]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
c8689892a89fc8218ca43ec1be7ffc9724bee5e0
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59 return false;
60
61 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62 return true;
63
64 return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69 struct drm_mm_node *node, u32 size)
70 {
71 memset(node, 0, sizeof(*node));
72 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
73 size, 0, I915_COLOR_UNEVICTABLE,
74 0, ggtt->mappable_end,
75 DRM_MM_INSERT_LOW);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 u64 size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 u64 size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 might_sleep();
109
110 if (!i915_reset_in_progress(error))
111 return 0;
112
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
118 ret = wait_event_interruptible_timeout(error->reset_queue,
119 !i915_reset_in_progress(error),
120 I915_RESET_TIMEOUT);
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
125 return ret;
126 } else {
127 return 0;
128 }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 int ret;
135
136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
144 return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 struct drm_i915_gem_get_aperture *args = data;
154 struct i915_vma *vma;
155 size_t pinned;
156
157 pinned = 0;
158 mutex_lock(&dev->struct_mutex);
159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 if (i915_vma_is_pinned(vma))
164 pinned += vma->node.size;
165 mutex_unlock(&dev->struct_mutex);
166
167 args->aper_size = ggtt->base.total;
168 args->aper_available_size = args->aper_size - pinned;
169
170 return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 struct address_space *mapping = obj->base.filp->f_mapping;
177 drm_dma_handle_t *phys;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 char *vaddr;
181 int i;
182
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return ERR_PTR(-EINVAL);
185
186 /* Always aligning to the object size, allows a single allocation
187 * to handle all possible callers, and given typical object sizes,
188 * the alignment of the buddy allocation will naturally match.
189 */
190 phys = drm_pci_alloc(obj->base.dev,
191 obj->base.size,
192 roundup_pow_of_two(obj->base.size));
193 if (!phys)
194 return ERR_PTR(-ENOMEM);
195
196 vaddr = phys->vaddr;
197 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 struct page *page;
199 char *src;
200
201 page = shmem_read_mapping_page(mapping, i);
202 if (IS_ERR(page)) {
203 st = ERR_CAST(page);
204 goto err_phys;
205 }
206
207 src = kmap_atomic(page);
208 memcpy(vaddr, src, PAGE_SIZE);
209 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 kunmap_atomic(src);
211
212 put_page(page);
213 vaddr += PAGE_SIZE;
214 }
215
216 i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218 st = kmalloc(sizeof(*st), GFP_KERNEL);
219 if (!st) {
220 st = ERR_PTR(-ENOMEM);
221 goto err_phys;
222 }
223
224 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 kfree(st);
226 st = ERR_PTR(-ENOMEM);
227 goto err_phys;
228 }
229
230 sg = st->sgl;
231 sg->offset = 0;
232 sg->length = obj->base.size;
233
234 sg_dma_address(sg) = phys->busaddr;
235 sg_dma_len(sg) = obj->base.size;
236
237 obj->phys_handle = phys;
238 return st;
239
240 err_phys:
241 drm_pci_free(obj->base.dev, phys);
242 return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 struct sg_table *pages,
248 bool needs_clflush)
249 {
250 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252 if (obj->mm.madv == I915_MADV_DONTNEED)
253 obj->mm.dirty = false;
254
255 if (needs_clflush &&
256 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 drm_clflush_sg(pages);
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267 {
268 __i915_gem_object_release_shmem(obj, pages, false);
269
270 if (obj->mm.dirty) {
271 struct address_space *mapping = obj->base.filp->f_mapping;
272 char *vaddr = obj->phys_handle->vaddr;
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 if (obj->mm.madv == I915_MADV_WILLNEED)
290 mark_page_accessed(page);
291 put_page(page);
292 vaddr += PAGE_SIZE;
293 }
294 obj->mm.dirty = false;
295 }
296
297 sg_free_table(pages);
298 kfree(pages);
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426 {
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
432 int ret;
433
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
436 if (ret)
437 return ret;
438
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout <= 0)
444 break;
445
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
454 }
455
456 if (excl && timeout > 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498 {
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526 }
527
528 /**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
534 */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
540 {
541 might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546 #endif
547 GEM_BUG_ON(timeout < 0);
548
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
552 return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565 {
566 int ret;
567
568 if (align > obj->base.size)
569 return -EINVAL;
570
571 if (obj->ops == &i915_gem_phys_ops)
572 return 0;
573
574 if (obj->mm.madv != I915_MADV_WILLNEED)
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 if (obj->mm.pages)
586 return -EBUSY;
587
588 obj->ops = &i915_gem_phys_ops;
589
590 return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 void *vaddr = obj->phys_handle->vaddr + args->offset;
599 char __user *user_data = u64_to_user_ptr(args->data_ptr);
600
601 /* We manually control the domain here and pretend that it
602 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603 */
604 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605 if (copy_from_user(vaddr, user_data, args->size))
606 return -EFAULT;
607
608 drm_clflush_virt_range(vaddr, args->size);
609 i915_gem_chipset_flush(to_i915(obj->base.dev));
610
611 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612 return 0;
613 }
614
615 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616 {
617 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 }
619
620 void i915_gem_object_free(struct drm_i915_gem_object *obj)
621 {
622 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623 kmem_cache_free(dev_priv->objects, obj);
624 }
625
626 static int
627 i915_gem_create(struct drm_file *file,
628 struct drm_i915_private *dev_priv,
629 uint64_t size,
630 uint32_t *handle_p)
631 {
632 struct drm_i915_gem_object *obj;
633 int ret;
634 u32 handle;
635
636 size = roundup(size, PAGE_SIZE);
637 if (size == 0)
638 return -EINVAL;
639
640 /* Allocate the new object */
641 obj = i915_gem_object_create(dev_priv, size);
642 if (IS_ERR(obj))
643 return PTR_ERR(obj);
644
645 ret = drm_gem_handle_create(file, &obj->base, &handle);
646 /* drop reference from allocate - handle holds it now */
647 i915_gem_object_put(obj);
648 if (ret)
649 return ret;
650
651 *handle_p = handle;
652 return 0;
653 }
654
655 int
656 i915_gem_dumb_create(struct drm_file *file,
657 struct drm_device *dev,
658 struct drm_mode_create_dumb *args)
659 {
660 /* have to work out size/pitch and return them */
661 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662 args->size = args->pitch * args->height;
663 return i915_gem_create(file, to_i915(dev),
664 args->size, &args->handle);
665 }
666
667 /**
668 * Creates a new mm object and returns a handle to it.
669 * @dev: drm device pointer
670 * @data: ioctl data blob
671 * @file: drm file pointer
672 */
673 int
674 i915_gem_create_ioctl(struct drm_device *dev, void *data,
675 struct drm_file *file)
676 {
677 struct drm_i915_private *dev_priv = to_i915(dev);
678 struct drm_i915_gem_create *args = data;
679
680 i915_gem_flush_free_objects(dev_priv);
681
682 return i915_gem_create(file, dev_priv,
683 args->size, &args->handle);
684 }
685
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688 const char *gpu_vaddr, int gpu_offset,
689 int length)
690 {
691 int ret, cpu_offset = 0;
692
693 while (length > 0) {
694 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695 int this_length = min(cacheline_end - gpu_offset, length);
696 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699 gpu_vaddr + swizzled_gpu_offset,
700 this_length);
701 if (ret)
702 return ret + length;
703
704 cpu_offset += this_length;
705 gpu_offset += this_length;
706 length -= this_length;
707 }
708
709 return 0;
710 }
711
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714 const char __user *cpu_vaddr,
715 int length)
716 {
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725 cpu_vaddr + cpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736 }
737
738 /*
739 * Pins the specified object's pages and synchronizes the object with
740 * GPU accesses. Sets needs_clflush to non-zero if the caller should
741 * flush the object from the CPU cache.
742 */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744 unsigned int *needs_clflush)
745 {
746 int ret;
747
748 lockdep_assert_held(&obj->base.dev->struct_mutex);
749
750 *needs_clflush = 0;
751 if (!i915_gem_object_has_struct_page(obj))
752 return -ENODEV;
753
754 ret = i915_gem_object_wait(obj,
755 I915_WAIT_INTERRUPTIBLE |
756 I915_WAIT_LOCKED,
757 MAX_SCHEDULE_TIMEOUT,
758 NULL);
759 if (ret)
760 return ret;
761
762 ret = i915_gem_object_pin_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_flush_gtt_write_domain(obj);
767
768 /* If we're not in the cpu read domain, set ourself into the gtt
769 * read domain and manually flush cachelines (if required). This
770 * optimizes for the case when the gpu will dirty the data
771 * anyway again before the next pread happens.
772 */
773 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775 obj->cache_level);
776
777 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778 ret = i915_gem_object_set_to_cpu_domain(obj, false);
779 if (ret)
780 goto err_unpin;
781
782 *needs_clflush = 0;
783 }
784
785 /* return with the pages pinned */
786 return 0;
787
788 err_unpin:
789 i915_gem_object_unpin_pages(obj);
790 return ret;
791 }
792
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794 unsigned int *needs_clflush)
795 {
796 int ret;
797
798 lockdep_assert_held(&obj->base.dev->struct_mutex);
799
800 *needs_clflush = 0;
801 if (!i915_gem_object_has_struct_page(obj))
802 return -ENODEV;
803
804 ret = i915_gem_object_wait(obj,
805 I915_WAIT_INTERRUPTIBLE |
806 I915_WAIT_LOCKED |
807 I915_WAIT_ALL,
808 MAX_SCHEDULE_TIMEOUT,
809 NULL);
810 if (ret)
811 return ret;
812
813 ret = i915_gem_object_pin_pages(obj);
814 if (ret)
815 return ret;
816
817 i915_gem_object_flush_gtt_write_domain(obj);
818
819 /* If we're not in the cpu write domain, set ourself into the
820 * gtt write domain and manually flush cachelines (as required).
821 * This optimizes for the case when the gpu will use the data
822 * right away and we therefore have to clflush anyway.
823 */
824 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827 /* Same trick applies to invalidate partially written cachelines read
828 * before writing.
829 */
830 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832 obj->cache_level);
833
834 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835 ret = i915_gem_object_set_to_cpu_domain(obj, true);
836 if (ret)
837 goto err_unpin;
838
839 *needs_clflush = 0;
840 }
841
842 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843 obj->cache_dirty = true;
844
845 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846 obj->mm.dirty = true;
847 /* return with the pages pinned */
848 return 0;
849
850 err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
853 }
854
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857 bool swizzled)
858 {
859 if (unlikely(swizzled)) {
860 unsigned long start = (unsigned long) addr;
861 unsigned long end = (unsigned long) addr + length;
862
863 /* For swizzling simply ensure that we always flush both
864 * channels. Lame, but simple and it works. Swizzled
865 * pwrite/pread is far from a hotpath - current userspace
866 * doesn't use it at all. */
867 start = round_down(start, 128);
868 end = round_up(end, 128);
869
870 drm_clflush_virt_range((void *)start, end - start);
871 } else {
872 drm_clflush_virt_range(addr, length);
873 }
874
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884 char *vaddr;
885 int ret;
886
887 vaddr = kmap(page);
888 if (needs_clflush)
889 shmem_clflush_swizzled_range(vaddr + offset, length,
890 page_do_bit17_swizzling);
891
892 if (page_do_bit17_swizzling)
893 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894 else
895 ret = __copy_to_user(user_data, vaddr + offset, length);
896 kunmap(page);
897
898 return ret ? - EFAULT : 0;
899 }
900
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903 bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905 int ret;
906
907 ret = -ENODEV;
908 if (!page_do_bit17_swizzling) {
909 char *vaddr = kmap_atomic(page);
910
911 if (needs_clflush)
912 drm_clflush_virt_range(vaddr + offset, length);
913 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914 kunmap_atomic(vaddr);
915 }
916 if (ret == 0)
917 return 0;
918
919 return shmem_pread_slow(page, offset, length, user_data,
920 page_do_bit17_swizzling, needs_clflush);
921 }
922
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925 struct drm_i915_gem_pread *args)
926 {
927 char __user *user_data;
928 u64 remain;
929 unsigned int obj_do_bit17_swizzling;
930 unsigned int needs_clflush;
931 unsigned int idx, offset;
932 int ret;
933
934 obj_do_bit17_swizzling = 0;
935 if (i915_gem_object_needs_bit17_swizzle(obj))
936 obj_do_bit17_swizzling = BIT(17);
937
938 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939 if (ret)
940 return ret;
941
942 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943 mutex_unlock(&obj->base.dev->struct_mutex);
944 if (ret)
945 return ret;
946
947 remain = args->size;
948 user_data = u64_to_user_ptr(args->data_ptr);
949 offset = offset_in_page(args->offset);
950 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951 struct page *page = i915_gem_object_get_page(obj, idx);
952 int length;
953
954 length = remain;
955 if (offset + length > PAGE_SIZE)
956 length = PAGE_SIZE - offset;
957
958 ret = shmem_pread(page, offset, length, user_data,
959 page_to_phys(page) & obj_do_bit17_swizzling,
960 needs_clflush);
961 if (ret)
962 break;
963
964 remain -= length;
965 user_data += length;
966 offset = 0;
967 }
968
969 i915_gem_obj_finish_shmem_access(obj);
970 return ret;
971 }
972
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975 loff_t base, int offset,
976 char __user *user_data, int length)
977 {
978 void *vaddr;
979 unsigned long unwritten;
980
981 /* We can use the cpu mem copy function because this is X86. */
982 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984 io_mapping_unmap_atomic(vaddr);
985 if (unwritten) {
986 vaddr = (void __force *)
987 io_mapping_map_wc(mapping, base, PAGE_SIZE);
988 unwritten = copy_to_user(user_data, vaddr + offset, length);
989 io_mapping_unmap(vaddr);
990 }
991 return unwritten;
992 }
993
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996 const struct drm_i915_gem_pread *args)
997 {
998 struct drm_i915_private *i915 = to_i915(obj->base.dev);
999 struct i915_ggtt *ggtt = &i915->ggtt;
1000 struct drm_mm_node node;
1001 struct i915_vma *vma;
1002 void __user *user_data;
1003 u64 remain, offset;
1004 int ret;
1005
1006 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007 if (ret)
1008 return ret;
1009
1010 intel_runtime_pm_get(i915);
1011 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 PIN_MAPPABLE | PIN_NONBLOCK);
1013 if (!IS_ERR(vma)) {
1014 node.start = i915_ggtt_offset(vma);
1015 node.allocated = false;
1016 ret = i915_vma_put_fence(vma);
1017 if (ret) {
1018 i915_vma_unpin(vma);
1019 vma = ERR_PTR(ret);
1020 }
1021 }
1022 if (IS_ERR(vma)) {
1023 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024 if (ret)
1025 goto out_unlock;
1026 GEM_BUG_ON(!node.allocated);
1027 }
1028
1029 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030 if (ret)
1031 goto out_unpin;
1032
1033 mutex_unlock(&i915->drm.struct_mutex);
1034
1035 user_data = u64_to_user_ptr(args->data_ptr);
1036 remain = args->size;
1037 offset = args->offset;
1038
1039 while (remain > 0) {
1040 /* Operation in this page
1041 *
1042 * page_base = page offset within aperture
1043 * page_offset = offset within page
1044 * page_length = bytes to copy for this page
1045 */
1046 u32 page_base = node.start;
1047 unsigned page_offset = offset_in_page(offset);
1048 unsigned page_length = PAGE_SIZE - page_offset;
1049 page_length = remain < page_length ? remain : page_length;
1050 if (node.allocated) {
1051 wmb();
1052 ggtt->base.insert_page(&ggtt->base,
1053 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054 node.start, I915_CACHE_NONE, 0);
1055 wmb();
1056 } else {
1057 page_base += offset & PAGE_MASK;
1058 }
1059
1060 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061 user_data, page_length)) {
1062 ret = -EFAULT;
1063 break;
1064 }
1065
1066 remain -= page_length;
1067 user_data += page_length;
1068 offset += page_length;
1069 }
1070
1071 mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073 if (node.allocated) {
1074 wmb();
1075 ggtt->base.clear_range(&ggtt->base,
1076 node.start, node.size);
1077 remove_mappable_node(&node);
1078 } else {
1079 i915_vma_unpin(vma);
1080 }
1081 out_unlock:
1082 intel_runtime_pm_put(i915);
1083 mutex_unlock(&i915->drm.struct_mutex);
1084
1085 return ret;
1086 }
1087
1088 /**
1089 * Reads data from the object referenced by handle.
1090 * @dev: drm device pointer
1091 * @data: ioctl data blob
1092 * @file: drm file pointer
1093 *
1094 * On error, the contents of *data are undefined.
