]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-fixes-2015-07-15' into drm-intel-next-queued
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct i915_gtt *ggtt = &dev_priv->gtt;
153 struct i915_vma *vma;
154 size_t pinned;
155
156 pinned = 0;
157 mutex_lock(&dev->struct_mutex);
158 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
159 if (vma->pin_count)
160 pinned += vma->node.size;
161 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
162 if (vma->pin_count)
163 pinned += vma->node.size;
164 mutex_unlock(&dev->struct_mutex);
165
166 args->aper_size = dev_priv->gtt.base.total;
167 args->aper_available_size = args->aper_size - pinned;
168
169 return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
176 char *vaddr = obj->phys_handle->vaddr;
177 struct sg_table *st;
178 struct scatterlist *sg;
179 int i;
180
181 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182 return -EINVAL;
183
184 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185 struct page *page;
186 char *src;
187
188 page = shmem_read_mapping_page(mapping, i);
189 if (IS_ERR(page))
190 return PTR_ERR(page);
191
192 src = kmap_atomic(page);
193 memcpy(vaddr, src, PAGE_SIZE);
194 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195 kunmap_atomic(src);
196
197 page_cache_release(page);
198 vaddr += PAGE_SIZE;
199 }
200
201 i915_gem_chipset_flush(obj->base.dev);
202
203 st = kmalloc(sizeof(*st), GFP_KERNEL);
204 if (st == NULL)
205 return -ENOMEM;
206
207 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208 kfree(st);
209 return -ENOMEM;
210 }
211
212 sg = st->sgl;
213 sg->offset = 0;
214 sg->length = obj->base.size;
215
216 sg_dma_address(sg) = obj->phys_handle->busaddr;
217 sg_dma_len(sg) = obj->base.size;
218
219 obj->pages = st;
220 return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226 int ret;
227
228 BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230 ret = i915_gem_object_set_to_cpu_domain(obj, true);
231 if (ret) {
232 /* In the event of a disaster, abandon all caches and
233 * hope for the best.
234 */
235 WARN_ON(ret != -EIO);
236 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
237 }
238
239 if (obj->madv == I915_MADV_DONTNEED)
240 obj->dirty = 0;
241
242 if (obj->dirty) {
243 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
244 char *vaddr = obj->phys_handle->vaddr;
245 int i;
246
247 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
248 struct page *page;
249 char *dst;
250
251 page = shmem_read_mapping_page(mapping, i);
252 if (IS_ERR(page))
253 continue;
254
255 dst = kmap_atomic(page);
256 drm_clflush_virt_range(vaddr, PAGE_SIZE);
257 memcpy(dst, vaddr, PAGE_SIZE);
258 kunmap_atomic(dst);
259
260 set_page_dirty(page);
261 if (obj->madv == I915_MADV_WILLNEED)
262 mark_page_accessed(page);
263 page_cache_release(page);
264 vaddr += PAGE_SIZE;
265 }
266 obj->dirty = 0;
267 }
268
269 sg_free_table(obj->pages);
270 kfree(obj->pages);
271 }
272
273 static void
274 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
275 {
276 drm_pci_free(obj->base.dev, obj->phys_handle);
277 }
278
279 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
280 .get_pages = i915_gem_object_get_pages_phys,
281 .put_pages = i915_gem_object_put_pages_phys,
282 .release = i915_gem_object_release_phys,
283 };
284
285 static int
286 drop_pages(struct drm_i915_gem_object *obj)
287 {
288 struct i915_vma *vma, *next;
289 int ret;
290
291 drm_gem_object_reference(&obj->base);
292 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
293 if (i915_vma_unbind(vma))
294 break;
295
296 ret = i915_gem_object_put_pages(obj);
297 drm_gem_object_unreference(&obj->base);
298
299 return ret;
300 }
301
302 int
303 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
304 int align)
305 {
306 drm_dma_handle_t *phys;
307 int ret;
308
309 if (obj->phys_handle) {
310 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
311 return -EBUSY;
312
313 return 0;
314 }
315
316 if (obj->madv != I915_MADV_WILLNEED)
317 return -EFAULT;
318
319 if (obj->base.filp == NULL)
320 return -EINVAL;
321
322 ret = drop_pages(obj);
323 if (ret)
324 return ret;
325
326 /* create a new object */
327 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
328 if (!phys)
329 return -ENOMEM;
330
331 obj->phys_handle = phys;
332 obj->ops = &i915_gem_phys_ops;
333
334 return i915_gem_object_get_pages(obj);
335 }
336
337 static int
338 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
339 struct drm_i915_gem_pwrite *args,
340 struct drm_file *file_priv)
341 {
342 struct drm_device *dev = obj->base.dev;
343 void *vaddr = obj->phys_handle->vaddr + args->offset;
344 char __user *user_data = to_user_ptr(args->data_ptr);
345 int ret = 0;
346
347 /* We manually control the domain here and pretend that it
348 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
349 */
350 ret = i915_gem_object_wait_rendering(obj, false);
351 if (ret)
352 return ret;
353
354 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
355 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
356 unsigned long unwritten;
357
358 /* The physical object once assigned is fixed for the lifetime
359 * of the obj, so we can safely drop the lock and continue
360 * to access vaddr.
361 */
362 mutex_unlock(&dev->struct_mutex);
363 unwritten = copy_from_user(vaddr, user_data, args->size);
364 mutex_lock(&dev->struct_mutex);
365 if (unwritten) {
366 ret = -EFAULT;
367 goto out;
368 }
369 }
370
371 drm_clflush_virt_range(vaddr, args->size);
372 i915_gem_chipset_flush(dev);
373
374 out:
375 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
376 return ret;
377 }
378
379 void *i915_gem_object_alloc(struct drm_device *dev)
380 {
381 struct drm_i915_private *dev_priv = dev->dev_private;
382 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
383 }
384
385 void i915_gem_object_free(struct drm_i915_gem_object *obj)
386 {
387 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
388 kmem_cache_free(dev_priv->objects, obj);
389 }
390
391 static int
392 i915_gem_create(struct drm_file *file,
393 struct drm_device *dev,
394 uint64_t size,
395 uint32_t *handle_p)
396 {
397 struct drm_i915_gem_object *obj;
398 int ret;
399 u32 handle;
400
401 size = roundup(size, PAGE_SIZE);
402 if (size == 0)
403 return -EINVAL;
404
405 /* Allocate the new object */
406 obj = i915_gem_alloc_object(dev, size);
407 if (obj == NULL)
408 return -ENOMEM;
409
410 ret = drm_gem_handle_create(file, &obj->base, &handle);
411 /* drop reference from allocate - handle holds it now */
412 drm_gem_object_unreference_unlocked(&obj->base);
413 if (ret)
414 return ret;
415
416 *handle_p = handle;
417 return 0;
418 }
419
420 int
421 i915_gem_dumb_create(struct drm_file *file,
422 struct drm_device *dev,
423 struct drm_mode_create_dumb *args)
424 {
425 /* have to work out size/pitch and return them */
426 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
427 args->size = args->pitch * args->height;
428 return i915_gem_create(file, dev,
429 args->size, &args->handle);
430 }
431
432 /**
433 * Creates a new mm object and returns a handle to it.
434 */
435 int
436 i915_gem_create_ioctl(struct drm_device *dev, void *data,
437 struct drm_file *file)
438 {
439 struct drm_i915_gem_create *args = data;
440
441 return i915_gem_create(file, dev,
442 args->size, &args->handle);
443 }
444
445 static inline int
446 __copy_to_user_swizzled(char __user *cpu_vaddr,
447 const char *gpu_vaddr, int gpu_offset,
448 int length)
449 {
450 int ret, cpu_offset = 0;
451
452 while (length > 0) {
453 int cacheline_end = ALIGN(gpu_offset + 1, 64);
454 int this_length = min(cacheline_end - gpu_offset, length);
455 int swizzled_gpu_offset = gpu_offset ^ 64;
456
457 ret = __copy_to_user(cpu_vaddr + cpu_offset,
458 gpu_vaddr + swizzled_gpu_offset,
459 this_length);
460 if (ret)
461 return ret + length;
462
463 cpu_offset += this_length;
464 gpu_offset += this_length;
465 length -= this_length;
466 }
467
468 return 0;
469 }
470
471 static inline int
472 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
473 const char __user *cpu_vaddr,
474 int length)
475 {
476 int ret, cpu_offset = 0;
477
478 while (length > 0) {
479 int cacheline_end = ALIGN(gpu_offset + 1, 64);
480 int this_length = min(cacheline_end - gpu_offset, length);
481 int swizzled_gpu_offset = gpu_offset ^ 64;
482
483 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
484 cpu_vaddr + cpu_offset,
485 this_length);
486 if (ret)
487 return ret + length;
488
489 cpu_offset += this_length;
490 gpu_offset += this_length;
491 length -= this_length;
492 }
493
494 return 0;
495 }
496
497 /*
498 * Pins the specified object's pages and synchronizes the object with
499 * GPU accesses. Sets needs_clflush to non-zero if the caller should
500 * flush the object from the CPU cache.
501 */
502 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
503 int *needs_clflush)
504 {
505 int ret;
506
507 *needs_clflush = 0;
508
509 if (!obj->base.filp)
510 return -EINVAL;
511
512 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
513 /* If we're not in the cpu read domain, set ourself into the gtt
514 * read domain and manually flush cachelines (if required). This
515 * optimizes for the case when the gpu will dirty the data
516 * anyway again before the next pread happens. */
517 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
518 obj->cache_level);
519 ret = i915_gem_object_wait_rendering(obj, true);
520 if (ret)
521 return ret;
522 }
523
524 ret = i915_gem_object_get_pages(obj);
525 if (ret)
526 return ret;
527
528 i915_gem_object_pin_pages(obj);
529
530 return ret;
531 }
532
533 /* Per-page copy function for the shmem pread fastpath.
534 * Flushes invalid cachelines before reading the target if
535 * needs_clflush is set. */
536 static int
537 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
538 char __user *user_data,
539 bool page_do_bit17_swizzling, bool needs_clflush)
540 {
541 char *vaddr;
542 int ret;
543
544 if (unlikely(page_do_bit17_swizzling))
545 return -EINVAL;
546
547 vaddr = kmap_atomic(page);
548 if (needs_clflush)
549 drm_clflush_virt_range(vaddr + shmem_page_offset,
550 page_length);
551 ret = __copy_to_user_inatomic(user_data,
552 vaddr + shmem_page_offset,
553 page_length);
554 kunmap_atomic(vaddr);
555
556 return ret ? -EFAULT : 0;
557 }
558
559 static void
560 shmem_clflush_swizzled_range(char *addr, unsigned long length,
561 bool swizzled)
562 {
563 if (unlikely(swizzled)) {
564 unsigned long start = (unsigned long) addr;
565 unsigned long end = (unsigned long) addr + length;
566
567 /* For swizzling simply ensure that we always flush both
568 * channels. Lame, but simple and it works. Swizzled
569 * pwrite/pread is far from a hotpath - current userspace
570 * doesn't use it at all. */
571 start = round_down(start, 128);
572 end = round_up(end, 128);
573
574 drm_clflush_virt_range((void *)start, end - start);
575 } else {
576 drm_clflush_virt_range(addr, length);
577 }
578
579 }
580
581 /* Only difference to the fast-path function is that this can handle bit17
582 * and uses non-atomic copy and kmap functions. */
583 static int
584 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
585 char __user *user_data,
586 bool page_do_bit17_swizzling, bool needs_clflush)
587 {
588 char *vaddr;
589 int ret;
590
591 vaddr = kmap(page);
592 if (needs_clflush)
593 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
594 page_length,
595 page_do_bit17_swizzling);
596
597 if (page_do_bit17_swizzling)
598 ret = __copy_to_user_swizzled(user_data,
599 vaddr, shmem_page_offset,
600 page_length);
601 else
602 ret = __copy_to_user(user_data,
603 vaddr + shmem_page_offset,
604 page_length);
605 kunmap(page);
606
607 return ret ? - EFAULT : 0;
608 }
609
610 static int
611 i915_gem_shmem_pread(struct drm_device *dev,
612 struct drm_i915_gem_object *obj,
613 struct drm_i915_gem_pread *args,
614 struct drm_file *file)
615 {
616 char __user *user_data;
617 ssize_t remain;
618 loff_t offset;
619 int shmem_page_offset, page_length, ret = 0;
620 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
621 int prefaulted = 0;
622 int needs_clflush = 0;
623 struct sg_page_iter sg_iter;
624
625 user_data = to_user_ptr(args->data_ptr);
626 remain = args->size;
627
628 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
629
630 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
631 if (ret)
632 return ret;
633
634 offset = args->offset;
635
636 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
637 offset >> PAGE_SHIFT) {
638 struct page *page = sg_page_iter_page(&sg_iter);
639
640 if (remain <= 0)
641 break;
642
643 /* Operation in this page
644 *
645 * shmem_page_offset = offset within page in shmem file
646 * page_length = bytes to copy for this page
647 */
648 shmem_page_offset = offset_in_page(offset);
649 page_length = remain;
650 if ((shmem_page_offset + page_length) > PAGE_SIZE)
651 page_length = PAGE_SIZE - shmem_page_offset;
652
653 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
654 (page_to_phys(page) & (1 << 17)) != 0;
655
656 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
657 user_data, page_do_bit17_swizzling,
658 needs_clflush);
659 if (ret == 0)
660 goto next_page;
661
662 mutex_unlock(&dev->struct_mutex);
663
664 if (likely(!i915.prefault_disable) && !prefaulted) {
665 ret = fault_in_multipages_writeable(user_data, remain);
666 /* Userspace is tricking us, but we've already clobbered
667 * its pages with the prefault and promised to write the
668 * data up to the first fault. Hence ignore any errors
669 * and just continue. */
670 (void)ret;
671 prefaulted = 1;
672 }
673
674 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
675 user_data, page_do_bit17_swizzling,
676 needs_clflush);
677
678 mutex_lock(&dev->struct_mutex);
679
680 if (ret)
681 goto out;
682
683 next_page:
684 remain -= page_length;
685 user_data += page_length;
686 offset += page_length;
687 }
688
689 out:
690 i915_gem_object_unpin_pages(obj);
691
692 return ret;
693 }
694
695 /**
696 * Reads data from the object referenced by handle.
697 *
698 * On error, the contents of *data are undefined.
699 */
700 int
701 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
702 struct drm_file *file)
703 {
704 struct drm_i915_gem_pread *args = data;
705 struct drm_i915_gem_object *obj;
706 int ret = 0;
707
708 if (args->size == 0)
709 return 0;
710
711 if (!access_ok(VERIFY_WRITE,
712 to_user_ptr(args->data_ptr),
713 args->size))
714 return -EFAULT;
715
716 ret = i915_mutex_lock_interruptible(dev);
717 if (ret)
718 return ret;
719
720 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
721 if (&obj->base == NULL) {
722 ret = -ENOENT;
723 goto unlock;
724 }
725
726 /* Bounds check source. */
727 if (args->offset > obj->base.size ||
728 args->size > obj->base.size - args->offset) {
729 ret = -EINVAL;
730 goto out;
731 }
732
733 /* prime objects have no backing filp to GEM pread/pwrite
734 * pages from.
735 */
736 if (!obj->base.filp) {
737 ret = -EINVAL;
738 goto out;
739 }
740
741 trace_i915_gem_object_pread(obj, args->offset, args->size);
742
743 ret = i915_gem_shmem_pread(dev, obj, args, file);
744
745 out:
746 drm_gem_object_unreference(&obj->base);
747 unlock:
748 mutex_unlock(&dev->struct_mutex);
749 return ret;
750 }
751
752 /* This is the fast write path which cannot handle
753 * page faults in the source data
754 */
755
756 static inline int
757 fast_user_write(struct io_mapping *mapping,
758 loff_t page_base, int page_offset,
759 char __user *user_data,
760 int length)
761 {
762 void __iomem *vaddr_atomic;
763 void *vaddr;
764 unsigned long unwritten;
765
766 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
767 /* We can use the cpu mem copy function because this is X86. */
768 vaddr = (void __force*)vaddr_atomic + page_offset;
769 unwritten = __copy_from_user_inatomic_nocache(vaddr,
770 user_data, length);
771 io_mapping_unmap_atomic(vaddr_atomic);
772 return unwritten;
773 }
774
775 /**
776 * This is the fast pwrite path, where we copy the data directly from the
777 * user into the GTT, uncached.
778 */
779 static int
780 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
781 struct drm_i915_gem_object *obj,
782 struct drm_i915_gem_pwrite *args,
783 struct drm_file *file)
784 {
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 ssize_t remain;
787 loff_t offset, page_base;
788 char __user *user_data;
789 int page_offset, page_length, ret;
790
791 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
792 if (ret)
793 goto out;
794
795 ret = i915_gem_object_set_to_gtt_domain(obj, true);
796 if (ret)
797 goto out_unpin;
798
799 ret = i915_gem_object_put_fence(obj);
800 if (ret)
801 goto out_unpin;
802
803 user_data = to_user_ptr(args->data_ptr);
804 remain = args->size;
805
806 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
807
808 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
809
810 while (remain > 0) {
811 /* Operation in this page
812 *
813 * page_base = page offset within aperture
814 * page_offset = offset within page
815 * page_length = bytes to copy for this page
816 */
817 page_base = offset & PAGE_MASK;
818 page_offset = offset_in_page(offset);
819 page_length = remain;
820 if ((page_offset + remain) > PAGE_SIZE)
821 page_length = PAGE_SIZE - page_offset;
822
823 /* If we get a fault while copying data, then (presumably) our
824 * source page isn't available. Return the error and we'll
825 * retry in the slow path.
826 */
827 if (fast_user_write(dev_priv->gtt.mappable, page_base,
828 page_offset, user_data, page_length)) {
829 ret = -EFAULT;
830 goto out_flush;
831 }
832
833 remain -= page_length;
834 user_data += page_length;
835 offset += page_length;
836 }
837
838 out_flush:
839 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
840 out_unpin:
841 i915_gem_object_ggtt_unpin(obj);
842 out:
843 return ret;
844 }
845
846 /* Per-page copy function for the shmem pwrite fastpath.
