;
4715 struct drm_i915_private *dev_priv = dev->dev_private;
4716 struct i915_vma *vma, *next;
4717
4718 intel_runtime_pm_get(dev_priv);
4719
4720 trace_i915_gem_object_destroy(obj);
4721
4722 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4723 int ret;
4724
4725 vma->pin_count = 0;
4726 ret = i915_vma_unbind(vma);
4727 if (WARN_ON(ret == -ERESTARTSYS)) {
4728 bool was_interruptible;
4729
4730 was_interruptible = dev_priv->mm.interruptible;
4731 dev_priv->mm.interruptible = false;
4732
4733 WARN_ON(i915_vma_unbind(vma));
4734
4735 dev_priv->mm.interruptible = was_interruptible;
4736 }
4737 }
4738
4739 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4740 * before progressing. */
4741 if (obj->stolen)
4742 i915_gem_object_unpin_pages(obj);
4743
4744 WARN_ON(obj->frontbuffer_bits);
4745
4746 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4747 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4748 obj->tiling_mode != I915_TILING_NONE)
4749 i915_gem_object_unpin_pages(obj);
4750
4751 if (WARN_ON(obj->pages_pin_count))
4752 obj->pages_pin_count = 0;
4753 if (discard_backing_storage(obj))
4754 obj->madv = I915_MADV_DONTNEED;
4755 i915_gem_object_put_pages(obj);
4756 i915_gem_object_free_mmap_offset(obj);
4757
4758 BUG_ON(obj->pages);
4759
4760 if (obj->base.import_attach)
4761 drm_prime_gem_destroy(&obj->base, NULL);
4762
4763 if (obj->ops->release)
4764 obj->ops->release(obj);
4765
4766 drm_gem_object_release(&obj->base);
4767 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4768
4769 kfree(obj->bit_17);
4770 i915_gem_object_free(obj);
4771
4772 intel_runtime_pm_put(dev_priv);
4773 }
4774
4775 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4776 struct i915_address_space *vm)
4777 {
4778 struct i915_vma *vma;
4779 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4780 if (i915_is_ggtt(vma->vm) &&
4781 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4782 continue;
4783 if (vma->vm == vm)
4784 return vma;
4785 }
4786 return NULL;
4787 }
4788
4789 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4790 const struct i915_ggtt_view *view)
4791 {
4792 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4793 struct i915_vma *vma;
4794
4795 if (WARN_ONCE(!view, "no view specified"))
4796 return ERR_PTR(-EINVAL);
4797
4798 list_for_each_entry(vma, &obj->vma_list, vma_link)
4799 if (vma->vm == ggtt &&
4800 i915_ggtt_view_equal(&vma->ggtt_view, view))
4801 return vma;
4802 return NULL;
4803 }
4804
4805 void i915_gem_vma_destroy(struct i915_vma *vma)
4806 {
4807 struct i915_address_space *vm = NULL;
4808 WARN_ON(vma->node.allocated);
4809
4810 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4811 if (!list_empty(&vma->exec_list))
4812 return;
4813
4814 vm = vma->vm;
4815
4816 if (!i915_is_ggtt(vm))
4817 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4818
4819 list_del(&vma->vma_link);
4820
4821 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4822 }
4823
4824 static void
4825 i915_gem_stop_ringbuffers(struct drm_device *dev)
4826 {
4827 struct drm_i915_private *dev_priv = dev->dev_private;
4828 struct intel_engine_cs *ring;
4829 int i;
4830
4831 for_each_ring(ring, dev_priv, i)
4832 dev_priv->gt.stop_ring(ring);
4833 }
4834
4835 int
4836 i915_gem_suspend(struct drm_device *dev)
4837 {
4838 struct drm_i915_private *dev_priv = dev->dev_private;
4839 int ret = 0;
4840
4841 mutex_lock(&dev->struct_mutex);
4842 ret = i915_gpu_idle(dev);
4843 if (ret)
4844 goto err;
4845
4846 i915_gem_retire_requests(dev);
4847
4848 i915_gem_stop_ringbuffers(dev);
4849 mutex_unlock(&dev->struct_mutex);
4850
4851 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4852 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4853 flush_delayed_work(&dev_priv->mm.idle_work);
4854
4855 /* Assert that we sucessfully flushed all the work and
4856 * reset the GPU back to its idle, low power state.