1095 */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098 struct drm_file *file)
1099 {
1100 struct drm_i915_gem_pread *args = data;
1101 struct drm_i915_gem_object *obj;
1102 int ret;
1103
1104 if (args->size == 0)
1105 return 0;
1106
1107 if (!access_ok(VERIFY_WRITE,
1108 u64_to_user_ptr(args->data_ptr),
1109 args->size))
1110 return -EFAULT;
1111
1112 obj = i915_gem_object_lookup(file, args->handle);
1113 if (!obj)
1114 return -ENOENT;
1115
1116 /* Bounds check source. */
1117 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1118 ret = -EINVAL;
1119 goto out;
1120 }
1121
1122 trace_i915_gem_object_pread(obj, args->offset, args->size);
1123
1124 ret = i915_gem_object_wait(obj,
1125 I915_WAIT_INTERRUPTIBLE,
1126 MAX_SCHEDULE_TIMEOUT,
1127 to_rps_client(file));
1128 if (ret)
1129 goto out;
1130
1131 ret = i915_gem_object_pin_pages(obj);
1132 if (ret)
1133 goto out;
1134
1135 ret = i915_gem_shmem_pread(obj, args);
1136 if (ret == -EFAULT || ret == -ENODEV)
1137 ret = i915_gem_gtt_pread(obj, args);
1138
1139 i915_gem_object_unpin_pages(obj);
1140 out:
1141 i915_gem_object_put(obj);
1142 return ret;
1143 }
1144
1145 /* This is the fast write path which cannot handle
1146 * page faults in the source data
1147 */
1148
1149 static inline bool
1150 ggtt_write(struct io_mapping *mapping,
1151 loff_t base, int offset,
1152 char __user *user_data, int length)
1153 {
1154 void *vaddr;
1155 unsigned long unwritten;
1156
1157 /* We can use the cpu mem copy function because this is X86. */
1158 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1159 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160 user_data, length);
1161 io_mapping_unmap_atomic(vaddr);
1162 if (unwritten) {
1163 vaddr = (void __force *)
1164 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1165 unwritten = copy_from_user(vaddr + offset, user_data, length);
1166 io_mapping_unmap(vaddr);
1167 }
1168
1169 return unwritten;
1170 }
1171
1172 /**
1173 * This is the fast pwrite path, where we copy the data directly from the
1174 * user into the GTT, uncached.
1175 * @obj: i915 GEM object
1176 * @args: pwrite arguments structure
1177 */
1178 static int
1179 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1180 const struct drm_i915_gem_pwrite *args)
1181 {
1182 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183 struct i915_ggtt *ggtt = &i915->ggtt;
1184 struct drm_mm_node node;
1185 struct i915_vma *vma;
1186 u64 remain, offset;
1187 void __user *user_data;
1188 int ret;
1189
1190 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1191 if (ret)
1192 return ret;
1193
1194 intel_runtime_pm_get(i915);
1195 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196 PIN_MAPPABLE | PIN_NONBLOCK);
1197 if (!IS_ERR(vma)) {
1198 node.start = i915_ggtt_offset(vma);
1199 node.allocated = false;
1200 ret = i915_vma_put_fence(vma);
1201 if (ret) {
1202 i915_vma_unpin(vma);
1203 vma = ERR_PTR(ret);
1204 }
1205 }
1206 if (IS_ERR(vma)) {
1207 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208 if (ret)
1209 goto out_unlock;
1210 GEM_BUG_ON(!node.allocated);
1211 }
1212
1213 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1214 if (ret)
1215 goto out_unpin;
1216
1217 mutex_unlock(&i915->drm.struct_mutex);
1218
1219 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220
1221 user_data = u64_to_user_ptr(args->data_ptr);
1222 offset = args->offset;
1223 remain = args->size;
1224 while (remain) {
1225 /* Operation in this page
1226 *
1227 * page_base = page offset within aperture
1228 * page_offset = offset within page
1229 * page_length = bytes to copy for this page
1230 */
1231 u32 page_base = node.start;
1232 unsigned int page_offset = offset_in_page(offset);
1233 unsigned int page_length = PAGE_SIZE - page_offset;
1234 page_length = remain < page_length ? remain : page_length;
1235 if (node.allocated) {
1236 wmb(); /* flush the write before we modify the GGTT */
1237 ggtt->base.insert_page(&ggtt->base,
1238 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1239 node.start, I915_CACHE_NONE, 0);
1240 wmb(); /* flush modifications to the GGTT (insert_page) */
1241 } else {
1242 page_base += offset & PAGE_MASK;
1243 }
1244 /* If we get a fault while copying data, then (presumably) our
1245 * source page isn't available. Return the error and we'll
1246 * retry in the slow path.
1247 * If the object is non-shmem backed, we retry again with the
1248 * path that handles page fault.
1249 */
1250 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1251 user_data, page_length)) {
1252 ret = -EFAULT;
1253 break;
1254 }
1255
1256 remain -= page_length;
1257 user_data += page_length;
1258 offset += page_length;
1259 }
1260 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261
1262 mutex_lock(&i915->drm.struct_mutex);
1263 out_unpin:
1264 if (node.allocated) {
1265 wmb();
1266 ggtt->base.clear_range(&ggtt->base,
1267 node.start, node.size);
1268 remove_mappable_node(&node);
1269 } else {
1270 i915_vma_unpin(vma);
1271 }
1272 out_unlock:
1273 intel_runtime_pm_put(i915);
1274 mutex_unlock(&i915->drm.struct_mutex);
1275 return ret;
1276 }
1277
1278 static int
1279 shmem_pwrite_slow(struct page *page, int offset, int length,
1280 char __user *user_data,
1281 bool page_do_bit17_swizzling,
1282 bool needs_clflush_before,
1283 bool needs_clflush_after)
1284 {
1285 char *vaddr;
1286 int ret;
1287
1288 vaddr = kmap(page);
1289 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290 shmem_clflush_swizzled_range(vaddr + offset, length,
1291 page_do_bit17_swizzling);
1292 if (page_do_bit17_swizzling)
1293 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1294 length);
1295 else
1296 ret = __copy_from_user(vaddr + offset, user_data, length);
1297 if (needs_clflush_after)
1298 shmem_clflush_swizzled_range(vaddr + offset, length,
1299 page_do_bit17_swizzling);
1300 kunmap(page);
1301
1302 return ret ? -EFAULT : 0;
1303 }
1304
1305 /* Per-page copy function for the shmem pwrite fastpath.
1306 * Flushes invalid cachelines before writing to the target if
1307 * needs_clflush_before is set and flushes out any written cachelines after
1308 * writing if needs_clflush is set.
1309 */
1310 static int
1311 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1312 bool page_do_bit17_swizzling,
1313 bool needs_clflush_before,
1314 bool needs_clflush_after)
1315 {
1316 int ret;
1317
1318 ret = -ENODEV;
1319 if (!page_do_bit17_swizzling) {
1320 char *vaddr = kmap_atomic(page);
1321
1322 if (needs_clflush_before)
1323 drm_clflush_virt_range(vaddr + offset, len);
1324 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1325 if (needs_clflush_after)
1326 drm_clflush_virt_range(vaddr + offset, len);
1327
1328 kunmap_atomic(vaddr);
1329 }
1330 if (ret == 0)
1331 return ret;
1332
1333 return shmem_pwrite_slow(page, offset, len, user_data,
1334 page_do_bit17_swizzling,
1335 needs_clflush_before,
1336 needs_clflush_after);
1337 }
1338
1339 static int
1340 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1341 const struct drm_i915_gem_pwrite *args)
1342 {
1343 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344 void __user *user_data;
1345 u64 remain;
1346 unsigned int obj_do_bit17_swizzling;
1347 unsigned int partial_cacheline_write;
1348 unsigned int needs_clflush;
1349 unsigned int offset, idx;
1350 int ret;
1351
1352 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353 if (ret)
1354 return ret;
1355
1356 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1357 mutex_unlock(&i915->drm.struct_mutex);
1358 if (ret)
1359 return ret;
1360
1361 obj_do_bit17_swizzling = 0;
1362 if (i915_gem_object_needs_bit17_swizzle(obj))
1363 obj_do_bit17_swizzling = BIT(17);
1364
1365 /* If we don't overwrite a cacheline completely we need to be
1366 * careful to have up-to-date data by first clflushing. Don't
1367 * overcomplicate things and flush the entire patch.
1368 */
1369 partial_cacheline_write = 0;
1370 if (needs_clflush & CLFLUSH_BEFORE)
1371 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372
1373 user_data = u64_to_user_ptr(args->data_ptr);
1374 remain = args->size;
1375 offset = offset_in_page(args->offset);
1376 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1377 struct page *page = i915_gem_object_get_page(obj, idx);
1378 int length;
1379
1380 length = remain;
1381 if (offset + length > PAGE_SIZE)
1382 length = PAGE_SIZE - offset;
1383
1384 ret = shmem_pwrite(page, offset, length, user_data,
1385 page_to_phys(page) & obj_do_bit17_swizzling,
1386 (offset | length) & partial_cacheline_write,
1387 needs_clflush & CLFLUSH_AFTER);
1388 if (ret)
1389 break;
1390
1391 remain -= length;
1392 user_data += length;
1393 offset = 0;
1394 }
1395
1396 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397 i915_gem_obj_finish_shmem_access(obj);
1398 return ret;
1399 }
1400
1401 /**
1402 * Writes data to the object referenced by handle.
1403 * @dev: drm device
1404 * @data: ioctl data blob
1405 * @file: drm file
1406 *
1407 * On error, the contents of the buffer that were to be modified are undefined.
1408 */
1409 int
1410 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411 struct drm_file *file)
1412 {
1413 struct drm_i915_gem_pwrite *args = data;
1414 struct drm_i915_gem_object *obj;
1415 int ret;
1416
1417 if (args->size == 0)
1418 return 0;
1419
1420 if (!access_ok(VERIFY_READ,
1421 u64_to_user_ptr(args->data_ptr),
1422 args->size))
1423 return -EFAULT;
1424
1425 obj = i915_gem_object_lookup(file, args->handle);
1426 if (!obj)
1427 return -ENOENT;
1428
1429 /* Bounds check destination. */
1430 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1431 ret = -EINVAL;
1432 goto err;
1433 }
1434
1435 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1436
1437 ret = i915_gem_object_wait(obj,
1438 I915_WAIT_INTERRUPTIBLE |
1439 I915_WAIT_ALL,
1440 MAX_SCHEDULE_TIMEOUT,
1441 to_rps_client(file));
1442 if (ret)
1443 goto err;
1444
1445 ret = i915_gem_object_pin_pages(obj);
1446 if (ret)
1447 goto err;
1448
1449 ret = -EFAULT;
1450 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1451 * it would end up going through the fenced access, and we'll get
1452 * different detiling behavior between reading and writing.
1453 * pread/pwrite currently are reading and writing from the CPU
1454 * perspective, requiring manual detiling by the client.
1455 */
1456 if (!i915_gem_object_has_struct_page(obj) ||
1457 cpu_write_needs_clflush(obj))
1458 /* Note that the gtt paths might fail with non-page-backed user
1459 * pointers (e.g. gtt mappings when moving data between
1460 * textures). Fallback to the shmem path in that case.
1461 */
1462 ret = i915_gem_gtt_pwrite_fast(obj, args);
1463
1464 if (ret == -EFAULT || ret == -ENOSPC) {
1465 if (obj->phys_handle)
1466 ret = i915_gem_phys_pwrite(obj, args, file);
1467 else
1468 ret = i915_gem_shmem_pwrite(obj, args);
1469 }
1470
1471 i915_gem_object_unpin_pages(obj);
1472 err:
1473 i915_gem_object_put(obj);
1474 return ret;
1475 }
1476
1477 static inline enum fb_op_origin
1478 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1479 {
1480 return (domain == I915_GEM_DOMAIN_GTT ?
1481 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1482 }
1483
1484 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1485 {
1486 struct drm_i915_private *i915;
1487 struct list_head *list;
1488 struct i915_vma *vma;
1489
1490 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1491 if (!i915_vma_is_ggtt(vma))
1492 break;
1493
1494 if (i915_vma_is_active(vma))
1495 continue;
1496
1497 if (!drm_mm_node_allocated(&vma->node))
1498 continue;
1499
1500 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1501 }
1502
1503 i915 = to_i915(obj->base.dev);
1504 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1505 list_move_tail(&obj->global_link, list);
1506 }
1507
1508 /**
1509 * Called when user space prepares to use an object with the CPU, either
1510 * through the mmap ioctl's mapping or a GTT mapping.
1511 * @dev: drm device
1512 * @data: ioctl data blob
1513 * @file: drm file
1514 */
1515 int
1516 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1517 struct drm_file *file)
1518 {
1519 struct drm_i915_gem_set_domain *args = data;
1520 struct drm_i915_gem_object *obj;
1521 uint32_t read_domains = args->read_domains;
1522 uint32_t write_domain = args->write_domain;
1523 int err;
1524
1525 /* Only handle setting domains to types used by the CPU. */
1526 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1527 return -EINVAL;
1528
1529 /* Having something in the write domain implies it's in the read
1530 * domain, and only that read domain. Enforce that in the request.
1531 */
1532 if (write_domain != 0 && read_domains != write_domain)
1533 return -EINVAL;
1534
1535 obj = i915_gem_object_lookup(file, args->handle);
1536 if (!obj)
1537 return -ENOENT;
1538
1539 /* Try to flush the object off the GPU without holding the lock.
1540 * We will repeat the flush holding the lock in the normal manner
1541 * to catch cases where we are gazumped.
1542 */
1543 err = i915_gem_object_wait(obj,
1544 I915_WAIT_INTERRUPTIBLE |
1545 (write_domain ? I915_WAIT_ALL : 0),
1546 MAX_SCHEDULE_TIMEOUT,
1547 to_rps_client(file));
1548 if (err)
1549 goto out;
1550
1551 /* Flush and acquire obj->pages so that we are coherent through
1552 * direct access in memory with previous cached writes through
1553 * shmemfs and that our cache domain tracking remains valid.
1554 * For example, if the obj->filp was moved to swap without us
1555 * being notified and releasing the pages, we would mistakenly
1556 * continue to assume that the obj remained out of the CPU cached
1557 * domain.
1558 */
1559 err = i915_gem_object_pin_pages(obj);
1560 if (err)
1561 goto out;
1562
1563 err = i915_mutex_lock_interruptible(dev);
1564 if (err)
1565 goto out_unpin;
1566
1567 if (read_domains & I915_GEM_DOMAIN_GTT)
1568 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1569 else
1570 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1571
1572 /* And bump the LRU for this access */
1573 i915_gem_object_bump_inactive_ggtt(obj);
1574
1575 mutex_unlock(&dev->struct_mutex);
1576
1577 if (write_domain != 0)
1578 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1579
1580 out_unpin:
1581 i915_gem_object_unpin_pages(obj);
1582 out:
1583 i915_gem_object_put(obj);
1584 return err;
1585 }
1586
1587 /**
1588 * Called when user space has done writes to this buffer
1589 * @dev: drm device
1590 * @data: ioctl data blob
1591 * @file: drm file
1592 */
1593 int
1594 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1596 {
1597 struct drm_i915_gem_sw_finish *args = data;
1598 struct drm_i915_gem_object *obj;
1599 int err = 0;
1600
1601 obj = i915_gem_object_lookup(file, args->handle);
1602 if (!obj)
1603 return -ENOENT;
1604
1605 /* Pinned buffers may be scanout, so flush the cache */
1606 if (READ_ONCE(obj->pin_display)) {
1607 err = i915_mutex_lock_interruptible(dev);
1608 if (!err) {
1609 i915_gem_object_flush_cpu_write_domain(obj);
1610 mutex_unlock(&dev->struct_mutex);
1611 }
1612 }
1613
1614 i915_gem_object_put(obj);
1615 return err;
1616 }
1617
1618 /**
1619 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1620 * it is mapped to.
1621 * @dev: drm device
1622 * @data: ioctl data blob
1623 * @file: drm file
1624 *
1625 * While the mapping holds a reference on the contents of the object, it doesn't
1626 * imply a ref on the object itself.
1627 *
1628 * IMPORTANT:
1629 *
1630 * DRM driver writers who look a this function as an example for how to do GEM
1631 * mmap support, please don't implement mmap support like here. The modern way
1632 * to implement DRM mmap support is with an mmap offset ioctl (like
1633 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1634 * That way debug tooling like valgrind will understand what's going on, hiding
1635 * the mmap call in a driver private ioctl will break that. The i915 driver only
1636 * does cpu mmaps this way because we didn't know better.