847 * Flushes invalid cachelines before writing to the target if
848 * needs_clflush_before is set and flushes out any written cachelines after
849 * writing if needs_clflush is set. */
850 static int
851 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
852 char __user *user_data,
853 bool page_do_bit17_swizzling,
854 bool needs_clflush_before,
855 bool needs_clflush_after)
856 {
857 char *vaddr;
858 int ret;
859
860 if (unlikely(page_do_bit17_swizzling))
861 return -EINVAL;
862
863 vaddr = kmap_atomic(page);
864 if (needs_clflush_before)
865 drm_clflush_virt_range(vaddr + shmem_page_offset,
866 page_length);
867 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
868 user_data, page_length);
869 if (needs_clflush_after)
870 drm_clflush_virt_range(vaddr + shmem_page_offset,
871 page_length);
872 kunmap_atomic(vaddr);
873
874 return ret ? -EFAULT : 0;
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878 * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
881 char __user *user_data,
882 bool page_do_bit17_swizzling,
883 bool needs_clflush_before,
884 bool needs_clflush_after)
885 {
886 char *vaddr;
887 int ret;
888
889 vaddr = kmap(page);
890 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
891 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
892 page_length,
893 page_do_bit17_swizzling);
894 if (page_do_bit17_swizzling)
895 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
896 user_data,
897 page_length);
898 else
899 ret = __copy_from_user(vaddr + shmem_page_offset,
900 user_data,
901 page_length);
902 if (needs_clflush_after)
903 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
904 page_length,
905 page_do_bit17_swizzling);
906 kunmap(page);
907
908 return ret ? -EFAULT : 0;
909 }
910
911 static int
912 i915_gem_shmem_pwrite(struct drm_device *dev,
913 struct drm_i915_gem_object *obj,
914 struct drm_i915_gem_pwrite *args,
915 struct drm_file *file)
916 {
917 ssize_t remain;
918 loff_t offset;
919 char __user *user_data;
920 int shmem_page_offset, page_length, ret = 0;
921 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
922 int hit_slowpath = 0;
923 int needs_clflush_after = 0;
924 int needs_clflush_before = 0;
925 struct sg_page_iter sg_iter;
926
927 user_data = to_user_ptr(args->data_ptr);
928 remain = args->size;
929
930 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
931
932 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
933 /* If we're not in the cpu write domain, set ourself into the gtt
934 * write domain and manually flush cachelines (if required). This
935 * optimizes for the case when the gpu will use the data
936 * right away and we therefore have to clflush anyway. */
937 needs_clflush_after = cpu_write_needs_clflush(obj);
938 ret = i915_gem_object_wait_rendering(obj, false);
939 if (ret)
940 return ret;
941 }
942 /* Same trick applies to invalidate partially written cachelines read
943 * before writing. */
944 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
945 needs_clflush_before =
946 !cpu_cache_is_coherent(dev, obj->cache_level);
947
948 ret = i915_gem_object_get_pages(obj);
949 if (ret)
950 return ret;
951
952 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
953
954 i915_gem_object_pin_pages(obj);
955
956 offset = args->offset;
957 obj->dirty = 1;
958
959 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
960 offset >> PAGE_SHIFT) {
961 struct page *page = sg_page_iter_page(&sg_iter);
962 int partial_cacheline_write;
963
964 if (remain <= 0)
965 break;
966
967 /* Operation in this page
968 *
969 * shmem_page_offset = offset within page in shmem file
970 * page_length = bytes to copy for this page
971 */
972 shmem_page_offset = offset_in_page(offset);
973
974 page_length = remain;
975 if ((shmem_page_offset + page_length) > PAGE_SIZE)
976 page_length = PAGE_SIZE - shmem_page_offset;
977
978 /* If we don't overwrite a cacheline completely we need to be
979 * careful to have up-to-date data by first clflushing. Don't
980 * overcomplicate things and flush the entire patch. */
981 partial_cacheline_write = needs_clflush_before &&
982 ((shmem_page_offset | page_length)
983 & (boot_cpu_data.x86_clflush_size - 1));
984
985 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
986 (page_to_phys(page) & (1 << 17)) != 0;
987
988 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
989 user_data, page_do_bit17_swizzling,
990 partial_cacheline_write,
991 needs_clflush_after);
992 if (ret == 0)
993 goto next_page;
994
995 hit_slowpath = 1;
996 mutex_unlock(&dev->struct_mutex);
997 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
998 user_data, page_do_bit17_swizzling,
999 partial_cacheline_write,
1000 needs_clflush_after);
1001
1002 mutex_lock(&dev->struct_mutex);
1003
1004 if (ret)
1005 goto out;
1006
1007 next_page:
1008 remain -= page_length;
1009 user_data += page_length;
1010 offset += page_length;
1011 }
1012
1013 out:
1014 i915_gem_object_unpin_pages(obj);
1015
1016 if (hit_slowpath) {
1017 /*
1018 * Fixup: Flush cpu caches in case we didn't flush the dirty
1019 * cachelines in-line while writing and the object moved
1020 * out of the cpu write domain while we've dropped the lock.
1021 */
1022 if (!needs_clflush_after &&
1023 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1024 if (i915_gem_clflush_object(obj, obj->pin_display))
1025 i915_gem_chipset_flush(dev);
1026 }
1027 }
1028
1029 if (needs_clflush_after)
1030 i915_gem_chipset_flush(dev);
1031
1032 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1033 return ret;
1034 }
1035
1036 /**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041 int
1042 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043 struct drm_file *file)
1044 {
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 struct drm_i915_gem_pwrite *args = data;
1047 struct drm_i915_gem_object *obj;
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
1054 to_user_ptr(args->data_ptr),
1055 args->size))
1056 return -EFAULT;
1057
1058 if (likely(!i915.prefault_disable)) {
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
1064
1065 intel_runtime_pm_get(dev_priv);
1066
1067 ret = i915_mutex_lock_interruptible(dev);
1068 if (ret)
1069 goto put_rpm;
1070
1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072 if (&obj->base == NULL) {
1073 ret = -ENOENT;
1074 goto unlock;
1075 }
1076
1077 /* Bounds check destination. */
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
1094 ret = -EFAULT;
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
1108 }
1109
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
1116
1117 out:
1118 drm_gem_object_unreference(&obj->base);
1119 unlock:
1120 mutex_unlock(&dev->struct_mutex);
1121 put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
1124 return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129 bool interruptible)
1130 {
1131 if (i915_reset_in_progress(error)) {
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
1139 return -EIO;
1140
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
1148 }
1149
1150 return 0;
1151 }
1152
1153 static void fake_irq(unsigned long data)
1154 {
1155 wake_up_process((struct task_struct *)data);
1156 }
1157
1158 static bool missed_irq(struct drm_i915_private *dev_priv,
1159 struct intel_engine_cs *ring)
1160 {
1161 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1162 }
1163
1164 static int __i915_spin_request(struct drm_i915_gem_request *req)
1165 {
1166 unsigned long timeout;
1167
1168 if (i915_gem_request_get_ring(req)->irq_refcount)
1169 return -EBUSY;
1170
1171 timeout = jiffies + 1;
1172 while (!need_resched()) {
1173 if (i915_gem_request_completed(req, true))
1174 return 0;
1175
1176 if (time_after_eq(jiffies, timeout))
1177 break;
1178
1179 cpu_relax_lowlatency();
1180 }
1181 if (i915_gem_request_completed(req, false))
1182 return 0;
1183
1184 return -EAGAIN;
1185 }
1186
1187 /**
1188 * __i915_wait_request - wait until execution of request has finished
1189 * @req: duh!
1190 * @reset_counter: reset sequence associated with the given request
1191 * @interruptible: do an interruptible wait (normally yes)
1192 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1193 *
1194 * Note: It is of utmost importance that the passed in seqno and reset_counter
1195 * values have been read by the caller in an smp safe manner. Where read-side
1196 * locks are involved, it is sufficient to read the reset_counter before
1197 * unlocking the lock that protects the seqno. For lockless tricks, the
1198 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1199 * inserted.
1200 *
1201 * Returns 0 if the request was found within the alloted time. Else returns the
1202 * errno with remaining time filled in timeout argument.
1203 */
1204 int __i915_wait_request(struct drm_i915_gem_request *req,
1205 unsigned reset_counter,
1206 bool interruptible,
1207 s64 *timeout,
1208 struct intel_rps_client *rps)
1209 {
1210 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1211 struct drm_device *dev = ring->dev;
1212 struct drm_i915_private *dev_priv = dev->dev_private;
1213 const bool irq_test_in_progress =
1214 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1215 DEFINE_WAIT(wait);
1216 unsigned long timeout_expire;
1217 s64 before, now;
1218 int ret;
1219
1220 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1221
1222 if (list_empty(&req->list))
1223 return 0;
1224
1225 if (i915_gem_request_completed(req, true))
1226 return 0;
1227
1228 timeout_expire = timeout ?
1229 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1230
1231 if (INTEL_INFO(dev_priv)->gen >= 6)
1232 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1233
1234 /* Record current time in case interrupted by signal, or wedged */
1235 trace_i915_gem_request_wait_begin(req);
1236 before = ktime_get_raw_ns();
1237
1238 /* Optimistic spin for the next jiffie before touching IRQs */
1239 ret = __i915_spin_request(req);
1240 if (ret == 0)
1241 goto out;
1242
1243 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1244 ret = -ENODEV;
1245 goto out;
1246 }
1247
1248 for (;;) {
1249 struct timer_list timer;
1250
1251 prepare_to_wait(&ring->irq_queue, &wait,
1252 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1253
1254 /* We need to check whether any gpu reset happened in between
1255 * the caller grabbing the seqno and now ... */
1256 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1257 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1258 * is truely gone. */
1259 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1260 if (ret == 0)
1261 ret = -EAGAIN;
1262 break;
1263 }
1264
1265 if (i915_gem_request_completed(req, false)) {
1266 ret = 0;
1267 break;
1268 }
1269
1270 if (interruptible && signal_pending(current)) {
1271 ret = -ERESTARTSYS;
1272 break;
1273 }
1274
1275 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1276 ret = -ETIME;
1277 break;
1278 }
1279
1280 timer.function = NULL;
1281 if (timeout || missed_irq(dev_priv, ring)) {
1282 unsigned long expire;
1283
1284 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1285 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1286 mod_timer(&timer, expire);
1287 }
1288
1289 io_schedule();
1290
1291 if (timer.function) {
1292 del_singleshot_timer_sync(&timer);
1293 destroy_timer_on_stack(&timer);
1294 }
1295 }
1296 if (!irq_test_in_progress)
1297 ring->irq_put(ring);
1298
1299 finish_wait(&ring->irq_queue, &wait);
1300
1301 out:
1302 now = ktime_get_raw_ns();
1303 trace_i915_gem_request_wait_end(req);
1304
1305 if (timeout) {
1306 s64 tres = *timeout - (now - before);
1307
1308 *timeout = tres < 0 ? 0 : tres;
1309
1310 /*
1311 * Apparently ktime isn't accurate enough and occasionally has a
1312 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1313 * things up to make the test happy. We allow up to 1 jiffy.
1314 *
1315 * This is a regrssion from the timespec->ktime conversion.
1316 */
1317 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1318 *timeout = 0;
1319 }
1320
1321 return ret;
1322 }
1323
1324 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1325 struct drm_file *file)
1326 {
1327 struct drm_i915_private *dev_private;
1328 struct drm_i915_file_private *file_priv;
1329
1330 WARN_ON(!req || !file || req->file_priv);
1331
1332 if (!req || !file)
1333 return -EINVAL;
1334
1335 if (req->file_priv)
1336 return -EINVAL;
1337
1338 dev_private = req->ring->dev->dev_private;
1339 file_priv = file->driver_priv;
1340
1341 spin_lock(&file_priv->mm.lock);
1342 req->file_priv = file_priv;
1343 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1344 spin_unlock(&file_priv->mm.lock);
1345
1346 req->pid = get_pid(task_pid(current));
1347
1348 return 0;
1349 }
1350
1351 static inline void
1352 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1353 {
1354 struct drm_i915_file_private *file_priv = request->file_priv;
1355
1356 if (!file_priv)
1357 return;
1358
1359 spin_lock(&file_priv->mm.lock);
1360 list_del(&request->client_list);
1361 request->file_priv = NULL;
1362 spin_unlock(&file_priv->mm.lock);
1363
1364 put_pid(request->pid);
1365 request->pid = NULL;
1366 }
1367
1368 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1369 {
1370 trace_i915_gem_request_retire(request);
1371
1372 /* We know the GPU must have read the request to have
1373 * sent us the seqno + interrupt, so use the position
1374 * of tail of the request to update the last known position
1375 * of the GPU head.
1376 *
1377 * Note this requires that we are always called in request
1378 * completion order.
1379 */
1380 request->ringbuf->last_retired_head = request->postfix;
1381
1382 list_del_init(&request->list);
1383 i915_gem_request_remove_from_client(request);
1384
1385 i915_gem_request_unreference(request);
1386 }
1387
1388 static void
1389 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1390 {
1391 struct intel_engine_cs *engine = req->ring;
1392 struct drm_i915_gem_request *tmp;
1393
1394 lockdep_assert_held(&engine->dev->struct_mutex);
1395
1396 if (list_empty(&req->list))
1397 return;
1398
1399 do {
1400 tmp = list_first_entry(&engine->request_list,
1401 typeof(*tmp), list);
1402
1403 i915_gem_request_retire(tmp);
1404 } while (tmp != req);
1405
1406 WARN_ON(i915_verify_lists(engine->dev));
1407 }
1408
1409 /**
1410 * Waits for a request to be signaled, and cleans up the
1411 * request and object lists appropriately for that event.
1412 */
1413 int
1414 i915_wait_request(struct drm_i915_gem_request *req)
1415 {
1416 struct drm_device *dev;
1417 struct drm_i915_private *dev_priv;
1418 bool interruptible;
1419 int ret;
1420
1421 BUG_ON(req == NULL);
1422
1423 dev = req->ring->dev;
1424 dev_priv = dev->dev_private;
1425 interruptible = dev_priv->mm.interruptible;
1426
1427 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1428
1429 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1430 if (ret)
1431 return ret;
1432
1433 ret = __i915_wait_request(req,
1434 atomic_read(&dev_priv->gpu_error.reset_counter),
1435 interruptible, NULL, NULL);
1436 if (ret)
1437 return ret;
1438
1439 __i915_gem_request_retire__upto(req);
1440 return 0;
1441 }
1442
1443 /**
1444 * Ensures that all rendering to the object has completed and the object is
1445 * safe to unbind from the GTT or access from the CPU.
1446 */
1447 int
1448 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1449 bool readonly)
1450 {
1451 int ret, i;
1452
1453 if (!obj->active)
1454 return 0;
1455
1456 if (readonly) {
1457 if (obj->last_write_req != NULL) {
1458 ret = i915_wait_request(obj->last_write_req);
1459 if (ret)
1460 return ret;
1461
1462 i = obj->last_write_req->ring->id;
1463 if (obj->last_read_req[i] == obj->last_write_req)
1464 i915_gem_object_retire__read(obj, i);
1465 else
1466 i915_gem_object_retire__write(obj);
1467 }
1468 } else {
1469 for (i = 0; i < I915_NUM_RINGS; i++) {
1470 if (obj->last_read_req[i] == NULL)
1471 continue;
1472
1473 ret = i915_wait_request(obj->last_read_req[i]);
1474 if (ret)
1475 return ret;
1476
1477 i915_gem_object_retire__read(obj, i);
1478 }
1479 RQ_BUG_ON(obj->active);
1480 }
1481
1482 return 0;
1483 }
1484
1485 static void
1486 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1487 struct drm_i915_gem_request *req)
1488 {
1489 int ring = req->ring->id;
1490
1491 if (obj->last_read_req[ring] == req)
1492 i915_gem_object_retire__read(obj, ring);
1493 else if (obj->last_write_req == req)
1494 i915_gem_object_retire__write(obj);
1495
1496 __i915_gem_request_retire__upto(req);
1497 }
1498
1499 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1500 * as the object state may change during this call.
1501 */
1502 static __must_check int
1503 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1504 struct intel_rps_client *rps,
1505 bool readonly)
1506 {
1507 struct drm_device *dev = obj->base.dev;
1508 struct drm_i915_private *dev_priv = dev->dev_private;
1509 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1510 unsigned reset_counter;
1511 int ret, i, n = 0;
1512
1513 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1514 BUG_ON(!dev_priv->mm.interruptible);
1515
1516 if (!obj->active)
1517 return 0;
1518
1519 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1520 if (ret)
1521 return ret;
1522
1523 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1524
1525 if (readonly) {
1526 struct drm_i915_gem_request *req;
1527
1528 req = obj->last_write_req;
1529 if (req == NULL)
1530 return 0;
1531
1532 requests[n++] = i915_gem_request_reference(req);
1533 } else {
1534 for (i = 0; i < I915_NUM_RINGS; i++) {
1535 struct drm_i915_gem_request *req;
1536
1537 req = obj->last_read_req[i];
1538 if (req == NULL)
1539 continue;
1540
1541 requests[n++] = i915_gem_request_reference(req);
1542 }
1543 }
1544
1545 mutex_unlock(&dev->struct_mutex);
1546 for (i = 0; ret == 0 && i < n; i++)
1547 ret = __i915_wait_request(requests[i], reset_counter, true,
1548 NULL, rps);
1549 mutex_lock(&dev->struct_mutex);
1550
1551 for (i = 0; i < n; i++) {
1552 if (ret == 0)
1553 i915_gem_object_retire_request(obj, requests[i]);
1554 i915_gem_request_unreference(requests[i]);
1555 }
1556
1557 return ret;
1558 }
1559
1560 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1561 {
1562 struct drm_i915_file_private *fpriv = file->driver_priv;
1563 return &fpriv->rps;
1564 }
1565
1566 /**
1567 * Called when user space prepares to use an object with the CPU, either
1568 * through the mmap ioctl's mapping or a GTT mapping.
1569 */
1570 int
1571 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1572 struct drm_file *file)
1573 {
1574 struct drm_i915_gem_set_domain *args = data;
1575 struct drm_i915_gem_object *obj;
1576 uint32_t read_domains = args->read_domains;
1577 uint32_t write_domain = args->write_domain;
1578 int ret;
1579
1580 /* Only handle setting domains to types used by the CPU. */
1581 if (write_domain & I915_GEM_GPU_DOMAINS)
1582 return -EINVAL;
1583
1584 if (read_domains & I915_GEM_GPU_DOMAINS)
1585 return -EINVAL;
1586
1587 /* Having something in the write domain implies it's in the read
1588 * domain, and only that read domain. Enforce that in the request.
1589 */
1590 if (write_domain != 0 && read_domains != write_domain)
1591 return -EINVAL;
1592
1593 ret = i915_mutex_lock_interruptible(dev);
1594 if (ret)
1595 return ret;
1596
1597 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1598 if (&obj->base == NULL) {
1599 ret = -ENOENT;
1600 goto unlock;
1601 }
1602
1603 /* Try to flush the object off the GPU without holding the lock.
1604 * We will repeat the flush holding the lock in the normal manner
1605 * to catch cases where we are gazumped.
