]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: dont call irq_put when irq test is on
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static __must_check int
47 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57 static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71 static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73 {
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75 }
76
77 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78 {
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83 }
84
85 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86 {
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95 }
96
97 /* some bookkeeping */
98 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100 {
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105 }
106
107 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109 {
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114 }
115
116 static int
117 i915_gem_wait_for_error(struct i915_gpu_error *error)
118 {
119 int ret;
120
121 #define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140 #undef EXIT_COND
141
142 return 0;
143 }
144
145 int i915_mutex_lock_interruptible(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160 }
161
162 static inline bool
163 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164 {
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166 }
167
168 int
169 i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171 {
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193 }
194
195 int
196 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198 {
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (obj->pin_count)
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215 }
216
217 void *i915_gem_object_alloc(struct drm_device *dev)
218 {
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221 }
222
223 void i915_gem_object_free(struct drm_i915_gem_object *obj)
224 {
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227 }
228
229 static int
230 i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234 {
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256 }
257
258 int
259 i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262 {
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268 }
269
270 /**
271 * Creates a new mm object and returns a handle to it.
272 */
273 int
274 i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276 {
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281 }
282
283 static inline int
284 __copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287 {
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307 }
308
309 static inline int
310 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313 {
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333 }
334
335 /* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338 static int
339 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342 {
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359 }
360
361 static void
362 shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364 {
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381 }
382
383 /* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385 static int
386 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389 {
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410 }
411
412 static int
413 i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417 {
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915_prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495 next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506 out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510 }
511
512 /**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517 int
518 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520 {
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562 out:
563 drm_gem_object_unreference(&obj->base);
564 unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567 }
568
569 /* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573 static inline int
574 fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578 {
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653 out_unpin:
654 i915_gem_object_unpin(obj);
655 out:
656 return ret;
657 }
658
659 /* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663 static int
664 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669 {
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689 }
690
691 /* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693 static int
694 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699 {
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723 }
724
725 static int
726 i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730 {
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816 next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828 out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848 }
849
850 /**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855 int
856 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858 {
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915_prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929 out:
930 drm_gem_object_unreference(&obj->base);
931 unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934 }
935
936 int
937 i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939 {
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954 }
955
956 /*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960 static int
961 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962 {
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972 }
973
974 static void fake_irq(unsigned long data)
975 {
976 wake_up_process((struct task_struct *)data);
977 }
978
979 static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981 {
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983 }
984
985 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986 {
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991 }
992
993 /**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016 {
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
1022 unsigned long timeout_expire;
1023 int ret;
1024
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041 return -ENODEV;
1042
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
1045 getrawmonotonic(&before);
1046 for (;;) {
1047 struct timer_list timer;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 unsigned long expire;
1081
1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084 mod_timer(&timer, expire);
1085 }
1086
1087 io_schedule();
1088
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
1094 getrawmonotonic(&now);
1095 trace_i915_gem_request_wait_end(ring, seqno);
1096
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110 }
1111
1112 /**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116 int
1117 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118 {
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138 }
1139
1140 static int
1141 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143 {
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157 }
1158
1159 /**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163 static __must_check int
1164 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166 {
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180 }
1181
1182 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185 static __must_check int
1186 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189 {
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220 }
1221
1222 /**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226 int
1227 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229 {
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280 unref:
1281 drm_gem_object_unreference(&obj->base);
1282 unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285 }
1286
1287 /**
1288 * Called when user space has done writes to this buffer
1289 */
1290 int
1291 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293 {
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313 unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316 }
1317
1318 /**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325 int
1326 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328 {
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355 }
1356
1357 /**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374 {
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 intel_runtime_pm_get(dev_priv);
1384
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
1392
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
1401 /* Now bind it into the GTT if needed */
1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1403 if (ret)
1404 goto unlock;
1405
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
1409
1410 ret = i915_gem_object_get_fence(obj);
1411 if (ret)
1412 goto unpin;
1413
1414 obj->fault_mappable = true;
1415
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422 unpin:
1423 i915_gem_object_unpin(obj);
1424 unlock:
1425 mutex_unlock(&dev->struct_mutex);
1426 out:
1427 switch (ret) {
1428 case -EIO:
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
1436 case -EAGAIN:
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
1441 */
1442 case 0:
1443 case -ERESTARTSYS:
1444 case -EINTR:
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
1450 ret = VM_FAULT_NOPAGE;
1451 break;
1452 case -ENOMEM:
1453 ret = VM_FAULT_OOM;
1454 break;
1455 case -ENOSPC:
1456 ret = VM_FAULT_SIGBUS;
1457 break;
1458 default:
1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460 ret = VM_FAULT_SIGBUS;
1461 break;
1462 }
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
1466 }
1467
1468 /**
1469 * i915_gem_release_mmap - remove physical page mappings
1470 * @obj: obj in question
1471 *
1472 * Preserve the reservation of the mmapping with the DRM core code, but
1473 * relinquish ownership of the pages back to the system.
1474 *
1475 * It is vital that we remove the page mapping if we have mapped a tiled
1476 * object through the GTT and then lose the fence register due to
1477 * resource pressure. Similarly if the object has been moved out of the
1478 * aperture, than pages mapped into userspace must be revoked. Removing the
1479 * mapping will then trigger a page fault on the next user access, allowing
1480 * fixup by i915_gem_fault().
1481 */
1482 void
1483 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1484 {
1485 if (!obj->fault_mappable)
1486 return;
1487
1488 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1489 obj->fault_mappable = false;
1490 }
1491
1492 uint32_t
1493 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1494 {
1495 uint32_t gtt_size;
1496
1497 if (INTEL_INFO(dev)->gen >= 4 ||
1498 tiling_mode == I915_TILING_NONE)
1499 return size;
1500
1501 /* Previous chips need a power-of-two fence region when tiling */
1502 if (INTEL_INFO(dev)->gen == 3)
1503 gtt_size = 1024*1024;
1504 else
1505 gtt_size = 512*1024;
1506
1507 while (gtt_size < size)
1508 gtt_size <<= 1;
1509
1510 return gtt_size;
1511 }
1512
1513 /**
1514 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1515 * @obj: object to check
1516 *
1517 * Return the required GTT alignment for an object, taking into account
1518 * potential fence register mapping.
1519 */
1520 uint32_t
1521 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1522 int tiling_mode, bool fenced)
1523 {
1524 /*
1525 * Minimum alignment is 4k (GTT page size), but might be greater
1526 * if a fence register is needed for the object.
1527 */
1528 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1529 tiling_mode == I915_TILING_NONE)
1530 return 4096;
1531
1532 /*
1533 * Previous chips need to be aligned to the size of the smallest
1534 * fence register that can contain the object.
1535 */
1536 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1537 }
1538
1539 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1540 {
1541 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1542 int ret;
1543
1544 if (drm_vma_node_has_offset(&obj->base.vma_node))
1545 return 0;
1546
1547 dev_priv->mm.shrinker_no_lock_stealing = true;
1548
1549 ret = drm_gem_create_mmap_offset(&obj->base);
1550 if (ret != -ENOSPC)
1551 goto out;
1552
1553 /* Badly fragmented mmap space? The only way we can recover
1554 * space is by destroying unwanted objects. We can't randomly release
1555 * mmap_offsets as userspace expects them to be persistent for the
1556 * lifetime of the objects. The closest we can is to release the
1557 * offsets on purgeable objects by truncating it and marking it purged,
1558 * which prevents userspace from ever using that object again.
1559 */
1560 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1561 ret = drm_gem_create_mmap_offset(&obj->base);
1562 if (ret != -ENOSPC)
1563 goto out;
1564
1565 i915_gem_shrink_all(dev_priv);
1566 ret = drm_gem_create_mmap_offset(&obj->base);
1567 out:
1568 dev_priv->mm.shrinker_no_lock_stealing = false;
1569
1570 return ret;
1571 }
1572
1573 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1574 {
1575 drm_gem_free_mmap_offset(&obj->base);
1576 }
1577
1578 int
1579 i915_gem_mmap_gtt(struct drm_file *file,
1580 struct drm_device *dev,
1581 uint32_t handle,
1582 uint64_t *offset)
1583 {
1584 struct drm_i915_private *dev_priv = dev->dev_private;
1585 struct drm_i915_gem_object *obj;
1586 int ret;
1587
1588 ret = i915_mutex_lock_interruptible(dev);
1589 if (ret)
1590 return ret;
1591
1592 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1593 if (&obj->base == NULL) {
1594 ret = -ENOENT;
1595 goto unlock;
1596 }
1597
1598 if (obj->base.size > dev_priv->gtt.mappable_end) {
1599 ret = -E2BIG;
1600 goto out;
1601 }
1602
1603 if (obj->madv != I915_MADV_WILLNEED) {
1604 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1605 ret = -EINVAL;
1606 goto out;
1607 }
1608
1609 ret = i915_gem_object_create_mmap_offset(obj);
1610 if (ret)
1611 goto out;
1612
1613 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1614
1615 out:
1616 drm_gem_object_unreference(&obj->base);
1617 unlock:
1618 mutex_unlock(&dev->struct_mutex);
1619 return ret;
1620 }
1621
1622 /**
1623 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1624 * @dev: DRM device
1625 * @data: GTT mapping ioctl data
1626 * @file: GEM object info
1627 *
1628 * Simply returns the fake offset to userspace so it can mmap it.
1629 * The mmap call will end up in drm_gem_mmap(), which will set things
1630 * up so we can get faults in the handler above.
1631 *
1632 * The fault handler will take care of binding the object into the GTT
1633 * (since it may have been evicted to make room for something), allocating
1634 * a fence register, and mapping the appropriate aperture address into
1635 * userspace.
1636 */
1637 int
1638 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1639 struct drm_file *file)
1640 {
1641 struct drm_i915_gem_mmap_gtt *args = data;
1642
1643 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1644 }
1645
1646 /* Immediately discard the backing storage */
1647 static void
1648 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1649 {
1650 struct inode *inode;
1651
1652 i915_gem_object_free_mmap_offset(obj);
1653
1654 if (obj->base.filp == NULL)
1655 return;
1656
1657 /* Our goal here is to return as much of the memory as
1658 * is possible back to the system as we are called from OOM.
1659 * To do this we must instruct the shmfs to drop all of its
1660 * backing pages, *now*.
1661 */
1662 inode = file_inode(obj->base.filp);
1663 shmem_truncate_range(inode, 0, (loff_t)-1);
1664
1665 obj->madv = __I915_MADV_PURGED;
1666 }
1667
1668 static inline int
1669 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1670 {
1671 return obj->madv == I915_MADV_DONTNEED;
1672 }
1673
1674 static void
1675 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1676 {
1677 struct sg_page_iter sg_iter;
1678 int ret;
1679
1680 BUG_ON(obj->madv == __I915_MADV_PURGED);
1681
1682 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1683 if (ret) {
1684 /* In the event of a disaster, abandon all caches and
1685 * hope for the best.
1686 */
1687 WARN_ON(ret != -EIO);
1688 i915_gem_clflush_object(obj, true);
1689 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1690 }
1691
1692 if (i915_gem_object_needs_bit17_swizzle(obj))
1693 i915_gem_object_save_bit_17_swizzle(obj);
1694
1695 if (obj->madv == I915_MADV_DONTNEED)
1696 obj->dirty = 0;
1697
1698 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1699 struct page *page = sg_page_iter_page(&sg_iter);
1700
1701 if (obj->dirty)
1702 set_page_dirty(page);
1703
1704 if (obj->madv == I915_MADV_WILLNEED)
1705 mark_page_accessed(page);
1706
1707 page_cache_release(page);
1708 }
1709 obj->dirty = 0;
1710
1711 sg_free_table(obj->pages);
1712 kfree(obj->pages);
1713 }
1714
1715 int
1716 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1717 {
1718 const struct drm_i915_gem_object_ops *ops = obj->ops;
1719
1720 if (obj->pages == NULL)
1721 return 0;
1722
1723 if (obj->pages_pin_count)
1724 return -EBUSY;
1725
1726 BUG_ON(i915_gem_obj_bound_any(obj));
1727
1728 /* ->put_pages might need to allocate memory for the bit17 swizzle
1729 * array, hence protect them from being reaped by removing them from gtt
1730 * lists early. */
1731 list_del(&obj->global_list);
1732
1733 ops->put_pages(obj);
1734 obj->pages = NULL;
1735
1736 if (i915_gem_object_is_purgeable(obj))
1737 i915_gem_object_truncate(obj);
1738
1739 return 0;
1740 }
1741
1742 static unsigned long
1743 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1744 bool purgeable_only)
1745 {
1746 struct list_head still_bound_list;
1747 struct drm_i915_gem_object *obj, *next;
1748 unsigned long count = 0;
1749
1750 list_for_each_entry_safe(obj, next,
1751 &dev_priv->mm.unbound_list,
1752 global_list) {
1753 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1754 i915_gem_object_put_pages(obj) == 0) {
1755 count += obj->base.size >> PAGE_SHIFT;
1756 if (count >= target)
1757 return count;
1758 }
1759 }
1760
1761 /*
1762 * As we may completely rewrite the bound list whilst unbinding
1763 * (due to retiring requests) we have to strictly process only
1764 * one element of the list at the time, and recheck the list
1765 * on every iteration.