1637 */
1638 int
1639 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1640 struct drm_file *file)
1641 {
1642 struct drm_i915_gem_mmap *args = data;
1643 struct drm_i915_gem_object *obj;
1644 unsigned long addr;
1645
1646 if (args->flags & ~(I915_MMAP_WC))
1647 return -EINVAL;
1648
1649 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1650 return -ENODEV;
1651
1652 obj = i915_gem_object_lookup(file, args->handle);
1653 if (!obj)
1654 return -ENOENT;
1655
1656 /* prime objects have no backing filp to GEM mmap
1657 * pages from.
1658 */
1659 if (!obj->base.filp) {
1660 i915_gem_object_put(obj);
1661 return -EINVAL;
1662 }
1663
1664 addr = vm_mmap(obj->base.filp, 0, args->size,
1665 PROT_READ | PROT_WRITE, MAP_SHARED,
1666 args->offset);
1667 if (args->flags & I915_MMAP_WC) {
1668 struct mm_struct *mm = current->mm;
1669 struct vm_area_struct *vma;
1670
1671 if (down_write_killable(&mm->mmap_sem)) {
1672 i915_gem_object_put(obj);
1673 return -EINTR;
1674 }
1675 vma = find_vma(mm, addr);
1676 if (vma)
1677 vma->vm_page_prot =
1678 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1679 else
1680 addr = -ENOMEM;
1681 up_write(&mm->mmap_sem);
1682
1683 /* This may race, but that's ok, it only gets set */
1684 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1685 }
1686 i915_gem_object_put(obj);
1687 if (IS_ERR((void *)addr))
1688 return addr;
1689
1690 args->addr_ptr = (uint64_t) addr;
1691
1692 return 0;
1693 }
1694
1695 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1696 {
1697 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1698 }
1699
1700 /**
1701 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1702 *
1703 * A history of the GTT mmap interface:
1704 *
1705 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1706 * aligned and suitable for fencing, and still fit into the available
1707 * mappable space left by the pinned display objects. A classic problem
1708 * we called the page-fault-of-doom where we would ping-pong between
1709 * two objects that could not fit inside the GTT and so the memcpy
1710 * would page one object in at the expense of the other between every
1711 * single byte.
1712 *
1713 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1714 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1715 * object is too large for the available space (or simply too large
1716 * for the mappable aperture!), a view is created instead and faulted
1717 * into userspace. (This view is aligned and sized appropriately for
1718 * fenced access.)
1719 *
1720 * Restrictions:
1721 *
1722 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1723 * hangs on some architectures, corruption on others. An attempt to service
1724 * a GTT page fault from a snoopable object will generate a SIGBUS.
1725 *
1726 * * the object must be able to fit into RAM (physical memory, though no
1727 * limited to the mappable aperture).
1728 *
1729 *
1730 * Caveats:
1731 *
1732 * * a new GTT page fault will synchronize rendering from the GPU and flush
1733 * all data to system memory. Subsequent access will not be synchronized.
1734 *
1735 * * all mappings are revoked on runtime device suspend.
1736 *
1737 * * there are only 8, 16 or 32 fence registers to share between all users
1738 * (older machines require fence register for display and blitter access
1739 * as well). Contention of the fence registers will cause the previous users
1740 * to be unmapped and any new access will generate new page faults.
1741 *
1742 * * running out of memory while servicing a fault may generate a SIGBUS,
1743 * rather than the expected SIGSEGV.
1744 */
1745 int i915_gem_mmap_gtt_version(void)
1746 {
1747 return 1;
1748 }
1749
1750 static inline struct i915_ggtt_view
1751 compute_partial_view(struct drm_i915_gem_object *obj,
1752 pgoff_t page_offset,
1753 unsigned int chunk)
1754 {
1755 struct i915_ggtt_view view;
1756
1757 if (i915_gem_object_is_tiled(obj))
1758 chunk = roundup(chunk, tile_row_pages(obj));
1759
1760 view.type = I915_GGTT_VIEW_PARTIAL;
1761 view.partial.offset = rounddown(page_offset, chunk);
1762 view.partial.size =
1763 min_t(unsigned int, chunk,
1764 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1765
1766 /* If the partial covers the entire object, just create a normal VMA. */
1767 if (chunk >= obj->base.size >> PAGE_SHIFT)
1768 view.type = I915_GGTT_VIEW_NORMAL;
1769
1770 return view;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @area: CPU VMA in question
1776 * @vmf: fault info
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 *
1789 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1790 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1791 */
1792 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1793 {
1794 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1795 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1796 struct drm_device *dev = obj->base.dev;
1797 struct drm_i915_private *dev_priv = to_i915(dev);
1798 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1800 struct i915_vma *vma;
1801 pgoff_t page_offset;
1802 unsigned int flags;
1803 int ret;
1804
1805 /* We don't use vmf->pgoff since that has the fake offset */
1806 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1807
1808 trace_i915_gem_object_fault(obj, page_offset, true, write);
1809
1810 /* Try to flush the object off the GPU first without holding the lock.
1811 * Upon acquiring the lock, we will perform our sanity checks and then
1812 * repeat the flush holding the lock in the normal manner to catch cases
1813 * where we are gazumped.
1814 */
1815 ret = i915_gem_object_wait(obj,
1816 I915_WAIT_INTERRUPTIBLE,
1817 MAX_SCHEDULE_TIMEOUT,
1818 NULL);
1819 if (ret)
1820 goto err;
1821
1822 ret = i915_gem_object_pin_pages(obj);
1823 if (ret)
1824 goto err;
1825
1826 intel_runtime_pm_get(dev_priv);
1827
1828 ret = i915_mutex_lock_interruptible(dev);
1829 if (ret)
1830 goto err_rpm;
1831
1832 /* Access to snoopable pages through the GTT is incoherent. */
1833 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1834 ret = -EFAULT;
1835 goto err_unlock;
1836 }
1837
1838 /* If the object is smaller than a couple of partial vma, it is
1839 * not worth only creating a single partial vma - we may as well
1840 * clear enough space for the full object.
1841 */
1842 flags = PIN_MAPPABLE;
1843 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1844 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1845
1846 /* Now pin it into the GTT as needed */
1847 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1848 if (IS_ERR(vma)) {
1849 /* Use a partial view if it is bigger than available space */
1850 struct i915_ggtt_view view =
1851 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1852
1853 /* Userspace is now writing through an untracked VMA, abandon
1854 * all hope that the hardware is able to track future writes.
1855 */
1856 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1857
1858 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1859 }
1860 if (IS_ERR(vma)) {
1861 ret = PTR_ERR(vma);
1862 goto err_unlock;
1863 }
1864
1865 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1866 if (ret)
1867 goto err_unpin;
1868
1869 ret = i915_vma_get_fence(vma);
1870 if (ret)
1871 goto err_unpin;
1872
1873 /* Mark as being mmapped into userspace for later revocation */
1874 assert_rpm_wakelock_held(dev_priv);
1875 if (list_empty(&obj->userfault_link))
1876 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1877
1878 /* Finally, remap it using the new GTT offset */
1879 ret = remap_io_mapping(area,
1880 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1881 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1882 min_t(u64, vma->size, area->vm_end - area->vm_start),
1883 &ggtt->mappable);
1884
1885 err_unpin:
1886 __i915_vma_unpin(vma);
1887 err_unlock:
1888 mutex_unlock(&dev->struct_mutex);
1889 err_rpm:
1890 intel_runtime_pm_put(dev_priv);
1891 i915_gem_object_unpin_pages(obj);
1892 err:
1893 switch (ret) {
1894 case -EIO:
1895 /*
1896 * We eat errors when the gpu is terminally wedged to avoid
1897 * userspace unduly crashing (gl has no provisions for mmaps to
1898 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1899 * and so needs to be reported.
1900 */
1901 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1902 ret = VM_FAULT_SIGBUS;
1903 break;
1904 }
1905 case -EAGAIN:
1906 /*
1907 * EAGAIN means the gpu is hung and we'll wait for the error
1908 * handler to reset everything when re-faulting in
1909 * i915_mutex_lock_interruptible.
1910 */
1911 case 0:
1912 case -ERESTARTSYS:
1913 case -EINTR:
1914 case -EBUSY:
1915 /*
1916 * EBUSY is ok: this just means that another thread
1917 * already did the job.
1918 */
1919 ret = VM_FAULT_NOPAGE;
1920 break;
1921 case -ENOMEM:
1922 ret = VM_FAULT_OOM;
1923 break;
1924 case -ENOSPC:
1925 case -EFAULT:
1926 ret = VM_FAULT_SIGBUS;
1927 break;
1928 default:
1929 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1930 ret = VM_FAULT_SIGBUS;
1931 break;
1932 }
1933 return ret;
1934 }
1935
1936 /**
1937 * i915_gem_release_mmap - remove physical page mappings
1938 * @obj: obj in question
1939 *
1940 * Preserve the reservation of the mmapping with the DRM core code, but
1941 * relinquish ownership of the pages back to the system.
1942 *
1943 * It is vital that we remove the page mapping if we have mapped a tiled
1944 * object through the GTT and then lose the fence register due to
1945 * resource pressure. Similarly if the object has been moved out of the
1946 * aperture, than pages mapped into userspace must be revoked. Removing the
1947 * mapping will then trigger a page fault on the next user access, allowing
1948 * fixup by i915_gem_fault().
1949 */
1950 void
1951 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1952 {
1953 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1954
1955 /* Serialisation between user GTT access and our code depends upon
1956 * revoking the CPU's PTE whilst the mutex is held. The next user
1957 * pagefault then has to wait until we release the mutex.
1958 *
1959 * Note that RPM complicates somewhat by adding an additional
1960 * requirement that operations to the GGTT be made holding the RPM
1961 * wakeref.
1962 */
1963 lockdep_assert_held(&i915->drm.struct_mutex);
1964 intel_runtime_pm_get(i915);
1965
1966 if (list_empty(&obj->userfault_link))
1967 goto out;
1968
1969 list_del_init(&obj->userfault_link);
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972
1973 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1974 * memory transactions from userspace before we return. The TLB
1975 * flushing implied above by changing the PTE above *should* be
1976 * sufficient, an extra barrier here just provides us with a bit
1977 * of paranoid documentation about our requirement to serialise
1978 * memory writes before touching registers / GSM.
1979 */
1980 wmb();
1981
1982 out:
1983 intel_runtime_pm_put(i915);
1984 }
1985
1986 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1987 {
1988 struct drm_i915_gem_object *obj, *on;
1989 int i;
1990
1991 /*
1992 * Only called during RPM suspend. All users of the userfault_list
1993 * must be holding an RPM wakeref to ensure that this can not
1994 * run concurrently with themselves (and use the struct_mutex for
1995 * protection between themselves).
1996 */
1997
1998 list_for_each_entry_safe(obj, on,
1999 &dev_priv->mm.userfault_list, userfault_link) {
2000 list_del_init(&obj->userfault_link);
2001 drm_vma_node_unmap(&obj->base.vma_node,
2002 obj->base.dev->anon_inode->i_mapping);
2003 }
2004
2005 /* The fence will be lost when the device powers down. If any were
2006 * in use by hardware (i.e. they are pinned), we should not be powering
2007 * down! All other fences will be reacquired by the user upon waking.
2008 */
2009 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2010 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2011
2012 if (WARN_ON(reg->pin_count))
2013 continue;
2014
2015 if (!reg->vma)
2016 continue;
2017
2018 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2019 reg->dirty = true;
2020 }
2021 }
2022
2023 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2024 {
2025 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2026 int err;
2027
2028 err = drm_gem_create_mmap_offset(&obj->base);
2029 if (likely(!err))
2030 return 0;
2031
2032 /* Attempt to reap some mmap space from dead objects */
2033 do {
2034 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2035 if (err)
2036 break;
2037
2038 i915_gem_drain_freed_objects(dev_priv);
2039 err = drm_gem_create_mmap_offset(&obj->base);
2040 if (!err)
2041 break;
2042
2043 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2044
2045 return err;
2046 }
2047
2048 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2049 {
2050 drm_gem_free_mmap_offset(&obj->base);
2051 }
2052
2053 int
2054 i915_gem_mmap_gtt(struct drm_file *file,
2055 struct drm_device *dev,
2056 uint32_t handle,
2057 uint64_t *offset)
2058 {
2059 struct drm_i915_gem_object *obj;
2060 int ret;
2061
2062 obj = i915_gem_object_lookup(file, handle);
2063 if (!obj)
2064 return -ENOENT;
2065
2066 ret = i915_gem_object_create_mmap_offset(obj);
2067 if (ret == 0)
2068 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2069
2070 i915_gem_object_put(obj);
2071 return ret;
2072 }
2073
2074 /**
2075 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2076 * @dev: DRM device
2077 * @data: GTT mapping ioctl data
2078 * @file: GEM object info
2079 *
2080 * Simply returns the fake offset to userspace so it can mmap it.
2081 * The mmap call will end up in drm_gem_mmap(), which will set things
2082 * up so we can get faults in the handler above.
2083 *
2084 * The fault handler will take care of binding the object into the GTT
2085 * (since it may have been evicted to make room for something), allocating
2086 * a fence register, and mapping the appropriate aperture address into
2087 * userspace.
2088 */
2089 int
2090 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2091 struct drm_file *file)
2092 {
2093 struct drm_i915_gem_mmap_gtt *args = data;
2094
2095 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2096 }
2097
2098 /* Immediately discard the backing storage */
2099 static void
2100 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2101 {
2102 i915_gem_object_free_mmap_offset(obj);
2103
2104 if (obj->base.filp == NULL)
2105 return;
2106
2107 /* Our goal here is to return as much of the memory as
2108 * is possible back to the system as we are called from OOM.
2109 * To do this we must instruct the shmfs to drop all of its
2110 * backing pages, *now*.
2111 */
2112 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2113 obj->mm.madv = __I915_MADV_PURGED;
2114 }
2115
2116 /* Try to discard unwanted pages */
2117 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2118 {
2119 struct address_space *mapping;
2120
2121 lockdep_assert_held(&obj->mm.lock);
2122 GEM_BUG_ON(obj->mm.pages);
2123
2124 switch (obj->mm.madv) {
2125 case I915_MADV_DONTNEED:
2126 i915_gem_object_truncate(obj);
2127 case __I915_MADV_PURGED:
2128 return;
2129 }
2130
2131 if (obj->base.filp == NULL)
2132 return;
2133
2134 mapping = obj->base.filp->f_mapping,
2135 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2136 }
2137
2138 static void
2139 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2140 struct sg_table *pages)
2141 {
2142 struct sgt_iter sgt_iter;
2143 struct page *page;
2144
2145 __i915_gem_object_release_shmem(obj, pages, true);
2146
2147 i915_gem_gtt_finish_pages(obj, pages);
2148
2149 if (i915_gem_object_needs_bit17_swizzle(obj))
2150 i915_gem_object_save_bit_17_swizzle(obj, pages);
2151
2152 for_each_sgt_page(page, sgt_iter, pages) {
2153 if (obj->mm.dirty)
2154 set_page_dirty(page);
2155
2156 if (obj->mm.madv == I915_MADV_WILLNEED)
2157 mark_page_accessed(page);
2158
2159 put_page(page);
2160 }
2161 obj->mm.dirty = false;
2162
2163 sg_free_table(pages);
2164 kfree(pages);
2165 }
2166
2167 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2168 {
2169 struct radix_tree_iter iter;
2170 void **slot;
2171
2172 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2173 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2174 }
2175
2176 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2177 enum i915_mm_subclass subclass)
2178 {
2179 struct sg_table *pages;
2180
2181 if (i915_gem_object_has_pinned_pages(obj))
2182 return;
2183
2184 GEM_BUG_ON(obj->bind_count);
2185 if (!READ_ONCE(obj->mm.pages))
2186 return;
2187
2188 /* May be called by shrinker from within get_pages() (on another bo) */
2189 mutex_lock_nested(&obj->mm.lock, subclass);
2190 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2191 goto unlock;
2192
2193 /* ->put_pages might need to allocate memory for the bit17 swizzle
2194 * array, hence protect them from being reaped by removing them from gtt
2195 * lists early. */
2196 pages = fetch_and_zero(&obj->mm.pages);
2197 GEM_BUG_ON(!pages);
2198
2199 if (obj->mm.mapping) {
2200 void *ptr;
2201
2202 ptr = ptr_mask_bits(obj->mm.mapping);
2203 if (is_vmalloc_addr(ptr))
2204 vunmap(ptr);
2205 else
2206 kunmap(kmap_to_page(ptr));
2207
2208 obj->mm.mapping = NULL;
2209 }
2210
2211 __i915_gem_object_reset_page_iter(obj);
2212
2213 obj->ops->put_pages(obj, pages);
2214 unlock:
2215 mutex_unlock(&obj->mm.lock);
2216 }
2217
2218 static void i915_sg_trim(struct sg_table *orig_st)
2219 {
2220 struct sg_table new_st;
2221 struct scatterlist *sg, *new_sg;
2222 unsigned int i;
2223
2224 if (orig_st->nents == orig_st->orig_nents)
2225 return;
2226
2227 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2228 return;
2229
2230 new_sg = new_st.sgl;
2231 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2232 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2233 /* called before being DMA mapped, no need to copy sg->dma_* */
2234 new_sg = sg_next(new_sg);
2235 }
2236 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2237
2238 sg_free_table(orig_st);
2239
2240 *orig_st = new_st;
2241 }
2242
2243 static struct sg_table *
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2247 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2248 unsigned long i;
2249 struct address_space *mapping;
2250 struct sg_table *st;
2251 struct scatterlist *sg;
2252 struct sgt_iter sgt_iter;
2253 struct page *page;
2254 unsigned long last_pfn = 0; /* suppress gcc warning */
2255 unsigned int max_segment;
2256 int ret;
2257 gfp_t gfp;
2258
2259 /* Assert that the object is not currently in any GPU domain. As it
2260 * wasn't in the GTT, there shouldn't be any way it could have been in
2261 * a GPU cache
2262 */
2263 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2264 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2265
2266 max_segment = swiotlb_max_segment();
2267 if (!max_segment)
2268 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2269
2270 st = kmalloc(sizeof(*st), GFP_KERNEL);
2271 if (st == NULL)
2272 return ERR_PTR(-ENOMEM);
2273
2274 rebuild_st:
2275 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2276 kfree(st);
2277 return ERR_PTR(-ENOMEM);
2278 }
2279
2280 /* Get the list of pages out of our struct file. They'll be pinned
2281 * at this point until we release them.