4857 */
4858 WARN_ON(dev_priv->mm.busy);
4859
4860 return 0;
4861
4862 err:
4863 mutex_unlock(&dev->struct_mutex);
4864 return ret;
4865 }
4866
4867 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4868 {
4869 struct intel_engine_cs *ring = req->ring;
4870 struct drm_device *dev = ring->dev;
4871 struct drm_i915_private *dev_priv = dev->dev_private;
4872 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4873 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4874 int i, ret;
4875
4876 if (!HAS_L3_DPF(dev) || !remap_info)
4877 return 0;
4878
4879 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4880 if (ret)
4881 return ret;
4882
4883 /*
4884 * Note: We do not worry about the concurrent register cacheline hang
4885 * here because no other code should access these registers other than
4886 * at initialization time.
4887 */
4888 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4889 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4890 intel_ring_emit(ring, reg_base + i);
4891 intel_ring_emit(ring, remap_info[i/4]);
4892 }
4893
4894 intel_ring_advance(ring);
4895
4896 return ret;
4897 }
4898
4899 void i915_gem_init_swizzling(struct drm_device *dev)
4900 {
4901 struct drm_i915_private *dev_priv = dev->dev_private;
4902
4903 if (INTEL_INFO(dev)->gen < 5 ||
4904 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4905 return;
4906
4907 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4908 DISP_TILE_SURFACE_SWIZZLING);
4909
4910 if (IS_GEN5(dev))
4911 return;
4912
4913 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4914 if (IS_GEN6(dev))
4915 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4916 else if (IS_GEN7(dev))
4917 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4918 else if (IS_GEN8(dev))
4919 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4920 else
4921 BUG();
4922 }
4923
4924 static bool
4925 intel_enable_blt(struct drm_device *dev)
4926 {
4927 if (!HAS_BLT(dev))
4928 return false;
4929
4930 /* The blitter was dysfunctional on early prototypes */
4931 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4932 DRM_INFO("BLT not supported on this pre-production hardware;"
4933 " graphics performance will be degraded.\n");
4934 return false;
4935 }
4936
4937 return true;
4938 }
4939
4940 static void init_unused_ring(struct drm_device *dev, u32 base)
4941 {
4942 struct drm_i915_private *dev_priv = dev->dev_private;
4943
4944 I915_WRITE(RING_CTL(base), 0);
4945 I915_WRITE(RING_HEAD(base), 0);
4946 I915_WRITE(RING_TAIL(base), 0);
4947 I915_WRITE(RING_START(base), 0);
4948 }
4949
4950 static void init_unused_rings(struct drm_device *dev)
4951 {
4952 if (IS_I830(dev)) {
4953 init_unused_ring(dev, PRB1_BASE);
4954 init_unused_ring(dev, SRB0_BASE);
4955 init_unused_ring(dev, SRB1_BASE);
4956 init_unused_ring(dev, SRB2_BASE);
4957 init_unused_ring(dev, SRB3_BASE);
4958 } else if (IS_GEN2(dev)) {
4959 init_unused_ring(dev, SRB0_BASE);
4960 init_unused_ring(dev, SRB1_BASE);
4961 } else if (IS_GEN3(dev)) {
4962 init_unused_ring(dev, PRB1_BASE);
4963 init_unused_ring(dev, PRB2_BASE);
4964 }
4965 }
4966
4967 int i915_gem_init_rings(struct drm_device *dev)
4968 {
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 int ret;
4971
4972 ret = intel_init_render_ring_buffer(dev);
4973 if (ret)
4974 return ret;
4975
4976 if (HAS_BSD(dev)) {
4977 ret = intel_init_bsd_ring_buffer(dev);
4978 if (ret)
4979 goto cleanup_render_ring;
4980 }
4981
4982 if (intel_enable_blt(dev)) {
4983 ret = intel_init_blt_ring_buffer(dev);
4984 if (ret)
4985 goto cleanup_bsd_ring;
4986 }
4987
4988 if (HAS_VEBOX(dev)) {
4989 ret = intel_init_vebox_ring_buffer(dev);
4990 if (ret)
4991 goto cleanup_blt_ring;
4992 }
4993
4994 if (HAS_BSD2(dev)) {
4995 ret = intel_init_bsd2_ring_buffer(dev);
4996 if (ret)
4997 goto cleanup_vebox_ring;
4998 }
4999
5000 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5001 if (ret)
5002 goto cleanup_bsd2_ring;
5003
5004 return 0;
5005
5006 cleanup_bsd2_ring:
5007 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5008 cleanup_vebox_ring:
5009 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5010 cleanup_blt_ring:
5011 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5012 cleanup_bsd_ring:
5013 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5014 cleanup_render_ring:
5015 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5016
5017 return ret;
5018 }
5019
5020 int
5021 i915_gem_init_hw(struct drm_device *dev)
5022 {
5023 struct drm_i915_private *dev_priv = dev->dev_private;
5024 struct intel_engine_cs *ring;
5025 int ret, i, j;
5026
5027 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5028 return -EIO;
5029
5030 /* Double layer security blanket, see i915_gem_init() */
5031 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5032
5033 if (dev_priv->ellc_size)
5034 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5035
5036 if (IS_HASWELL(dev))
5037 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5038 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5039
5040 if (HAS_PCH_NOP(dev)) {
5041 if (IS_IVYBRIDGE(dev)) {
5042 u32 temp = I915_READ(GEN7_MSG_CTL);
5043 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5044 I915_WRITE(GEN7_MSG_CTL, temp);
5045 } else if (INTEL_INFO(dev)->gen >= 7) {
5046 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5047 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5048 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5049 }
5050 }
5051
5052 i915_gem_init_swizzling(dev);
5053
5054 /*
5055 * At least 830 can leave some of the unused rings
5056 * "active" (ie. head != tail) after resume which
5057 * will prevent c3 entry. Makes sure all unused rings
5058 * are totally idle.