1766 */
1767 INIT_LIST_HEAD(&still_bound_list);
1768 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1769 struct i915_vma *vma, *v;
1770
1771 obj = list_first_entry(&dev_priv->mm.bound_list,
1772 typeof(*obj), global_list);
1773 list_move_tail(&obj->global_list, &still_bound_list);
1774
1775 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1776 continue;
1777
1778 /*
1779 * Hold a reference whilst we unbind this object, as we may
1780 * end up waiting for and retiring requests. This might
1781 * release the final reference (held by the active list)
1782 * and result in the object being freed from under us.
1783 * in this object being freed.
1784 *
1785 * Note 1: Shrinking the bound list is special since only active
1786 * (and hence bound objects) can contain such limbo objects, so
1787 * we don't need special tricks for shrinking the unbound list.
1788 * The only other place where we have to be careful with active
1789 * objects suddenly disappearing due to retiring requests is the
1790 * eviction code.
1791 *
1792 * Note 2: Even though the bound list doesn't hold a reference
1793 * to the object we can safely grab one here: The final object
1794 * unreferencing and the bound_list are both protected by the
1795 * dev->struct_mutex and so we won't ever be able to observe an
1796 * object on the bound_list with a reference count equals 0.
1797 */
1798 drm_gem_object_reference(&obj->base);
1799
1800 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1801 if (i915_vma_unbind(vma))
1802 break;
1803
1804 if (i915_gem_object_put_pages(obj) == 0)
1805 count += obj->base.size >> PAGE_SHIFT;
1806
1807 drm_gem_object_unreference(&obj->base);
1808 }
1809 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1810
1811 return count;
1812 }
1813
1814 static unsigned long
1815 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1816 {
1817 return __i915_gem_shrink(dev_priv, target, true);
1818 }
1819
1820 static unsigned long
1821 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1822 {
1823 struct drm_i915_gem_object *obj, *next;
1824 long freed = 0;
1825
1826 i915_gem_evict_everything(dev_priv->dev);
1827
1828 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1829 global_list) {
1830 if (i915_gem_object_put_pages(obj) == 0)
1831 freed += obj->base.size >> PAGE_SHIFT;
1832 }
1833 return freed;
1834 }
1835
1836 static int
1837 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1838 {
1839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840 int page_count, i;
1841 struct address_space *mapping;
1842 struct sg_table *st;
1843 struct scatterlist *sg;
1844 struct sg_page_iter sg_iter;
1845 struct page *page;
1846 unsigned long last_pfn = 0; /* suppress gcc warning */
1847 gfp_t gfp;
1848
1849 /* Assert that the object is not currently in any GPU domain. As it
1850 * wasn't in the GTT, there shouldn't be any way it could have been in
1851 * a GPU cache
1852 */
1853 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1854 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1855
1856 st = kmalloc(sizeof(*st), GFP_KERNEL);
1857 if (st == NULL)
1858 return -ENOMEM;
1859
1860 page_count = obj->base.size / PAGE_SIZE;
1861 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1862 kfree(st);
1863 return -ENOMEM;
1864 }
1865
1866 /* Get the list of pages out of our struct file. They'll be pinned
1867 * at this point until we release them.
1868 *
1869 * Fail silently without starting the shrinker
1870 */
1871 mapping = file_inode(obj->base.filp)->i_mapping;
1872 gfp = mapping_gfp_mask(mapping);
1873 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1874 gfp &= ~(__GFP_IO | __GFP_WAIT);
1875 sg = st->sgl;
1876 st->nents = 0;
1877 for (i = 0; i < page_count; i++) {
1878 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1879 if (IS_ERR(page)) {
1880 i915_gem_purge(dev_priv, page_count);
1881 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1882 }
1883 if (IS_ERR(page)) {
1884 /* We've tried hard to allocate the memory by reaping
1885 * our own buffer, now let the real VM do its job and
1886 * go down in flames if truly OOM.
1887 */
1888 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1889 gfp |= __GFP_IO | __GFP_WAIT;
1890
1891 i915_gem_shrink_all(dev_priv);
1892 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1893 if (IS_ERR(page))
1894 goto err_pages;
1895
1896 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1897 gfp &= ~(__GFP_IO | __GFP_WAIT);
1898 }
1899 #ifdef CONFIG_SWIOTLB
1900 if (swiotlb_nr_tbl()) {
1901 st->nents++;
1902 sg_set_page(sg, page, PAGE_SIZE, 0);
1903 sg = sg_next(sg);
1904 continue;
1905 }
1906 #endif
1907 if (!i || page_to_pfn(page) != last_pfn + 1) {
1908 if (i)
1909 sg = sg_next(sg);
1910 st->nents++;
1911 sg_set_page(sg, page, PAGE_SIZE, 0);
1912 } else {
1913 sg->length += PAGE_SIZE;
1914 }
1915 last_pfn = page_to_pfn(page);
1916
1917 /* Check that the i965g/gm workaround works. */
1918 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1919 }
1920 #ifdef CONFIG_SWIOTLB
1921 if (!swiotlb_nr_tbl())
1922 #endif
1923 sg_mark_end(sg);
1924 obj->pages = st;
1925
1926 if (i915_gem_object_needs_bit17_swizzle(obj))
1927 i915_gem_object_do_bit_17_swizzle(obj);
1928
1929 return 0;
1930
1931 err_pages:
1932 sg_mark_end(sg);
1933 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1934 page_cache_release(sg_page_iter_page(&sg_iter));
1935 sg_free_table(st);
1936 kfree(st);
1937 return PTR_ERR(page);
1938 }
1939
1940 /* Ensure that the associated pages are gathered from the backing storage
1941 * and pinned into our object. i915_gem_object_get_pages() may be called
1942 * multiple times before they are released by a single call to
1943 * i915_gem_object_put_pages() - once the pages are no longer referenced
1944 * either as a result of memory pressure (reaping pages under the shrinker)
1945 * or as the object is itself released.
1946 */
1947 int
1948 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1949 {
1950 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1951 const struct drm_i915_gem_object_ops *ops = obj->ops;
1952 int ret;
1953
1954 if (obj->pages)
1955 return 0;
1956
1957 if (obj->madv != I915_MADV_WILLNEED) {
1958 DRM_ERROR("Attempting to obtain a purgeable object\n");
1959 return -EINVAL;
1960 }
1961
1962 BUG_ON(obj->pages_pin_count);
1963
1964 ret = ops->get_pages(obj);
1965 if (ret)
1966 return ret;
1967
1968 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1969 return 0;
1970 }
1971
1972 static void
1973 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1974 struct intel_ring_buffer *ring)
1975 {
1976 struct drm_device *dev = obj->base.dev;
1977 struct drm_i915_private *dev_priv = dev->dev_private;
1978 u32 seqno = intel_ring_get_seqno(ring);
1979
1980 BUG_ON(ring == NULL);
1981 if (obj->ring != ring && obj->last_write_seqno) {
1982 /* Keep the seqno relative to the current ring */
1983 obj->last_write_seqno = seqno;
1984 }
1985 obj->ring = ring;
1986
1987 /* Add a reference if we're newly entering the active list. */
1988 if (!obj->active) {
1989 drm_gem_object_reference(&obj->base);
1990 obj->active = 1;
1991 }
1992
1993 list_move_tail(&obj->ring_list, &ring->active_list);
1994
1995 obj->last_read_seqno = seqno;
1996
1997 if (obj->fenced_gpu_access) {
1998 obj->last_fenced_seqno = seqno;
1999
2000 /* Bump MRU to take account of the delayed flush */
2001 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2002 struct drm_i915_fence_reg *reg;
2003
2004 reg = &dev_priv->fence_regs[obj->fence_reg];
2005 list_move_tail(&reg->lru_list,
2006 &dev_priv->mm.fence_list);
2007 }
2008 }
2009 }
2010
2011 void i915_vma_move_to_active(struct i915_vma *vma,
2012 struct intel_ring_buffer *ring)
2013 {
2014 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2015 return i915_gem_object_move_to_active(vma->obj, ring);
2016 }
2017
2018 static void
2019 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2020 {
2021 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2023 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2024
2025 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2026 BUG_ON(!obj->active);
2027
2028 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2029
2030 list_del_init(&obj->ring_list);
2031 obj->ring = NULL;
2032
2033 obj->last_read_seqno = 0;
2034 obj->last_write_seqno = 0;
2035 obj->base.write_domain = 0;
2036
2037 obj->last_fenced_seqno = 0;
2038 obj->fenced_gpu_access = false;
2039
2040 obj->active = 0;
2041 drm_gem_object_unreference(&obj->base);
2042
2043 WARN_ON(i915_verify_lists(dev));
2044 }
2045
2046 static int
2047 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2048 {
2049 struct drm_i915_private *dev_priv = dev->dev_private;
2050 struct intel_ring_buffer *ring;
2051 int ret, i, j;
2052
2053 /* Carefully retire all requests without writing to the rings */
2054 for_each_ring(ring, dev_priv, i) {
2055 ret = intel_ring_idle(ring);
2056 if (ret)
2057 return ret;
2058 }
2059 i915_gem_retire_requests(dev);
2060
2061 /* Finally reset hw state */
2062 for_each_ring(ring, dev_priv, i) {
2063 intel_ring_init_seqno(ring, seqno);
2064
2065 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2066 ring->sync_seqno[j] = 0;
2067 }
2068
2069 return 0;
2070 }
2071
2072 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2073 {
2074 struct drm_i915_private *dev_priv = dev->dev_private;
2075 int ret;
2076
2077 if (seqno == 0)
2078 return -EINVAL;
2079
2080 /* HWS page needs to be set less than what we
2081 * will inject to ring
2082 */
2083 ret = i915_gem_init_seqno(dev, seqno - 1);
2084 if (ret)
2085 return ret;
2086
2087 /* Carefully set the last_seqno value so that wrap
2088 * detection still works
2089 */
2090 dev_priv->next_seqno = seqno;
2091 dev_priv->last_seqno = seqno - 1;
2092 if (dev_priv->last_seqno == 0)
2093 dev_priv->last_seqno--;
2094
2095 return 0;
2096 }
2097
2098 int
2099 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2100 {
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102
2103 /* reserve 0 for non-seqno */
2104 if (dev_priv->next_seqno == 0) {
2105 int ret = i915_gem_init_seqno(dev, 0);
2106 if (ret)
2107 return ret;
2108
2109 dev_priv->next_seqno = 1;
2110 }
2111
2112 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2113 return 0;
2114 }
2115
2116 int __i915_add_request(struct intel_ring_buffer *ring,
2117 struct drm_file *file,
2118 struct drm_i915_gem_object *obj,
2119 u32 *out_seqno)
2120 {
2121 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2122 struct drm_i915_gem_request *request;
2123 u32 request_ring_position, request_start;
2124 int was_empty;
2125 int ret;
2126
2127 request_start = intel_ring_get_tail(ring);
2128 /*
2129 * Emit any outstanding flushes - execbuf can fail to emit the flush
2130 * after having emitted the batchbuffer command. Hence we need to fix
2131 * things up similar to emitting the lazy request. The difference here
2132 * is that the flush _must_ happen before the next request, no matter
2133 * what.
2134 */
2135 ret = intel_ring_flush_all_caches(ring);
2136 if (ret)
2137 return ret;
2138
2139 request = ring->preallocated_lazy_request;
2140 if (WARN_ON(request == NULL))
2141 return -ENOMEM;
2142
2143 /* Record the position of the start of the request so that
2144 * should we detect the updated seqno part-way through the
2145 * GPU processing the request, we never over-estimate the
2146 * position of the head.