2282 *
2283 * Fail silently without starting the shrinker
2284 */
2285 mapping = obj->base.filp->f_mapping;
2286 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2287 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2288 sg = st->sgl;
2289 st->nents = 0;
2290 for (i = 0; i < page_count; i++) {
2291 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2292 if (IS_ERR(page)) {
2293 i915_gem_shrink(dev_priv,
2294 page_count,
2295 I915_SHRINK_BOUND |
2296 I915_SHRINK_UNBOUND |
2297 I915_SHRINK_PURGEABLE);
2298 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2299 }
2300 if (IS_ERR(page)) {
2301 /* We've tried hard to allocate the memory by reaping
2302 * our own buffer, now let the real VM do its job and
2303 * go down in flames if truly OOM.
2304 */
2305 page = shmem_read_mapping_page(mapping, i);
2306 if (IS_ERR(page)) {
2307 ret = PTR_ERR(page);
2308 goto err_sg;
2309 }
2310 }
2311 if (!i ||
2312 sg->length >= max_segment ||
2313 page_to_pfn(page) != last_pfn + 1) {
2314 if (i)
2315 sg = sg_next(sg);
2316 st->nents++;
2317 sg_set_page(sg, page, PAGE_SIZE, 0);
2318 } else {
2319 sg->length += PAGE_SIZE;
2320 }
2321 last_pfn = page_to_pfn(page);
2322
2323 /* Check that the i965g/gm workaround works. */
2324 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2325 }
2326 if (sg) /* loop terminated early; short sg table */
2327 sg_mark_end(sg);
2328
2329 /* Trim unused sg entries to avoid wasting memory. */
2330 i915_sg_trim(st);
2331
2332 ret = i915_gem_gtt_prepare_pages(obj, st);
2333 if (ret) {
2334 /* DMA remapping failed? One possible cause is that
2335 * it could not reserve enough large entries, asking
2336 * for PAGE_SIZE chunks instead may be helpful.
2337 */
2338 if (max_segment > PAGE_SIZE) {
2339 for_each_sgt_page(page, sgt_iter, st)
2340 put_page(page);
2341 sg_free_table(st);
2342
2343 max_segment = PAGE_SIZE;
2344 goto rebuild_st;
2345 } else {
2346 dev_warn(&dev_priv->drm.pdev->dev,
2347 "Failed to DMA remap %lu pages\n",
2348 page_count);
2349 goto err_pages;
2350 }
2351 }
2352
2353 if (i915_gem_object_needs_bit17_swizzle(obj))
2354 i915_gem_object_do_bit_17_swizzle(obj, st);
2355
2356 return st;
2357
2358 err_sg:
2359 sg_mark_end(sg);
2360 err_pages:
2361 for_each_sgt_page(page, sgt_iter, st)
2362 put_page(page);
2363 sg_free_table(st);
2364 kfree(st);
2365
2366 /* shmemfs first checks if there is enough memory to allocate the page
2367 * and reports ENOSPC should there be insufficient, along with the usual
2368 * ENOMEM for a genuine allocation failure.
2369 *
2370 * We use ENOSPC in our driver to mean that we have run out of aperture
2371 * space and so want to translate the error from shmemfs back to our
2372 * usual understanding of ENOMEM.
2373 */
2374 if (ret == -ENOSPC)
2375 ret = -ENOMEM;
2376
2377 return ERR_PTR(ret);
2378 }
2379
2380 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2381 struct sg_table *pages)
2382 {
2383 lockdep_assert_held(&obj->mm.lock);
2384
2385 obj->mm.get_page.sg_pos = pages->sgl;
2386 obj->mm.get_page.sg_idx = 0;
2387
2388 obj->mm.pages = pages;
2389
2390 if (i915_gem_object_is_tiled(obj) &&
2391 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2392 GEM_BUG_ON(obj->mm.quirked);
2393 __i915_gem_object_pin_pages(obj);
2394 obj->mm.quirked = true;
2395 }
2396 }
2397
2398 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2399 {
2400 struct sg_table *pages;
2401
2402 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2403
2404 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2405 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2406 return -EFAULT;
2407 }
2408
2409 pages = obj->ops->get_pages(obj);
2410 if (unlikely(IS_ERR(pages)))
2411 return PTR_ERR(pages);
2412
2413 __i915_gem_object_set_pages(obj, pages);
2414 return 0;
2415 }
2416
2417 /* Ensure that the associated pages are gathered from the backing storage
2418 * and pinned into our object. i915_gem_object_pin_pages() may be called
2419 * multiple times before they are released by a single call to
2420 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2421 * either as a result of memory pressure (reaping pages under the shrinker)
2422 * or as the object is itself released.
2423 */
2424 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2425 {
2426 int err;
2427
2428 err = mutex_lock_interruptible(&obj->mm.lock);
2429 if (err)
2430 return err;
2431
2432 if (unlikely(!obj->mm.pages)) {
2433 err = ____i915_gem_object_get_pages(obj);
2434 if (err)
2435 goto unlock;
2436
2437 smp_mb__before_atomic();
2438 }
2439 atomic_inc(&obj->mm.pages_pin_count);
2440
2441 unlock:
2442 mutex_unlock(&obj->mm.lock);
2443 return err;
2444 }
2445
2446 /* The 'mapping' part of i915_gem_object_pin_map() below */
2447 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2448 enum i915_map_type type)
2449 {
2450 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2451 struct sg_table *sgt = obj->mm.pages;
2452 struct sgt_iter sgt_iter;
2453 struct page *page;
2454 struct page *stack_pages[32];
2455 struct page **pages = stack_pages;
2456 unsigned long i = 0;
2457 pgprot_t pgprot;
2458 void *addr;
2459
2460 /* A single page can always be kmapped */
2461 if (n_pages == 1 && type == I915_MAP_WB)
2462 return kmap(sg_page(sgt->sgl));
2463
2464 if (n_pages > ARRAY_SIZE(stack_pages)) {
2465 /* Too big for stack -- allocate temporary array instead */
2466 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2467 if (!pages)
2468 return NULL;
2469 }
2470
2471 for_each_sgt_page(page, sgt_iter, sgt)
2472 pages[i++] = page;
2473
2474 /* Check that we have the expected number of pages */
2475 GEM_BUG_ON(i != n_pages);
2476
2477 switch (type) {
2478 case I915_MAP_WB:
2479 pgprot = PAGE_KERNEL;
2480 break;
2481 case I915_MAP_WC:
2482 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2483 break;
2484 }
2485 addr = vmap(pages, n_pages, 0, pgprot);
2486
2487 if (pages != stack_pages)
2488 drm_free_large(pages);
2489
2490 return addr;
2491 }
2492
2493 /* get, pin, and map the pages of the object into kernel space */
2494 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2495 enum i915_map_type type)
2496 {
2497 enum i915_map_type has_type;
2498 bool pinned;
2499 void *ptr;
2500 int ret;
2501
2502 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2503
2504 ret = mutex_lock_interruptible(&obj->mm.lock);
2505 if (ret)
2506 return ERR_PTR(ret);
2507
2508 pinned = true;
2509 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2510 if (unlikely(!obj->mm.pages)) {
2511 ret = ____i915_gem_object_get_pages(obj);
2512 if (ret)
2513 goto err_unlock;
2514
2515 smp_mb__before_atomic();
2516 }
2517 atomic_inc(&obj->mm.pages_pin_count);
2518 pinned = false;
2519 }
2520 GEM_BUG_ON(!obj->mm.pages);
2521
2522 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2523 if (ptr && has_type != type) {
2524 if (pinned) {
2525 ret = -EBUSY;
2526 goto err_unpin;
2527 }
2528
2529 if (is_vmalloc_addr(ptr))
2530 vunmap(ptr);
2531 else
2532 kunmap(kmap_to_page(ptr));
2533
2534 ptr = obj->mm.mapping = NULL;
2535 }
2536
2537 if (!ptr) {
2538 ptr = i915_gem_object_map(obj, type);
2539 if (!ptr) {
2540 ret = -ENOMEM;
2541 goto err_unpin;
2542 }
2543
2544 obj->mm.mapping = ptr_pack_bits(ptr, type);
2545 }
2546
2547 out_unlock:
2548 mutex_unlock(&obj->mm.lock);
2549 return ptr;
2550
2551 err_unpin:
2552 atomic_dec(&obj->mm.pages_pin_count);
2553 err_unlock:
2554 ptr = ERR_PTR(ret);
2555 goto out_unlock;
2556 }
2557
2558 static bool ban_context(const struct i915_gem_context *ctx)
2559 {
2560 return (i915_gem_context_is_bannable(ctx) &&
2561 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2562 }
2563
2564 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2565 {
2566 ctx->guilty_count++;
2567 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2568 if (ban_context(ctx))
2569 i915_gem_context_set_banned(ctx);
2570
2571 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2572 ctx->name, ctx->ban_score,
2573 yesno(i915_gem_context_is_banned(ctx)));
2574
2575 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2576 return;
2577
2578 ctx->file_priv->context_bans++;
2579 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2580 ctx->name, ctx->file_priv->context_bans);
2581 }
2582
2583 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2584 {
2585 ctx->active_count++;
2586 }
2587
2588 struct drm_i915_gem_request *
2589 i915_gem_find_active_request(struct intel_engine_cs *engine)
2590 {
2591 struct drm_i915_gem_request *request;
2592
2593 /* We are called by the error capture and reset at a random
2594 * point in time. In particular, note that neither is crucially
2595 * ordered with an interrupt. After a hang, the GPU is dead and we
2596 * assume that no more writes can happen (we waited long enough for
2597 * all writes that were in transaction to be flushed) - adding an
2598 * extra delay for a recent interrupt is pointless. Hence, we do
2599 * not need an engine->irq_seqno_barrier() before the seqno reads.
2600 */
2601 list_for_each_entry(request, &engine->timeline->requests, link) {
2602 if (__i915_gem_request_completed(request))
2603 continue;
2604
2605 GEM_BUG_ON(request->engine != engine);
2606 return request;
2607 }
2608
2609 return NULL;
2610 }
2611
2612 static bool engine_stalled(struct intel_engine_cs *engine)
2613 {
2614 if (!engine->hangcheck.stalled)
2615 return false;
2616
2617 /* Check for possible seqno movement after hang declaration */
2618 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2619 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2620 return false;
2621 }
2622
2623 return true;
2624 }
2625
2626 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2627 {
2628 struct intel_engine_cs *engine;
2629 enum intel_engine_id id;
2630 int err = 0;
2631
2632 /* Ensure irq handler finishes, and not run again. */
2633 for_each_engine(engine, dev_priv, id) {
2634 struct drm_i915_gem_request *request;
2635
2636 tasklet_kill(&engine->irq_tasklet);
2637
2638 if (engine_stalled(engine)) {
2639 request = i915_gem_find_active_request(engine);
2640 if (request && request->fence.error == -EIO)
2641 err = -EIO; /* Previous reset failed! */
2642 }
2643 }
2644
2645 i915_gem_revoke_fences(dev_priv);
2646
2647 return err;
2648 }
2649
2650 static void skip_request(struct drm_i915_gem_request *request)
2651 {
2652 void *vaddr = request->ring->vaddr;
2653 u32 head;
2654
2655 /* As this request likely depends on state from the lost
2656 * context, clear out all the user operations leaving the
2657 * breadcrumb at the end (so we get the fence notifications).
2658 */
2659 head = request->head;
2660 if (request->postfix < head) {
2661 memset(vaddr + head, 0, request->ring->size - head);
2662 head = 0;
2663 }
2664 memset(vaddr + head, 0, request->postfix - head);
2665
2666 dma_fence_set_error(&request->fence, -EIO);
2667 }
2668
2669 static void engine_skip_context(struct drm_i915_gem_request *request)
2670 {
2671 struct intel_engine_cs *engine = request->engine;
2672 struct i915_gem_context *hung_ctx = request->ctx;
2673 struct intel_timeline *timeline;
2674 unsigned long flags;
2675
2676 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2677
2678 spin_lock_irqsave(&engine->timeline->lock, flags);
2679 spin_lock(&timeline->lock);
2680
2681 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2682 if (request->ctx == hung_ctx)
2683 skip_request(request);
2684
2685 list_for_each_entry(request, &timeline->requests, link)
2686 skip_request(request);
2687
2688 spin_unlock(&timeline->lock);
2689 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2690 }
2691
2692 /* Returns true if the request was guilty of hang */
2693 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2694 {
2695 /* Read once and return the resolution */
2696 const bool guilty = engine_stalled(request->engine);
2697
2698 /* The guilty request will get skipped on a hung engine.
2699 *
2700 * Users of client default contexts do not rely on logical
2701 * state preserved between batches so it is safe to execute
2702 * queued requests following the hang. Non default contexts
2703 * rely on preserved state, so skipping a batch loses the
2704 * evolution of the state and it needs to be considered corrupted.
2705 * Executing more queued batches on top of corrupted state is
2706 * risky. But we take the risk by trying to advance through
2707 * the queued requests in order to make the client behaviour
2708 * more predictable around resets, by not throwing away random
2709 * amount of batches it has prepared for execution. Sophisticated
2710 * clients can use gem_reset_stats_ioctl and dma fence status
2711 * (exported via sync_file info ioctl on explicit fences) to observe
2712 * when it loses the context state and should rebuild accordingly.
2713 *
2714 * The context ban, and ultimately the client ban, mechanism are safety
2715 * valves if client submission ends up resulting in nothing more than
2716 * subsequent hangs.
2717 */
2718
2719 if (guilty) {
2720 i915_gem_context_mark_guilty(request->ctx);
2721 skip_request(request);
2722 } else {
2723 i915_gem_context_mark_innocent(request->ctx);
2724 dma_fence_set_error(&request->fence, -EAGAIN);
2725 }
2726
2727 return guilty;
2728 }
2729
2730 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2731 {
2732 struct drm_i915_gem_request *request;
2733
2734 if (engine->irq_seqno_barrier)
2735 engine->irq_seqno_barrier(engine);
2736
2737 request = i915_gem_find_active_request(engine);
2738 if (!request)
2739 return;
2740
2741 if (!i915_gem_reset_request(request))
2742 return;
2743
2744 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2745 engine->name, request->global_seqno);
2746
2747 /* Setup the CS to resume from the breadcrumb of the hung request */
2748 engine->reset_hw(engine, request);
2749
2750 /* If this context is now banned, skip all of its pending requests. */
2751 if (i915_gem_context_is_banned(request->ctx))
2752 engine_skip_context(request);
2753 }
2754
2755 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2756 {
2757 struct intel_engine_cs *engine;
2758 enum intel_engine_id id;
2759
2760 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2761
2762 i915_gem_retire_requests(dev_priv);
2763
2764 for_each_engine(engine, dev_priv, id)
2765 i915_gem_reset_engine(engine);
2766
2767 i915_gem_restore_fences(dev_priv);
2768
2769 if (dev_priv->gt.awake) {
2770 intel_sanitize_gt_powersave(dev_priv);
2771 intel_enable_gt_powersave(dev_priv);
2772 if (INTEL_GEN(dev_priv) >= 6)
2773 gen6_rps_busy(dev_priv);
2774 }
2775 }
2776
2777 static void nop_submit_request(struct drm_i915_gem_request *request)
2778 {
2779 dma_fence_set_error(&request->fence, -EIO);
2780 i915_gem_request_submit(request);
2781 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2782 }
2783
2784 static void engine_set_wedged(struct intel_engine_cs *engine)
2785 {
2786 struct drm_i915_gem_request *request;
2787 unsigned long flags;
2788
2789 /* We need to be sure that no thread is running the old callback as
2790 * we install the nop handler (otherwise we would submit a request
2791 * to hardware that will never complete). In order to prevent this
2792 * race, we wait until the machine is idle before making the swap
2793 * (using stop_machine()).