5059 */
5060 init_unused_rings(dev);
5061
5062 BUG_ON(!dev_priv->ring[RCS].default_context);
5063
5064 ret = i915_ppgtt_init_hw(dev);
5065 if (ret) {
5066 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5067 goto out;
5068 }
5069
5070 /* Need to do basic initialisation of all rings first: */
5071 for_each_ring(ring, dev_priv, i) {
5072 ret = ring->init_hw(ring);
5073 if (ret)
5074 goto out;
5075 }
5076
5077 /* Now it is safe to go back round and do everything else: */
5078 for_each_ring(ring, dev_priv, i) {
5079 struct drm_i915_gem_request *req;
5080
5081 WARN_ON(!ring->default_context);
5082
5083 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5084 if (ret) {
5085 i915_gem_cleanup_ringbuffer(dev);
5086 goto out;
5087 }
5088
5089 if (ring->id == RCS) {
5090 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5091 i915_gem_l3_remap(req, j);
5092 }
5093
5094 ret = i915_ppgtt_init_ring(req);
5095 if (ret && ret != -EIO) {
5096 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5097 i915_gem_request_cancel(req);
5098 i915_gem_cleanup_ringbuffer(dev);
5099 goto out;
5100 }
5101
5102 ret = i915_gem_context_enable(req);
5103 if (ret && ret != -EIO) {
5104 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5105 i915_gem_request_cancel(req);
5106 i915_gem_cleanup_ringbuffer(dev);
5107 goto out;
5108 }
5109
5110 i915_add_request_no_flush(req);
5111 }
5112
5113 out:
5114 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5115 return ret;
5116 }
5117
5118 int i915_gem_init(struct drm_device *dev)
5119 {
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 int ret;
5122
5123 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5124 i915.enable_execlists);
5125
5126 mutex_lock(&dev->struct_mutex);
5127
5128 if (IS_VALLEYVIEW(dev)) {
5129 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5130 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5131 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5132 VLV_GTLC_ALLOWWAKEACK), 10))
5133 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5134 }
5135
5136 if (!i915.enable_execlists) {
5137 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5138 dev_priv->gt.init_rings = i915_gem_init_rings;
5139 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5140 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5141 } else {
5142 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5143 dev_priv->gt.init_rings = intel_logical_rings_init;
5144 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5145 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5146 }
5147
5148 /* This is just a security blanket to placate dragons.
5149 * On some systems, we very sporadically observe that the first TLBs
5150 * used by the CS may be stale, despite us poking the TLB reset. If
5151 * we hold the forcewake during initialisation these problems
5152 * just magically go away.
5153 */
5154 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5155
5156 ret = i915_gem_init_userptr(dev);
5157 if (ret)
5158 goto out_unlock;
5159
5160 i915_gem_init_global_gtt(dev);
5161
5162 ret = i915_gem_context_init(dev);
5163 if (ret)
5164 goto out_unlock;
5165
5166 ret = dev_priv->gt.init_rings(dev);
5167 if (ret)
5168 goto out_unlock;
5169
5170 ret = i915_gem_init_hw(dev);
5171 if (ret == -EIO) {
5172 /* Allow ring initialisation to fail by marking the GPU as
5173 * wedged. But we only want to do this where the GPU is angry,
5174 * for all other failure, such as an allocation failure, bail.