2147 */
2148 request_ring_position = intel_ring_get_tail(ring);
2149
2150 ret = ring->add_request(ring);
2151 if (ret)
2152 return ret;
2153
2154 request->seqno = intel_ring_get_seqno(ring);
2155 request->ring = ring;
2156 request->head = request_start;
2157 request->tail = request_ring_position;
2158
2159 /* Whilst this request exists, batch_obj will be on the
2160 * active_list, and so will hold the active reference. Only when this
2161 * request is retired will the the batch_obj be moved onto the
2162 * inactive_list and lose its active reference. Hence we do not need
2163 * to explicitly hold another reference here.
2164 */
2165 request->batch_obj = obj;
2166
2167 /* Hold a reference to the current context so that we can inspect
2168 * it later in case a hangcheck error event fires.
2169 */
2170 request->ctx = ring->last_context;
2171 if (request->ctx)
2172 i915_gem_context_reference(request->ctx);
2173
2174 request->emitted_jiffies = jiffies;
2175 was_empty = list_empty(&ring->request_list);
2176 list_add_tail(&request->list, &ring->request_list);
2177 request->file_priv = NULL;
2178
2179 if (file) {
2180 struct drm_i915_file_private *file_priv = file->driver_priv;
2181
2182 spin_lock(&file_priv->mm.lock);
2183 request->file_priv = file_priv;
2184 list_add_tail(&request->client_list,
2185 &file_priv->mm.request_list);
2186 spin_unlock(&file_priv->mm.lock);
2187 }
2188
2189 trace_i915_gem_request_add(ring, request->seqno);
2190 ring->outstanding_lazy_seqno = 0;
2191 ring->preallocated_lazy_request = NULL;
2192
2193 if (!dev_priv->ums.mm_suspended) {
2194 i915_queue_hangcheck(ring->dev);
2195
2196 if (was_empty) {
2197 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2198 queue_delayed_work(dev_priv->wq,
2199 &dev_priv->mm.retire_work,
2200 round_jiffies_up_relative(HZ));
2201 intel_mark_busy(dev_priv->dev);
2202 }
2203 }
2204
2205 if (out_seqno)
2206 *out_seqno = request->seqno;
2207 return 0;
2208 }
2209
2210 static inline void
2211 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2212 {
2213 struct drm_i915_file_private *file_priv = request->file_priv;
2214
2215 if (!file_priv)
2216 return;
2217
2218 spin_lock(&file_priv->mm.lock);
2219 list_del(&request->client_list);
2220 request->file_priv = NULL;
2221 spin_unlock(&file_priv->mm.lock);
2222 }
2223
2224 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2225 struct i915_address_space *vm)
2226 {
2227 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2228 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2229 return true;
2230
2231 return false;
2232 }
2233
2234 static bool i915_head_inside_request(const u32 acthd_unmasked,
2235 const u32 request_start,
2236 const u32 request_end)
2237 {
2238 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2239
2240 if (request_start < request_end) {
2241 if (acthd >= request_start && acthd < request_end)
2242 return true;
2243 } else if (request_start > request_end) {
2244 if (acthd >= request_start || acthd < request_end)
2245 return true;
2246 }
2247
2248 return false;
2249 }
2250
2251 static struct i915_address_space *
2252 request_to_vm(struct drm_i915_gem_request *request)
2253 {
2254 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2255 struct i915_address_space *vm;
2256
2257 vm = &dev_priv->gtt.base;
2258
2259 return vm;
2260 }
2261
2262 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2263 const u32 acthd, bool *inside)
2264 {
2265 /* There is a possibility that unmasked head address
2266 * pointing inside the ring, matches the batch_obj address range.
2267 * However this is extremely unlikely.
2268 */
2269 if (request->batch_obj) {
2270 if (i915_head_inside_object(acthd, request->batch_obj,
2271 request_to_vm(request))) {
2272 *inside = true;
2273 return true;
2274 }
2275 }
2276
2277 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2278 *inside = false;
2279 return true;
2280 }
2281
2282 return false;
2283 }
2284
2285 static bool i915_context_is_banned(const struct i915_ctx_hang_stats *hs)
2286 {
2287 const unsigned long elapsed = get_seconds() - hs->guilty_ts;
2288
2289 if (hs->banned)
2290 return true;
2291
2292 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2293 DRM_ERROR("context hanging too fast, declaring banned!\n");
2294 return true;
2295 }
2296
2297 return false;
2298 }
2299
2300 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2301 struct drm_i915_gem_request *request,
2302 u32 acthd)
2303 {
2304 struct i915_ctx_hang_stats *hs = NULL;
2305 bool inside, guilty;
2306 unsigned long offset = 0;
2307
2308 /* Innocent until proven guilty */
2309 guilty = false;
2310
2311 if (request->batch_obj)
2312 offset = i915_gem_obj_offset(request->batch_obj,
2313 request_to_vm(request));
2314
2315 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2316 i915_request_guilty(request, acthd, &inside)) {
2317 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2318 ring->name,
2319 inside ? "inside" : "flushing",
2320 offset,
2321 request->ctx ? request->ctx->id : 0,
2322 acthd);
2323
2324 guilty = true;
2325 }
2326
2327 /* If contexts are disabled or this is the default context, use
2328 * file_priv->reset_state
2329 */
2330 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2331 hs = &request->ctx->hang_stats;
2332 else if (request->file_priv)
2333 hs = &request->file_priv->hang_stats;
2334
2335 if (hs) {
2336 if (guilty) {
2337 hs->banned = i915_context_is_banned(hs);
2338 hs->batch_active++;
2339 hs->guilty_ts = get_seconds();
2340 } else {
2341 hs->batch_pending++;
2342 }
2343 }
2344 }
2345
2346 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2347 {
2348 list_del(&request->list);
2349 i915_gem_request_remove_from_client(request);
2350
2351 if (request->ctx)
2352 i915_gem_context_unreference(request->ctx);
2353
2354 kfree(request);
2355 }
2356
2357 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2358 struct intel_ring_buffer *ring)
2359 {
2360 u32 completed_seqno;
2361 u32 acthd;
2362
2363 acthd = intel_ring_get_active_head(ring);
2364 completed_seqno = ring->get_seqno(ring, false);
2365
2366 while (!list_empty(&ring->request_list)) {
2367 struct drm_i915_gem_request *request;
2368
2369 request = list_first_entry(&ring->request_list,
2370 struct drm_i915_gem_request,
2371 list);
2372
2373 if (request->seqno > completed_seqno)
2374 i915_set_reset_status(ring, request, acthd);
2375
2376 i915_gem_free_request(request);
2377 }
2378
2379 while (!list_empty(&ring->active_list)) {
2380 struct drm_i915_gem_object *obj;
2381
2382 obj = list_first_entry(&ring->active_list,
2383 struct drm_i915_gem_object,
2384 ring_list);
2385
2386 i915_gem_object_move_to_inactive(obj);
2387 }
2388 }
2389
2390 void i915_gem_restore_fences(struct drm_device *dev)
2391 {
2392 struct drm_i915_private *dev_priv = dev->dev_private;
2393 int i;
2394
2395 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2396 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2397
2398 /*
2399 * Commit delayed tiling changes if we have an object still
2400 * attached to the fence, otherwise just clear the fence.
2401 */
2402 if (reg->obj) {
2403 i915_gem_object_update_fence(reg->obj, reg,
2404 reg->obj->tiling_mode);
2405 } else {
2406 i915_gem_write_fence(dev, i, NULL);
2407 }
2408 }
2409 }
2410
2411 void i915_gem_reset(struct drm_device *dev)
2412 {
2413 struct drm_i915_private *dev_priv = dev->dev_private;
2414 struct intel_ring_buffer *ring;
2415 int i;
2416
2417 for_each_ring(ring, dev_priv, i)
2418 i915_gem_reset_ring_lists(dev_priv, ring);
2419
2420 i915_gem_cleanup_ringbuffer(dev);
2421
2422 i915_gem_restore_fences(dev);
2423 }
2424
2425 /**
2426 * This function clears the request list as sequence numbers are passed.
2427 */
2428 void
2429 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2430 {
2431 uint32_t seqno;
2432
2433 if (list_empty(&ring->request_list))
2434 return;
2435
2436 WARN_ON(i915_verify_lists(ring->dev));
2437
2438 seqno = ring->get_seqno(ring, true);
2439
2440 while (!list_empty(&ring->request_list)) {
2441 struct drm_i915_gem_request *request;
2442
2443 request = list_first_entry(&ring->request_list,
2444 struct drm_i915_gem_request,
2445 list);
2446
2447 if (!i915_seqno_passed(seqno, request->seqno))
2448 break;
2449
2450 trace_i915_gem_request_retire(ring, request->seqno);
2451 /* We know the GPU must have read the request to have
2452 * sent us the seqno + interrupt, so use the position
2453 * of tail of the request to update the last known position
2454 * of the GPU head.
2455 */
2456 ring->last_retired_head = request->tail;
2457
2458 i915_gem_free_request(request);
2459 }
2460
2461 /* Move any buffers on the active list that are no longer referenced
2462 * by the ringbuffer to the flushing/inactive lists as appropriate.
2463 */
2464 while (!list_empty(&ring->active_list)) {
2465 struct drm_i915_gem_object *obj;
2466
2467 obj = list_first_entry(&ring->active_list,
2468 struct drm_i915_gem_object,
2469 ring_list);
2470
2471 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2472 break;
2473
2474 i915_gem_object_move_to_inactive(obj);
2475 }
2476
2477 if (unlikely(ring->trace_irq_seqno &&
2478 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2479 ring->irq_put(ring);
2480 ring->trace_irq_seqno = 0;
2481 }
2482
2483 WARN_ON(i915_verify_lists(ring->dev));
2484 }
2485
2486 bool
2487 i915_gem_retire_requests(struct drm_device *dev)
2488 {
2489 drm_i915_private_t *dev_priv = dev->dev_private;
2490 struct intel_ring_buffer *ring;
2491 bool idle = true;
2492 int i;
2493
2494 for_each_ring(ring, dev_priv, i) {
2495 i915_gem_retire_requests_ring(ring);
2496 idle &= list_empty(&ring->request_list);
2497 }
2498
2499 if (idle)
2500 mod_delayed_work(dev_priv->wq,
2501 &dev_priv->mm.idle_work,
2502 msecs_to_jiffies(100));
2503
2504 return idle;
2505 }
2506
2507 static void
2508 i915_gem_retire_work_handler(struct work_struct *work)
2509 {
2510 struct drm_i915_private *dev_priv =
2511 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2512 struct drm_device *dev = dev_priv->dev;
2513 bool idle;
2514
2515 /* Come back later if the device is busy... */
2516 idle = false;
2517 if (mutex_trylock(&dev->struct_mutex)) {
2518 idle = i915_gem_retire_requests(dev);
2519 mutex_unlock(&dev->struct_mutex);
2520 }
2521 if (!idle)
2522 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2523 round_jiffies_up_relative(HZ));
2524 }
2525
2526 static void
2527 i915_gem_idle_work_handler(struct work_struct *work)
2528 {
2529 struct drm_i915_private *dev_priv =
2530 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2531
2532 intel_mark_idle(dev_priv->dev);
2533 }
2534
2535 /**
2536 * Ensures that an object will eventually get non-busy by flushing any required
2537 * write domains, emitting any outstanding lazy request and retiring and
2538 * completed requests.
2539 */
2540 static int
2541 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2542 {
2543 int ret;
2544
2545 if (obj->active) {
2546 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2547 if (ret)
2548 return ret;
2549
2550 i915_gem_retire_requests_ring(obj->ring);
2551 }
2552
2553 return 0;
2554 }
2555
2556 /**
2557 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2558 * @DRM_IOCTL_ARGS: standard ioctl arguments
2559 *
2560 * Returns 0 if successful, else an error is returned with the remaining time in
2561 * the timeout parameter.