1606 */
1607 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1608 to_rps_client(file),
1609 !write_domain);
1610 if (ret)
1611 goto unref;
1612
1613 if (read_domains & I915_GEM_DOMAIN_GTT)
1614 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1615 else
1616 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1617
1618 if (write_domain != 0)
1619 intel_fb_obj_invalidate(obj,
1620 write_domain == I915_GEM_DOMAIN_GTT ?
1621 ORIGIN_GTT : ORIGIN_CPU);
1622
1623 unref:
1624 drm_gem_object_unreference(&obj->base);
1625 unlock:
1626 mutex_unlock(&dev->struct_mutex);
1627 return ret;
1628 }
1629
1630 /**
1631 * Called when user space has done writes to this buffer
1632 */
1633 int
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635 struct drm_file *file)
1636 {
1637 struct drm_i915_gem_sw_finish *args = data;
1638 struct drm_i915_gem_object *obj;
1639 int ret = 0;
1640
1641 ret = i915_mutex_lock_interruptible(dev);
1642 if (ret)
1643 return ret;
1644
1645 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1646 if (&obj->base == NULL) {
1647 ret = -ENOENT;
1648 goto unlock;
1649 }
1650
1651 /* Pinned buffers may be scanout, so flush the cache */
1652 if (obj->pin_display)
1653 i915_gem_object_flush_cpu_write_domain(obj);
1654
1655 drm_gem_object_unreference(&obj->base);
1656 unlock:
1657 mutex_unlock(&dev->struct_mutex);
1658 return ret;
1659 }
1660
1661 /**
1662 * Maps the contents of an object, returning the address it is mapped
1663 * into.
1664 *
1665 * While the mapping holds a reference on the contents of the object, it doesn't
1666 * imply a ref on the object itself.
1667 *
1668 * IMPORTANT:
1669 *
1670 * DRM driver writers who look a this function as an example for how to do GEM
1671 * mmap support, please don't implement mmap support like here. The modern way
1672 * to implement DRM mmap support is with an mmap offset ioctl (like
1673 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1674 * That way debug tooling like valgrind will understand what's going on, hiding
1675 * the mmap call in a driver private ioctl will break that. The i915 driver only
1676 * does cpu mmaps this way because we didn't know better.
1677 */
1678 int
1679 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1680 struct drm_file *file)
1681 {
1682 struct drm_i915_gem_mmap *args = data;
1683 struct drm_gem_object *obj;
1684 unsigned long addr;
1685
1686 if (args->flags & ~(I915_MMAP_WC))
1687 return -EINVAL;
1688
1689 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1690 return -ENODEV;
1691
1692 obj = drm_gem_object_lookup(dev, file, args->handle);
1693 if (obj == NULL)
1694 return -ENOENT;
1695
1696 /* prime objects have no backing filp to GEM mmap
1697 * pages from.
1698 */
1699 if (!obj->filp) {
1700 drm_gem_object_unreference_unlocked(obj);
1701 return -EINVAL;
1702 }
1703
1704 addr = vm_mmap(obj->filp, 0, args->size,
1705 PROT_READ | PROT_WRITE, MAP_SHARED,
1706 args->offset);
1707 if (args->flags & I915_MMAP_WC) {
1708 struct mm_struct *mm = current->mm;
1709 struct vm_area_struct *vma;
1710
1711 down_write(&mm->mmap_sem);
1712 vma = find_vma(mm, addr);
1713 if (vma)
1714 vma->vm_page_prot =
1715 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1716 else
1717 addr = -ENOMEM;
1718 up_write(&mm->mmap_sem);
1719 }
1720 drm_gem_object_unreference_unlocked(obj);
1721 if (IS_ERR((void *)addr))
1722 return addr;
1723
1724 args->addr_ptr = (uint64_t) addr;
1725
1726 return 0;
1727 }
1728
1729 /**
1730 * i915_gem_fault - fault a page into the GTT
1731 * vma: VMA in question
1732 * vmf: fault info
1733 *
1734 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1735 * from userspace. The fault handler takes care of binding the object to
1736 * the GTT (if needed), allocating and programming a fence register (again,
1737 * only if needed based on whether the old reg is still valid or the object
1738 * is tiled) and inserting a new PTE into the faulting process.
1739 *
1740 * Note that the faulting process may involve evicting existing objects
1741 * from the GTT and/or fence registers to make room. So performance may
1742 * suffer if the GTT working set is large or there are few fence registers
1743 * left.
1744 */
1745 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1746 {
1747 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1748 struct drm_device *dev = obj->base.dev;
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 struct i915_ggtt_view view = i915_ggtt_view_normal;
1751 pgoff_t page_offset;
1752 unsigned long pfn;
1753 int ret = 0;
1754 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1755
1756 intel_runtime_pm_get(dev_priv);
1757
1758 /* We don't use vmf->pgoff since that has the fake offset */
1759 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1760 PAGE_SHIFT;
1761
1762 ret = i915_mutex_lock_interruptible(dev);
1763 if (ret)
1764 goto out;
1765
1766 trace_i915_gem_object_fault(obj, page_offset, true, write);
1767
1768 /* Try to flush the object off the GPU first without holding the lock.
1769 * Upon reacquiring the lock, we will perform our sanity checks and then
1770 * repeat the flush holding the lock in the normal manner to catch cases
1771 * where we are gazumped.
1772 */
1773 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1774 if (ret)
1775 goto unlock;
1776
1777 /* Access to snoopable pages through the GTT is incoherent. */
1778 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1779 ret = -EFAULT;
1780 goto unlock;
1781 }
1782
1783 /* Use a partial view if the object is bigger than the aperture. */
1784 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1785 obj->tiling_mode == I915_TILING_NONE) {
1786 static const unsigned int chunk_size = 256; // 1 MiB
1787
1788 memset(&view, 0, sizeof(view));
1789 view.type = I915_GGTT_VIEW_PARTIAL;
1790 view.params.partial.offset = rounddown(page_offset, chunk_size);
1791 view.params.partial.size =
1792 min_t(unsigned int,
1793 chunk_size,
1794 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1795 view.params.partial.offset);
1796 }
1797
1798 /* Now pin it into the GTT if needed */
1799 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1800 if (ret)
1801 goto unlock;
1802
1803 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1804 if (ret)
1805 goto unpin;
1806
1807 ret = i915_gem_object_get_fence(obj);
1808 if (ret)
1809 goto unpin;
1810
1811 /* Finally, remap it using the new GTT offset */
1812 pfn = dev_priv->gtt.mappable_base +
1813 i915_gem_obj_ggtt_offset_view(obj, &view);
1814 pfn >>= PAGE_SHIFT;
1815
1816 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1817 /* Overriding existing pages in partial view does not cause
1818 * us any trouble as TLBs are still valid because the fault
1819 * is due to userspace losing part of the mapping or never
1820 * having accessed it before (at this partials' range).
1821 */
1822 unsigned long base = vma->vm_start +
1823 (view.params.partial.offset << PAGE_SHIFT);
1824 unsigned int i;
1825
1826 for (i = 0; i < view.params.partial.size; i++) {
1827 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1828 if (ret)
1829 break;
1830 }
1831
1832 obj->fault_mappable = true;
1833 } else {
1834 if (!obj->fault_mappable) {
1835 unsigned long size = min_t(unsigned long,
1836 vma->vm_end - vma->vm_start,
1837 obj->base.size);
1838 int i;
1839
1840 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1841 ret = vm_insert_pfn(vma,
1842 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1843 pfn + i);
1844 if (ret)
1845 break;
1846 }
1847
1848 obj->fault_mappable = true;
1849 } else
1850 ret = vm_insert_pfn(vma,
1851 (unsigned long)vmf->virtual_address,
1852 pfn + page_offset);
1853 }
1854 unpin:
1855 i915_gem_object_ggtt_unpin_view(obj, &view);
1856 unlock:
1857 mutex_unlock(&dev->struct_mutex);
1858 out:
1859 switch (ret) {
1860 case -EIO:
1861 /*
1862 * We eat errors when the gpu is terminally wedged to avoid
1863 * userspace unduly crashing (gl has no provisions for mmaps to
1864 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1865 * and so needs to be reported.
1866 */
1867 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1868 ret = VM_FAULT_SIGBUS;
1869 break;
1870 }
1871 case -EAGAIN:
1872 /*
1873 * EAGAIN means the gpu is hung and we'll wait for the error
1874 * handler to reset everything when re-faulting in
1875 * i915_mutex_lock_interruptible.
1876 */
1877 case 0:
1878 case -ERESTARTSYS:
1879 case -EINTR:
1880 case -EBUSY:
1881 /*
1882 * EBUSY is ok: this just means that another thread
1883 * already did the job.
1884 */
1885 ret = VM_FAULT_NOPAGE;
1886 break;
1887 case -ENOMEM:
1888 ret = VM_FAULT_OOM;
1889 break;
1890 case -ENOSPC:
1891 case -EFAULT:
1892 ret = VM_FAULT_SIGBUS;
1893 break;
1894 default:
1895 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1896 ret = VM_FAULT_SIGBUS;
1897 break;
1898 }
1899
1900 intel_runtime_pm_put(dev_priv);
1901 return ret;
1902 }
1903
1904 /**
1905 * i915_gem_release_mmap - remove physical page mappings
1906 * @obj: obj in question
1907 *
1908 * Preserve the reservation of the mmapping with the DRM core code, but
1909 * relinquish ownership of the pages back to the system.
1910 *
1911 * It is vital that we remove the page mapping if we have mapped a tiled
1912 * object through the GTT and then lose the fence register due to
1913 * resource pressure. Similarly if the object has been moved out of the
1914 * aperture, than pages mapped into userspace must be revoked. Removing the
1915 * mapping will then trigger a page fault on the next user access, allowing
1916 * fixup by i915_gem_fault().
1917 */
1918 void
1919 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1920 {
1921 if (!obj->fault_mappable)
1922 return;
1923
1924 drm_vma_node_unmap(&obj->base.vma_node,
1925 obj->base.dev->anon_inode->i_mapping);
1926 obj->fault_mappable = false;
1927 }
1928
1929 void
1930 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1931 {
1932 struct drm_i915_gem_object *obj;
1933
1934 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1935 i915_gem_release_mmap(obj);
1936 }
1937
1938 uint32_t
1939 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1940 {
1941 uint32_t gtt_size;
1942
1943 if (INTEL_INFO(dev)->gen >= 4 ||
1944 tiling_mode == I915_TILING_NONE)
1945 return size;
1946
1947 /* Previous chips need a power-of-two fence region when tiling */
1948 if (INTEL_INFO(dev)->gen == 3)
1949 gtt_size = 1024*1024;
1950 else
1951 gtt_size = 512*1024;
1952
1953 while (gtt_size < size)
1954 gtt_size <<= 1;
1955
1956 return gtt_size;
1957 }
1958
1959 /**
1960 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1961 * @obj: object to check
1962 *
1963 * Return the required GTT alignment for an object, taking into account
1964 * potential fence register mapping.
1965 */
1966 uint32_t
1967 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1968 int tiling_mode, bool fenced)
1969 {
1970 /*
1971 * Minimum alignment is 4k (GTT page size), but might be greater
1972 * if a fence register is needed for the object.
1973 */
1974 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1975 tiling_mode == I915_TILING_NONE)
1976 return 4096;
1977
1978 /*
1979 * Previous chips need to be aligned to the size of the smallest
1980 * fence register that can contain the object.
1981 */
1982 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1983 }
1984
1985 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1986 {
1987 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1988 int ret;
1989
1990 if (drm_vma_node_has_offset(&obj->base.vma_node))
1991 return 0;
1992
1993 dev_priv->mm.shrinker_no_lock_stealing = true;
1994
1995 ret = drm_gem_create_mmap_offset(&obj->base);
1996 if (ret != -ENOSPC)
1997 goto out;
1998
1999 /* Badly fragmented mmap space? The only way we can recover
2000 * space is by destroying unwanted objects. We can't randomly release
2001 * mmap_offsets as userspace expects them to be persistent for the
2002 * lifetime of the objects. The closest we can is to release the
2003 * offsets on purgeable objects by truncating it and marking it purged,
2004 * which prevents userspace from ever using that object again.
2005 */
2006 i915_gem_shrink(dev_priv,
2007 obj->base.size >> PAGE_SHIFT,
2008 I915_SHRINK_BOUND |
2009 I915_SHRINK_UNBOUND |
2010 I915_SHRINK_PURGEABLE);
2011 ret = drm_gem_create_mmap_offset(&obj->base);
2012 if (ret != -ENOSPC)
2013 goto out;
2014
2015 i915_gem_shrink_all(dev_priv);
2016 ret = drm_gem_create_mmap_offset(&obj->base);
2017 out:
2018 dev_priv->mm.shrinker_no_lock_stealing = false;
2019
2020 return ret;
2021 }
2022
2023 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2024 {
2025 drm_gem_free_mmap_offset(&obj->base);
2026 }
2027
2028 int
2029 i915_gem_mmap_gtt(struct drm_file *file,
2030 struct drm_device *dev,
2031 uint32_t handle,
2032 uint64_t *offset)
2033 {
2034 struct drm_i915_gem_object *obj;
2035 int ret;
2036
2037 ret = i915_mutex_lock_interruptible(dev);
2038 if (ret)
2039 return ret;
2040
2041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2042 if (&obj->base == NULL) {
2043 ret = -ENOENT;
2044 goto unlock;
2045 }
2046
2047 if (obj->madv != I915_MADV_WILLNEED) {
2048 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2049 ret = -EFAULT;
2050 goto out;
2051 }
2052
2053 ret = i915_gem_object_create_mmap_offset(obj);
2054 if (ret)
2055 goto out;
2056
2057 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2058
2059 out:
2060 drm_gem_object_unreference(&obj->base);
2061 unlock:
2062 mutex_unlock(&dev->struct_mutex);
2063 return ret;
2064 }
2065
2066 /**
2067 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2068 * @dev: DRM device
2069 * @data: GTT mapping ioctl data
2070 * @file: GEM object info
2071 *
2072 * Simply returns the fake offset to userspace so it can mmap it.
2073 * The mmap call will end up in drm_gem_mmap(), which will set things
2074 * up so we can get faults in the handler above.
2075 *
2076 * The fault handler will take care of binding the object into the GTT
2077 * (since it may have been evicted to make room for something), allocating
2078 * a fence register, and mapping the appropriate aperture address into
2079 * userspace.
2080 */
2081 int
2082 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2083 struct drm_file *file)
2084 {
2085 struct drm_i915_gem_mmap_gtt *args = data;
2086
2087 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2088 }
2089
2090 /* Immediately discard the backing storage */
2091 static void
2092 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2093 {
2094 i915_gem_object_free_mmap_offset(obj);
2095
2096 if (obj->base.filp == NULL)
2097 return;
2098
2099 /* Our goal here is to return as much of the memory as
2100 * is possible back to the system as we are called from OOM.
2101 * To do this we must instruct the shmfs to drop all of its
2102 * backing pages, *now*.
2103 */
2104 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2105 obj->madv = __I915_MADV_PURGED;
2106 }
2107
2108 /* Try to discard unwanted pages */
2109 static void
2110 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2111 {
2112 struct address_space *mapping;
2113
2114 switch (obj->madv) {
2115 case I915_MADV_DONTNEED:
2116 i915_gem_object_truncate(obj);
2117 case __I915_MADV_PURGED:
2118 return;
2119 }
2120
2121 if (obj->base.filp == NULL)
2122 return;
2123
2124 mapping = file_inode(obj->base.filp)->i_mapping,
2125 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2126 }
2127
2128 static void
2129 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2130 {
2131 struct sg_page_iter sg_iter;
2132 int ret;
2133
2134 BUG_ON(obj->madv == __I915_MADV_PURGED);
2135
2136 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2137 if (ret) {
2138 /* In the event of a disaster, abandon all caches and
2139 * hope for the best.
2140 */
2141 WARN_ON(ret != -EIO);
2142 i915_gem_clflush_object(obj, true);
2143 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2144 }
2145
2146 i915_gem_gtt_finish_object(obj);
2147
2148 if (i915_gem_object_needs_bit17_swizzle(obj))
2149 i915_gem_object_save_bit_17_swizzle(obj);
2150
2151 if (obj->madv == I915_MADV_DONTNEED)
2152 obj->dirty = 0;
2153
2154 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2155 struct page *page = sg_page_iter_page(&sg_iter);
2156
2157 if (obj->dirty)
2158 set_page_dirty(page);
2159
2160 if (obj->madv == I915_MADV_WILLNEED)
2161 mark_page_accessed(page);
2162
2163 page_cache_release(page);
2164 }
2165 obj->dirty = 0;
2166
2167 sg_free_table(obj->pages);
2168 kfree(obj->pages);
2169 }
2170
2171 int
2172 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2173 {
2174 const struct drm_i915_gem_object_ops *ops = obj->ops;
2175
2176 if (obj->pages == NULL)
2177 return 0;
2178
2179 if (obj->pages_pin_count)
2180 return -EBUSY;
2181
2182 BUG_ON(i915_gem_obj_bound_any(obj));
2183
2184 /* ->put_pages might need to allocate memory for the bit17 swizzle
2185 * array, hence protect them from being reaped by removing them from gtt
2186 * lists early. */
2187 list_del(&obj->global_list);
2188
2189 ops->put_pages(obj);
2190 obj->pages = NULL;
2191
2192 i915_gem_object_invalidate(obj);
2193
2194 return 0;
2195 }
2196
2197 static int
2198 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2199 {
2200 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2201 int page_count, i;
2202 struct address_space *mapping;
2203 struct sg_table *st;
2204 struct scatterlist *sg;
2205 struct sg_page_iter sg_iter;
2206 struct page *page;
2207 unsigned long last_pfn = 0; /* suppress gcc warning */
2208 int ret;
2209 gfp_t gfp;
2210
2211 /* Assert that the object is not currently in any GPU domain. As it
2212 * wasn't in the GTT, there shouldn't be any way it could have been in
2213 * a GPU cache
2214 */
2215 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2216 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2217
2218 st = kmalloc(sizeof(*st), GFP_KERNEL);
2219 if (st == NULL)
2220 return -ENOMEM;
2221
2222 page_count = obj->base.size / PAGE_SIZE;
2223 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2224 kfree(st);
2225 return -ENOMEM;
2226 }
2227
2228 /* Get the list of pages out of our struct file. They'll be pinned
2229 * at this point until we release them.