2794 */
2795 engine->submit_request = nop_submit_request;
2796
2797 /* Mark all executing requests as skipped */
2798 spin_lock_irqsave(&engine->timeline->lock, flags);
2799 list_for_each_entry(request, &engine->timeline->requests, link)
2800 dma_fence_set_error(&request->fence, -EIO);
2801 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2802
2803 /* Mark all pending requests as complete so that any concurrent
2804 * (lockless) lookup doesn't try and wait upon the request as we
2805 * reset it.
2806 */
2807 intel_engine_init_global_seqno(engine,
2808 intel_engine_last_submit(engine));
2809
2810 /*
2811 * Clear the execlists queue up before freeing the requests, as those
2812 * are the ones that keep the context and ringbuffer backing objects
2813 * pinned in place.
2814 */
2815
2816 if (i915.enable_execlists) {
2817 unsigned long flags;
2818
2819 spin_lock_irqsave(&engine->timeline->lock, flags);
2820
2821 i915_gem_request_put(engine->execlist_port[0].request);
2822 i915_gem_request_put(engine->execlist_port[1].request);
2823 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2824 engine->execlist_queue = RB_ROOT;
2825 engine->execlist_first = NULL;
2826
2827 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2828 }
2829 }
2830
2831 static int __i915_gem_set_wedged_BKL(void *data)
2832 {
2833 struct drm_i915_private *i915 = data;
2834 struct intel_engine_cs *engine;
2835 enum intel_engine_id id;
2836
2837 for_each_engine(engine, i915, id)
2838 engine_set_wedged(engine);
2839
2840 return 0;
2841 }
2842
2843 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2844 {
2845 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2846 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2847
2848 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2849
2850 i915_gem_context_lost(dev_priv);
2851 i915_gem_retire_requests(dev_priv);
2852
2853 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2854 }
2855
2856 static void
2857 i915_gem_retire_work_handler(struct work_struct *work)
2858 {
2859 struct drm_i915_private *dev_priv =
2860 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2861 struct drm_device *dev = &dev_priv->drm;
2862
2863 /* Come back later if the device is busy... */
2864 if (mutex_trylock(&dev->struct_mutex)) {
2865 i915_gem_retire_requests(dev_priv);
2866 mutex_unlock(&dev->struct_mutex);
2867 }
2868
2869 /* Keep the retire handler running until we are finally idle.
2870 * We do not need to do this test under locking as in the worst-case
2871 * we queue the retire worker once too often.
2872 */
2873 if (READ_ONCE(dev_priv->gt.awake)) {
2874 i915_queue_hangcheck(dev_priv);
2875 queue_delayed_work(dev_priv->wq,
2876 &dev_priv->gt.retire_work,
2877 round_jiffies_up_relative(HZ));
2878 }
2879 }
2880
2881 static void
2882 i915_gem_idle_work_handler(struct work_struct *work)
2883 {
2884 struct drm_i915_private *dev_priv =
2885 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2886 struct drm_device *dev = &dev_priv->drm;
2887 struct intel_engine_cs *engine;
2888 enum intel_engine_id id;
2889 bool rearm_hangcheck;
2890
2891 if (!READ_ONCE(dev_priv->gt.awake))
2892 return;
2893
2894 /*
2895 * Wait for last execlists context complete, but bail out in case a
2896 * new request is submitted.
2897 */
2898 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2899 intel_execlists_idle(dev_priv), 10);
2900
2901 if (READ_ONCE(dev_priv->gt.active_requests))
2902 return;
2903
2904 rearm_hangcheck =
2905 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2906
2907 if (!mutex_trylock(&dev->struct_mutex)) {
2908 /* Currently busy, come back later */
2909 mod_delayed_work(dev_priv->wq,
2910 &dev_priv->gt.idle_work,
2911 msecs_to_jiffies(50));
2912 goto out_rearm;
2913 }
2914
2915 /*
2916 * New request retired after this work handler started, extend active
2917 * period until next instance of the work.
2918 */
2919 if (work_pending(work))
2920 goto out_unlock;
2921
2922 if (dev_priv->gt.active_requests)
2923 goto out_unlock;
2924
2925 if (wait_for(intel_execlists_idle(dev_priv), 10))
2926 DRM_ERROR("Timeout waiting for engines to idle\n");
2927
2928 for_each_engine(engine, dev_priv, id)
2929 i915_gem_batch_pool_fini(&engine->batch_pool);
2930
2931 GEM_BUG_ON(!dev_priv->gt.awake);
2932 dev_priv->gt.awake = false;
2933 rearm_hangcheck = false;
2934
2935 if (INTEL_GEN(dev_priv) >= 6)
2936 gen6_rps_idle(dev_priv);
2937 intel_runtime_pm_put(dev_priv);
2938 out_unlock:
2939 mutex_unlock(&dev->struct_mutex);
2940
2941 out_rearm:
2942 if (rearm_hangcheck) {
2943 GEM_BUG_ON(!dev_priv->gt.awake);
2944 i915_queue_hangcheck(dev_priv);
2945 }
2946 }
2947
2948 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2949 {
2950 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2951 struct drm_i915_file_private *fpriv = file->driver_priv;
2952 struct i915_vma *vma, *vn;
2953
2954 mutex_lock(&obj->base.dev->struct_mutex);
2955 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2956 if (vma->vm->file == fpriv)
2957 i915_vma_close(vma);
2958
2959 if (i915_gem_object_is_active(obj) &&
2960 !i915_gem_object_has_active_reference(obj)) {
2961 i915_gem_object_set_active_reference(obj);
2962 i915_gem_object_get(obj);
2963 }
2964 mutex_unlock(&obj->base.dev->struct_mutex);
2965 }
2966
2967 static unsigned long to_wait_timeout(s64 timeout_ns)
2968 {
2969 if (timeout_ns < 0)
2970 return MAX_SCHEDULE_TIMEOUT;
2971
2972 if (timeout_ns == 0)
2973 return 0;
2974
2975 return nsecs_to_jiffies_timeout(timeout_ns);
2976 }
2977
2978 /**
2979 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2980 * @dev: drm device pointer
2981 * @data: ioctl data blob
2982 * @file: drm file pointer
2983 *
2984 * Returns 0 if successful, else an error is returned with the remaining time in
2985 * the timeout parameter.
2986 * -ETIME: object is still busy after timeout
2987 * -ERESTARTSYS: signal interrupted the wait
2988 * -ENONENT: object doesn't exist
2989 * Also possible, but rare:
2990 * -EAGAIN: GPU wedged
2991 * -ENOMEM: damn
2992 * -ENODEV: Internal IRQ fail
2993 * -E?: The add request failed
2994 *
2995 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2996 * non-zero timeout parameter the wait ioctl will wait for the given number of
2997 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2998 * without holding struct_mutex the object may become re-busied before this
2999 * function completes. A similar but shorter * race condition exists in the busy
3000 * ioctl
3001 */
3002 int
3003 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3004 {
3005 struct drm_i915_gem_wait *args = data;
3006 struct drm_i915_gem_object *obj;
3007 ktime_t start;
3008 long ret;
3009
3010 if (args->flags != 0)
3011 return -EINVAL;
3012
3013 obj = i915_gem_object_lookup(file, args->bo_handle);
3014 if (!obj)
3015 return -ENOENT;
3016
3017 start = ktime_get();
3018
3019 ret = i915_gem_object_wait(obj,
3020 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3021 to_wait_timeout(args->timeout_ns),
3022 to_rps_client(file));
3023
3024 if (args->timeout_ns > 0) {
3025 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3026 if (args->timeout_ns < 0)
3027 args->timeout_ns = 0;
3028 }
3029
3030 i915_gem_object_put(obj);
3031 return ret;
3032 }
3033
3034 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3035 {
3036 int ret, i;
3037
3038 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3039 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3040 if (ret)
3041 return ret;
3042 }
3043
3044 return 0;
3045 }
3046
3047 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3048 {
3049 int ret;
3050
3051 if (flags & I915_WAIT_LOCKED) {
3052 struct i915_gem_timeline *tl;
3053
3054 lockdep_assert_held(&i915->drm.struct_mutex);
3055
3056 list_for_each_entry(tl, &i915->gt.timelines, link) {
3057 ret = wait_for_timeline(tl, flags);
3058 if (ret)
3059 return ret;
3060 }
3061 } else {
3062 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3063 if (ret)
3064 return ret;
3065 }
3066
3067 return 0;
3068 }
3069
3070 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3071 bool force)
3072 {
3073 /* If we don't have a page list set up, then we're not pinned
3074 * to GPU, and we can ignore the cache flush because it'll happen
3075 * again at bind time.
3076 */
3077 if (!obj->mm.pages)
3078 return;
3079
3080 /*
3081 * Stolen memory is always coherent with the GPU as it is explicitly
3082 * marked as wc by the system, or the system is cache-coherent.
3083 */
3084 if (obj->stolen || obj->phys_handle)
3085 return;
3086
3087 /* If the GPU is snooping the contents of the CPU cache,
3088 * we do not need to manually clear the CPU cache lines. However,
3089 * the caches are only snooped when the render cache is
3090 * flushed/invalidated. As we always have to emit invalidations
3091 * and flushes when moving into and out of the RENDER domain, correct
3092 * snooping behaviour occurs naturally as the result of our domain
3093 * tracking.
3094 */
3095 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3096 obj->cache_dirty = true;
3097 return;
3098 }
3099
3100 trace_i915_gem_object_clflush(obj);
3101 drm_clflush_sg(obj->mm.pages);
3102 obj->cache_dirty = false;
3103 }
3104
3105 /** Flushes the GTT write domain for the object if it's dirty. */
3106 static void
3107 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3108 {
3109 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3110
3111 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3112 return;
3113
3114 /* No actual flushing is required for the GTT write domain. Writes
3115 * to it "immediately" go to main memory as far as we know, so there's
3116 * no chipset flush. It also doesn't land in render cache.
3117 *
3118 * However, we do have to enforce the order so that all writes through
3119 * the GTT land before any writes to the device, such as updates to
3120 * the GATT itself.
3121 *
3122 * We also have to wait a bit for the writes to land from the GTT.
3123 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3124 * timing. This issue has only been observed when switching quickly
3125 * between GTT writes and CPU reads from inside the kernel on recent hw,
3126 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3127 * system agents we cannot reproduce this behaviour).
3128 */
3129 wmb();
3130 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3131 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3132
3133 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3134
3135 obj->base.write_domain = 0;
3136 trace_i915_gem_object_change_domain(obj,
3137 obj->base.read_domains,
3138 I915_GEM_DOMAIN_GTT);
3139 }
3140
3141 /** Flushes the CPU write domain for the object if it's dirty. */
3142 static void
3143 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3144 {
3145 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3146 return;
3147
3148 i915_gem_clflush_object(obj, obj->pin_display);
3149 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3150
3151 obj->base.write_domain = 0;
3152 trace_i915_gem_object_change_domain(obj,
3153 obj->base.read_domains,
3154 I915_GEM_DOMAIN_CPU);
3155 }
3156
3157 /**
3158 * Moves a single object to the GTT read, and possibly write domain.
3159 * @obj: object to act on
3160 * @write: ask for write access or read only
3161 *
3162 * This function returns when the move is complete, including waiting on
3163 * flushes to occur.
3164 */
3165 int
3166 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3167 {
3168 uint32_t old_write_domain, old_read_domains;
3169 int ret;
3170
3171 lockdep_assert_held(&obj->base.dev->struct_mutex);
3172
3173 ret = i915_gem_object_wait(obj,
3174 I915_WAIT_INTERRUPTIBLE |
3175 I915_WAIT_LOCKED |
3176 (write ? I915_WAIT_ALL : 0),
3177 MAX_SCHEDULE_TIMEOUT,
3178 NULL);
3179 if (ret)
3180 return ret;
3181
3182 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3183 return 0;
3184
3185 /* Flush and acquire obj->pages so that we are coherent through
3186 * direct access in memory with previous cached writes through
3187 * shmemfs and that our cache domain tracking remains valid.
3188 * For example, if the obj->filp was moved to swap without us
3189 * being notified and releasing the pages, we would mistakenly
3190 * continue to assume that the obj remained out of the CPU cached
3191 * domain.
3192 */
3193 ret = i915_gem_object_pin_pages(obj);
3194 if (ret)
3195 return ret;
3196
3197 i915_gem_object_flush_cpu_write_domain(obj);
3198
3199 /* Serialise direct access to this object with the barriers for
3200 * coherent writes from the GPU, by effectively invalidating the
3201 * GTT domain upon first access.
3202 */
3203 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3204 mb();
3205
3206 old_write_domain = obj->base.write_domain;
3207 old_read_domains = obj->base.read_domains;
3208
3209 /* It should now be out of any other write domains, and we can update
3210 * the domain values for our changes.
3211 */
3212 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3213 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3214 if (write) {
3215 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3216 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3217 obj->mm.dirty = true;
3218 }
3219
3220 trace_i915_gem_object_change_domain(obj,
3221 old_read_domains,
3222 old_write_domain);
3223
3224 i915_gem_object_unpin_pages(obj);
3225 return 0;
3226 }
3227
3228 /**
3229 * Changes the cache-level of an object across all VMA.
3230 * @obj: object to act on
3231 * @cache_level: new cache level to set for the object
3232 *
3233 * After this function returns, the object will be in the new cache-level
3234 * across all GTT and the contents of the backing storage will be coherent,
3235 * with respect to the new cache-level. In order to keep the backing storage
3236 * coherent for all users, we only allow a single cache level to be set
3237 * globally on the object and prevent it from being changed whilst the
3238 * hardware is reading from the object. That is if the object is currently
3239 * on the scanout it will be set to uncached (or equivalent display
3240 * cache coherency) and all non-MOCS GPU access will also be uncached so
3241 * that all direct access to the scanout remains coherent.
3242 */
3243 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3244 enum i915_cache_level cache_level)
3245 {
3246 struct i915_vma *vma;
3247 int ret;
3248
3249 lockdep_assert_held(&obj->base.dev->struct_mutex);
3250
3251 if (obj->cache_level == cache_level)
3252 return 0;
3253
3254 /* Inspect the list of currently bound VMA and unbind any that would
3255 * be invalid given the new cache-level. This is principally to
3256 * catch the issue of the CS prefetch crossing page boundaries and
3257 * reading an invalid PTE on older architectures.
3258 */
3259 restart:
3260 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3261 if (!drm_mm_node_allocated(&vma->node))
3262 continue;
3263
3264 if (i915_vma_is_pinned(vma)) {
3265 DRM_DEBUG("can not change the cache level of pinned objects\n");
3266 return -EBUSY;
3267 }
3268
3269 if (i915_gem_valid_gtt_space(vma, cache_level))
3270 continue;
3271
3272 ret = i915_vma_unbind(vma);
3273 if (ret)
3274 return ret;
3275
3276 /* As unbinding may affect other elements in the
3277 * obj->vma_list (due to side-effects from retiring
3278 * an active vma), play safe and restart the iterator.
3279 */
3280 goto restart;
3281 }
3282
3283 /* We can reuse the existing drm_mm nodes but need to change the
3284 * cache-level on the PTE. We could simply unbind them all and
3285 * rebind with the correct cache-level on next use. However since
3286 * we already have a valid slot, dma mapping, pages etc, we may as
3287 * rewrite the PTE in the belief that doing so tramples upon less
3288 * state and so involves less work.
3289 */
3290 if (obj->bind_count) {
3291 /* Before we change the PTE, the GPU must not be accessing it.
3292 * If we wait upon the object, we know that all the bound
3293 * VMA are no longer active.
3294 */
3295 ret = i915_gem_object_wait(obj,
3296 I915_WAIT_INTERRUPTIBLE |
3297 I915_WAIT_LOCKED |
3298 I915_WAIT_ALL,
3299 MAX_SCHEDULE_TIMEOUT,
3300 NULL);
3301 if (ret)
3302 return ret;
3303
3304 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3305 cache_level != I915_CACHE_NONE) {
3306 /* Access to snoopable pages through the GTT is
3307 * incoherent and on some machines causes a hard
3308 * lockup. Relinquish the CPU mmaping to force
3309 * userspace to refault in the pages and we can
3310 * then double check if the GTT mapping is still
3311 * valid for that pointer access.