2562 * -ETIME: object is still busy after timeout
2563 * -ERESTARTSYS: signal interrupted the wait
2564 * -ENONENT: object doesn't exist
2565 * Also possible, but rare:
2566 * -EAGAIN: GPU wedged
2567 * -ENOMEM: damn
2568 * -ENODEV: Internal IRQ fail
2569 * -E?: The add request failed
2570 *
2571 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2572 * non-zero timeout parameter the wait ioctl will wait for the given number of
2573 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2574 * without holding struct_mutex the object may become re-busied before this
2575 * function completes. A similar but shorter * race condition exists in the busy
2576 * ioctl
2577 */
2578 int
2579 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2580 {
2581 drm_i915_private_t *dev_priv = dev->dev_private;
2582 struct drm_i915_gem_wait *args = data;
2583 struct drm_i915_gem_object *obj;
2584 struct intel_ring_buffer *ring = NULL;
2585 struct timespec timeout_stack, *timeout = NULL;
2586 unsigned reset_counter;
2587 u32 seqno = 0;
2588 int ret = 0;
2589
2590 if (args->timeout_ns >= 0) {
2591 timeout_stack = ns_to_timespec(args->timeout_ns);
2592 timeout = &timeout_stack;
2593 }
2594
2595 ret = i915_mutex_lock_interruptible(dev);
2596 if (ret)
2597 return ret;
2598
2599 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2600 if (&obj->base == NULL) {
2601 mutex_unlock(&dev->struct_mutex);
2602 return -ENOENT;
2603 }
2604
2605 /* Need to make sure the object gets inactive eventually. */
2606 ret = i915_gem_object_flush_active(obj);
2607 if (ret)
2608 goto out;
2609
2610 if (obj->active) {
2611 seqno = obj->last_read_seqno;
2612 ring = obj->ring;
2613 }
2614
2615 if (seqno == 0)
2616 goto out;
2617
2618 /* Do this after OLR check to make sure we make forward progress polling
2619 * on this IOCTL with a 0 timeout (like busy ioctl)
2620 */
2621 if (!args->timeout_ns) {
2622 ret = -ETIME;
2623 goto out;
2624 }
2625
2626 drm_gem_object_unreference(&obj->base);
2627 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2628 mutex_unlock(&dev->struct_mutex);
2629
2630 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2631 if (timeout)
2632 args->timeout_ns = timespec_to_ns(timeout);
2633 return ret;
2634
2635 out:
2636 drm_gem_object_unreference(&obj->base);
2637 mutex_unlock(&dev->struct_mutex);
2638 return ret;
2639 }
2640
2641 /**
2642 * i915_gem_object_sync - sync an object to a ring.
2643 *
2644 * @obj: object which may be in use on another ring.
2645 * @to: ring we wish to use the object on. May be NULL.
2646 *
2647 * This code is meant to abstract object synchronization with the GPU.
2648 * Calling with NULL implies synchronizing the object with the CPU
2649 * rather than a particular GPU ring.
2650 *
2651 * Returns 0 if successful, else propagates up the lower layer error.
2652 */
2653 int
2654 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2655 struct intel_ring_buffer *to)
2656 {
2657 struct intel_ring_buffer *from = obj->ring;
2658 u32 seqno;
2659 int ret, idx;
2660
2661 if (from == NULL || to == from)
2662 return 0;
2663
2664 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2665 return i915_gem_object_wait_rendering(obj, false);
2666
2667 idx = intel_ring_sync_index(from, to);
2668
2669 seqno = obj->last_read_seqno;
2670 if (seqno <= from->sync_seqno[idx])
2671 return 0;
2672
2673 ret = i915_gem_check_olr(obj->ring, seqno);
2674 if (ret)
2675 return ret;
2676
2677 trace_i915_gem_ring_sync_to(from, to, seqno);
2678 ret = to->sync_to(to, from, seqno);
2679 if (!ret)
2680 /* We use last_read_seqno because sync_to()
2681 * might have just caused seqno wrap under
2682 * the radar.
2683 */
2684 from->sync_seqno[idx] = obj->last_read_seqno;
2685
2686 return ret;
2687 }
2688
2689 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2690 {
2691 u32 old_write_domain, old_read_domains;
2692
2693 /* Force a pagefault for domain tracking on next user access */
2694 i915_gem_release_mmap(obj);
2695
2696 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2697 return;
2698
2699 /* Wait for any direct GTT access to complete */
2700 mb();
2701
2702 old_read_domains = obj->base.read_domains;
2703 old_write_domain = obj->base.write_domain;
2704
2705 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2706 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2707
2708 trace_i915_gem_object_change_domain(obj,
2709 old_read_domains,
2710 old_write_domain);
2711 }
2712
2713 int i915_vma_unbind(struct i915_vma *vma)
2714 {
2715 struct drm_i915_gem_object *obj = vma->obj;
2716 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2717 int ret;
2718
2719 /* For now we only ever use 1 vma per object */
2720 WARN_ON(!list_is_singular(&obj->vma_list));
2721
2722 if (list_empty(&vma->vma_link))
2723 return 0;
2724
2725 if (!drm_mm_node_allocated(&vma->node)) {
2726 i915_gem_vma_destroy(vma);
2727
2728 return 0;
2729 }
2730
2731 if (obj->pin_count)
2732 return -EBUSY;
2733
2734 BUG_ON(obj->pages == NULL);
2735
2736 ret = i915_gem_object_finish_gpu(obj);
2737 if (ret)
2738 return ret;
2739 /* Continue on if we fail due to EIO, the GPU is hung so we
2740 * should be safe and we need to cleanup or else we might
2741 * cause memory corruption through use-after-free.
2742 */
2743
2744 i915_gem_object_finish_gtt(obj);
2745
2746 /* release the fence reg _after_ flushing */
2747 ret = i915_gem_object_put_fence(obj);
2748 if (ret)
2749 return ret;
2750
2751 trace_i915_vma_unbind(vma);
2752
2753 if (obj->has_global_gtt_mapping)
2754 i915_gem_gtt_unbind_object(obj);
2755 if (obj->has_aliasing_ppgtt_mapping) {
2756 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2757 obj->has_aliasing_ppgtt_mapping = 0;
2758 }
2759 i915_gem_gtt_finish_object(obj);
2760
2761 list_del(&vma->mm_list);
2762 /* Avoid an unnecessary call to unbind on rebind. */
2763 if (i915_is_ggtt(vma->vm))
2764 obj->map_and_fenceable = true;
2765
2766 drm_mm_remove_node(&vma->node);
2767 i915_gem_vma_destroy(vma);
2768
2769 /* Since the unbound list is global, only move to that list if
2770 * no more VMAs exist. */
2771 if (list_empty(&obj->vma_list))
2772 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2773
2774 /* And finally now the object is completely decoupled from this vma,
2775 * we can drop its hold on the backing storage and allow it to be
2776 * reaped by the shrinker.
2777 */
2778 i915_gem_object_unpin_pages(obj);
2779
2780 return 0;
2781 }
2782
2783 /**
2784 * Unbinds an object from the global GTT aperture.
2785 */
2786 int
2787 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2788 {
2789 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2790 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2791
2792 if (!i915_gem_obj_ggtt_bound(obj))
2793 return 0;
2794
2795 if (obj->pin_count)
2796 return -EBUSY;
2797
2798 BUG_ON(obj->pages == NULL);
2799
2800 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2801 }
2802
2803 int i915_gpu_idle(struct drm_device *dev)
2804 {
2805 drm_i915_private_t *dev_priv = dev->dev_private;
2806 struct intel_ring_buffer *ring;
2807 int ret, i;
2808
2809 /* Flush everything onto the inactive list. */
2810 for_each_ring(ring, dev_priv, i) {
2811 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2812 if (ret)
2813 return ret;
2814
2815 ret = intel_ring_idle(ring);
2816 if (ret)
2817 return ret;
2818 }
2819
2820 return 0;
2821 }
2822
2823 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2824 struct drm_i915_gem_object *obj)
2825 {
2826 drm_i915_private_t *dev_priv = dev->dev_private;
2827 int fence_reg;
2828 int fence_pitch_shift;
2829
2830 if (INTEL_INFO(dev)->gen >= 6) {
2831 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2832 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2833 } else {
2834 fence_reg = FENCE_REG_965_0;
2835 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2836 }
2837
2838 fence_reg += reg * 8;
2839
2840 /* To w/a incoherency with non-atomic 64-bit register updates,
2841 * we split the 64-bit update into two 32-bit writes. In order
2842 * for a partial fence not to be evaluated between writes, we
2843 * precede the update with write to turn off the fence register,
2844 * and only enable the fence as the last step.
2845 *
2846 * For extra levels of paranoia, we make sure each step lands
2847 * before applying the next step.
2848 */
2849 I915_WRITE(fence_reg, 0);
2850 POSTING_READ(fence_reg);
2851
2852 if (obj) {
2853 u32 size = i915_gem_obj_ggtt_size(obj);
2854 uint64_t val;
2855
2856 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2857 0xfffff000) << 32;
2858 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2859 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2860 if (obj->tiling_mode == I915_TILING_Y)
2861 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2862 val |= I965_FENCE_REG_VALID;
2863
2864 I915_WRITE(fence_reg + 4, val >> 32);
2865 POSTING_READ(fence_reg + 4);
2866
2867 I915_WRITE(fence_reg + 0, val);
2868 POSTING_READ(fence_reg);
2869 } else {
2870 I915_WRITE(fence_reg + 4, 0);
2871 POSTING_READ(fence_reg + 4);
2872 }
2873 }
2874
2875 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2876 struct drm_i915_gem_object *obj)
2877 {
2878 drm_i915_private_t *dev_priv = dev->dev_private;
2879 u32 val;
2880
2881 if (obj) {
2882 u32 size = i915_gem_obj_ggtt_size(obj);
2883 int pitch_val;
2884 int tile_width;
2885
2886 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2887 (size & -size) != size ||
2888 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2889 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2890 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2891
2892 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2893 tile_width = 128;
2894 else
2895 tile_width = 512;
2896
2897 /* Note: pitch better be a power of two tile widths */
2898 pitch_val = obj->stride / tile_width;
2899 pitch_val = ffs(pitch_val) - 1;
2900
2901 val = i915_gem_obj_ggtt_offset(obj);
2902 if (obj->tiling_mode == I915_TILING_Y)
2903 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2904 val |= I915_FENCE_SIZE_BITS(size);
2905 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2906 val |= I830_FENCE_REG_VALID;
2907 } else
2908 val = 0;
2909
2910 if (reg < 8)
2911 reg = FENCE_REG_830_0 + reg * 4;
2912 else
2913 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2914
2915 I915_WRITE(reg, val);
2916 POSTING_READ(reg);
2917 }
2918
2919 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2920 struct drm_i915_gem_object *obj)
2921 {
2922 drm_i915_private_t *dev_priv = dev->dev_private;
2923 uint32_t val;
2924
2925 if (obj) {
2926 u32 size = i915_gem_obj_ggtt_size(obj);
2927 uint32_t pitch_val;
2928
2929 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2930 (size & -size) != size ||
2931 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2932 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2933 i915_gem_obj_ggtt_offset(obj), size);
2934
2935 pitch_val = obj->stride / 128;
2936 pitch_val = ffs(pitch_val) - 1;
2937
2938 val = i915_gem_obj_ggtt_offset(obj);
2939 if (obj->tiling_mode == I915_TILING_Y)
2940 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2941 val |= I830_FENCE_SIZE_BITS(size);
2942 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2943 val |= I830_FENCE_REG_VALID;
2944 } else
2945 val = 0;
2946
2947 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2948 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2949 }
2950
2951 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2952 {
2953 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2954 }
2955
2956 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2957 struct drm_i915_gem_object *obj)
2958 {
2959 struct drm_i915_private *dev_priv = dev->dev_private;
2960
2961 /* Ensure that all CPU reads are completed before installing a fence
2962 * and all writes before removing the fence.
2963 */
2964 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2965 mb();
2966
2967 WARN(obj && (!obj->stride || !obj->tiling_mode),
2968 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2969 obj->stride, obj->tiling_mode);
2970
2971 switch (INTEL_INFO(dev)->gen) {
2972 case 8:
2973 case 7:
2974 case 6:
2975 case 5:
2976 case 4: i965_write_fence_reg(dev, reg, obj); break;
2977 case 3: i915_write_fence_reg(dev, reg, obj); break;
2978 case 2: i830_write_fence_reg(dev, reg, obj); break;
2979 default: BUG();
2980 }
2981
2982 /* And similarly be paranoid that no direct access to this region
2983 * is reordered to before the fence is installed.