2230 *
2231 * Fail silently without starting the shrinker
2232 */
2233 mapping = file_inode(obj->base.filp)->i_mapping;
2234 gfp = mapping_gfp_mask(mapping);
2235 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2236 gfp &= ~(__GFP_IO | __GFP_WAIT);
2237 sg = st->sgl;
2238 st->nents = 0;
2239 for (i = 0; i < page_count; i++) {
2240 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2241 if (IS_ERR(page)) {
2242 i915_gem_shrink(dev_priv,
2243 page_count,
2244 I915_SHRINK_BOUND |
2245 I915_SHRINK_UNBOUND |
2246 I915_SHRINK_PURGEABLE);
2247 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2248 }
2249 if (IS_ERR(page)) {
2250 /* We've tried hard to allocate the memory by reaping
2251 * our own buffer, now let the real VM do its job and
2252 * go down in flames if truly OOM.
2253 */
2254 i915_gem_shrink_all(dev_priv);
2255 page = shmem_read_mapping_page(mapping, i);
2256 if (IS_ERR(page)) {
2257 ret = PTR_ERR(page);
2258 goto err_pages;
2259 }
2260 }
2261 #ifdef CONFIG_SWIOTLB
2262 if (swiotlb_nr_tbl()) {
2263 st->nents++;
2264 sg_set_page(sg, page, PAGE_SIZE, 0);
2265 sg = sg_next(sg);
2266 continue;
2267 }
2268 #endif
2269 if (!i || page_to_pfn(page) != last_pfn + 1) {
2270 if (i)
2271 sg = sg_next(sg);
2272 st->nents++;
2273 sg_set_page(sg, page, PAGE_SIZE, 0);
2274 } else {
2275 sg->length += PAGE_SIZE;
2276 }
2277 last_pfn = page_to_pfn(page);
2278
2279 /* Check that the i965g/gm workaround works. */
2280 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2281 }
2282 #ifdef CONFIG_SWIOTLB
2283 if (!swiotlb_nr_tbl())
2284 #endif
2285 sg_mark_end(sg);
2286 obj->pages = st;
2287
2288 ret = i915_gem_gtt_prepare_object(obj);
2289 if (ret)
2290 goto err_pages;
2291
2292 if (i915_gem_object_needs_bit17_swizzle(obj))
2293 i915_gem_object_do_bit_17_swizzle(obj);
2294
2295 if (obj->tiling_mode != I915_TILING_NONE &&
2296 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2297 i915_gem_object_pin_pages(obj);
2298
2299 return 0;
2300
2301 err_pages:
2302 sg_mark_end(sg);
2303 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2304 page_cache_release(sg_page_iter_page(&sg_iter));
2305 sg_free_table(st);
2306 kfree(st);
2307
2308 /* shmemfs first checks if there is enough memory to allocate the page
2309 * and reports ENOSPC should there be insufficient, along with the usual
2310 * ENOMEM for a genuine allocation failure.
2311 *
2312 * We use ENOSPC in our driver to mean that we have run out of aperture
2313 * space and so want to translate the error from shmemfs back to our
2314 * usual understanding of ENOMEM.
2315 */
2316 if (ret == -ENOSPC)
2317 ret = -ENOMEM;
2318
2319 return ret;
2320 }
2321
2322 /* Ensure that the associated pages are gathered from the backing storage
2323 * and pinned into our object. i915_gem_object_get_pages() may be called
2324 * multiple times before they are released by a single call to
2325 * i915_gem_object_put_pages() - once the pages are no longer referenced
2326 * either as a result of memory pressure (reaping pages under the shrinker)
2327 * or as the object is itself released.
2328 */
2329 int
2330 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2331 {
2332 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2333 const struct drm_i915_gem_object_ops *ops = obj->ops;
2334 int ret;
2335
2336 if (obj->pages)
2337 return 0;
2338
2339 if (obj->madv != I915_MADV_WILLNEED) {
2340 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2341 return -EFAULT;
2342 }
2343
2344 BUG_ON(obj->pages_pin_count);
2345
2346 ret = ops->get_pages(obj);
2347 if (ret)
2348 return ret;
2349
2350 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2351
2352 obj->get_page.sg = obj->pages->sgl;
2353 obj->get_page.last = 0;
2354
2355 return 0;
2356 }
2357
2358 void i915_vma_move_to_active(struct i915_vma *vma,
2359 struct drm_i915_gem_request *req)
2360 {
2361 struct drm_i915_gem_object *obj = vma->obj;
2362 struct intel_engine_cs *ring;
2363
2364 ring = i915_gem_request_get_ring(req);
2365
2366 /* Add a reference if we're newly entering the active list. */
2367 if (obj->active == 0)
2368 drm_gem_object_reference(&obj->base);
2369 obj->active |= intel_ring_flag(ring);
2370
2371 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2372 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2373
2374 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2375 }
2376
2377 static void
2378 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2379 {
2380 RQ_BUG_ON(obj->last_write_req == NULL);
2381 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2382
2383 i915_gem_request_assign(&obj->last_write_req, NULL);
2384 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2385 }
2386
2387 static void
2388 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2389 {
2390 struct i915_vma *vma;
2391
2392 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2393 RQ_BUG_ON(!(obj->active & (1 << ring)));
2394
2395 list_del_init(&obj->ring_list[ring]);
2396 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2397
2398 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2399 i915_gem_object_retire__write(obj);
2400
2401 obj->active &= ~(1 << ring);
2402 if (obj->active)
2403 return;
2404
2405 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2406 if (!list_empty(&vma->mm_list))
2407 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2408 }
2409
2410 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2411 drm_gem_object_unreference(&obj->base);
2412 }
2413
2414 static int
2415 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2416 {
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 struct intel_engine_cs *ring;
2419 int ret, i, j;
2420
2421 /* Carefully retire all requests without writing to the rings */
2422 for_each_ring(ring, dev_priv, i) {
2423 ret = intel_ring_idle(ring);
2424 if (ret)
2425 return ret;
2426 }
2427 i915_gem_retire_requests(dev);
2428
2429 /* Finally reset hw state */
2430 for_each_ring(ring, dev_priv, i) {
2431 intel_ring_init_seqno(ring, seqno);
2432
2433 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2434 ring->semaphore.sync_seqno[j] = 0;
2435 }
2436
2437 return 0;
2438 }
2439
2440 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2441 {
2442 struct drm_i915_private *dev_priv = dev->dev_private;
2443 int ret;
2444
2445 if (seqno == 0)
2446 return -EINVAL;
2447
2448 /* HWS page needs to be set less than what we
2449 * will inject to ring
2450 */
2451 ret = i915_gem_init_seqno(dev, seqno - 1);
2452 if (ret)
2453 return ret;
2454
2455 /* Carefully set the last_seqno value so that wrap
2456 * detection still works
2457 */
2458 dev_priv->next_seqno = seqno;
2459 dev_priv->last_seqno = seqno - 1;
2460 if (dev_priv->last_seqno == 0)
2461 dev_priv->last_seqno--;
2462
2463 return 0;
2464 }
2465
2466 int
2467 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2468 {
2469 struct drm_i915_private *dev_priv = dev->dev_private;
2470
2471 /* reserve 0 for non-seqno */
2472 if (dev_priv->next_seqno == 0) {
2473 int ret = i915_gem_init_seqno(dev, 0);
2474 if (ret)
2475 return ret;
2476
2477 dev_priv->next_seqno = 1;
2478 }
2479
2480 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2481 return 0;
2482 }
2483
2484 /*
2485 * NB: This function is not allowed to fail. Doing so would mean the the
2486 * request is not being tracked for completion but the work itself is
2487 * going to happen on the hardware. This would be a Bad Thing(tm).
2488 */
2489 void __i915_add_request(struct drm_i915_gem_request *request,
2490 struct drm_i915_gem_object *obj,
2491 bool flush_caches)
2492 {
2493 struct intel_engine_cs *ring;
2494 struct drm_i915_private *dev_priv;
2495 struct intel_ringbuffer *ringbuf;
2496 u32 request_start;
2497 int ret;
2498
2499 if (WARN_ON(request == NULL))
2500 return;
2501
2502 ring = request->ring;
2503 dev_priv = ring->dev->dev_private;
2504 ringbuf = request->ringbuf;
2505
2506 /*
2507 * To ensure that this call will not fail, space for its emissions
2508 * should already have been reserved in the ring buffer. Let the ring
2509 * know that it is time to use that space up.
2510 */
2511 intel_ring_reserved_space_use(ringbuf);
2512
2513 request_start = intel_ring_get_tail(ringbuf);
2514 /*
2515 * Emit any outstanding flushes - execbuf can fail to emit the flush
2516 * after having emitted the batchbuffer command. Hence we need to fix
2517 * things up similar to emitting the lazy request. The difference here
2518 * is that the flush _must_ happen before the next request, no matter
2519 * what.
2520 */
2521 if (flush_caches) {
2522 if (i915.enable_execlists)
2523 ret = logical_ring_flush_all_caches(request);
2524 else
2525 ret = intel_ring_flush_all_caches(request);
2526 /* Not allowed to fail! */
2527 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2528 }
2529
2530 /* Record the position of the start of the request so that
2531 * should we detect the updated seqno part-way through the
2532 * GPU processing the request, we never over-estimate the
2533 * position of the head.
2534 */
2535 request->postfix = intel_ring_get_tail(ringbuf);
2536
2537 if (i915.enable_execlists)
2538 ret = ring->emit_request(request);
2539 else {
2540 ret = ring->add_request(request);
2541
2542 request->tail = intel_ring_get_tail(ringbuf);
2543 }
2544 /* Not allowed to fail! */
2545 WARN(ret, "emit|add_request failed: %d!\n", ret);
2546
2547 request->head = request_start;
2548
2549 /* Whilst this request exists, batch_obj will be on the
2550 * active_list, and so will hold the active reference. Only when this
2551 * request is retired will the the batch_obj be moved onto the
2552 * inactive_list and lose its active reference. Hence we do not need
2553 * to explicitly hold another reference here.
2554 */
2555 request->batch_obj = obj;
2556
2557 request->emitted_jiffies = jiffies;
2558 ring->last_submitted_seqno = request->seqno;
2559 list_add_tail(&request->list, &ring->request_list);
2560
2561 trace_i915_gem_request_add(request);
2562
2563 i915_queue_hangcheck(ring->dev);
2564
2565 queue_delayed_work(dev_priv->wq,
2566 &dev_priv->mm.retire_work,
2567 round_jiffies_up_relative(HZ));
2568 intel_mark_busy(dev_priv->dev);
2569
2570 /* Sanity check that the reserved size was large enough. */
2571 intel_ring_reserved_space_end(ringbuf);
2572 }
2573
2574 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2575 const struct intel_context *ctx)
2576 {
2577 unsigned long elapsed;
2578
2579 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2580
2581 if (ctx->hang_stats.banned)
2582 return true;
2583
2584 if (ctx->hang_stats.ban_period_seconds &&
2585 elapsed <= ctx->hang_stats.ban_period_seconds) {
2586 if (!i915_gem_context_is_default(ctx)) {
2587 DRM_DEBUG("context hanging too fast, banning!\n");
2588 return true;
2589 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2590 if (i915_stop_ring_allow_warn(dev_priv))
2591 DRM_ERROR("gpu hanging too fast, banning!\n");
2592 return true;
2593 }
2594 }
2595
2596 return false;
2597 }
2598
2599 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2600 struct intel_context *ctx,
2601 const bool guilty)
2602 {
2603 struct i915_ctx_hang_stats *hs;
2604
2605 if (WARN_ON(!ctx))
2606 return;
2607
2608 hs = &ctx->hang_stats;
2609
2610 if (guilty) {
2611 hs->banned = i915_context_is_banned(dev_priv, ctx);
2612 hs->batch_active++;
2613 hs->guilty_ts = get_seconds();
2614 } else {
2615 hs->batch_pending++;
2616 }
2617 }
2618
2619 void i915_gem_request_free(struct kref *req_ref)
2620 {
2621 struct drm_i915_gem_request *req = container_of(req_ref,
2622 typeof(*req), ref);
2623 struct intel_context *ctx = req->ctx;
2624
2625 if (req->file_priv)
2626 i915_gem_request_remove_from_client(req);
2627
2628 if (ctx) {
2629 if (i915.enable_execlists) {
2630 if (ctx != req->ring->default_context)
2631 intel_lr_context_unpin(req);
2632 }
2633
2634 i915_gem_context_unreference(ctx);
2635 }
2636
2637 kmem_cache_free(req->i915->requests, req);
2638 }
2639
2640 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2641 struct intel_context *ctx,
2642 struct drm_i915_gem_request **req_out)
2643 {
2644 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2645 struct drm_i915_gem_request *req;
2646 int ret;
2647
2648 if (!req_out)
2649 return -EINVAL;
2650
2651 *req_out = NULL;
2652
2653 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2654 if (req == NULL)
2655 return -ENOMEM;
2656
2657 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2658 if (ret)
2659 goto err;
2660
2661 kref_init(&req->ref);
2662 req->i915 = dev_priv;
2663 req->ring = ring;
2664 req->ctx = ctx;
2665 i915_gem_context_reference(req->ctx);
2666
2667 if (i915.enable_execlists)
2668 ret = intel_logical_ring_alloc_request_extras(req);
2669 else
2670 ret = intel_ring_alloc_request_extras(req);
2671 if (ret) {
2672 i915_gem_context_unreference(req->ctx);
2673 goto err;
2674 }
2675
2676 /*
2677 * Reserve space in the ring buffer for all the commands required to
2678 * eventually emit this request. This is to guarantee that the
2679 * i915_add_request() call can't fail. Note that the reserve may need
2680 * to be redone if the request is not actually submitted straight
2681 * away, e.g. because a GPU scheduler has deferred it.
2682 */
2683 if (i915.enable_execlists)
2684 ret = intel_logical_ring_reserve_space(req);
2685 else
2686 ret = intel_ring_reserve_space(req);
2687 if (ret) {
2688 /*
2689 * At this point, the request is fully allocated even if not
2690 * fully prepared. Thus it can be cleaned up using the proper
2691 * free code.
2692 */
2693 i915_gem_request_cancel(req);
2694 return ret;
2695 }
2696
2697 *req_out = req;
2698 return 0;
2699
2700 err:
2701 kmem_cache_free(dev_priv->requests, req);
2702 return ret;
2703 }
2704
2705 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2706 {
2707 intel_ring_reserved_space_cancel(req->ringbuf);
2708
2709 i915_gem_request_unreference(req);
2710 }
2711
2712 struct drm_i915_gem_request *
2713 i915_gem_find_active_request(struct intel_engine_cs *ring)
2714 {
2715 struct drm_i915_gem_request *request;
2716
2717 list_for_each_entry(request, &ring->request_list, list) {
2718 if (i915_gem_request_completed(request, false))
2719 continue;
2720
2721 return request;
2722 }
2723
2724 return NULL;
2725 }
2726
2727 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2728 struct intel_engine_cs *ring)
2729 {
2730 struct drm_i915_gem_request *request;
2731 bool ring_hung;
2732
2733 request = i915_gem_find_active_request(ring);
2734
2735 if (request == NULL)
2736 return;
2737
2738 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2739
2740 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2741
2742 list_for_each_entry_continue(request, &ring->request_list, list)
2743 i915_set_reset_status(dev_priv, request->ctx, false);
2744 }
2745
2746 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2747 struct intel_engine_cs *ring)
2748 {
2749 while (!list_empty(&ring->active_list)) {
2750 struct drm_i915_gem_object *obj;
2751
2752 obj = list_first_entry(&ring->active_list,
2753 struct drm_i915_gem_object,
2754 ring_list[ring->id]);
2755
2756 i915_gem_object_retire__read(obj, ring->id);
2757 }
2758
2759 /*
2760 * Clear the execlists queue up before freeing the requests, as those
2761 * are the ones that keep the context and ringbuffer backing objects
2762 * pinned in place.
2763 */
2764 while (!list_empty(&ring->execlist_queue)) {
2765 struct drm_i915_gem_request *submit_req;
2766
2767 submit_req = list_first_entry(&ring->execlist_queue,
2768 struct drm_i915_gem_request,
2769 execlist_link);
2770 list_del(&submit_req->execlist_link);
2771
2772 if (submit_req->ctx != ring->default_context)
2773 intel_lr_context_unpin(submit_req);
2774
2775 i915_gem_request_unreference(submit_req);
2776 }
2777
2778 /*
2779 * We must free the requests after all the corresponding objects have
2780 * been moved off active lists. Which is the same order as the normal
2781 * retire_requests function does. This is important if object hold
2782 * implicit references on things like e.g. ppgtt address spaces through
2783 * the request.
2784 */
2785 while (!list_empty(&ring->request_list)) {
2786 struct drm_i915_gem_request *request;
2787
2788 request = list_first_entry(&ring->request_list,
2789 struct drm_i915_gem_request,
2790 list);
2791
2792 i915_gem_request_retire(request);
2793 }
2794 }
2795
2796 void i915_gem_restore_fences(struct drm_device *dev)
2797 {
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 int i;
2800
2801 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2802 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2803
2804 /*
2805 * Commit delayed tiling changes if we have an object still
2806 * attached to the fence, otherwise just clear the fence.
2807 */
2808 if (reg->obj) {
2809 i915_gem_object_update_fence(reg->obj, reg,
2810 reg->obj->tiling_mode);
2811 } else {
2812 i915_gem_write_fence(dev, i, NULL);
2813 }
2814 }
2815 }
2816
2817 void i915_gem_reset(struct drm_device *dev)
2818 {
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct intel_engine_cs *ring;
2821 int i;
2822
2823 /*
2824 * Before we free the objects from the requests, we need to inspect
2825 * them for finding the guilty party. As the requests only borrow
2826 * their reference to the objects, the inspection must be done first.
2827 */
2828 for_each_ring(ring, dev_priv, i)
2829 i915_gem_reset_ring_status(dev_priv, ring);
2830
2831 for_each_ring(ring, dev_priv, i)
2832 i915_gem_reset_ring_cleanup(dev_priv, ring);
2833
2834 i915_gem_context_reset(dev);
2835
2836 i915_gem_restore_fences(dev);
2837
2838 WARN_ON(i915_verify_lists(dev));
2839 }
2840
2841 /**
2842 * This function clears the request list as sequence numbers are passed.
2843 */
2844 void
2845 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2846 {
2847 WARN_ON(i915_verify_lists(ring->dev));
2848
2849 /* Retire requests first as we use it above for the early return.
2850 * If we retire requests last, we may use a later seqno and so clear
2851 * the requests lists without clearing the active list, leading to
2852 * confusion.
2853 */
2854 while (!list_empty(&ring->request_list)) {
2855 struct drm_i915_gem_request *request;
2856
2857 request = list_first_entry(&ring->request_list,
2858 struct drm_i915_gem_request,
2859 list);
2860
2861 if (!i915_gem_request_completed(request, true))
2862 break;
2863
2864 i915_gem_request_retire(request);
2865 }
2866
2867 /* Move any buffers on the active list that are no longer referenced
2868 * by the ringbuffer to the flushing/inactive lists as appropriate,
2869 * before we free the context associated with the requests.