3312 */
3313 i915_gem_release_mmap(obj);
3314
3315 /* As we no longer need a fence for GTT access,
3316 * we can relinquish it now (and so prevent having
3317 * to steal a fence from someone else on the next
3318 * fence request). Note GPU activity would have
3319 * dropped the fence as all snoopable access is
3320 * supposed to be linear.
3321 */
3322 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3323 ret = i915_vma_put_fence(vma);
3324 if (ret)
3325 return ret;
3326 }
3327 } else {
3328 /* We either have incoherent backing store and
3329 * so no GTT access or the architecture is fully
3330 * coherent. In such cases, existing GTT mmaps
3331 * ignore the cache bit in the PTE and we can
3332 * rewrite it without confusing the GPU or having
3333 * to force userspace to fault back in its mmaps.
3334 */
3335 }
3336
3337 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3338 if (!drm_mm_node_allocated(&vma->node))
3339 continue;
3340
3341 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3342 if (ret)
3343 return ret;
3344 }
3345 }
3346
3347 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3348 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3349 obj->cache_dirty = true;
3350
3351 list_for_each_entry(vma, &obj->vma_list, obj_link)
3352 vma->node.color = cache_level;
3353 obj->cache_level = cache_level;
3354
3355 return 0;
3356 }
3357
3358 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3359 struct drm_file *file)
3360 {
3361 struct drm_i915_gem_caching *args = data;
3362 struct drm_i915_gem_object *obj;
3363 int err = 0;
3364
3365 rcu_read_lock();
3366 obj = i915_gem_object_lookup_rcu(file, args->handle);
3367 if (!obj) {
3368 err = -ENOENT;
3369 goto out;
3370 }
3371
3372 switch (obj->cache_level) {
3373 case I915_CACHE_LLC:
3374 case I915_CACHE_L3_LLC:
3375 args->caching = I915_CACHING_CACHED;
3376 break;
3377
3378 case I915_CACHE_WT:
3379 args->caching = I915_CACHING_DISPLAY;
3380 break;
3381
3382 default:
3383 args->caching = I915_CACHING_NONE;
3384 break;
3385 }
3386 out:
3387 rcu_read_unlock();
3388 return err;
3389 }
3390
3391 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3392 struct drm_file *file)
3393 {
3394 struct drm_i915_private *i915 = to_i915(dev);
3395 struct drm_i915_gem_caching *args = data;
3396 struct drm_i915_gem_object *obj;
3397 enum i915_cache_level level;
3398 int ret = 0;
3399
3400 switch (args->caching) {
3401 case I915_CACHING_NONE:
3402 level = I915_CACHE_NONE;
3403 break;
3404 case I915_CACHING_CACHED:
3405 /*
3406 * Due to a HW issue on BXT A stepping, GPU stores via a
3407 * snooped mapping may leave stale data in a corresponding CPU
3408 * cacheline, whereas normally such cachelines would get
3409 * invalidated.
3410 */
3411 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3412 return -ENODEV;
3413
3414 level = I915_CACHE_LLC;
3415 break;
3416 case I915_CACHING_DISPLAY:
3417 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3418 break;
3419 default:
3420 return -EINVAL;
3421 }
3422
3423 obj = i915_gem_object_lookup(file, args->handle);
3424 if (!obj)
3425 return -ENOENT;
3426
3427 if (obj->cache_level == level)
3428 goto out;
3429
3430 ret = i915_gem_object_wait(obj,
3431 I915_WAIT_INTERRUPTIBLE,
3432 MAX_SCHEDULE_TIMEOUT,
3433 to_rps_client(file));
3434 if (ret)
3435 goto out;
3436
3437 ret = i915_mutex_lock_interruptible(dev);
3438 if (ret)
3439 goto out;
3440
3441 ret = i915_gem_object_set_cache_level(obj, level);
3442 mutex_unlock(&dev->struct_mutex);
3443
3444 out:
3445 i915_gem_object_put(obj);
3446 return ret;
3447 }
3448
3449 /*
3450 * Prepare buffer for display plane (scanout, cursors, etc).
3451 * Can be called from an uninterruptible phase (modesetting) and allows
3452 * any flushes to be pipelined (for pageflips).
3453 */
3454 struct i915_vma *
3455 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3456 u32 alignment,
3457 const struct i915_ggtt_view *view)
3458 {
3459 struct i915_vma *vma;
3460 u32 old_read_domains, old_write_domain;
3461 int ret;
3462
3463 lockdep_assert_held(&obj->base.dev->struct_mutex);
3464
3465 /* Mark the pin_display early so that we account for the
3466 * display coherency whilst setting up the cache domains.
3467 */
3468 obj->pin_display++;
3469
3470 /* The display engine is not coherent with the LLC cache on gen6. As
3471 * a result, we make sure that the pinning that is about to occur is
3472 * done with uncached PTEs. This is lowest common denominator for all
3473 * chipsets.
3474 *
3475 * However for gen6+, we could do better by using the GFDT bit instead
3476 * of uncaching, which would allow us to flush all the LLC-cached data
3477 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3478 */
3479 ret = i915_gem_object_set_cache_level(obj,
3480 HAS_WT(to_i915(obj->base.dev)) ?
3481 I915_CACHE_WT : I915_CACHE_NONE);
3482 if (ret) {
3483 vma = ERR_PTR(ret);
3484 goto err_unpin_display;
3485 }
3486
3487 /* As the user may map the buffer once pinned in the display plane
3488 * (e.g. libkms for the bootup splash), we have to ensure that we
3489 * always use map_and_fenceable for all scanout buffers. However,
3490 * it may simply be too big to fit into mappable, in which case
3491 * put it anyway and hope that userspace can cope (but always first
3492 * try to preserve the existing ABI).
3493 */
3494 vma = ERR_PTR(-ENOSPC);
3495 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3496 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3497 PIN_MAPPABLE | PIN_NONBLOCK);
3498 if (IS_ERR(vma)) {
3499 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3500 unsigned int flags;
3501
3502 /* Valleyview is definitely limited to scanning out the first
3503 * 512MiB. Lets presume this behaviour was inherited from the
3504 * g4x display engine and that all earlier gen are similarly
3505 * limited. Testing suggests that it is a little more
3506 * complicated than this. For example, Cherryview appears quite
3507 * happy to scanout from anywhere within its global aperture.
3508 */
3509 flags = 0;
3510 if (HAS_GMCH_DISPLAY(i915))
3511 flags = PIN_MAPPABLE;
3512 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3513 }
3514 if (IS_ERR(vma))
3515 goto err_unpin_display;
3516
3517 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3518
3519 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3520 if (obj->cache_dirty) {
3521 i915_gem_clflush_object(obj, true);
3522 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3523 }
3524
3525 old_write_domain = obj->base.write_domain;
3526 old_read_domains = obj->base.read_domains;
3527
3528 /* It should now be out of any other write domains, and we can update
3529 * the domain values for our changes.
3530 */
3531 obj->base.write_domain = 0;
3532 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3533
3534 trace_i915_gem_object_change_domain(obj,
3535 old_read_domains,
3536 old_write_domain);
3537
3538 return vma;
3539
3540 err_unpin_display:
3541 obj->pin_display--;
3542 return vma;
3543 }
3544
3545 void
3546 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3547 {
3548 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3549
3550 if (WARN_ON(vma->obj->pin_display == 0))
3551 return;
3552
3553 if (--vma->obj->pin_display == 0)
3554 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3555
3556 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3557 i915_gem_object_bump_inactive_ggtt(vma->obj);
3558
3559 i915_vma_unpin(vma);
3560 }
3561
3562 /**
3563 * Moves a single object to the CPU read, and possibly write domain.
3564 * @obj: object to act on
3565 * @write: requesting write or read-only access
3566 *
3567 * This function returns when the move is complete, including waiting on
3568 * flushes to occur.
3569 */
3570 int
3571 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3572 {
3573 uint32_t old_write_domain, old_read_domains;
3574 int ret;
3575
3576 lockdep_assert_held(&obj->base.dev->struct_mutex);
3577
3578 ret = i915_gem_object_wait(obj,
3579 I915_WAIT_INTERRUPTIBLE |
3580 I915_WAIT_LOCKED |
3581 (write ? I915_WAIT_ALL : 0),
3582 MAX_SCHEDULE_TIMEOUT,
3583 NULL);
3584 if (ret)
3585 return ret;
3586
3587 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3588 return 0;
3589
3590 i915_gem_object_flush_gtt_write_domain(obj);
3591
3592 old_write_domain = obj->base.write_domain;
3593 old_read_domains = obj->base.read_domains;
3594
3595 /* Flush the CPU cache if it's still invalid. */
3596 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3597 i915_gem_clflush_object(obj, false);
3598
3599 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3600 }
3601
3602 /* It should now be out of any other write domains, and we can update
3603 * the domain values for our changes.
3604 */
3605 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3606
3607 /* If we're writing through the CPU, then the GPU read domains will
3608 * need to be invalidated at next use.
3609 */
3610 if (write) {
3611 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3612 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3613 }
3614
3615 trace_i915_gem_object_change_domain(obj,
3616 old_read_domains,
3617 old_write_domain);
3618
3619 return 0;
3620 }
3621
3622 /* Throttle our rendering by waiting until the ring has completed our requests
3623 * emitted over 20 msec ago.
3624 *
3625 * Note that if we were to use the current jiffies each time around the loop,
3626 * we wouldn't escape the function with any frames outstanding if the time to
3627 * render a frame was over 20ms.
3628 *
3629 * This should get us reasonable parallelism between CPU and GPU but also
3630 * relatively low latency when blocking on a particular request to finish.
3631 */
3632 static int
3633 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3634 {
3635 struct drm_i915_private *dev_priv = to_i915(dev);
3636 struct drm_i915_file_private *file_priv = file->driver_priv;
3637 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3638 struct drm_i915_gem_request *request, *target = NULL;
3639 long ret;
3640
3641 /* ABI: return -EIO if already wedged */
3642 if (i915_terminally_wedged(&dev_priv->gpu_error))
3643 return -EIO;
3644
3645 spin_lock(&file_priv->mm.lock);
3646 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3647 if (time_after_eq(request->emitted_jiffies, recent_enough))
3648 break;
3649
3650 /*
3651 * Note that the request might not have been submitted yet.
3652 * In which case emitted_jiffies will be zero.
3653 */
3654 if (!request->emitted_jiffies)
3655 continue;
3656
3657 target = request;
3658 }
3659 if (target)
3660 i915_gem_request_get(target);
3661 spin_unlock(&file_priv->mm.lock);
3662
3663 if (target == NULL)
3664 return 0;
3665
3666 ret = i915_wait_request(target,
3667 I915_WAIT_INTERRUPTIBLE,
3668 MAX_SCHEDULE_TIMEOUT);
3669 i915_gem_request_put(target);
3670
3671 return ret < 0 ? ret : 0;
3672 }
3673
3674 struct i915_vma *
3675 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3676 const struct i915_ggtt_view *view,
3677 u64 size,
3678 u64 alignment,
3679 u64 flags)
3680 {
3681 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3682 struct i915_address_space *vm = &dev_priv->ggtt.base;
3683 struct i915_vma *vma;
3684 int ret;
3685
3686 lockdep_assert_held(&obj->base.dev->struct_mutex);
3687
3688 vma = i915_vma_instance(obj, vm, view);
3689 if (unlikely(IS_ERR(vma)))
3690 return vma;
3691
3692 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3693 if (flags & PIN_NONBLOCK &&
3694 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3695 return ERR_PTR(-ENOSPC);
3696
3697 if (flags & PIN_MAPPABLE) {
3698 /* If the required space is larger than the available
3699 * aperture, we will not able to find a slot for the
3700 * object and unbinding the object now will be in
3701 * vain. Worse, doing so may cause us to ping-pong
3702 * the object in and out of the Global GTT and
3703 * waste a lot of cycles under the mutex.
3704 */
3705 if (vma->fence_size > dev_priv->ggtt.mappable_end)
3706 return ERR_PTR(-E2BIG);
3707
3708 /* If NONBLOCK is set the caller is optimistically
3709 * trying to cache the full object within the mappable
3710 * aperture, and *must* have a fallback in place for
3711 * situations where we cannot bind the object. We
3712 * can be a little more lax here and use the fallback
3713 * more often to avoid costly migrations of ourselves
3714 * and other objects within the aperture.
3715 *
3716 * Half-the-aperture is used as a simple heuristic.
3717 * More interesting would to do search for a free
3718 * block prior to making the commitment to unbind.
3719 * That caters for the self-harm case, and with a
3720 * little more heuristics (e.g. NOFAULT, NOEVICT)
3721 * we could try to minimise harm to others.
3722 */
3723 if (flags & PIN_NONBLOCK &&
3724 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3725 return ERR_PTR(-ENOSPC);
3726 }
3727
3728 WARN(i915_vma_is_pinned(vma),
3729 "bo is already pinned in ggtt with incorrect alignment:"
3730 " offset=%08x, req.alignment=%llx,"
3731 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3732 i915_ggtt_offset(vma), alignment,
3733 !!(flags & PIN_MAPPABLE),
3734 i915_vma_is_map_and_fenceable(vma));
3735 ret = i915_vma_unbind(vma);
3736 if (ret)
3737 return ERR_PTR(ret);
3738 }
3739
3740 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3741 if (ret)
3742 return ERR_PTR(ret);
3743
3744 return vma;
3745 }
3746
3747 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3748 {
3749 /* Note that we could alias engines in the execbuf API, but
3750 * that would be very unwise as it prevents userspace from
3751 * fine control over engine selection. Ahem.
3752 *
3753 * This should be something like EXEC_MAX_ENGINE instead of
3754 * I915_NUM_ENGINES.
3755 */
3756 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3757 return 0x10000 << id;
3758 }
3759
3760 static __always_inline unsigned int __busy_write_id(unsigned int id)
3761 {
3762 /* The uABI guarantees an active writer is also amongst the read
3763 * engines. This would be true if we accessed the activity tracking
3764 * under the lock, but as we perform the lookup of the object and
3765 * its activity locklessly we can not guarantee that the last_write
3766 * being active implies that we have set the same engine flag from
3767 * last_read - hence we always set both read and write busy for
3768 * last_write.
3769 */
3770 return id | __busy_read_flag(id);
3771 }
3772
3773 static __always_inline unsigned int
3774 __busy_set_if_active(const struct dma_fence *fence,
3775 unsigned int (*flag)(unsigned int id))
3776 {
3777 struct drm_i915_gem_request *rq;
3778
3779 /* We have to check the current hw status of the fence as the uABI
3780 * guarantees forward progress. We could rely on the idle worker
3781 * to eventually flush us, but to minimise latency just ask the
3782 * hardware.
3783 *
3784 * Note we only report on the status of native fences.
3785 */
3786 if (!dma_fence_is_i915(fence))
3787 return 0;
3788
3789 /* opencode to_request() in order to avoid const warnings */
3790 rq = container_of(fence, struct drm_i915_gem_request, fence);
3791 if (i915_gem_request_completed(rq))
3792 return 0;
3793
3794 return flag(rq->engine->exec_id);
3795 }
3796
3797 static __always_inline unsigned int
3798 busy_check_reader(const struct dma_fence *fence)
3799 {
3800 return __busy_set_if_active(fence, __busy_read_flag);
3801 }
3802
3803 static __always_inline unsigned int
3804 busy_check_writer(const struct dma_fence *fence)
3805 {
3806 if (!fence)
3807 return 0;
3808
3809 return __busy_set_if_active(fence, __busy_write_id);
3810 }
3811
3812 int
3813 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3814 struct drm_file *file)
3815 {
3816 struct drm_i915_gem_busy *args = data;
3817 struct drm_i915_gem_object *obj;
3818 struct reservation_object_list *list;
3819 unsigned int seq;
3820 int err;
3821
3822 err = -ENOENT;
3823 rcu_read_lock();
3824 obj = i915_gem_object_lookup_rcu(file, args->handle);
3825 if (!obj)
3826 goto out;
3827
3828 /* A discrepancy here is that we do not report the status of
3829 * non-i915 fences, i.e. even though we may report the object as idle,
3830 * a call to set-domain may still stall waiting for foreign rendering.
3831 * This also means that wait-ioctl may report an object as busy,
3832 * where busy-ioctl considers it idle.
3833 *
3834 * We trade the ability to warn of foreign fences to report on which
3835 * i915 engines are active for the object.
3836 *
3837 * Alternatively, we can trade that extra information on read/write
3838 * activity with
3839 * args->busy =
3840 * !reservation_object_test_signaled_rcu(obj->resv, true);
3841 * to report the overall busyness. This is what the wait-ioctl does.