2984 */
2985 if (i915_gem_object_needs_mb(obj))
2986 mb();
2987 }
2988
2989 static inline int fence_number(struct drm_i915_private *dev_priv,
2990 struct drm_i915_fence_reg *fence)
2991 {
2992 return fence - dev_priv->fence_regs;
2993 }
2994
2995 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2996 struct drm_i915_fence_reg *fence,
2997 bool enable)
2998 {
2999 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3000 int reg = fence_number(dev_priv, fence);
3001
3002 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3003
3004 if (enable) {
3005 obj->fence_reg = reg;
3006 fence->obj = obj;
3007 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3008 } else {
3009 obj->fence_reg = I915_FENCE_REG_NONE;
3010 fence->obj = NULL;
3011 list_del_init(&fence->lru_list);
3012 }
3013 obj->fence_dirty = false;
3014 }
3015
3016 static int
3017 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3018 {
3019 if (obj->last_fenced_seqno) {
3020 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3021 if (ret)
3022 return ret;
3023
3024 obj->last_fenced_seqno = 0;
3025 }
3026
3027 obj->fenced_gpu_access = false;
3028 return 0;
3029 }
3030
3031 int
3032 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3033 {
3034 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3035 struct drm_i915_fence_reg *fence;
3036 int ret;
3037
3038 ret = i915_gem_object_wait_fence(obj);
3039 if (ret)
3040 return ret;
3041
3042 if (obj->fence_reg == I915_FENCE_REG_NONE)
3043 return 0;
3044
3045 fence = &dev_priv->fence_regs[obj->fence_reg];
3046
3047 i915_gem_object_fence_lost(obj);
3048 i915_gem_object_update_fence(obj, fence, false);
3049
3050 return 0;
3051 }
3052
3053 static struct drm_i915_fence_reg *
3054 i915_find_fence_reg(struct drm_device *dev)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 struct drm_i915_fence_reg *reg, *avail;
3058 int i;
3059
3060 /* First try to find a free reg */
3061 avail = NULL;
3062 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3063 reg = &dev_priv->fence_regs[i];
3064 if (!reg->obj)
3065 return reg;
3066
3067 if (!reg->pin_count)
3068 avail = reg;
3069 }
3070
3071 if (avail == NULL)
3072 return NULL;
3073
3074 /* None available, try to steal one or wait for a user to finish */
3075 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3076 if (reg->pin_count)
3077 continue;
3078
3079 return reg;
3080 }
3081
3082 return NULL;
3083 }
3084
3085 /**
3086 * i915_gem_object_get_fence - set up fencing for an object
3087 * @obj: object to map through a fence reg
3088 *
3089 * When mapping objects through the GTT, userspace wants to be able to write
3090 * to them without having to worry about swizzling if the object is tiled.
3091 * This function walks the fence regs looking for a free one for @obj,
3092 * stealing one if it can't find any.
3093 *
3094 * It then sets up the reg based on the object's properties: address, pitch
3095 * and tiling format.
3096 *
3097 * For an untiled surface, this removes any existing fence.
3098 */
3099 int
3100 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3101 {
3102 struct drm_device *dev = obj->base.dev;
3103 struct drm_i915_private *dev_priv = dev->dev_private;
3104 bool enable = obj->tiling_mode != I915_TILING_NONE;
3105 struct drm_i915_fence_reg *reg;
3106 int ret;
3107
3108 /* Have we updated the tiling parameters upon the object and so
3109 * will need to serialise the write to the associated fence register?
3110 */
3111 if (obj->fence_dirty) {
3112 ret = i915_gem_object_wait_fence(obj);
3113 if (ret)
3114 return ret;
3115 }
3116
3117 /* Just update our place in the LRU if our fence is getting reused. */
3118 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3119 reg = &dev_priv->fence_regs[obj->fence_reg];
3120 if (!obj->fence_dirty) {
3121 list_move_tail(&reg->lru_list,
3122 &dev_priv->mm.fence_list);
3123 return 0;
3124 }
3125 } else if (enable) {
3126 reg = i915_find_fence_reg(dev);
3127 if (reg == NULL)
3128 return -EDEADLK;
3129
3130 if (reg->obj) {
3131 struct drm_i915_gem_object *old = reg->obj;
3132
3133 ret = i915_gem_object_wait_fence(old);
3134 if (ret)
3135 return ret;
3136
3137 i915_gem_object_fence_lost(old);
3138 }
3139 } else
3140 return 0;
3141
3142 i915_gem_object_update_fence(obj, reg, enable);
3143
3144 return 0;
3145 }
3146
3147 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3148 struct drm_mm_node *gtt_space,
3149 unsigned long cache_level)
3150 {
3151 struct drm_mm_node *other;
3152
3153 /* On non-LLC machines we have to be careful when putting differing
3154 * types of snoopable memory together to avoid the prefetcher
3155 * crossing memory domains and dying.
3156 */
3157 if (HAS_LLC(dev))
3158 return true;
3159
3160 if (!drm_mm_node_allocated(gtt_space))
3161 return true;
3162
3163 if (list_empty(&gtt_space->node_list))
3164 return true;
3165
3166 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3167 if (other->allocated && !other->hole_follows && other->color != cache_level)
3168 return false;
3169
3170 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3171 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3172 return false;
3173
3174 return true;
3175 }
3176
3177 static void i915_gem_verify_gtt(struct drm_device *dev)
3178 {
3179 #if WATCH_GTT
3180 struct drm_i915_private *dev_priv = dev->dev_private;
3181 struct drm_i915_gem_object *obj;
3182 int err = 0;
3183
3184 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3185 if (obj->gtt_space == NULL) {
3186 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3187 err++;
3188 continue;
3189 }
3190
3191 if (obj->cache_level != obj->gtt_space->color) {
3192 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3193 i915_gem_obj_ggtt_offset(obj),
3194 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3195 obj->cache_level,
3196 obj->gtt_space->color);
3197 err++;
3198 continue;
3199 }
3200
3201 if (!i915_gem_valid_gtt_space(dev,
3202 obj->gtt_space,
3203 obj->cache_level)) {
3204 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3205 i915_gem_obj_ggtt_offset(obj),
3206 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3207 obj->cache_level);
3208 err++;
3209 continue;
3210 }
3211 }
3212
3213 WARN_ON(err);
3214 #endif
3215 }
3216
3217 /**
3218 * Finds free space in the GTT aperture and binds the object there.
3219 */
3220 static int
3221 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3222 struct i915_address_space *vm,
3223 unsigned alignment,
3224 bool map_and_fenceable,
3225 bool nonblocking)
3226 {
3227 struct drm_device *dev = obj->base.dev;
3228 drm_i915_private_t *dev_priv = dev->dev_private;
3229 u32 size, fence_size, fence_alignment, unfenced_alignment;
3230 size_t gtt_max =
3231 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3232 struct i915_vma *vma;
3233 int ret;
3234
3235 fence_size = i915_gem_get_gtt_size(dev,
3236 obj->base.size,
3237 obj->tiling_mode);
3238 fence_alignment = i915_gem_get_gtt_alignment(dev,
3239 obj->base.size,
3240 obj->tiling_mode, true);
3241 unfenced_alignment =
3242 i915_gem_get_gtt_alignment(dev,
3243 obj->base.size,
3244 obj->tiling_mode, false);
3245
3246 if (alignment == 0)
3247 alignment = map_and_fenceable ? fence_alignment :
3248 unfenced_alignment;
3249 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3250 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3251 return -EINVAL;
3252 }
3253
3254 size = map_and_fenceable ? fence_size : obj->base.size;
3255
3256 /* If the object is bigger than the entire aperture, reject it early
3257 * before evicting everything in a vain attempt to find space.
3258 */
3259 if (obj->base.size > gtt_max) {
3260 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3261 obj->base.size,
3262 map_and_fenceable ? "mappable" : "total",
3263 gtt_max);
3264 return -E2BIG;
3265 }
3266
3267 ret = i915_gem_object_get_pages(obj);
3268 if (ret)
3269 return ret;
3270
3271 i915_gem_object_pin_pages(obj);
3272
3273 BUG_ON(!i915_is_ggtt(vm));
3274
3275 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3276 if (IS_ERR(vma)) {
3277 ret = PTR_ERR(vma);
3278 goto err_unpin;
3279 }
3280
3281 /* For now we only ever use 1 vma per object */
3282 WARN_ON(!list_is_singular(&obj->vma_list));
3283
3284 search_free:
3285 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3286 size, alignment,
3287 obj->cache_level, 0, gtt_max,
3288 DRM_MM_SEARCH_DEFAULT);
3289 if (ret) {
3290 ret = i915_gem_evict_something(dev, vm, size, alignment,
3291 obj->cache_level,
3292 map_and_fenceable,
3293 nonblocking);
3294 if (ret == 0)
3295 goto search_free;
3296
3297 goto err_free_vma;
3298 }
3299 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3300 obj->cache_level))) {
3301 ret = -EINVAL;
3302 goto err_remove_node;
3303 }
3304
3305 ret = i915_gem_gtt_prepare_object(obj);
3306 if (ret)
3307 goto err_remove_node;
3308
3309 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3310 list_add_tail(&vma->mm_list, &vm->inactive_list);
3311
3312 if (i915_is_ggtt(vm)) {
3313 bool mappable, fenceable;
3314
3315 fenceable = (vma->node.size == fence_size &&
3316 (vma->node.start & (fence_alignment - 1)) == 0);
3317
3318 mappable = (vma->node.start + obj->base.size <=
3319 dev_priv->gtt.mappable_end);
3320
3321 obj->map_and_fenceable = mappable && fenceable;
3322 }
3323
3324 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3325
3326 trace_i915_vma_bind(vma, map_and_fenceable);
3327 i915_gem_verify_gtt(dev);
3328 return 0;
3329
3330 err_remove_node:
3331 drm_mm_remove_node(&vma->node);
3332 err_free_vma:
3333 i915_gem_vma_destroy(vma);
3334 err_unpin:
3335 i915_gem_object_unpin_pages(obj);
3336 return ret;
3337 }
3338
3339 bool
3340 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3341 bool force)
3342 {
3343 /* If we don't have a page list set up, then we're not pinned
3344 * to GPU, and we can ignore the cache flush because it'll happen
3345 * again at bind time.
3346 */
3347 if (obj->pages == NULL)
3348 return false;
3349
3350 /*
3351 * Stolen memory is always coherent with the GPU as it is explicitly
3352 * marked as wc by the system, or the system is cache-coherent.
3353 */
3354 if (obj->stolen)
3355 return false;
3356
3357 /* If the GPU is snooping the contents of the CPU cache,
3358 * we do not need to manually clear the CPU cache lines. However,
3359 * the caches are only snooped when the render cache is
3360 * flushed/invalidated. As we always have to emit invalidations
3361 * and flushes when moving into and out of the RENDER domain, correct
3362 * snooping behaviour occurs naturally as the result of our domain
3363 * tracking.
3364 */
3365 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3366 return false;
3367
3368 trace_i915_gem_object_clflush(obj);
3369 drm_clflush_sg(obj->pages);
3370
3371 return true;
3372 }
3373
3374 /** Flushes the GTT write domain for the object if it's dirty. */
3375 static void
3376 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3377 {
3378 uint32_t old_write_domain;
3379
3380 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3381 return;
3382
3383 /* No actual flushing is required for the GTT write domain. Writes
3384 * to it immediately go to main memory as far as we know, so there's
3385 * no chipset flush. It also doesn't land in render cache.
3386 *
3387 * However, we do have to enforce the order so that all writes through
3388 * the GTT land before any writes to the device, such as updates to
3389 * the GATT itself.
3390 */
3391 wmb();
3392
3393 old_write_domain = obj->base.write_domain;
3394 obj->base.write_domain = 0;
3395
3396 trace_i915_gem_object_change_domain(obj,
3397 obj->base.read_domains,
3398 old_write_domain);
3399 }
3400
3401 /** Flushes the CPU write domain for the object if it's dirty. */
3402 static void
3403 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3404 bool force)
3405 {
3406 uint32_t old_write_domain;
3407
3408 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3409 return;
3410
3411 if (i915_gem_clflush_object(obj, force))
3412 i915_gem_chipset_flush(obj->base.dev);
3413
3414 old_write_domain = obj->base.write_domain;
3415 obj->base.write_domain = 0;
3416
3417 trace_i915_gem_object_change_domain(obj,
3418 obj->base.read_domains,
3419 old_write_domain);
3420 }
3421
3422 /**
3423 * Moves a single object to the GTT read, and possibly write domain.