2870 */
2871 while (!list_empty(&ring->active_list)) {
2872 struct drm_i915_gem_object *obj;
2873
2874 obj = list_first_entry(&ring->active_list,
2875 struct drm_i915_gem_object,
2876 ring_list[ring->id]);
2877
2878 if (!list_empty(&obj->last_read_req[ring->id]->list))
2879 break;
2880
2881 i915_gem_object_retire__read(obj, ring->id);
2882 }
2883
2884 if (unlikely(ring->trace_irq_req &&
2885 i915_gem_request_completed(ring->trace_irq_req, true))) {
2886 ring->irq_put(ring);
2887 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2888 }
2889
2890 WARN_ON(i915_verify_lists(ring->dev));
2891 }
2892
2893 bool
2894 i915_gem_retire_requests(struct drm_device *dev)
2895 {
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct intel_engine_cs *ring;
2898 bool idle = true;
2899 int i;
2900
2901 for_each_ring(ring, dev_priv, i) {
2902 i915_gem_retire_requests_ring(ring);
2903 idle &= list_empty(&ring->request_list);
2904 if (i915.enable_execlists) {
2905 unsigned long flags;
2906
2907 spin_lock_irqsave(&ring->execlist_lock, flags);
2908 idle &= list_empty(&ring->execlist_queue);
2909 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2910
2911 intel_execlists_retire_requests(ring);
2912 }
2913 }
2914
2915 if (idle)
2916 mod_delayed_work(dev_priv->wq,
2917 &dev_priv->mm.idle_work,
2918 msecs_to_jiffies(100));
2919
2920 return idle;
2921 }
2922
2923 static void
2924 i915_gem_retire_work_handler(struct work_struct *work)
2925 {
2926 struct drm_i915_private *dev_priv =
2927 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2928 struct drm_device *dev = dev_priv->dev;
2929 bool idle;
2930
2931 /* Come back later if the device is busy... */
2932 idle = false;
2933 if (mutex_trylock(&dev->struct_mutex)) {
2934 idle = i915_gem_retire_requests(dev);
2935 mutex_unlock(&dev->struct_mutex);
2936 }
2937 if (!idle)
2938 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2939 round_jiffies_up_relative(HZ));
2940 }
2941
2942 static void
2943 i915_gem_idle_work_handler(struct work_struct *work)
2944 {
2945 struct drm_i915_private *dev_priv =
2946 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2947 struct drm_device *dev = dev_priv->dev;
2948 struct intel_engine_cs *ring;
2949 int i;
2950
2951 for_each_ring(ring, dev_priv, i)
2952 if (!list_empty(&ring->request_list))
2953 return;
2954
2955 intel_mark_idle(dev);
2956
2957 if (mutex_trylock(&dev->struct_mutex)) {
2958 struct intel_engine_cs *ring;
2959 int i;
2960
2961 for_each_ring(ring, dev_priv, i)
2962 i915_gem_batch_pool_fini(&ring->batch_pool);
2963
2964 mutex_unlock(&dev->struct_mutex);
2965 }
2966 }
2967
2968 /**
2969 * Ensures that an object will eventually get non-busy by flushing any required
2970 * write domains, emitting any outstanding lazy request and retiring and
2971 * completed requests.
2972 */
2973 static int
2974 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2975 {
2976 int i;
2977
2978 if (!obj->active)
2979 return 0;
2980
2981 for (i = 0; i < I915_NUM_RINGS; i++) {
2982 struct drm_i915_gem_request *req;
2983
2984 req = obj->last_read_req[i];
2985 if (req == NULL)
2986 continue;
2987
2988 if (list_empty(&req->list))
2989 goto retire;
2990
2991 if (i915_gem_request_completed(req, true)) {
2992 __i915_gem_request_retire__upto(req);
2993 retire:
2994 i915_gem_object_retire__read(obj, i);
2995 }
2996 }
2997
2998 return 0;
2999 }
3000
3001 /**
3002 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3003 * @DRM_IOCTL_ARGS: standard ioctl arguments
3004 *
3005 * Returns 0 if successful, else an error is returned with the remaining time in
3006 * the timeout parameter.
3007 * -ETIME: object is still busy after timeout
3008 * -ERESTARTSYS: signal interrupted the wait
3009 * -ENONENT: object doesn't exist
3010 * Also possible, but rare:
3011 * -EAGAIN: GPU wedged
3012 * -ENOMEM: damn
3013 * -ENODEV: Internal IRQ fail
3014 * -E?: The add request failed
3015 *
3016 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3017 * non-zero timeout parameter the wait ioctl will wait for the given number of
3018 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3019 * without holding struct_mutex the object may become re-busied before this
3020 * function completes. A similar but shorter * race condition exists in the busy
3021 * ioctl
3022 */
3023 int
3024 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3025 {
3026 struct drm_i915_private *dev_priv = dev->dev_private;
3027 struct drm_i915_gem_wait *args = data;
3028 struct drm_i915_gem_object *obj;
3029 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3030 unsigned reset_counter;
3031 int i, n = 0;
3032 int ret;
3033
3034 if (args->flags != 0)
3035 return -EINVAL;
3036
3037 ret = i915_mutex_lock_interruptible(dev);
3038 if (ret)
3039 return ret;
3040
3041 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3042 if (&obj->base == NULL) {
3043 mutex_unlock(&dev->struct_mutex);
3044 return -ENOENT;
3045 }
3046
3047 /* Need to make sure the object gets inactive eventually. */
3048 ret = i915_gem_object_flush_active(obj);
3049 if (ret)
3050 goto out;
3051
3052 if (!obj->active)
3053 goto out;
3054
3055 /* Do this after OLR check to make sure we make forward progress polling
3056 * on this IOCTL with a timeout == 0 (like busy ioctl)
3057 */
3058 if (args->timeout_ns == 0) {
3059 ret = -ETIME;
3060 goto out;
3061 }
3062
3063 drm_gem_object_unreference(&obj->base);
3064 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3065
3066 for (i = 0; i < I915_NUM_RINGS; i++) {
3067 if (obj->last_read_req[i] == NULL)
3068 continue;
3069
3070 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3071 }
3072
3073 mutex_unlock(&dev->struct_mutex);
3074
3075 for (i = 0; i < n; i++) {
3076 if (ret == 0)
3077 ret = __i915_wait_request(req[i], reset_counter, true,
3078 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3079 file->driver_priv);
3080 i915_gem_request_unreference__unlocked(req[i]);
3081 }
3082 return ret;
3083
3084 out:
3085 drm_gem_object_unreference(&obj->base);
3086 mutex_unlock(&dev->struct_mutex);
3087 return ret;
3088 }
3089
3090 static int
3091 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3092 struct intel_engine_cs *to,
3093 struct drm_i915_gem_request *from_req,
3094 struct drm_i915_gem_request **to_req)
3095 {
3096 struct intel_engine_cs *from;
3097 int ret;
3098
3099 from = i915_gem_request_get_ring(from_req);
3100 if (to == from)
3101 return 0;
3102
3103 if (i915_gem_request_completed(from_req, true))
3104 return 0;
3105
3106 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3107 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3108 ret = __i915_wait_request(from_req,
3109 atomic_read(&i915->gpu_error.reset_counter),
3110 i915->mm.interruptible,
3111 NULL,
3112 &i915->rps.semaphores);
3113 if (ret)
3114 return ret;
3115
3116 i915_gem_object_retire_request(obj, from_req);
3117 } else {
3118 int idx = intel_ring_sync_index(from, to);
3119 u32 seqno = i915_gem_request_get_seqno(from_req);
3120
3121 WARN_ON(!to_req);
3122
3123 if (seqno <= from->semaphore.sync_seqno[idx])
3124 return 0;
3125
3126 if (*to_req == NULL) {
3127 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3128 if (ret)
3129 return ret;
3130 }
3131
3132 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3133 ret = to->semaphore.sync_to(*to_req, from, seqno);
3134 if (ret)
3135 return ret;
3136
3137 /* We use last_read_req because sync_to()
3138 * might have just caused seqno wrap under
3139 * the radar.
3140 */
3141 from->semaphore.sync_seqno[idx] =
3142 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3143 }
3144
3145 return 0;
3146 }
3147
3148 /**
3149 * i915_gem_object_sync - sync an object to a ring.
3150 *
3151 * @obj: object which may be in use on another ring.
3152 * @to: ring we wish to use the object on. May be NULL.
3153 * @to_req: request we wish to use the object for. See below.
3154 * This will be allocated and returned if a request is
3155 * required but not passed in.
3156 *
3157 * This code is meant to abstract object synchronization with the GPU.
3158 * Calling with NULL implies synchronizing the object with the CPU
3159 * rather than a particular GPU ring. Conceptually we serialise writes
3160 * between engines inside the GPU. We only allow one engine to write
3161 * into a buffer at any time, but multiple readers. To ensure each has
3162 * a coherent view of memory, we must:
3163 *
3164 * - If there is an outstanding write request to the object, the new
3165 * request must wait for it to complete (either CPU or in hw, requests
3166 * on the same ring will be naturally ordered).
3167 *
3168 * - If we are a write request (pending_write_domain is set), the new
3169 * request must wait for outstanding read requests to complete.
3170 *
3171 * For CPU synchronisation (NULL to) no request is required. For syncing with
3172 * rings to_req must be non-NULL. However, a request does not have to be
3173 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3174 * request will be allocated automatically and returned through *to_req. Note
3175 * that it is not guaranteed that commands will be emitted (because the system
3176 * might already be idle). Hence there is no need to create a request that
3177 * might never have any work submitted. Note further that if a request is
3178 * returned in *to_req, it is the responsibility of the caller to submit
3179 * that request (after potentially adding more work to it).
3180 *
3181 * Returns 0 if successful, else propagates up the lower layer error.
3182 */
3183 int
3184 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3185 struct intel_engine_cs *to,
3186 struct drm_i915_gem_request **to_req)
3187 {
3188 const bool readonly = obj->base.pending_write_domain == 0;
3189 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3190 int ret, i, n;
3191
3192 if (!obj->active)
3193 return 0;
3194
3195 if (to == NULL)
3196 return i915_gem_object_wait_rendering(obj, readonly);
3197
3198 n = 0;
3199 if (readonly) {
3200 if (obj->last_write_req)
3201 req[n++] = obj->last_write_req;
3202 } else {
3203 for (i = 0; i < I915_NUM_RINGS; i++)
3204 if (obj->last_read_req[i])
3205 req[n++] = obj->last_read_req[i];
3206 }
3207 for (i = 0; i < n; i++) {
3208 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3209 if (ret)
3210 return ret;
3211 }
3212
3213 return 0;
3214 }
3215
3216 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3217 {
3218 u32 old_write_domain, old_read_domains;
3219
3220 /* Force a pagefault for domain tracking on next user access */
3221 i915_gem_release_mmap(obj);
3222
3223 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3224 return;
3225
3226 /* Wait for any direct GTT access to complete */
3227 mb();
3228
3229 old_read_domains = obj->base.read_domains;
3230 old_write_domain = obj->base.write_domain;
3231
3232 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3233 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3234
3235 trace_i915_gem_object_change_domain(obj,
3236 old_read_domains,
3237 old_write_domain);
3238 }
3239
3240 int i915_vma_unbind(struct i915_vma *vma)
3241 {
3242 struct drm_i915_gem_object *obj = vma->obj;
3243 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3244 int ret;
3245
3246 if (list_empty(&vma->vma_link))
3247 return 0;
3248
3249 if (!drm_mm_node_allocated(&vma->node)) {
3250 i915_gem_vma_destroy(vma);
3251 return 0;
3252 }
3253
3254 if (vma->pin_count)
3255 return -EBUSY;
3256
3257 BUG_ON(obj->pages == NULL);
3258
3259 ret = i915_gem_object_wait_rendering(obj, false);
3260 if (ret)
3261 return ret;
3262 /* Continue on if we fail due to EIO, the GPU is hung so we
3263 * should be safe and we need to cleanup or else we might
3264 * cause memory corruption through use-after-free.
3265 */
3266
3267 if (i915_is_ggtt(vma->vm) &&
3268 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3269 i915_gem_object_finish_gtt(obj);
3270
3271 /* release the fence reg _after_ flushing */
3272 ret = i915_gem_object_put_fence(obj);
3273 if (ret)
3274 return ret;
3275 }
3276
3277 trace_i915_vma_unbind(vma);
3278
3279 vma->vm->unbind_vma(vma);
3280 vma->bound = 0;
3281
3282 list_del_init(&vma->mm_list);
3283 if (i915_is_ggtt(vma->vm)) {
3284 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3285 obj->map_and_fenceable = false;
3286 } else if (vma->ggtt_view.pages) {
3287 sg_free_table(vma->ggtt_view.pages);
3288 kfree(vma->ggtt_view.pages);
3289 }
3290 vma->ggtt_view.pages = NULL;
3291 }
3292
3293 drm_mm_remove_node(&vma->node);
3294 i915_gem_vma_destroy(vma);
3295
3296 /* Since the unbound list is global, only move to that list if
3297 * no more VMAs exist. */
3298 if (list_empty(&obj->vma_list))
3299 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3300
3301 /* And finally now the object is completely decoupled from this vma,
3302 * we can drop its hold on the backing storage and allow it to be
3303 * reaped by the shrinker.
3304 */
3305 i915_gem_object_unpin_pages(obj);
3306
3307 return 0;
3308 }
3309
3310 int i915_gpu_idle(struct drm_device *dev)
3311 {
3312 struct drm_i915_private *dev_priv = dev->dev_private;
3313 struct intel_engine_cs *ring;
3314 int ret, i;
3315
3316 /* Flush everything onto the inactive list. */
3317 for_each_ring(ring, dev_priv, i) {
3318 if (!i915.enable_execlists) {
3319 struct drm_i915_gem_request *req;
3320
3321 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3322 if (ret)
3323 return ret;
3324
3325 ret = i915_switch_context(req);
3326 if (ret) {
3327 i915_gem_request_cancel(req);
3328 return ret;
3329 }
3330
3331 i915_add_request_no_flush(req);
3332 }
3333
3334 ret = intel_ring_idle(ring);
3335 if (ret)
3336 return ret;
3337 }
3338
3339 WARN_ON(i915_verify_lists(dev));
3340 return 0;
3341 }
3342
3343 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3344 struct drm_i915_gem_object *obj)
3345 {
3346 struct drm_i915_private *dev_priv = dev->dev_private;
3347 int fence_reg;
3348 int fence_pitch_shift;
3349
3350 if (INTEL_INFO(dev)->gen >= 6) {
3351 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3352 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3353 } else {
3354 fence_reg = FENCE_REG_965_0;
3355 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3356 }
3357
3358 fence_reg += reg * 8;
3359
3360 /* To w/a incoherency with non-atomic 64-bit register updates,
3361 * we split the 64-bit update into two 32-bit writes. In order
3362 * for a partial fence not to be evaluated between writes, we
3363 * precede the update with write to turn off the fence register,
3364 * and only enable the fence as the last step.
3365 *
3366 * For extra levels of paranoia, we make sure each step lands
3367 * before applying the next step.
3368 */
3369 I915_WRITE(fence_reg, 0);
3370 POSTING_READ(fence_reg);
3371
3372 if (obj) {
3373 u32 size = i915_gem_obj_ggtt_size(obj);
3374 uint64_t val;
3375
3376 /* Adjust fence size to match tiled area */
3377 if (obj->tiling_mode != I915_TILING_NONE) {
3378 uint32_t row_size = obj->stride *
3379 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3380 size = (size / row_size) * row_size;
3381 }
3382
3383 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3384 0xfffff000) << 32;
3385 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3386 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3387 if (obj->tiling_mode == I915_TILING_Y)
3388 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3389 val |= I965_FENCE_REG_VALID;
3390
3391 I915_WRITE(fence_reg + 4, val >> 32);
3392 POSTING_READ(fence_reg + 4);
3393
3394 I915_WRITE(fence_reg + 0, val);
3395 POSTING_READ(fence_reg);
3396 } else {
3397 I915_WRITE(fence_reg + 4, 0);
3398 POSTING_READ(fence_reg + 4);
3399 }
3400 }
3401
3402 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3403 struct drm_i915_gem_object *obj)
3404 {
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406 u32 val;
3407
3408 if (obj) {
3409 u32 size = i915_gem_obj_ggtt_size(obj);
3410 int pitch_val;
3411 int tile_width;
3412
3413 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3414 (size & -size) != size ||
3415 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3416 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3417 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3418
3419 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3420 tile_width = 128;
3421 else
3422 tile_width = 512;
3423
3424 /* Note: pitch better be a power of two tile widths */
3425 pitch_val = obj->stride / tile_width;
3426 pitch_val = ffs(pitch_val) - 1;
3427
3428 val = i915_gem_obj_ggtt_offset(obj);
3429 if (obj->tiling_mode == I915_TILING_Y)
3430 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3431 val |= I915_FENCE_SIZE_BITS(size);
3432 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3433 val |= I830_FENCE_REG_VALID;
3434 } else
3435 val = 0;
3436
3437 if (reg < 8)
3438 reg = FENCE_REG_830_0 + reg * 4;
3439 else
3440 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3441
3442 I915_WRITE(reg, val);
3443 POSTING_READ(reg);
3444 }
3445
3446 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3447 struct drm_i915_gem_object *obj)
3448 {
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 uint32_t val;
3451
3452 if (obj) {
3453 u32 size = i915_gem_obj_ggtt_size(obj);
3454 uint32_t pitch_val;
3455
3456 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3457 (size & -size) != size ||
3458 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3459 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3460 i915_gem_obj_ggtt_offset(obj), size);
3461
3462 pitch_val = obj->stride / 128;
3463 pitch_val = ffs(pitch_val) - 1;
3464
3465 val = i915_gem_obj_ggtt_offset(obj);
3466 if (obj->tiling_mode == I915_TILING_Y)
3467 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3468 val |= I830_FENCE_SIZE_BITS(size);
3469 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3470 val |= I830_FENCE_REG_VALID;
3471 } else
3472 val = 0;
3473
3474 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3475 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3476 }
3477
3478 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3479 {
3480 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3481 }
3482
3483 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3484 struct drm_i915_gem_object *obj)
3485 {
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487
3488 /* Ensure that all CPU reads are completed before installing a fence
3489 * and all writes before removing the fence.
3490 */
3491 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3492 mb();
3493
3494 WARN(obj && (!obj->stride || !obj->tiling_mode),
3495 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3496 obj->stride, obj->tiling_mode);
3497
3498 if (IS_GEN2(dev))
3499 i830_write_fence_reg(dev, reg, obj);
3500 else if (IS_GEN3(dev))
3501 i915_write_fence_reg(dev, reg, obj);
3502 else if (INTEL_INFO(dev)->gen >= 4)
3503 i965_write_fence_reg(dev, reg, obj);
3504
3505 /* And similarly be paranoid that no direct access to this region
3506 * is reordered to before the fence is installed.