3842 *
3843 */
3844 retry:
3845 seq = raw_read_seqcount(&obj->resv->seq);
3846
3847 /* Translate the exclusive fence to the READ *and* WRITE engine */
3848 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3849
3850 /* Translate shared fences to READ set of engines */
3851 list = rcu_dereference(obj->resv->fence);
3852 if (list) {
3853 unsigned int shared_count = list->shared_count, i;
3854
3855 for (i = 0; i < shared_count; ++i) {
3856 struct dma_fence *fence =
3857 rcu_dereference(list->shared[i]);
3858
3859 args->busy |= busy_check_reader(fence);
3860 }
3861 }
3862
3863 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3864 goto retry;
3865
3866 err = 0;
3867 out:
3868 rcu_read_unlock();
3869 return err;
3870 }
3871
3872 int
3873 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3874 struct drm_file *file_priv)
3875 {
3876 return i915_gem_ring_throttle(dev, file_priv);
3877 }
3878
3879 int
3880 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3881 struct drm_file *file_priv)
3882 {
3883 struct drm_i915_private *dev_priv = to_i915(dev);
3884 struct drm_i915_gem_madvise *args = data;
3885 struct drm_i915_gem_object *obj;
3886 int err;
3887
3888 switch (args->madv) {
3889 case I915_MADV_DONTNEED:
3890 case I915_MADV_WILLNEED:
3891 break;
3892 default:
3893 return -EINVAL;
3894 }
3895
3896 obj = i915_gem_object_lookup(file_priv, args->handle);
3897 if (!obj)
3898 return -ENOENT;
3899
3900 err = mutex_lock_interruptible(&obj->mm.lock);
3901 if (err)
3902 goto out;
3903
3904 if (obj->mm.pages &&
3905 i915_gem_object_is_tiled(obj) &&
3906 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3907 if (obj->mm.madv == I915_MADV_WILLNEED) {
3908 GEM_BUG_ON(!obj->mm.quirked);
3909 __i915_gem_object_unpin_pages(obj);
3910 obj->mm.quirked = false;
3911 }
3912 if (args->madv == I915_MADV_WILLNEED) {
3913 GEM_BUG_ON(obj->mm.quirked);
3914 __i915_gem_object_pin_pages(obj);
3915 obj->mm.quirked = true;
3916 }
3917 }
3918
3919 if (obj->mm.madv != __I915_MADV_PURGED)
3920 obj->mm.madv = args->madv;
3921
3922 /* if the object is no longer attached, discard its backing storage */
3923 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3924 i915_gem_object_truncate(obj);
3925
3926 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3927 mutex_unlock(&obj->mm.lock);
3928
3929 out:
3930 i915_gem_object_put(obj);
3931 return err;
3932 }
3933
3934 static void
3935 frontbuffer_retire(struct i915_gem_active *active,
3936 struct drm_i915_gem_request *request)
3937 {
3938 struct drm_i915_gem_object *obj =
3939 container_of(active, typeof(*obj), frontbuffer_write);
3940
3941 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3942 }
3943
3944 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3945 const struct drm_i915_gem_object_ops *ops)
3946 {
3947 mutex_init(&obj->mm.lock);
3948
3949 INIT_LIST_HEAD(&obj->global_link);
3950 INIT_LIST_HEAD(&obj->userfault_link);
3951 INIT_LIST_HEAD(&obj->obj_exec_link);
3952 INIT_LIST_HEAD(&obj->vma_list);
3953 INIT_LIST_HEAD(&obj->batch_pool_link);
3954
3955 obj->ops = ops;
3956
3957 reservation_object_init(&obj->__builtin_resv);
3958 obj->resv = &obj->__builtin_resv;
3959
3960 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3961 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3962
3963 obj->mm.madv = I915_MADV_WILLNEED;
3964 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3965 mutex_init(&obj->mm.get_page.lock);
3966
3967 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3968 }
3969
3970 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3971 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3972 I915_GEM_OBJECT_IS_SHRINKABLE,
3973 .get_pages = i915_gem_object_get_pages_gtt,
3974 .put_pages = i915_gem_object_put_pages_gtt,
3975 };
3976
3977 struct drm_i915_gem_object *
3978 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
3979 {
3980 struct drm_i915_gem_object *obj;
3981 struct address_space *mapping;
3982 gfp_t mask;
3983 int ret;
3984
3985 /* There is a prevalence of the assumption that we fit the object's
3986 * page count inside a 32bit _signed_ variable. Let's document this and
3987 * catch if we ever need to fix it. In the meantime, if you do spot
3988 * such a local variable, please consider fixing!
3989 */
3990 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3991 return ERR_PTR(-E2BIG);
3992
3993 if (overflows_type(size, obj->base.size))
3994 return ERR_PTR(-E2BIG);
3995
3996 obj = i915_gem_object_alloc(dev_priv);
3997 if (obj == NULL)
3998 return ERR_PTR(-ENOMEM);
3999
4000 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4001 if (ret)
4002 goto fail;
4003
4004 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4005 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4006 /* 965gm cannot relocate objects above 4GiB. */
4007 mask &= ~__GFP_HIGHMEM;
4008 mask |= __GFP_DMA32;
4009 }
4010
4011 mapping = obj->base.filp->f_mapping;
4012 mapping_set_gfp_mask(mapping, mask);
4013
4014 i915_gem_object_init(obj, &i915_gem_object_ops);
4015
4016 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4017 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4018
4019 if (HAS_LLC(dev_priv)) {
4020 /* On some devices, we can have the GPU use the LLC (the CPU
4021 * cache) for about a 10% performance improvement
4022 * compared to uncached. Graphics requests other than
4023 * display scanout are coherent with the CPU in
4024 * accessing this cache. This means in this mode we
4025 * don't need to clflush on the CPU side, and on the
4026 * GPU side we only need to flush internal caches to
4027 * get data visible to the CPU.
4028 *
4029 * However, we maintain the display planes as UC, and so
4030 * need to rebind when first used as such.
4031 */
4032 obj->cache_level = I915_CACHE_LLC;
4033 } else
4034 obj->cache_level = I915_CACHE_NONE;
4035
4036 trace_i915_gem_object_create(obj);
4037
4038 return obj;
4039
4040 fail:
4041 i915_gem_object_free(obj);
4042 return ERR_PTR(ret);
4043 }
4044
4045 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4046 {
4047 /* If we are the last user of the backing storage (be it shmemfs
4048 * pages or stolen etc), we know that the pages are going to be
4049 * immediately released. In this case, we can then skip copying
4050 * back the contents from the GPU.
4051 */
4052
4053 if (obj->mm.madv != I915_MADV_WILLNEED)
4054 return false;
4055
4056 if (obj->base.filp == NULL)
4057 return true;
4058
4059 /* At first glance, this looks racy, but then again so would be
4060 * userspace racing mmap against close. However, the first external
4061 * reference to the filp can only be obtained through the
4062 * i915_gem_mmap_ioctl() which safeguards us against the user
4063 * acquiring such a reference whilst we are in the middle of
4064 * freeing the object.
4065 */
4066 return atomic_long_read(&obj->base.filp->f_count) == 1;
4067 }
4068
4069 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4070 struct llist_node *freed)
4071 {
4072 struct drm_i915_gem_object *obj, *on;
4073
4074 mutex_lock(&i915->drm.struct_mutex);
4075 intel_runtime_pm_get(i915);
4076 llist_for_each_entry(obj, freed, freed) {
4077 struct i915_vma *vma, *vn;
4078
4079 trace_i915_gem_object_destroy(obj);
4080
4081 GEM_BUG_ON(i915_gem_object_is_active(obj));
4082 list_for_each_entry_safe(vma, vn,
4083 &obj->vma_list, obj_link) {
4084 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4085 GEM_BUG_ON(i915_vma_is_active(vma));
4086 vma->flags &= ~I915_VMA_PIN_MASK;
4087 i915_vma_close(vma);
4088 }
4089 GEM_BUG_ON(!list_empty(&obj->vma_list));
4090 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4091
4092 list_del(&obj->global_link);
4093 }
4094 intel_runtime_pm_put(i915);
4095 mutex_unlock(&i915->drm.struct_mutex);
4096
4097 llist_for_each_entry_safe(obj, on, freed, freed) {
4098 GEM_BUG_ON(obj->bind_count);
4099 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4100
4101 if (obj->ops->release)
4102 obj->ops->release(obj);
4103
4104 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4105 atomic_set(&obj->mm.pages_pin_count, 0);
4106 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4107 GEM_BUG_ON(obj->mm.pages);
4108
4109 if (obj->base.import_attach)
4110 drm_prime_gem_destroy(&obj->base, NULL);
4111
4112 reservation_object_fini(&obj->__builtin_resv);
4113 drm_gem_object_release(&obj->base);
4114 i915_gem_info_remove_obj(i915, obj->base.size);
4115
4116 kfree(obj->bit_17);
4117 i915_gem_object_free(obj);
4118 }
4119 }
4120
4121 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4122 {
4123 struct llist_node *freed;
4124
4125 freed = llist_del_all(&i915->mm.free_list);
4126 if (unlikely(freed))
4127 __i915_gem_free_objects(i915, freed);
4128 }
4129
4130 static void __i915_gem_free_work(struct work_struct *work)
4131 {
4132 struct drm_i915_private *i915 =
4133 container_of(work, struct drm_i915_private, mm.free_work);
4134 struct llist_node *freed;
4135
4136 /* All file-owned VMA should have been released by this point through
4137 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4138 * However, the object may also be bound into the global GTT (e.g.
4139 * older GPUs without per-process support, or for direct access through
4140 * the GTT either for the user or for scanout). Those VMA still need to
4141 * unbound now.
4142 */
4143
4144 while ((freed = llist_del_all(&i915->mm.free_list)))
4145 __i915_gem_free_objects(i915, freed);
4146 }
4147
4148 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4149 {
4150 struct drm_i915_gem_object *obj =
4151 container_of(head, typeof(*obj), rcu);
4152 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4153
4154 /* We can't simply use call_rcu() from i915_gem_free_object()
4155 * as we need to block whilst unbinding, and the call_rcu
4156 * task may be called from softirq context. So we take a
4157 * detour through a worker.
4158 */
4159 if (llist_add(&obj->freed, &i915->mm.free_list))
4160 schedule_work(&i915->mm.free_work);
4161 }
4162
4163 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4164 {
4165 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4166
4167 if (obj->mm.quirked)
4168 __i915_gem_object_unpin_pages(obj);
4169
4170 if (discard_backing_storage(obj))
4171 obj->mm.madv = I915_MADV_DONTNEED;
4172
4173 /* Before we free the object, make sure any pure RCU-only
4174 * read-side critical sections are complete, e.g.
4175 * i915_gem_busy_ioctl(). For the corresponding synchronized
4176 * lookup see i915_gem_object_lookup_rcu().
4177 */
4178 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4179 }
4180
4181 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4182 {
4183 lockdep_assert_held(&obj->base.dev->struct_mutex);
4184
4185 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4186 if (i915_gem_object_is_active(obj))
4187 i915_gem_object_set_active_reference(obj);
4188 else
4189 i915_gem_object_put(obj);
4190 }
4191
4192 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4193 {
4194 struct intel_engine_cs *engine;
4195 enum intel_engine_id id;
4196
4197 for_each_engine(engine, dev_priv, id)
4198 GEM_BUG_ON(engine->last_retired_context &&
4199 !i915_gem_context_is_kernel(engine->last_retired_context));
4200 }
4201
4202 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4203 {
4204 struct drm_device *dev = &dev_priv->drm;
4205 int ret;
4206
4207 intel_suspend_gt_powersave(dev_priv);
4208
4209 mutex_lock(&dev->struct_mutex);
4210
4211 /* We have to flush all the executing contexts to main memory so
4212 * that they can saved in the hibernation image. To ensure the last
4213 * context image is coherent, we have to switch away from it. That
4214 * leaves the dev_priv->kernel_context still active when
4215 * we actually suspend, and its image in memory may not match the GPU
4216 * state. Fortunately, the kernel_context is disposable and we do
4217 * not rely on its state.
4218 */
4219 ret = i915_gem_switch_to_kernel_context(dev_priv);
4220 if (ret)
4221 goto err;
4222
4223 ret = i915_gem_wait_for_idle(dev_priv,
4224 I915_WAIT_INTERRUPTIBLE |
4225 I915_WAIT_LOCKED);
4226 if (ret)
4227 goto err;
4228
4229 i915_gem_retire_requests(dev_priv);
4230 GEM_BUG_ON(dev_priv->gt.active_requests);
4231
4232 assert_kernel_context_is_current(dev_priv);
4233 i915_gem_context_lost(dev_priv);
4234 mutex_unlock(&dev->struct_mutex);
4235
4236 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4237 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4238
4239 /* As the idle_work is rearming if it detects a race, play safe and
4240 * repeat the flush until it is definitely idle.
4241 */
4242 while (flush_delayed_work(&dev_priv->gt.idle_work))
4243 ;
4244
4245 i915_gem_drain_freed_objects(dev_priv);
4246
4247 /* Assert that we sucessfully flushed all the work and
4248 * reset the GPU back to its idle, low power state.
4249 */
4250 WARN_ON(dev_priv->gt.awake);
4251 WARN_ON(!intel_execlists_idle(dev_priv));
4252
4253 /*
4254 * Neither the BIOS, ourselves or any other kernel
4255 * expects the system to be in execlists mode on startup,
4256 * so we need to reset the GPU back to legacy mode. And the only
4257 * known way to disable logical contexts is through a GPU reset.
4258 *
4259 * So in order to leave the system in a known default configuration,
4260 * always reset the GPU upon unload and suspend. Afterwards we then
4261 * clean up the GEM state tracking, flushing off the requests and
4262 * leaving the system in a known idle state.
4263 *
4264 * Note that is of the upmost importance that the GPU is idle and
4265 * all stray writes are flushed *before* we dismantle the backing
4266 * storage for the pinned objects.
4267 *
4268 * However, since we are uncertain that resetting the GPU on older
4269 * machines is a good idea, we don't - just in case it leaves the
4270 * machine in an unusable condition.
4271 */
4272 if (HAS_HW_CONTEXTS(dev_priv)) {
4273 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4274 WARN_ON(reset && reset != -ENODEV);
4275 }
4276
4277 return 0;
4278
4279 err:
4280 mutex_unlock(&dev->struct_mutex);
4281 return ret;
4282 }
4283
4284 void i915_gem_resume(struct drm_i915_private *dev_priv)
4285 {
4286 struct drm_device *dev = &dev_priv->drm;
4287
4288 WARN_ON(dev_priv->gt.awake);
4289
4290 mutex_lock(&dev->struct_mutex);
4291 i915_gem_restore_gtt_mappings(dev_priv);
4292
4293 /* As we didn't flush the kernel context before suspend, we cannot
4294 * guarantee that the context image is complete. So let's just reset
4295 * it and start again.
4296 */
4297 dev_priv->gt.resume(dev_priv);
4298
4299 mutex_unlock(&dev->struct_mutex);
4300 }
4301
4302 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4303 {
4304 if (INTEL_GEN(dev_priv) < 5 ||
4305 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4306 return;
4307
4308 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4309 DISP_TILE_SURFACE_SWIZZLING);
4310
4311 if (IS_GEN5(dev_priv))
4312 return;
4313
4314 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4315 if (IS_GEN6(dev_priv))
4316 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4317 else if (IS_GEN7(dev_priv))
4318 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4319 else if (IS_GEN8(dev_priv))
4320 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4321 else
4322 BUG();
4323 }
4324
4325 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4326 {
4327 I915_WRITE(RING_CTL(base), 0);
4328 I915_WRITE(RING_HEAD(base), 0);
4329 I915_WRITE(RING_TAIL(base), 0);
4330 I915_WRITE(RING_START(base), 0);
4331 }
4332
4333 static void init_unused_rings(struct drm_i915_private *dev_priv)
4334 {
4335 if (IS_I830(dev_priv)) {
4336 init_unused_ring(dev_priv, PRB1_BASE);
4337 init_unused_ring(dev_priv, SRB0_BASE);
4338 init_unused_ring(dev_priv, SRB1_BASE);
4339 init_unused_ring(dev_priv, SRB2_BASE);
4340 init_unused_ring(dev_priv, SRB3_BASE);
4341 } else if (IS_GEN2(dev_priv)) {
4342 init_unused_ring(dev_priv, SRB0_BASE);
4343 init_unused_ring(dev_priv, SRB1_BASE);
4344 } else if (IS_GEN3(dev_priv)) {
4345 init_unused_ring(dev_priv, PRB1_BASE);
4346 init_unused_ring(dev_priv, PRB2_BASE);
4347 }
4348 }
4349
4350 int
4351 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4352 {
4353 struct intel_engine_cs *engine;
4354 enum intel_engine_id id;
4355 int ret;
4356
4357 dev_priv->gt.last_init_time = ktime_get();
4358
4359 /* Double layer security blanket, see i915_gem_init() */
4360 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4361
4362 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4363 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4364
4365 if (IS_HASWELL(dev_priv))
4366 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4367 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4368
4369 if (HAS_PCH_NOP(dev_priv)) {
4370 if (IS_IVYBRIDGE(dev_priv)) {
4371 u32 temp = I915_READ(GEN7_MSG_CTL);
4372 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4373 I915_WRITE(GEN7_MSG_CTL, temp);
4374 } else if (INTEL_GEN(dev_priv) >= 7) {
4375 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4376 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4377 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4378 }
4379 }
4380
4381 i915_gem_init_swizzling(dev_priv);
4382
4383 /*
4384 * At least 830 can leave some of the unused rings
4385 * "active" (ie. head != tail) after resume which
4386 * will prevent c3 entry. Makes sure all unused rings
4387 * are totally idle.