3424 *
3425 * This function returns when the move is complete, including waiting on
3426 * flushes to occur.
3427 */
3428 int
3429 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3430 {
3431 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3432 uint32_t old_write_domain, old_read_domains;
3433 int ret;
3434
3435 /* Not valid to be called on unbound objects. */
3436 if (!i915_gem_obj_bound_any(obj))
3437 return -EINVAL;
3438
3439 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3440 return 0;
3441
3442 ret = i915_gem_object_wait_rendering(obj, !write);
3443 if (ret)
3444 return ret;
3445
3446 i915_gem_object_flush_cpu_write_domain(obj, false);
3447
3448 /* Serialise direct access to this object with the barriers for
3449 * coherent writes from the GPU, by effectively invalidating the
3450 * GTT domain upon first access.
3451 */
3452 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3453 mb();
3454
3455 old_write_domain = obj->base.write_domain;
3456 old_read_domains = obj->base.read_domains;
3457
3458 /* It should now be out of any other write domains, and we can update
3459 * the domain values for our changes.
3460 */
3461 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3462 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3463 if (write) {
3464 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3465 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3466 obj->dirty = 1;
3467 }
3468
3469 trace_i915_gem_object_change_domain(obj,
3470 old_read_domains,
3471 old_write_domain);
3472
3473 /* And bump the LRU for this access */
3474 if (i915_gem_object_is_inactive(obj)) {
3475 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3476 if (vma)
3477 list_move_tail(&vma->mm_list,
3478 &dev_priv->gtt.base.inactive_list);
3479
3480 }
3481
3482 return 0;
3483 }
3484
3485 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3486 enum i915_cache_level cache_level)
3487 {
3488 struct drm_device *dev = obj->base.dev;
3489 drm_i915_private_t *dev_priv = dev->dev_private;
3490 struct i915_vma *vma;
3491 int ret;
3492
3493 if (obj->cache_level == cache_level)
3494 return 0;
3495
3496 if (obj->pin_count) {
3497 DRM_DEBUG("can not change the cache level of pinned objects\n");
3498 return -EBUSY;
3499 }
3500
3501 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3502 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3503 ret = i915_vma_unbind(vma);
3504 if (ret)
3505 return ret;
3506
3507 break;
3508 }
3509 }
3510
3511 if (i915_gem_obj_bound_any(obj)) {
3512 ret = i915_gem_object_finish_gpu(obj);
3513 if (ret)
3514 return ret;
3515
3516 i915_gem_object_finish_gtt(obj);
3517
3518 /* Before SandyBridge, you could not use tiling or fence
3519 * registers with snooped memory, so relinquish any fences
3520 * currently pointing to our region in the aperture.
3521 */
3522 if (INTEL_INFO(dev)->gen < 6) {
3523 ret = i915_gem_object_put_fence(obj);
3524 if (ret)
3525 return ret;
3526 }
3527
3528 if (obj->has_global_gtt_mapping)
3529 i915_gem_gtt_bind_object(obj, cache_level);
3530 if (obj->has_aliasing_ppgtt_mapping)
3531 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3532 obj, cache_level);
3533 }
3534
3535 list_for_each_entry(vma, &obj->vma_list, vma_link)
3536 vma->node.color = cache_level;
3537 obj->cache_level = cache_level;
3538
3539 if (cpu_write_needs_clflush(obj)) {
3540 u32 old_read_domains, old_write_domain;
3541
3542 /* If we're coming from LLC cached, then we haven't
3543 * actually been tracking whether the data is in the
3544 * CPU cache or not, since we only allow one bit set
3545 * in obj->write_domain and have been skipping the clflushes.
3546 * Just set it to the CPU cache for now.
3547 */
3548 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3549
3550 old_read_domains = obj->base.read_domains;
3551 old_write_domain = obj->base.write_domain;
3552
3553 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3554 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3555
3556 trace_i915_gem_object_change_domain(obj,
3557 old_read_domains,
3558 old_write_domain);
3559 }
3560
3561 i915_gem_verify_gtt(dev);
3562 return 0;
3563 }
3564
3565 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3566 struct drm_file *file)
3567 {
3568 struct drm_i915_gem_caching *args = data;
3569 struct drm_i915_gem_object *obj;
3570 int ret;
3571
3572 ret = i915_mutex_lock_interruptible(dev);
3573 if (ret)
3574 return ret;
3575
3576 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3577 if (&obj->base == NULL) {
3578 ret = -ENOENT;
3579 goto unlock;
3580 }
3581
3582 switch (obj->cache_level) {
3583 case I915_CACHE_LLC:
3584 case I915_CACHE_L3_LLC:
3585 args->caching = I915_CACHING_CACHED;
3586 break;
3587
3588 case I915_CACHE_WT:
3589 args->caching = I915_CACHING_DISPLAY;
3590 break;
3591
3592 default:
3593 args->caching = I915_CACHING_NONE;
3594 break;
3595 }
3596
3597 drm_gem_object_unreference(&obj->base);
3598 unlock:
3599 mutex_unlock(&dev->struct_mutex);
3600 return ret;
3601 }
3602
3603 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3604 struct drm_file *file)
3605 {
3606 struct drm_i915_gem_caching *args = data;
3607 struct drm_i915_gem_object *obj;
3608 enum i915_cache_level level;
3609 int ret;
3610
3611 switch (args->caching) {
3612 case I915_CACHING_NONE:
3613 level = I915_CACHE_NONE;
3614 break;
3615 case I915_CACHING_CACHED:
3616 level = I915_CACHE_LLC;
3617 break;
3618 case I915_CACHING_DISPLAY:
3619 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3620 break;
3621 default:
3622 return -EINVAL;
3623 }
3624
3625 ret = i915_mutex_lock_interruptible(dev);
3626 if (ret)
3627 return ret;
3628
3629 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3630 if (&obj->base == NULL) {
3631 ret = -ENOENT;
3632 goto unlock;
3633 }
3634
3635 ret = i915_gem_object_set_cache_level(obj, level);
3636
3637 drm_gem_object_unreference(&obj->base);
3638 unlock:
3639 mutex_unlock(&dev->struct_mutex);
3640 return ret;
3641 }
3642
3643 static bool is_pin_display(struct drm_i915_gem_object *obj)
3644 {
3645 /* There are 3 sources that pin objects:
3646 * 1. The display engine (scanouts, sprites, cursors);
3647 * 2. Reservations for execbuffer;
3648 * 3. The user.
3649 *
3650 * We can ignore reservations as we hold the struct_mutex and
3651 * are only called outside of the reservation path. The user
3652 * can only increment pin_count once, and so if after
3653 * subtracting the potential reference by the user, any pin_count
3654 * remains, it must be due to another use by the display engine.
3655 */
3656 return obj->pin_count - !!obj->user_pin_count;
3657 }
3658
3659 /*
3660 * Prepare buffer for display plane (scanout, cursors, etc).
3661 * Can be called from an uninterruptible phase (modesetting) and allows
3662 * any flushes to be pipelined (for pageflips).
3663 */
3664 int
3665 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3666 u32 alignment,
3667 struct intel_ring_buffer *pipelined)
3668 {
3669 u32 old_read_domains, old_write_domain;
3670 int ret;
3671
3672 if (pipelined != obj->ring) {
3673 ret = i915_gem_object_sync(obj, pipelined);
3674 if (ret)
3675 return ret;
3676 }
3677
3678 /* Mark the pin_display early so that we account for the
3679 * display coherency whilst setting up the cache domains.
3680 */
3681 obj->pin_display = true;
3682
3683 /* The display engine is not coherent with the LLC cache on gen6. As
3684 * a result, we make sure that the pinning that is about to occur is
3685 * done with uncached PTEs. This is lowest common denominator for all
3686 * chipsets.
3687 *
3688 * However for gen6+, we could do better by using the GFDT bit instead
3689 * of uncaching, which would allow us to flush all the LLC-cached data
3690 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3691 */
3692 ret = i915_gem_object_set_cache_level(obj,
3693 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3694 if (ret)
3695 goto err_unpin_display;
3696
3697 /* As the user may map the buffer once pinned in the display plane
3698 * (e.g. libkms for the bootup splash), we have to ensure that we
3699 * always use map_and_fenceable for all scanout buffers.
3700 */
3701 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3702 if (ret)
3703 goto err_unpin_display;
3704
3705 i915_gem_object_flush_cpu_write_domain(obj, true);
3706
3707 old_write_domain = obj->base.write_domain;
3708 old_read_domains = obj->base.read_domains;
3709
3710 /* It should now be out of any other write domains, and we can update
3711 * the domain values for our changes.
3712 */
3713 obj->base.write_domain = 0;
3714 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3715
3716 trace_i915_gem_object_change_domain(obj,
3717 old_read_domains,
3718 old_write_domain);
3719
3720 return 0;
3721
3722 err_unpin_display:
3723 obj->pin_display = is_pin_display(obj);
3724 return ret;
3725 }
3726
3727 void
3728 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3729 {
3730 i915_gem_object_unpin(obj);
3731 obj->pin_display = is_pin_display(obj);
3732 }
3733
3734 int
3735 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3736 {
3737 int ret;
3738
3739 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3740 return 0;
3741
3742 ret = i915_gem_object_wait_rendering(obj, false);
3743 if (ret)
3744 return ret;
3745
3746 /* Ensure that we invalidate the GPU's caches and TLBs. */
3747 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3748 return 0;
3749 }
3750
3751 /**
3752 * Moves a single object to the CPU read, and possibly write domain.
3753 *
3754 * This function returns when the move is complete, including waiting on
3755 * flushes to occur.
3756 */
3757 int
3758 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3759 {
3760 uint32_t old_write_domain, old_read_domains;
3761 int ret;
3762
3763 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3764 return 0;
3765
3766 ret = i915_gem_object_wait_rendering(obj, !write);
3767 if (ret)
3768 return ret;
3769
3770 i915_gem_object_flush_gtt_write_domain(obj);
3771
3772 old_write_domain = obj->base.write_domain;
3773 old_read_domains = obj->base.read_domains;
3774
3775 /* Flush the CPU cache if it's still invalid. */
3776 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3777 i915_gem_clflush_object(obj, false);
3778
3779 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3780 }
3781
3782 /* It should now be out of any other write domains, and we can update
3783 * the domain values for our changes.
3784 */
3785 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3786
3787 /* If we're writing through the CPU, then the GPU read domains will
3788 * need to be invalidated at next use.
3789 */
3790 if (write) {
3791 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3792 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3793 }
3794
3795 trace_i915_gem_object_change_domain(obj,
3796 old_read_domains,
3797 old_write_domain);
3798
3799 return 0;
3800 }
3801
3802 /* Throttle our rendering by waiting until the ring has completed our requests
3803 * emitted over 20 msec ago.
3804 *
3805 * Note that if we were to use the current jiffies each time around the loop,
3806 * we wouldn't escape the function with any frames outstanding if the time to
3807 * render a frame was over 20ms.
3808 *
3809 * This should get us reasonable parallelism between CPU and GPU but also
3810 * relatively low latency when blocking on a particular request to finish.