3507 */
3508 if (i915_gem_object_needs_mb(obj))
3509 mb();
3510 }
3511
3512 static inline int fence_number(struct drm_i915_private *dev_priv,
3513 struct drm_i915_fence_reg *fence)
3514 {
3515 return fence - dev_priv->fence_regs;
3516 }
3517
3518 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3519 struct drm_i915_fence_reg *fence,
3520 bool enable)
3521 {
3522 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3523 int reg = fence_number(dev_priv, fence);
3524
3525 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3526
3527 if (enable) {
3528 obj->fence_reg = reg;
3529 fence->obj = obj;
3530 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3531 } else {
3532 obj->fence_reg = I915_FENCE_REG_NONE;
3533 fence->obj = NULL;
3534 list_del_init(&fence->lru_list);
3535 }
3536 obj->fence_dirty = false;
3537 }
3538
3539 static int
3540 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3541 {
3542 if (obj->last_fenced_req) {
3543 int ret = i915_wait_request(obj->last_fenced_req);
3544 if (ret)
3545 return ret;
3546
3547 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3548 }
3549
3550 return 0;
3551 }
3552
3553 int
3554 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3555 {
3556 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3557 struct drm_i915_fence_reg *fence;
3558 int ret;
3559
3560 ret = i915_gem_object_wait_fence(obj);
3561 if (ret)
3562 return ret;
3563
3564 if (obj->fence_reg == I915_FENCE_REG_NONE)
3565 return 0;
3566
3567 fence = &dev_priv->fence_regs[obj->fence_reg];
3568
3569 if (WARN_ON(fence->pin_count))
3570 return -EBUSY;
3571
3572 i915_gem_object_fence_lost(obj);
3573 i915_gem_object_update_fence(obj, fence, false);
3574
3575 return 0;
3576 }
3577
3578 static struct drm_i915_fence_reg *
3579 i915_find_fence_reg(struct drm_device *dev)
3580 {
3581 struct drm_i915_private *dev_priv = dev->dev_private;
3582 struct drm_i915_fence_reg *reg, *avail;
3583 int i;
3584
3585 /* First try to find a free reg */
3586 avail = NULL;
3587 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3588 reg = &dev_priv->fence_regs[i];
3589 if (!reg->obj)
3590 return reg;
3591
3592 if (!reg->pin_count)
3593 avail = reg;
3594 }
3595
3596 if (avail == NULL)
3597 goto deadlock;
3598
3599 /* None available, try to steal one or wait for a user to finish */
3600 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3601 if (reg->pin_count)
3602 continue;
3603
3604 return reg;
3605 }
3606
3607 deadlock:
3608 /* Wait for completion of pending flips which consume fences */
3609 if (intel_has_pending_fb_unpin(dev))
3610 return ERR_PTR(-EAGAIN);
3611
3612 return ERR_PTR(-EDEADLK);
3613 }
3614
3615 /**
3616 * i915_gem_object_get_fence - set up fencing for an object
3617 * @obj: object to map through a fence reg
3618 *
3619 * When mapping objects through the GTT, userspace wants to be able to write
3620 * to them without having to worry about swizzling if the object is tiled.
3621 * This function walks the fence regs looking for a free one for @obj,
3622 * stealing one if it can't find any.
3623 *
3624 * It then sets up the reg based on the object's properties: address, pitch
3625 * and tiling format.
3626 *
3627 * For an untiled surface, this removes any existing fence.
3628 */
3629 int
3630 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3631 {
3632 struct drm_device *dev = obj->base.dev;
3633 struct drm_i915_private *dev_priv = dev->dev_private;
3634 bool enable = obj->tiling_mode != I915_TILING_NONE;
3635 struct drm_i915_fence_reg *reg;
3636 int ret;
3637
3638 /* Have we updated the tiling parameters upon the object and so
3639 * will need to serialise the write to the associated fence register?
3640 */
3641 if (obj->fence_dirty) {
3642 ret = i915_gem_object_wait_fence(obj);
3643 if (ret)
3644 return ret;
3645 }
3646
3647 /* Just update our place in the LRU if our fence is getting reused. */
3648 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3649 reg = &dev_priv->fence_regs[obj->fence_reg];
3650 if (!obj->fence_dirty) {
3651 list_move_tail(&reg->lru_list,
3652 &dev_priv->mm.fence_list);
3653 return 0;
3654 }
3655 } else if (enable) {
3656 if (WARN_ON(!obj->map_and_fenceable))
3657 return -EINVAL;
3658
3659 reg = i915_find_fence_reg(dev);
3660 if (IS_ERR(reg))
3661 return PTR_ERR(reg);
3662
3663 if (reg->obj) {
3664 struct drm_i915_gem_object *old = reg->obj;
3665
3666 ret = i915_gem_object_wait_fence(old);
3667 if (ret)
3668 return ret;
3669
3670 i915_gem_object_fence_lost(old);
3671 }
3672 } else
3673 return 0;
3674
3675 i915_gem_object_update_fence(obj, reg, enable);
3676
3677 return 0;
3678 }
3679
3680 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3681 unsigned long cache_level)
3682 {
3683 struct drm_mm_node *gtt_space = &vma->node;
3684 struct drm_mm_node *other;
3685
3686 /*
3687 * On some machines we have to be careful when putting differing types
3688 * of snoopable memory together to avoid the prefetcher crossing memory
3689 * domains and dying. During vm initialisation, we decide whether or not
3690 * these constraints apply and set the drm_mm.color_adjust
3691 * appropriately.
3692 */
3693 if (vma->vm->mm.color_adjust == NULL)
3694 return true;
3695
3696 if (!drm_mm_node_allocated(gtt_space))
3697 return true;
3698
3699 if (list_empty(&gtt_space->node_list))
3700 return true;
3701
3702 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3703 if (other->allocated && !other->hole_follows && other->color != cache_level)
3704 return false;
3705
3706 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3707 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3708 return false;
3709
3710 return true;
3711 }
3712
3713 /**
3714 * Finds free space in the GTT aperture and binds the object or a view of it
3715 * there.
3716 */
3717 static struct i915_vma *
3718 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3719 struct i915_address_space *vm,
3720 const struct i915_ggtt_view *ggtt_view,
3721 unsigned alignment,
3722 uint64_t flags)
3723 {
3724 struct drm_device *dev = obj->base.dev;
3725 struct drm_i915_private *dev_priv = dev->dev_private;
3726 u32 size, fence_size, fence_alignment, unfenced_alignment;
3727 u64 start =
3728 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3729 u64 end =
3730 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3731 struct i915_vma *vma;
3732 int ret;
3733
3734 if (i915_is_ggtt(vm)) {
3735 u32 view_size;
3736
3737 if (WARN_ON(!ggtt_view))
3738 return ERR_PTR(-EINVAL);
3739
3740 view_size = i915_ggtt_view_size(obj, ggtt_view);
3741
3742 fence_size = i915_gem_get_gtt_size(dev,
3743 view_size,
3744 obj->tiling_mode);
3745 fence_alignment = i915_gem_get_gtt_alignment(dev,
3746 view_size,
3747 obj->tiling_mode,
3748 true);
3749 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3750 view_size,
3751 obj->tiling_mode,
3752 false);
3753 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3754 } else {
3755 fence_size = i915_gem_get_gtt_size(dev,
3756 obj->base.size,
3757 obj->tiling_mode);
3758 fence_alignment = i915_gem_get_gtt_alignment(dev,
3759 obj->base.size,
3760 obj->tiling_mode,
3761 true);
3762 unfenced_alignment =
3763 i915_gem_get_gtt_alignment(dev,
3764 obj->base.size,
3765 obj->tiling_mode,
3766 false);
3767 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3768 }
3769
3770 if (alignment == 0)
3771 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3772 unfenced_alignment;
3773 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3774 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3775 ggtt_view ? ggtt_view->type : 0,
3776 alignment);
3777 return ERR_PTR(-EINVAL);
3778 }
3779
3780 /* If binding the object/GGTT view requires more space than the entire
3781 * aperture has, reject it early before evicting everything in a vain
3782 * attempt to find space.
3783 */
3784 if (size > end) {
3785 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%llu\n",
3786 ggtt_view ? ggtt_view->type : 0,
3787 size,
3788 flags & PIN_MAPPABLE ? "mappable" : "total",
3789 end);
3790 return ERR_PTR(-E2BIG);
3791 }
3792
3793 ret = i915_gem_object_get_pages(obj);
3794 if (ret)
3795 return ERR_PTR(ret);
3796
3797 i915_gem_object_pin_pages(obj);
3798
3799 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3800 i915_gem_obj_lookup_or_create_vma(obj, vm);
3801
3802 if (IS_ERR(vma))
3803 goto err_unpin;
3804
3805 search_free:
3806 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3807 size, alignment,
3808 obj->cache_level,
3809 start, end,
3810 DRM_MM_SEARCH_DEFAULT,
3811 DRM_MM_CREATE_DEFAULT);
3812 if (ret) {
3813 ret = i915_gem_evict_something(dev, vm, size, alignment,
3814 obj->cache_level,
3815 start, end,
3816 flags);
3817 if (ret == 0)
3818 goto search_free;
3819
3820 goto err_free_vma;
3821 }
3822 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3823 ret = -EINVAL;
3824 goto err_remove_node;
3825 }
3826
3827 trace_i915_vma_bind(vma, flags);
3828 ret = i915_vma_bind(vma, obj->cache_level, flags);
3829 if (ret)
3830 goto err_remove_node;
3831
3832 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3833 list_add_tail(&vma->mm_list, &vm->inactive_list);
3834
3835 return vma;
3836
3837 err_remove_node:
3838 drm_mm_remove_node(&vma->node);
3839 err_free_vma:
3840 i915_gem_vma_destroy(vma);
3841 vma = ERR_PTR(ret);
3842 err_unpin:
3843 i915_gem_object_unpin_pages(obj);
3844 return vma;
3845 }
3846
3847 bool
3848 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3849 bool force)
3850 {
3851 /* If we don't have a page list set up, then we're not pinned
3852 * to GPU, and we can ignore the cache flush because it'll happen
3853 * again at bind time.
3854 */
3855 if (obj->pages == NULL)
3856 return false;
3857
3858 /*
3859 * Stolen memory is always coherent with the GPU as it is explicitly
3860 * marked as wc by the system, or the system is cache-coherent.
3861 */
3862 if (obj->stolen || obj->phys_handle)
3863 return false;
3864
3865 /* If the GPU is snooping the contents of the CPU cache,
3866 * we do not need to manually clear the CPU cache lines. However,
3867 * the caches are only snooped when the render cache is
3868 * flushed/invalidated. As we always have to emit invalidations
3869 * and flushes when moving into and out of the RENDER domain, correct
3870 * snooping behaviour occurs naturally as the result of our domain
3871 * tracking.
3872 */
3873 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3874 obj->cache_dirty = true;
3875 return false;
3876 }
3877
3878 trace_i915_gem_object_clflush(obj);
3879 drm_clflush_sg(obj->pages);
3880 obj->cache_dirty = false;
3881
3882 return true;
3883 }
3884
3885 /** Flushes the GTT write domain for the object if it's dirty. */
3886 static void
3887 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3888 {
3889 uint32_t old_write_domain;
3890
3891 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3892 return;
3893
3894 /* No actual flushing is required for the GTT write domain. Writes
3895 * to it immediately go to main memory as far as we know, so there's
3896 * no chipset flush. It also doesn't land in render cache.
3897 *
3898 * However, we do have to enforce the order so that all writes through
3899 * the GTT land before any writes to the device, such as updates to
3900 * the GATT itself.
3901 */
3902 wmb();
3903
3904 old_write_domain = obj->base.write_domain;
3905 obj->base.write_domain = 0;
3906
3907 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3908
3909 trace_i915_gem_object_change_domain(obj,
3910 obj->base.read_domains,
3911 old_write_domain);
3912 }
3913
3914 /** Flushes the CPU write domain for the object if it's dirty. */
3915 static void
3916 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3917 {
3918 uint32_t old_write_domain;
3919
3920 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3921 return;
3922
3923 if (i915_gem_clflush_object(obj, obj->pin_display))
3924 i915_gem_chipset_flush(obj->base.dev);
3925
3926 old_write_domain = obj->base.write_domain;
3927 obj->base.write_domain = 0;
3928
3929 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3930
3931 trace_i915_gem_object_change_domain(obj,
3932 obj->base.read_domains,
3933 old_write_domain);
3934 }
3935
3936 /**
3937 * Moves a single object to the GTT read, and possibly write domain.
3938 *
3939 * This function returns when the move is complete, including waiting on
3940 * flushes to occur.
3941 */
3942 int
3943 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3944 {
3945 uint32_t old_write_domain, old_read_domains;
3946 struct i915_vma *vma;
3947 int ret;
3948
3949 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3950 return 0;
3951
3952 ret = i915_gem_object_wait_rendering(obj, !write);
3953 if (ret)
3954 return ret;
3955
3956 /* Flush and acquire obj->pages so that we are coherent through
3957 * direct access in memory with previous cached writes through
3958 * shmemfs and that our cache domain tracking remains valid.
3959 * For example, if the obj->filp was moved to swap without us
3960 * being notified and releasing the pages, we would mistakenly
3961 * continue to assume that the obj remained out of the CPU cached
3962 * domain.
3963 */
3964 ret = i915_gem_object_get_pages(obj);
3965 if (ret)
3966 return ret;
3967
3968 i915_gem_object_flush_cpu_write_domain(obj);
3969
3970 /* Serialise direct access to this object with the barriers for
3971 * coherent writes from the GPU, by effectively invalidating the
3972 * GTT domain upon first access.
3973 */
3974 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3975 mb();
3976
3977 old_write_domain = obj->base.write_domain;
3978 old_read_domains = obj->base.read_domains;
3979
3980 /* It should now be out of any other write domains, and we can update
3981 * the domain values for our changes.
3982 */
3983 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3984 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3985 if (write) {
3986 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3987 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3988 obj->dirty = 1;
3989 }
3990
3991 trace_i915_gem_object_change_domain(obj,
3992 old_read_domains,
3993 old_write_domain);
3994
3995 /* And bump the LRU for this access */
3996 vma = i915_gem_obj_to_ggtt(obj);
3997 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3998 list_move_tail(&vma->mm_list,
3999 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4000
4001 return 0;
4002 }
4003
4004 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4005 enum i915_cache_level cache_level)
4006 {
4007 struct drm_device *dev = obj->base.dev;
4008 struct i915_vma *vma, *next;
4009 int ret;
4010
4011 if (obj->cache_level == cache_level)
4012 return 0;
4013
4014 if (i915_gem_obj_is_pinned(obj)) {
4015 DRM_DEBUG("can not change the cache level of pinned objects\n");
4016 return -EBUSY;
4017 }
4018
4019 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4020 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4021 ret = i915_vma_unbind(vma);
4022 if (ret)
4023 return ret;
4024 }
4025 }
4026
4027 if (i915_gem_obj_bound_any(obj)) {
4028 ret = i915_gem_object_wait_rendering(obj, false);
4029 if (ret)
4030 return ret;
4031
4032 i915_gem_object_finish_gtt(obj);
4033
4034 /* Before SandyBridge, you could not use tiling or fence
4035 * registers with snooped memory, so relinquish any fences
4036 * currently pointing to our region in the aperture.
4037 */
4038 if (INTEL_INFO(dev)->gen < 6) {
4039 ret = i915_gem_object_put_fence(obj);
4040 if (ret)
4041 return ret;
4042 }
4043
4044 list_for_each_entry(vma, &obj->vma_list, vma_link)
4045 if (drm_mm_node_allocated(&vma->node)) {
4046 ret = i915_vma_bind(vma, cache_level,
4047 PIN_UPDATE);
4048 if (ret)
4049 return ret;
4050 }
4051 }
4052
4053 list_for_each_entry(vma, &obj->vma_list, vma_link)
4054 vma->node.color = cache_level;
4055 obj->cache_level = cache_level;
4056
4057 if (obj->cache_dirty &&
4058 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4059 cpu_write_needs_clflush(obj)) {
4060 if (i915_gem_clflush_object(obj, true))
4061 i915_gem_chipset_flush(obj->base.dev);
4062 }
4063
4064 return 0;
4065 }
4066
4067 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4068 struct drm_file *file)
4069 {
4070 struct drm_i915_gem_caching *args = data;
4071 struct drm_i915_gem_object *obj;
4072
4073 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4074 if (&obj->base == NULL)
4075 return -ENOENT;
4076
4077 switch (obj->cache_level) {
4078 case I915_CACHE_LLC:
4079 case I915_CACHE_L3_LLC:
4080 args->caching = I915_CACHING_CACHED;
4081 break;
4082
4083 case I915_CACHE_WT:
4084 args->caching = I915_CACHING_DISPLAY;
4085 break;
4086
4087 default:
4088 args->caching = I915_CACHING_NONE;
4089 break;
4090 }
4091
4092 drm_gem_object_unreference_unlocked(&obj->base);
4093 return 0;
4094 }
4095
4096 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4097 struct drm_file *file)
4098 {
4099 struct drm_i915_gem_caching *args = data;
4100 struct drm_i915_gem_object *obj;
4101 enum i915_cache_level level;
4102 int ret;
4103
4104 switch (args->caching) {
4105 case I915_CACHING_NONE:
4106 level = I915_CACHE_NONE;
4107 break;
4108 case I915_CACHING_CACHED:
4109 level = I915_CACHE_LLC;
4110 break;
4111 case I915_CACHING_DISPLAY:
4112 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4113 break;
4114 default:
4115 return -EINVAL;
4116 }
4117
4118 ret = i915_mutex_lock_interruptible(dev);
4119 if (ret)
4120 return ret;
4121
4122 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4123 if (&obj->base == NULL) {
4124 ret = -ENOENT;
4125 goto unlock;
4126 }
4127
4128 ret = i915_gem_object_set_cache_level(obj, level);
4129
4130 drm_gem_object_unreference(&obj->base);
4131 unlock:
4132 mutex_unlock(&dev->struct_mutex);
4133 return ret;
4134 }
4135
4136 /*
4137 * Prepare buffer for display plane (scanout, cursors, etc).
4138 * Can be called from an uninterruptible phase (modesetting) and allows
4139 * any flushes to be pipelined (for pageflips).