5175 */
5176 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5177 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5178 ret = 0;
5179 }
5180
5181 out_unlock:
5182 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5183 mutex_unlock(&dev->struct_mutex);
5184
5185 return ret;
5186 }
5187
5188 void
5189 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5190 {
5191 struct drm_i915_private *dev_priv = dev->dev_private;
5192 struct intel_engine_cs *ring;
5193 int i;
5194
5195 for_each_ring(ring, dev_priv, i)
5196 dev_priv->gt.cleanup_ring(ring);
5197
5198 if (i915.enable_execlists)
5199 /*
5200 * Neither the BIOS, ourselves or any other kernel
5201 * expects the system to be in execlists mode on startup,
5202 * so we need to reset the GPU back to legacy mode.
5203 */
5204 intel_gpu_reset(dev);
5205 }
5206
5207 static void
5208 init_ring_lists(struct intel_engine_cs *ring)
5209 {
5210 INIT_LIST_HEAD(&ring->active_list);
5211 INIT_LIST_HEAD(&ring->request_list);
5212 }
5213
5214 void i915_init_vm(struct drm_i915_private *dev_priv,
5215 struct i915_address_space *vm)
5216 {
5217 if (!i915_is_ggtt(vm))
5218 drm_mm_init(&vm->mm, vm->start, vm->total);
5219 vm->dev = dev_priv->dev;
5220 INIT_LIST_HEAD(&vm->active_list);
5221 INIT_LIST_HEAD(&vm->inactive_list);
5222 INIT_LIST_HEAD(&vm->global_link);
5223 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5224 }
5225
5226 void
5227 i915_gem_load(struct drm_device *dev)
5228 {
5229 struct drm_i915_private *dev_priv = dev->dev_private;
5230 int i;
5231
5232 dev_priv->objects =
5233 kmem_cache_create("i915_gem_object",
5234 sizeof(struct drm_i915_gem_object), 0,
5235 SLAB_HWCACHE_ALIGN,
5236 NULL);
5237 dev_priv->vmas =
5238 kmem_cache_create("i915_gem_vma",
5239 sizeof(struct i915_vma), 0,
5240 SLAB_HWCACHE_ALIGN,
5241 NULL);
5242 dev_priv->requests =
5243 kmem_cache_create("i915_gem_request",
5244 sizeof(struct drm_i915_gem_request), 0,
5245 SLAB_HWCACHE_ALIGN,
5246 NULL);
5247
5248 INIT_LIST_HEAD(&dev_priv->vm_list);
5249 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5250
5251 INIT_LIST_HEAD(&dev_priv->context_list);
5252 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5253 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5254 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5255 for (i = 0; i < I915_NUM_RINGS; i++)
5256 init_ring_lists(&dev_priv->ring[i]);
5257 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5258 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5259 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5260 i915_gem_retire_work_handler);
5261 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5262 i915_gem_idle_work_handler);
5263 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5264
5265 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5266
5267 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5268 dev_priv->num_fence_regs = 32;
5269 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5270 dev_priv->num_fence_regs = 16;
5271 else
5272 dev_priv->num_fence_regs = 8;
5273
5274 if (intel_vgpu_active(dev))
5275 dev_priv->num_fence_regs =
5276 I915_READ(vgtif_reg(avail_rs.fence_num));
5277
5278 /* Initialize fence registers to zero */
5279 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5280 i915_gem_restore_fences(dev);
5281
5282 i915_gem_detect_bit_6_swizzle(dev);
5283 init_waitqueue_head(&dev_priv->pending_flip_queue);
5284
5285 dev_priv->mm.interruptible = true;
5286
5287 i915_gem_shrinker_init(dev_priv);
5288
5289 mutex_init(&dev_priv->fb_tracking.lock);
5290 }
5291
5292 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5293 {
5294 struct drm_i915_file_private *file_priv = file->driver_priv;
5295
5296 /* Clean up our request list when the client is going away, so that
5297 * later retire_requests won't dereference our soon-to-be-gone
5298 * file_priv.