3811 */
3812 static int
3813 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3814 {
3815 struct drm_i915_private *dev_priv = dev->dev_private;
3816 struct drm_i915_file_private *file_priv = file->driver_priv;
3817 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3818 struct drm_i915_gem_request *request;
3819 struct intel_ring_buffer *ring = NULL;
3820 unsigned reset_counter;
3821 u32 seqno = 0;
3822 int ret;
3823
3824 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3825 if (ret)
3826 return ret;
3827
3828 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3829 if (ret)
3830 return ret;
3831
3832 spin_lock(&file_priv->mm.lock);
3833 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3834 if (time_after_eq(request->emitted_jiffies, recent_enough))
3835 break;
3836
3837 ring = request->ring;
3838 seqno = request->seqno;
3839 }
3840 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3841 spin_unlock(&file_priv->mm.lock);
3842
3843 if (seqno == 0)
3844 return 0;
3845
3846 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3847 if (ret == 0)
3848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3849
3850 return ret;
3851 }
3852
3853 int
3854 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3855 struct i915_address_space *vm,
3856 uint32_t alignment,
3857 bool map_and_fenceable,
3858 bool nonblocking)
3859 {
3860 struct i915_vma *vma;
3861 int ret;
3862
3863 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3864 return -EBUSY;
3865
3866 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3867
3868 vma = i915_gem_obj_to_vma(obj, vm);
3869
3870 if (vma) {
3871 if ((alignment &&
3872 vma->node.start & (alignment - 1)) ||
3873 (map_and_fenceable && !obj->map_and_fenceable)) {
3874 WARN(obj->pin_count,
3875 "bo is already pinned with incorrect alignment:"
3876 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3877 " obj->map_and_fenceable=%d\n",
3878 i915_gem_obj_offset(obj, vm), alignment,
3879 map_and_fenceable,
3880 obj->map_and_fenceable);
3881 ret = i915_vma_unbind(vma);
3882 if (ret)
3883 return ret;
3884 }
3885 }
3886
3887 if (!i915_gem_obj_bound(obj, vm)) {
3888 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3889
3890 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3891 map_and_fenceable,
3892 nonblocking);
3893 if (ret)
3894 return ret;
3895
3896 if (!dev_priv->mm.aliasing_ppgtt)
3897 i915_gem_gtt_bind_object(obj, obj->cache_level);
3898 }
3899
3900 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3901 i915_gem_gtt_bind_object(obj, obj->cache_level);
3902
3903 obj->pin_count++;
3904 obj->pin_mappable |= map_and_fenceable;
3905
3906 return 0;
3907 }
3908
3909 void
3910 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3911 {
3912 BUG_ON(obj->pin_count == 0);
3913 BUG_ON(!i915_gem_obj_bound_any(obj));
3914
3915 if (--obj->pin_count == 0)
3916 obj->pin_mappable = false;
3917 }
3918
3919 int
3920 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3921 struct drm_file *file)
3922 {
3923 struct drm_i915_gem_pin *args = data;
3924 struct drm_i915_gem_object *obj;
3925 int ret;
3926
3927 ret = i915_mutex_lock_interruptible(dev);
3928 if (ret)
3929 return ret;
3930
3931 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3932 if (&obj->base == NULL) {
3933 ret = -ENOENT;
3934 goto unlock;
3935 }
3936
3937 if (obj->madv != I915_MADV_WILLNEED) {
3938 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3939 ret = -EINVAL;
3940 goto out;
3941 }
3942
3943 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3944 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3945 args->handle);
3946 ret = -EINVAL;
3947 goto out;
3948 }
3949
3950 if (obj->user_pin_count == ULONG_MAX) {
3951 ret = -EBUSY;
3952 goto out;
3953 }
3954
3955 if (obj->user_pin_count == 0) {
3956 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3957 if (ret)
3958 goto out;
3959 }
3960
3961 obj->user_pin_count++;
3962 obj->pin_filp = file;
3963
3964 args->offset = i915_gem_obj_ggtt_offset(obj);
3965 out:
3966 drm_gem_object_unreference(&obj->base);
3967 unlock:
3968 mutex_unlock(&dev->struct_mutex);
3969 return ret;
3970 }
3971
3972 int
3973 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3974 struct drm_file *file)
3975 {
3976 struct drm_i915_gem_pin *args = data;
3977 struct drm_i915_gem_object *obj;
3978 int ret;
3979
3980 ret = i915_mutex_lock_interruptible(dev);
3981 if (ret)
3982 return ret;
3983
3984 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3985 if (&obj->base == NULL) {
3986 ret = -ENOENT;
3987 goto unlock;
3988 }
3989
3990 if (obj->pin_filp != file) {
3991 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3992 args->handle);
3993 ret = -EINVAL;
3994 goto out;
3995 }
3996 obj->user_pin_count--;
3997 if (obj->user_pin_count == 0) {
3998 obj->pin_filp = NULL;
3999 i915_gem_object_unpin(obj);
4000 }
4001
4002 out:
4003 drm_gem_object_unreference(&obj->base);
4004 unlock:
4005 mutex_unlock(&dev->struct_mutex);
4006 return ret;
4007 }
4008
4009 int
4010 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4011 struct drm_file *file)
4012 {
4013 struct drm_i915_gem_busy *args = data;
4014 struct drm_i915_gem_object *obj;
4015 int ret;
4016
4017 ret = i915_mutex_lock_interruptible(dev);
4018 if (ret)
4019 return ret;
4020
4021 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4022 if (&obj->base == NULL) {
4023 ret = -ENOENT;
4024 goto unlock;
4025 }
4026
4027 /* Count all active objects as busy, even if they are currently not used
4028 * by the gpu. Users of this interface expect objects to eventually
4029 * become non-busy without any further actions, therefore emit any
4030 * necessary flushes here.
4031 */
4032 ret = i915_gem_object_flush_active(obj);
4033
4034 args->busy = obj->active;
4035 if (obj->ring) {
4036 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4037 args->busy |= intel_ring_flag(obj->ring) << 16;
4038 }
4039
4040 drm_gem_object_unreference(&obj->base);
4041 unlock:
4042 mutex_unlock(&dev->struct_mutex);
4043 return ret;
4044 }
4045
4046 int
4047 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4048 struct drm_file *file_priv)
4049 {
4050 return i915_gem_ring_throttle(dev, file_priv);
4051 }
4052
4053 int
4054 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4055 struct drm_file *file_priv)
4056 {
4057 struct drm_i915_gem_madvise *args = data;
4058 struct drm_i915_gem_object *obj;
4059 int ret;
4060
4061 switch (args->madv) {
4062 case I915_MADV_DONTNEED:
4063 case I915_MADV_WILLNEED:
4064 break;
4065 default:
4066 return -EINVAL;
4067 }
4068
4069 ret = i915_mutex_lock_interruptible(dev);
4070 if (ret)
4071 return ret;
4072
4073 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4074 if (&obj->base == NULL) {
4075 ret = -ENOENT;
4076 goto unlock;
4077 }
4078
4079 if (obj->pin_count) {
4080 ret = -EINVAL;
4081 goto out;
4082 }
4083
4084 if (obj->madv != __I915_MADV_PURGED)
4085 obj->madv = args->madv;
4086
4087 /* if the object is no longer attached, discard its backing storage */
4088 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4089 i915_gem_object_truncate(obj);
4090
4091 args->retained = obj->madv != __I915_MADV_PURGED;
4092
4093 out:
4094 drm_gem_object_unreference(&obj->base);
4095 unlock:
4096 mutex_unlock(&dev->struct_mutex);
4097 return ret;
4098 }
4099
4100 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4101 const struct drm_i915_gem_object_ops *ops)
4102 {
4103 INIT_LIST_HEAD(&obj->global_list);
4104 INIT_LIST_HEAD(&obj->ring_list);
4105 INIT_LIST_HEAD(&obj->obj_exec_link);
4106 INIT_LIST_HEAD(&obj->vma_list);
4107
4108 obj->ops = ops;
4109
4110 obj->fence_reg = I915_FENCE_REG_NONE;
4111 obj->madv = I915_MADV_WILLNEED;
4112 /* Avoid an unnecessary call to unbind on the first bind. */
4113 obj->map_and_fenceable = true;
4114
4115 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4116 }
4117
4118 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4119 .get_pages = i915_gem_object_get_pages_gtt,
4120 .put_pages = i915_gem_object_put_pages_gtt,
4121 };
4122
4123 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4124 size_t size)
4125 {
4126 struct drm_i915_gem_object *obj;
4127 struct address_space *mapping;
4128 gfp_t mask;
4129
4130 obj = i915_gem_object_alloc(dev);
4131 if (obj == NULL)
4132 return NULL;
4133
4134 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4135 i915_gem_object_free(obj);
4136 return NULL;
4137 }
4138
4139 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4140 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4141 /* 965gm cannot relocate objects above 4GiB. */
4142 mask &= ~__GFP_HIGHMEM;
4143 mask |= __GFP_DMA32;
4144 }
4145
4146 mapping = file_inode(obj->base.filp)->i_mapping;
4147 mapping_set_gfp_mask(mapping, mask);
4148
4149 i915_gem_object_init(obj, &i915_gem_object_ops);
4150
4151 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4152 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4153
4154 if (HAS_LLC(dev)) {
4155 /* On some devices, we can have the GPU use the LLC (the CPU
4156 * cache) for about a 10% performance improvement
4157 * compared to uncached. Graphics requests other than
4158 * display scanout are coherent with the CPU in
4159 * accessing this cache. This means in this mode we
4160 * don't need to clflush on the CPU side, and on the
4161 * GPU side we only need to flush internal caches to
4162 * get data visible to the CPU.
4163 *
4164 * However, we maintain the display planes as UC, and so
4165 * need to rebind when first used as such.
4166 */
4167 obj->cache_level = I915_CACHE_LLC;
4168 } else
4169 obj->cache_level = I915_CACHE_NONE;
4170
4171 trace_i915_gem_object_create(obj);
4172
4173 return obj;
4174 }
4175
4176 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4177 {
4178 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4179 struct drm_device *dev = obj->base.dev;
4180 drm_i915_private_t *dev_priv = dev->dev_private;
4181 struct i915_vma *vma, *next;
4182
4183 intel_runtime_pm_get(dev_priv);
4184
4185 trace_i915_gem_object_destroy(obj);
4186
4187 if (obj->phys_obj)
4188 i915_gem_detach_phys_object(dev, obj);
4189
4190 obj->pin_count = 0;
4191 /* NB: 0 or 1 elements */
4192 WARN_ON(!list_empty(&obj->vma_list) &&
4193 !list_is_singular(&obj->vma_list));
4194 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4195 int ret = i915_vma_unbind(vma);
4196 if (WARN_ON(ret == -ERESTARTSYS)) {
4197 bool was_interruptible;
4198
4199 was_interruptible = dev_priv->mm.interruptible;
4200 dev_priv->mm.interruptible = false;
4201
4202 WARN_ON(i915_vma_unbind(vma));
4203
4204 dev_priv->mm.interruptible = was_interruptible;
4205 }
4206 }
4207
4208 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4209 * before progressing. */
4210 if (obj->stolen)
4211 i915_gem_object_unpin_pages(obj);
4212
4213 if (WARN_ON(obj->pages_pin_count))
4214 obj->pages_pin_count = 0;
4215 i915_gem_object_put_pages(obj);
4216 i915_gem_object_free_mmap_offset(obj);
4217 i915_gem_object_release_stolen(obj);
4218
4219 BUG_ON(obj->pages);
4220
4221 if (obj->base.import_attach)
4222 drm_prime_gem_destroy(&obj->base, NULL);
4223
4224 drm_gem_object_release(&obj->base);
4225 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4226
4227 kfree(obj->bit_17);
4228 i915_gem_object_free(obj);
4229
4230 intel_runtime_pm_put(dev_priv);
4231 }
4232
4233 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4234 struct i915_address_space *vm)
4235 {
4236 struct i915_vma *vma;
4237 list_for_each_entry(vma, &obj->vma_list, vma_link)
4238 if (vma->vm == vm)
4239 return vma;
4240
4241 return NULL;
4242 }
4243
4244 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
4245 struct i915_address_space *vm)
4246 {
4247 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4248 if (vma == NULL)
4249 return ERR_PTR(-ENOMEM);
4250
4251 INIT_LIST_HEAD(&vma->vma_link);
4252 INIT_LIST_HEAD(&vma->mm_list);
4253 INIT_LIST_HEAD(&vma->exec_list);
4254 vma->vm = vm;
4255 vma->obj = obj;
4256
4257 /* Keep GGTT vmas first to make debug easier */
4258 if (i915_is_ggtt(vm))
4259 list_add(&vma->vma_link, &obj->vma_list);
4260 else
4261 list_add_tail(&vma->vma_link, &obj->vma_list);
4262
4263 return vma;
4264 }
4265
4266 struct i915_vma *
4267 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
4268 struct i915_address_space *vm)
4269 {
4270 struct i915_vma *vma;
4271
4272 vma = i915_gem_obj_to_vma(obj, vm);
4273 if (!vma)
4274 vma = __i915_gem_vma_create(obj, vm);
4275
4276 return vma;
4277 }
4278
4279 void i915_gem_vma_destroy(struct i915_vma *vma)
4280 {
4281 WARN_ON(vma->node.allocated);
4282
4283 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4284 if (!list_empty(&vma->exec_list))
4285 return;
4286
4287 list_del(&vma->vma_link);
4288
4289 kfree(vma);
4290 }
4291
4292 int
4293 i915_gem_suspend(struct drm_device *dev)
4294 {
4295 drm_i915_private_t *dev_priv = dev->dev_private;
4296 int ret = 0;
4297
4298 mutex_lock(&dev->struct_mutex);
4299 if (dev_priv->ums.mm_suspended)
4300 goto err;
4301
4302 ret = i915_gpu_idle(dev);
4303 if (ret)
4304 goto err;
4305
4306 i915_gem_retire_requests(dev);
4307
4308 /* Under UMS, be paranoid and evict. */
4309 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4310 i915_gem_evict_everything(dev);
4311
4312 i915_kernel_lost_context(dev);
4313 i915_gem_cleanup_ringbuffer(dev);
4314
4315 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4316 * We need to replace this with a semaphore, or something.