4140 */
4141 int
4142 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4143 u32 alignment,
4144 struct intel_engine_cs *pipelined,
4145 struct drm_i915_gem_request **pipelined_request,
4146 const struct i915_ggtt_view *view)
4147 {
4148 u32 old_read_domains, old_write_domain;
4149 int ret;
4150
4151 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4152 if (ret)
4153 return ret;
4154
4155 /* Mark the pin_display early so that we account for the
4156 * display coherency whilst setting up the cache domains.
4157 */
4158 obj->pin_display++;
4159
4160 /* The display engine is not coherent with the LLC cache on gen6. As
4161 * a result, we make sure that the pinning that is about to occur is
4162 * done with uncached PTEs. This is lowest common denominator for all
4163 * chipsets.
4164 *
4165 * However for gen6+, we could do better by using the GFDT bit instead
4166 * of uncaching, which would allow us to flush all the LLC-cached data
4167 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4168 */
4169 ret = i915_gem_object_set_cache_level(obj,
4170 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4171 if (ret)
4172 goto err_unpin_display;
4173
4174 /* As the user may map the buffer once pinned in the display plane
4175 * (e.g. libkms for the bootup splash), we have to ensure that we
4176 * always use map_and_fenceable for all scanout buffers.
4177 */
4178 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4179 view->type == I915_GGTT_VIEW_NORMAL ?
4180 PIN_MAPPABLE : 0);
4181 if (ret)
4182 goto err_unpin_display;
4183
4184 i915_gem_object_flush_cpu_write_domain(obj);
4185
4186 old_write_domain = obj->base.write_domain;
4187 old_read_domains = obj->base.read_domains;
4188
4189 /* It should now be out of any other write domains, and we can update
4190 * the domain values for our changes.
4191 */
4192 obj->base.write_domain = 0;
4193 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4194
4195 trace_i915_gem_object_change_domain(obj,
4196 old_read_domains,
4197 old_write_domain);
4198
4199 return 0;
4200
4201 err_unpin_display:
4202 obj->pin_display--;
4203 return ret;
4204 }
4205
4206 void
4207 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4208 const struct i915_ggtt_view *view)
4209 {
4210 if (WARN_ON(obj->pin_display == 0))
4211 return;
4212
4213 i915_gem_object_ggtt_unpin_view(obj, view);
4214
4215 obj->pin_display--;
4216 }
4217
4218 /**
4219 * Moves a single object to the CPU read, and possibly write domain.
4220 *
4221 * This function returns when the move is complete, including waiting on
4222 * flushes to occur.
4223 */
4224 int
4225 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4226 {
4227 uint32_t old_write_domain, old_read_domains;
4228 int ret;
4229
4230 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4231 return 0;
4232
4233 ret = i915_gem_object_wait_rendering(obj, !write);
4234 if (ret)
4235 return ret;
4236
4237 i915_gem_object_flush_gtt_write_domain(obj);
4238
4239 old_write_domain = obj->base.write_domain;
4240 old_read_domains = obj->base.read_domains;
4241
4242 /* Flush the CPU cache if it's still invalid. */
4243 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4244 i915_gem_clflush_object(obj, false);
4245
4246 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4247 }
4248
4249 /* It should now be out of any other write domains, and we can update
4250 * the domain values for our changes.
4251 */
4252 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4253
4254 /* If we're writing through the CPU, then the GPU read domains will
4255 * need to be invalidated at next use.
4256 */
4257 if (write) {
4258 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4259 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4260 }
4261
4262 trace_i915_gem_object_change_domain(obj,
4263 old_read_domains,
4264 old_write_domain);
4265
4266 return 0;
4267 }
4268
4269 /* Throttle our rendering by waiting until the ring has completed our requests
4270 * emitted over 20 msec ago.
4271 *
4272 * Note that if we were to use the current jiffies each time around the loop,
4273 * we wouldn't escape the function with any frames outstanding if the time to
4274 * render a frame was over 20ms.
4275 *
4276 * This should get us reasonable parallelism between CPU and GPU but also
4277 * relatively low latency when blocking on a particular request to finish.
4278 */
4279 static int
4280 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4281 {
4282 struct drm_i915_private *dev_priv = dev->dev_private;
4283 struct drm_i915_file_private *file_priv = file->driver_priv;
4284 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4285 struct drm_i915_gem_request *request, *target = NULL;
4286 unsigned reset_counter;
4287 int ret;
4288
4289 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4290 if (ret)
4291 return ret;
4292
4293 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4294 if (ret)
4295 return ret;
4296
4297 spin_lock(&file_priv->mm.lock);
4298 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4299 if (time_after_eq(request->emitted_jiffies, recent_enough))
4300 break;
4301
4302 /*
4303 * Note that the request might not have been submitted yet.
4304 * In which case emitted_jiffies will be zero.
4305 */
4306 if (!request->emitted_jiffies)
4307 continue;
4308
4309 target = request;
4310 }
4311 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4312 if (target)
4313 i915_gem_request_reference(target);
4314 spin_unlock(&file_priv->mm.lock);
4315
4316 if (target == NULL)
4317 return 0;
4318
4319 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4320 if (ret == 0)
4321 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4322
4323 i915_gem_request_unreference__unlocked(target);
4324
4325 return ret;
4326 }
4327
4328 static bool
4329 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4330 {
4331 struct drm_i915_gem_object *obj = vma->obj;
4332
4333 if (alignment &&
4334 vma->node.start & (alignment - 1))
4335 return true;
4336
4337 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4338 return true;
4339
4340 if (flags & PIN_OFFSET_BIAS &&
4341 vma->node.start < (flags & PIN_OFFSET_MASK))
4342 return true;
4343
4344 return false;
4345 }
4346
4347 static int
4348 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4349 struct i915_address_space *vm,
4350 const struct i915_ggtt_view *ggtt_view,
4351 uint32_t alignment,
4352 uint64_t flags)
4353 {
4354 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4355 struct i915_vma *vma;
4356 unsigned bound;
4357 int ret;
4358
4359 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4360 return -ENODEV;
4361
4362 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4363 return -EINVAL;
4364
4365 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4366 return -EINVAL;
4367
4368 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4369 return -EINVAL;
4370
4371 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4372 i915_gem_obj_to_vma(obj, vm);
4373
4374 if (IS_ERR(vma))
4375 return PTR_ERR(vma);
4376
4377 if (vma) {
4378 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4379 return -EBUSY;
4380
4381 if (i915_vma_misplaced(vma, alignment, flags)) {
4382 unsigned long offset;
4383 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4384 i915_gem_obj_offset(obj, vm);
4385 WARN(vma->pin_count,
4386 "bo is already pinned in %s with incorrect alignment:"
4387 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4388 " obj->map_and_fenceable=%d\n",
4389 ggtt_view ? "ggtt" : "ppgtt",
4390 offset,
4391 alignment,
4392 !!(flags & PIN_MAPPABLE),
4393 obj->map_and_fenceable);
4394 ret = i915_vma_unbind(vma);
4395 if (ret)
4396 return ret;
4397
4398 vma = NULL;
4399 }
4400 }
4401
4402 bound = vma ? vma->bound : 0;
4403 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4404 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4405 flags);
4406 if (IS_ERR(vma))
4407 return PTR_ERR(vma);
4408 } else {
4409 ret = i915_vma_bind(vma, obj->cache_level, flags);
4410 if (ret)
4411 return ret;
4412 }
4413
4414 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4415 (bound ^ vma->bound) & GLOBAL_BIND) {
4416 bool mappable, fenceable;
4417 u32 fence_size, fence_alignment;
4418
4419 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4420 obj->base.size,
4421 obj->tiling_mode);
4422 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4423 obj->base.size,
4424 obj->tiling_mode,
4425 true);
4426
4427 fenceable = (vma->node.size == fence_size &&
4428 (vma->node.start & (fence_alignment - 1)) == 0);
4429
4430 mappable = (vma->node.start + fence_size <=
4431 dev_priv->gtt.mappable_end);
4432
4433 obj->map_and_fenceable = mappable && fenceable;
4434
4435 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4436 }
4437
4438 vma->pin_count++;
4439 return 0;
4440 }
4441
4442 int
4443 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4444 struct i915_address_space *vm,
4445 uint32_t alignment,
4446 uint64_t flags)
4447 {
4448 return i915_gem_object_do_pin(obj, vm,
4449 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4450 alignment, flags);
4451 }
4452
4453 int
4454 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4455 const struct i915_ggtt_view *view,
4456 uint32_t alignment,
4457 uint64_t flags)
4458 {
4459 if (WARN_ONCE(!view, "no view specified"))
4460 return -EINVAL;
4461
4462 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4463 alignment, flags | PIN_GLOBAL);
4464 }
4465
4466 void
4467 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4468 const struct i915_ggtt_view *view)
4469 {
4470 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4471
4472 BUG_ON(!vma);
4473 WARN_ON(vma->pin_count == 0);
4474 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4475
4476 --vma->pin_count;
4477 }
4478
4479 bool
4480 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4481 {
4482 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4483 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4484 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4485
4486 WARN_ON(!ggtt_vma ||
4487 dev_priv->fence_regs[obj->fence_reg].pin_count >
4488 ggtt_vma->pin_count);
4489 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4490 return true;
4491 } else
4492 return false;
4493 }
4494
4495 void
4496 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4497 {
4498 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4499 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4500 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4501 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4502 }
4503 }
4504
4505 int
4506 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4507 struct drm_file *file)
4508 {
4509 struct drm_i915_gem_busy *args = data;
4510 struct drm_i915_gem_object *obj;
4511 int ret;
4512
4513 ret = i915_mutex_lock_interruptible(dev);
4514 if (ret)
4515 return ret;
4516
4517 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4518 if (&obj->base == NULL) {
4519 ret = -ENOENT;
4520 goto unlock;
4521 }
4522
4523 /* Count all active objects as busy, even if they are currently not used
4524 * by the gpu. Users of this interface expect objects to eventually
4525 * become non-busy without any further actions, therefore emit any
4526 * necessary flushes here.
4527 */
4528 ret = i915_gem_object_flush_active(obj);
4529 if (ret)
4530 goto unref;
4531
4532 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4533 args->busy = obj->active << 16;
4534 if (obj->last_write_req)
4535 args->busy |= obj->last_write_req->ring->id;
4536
4537 unref:
4538 drm_gem_object_unreference(&obj->base);
4539 unlock:
4540 mutex_unlock(&dev->struct_mutex);
4541 return ret;
4542 }
4543
4544 int
4545 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4546 struct drm_file *file_priv)
4547 {
4548 return i915_gem_ring_throttle(dev, file_priv);
4549 }
4550
4551 int
4552 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4553 struct drm_file *file_priv)
4554 {
4555 struct drm_i915_private *dev_priv = dev->dev_private;
4556 struct drm_i915_gem_madvise *args = data;
4557 struct drm_i915_gem_object *obj;
4558 int ret;
4559
4560 switch (args->madv) {
4561 case I915_MADV_DONTNEED:
4562 case I915_MADV_WILLNEED:
4563 break;
4564 default:
4565 return -EINVAL;
4566 }
4567
4568 ret = i915_mutex_lock_interruptible(dev);
4569 if (ret)
4570 return ret;
4571
4572 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4573 if (&obj->base == NULL) {
4574 ret = -ENOENT;
4575 goto unlock;
4576 }
4577
4578 if (i915_gem_obj_is_pinned(obj)) {
4579 ret = -EINVAL;
4580 goto out;
4581 }
4582
4583 if (obj->pages &&
4584 obj->tiling_mode != I915_TILING_NONE &&
4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4586 if (obj->madv == I915_MADV_WILLNEED)
4587 i915_gem_object_unpin_pages(obj);
4588 if (args->madv == I915_MADV_WILLNEED)
4589 i915_gem_object_pin_pages(obj);
4590 }
4591
4592 if (obj->madv != __I915_MADV_PURGED)
4593 obj->madv = args->madv;
4594
4595 /* if the object is no longer attached, discard its backing storage */
4596 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4597 i915_gem_object_truncate(obj);
4598
4599 args->retained = obj->madv != __I915_MADV_PURGED;
4600
4601 out:
4602 drm_gem_object_unreference(&obj->base);
4603 unlock:
4604 mutex_unlock(&dev->struct_mutex);
4605 return ret;
4606 }
4607
4608 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4609 const struct drm_i915_gem_object_ops *ops)
4610 {
4611 int i;
4612
4613 INIT_LIST_HEAD(&obj->global_list);
4614 for (i = 0; i < I915_NUM_RINGS; i++)
4615 INIT_LIST_HEAD(&obj->ring_list[i]);
4616 INIT_LIST_HEAD(&obj->obj_exec_link);
4617 INIT_LIST_HEAD(&obj->vma_list);
4618 INIT_LIST_HEAD(&obj->batch_pool_link);
4619
4620 obj->ops = ops;
4621
4622 obj->fence_reg = I915_FENCE_REG_NONE;
4623 obj->madv = I915_MADV_WILLNEED;
4624
4625 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4626 }
4627
4628 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4629 .get_pages = i915_gem_object_get_pages_gtt,
4630 .put_pages = i915_gem_object_put_pages_gtt,
4631 };
4632
4633 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4634 size_t size)
4635 {
4636 struct drm_i915_gem_object *obj;
4637 struct address_space *mapping;
4638 gfp_t mask;
4639
4640 obj = i915_gem_object_alloc(dev);
4641 if (obj == NULL)
4642 return NULL;
4643
4644 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4645 i915_gem_object_free(obj);
4646 return NULL;
4647 }
4648
4649 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4650 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4651 /* 965gm cannot relocate objects above 4GiB. */
4652 mask &= ~__GFP_HIGHMEM;
4653 mask |= __GFP_DMA32;
4654 }
4655
4656 mapping = file_inode(obj->base.filp)->i_mapping;
4657 mapping_set_gfp_mask(mapping, mask);
4658
4659 i915_gem_object_init(obj, &i915_gem_object_ops);
4660
4661 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4662 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4663
4664 if (HAS_LLC(dev)) {
4665 /* On some devices, we can have the GPU use the LLC (the CPU
4666 * cache) for about a 10% performance improvement
4667 * compared to uncached. Graphics requests other than
4668 * display scanout are coherent with the CPU in
4669 * accessing this cache. This means in this mode we
4670 * don't need to clflush on the CPU side, and on the
4671 * GPU side we only need to flush internal caches to
4672 * get data visible to the CPU.
4673 *
4674 * However, we maintain the display planes as UC, and so
4675 * need to rebind when first used as such.
4676 */
4677 obj->cache_level = I915_CACHE_LLC;
4678 } else
4679 obj->cache_level = I915_CACHE_NONE;
4680
4681 trace_i915_gem_object_create(obj);
4682
4683 return obj;
4684 }
4685
4686 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4687 {
4688 /* If we are the last user of the backing storage (be it shmemfs
4689 * pages or stolen etc), we know that the pages are going to be
4690 * immediately released. In this case, we can then skip copying
4691 * back the contents from the GPU.
4692 */
4693
4694 if (obj->madv != I915_MADV_WILLNEED)
4695 return false;
4696
4697 if (obj->base.filp == NULL)
4698 return true;
4699
4700 /* At first glance, this looks racy, but then again so would be
4701 * userspace racing mmap against close. However, the first external
4702 * reference to the filp can only be obtained through the
4703 * i915_gem_mmap_ioctl() which safeguards us against the user
4704 * acquiring such a reference whilst we are in the middle of
4705 * freeing the object.
4706 */
4707 return atomic_long_read(&obj->base.filp->f_count) == 1;
4708 }
4709
4710 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4711 {
4712 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4713 struct drm_device *dev = obj->base.dev;
4714 struct drm_i915_private *dev_priv = dev->dev_private;
4715 struct i915_vma *vma, *next;
4716
4717 intel_runtime_pm_get(dev_priv);
4718
4719 trace_i915_gem_object_destroy(obj);
4720
4721 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4722 int ret;
4723
4724 vma->pin_count = 0;
4725 ret = i915_vma_unbind(vma);
4726 if (WARN_ON(ret == -ERESTARTSYS)) {
4727 bool was_interruptible;
4728
4729 was_interruptible = dev_priv->mm.interruptible;
4730 dev_priv->mm.interruptible = false;
4731
4732 WARN_ON(i915_vma_unbind(vma));
4733
4734 dev_priv->mm.interruptible = was_interruptible;
4735 }
4736 }
4737
4738 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4739 * before progressing. */
4740 if (obj->stolen)
4741 i915_gem_object_unpin_pages(obj);
4742
4743 WARN_ON(obj->frontbuffer_bits);
4744
4745 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4746 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4747 obj->tiling_mode != I915_TILING_NONE)
4748 i915_gem_object_unpin_pages(obj);
4749
4750 if (WARN_ON(obj->pages_pin_count))
4751 obj->pages_pin_count = 0;
4752 if (discard_backing_storage(obj))
4753 obj->madv = I915_MADV_DONTNEED;
4754 i915_gem_object_put_pages(obj);
4755 i915_gem_object_free_mmap_offset(obj);
4756
4757 BUG_ON(obj->pages);
4758
4759 if (obj->base.import_attach)
4760 drm_prime_gem_destroy(&obj->base, NULL);
4761
4762 if (obj->ops->release)
4763 obj->ops->release(obj);
4764
4765 drm_gem_object_release(&obj->base);
4766 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4767
4768 kfree(obj->bit_17);
4769 i915_gem_object_free(obj);
4770
4771 intel_runtime_pm_put(dev_priv);
4772 }
4773
4774 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4775 struct i915_address_space *vm)
4776 {
4777 struct i915_vma *vma;
4778 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4779 if (i915_is_ggtt(vma->vm) &&
4780 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4781 continue;
4782 if (vma->vm == vm)
4783 return vma;
4784 }
4785 return NULL;
4786 }
4787
4788 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4789 const struct i915_ggtt_view *view)
4790 {
4791 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4792 struct i915_vma *vma;
4793
4794 if (WARN_ONCE(!view, "no view specified"))
4795 return ERR_PTR(-EINVAL);
4796
4797 list_for_each_entry(vma, &obj->vma_list, vma_link)
4798 if (vma->vm == ggtt &&
4799 i915_ggtt_view_equal(&vma->ggtt_view, view))
4800 return vma;
4801 return NULL;
4802 }
4803
4804 void i915_gem_vma_destroy(struct i915_vma *vma)
4805 {
4806 struct i915_address_space *vm = NULL;
4807 WARN_ON(vma->node.allocated);
4808
4809 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4810 if (!list_empty(&vma->exec_list))
4811 return;
4812
4813 vm = vma->vm;
4814
4815 if (!i915_is_ggtt(vm))
4816 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4817
4818 list_del(&vma->vma_link);
4819
4820 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4821 }
4822
4823 static void
4824 i915_gem_stop_ringbuffers(struct drm_device *dev)
4825 {
4826 struct drm_i915_private *dev_priv = dev->dev_private;
4827 struct intel_engine_cs *ring;
4828 int i;
4829
4830 for_each_ring(ring, dev_priv, i)
4831 dev_priv->gt.stop_ring(ring);
4832 }
4833
4834 int
4835 i915_gem_suspend(struct drm_device *dev)
4836 {
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 int ret = 0;
4839
4840 mutex_lock(&dev->struct_mutex);
4841 ret = i915_gpu_idle(dev);
4842 if (ret)
4843 goto err;
4844
4845 i915_gem_retire_requests(dev);
4846
4847 i915_gem_stop_ringbuffers(dev);
4848 mutex_unlock(&dev->struct_mutex);
4849
4850 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4851 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4852 flush_delayed_work(&dev_priv->mm.idle_work);
4853
4854 /* Assert that we sucessfully flushed all the work and
4855 * reset the GPU back to its idle, low power state.