5299 */
5300 spin_lock(&file_priv->mm.lock);
5301 while (!list_empty(&file_priv->mm.request_list)) {
5302 struct drm_i915_gem_request *request;
5303
5304 request = list_first_entry(&file_priv->mm.request_list,
5305 struct drm_i915_gem_request,
5306 client_list);
5307 list_del(&request->client_list);
5308 request->file_priv = NULL;
5309 }
5310 spin_unlock(&file_priv->mm.lock);
5311
5312 if (!list_empty(&file_priv->rps.link)) {
5313 spin_lock(&to_i915(dev)->rps.client_lock);
5314 list_del(&file_priv->rps.link);
5315 spin_unlock(&to_i915(dev)->rps.client_lock);
5316 }
5317 }
5318
5319 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5320 {
5321 struct drm_i915_file_private *file_priv;
5322 int ret;
5323
5324 DRM_DEBUG_DRIVER("\n");
5325
5326 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5327 if (!file_priv)
5328 return -ENOMEM;
5329
5330 file->driver_priv = file_priv;
5331 file_priv->dev_priv = dev->dev_private;
5332 file_priv->file = file;
5333 INIT_LIST_HEAD(&file_priv->rps.link);
5334
5335 spin_lock_init(&file_priv->mm.lock);
5336 INIT_LIST_HEAD(&file_priv->mm.request_list);
5337
5338 ret = i915_gem_context_open(dev, file);
5339 if (ret)
5340 kfree(file_priv);
5341
5342 return ret;
5343 }
5344
5345 /**
5346 * i915_gem_track_fb - update frontbuffer tracking
5347 * old: current GEM buffer for the frontbuffer slots
5348 * new: new GEM buffer for the frontbuffer slots
5349 * frontbuffer_bits: bitmask of frontbuffer slots
5350 *
5351 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5352 * from @old and setting them in @new. Both @old and @new can be NULL.
5353 */
5354 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5355 struct drm_i915_gem_object *new,
5356 unsigned frontbuffer_bits)
5357 {
5358 if (old) {
5359 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5360 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5361 old->frontbuffer_bits &= ~frontbuffer_bits;
5362 }
5363
5364 if (new) {
5365 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5366 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5367 new->frontbuffer_bits |= frontbuffer_bits;
5368 }
5369 }
5370
5371 /* All the new VM stuff */
5372 unsigned long
5373 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5374 struct i915_address_space *vm)
5375 {
5376 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5377 struct i915_vma *vma;
5378
5379 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5380
5381 list_for_each_entry(vma, &o->vma_list, vma_link) {
5382 if (i915_is_ggtt(vma->vm) &&
5383 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5384 continue;
5385 if (vma->vm == vm)
5386 return vma->node.start;
5387 }
5388
5389 WARN(1, "%s vma for this object not found.\n",
5390 i915_is_ggtt(vm) ? "global" : "ppgtt");
5391 return -1;
5392 }
5393
5394 unsigned long
5395 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5396 const struct i915_ggtt_view *view)
5397 {
5398 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5399 struct i915_vma *vma;
5400
5401 list_for_each_entry(vma, &o->vma_list, vma_link)
5402 if (vma->vm == ggtt &&
5403 i915_ggtt_view_equal(&vma->ggtt_view, view))
5404 return vma->node.start;
5405
5406 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5407 return -1;
5408 }
5409
5410 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5411 struct i915_address_space *vm)
5412 {
5413 struct i915_vma *vma;
5414
5415 list_for_each_entry(vma, &o->vma_list, vma_link) {
5416 if (i915_is_ggtt(vma->vm) &&
5417 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5418 continue;
5419 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5420 return true;
5421 }
5422
5423 return false;
5424 }
5425
5426 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5427 const struct i915_ggtt_view *view)
5428 {
5429 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5430 struct i915_vma *vma;
5431
5432 list_for_each_entry(vma, &o->vma_list, vma_link)
5433 if (vma->vm == ggtt &&
5434 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5435 drm_mm_node_allocated(&vma->node))
5436 return true;
5437
5438 return false;
5439 }
5440
5441 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5442 {
5443 struct i915_vma *vma;
5444
5445 list_for_each_entry(vma, &o->vma_list, vma_link)
5446 if (drm_mm_node_allocated(&vma->node))
5447 return true;
5448
5449 return false;
5450 }
5451
5452 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5453 struct i915_address_space *vm)
5454 {
5455 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5456 struct i915_vma *vma;
5457
5458 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5459
5460 BUG_ON(list_empty(&o->vma_list));
5461
5462 list_for_each_entry(vma, &o->vma_list, vma_link) {
5463 if (i915_is_ggtt(vma->vm) &&
5464 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5465 continue;
5466 if (vma->vm == vm)
5467 return vma->node.size;
5468 }
5469 return 0;
5470 }
5471
5472 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5473 {
5474 struct i915_vma *vma;
5475 list_for_each_entry(vma, &obj->vma_list, vma_link)
5476 if (vma->pin_count > 0)
5477 return true;
5478
5479 return false;
5480 }