4388 */
4389 init_unused_rings(dev_priv);
4390
4391 BUG_ON(!dev_priv->kernel_context);
4392
4393 ret = i915_ppgtt_init_hw(dev_priv);
4394 if (ret) {
4395 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4396 goto out;
4397 }
4398
4399 /* Need to do basic initialisation of all rings first: */
4400 for_each_engine(engine, dev_priv, id) {
4401 ret = engine->init_hw(engine);
4402 if (ret)
4403 goto out;
4404 }
4405
4406 intel_mocs_init_l3cc_table(dev_priv);
4407
4408 /* We can't enable contexts until all firmware is loaded */
4409 ret = intel_guc_setup(dev_priv);
4410 if (ret)
4411 goto out;
4412
4413 out:
4414 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4415 return ret;
4416 }
4417
4418 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4419 {
4420 if (INTEL_INFO(dev_priv)->gen < 6)
4421 return false;
4422
4423 /* TODO: make semaphores and Execlists play nicely together */
4424 if (i915.enable_execlists)
4425 return false;
4426
4427 if (value >= 0)
4428 return value;
4429
4430 #ifdef CONFIG_INTEL_IOMMU
4431 /* Enable semaphores on SNB when IO remapping is off */
4432 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4433 return false;
4434 #endif
4435
4436 return true;
4437 }
4438
4439 int i915_gem_init(struct drm_i915_private *dev_priv)
4440 {
4441 int ret;
4442
4443 mutex_lock(&dev_priv->drm.struct_mutex);
4444
4445 if (!i915.enable_execlists) {
4446 dev_priv->gt.resume = intel_legacy_submission_resume;
4447 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4448 } else {
4449 dev_priv->gt.resume = intel_lr_context_resume;
4450 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4451 }
4452
4453 /* This is just a security blanket to placate dragons.
4454 * On some systems, we very sporadically observe that the first TLBs
4455 * used by the CS may be stale, despite us poking the TLB reset. If
4456 * we hold the forcewake during initialisation these problems
4457 * just magically go away.
4458 */
4459 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4460
4461 i915_gem_init_userptr(dev_priv);
4462
4463 ret = i915_gem_init_ggtt(dev_priv);
4464 if (ret)
4465 goto out_unlock;
4466
4467 ret = i915_gem_context_init(dev_priv);
4468 if (ret)
4469 goto out_unlock;
4470
4471 ret = intel_engines_init(dev_priv);
4472 if (ret)
4473 goto out_unlock;
4474
4475 ret = i915_gem_init_hw(dev_priv);
4476 if (ret == -EIO) {
4477 /* Allow engine initialisation to fail by marking the GPU as
4478 * wedged. But we only want to do this where the GPU is angry,
4479 * for all other failure, such as an allocation failure, bail.
4480 */
4481 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4482 i915_gem_set_wedged(dev_priv);
4483 ret = 0;
4484 }
4485
4486 out_unlock:
4487 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4488 mutex_unlock(&dev_priv->drm.struct_mutex);
4489
4490 return ret;
4491 }
4492
4493 void
4494 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4495 {
4496 struct intel_engine_cs *engine;
4497 enum intel_engine_id id;
4498
4499 for_each_engine(engine, dev_priv, id)
4500 dev_priv->gt.cleanup_engine(engine);
4501 }
4502
4503 void
4504 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4505 {
4506 int i;
4507
4508 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4509 !IS_CHERRYVIEW(dev_priv))
4510 dev_priv->num_fence_regs = 32;
4511 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4512 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4513 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4514 dev_priv->num_fence_regs = 16;
4515 else
4516 dev_priv->num_fence_regs = 8;
4517
4518 if (intel_vgpu_active(dev_priv))
4519 dev_priv->num_fence_regs =
4520 I915_READ(vgtif_reg(avail_rs.fence_num));
4521
4522 /* Initialize fence registers to zero */
4523 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4524 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4525
4526 fence->i915 = dev_priv;
4527 fence->id = i;
4528 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4529 }
4530 i915_gem_restore_fences(dev_priv);
4531
4532 i915_gem_detect_bit_6_swizzle(dev_priv);
4533 }
4534
4535 int
4536 i915_gem_load_init(struct drm_i915_private *dev_priv)
4537 {
4538 int err = -ENOMEM;
4539
4540 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4541 if (!dev_priv->objects)
4542 goto err_out;
4543
4544 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4545 if (!dev_priv->vmas)
4546 goto err_objects;
4547
4548 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4549 SLAB_HWCACHE_ALIGN |
4550 SLAB_RECLAIM_ACCOUNT |
4551 SLAB_DESTROY_BY_RCU);
4552 if (!dev_priv->requests)
4553 goto err_vmas;
4554
4555 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4556 SLAB_HWCACHE_ALIGN |
4557 SLAB_RECLAIM_ACCOUNT);
4558 if (!dev_priv->dependencies)
4559 goto err_requests;
4560
4561 mutex_lock(&dev_priv->drm.struct_mutex);
4562 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4563 err = i915_gem_timeline_init__global(dev_priv);
4564 mutex_unlock(&dev_priv->drm.struct_mutex);
4565 if (err)
4566 goto err_dependencies;
4567
4568 INIT_LIST_HEAD(&dev_priv->context_list);
4569 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4570 init_llist_head(&dev_priv->mm.free_list);
4571 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4572 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4573 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4574 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4575 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4576 i915_gem_retire_work_handler);
4577 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4578 i915_gem_idle_work_handler);
4579 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4580 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4581
4582 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4583
4584 init_waitqueue_head(&dev_priv->pending_flip_queue);
4585
4586 dev_priv->mm.interruptible = true;
4587
4588 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4589
4590 spin_lock_init(&dev_priv->fb_tracking.lock);
4591
4592 return 0;
4593
4594 err_dependencies:
4595 kmem_cache_destroy(dev_priv->dependencies);
4596 err_requests:
4597 kmem_cache_destroy(dev_priv->requests);
4598 err_vmas:
4599 kmem_cache_destroy(dev_priv->vmas);
4600 err_objects:
4601 kmem_cache_destroy(dev_priv->objects);
4602 err_out:
4603 return err;
4604 }
4605
4606 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4607 {
4608 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4609
4610 mutex_lock(&dev_priv->drm.struct_mutex);
4611 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4612 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4613 mutex_unlock(&dev_priv->drm.struct_mutex);
4614
4615 kmem_cache_destroy(dev_priv->dependencies);
4616 kmem_cache_destroy(dev_priv->requests);
4617 kmem_cache_destroy(dev_priv->vmas);
4618 kmem_cache_destroy(dev_priv->objects);
4619
4620 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4621 rcu_barrier();
4622 }
4623
4624 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4625 {
4626 intel_runtime_pm_get(dev_priv);
4627
4628 mutex_lock(&dev_priv->drm.struct_mutex);
4629 i915_gem_shrink_all(dev_priv);
4630 mutex_unlock(&dev_priv->drm.struct_mutex);
4631
4632 intel_runtime_pm_put(dev_priv);
4633
4634 return 0;
4635 }
4636
4637 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4638 {
4639 struct drm_i915_gem_object *obj;
4640 struct list_head *phases[] = {
4641 &dev_priv->mm.unbound_list,
4642 &dev_priv->mm.bound_list,
4643 NULL
4644 }, **p;
4645
4646 /* Called just before we write the hibernation image.
4647 *
4648 * We need to update the domain tracking to reflect that the CPU
4649 * will be accessing all the pages to create and restore from the
4650 * hibernation, and so upon restoration those pages will be in the
4651 * CPU domain.
4652 *
4653 * To make sure the hibernation image contains the latest state,
4654 * we update that state just before writing out the image.
4655 *
4656 * To try and reduce the hibernation image, we manually shrink
4657 * the objects as well.
4658 */
4659
4660 mutex_lock(&dev_priv->drm.struct_mutex);
4661 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4662
4663 for (p = phases; *p; p++) {
4664 list_for_each_entry(obj, *p, global_link) {
4665 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4666 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4667 }
4668 }
4669 mutex_unlock(&dev_priv->drm.struct_mutex);
4670
4671 return 0;
4672 }
4673
4674 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4675 {
4676 struct drm_i915_file_private *file_priv = file->driver_priv;
4677 struct drm_i915_gem_request *request;
4678
4679 /* Clean up our request list when the client is going away, so that
4680 * later retire_requests won't dereference our soon-to-be-gone
4681 * file_priv.
4682 */
4683 spin_lock(&file_priv->mm.lock);
4684 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4685 request->file_priv = NULL;
4686 spin_unlock(&file_priv->mm.lock);
4687
4688 if (!list_empty(&file_priv->rps.link)) {
4689 spin_lock(&to_i915(dev)->rps.client_lock);
4690 list_del(&file_priv->rps.link);
4691 spin_unlock(&to_i915(dev)->rps.client_lock);
4692 }
4693 }
4694
4695 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4696 {
4697 struct drm_i915_file_private *file_priv;
4698 int ret;
4699
4700 DRM_DEBUG("\n");
4701
4702 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4703 if (!file_priv)
4704 return -ENOMEM;
4705
4706 file->driver_priv = file_priv;
4707 file_priv->dev_priv = to_i915(dev);
4708 file_priv->file = file;
4709 INIT_LIST_HEAD(&file_priv->rps.link);
4710
4711 spin_lock_init(&file_priv->mm.lock);
4712 INIT_LIST_HEAD(&file_priv->mm.request_list);
4713
4714 file_priv->bsd_engine = -1;
4715
4716 ret = i915_gem_context_open(dev, file);
4717 if (ret)
4718 kfree(file_priv);
4719
4720 return ret;
4721 }
4722
4723 /**
4724 * i915_gem_track_fb - update frontbuffer tracking
4725 * @old: current GEM buffer for the frontbuffer slots
4726 * @new: new GEM buffer for the frontbuffer slots
4727 * @frontbuffer_bits: bitmask of frontbuffer slots
4728 *
4729 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4730 * from @old and setting them in @new. Both @old and @new can be NULL.
4731 */
4732 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4733 struct drm_i915_gem_object *new,
4734 unsigned frontbuffer_bits)
4735 {
4736 /* Control of individual bits within the mask are guarded by
4737 * the owning plane->mutex, i.e. we can never see concurrent
4738 * manipulation of individual bits. But since the bitfield as a whole
4739 * is updated using RMW, we need to use atomics in order to update
4740 * the bits.
4741 */
4742 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4743 sizeof(atomic_t) * BITS_PER_BYTE);
4744
4745 if (old) {
4746 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4747 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4748 }
4749
4750 if (new) {
4751 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4752 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4753 }
4754 }
4755
4756 /* Allocate a new GEM object and fill it with the supplied data */
4757 struct drm_i915_gem_object *
4758 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4759 const void *data, size_t size)
4760 {
4761 struct drm_i915_gem_object *obj;
4762 struct sg_table *sg;
4763 size_t bytes;
4764 int ret;
4765
4766 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4767 if (IS_ERR(obj))
4768 return obj;
4769
4770 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4771 if (ret)
4772 goto fail;
4773
4774 ret = i915_gem_object_pin_pages(obj);
4775 if (ret)
4776 goto fail;
4777
4778 sg = obj->mm.pages;
4779 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4780 obj->mm.dirty = true; /* Backing store is now out of date */
4781 i915_gem_object_unpin_pages(obj);
4782
4783 if (WARN_ON(bytes != size)) {
4784 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4785 ret = -EFAULT;
4786 goto fail;
4787 }
4788
4789 return obj;
4790
4791 fail:
4792 i915_gem_object_put(obj);
4793 return ERR_PTR(ret);
4794 }
4795
4796 struct scatterlist *
4797 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4798 unsigned int n,
4799 unsigned int *offset)
4800 {
4801 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4802 struct scatterlist *sg;
4803 unsigned int idx, count;
4804
4805 might_sleep();
4806 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4807 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4808
4809 /* As we iterate forward through the sg, we record each entry in a
4810 * radixtree for quick repeated (backwards) lookups. If we have seen
4811 * this index previously, we will have an entry for it.
4812 *
4813 * Initial lookup is O(N), but this is amortized to O(1) for
4814 * sequential page access (where each new request is consecutive
4815 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4816 * i.e. O(1) with a large constant!
4817 */
4818 if (n < READ_ONCE(iter->sg_idx))
4819 goto lookup;
4820
4821 mutex_lock(&iter->lock);
4822
4823 /* We prefer to reuse the last sg so that repeated lookup of this
4824 * (or the subsequent) sg are fast - comparing against the last
4825 * sg is faster than going through the radixtree.
4826 */
4827
4828 sg = iter->sg_pos;
4829 idx = iter->sg_idx;
4830 count = __sg_page_count(sg);
4831
4832 while (idx + count <= n) {
4833 unsigned long exception, i;
4834 int ret;
4835
4836 /* If we cannot allocate and insert this entry, or the
4837 * individual pages from this range, cancel updating the
4838 * sg_idx so that on this lookup we are forced to linearly
4839 * scan onwards, but on future lookups we will try the
4840 * insertion again (in which case we need to be careful of
4841 * the error return reporting that we have already inserted
4842 * this index).
4843 */
4844 ret = radix_tree_insert(&iter->radix, idx, sg);
4845 if (ret && ret != -EEXIST)
4846 goto scan;
4847
4848 exception =
4849 RADIX_TREE_EXCEPTIONAL_ENTRY |
4850 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4851 for (i = 1; i < count; i++) {
4852 ret = radix_tree_insert(&iter->radix, idx + i,
4853 (void *)exception);
4854 if (ret && ret != -EEXIST)
4855 goto scan;
4856 }
4857
4858 idx += count;
4859 sg = ____sg_next(sg);
4860 count = __sg_page_count(sg);
4861 }
4862
4863 scan:
4864 iter->sg_pos = sg;
4865 iter->sg_idx = idx;
4866
4867 mutex_unlock(&iter->lock);
4868
4869 if (unlikely(n < idx)) /* insertion completed by another thread */
4870 goto lookup;
4871
4872 /* In case we failed to insert the entry into the radixtree, we need
4873 * to look beyond the current sg.
4874 */
4875 while (idx + count <= n) {
4876 idx += count;
4877 sg = ____sg_next(sg);
4878 count = __sg_page_count(sg);
4879 }
4880
4881 *offset = n - idx;
4882 return sg;
4883
4884 lookup:
4885 rcu_read_lock();
4886
4887 sg = radix_tree_lookup(&iter->radix, n);
4888 GEM_BUG_ON(!sg);
4889
4890 /* If this index is in the middle of multi-page sg entry,
4891 * the radixtree will contain an exceptional entry that points
4892 * to the start of that range. We will return the pointer to
4893 * the base page and the offset of this page within the
4894 * sg entry's range.
4895 */
4896 *offset = 0;
4897 if (unlikely(radix_tree_exception(sg))) {
4898 unsigned long base =
4899 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4900
4901 sg = radix_tree_lookup(&iter->radix, base);
4902 GEM_BUG_ON(!sg);
4903
4904 *offset = n - base;
4905 }
4906
4907 rcu_read_unlock();
4908
4909 return sg;
4910 }
4911
4912 struct page *
4913 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4914 {
4915 struct scatterlist *sg;
4916 unsigned int offset;
4917
4918 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4919
4920 sg = i915_gem_object_get_sg(obj, n, &offset);
4921 return nth_page(sg_page(sg), offset);
4922 }
4923
4924 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4925 struct page *
4926 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4927 unsigned int n)
4928 {
4929 struct page *page;
4930
4931 page = i915_gem_object_get_page(obj, n);
4932 if (!obj->mm.dirty)
4933 set_page_dirty(page);
4934
4935 return page;
4936 }
4937
4938 dma_addr_t
4939 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4940 unsigned long n)
4941 {
4942 struct scatterlist *sg;
4943 unsigned int offset;
4944
4945 sg = i915_gem_object_get_sg(obj, n, &offset);
4946 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4947 }