4856 */
4857 WARN_ON(dev_priv->mm.busy);
4858
4859 return 0;
4860
4861 err:
4862 mutex_unlock(&dev->struct_mutex);
4863 return ret;
4864 }
4865
4866 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4867 {
4868 struct intel_engine_cs *ring = req->ring;
4869 struct drm_device *dev = ring->dev;
4870 struct drm_i915_private *dev_priv = dev->dev_private;
4871 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4872 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4873 int i, ret;
4874
4875 if (!HAS_L3_DPF(dev) || !remap_info)
4876 return 0;
4877
4878 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4879 if (ret)
4880 return ret;
4881
4882 /*
4883 * Note: We do not worry about the concurrent register cacheline hang
4884 * here because no other code should access these registers other than
4885 * at initialization time.
4886 */
4887 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4888 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4889 intel_ring_emit(ring, reg_base + i);
4890 intel_ring_emit(ring, remap_info[i/4]);
4891 }
4892
4893 intel_ring_advance(ring);
4894
4895 return ret;
4896 }
4897
4898 void i915_gem_init_swizzling(struct drm_device *dev)
4899 {
4900 struct drm_i915_private *dev_priv = dev->dev_private;
4901
4902 if (INTEL_INFO(dev)->gen < 5 ||
4903 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4904 return;
4905
4906 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4907 DISP_TILE_SURFACE_SWIZZLING);
4908
4909 if (IS_GEN5(dev))
4910 return;
4911
4912 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4913 if (IS_GEN6(dev))
4914 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4915 else if (IS_GEN7(dev))
4916 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4917 else if (IS_GEN8(dev))
4918 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4919 else
4920 BUG();
4921 }
4922
4923 static bool
4924 intel_enable_blt(struct drm_device *dev)
4925 {
4926 if (!HAS_BLT(dev))
4927 return false;
4928
4929 /* The blitter was dysfunctional on early prototypes */
4930 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4931 DRM_INFO("BLT not supported on this pre-production hardware;"
4932 " graphics performance will be degraded.\n");
4933 return false;
4934 }
4935
4936 return true;
4937 }
4938
4939 static void init_unused_ring(struct drm_device *dev, u32 base)
4940 {
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942
4943 I915_WRITE(RING_CTL(base), 0);
4944 I915_WRITE(RING_HEAD(base), 0);
4945 I915_WRITE(RING_TAIL(base), 0);
4946 I915_WRITE(RING_START(base), 0);
4947 }
4948
4949 static void init_unused_rings(struct drm_device *dev)
4950 {
4951 if (IS_I830(dev)) {
4952 init_unused_ring(dev, PRB1_BASE);
4953 init_unused_ring(dev, SRB0_BASE);
4954 init_unused_ring(dev, SRB1_BASE);
4955 init_unused_ring(dev, SRB2_BASE);
4956 init_unused_ring(dev, SRB3_BASE);
4957 } else if (IS_GEN2(dev)) {
4958 init_unused_ring(dev, SRB0_BASE);
4959 init_unused_ring(dev, SRB1_BASE);
4960 } else if (IS_GEN3(dev)) {
4961 init_unused_ring(dev, PRB1_BASE);
4962 init_unused_ring(dev, PRB2_BASE);
4963 }
4964 }
4965
4966 int i915_gem_init_rings(struct drm_device *dev)
4967 {
4968 struct drm_i915_private *dev_priv = dev->dev_private;
4969 int ret;
4970
4971 ret = intel_init_render_ring_buffer(dev);
4972 if (ret)
4973 return ret;
4974
4975 if (HAS_BSD(dev)) {
4976 ret = intel_init_bsd_ring_buffer(dev);
4977 if (ret)
4978 goto cleanup_render_ring;
4979 }
4980
4981 if (intel_enable_blt(dev)) {
4982 ret = intel_init_blt_ring_buffer(dev);
4983 if (ret)
4984 goto cleanup_bsd_ring;
4985 }
4986
4987 if (HAS_VEBOX(dev)) {
4988 ret = intel_init_vebox_ring_buffer(dev);
4989 if (ret)
4990 goto cleanup_blt_ring;
4991 }
4992
4993 if (HAS_BSD2(dev)) {
4994 ret = intel_init_bsd2_ring_buffer(dev);
4995 if (ret)
4996 goto cleanup_vebox_ring;
4997 }
4998
4999 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5000 if (ret)
5001 goto cleanup_bsd2_ring;
5002
5003 return 0;
5004
5005 cleanup_bsd2_ring:
5006 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5007 cleanup_vebox_ring:
5008 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5009 cleanup_blt_ring:
5010 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5011 cleanup_bsd_ring:
5012 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5013 cleanup_render_ring:
5014 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5015
5016 return ret;
5017 }
5018
5019 int
5020 i915_gem_init_hw(struct drm_device *dev)
5021 {
5022 struct drm_i915_private *dev_priv = dev->dev_private;
5023 struct intel_engine_cs *ring;
5024 int ret, i, j;
5025
5026 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5027 return -EIO;
5028
5029 /* Double layer security blanket, see i915_gem_init() */
5030 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5031
5032 if (dev_priv->ellc_size)
5033 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5034
5035 if (IS_HASWELL(dev))
5036 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5037 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5038
5039 if (HAS_PCH_NOP(dev)) {
5040 if (IS_IVYBRIDGE(dev)) {
5041 u32 temp = I915_READ(GEN7_MSG_CTL);
5042 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5043 I915_WRITE(GEN7_MSG_CTL, temp);
5044 } else if (INTEL_INFO(dev)->gen >= 7) {
5045 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5046 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5047 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5048 }
5049 }
5050
5051 i915_gem_init_swizzling(dev);
5052
5053 /*
5054 * At least 830 can leave some of the unused rings
5055 * "active" (ie. head != tail) after resume which
5056 * will prevent c3 entry. Makes sure all unused rings
5057 * are totally idle.
5058 */
5059 init_unused_rings(dev);
5060
5061 BUG_ON(!dev_priv->ring[RCS].default_context);
5062
5063 ret = i915_ppgtt_init_hw(dev);
5064 if (ret) {
5065 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5066 goto out;
5067 }
5068
5069 /* Need to do basic initialisation of all rings first: */
5070 for_each_ring(ring, dev_priv, i) {
5071 ret = ring->init_hw(ring);
5072 if (ret)
5073 goto out;
5074 }
5075
5076 /* Now it is safe to go back round and do everything else: */
5077 for_each_ring(ring, dev_priv, i) {
5078 struct drm_i915_gem_request *req;
5079
5080 WARN_ON(!ring->default_context);
5081
5082 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5083 if (ret) {
5084 i915_gem_cleanup_ringbuffer(dev);
5085 goto out;
5086 }
5087
5088 if (ring->id == RCS) {
5089 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5090 i915_gem_l3_remap(req, j);
5091 }
5092
5093 ret = i915_ppgtt_init_ring(req);
5094 if (ret && ret != -EIO) {
5095 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5096 i915_gem_request_cancel(req);
5097 i915_gem_cleanup_ringbuffer(dev);
5098 goto out;
5099 }
5100
5101 ret = i915_gem_context_enable(req);
5102 if (ret && ret != -EIO) {
5103 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5104 i915_gem_request_cancel(req);
5105 i915_gem_cleanup_ringbuffer(dev);
5106 goto out;
5107 }
5108
5109 i915_add_request_no_flush(req);
5110 }
5111
5112 out:
5113 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5114 return ret;
5115 }
5116
5117 int i915_gem_init(struct drm_device *dev)
5118 {
5119 struct drm_i915_private *dev_priv = dev->dev_private;
5120 int ret;
5121
5122 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5123 i915.enable_execlists);
5124
5125 mutex_lock(&dev->struct_mutex);
5126
5127 if (IS_VALLEYVIEW(dev)) {
5128 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5129 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5130 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5131 VLV_GTLC_ALLOWWAKEACK), 10))
5132 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5133 }
5134
5135 if (!i915.enable_execlists) {
5136 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5137 dev_priv->gt.init_rings = i915_gem_init_rings;
5138 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5139 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5140 } else {
5141 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5142 dev_priv->gt.init_rings = intel_logical_rings_init;
5143 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5144 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5145 }
5146
5147 /* This is just a security blanket to placate dragons.
5148 * On some systems, we very sporadically observe that the first TLBs
5149 * used by the CS may be stale, despite us poking the TLB reset. If
5150 * we hold the forcewake during initialisation these problems
5151 * just magically go away.
5152 */
5153 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5154
5155 ret = i915_gem_init_userptr(dev);
5156 if (ret)
5157 goto out_unlock;
5158
5159 i915_gem_init_global_gtt(dev);
5160
5161 ret = i915_gem_context_init(dev);
5162 if (ret)
5163 goto out_unlock;
5164
5165 ret = dev_priv->gt.init_rings(dev);
5166 if (ret)
5167 goto out_unlock;
5168
5169 ret = i915_gem_init_hw(dev);
5170 if (ret == -EIO) {
5171 /* Allow ring initialisation to fail by marking the GPU as
5172 * wedged. But we only want to do this where the GPU is angry,
5173 * for all other failure, such as an allocation failure, bail.
5174 */
5175 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5176 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5177 ret = 0;
5178 }
5179
5180 out_unlock:
5181 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5182 mutex_unlock(&dev->struct_mutex);
5183
5184 return ret;
5185 }
5186
5187 void
5188 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5189 {
5190 struct drm_i915_private *dev_priv = dev->dev_private;
5191 struct intel_engine_cs *ring;
5192 int i;
5193
5194 for_each_ring(ring, dev_priv, i)
5195 dev_priv->gt.cleanup_ring(ring);
5196
5197 if (i915.enable_execlists)
5198 /*
5199 * Neither the BIOS, ourselves or any other kernel
5200 * expects the system to be in execlists mode on startup,
5201 * so we need to reset the GPU back to legacy mode.
5202 */
5203 intel_gpu_reset(dev);
5204 }
5205
5206 static void
5207 init_ring_lists(struct intel_engine_cs *ring)
5208 {
5209 INIT_LIST_HEAD(&ring->active_list);
5210 INIT_LIST_HEAD(&ring->request_list);
5211 }
5212
5213 void i915_init_vm(struct drm_i915_private *dev_priv,
5214 struct i915_address_space *vm)
5215 {
5216 if (!i915_is_ggtt(vm))
5217 drm_mm_init(&vm->mm, vm->start, vm->total);
5218 vm->dev = dev_priv->dev;
5219 INIT_LIST_HEAD(&vm->active_list);
5220 INIT_LIST_HEAD(&vm->inactive_list);
5221 INIT_LIST_HEAD(&vm->global_link);
5222 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5223 }
5224
5225 void
5226 i915_gem_load(struct drm_device *dev)
5227 {
5228 struct drm_i915_private *dev_priv = dev->dev_private;
5229 int i;
5230
5231 dev_priv->objects =
5232 kmem_cache_create("i915_gem_object",
5233 sizeof(struct drm_i915_gem_object), 0,
5234 SLAB_HWCACHE_ALIGN,
5235 NULL);
5236 dev_priv->vmas =
5237 kmem_cache_create("i915_gem_vma",
5238 sizeof(struct i915_vma), 0,
5239 SLAB_HWCACHE_ALIGN,
5240 NULL);
5241 dev_priv->requests =
5242 kmem_cache_create("i915_gem_request",
5243 sizeof(struct drm_i915_gem_request), 0,
5244 SLAB_HWCACHE_ALIGN,
5245 NULL);
5246
5247 INIT_LIST_HEAD(&dev_priv->vm_list);
5248 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5249
5250 INIT_LIST_HEAD(&dev_priv->context_list);
5251 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5252 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5253 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5254 for (i = 0; i < I915_NUM_RINGS; i++)
5255 init_ring_lists(&dev_priv->ring[i]);
5256 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5257 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5258 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5259 i915_gem_retire_work_handler);
5260 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5261 i915_gem_idle_work_handler);
5262 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5263
5264 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5265
5266 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5267 dev_priv->num_fence_regs = 32;
5268 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5269 dev_priv->num_fence_regs = 16;
5270 else
5271 dev_priv->num_fence_regs = 8;
5272
5273 if (intel_vgpu_active(dev))
5274 dev_priv->num_fence_regs =
5275 I915_READ(vgtif_reg(avail_rs.fence_num));
5276
5277 /* Initialize fence registers to zero */
5278 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5279 i915_gem_restore_fences(dev);
5280
5281 i915_gem_detect_bit_6_swizzle(dev);
5282 init_waitqueue_head(&dev_priv->pending_flip_queue);
5283
5284 dev_priv->mm.interruptible = true;
5285
5286 i915_gem_shrinker_init(dev_priv);
5287
5288 mutex_init(&dev_priv->fb_tracking.lock);
5289 }
5290
5291 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5292 {
5293 struct drm_i915_file_private *file_priv = file->driver_priv;
5294
5295 /* Clean up our request list when the client is going away, so that
5296 * later retire_requests won't dereference our soon-to-be-gone
5297 * file_priv.
5298 */
5299 spin_lock(&file_priv->mm.lock);
5300 while (!list_empty(&file_priv->mm.request_list)) {
5301 struct drm_i915_gem_request *request;
5302
5303 request = list_first_entry(&file_priv->mm.request_list,
5304 struct drm_i915_gem_request,
5305 client_list);
5306 list_del(&request->client_list);
5307 request->file_priv = NULL;
5308 }
5309 spin_unlock(&file_priv->mm.lock);
5310
5311 if (!list_empty(&file_priv->rps.link)) {
5312 spin_lock(&to_i915(dev)->rps.client_lock);
5313 list_del(&file_priv->rps.link);
5314 spin_unlock(&to_i915(dev)->rps.client_lock);
5315 }
5316 }
5317
5318 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5319 {
5320 struct drm_i915_file_private *file_priv;
5321 int ret;
5322
5323 DRM_DEBUG_DRIVER("\n");
5324
5325 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5326 if (!file_priv)
5327 return -ENOMEM;
5328
5329 file->driver_priv = file_priv;
5330 file_priv->dev_priv = dev->dev_private;
5331 file_priv->file = file;
5332 INIT_LIST_HEAD(&file_priv->rps.link);
5333
5334 spin_lock_init(&file_priv->mm.lock);
5335 INIT_LIST_HEAD(&file_priv->mm.request_list);
5336
5337 ret = i915_gem_context_open(dev, file);
5338 if (ret)
5339 kfree(file_priv);
5340
5341 return ret;
5342 }
5343
5344 /**
5345 * i915_gem_track_fb - update frontbuffer tracking
5346 * old: current GEM buffer for the frontbuffer slots
5347 * new: new GEM buffer for the frontbuffer slots
5348 * frontbuffer_bits: bitmask of frontbuffer slots
5349 *
5350 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5351 * from @old and setting them in @new. Both @old and @new can be NULL.
5352 */
5353 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5354 struct drm_i915_gem_object *new,
5355 unsigned frontbuffer_bits)
5356 {
5357 if (old) {
5358 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5359 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5360 old->frontbuffer_bits &= ~frontbuffer_bits;
5361 }
5362
5363 if (new) {
5364 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5365 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5366 new->frontbuffer_bits |= frontbuffer_bits;
5367 }
5368 }
5369
5370 /* All the new VM stuff */
5371 unsigned long
5372 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5373 struct i915_address_space *vm)
5374 {
5375 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5376 struct i915_vma *vma;
5377
5378 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5379
5380 list_for_each_entry(vma, &o->vma_list, vma_link) {
5381 if (i915_is_ggtt(vma->vm) &&
5382 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5383 continue;
5384 if (vma->vm == vm)
5385 return vma->node.start;
5386 }
5387
5388 WARN(1, "%s vma for this object not found.\n",
5389 i915_is_ggtt(vm) ? "global" : "ppgtt");
5390 return -1;
5391 }
5392
5393 unsigned long
5394 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5395 const struct i915_ggtt_view *view)
5396 {
5397 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5398 struct i915_vma *vma;
5399
5400 list_for_each_entry(vma, &o->vma_list, vma_link)
5401 if (vma->vm == ggtt &&
5402 i915_ggtt_view_equal(&vma->ggtt_view, view))
5403 return vma->node.start;
5404
5405 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5406 return -1;
5407 }
5408
5409 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5410 struct i915_address_space *vm)
5411 {
5412 struct i915_vma *vma;
5413
5414 list_for_each_entry(vma, &o->vma_list, vma_link) {
5415 if (i915_is_ggtt(vma->vm) &&
5416 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5417 continue;
5418 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5419 return true;
5420 }
5421
5422 return false;
5423 }
5424
5425 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5426 const struct i915_ggtt_view *view)
5427 {
5428 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5429 struct i915_vma *vma;
5430
5431 list_for_each_entry(vma, &o->vma_list, vma_link)
5432 if (vma->vm == ggtt &&
5433 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5434 drm_mm_node_allocated(&vma->node))
5435 return true;
5436
5437 return false;
5438 }
5439
5440 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5441 {
5442 struct i915_vma *vma;
5443
5444 list_for_each_entry(vma, &o->vma_list, vma_link)
5445 if (drm_mm_node_allocated(&vma->node))
5446 return true;
5447
5448 return false;
5449 }
5450
5451 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5452 struct i915_address_space *vm)
5453 {
5454 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5455 struct i915_vma *vma;
5456
5457 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5458
5459 BUG_ON(list_empty(&o->vma_list));
5460
5461 list_for_each_entry(vma, &o->vma_list, vma_link) {
5462 if (i915_is_ggtt(vma->vm) &&
5463 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5464 continue;
5465 if (vma->vm == vm)
5466 return vma->node.size;
5467 }
5468 return 0;
5469 }
5470
5471 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5472 {
5473 struct i915_vma *vma;
5474 list_for_each_entry(vma, &obj->vma_list, vma_link)
5475 if (vma->pin_count > 0)
5476 return true;
5477
5478 return false;
5479 }