4317 * And not confound ums.mm_suspended!
4318 */
4319 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4320 DRIVER_MODESET);
4321 mutex_unlock(&dev->struct_mutex);
4322
4323 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4324 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4325 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4326
4327 return 0;
4328
4329 err:
4330 mutex_unlock(&dev->struct_mutex);
4331 return ret;
4332 }
4333
4334 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4335 {
4336 struct drm_device *dev = ring->dev;
4337 drm_i915_private_t *dev_priv = dev->dev_private;
4338 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4339 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4340 int i, ret;
4341
4342 if (!HAS_L3_DPF(dev) || !remap_info)
4343 return 0;
4344
4345 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4346 if (ret)
4347 return ret;
4348
4349 /*
4350 * Note: We do not worry about the concurrent register cacheline hang
4351 * here because no other code should access these registers other than
4352 * at initialization time.
4353 */
4354 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4355 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4356 intel_ring_emit(ring, reg_base + i);
4357 intel_ring_emit(ring, remap_info[i/4]);
4358 }
4359
4360 intel_ring_advance(ring);
4361
4362 return ret;
4363 }
4364
4365 void i915_gem_init_swizzling(struct drm_device *dev)
4366 {
4367 drm_i915_private_t *dev_priv = dev->dev_private;
4368
4369 if (INTEL_INFO(dev)->gen < 5 ||
4370 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4371 return;
4372
4373 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4374 DISP_TILE_SURFACE_SWIZZLING);
4375
4376 if (IS_GEN5(dev))
4377 return;
4378
4379 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4380 if (IS_GEN6(dev))
4381 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4382 else if (IS_GEN7(dev))
4383 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4384 else if (IS_GEN8(dev))
4385 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4386 else
4387 BUG();
4388 }
4389
4390 static bool
4391 intel_enable_blt(struct drm_device *dev)
4392 {
4393 if (!HAS_BLT(dev))
4394 return false;
4395
4396 /* The blitter was dysfunctional on early prototypes */
4397 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4398 DRM_INFO("BLT not supported on this pre-production hardware;"
4399 " graphics performance will be degraded.\n");
4400 return false;
4401 }
4402
4403 return true;
4404 }
4405
4406 static int i915_gem_init_rings(struct drm_device *dev)
4407 {
4408 struct drm_i915_private *dev_priv = dev->dev_private;
4409 int ret;
4410
4411 ret = intel_init_render_ring_buffer(dev);
4412 if (ret)
4413 return ret;
4414
4415 if (HAS_BSD(dev)) {
4416 ret = intel_init_bsd_ring_buffer(dev);
4417 if (ret)
4418 goto cleanup_render_ring;
4419 }
4420
4421 if (intel_enable_blt(dev)) {
4422 ret = intel_init_blt_ring_buffer(dev);
4423 if (ret)
4424 goto cleanup_bsd_ring;
4425 }
4426
4427 if (HAS_VEBOX(dev)) {
4428 ret = intel_init_vebox_ring_buffer(dev);
4429 if (ret)
4430 goto cleanup_blt_ring;
4431 }
4432
4433
4434 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4435 if (ret)
4436 goto cleanup_vebox_ring;
4437
4438 return 0;
4439
4440 cleanup_vebox_ring:
4441 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4442 cleanup_blt_ring:
4443 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4444 cleanup_bsd_ring:
4445 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4446 cleanup_render_ring:
4447 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4448
4449 return ret;
4450 }
4451
4452 int
4453 i915_gem_init_hw(struct drm_device *dev)
4454 {
4455 drm_i915_private_t *dev_priv = dev->dev_private;
4456 int ret, i;
4457
4458 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4459 return -EIO;
4460
4461 if (dev_priv->ellc_size)
4462 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4463
4464 if (IS_HSW_GT3(dev))
4465 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_ENABLED);
4466 else
4467 I915_WRITE(MI_PREDICATE_RESULT_2, LOWER_SLICE_DISABLED);
4468
4469 if (HAS_PCH_NOP(dev)) {
4470 u32 temp = I915_READ(GEN7_MSG_CTL);
4471 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4472 I915_WRITE(GEN7_MSG_CTL, temp);
4473 }
4474
4475 i915_gem_init_swizzling(dev);
4476
4477 ret = i915_gem_init_rings(dev);
4478 if (ret)
4479 return ret;
4480
4481 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4482 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4483
4484 /*
4485 * XXX: There was some w/a described somewhere suggesting loading
4486 * contexts before PPGTT.
4487 */
4488 ret = i915_gem_context_init(dev);
4489 if (ret) {
4490 i915_gem_cleanup_ringbuffer(dev);
4491 DRM_ERROR("Context initialization failed %d\n", ret);
4492 return ret;
4493 }
4494
4495 if (dev_priv->mm.aliasing_ppgtt) {
4496 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4497 if (ret) {
4498 i915_gem_cleanup_aliasing_ppgtt(dev);
4499 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4500 }
4501 }
4502
4503 return 0;
4504 }
4505
4506 int i915_gem_init(struct drm_device *dev)
4507 {
4508 struct drm_i915_private *dev_priv = dev->dev_private;
4509 int ret;
4510
4511 mutex_lock(&dev->struct_mutex);
4512
4513 if (IS_VALLEYVIEW(dev)) {
4514 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4515 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4516 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4517 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4518 }
4519
4520 i915_gem_init_global_gtt(dev);
4521
4522 ret = i915_gem_init_hw(dev);
4523 mutex_unlock(&dev->struct_mutex);
4524 if (ret) {
4525 i915_gem_cleanup_aliasing_ppgtt(dev);
4526 return ret;
4527 }
4528
4529 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4530 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4531 dev_priv->dri1.allow_batchbuffer = 1;
4532 return 0;
4533 }
4534
4535 void
4536 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4537 {
4538 drm_i915_private_t *dev_priv = dev->dev_private;
4539 struct intel_ring_buffer *ring;
4540 int i;
4541
4542 for_each_ring(ring, dev_priv, i)
4543 intel_cleanup_ring_buffer(ring);
4544 }
4545
4546 int
4547 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4548 struct drm_file *file_priv)
4549 {
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 int ret;
4552
4553 if (drm_core_check_feature(dev, DRIVER_MODESET))
4554 return 0;
4555
4556 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4557 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4558 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4559 }
4560
4561 mutex_lock(&dev->struct_mutex);
4562 dev_priv->ums.mm_suspended = 0;
4563
4564 ret = i915_gem_init_hw(dev);
4565 if (ret != 0) {
4566 mutex_unlock(&dev->struct_mutex);
4567 return ret;
4568 }
4569
4570 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4571 mutex_unlock(&dev->struct_mutex);
4572
4573 ret = drm_irq_install(dev);
4574 if (ret)
4575 goto cleanup_ringbuffer;
4576
4577 return 0;
4578
4579 cleanup_ringbuffer:
4580 mutex_lock(&dev->struct_mutex);
4581 i915_gem_cleanup_ringbuffer(dev);
4582 dev_priv->ums.mm_suspended = 1;
4583 mutex_unlock(&dev->struct_mutex);
4584
4585 return ret;
4586 }
4587
4588 int
4589 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4590 struct drm_file *file_priv)
4591 {
4592 if (drm_core_check_feature(dev, DRIVER_MODESET))
4593 return 0;
4594
4595 drm_irq_uninstall(dev);
4596
4597 return i915_gem_suspend(dev);
4598 }
4599
4600 void
4601 i915_gem_lastclose(struct drm_device *dev)
4602 {
4603 int ret;
4604
4605 if (drm_core_check_feature(dev, DRIVER_MODESET))
4606 return;
4607
4608 ret = i915_gem_suspend(dev);
4609 if (ret)
4610 DRM_ERROR("failed to idle hardware: %d\n", ret);
4611 }
4612
4613 static void
4614 init_ring_lists(struct intel_ring_buffer *ring)
4615 {
4616 INIT_LIST_HEAD(&ring->active_list);
4617 INIT_LIST_HEAD(&ring->request_list);
4618 }
4619
4620 static void i915_init_vm(struct drm_i915_private *dev_priv,
4621 struct i915_address_space *vm)
4622 {
4623 vm->dev = dev_priv->dev;
4624 INIT_LIST_HEAD(&vm->active_list);
4625 INIT_LIST_HEAD(&vm->inactive_list);
4626 INIT_LIST_HEAD(&vm->global_link);
4627 list_add(&vm->global_link, &dev_priv->vm_list);
4628 }
4629
4630 void
4631 i915_gem_load(struct drm_device *dev)
4632 {
4633 drm_i915_private_t *dev_priv = dev->dev_private;
4634 int i;
4635
4636 dev_priv->slab =
4637 kmem_cache_create("i915_gem_object",
4638 sizeof(struct drm_i915_gem_object), 0,
4639 SLAB_HWCACHE_ALIGN,
4640 NULL);
4641
4642 INIT_LIST_HEAD(&dev_priv->vm_list);
4643 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4644
4645 INIT_LIST_HEAD(&dev_priv->context_list);
4646 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4647 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4648 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4649 for (i = 0; i < I915_NUM_RINGS; i++)
4650 init_ring_lists(&dev_priv->ring[i]);
4651 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4652 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4653 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4654 i915_gem_retire_work_handler);
4655 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4656 i915_gem_idle_work_handler);
4657 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4658
4659 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4660 if (IS_GEN3(dev)) {
4661 I915_WRITE(MI_ARB_STATE,
4662 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4663 }
4664
4665 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4666
4667 /* Old X drivers will take 0-2 for front, back, depth buffers */
4668 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4669 dev_priv->fence_reg_start = 3;
4670
4671 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4672 dev_priv->num_fence_regs = 32;
4673 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4674 dev_priv->num_fence_regs = 16;
4675 else
4676 dev_priv->num_fence_regs = 8;
4677
4678 /* Initialize fence registers to zero */
4679 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4680 i915_gem_restore_fences(dev);
4681
4682 i915_gem_detect_bit_6_swizzle(dev);
4683 init_waitqueue_head(&dev_priv->pending_flip_queue);
4684
4685 dev_priv->mm.interruptible = true;
4686
4687 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4688 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4689 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4690 register_shrinker(&dev_priv->mm.inactive_shrinker);
4691 }
4692
4693 /*
4694 * Create a physically contiguous memory object for this object
4695 * e.g. for cursor + overlay regs
4696 */
4697 static int i915_gem_init_phys_object(struct drm_device *dev,
4698 int id, int size, int align)
4699 {
4700 drm_i915_private_t *dev_priv = dev->dev_private;
4701 struct drm_i915_gem_phys_object *phys_obj;
4702 int ret;
4703
4704 if (dev_priv->mm.phys_objs[id - 1] || !size)
4705 return 0;
4706
4707 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4708 if (!phys_obj)
4709 return -ENOMEM;
4710
4711 phys_obj->id = id;
4712
4713 phys_obj->handle = drm_pci_alloc(dev, size, align);
4714 if (!phys_obj->handle) {
4715 ret = -ENOMEM;
4716 goto kfree_obj;
4717 }
4718 #ifdef CONFIG_X86
4719 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4720 #endif
4721
4722 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4723
4724 return 0;
4725 kfree_obj:
4726 kfree(phys_obj);
4727 return ret;
4728 }
4729
4730 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4731 {
4732 drm_i915_private_t *dev_priv = dev->dev_private;
4733 struct drm_i915_gem_phys_object *phys_obj;
4734
4735 if (!dev_priv->mm.phys_objs[id - 1])
4736 return;
4737
4738 phys_obj = dev_priv->mm.phys_objs[id - 1];
4739 if (phys_obj->cur_obj) {
4740 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4741 }
4742
4743 #ifdef CONFIG_X86
4744 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4745 #endif
4746 drm_pci_free(dev, phys_obj->handle);
4747 kfree(phys_obj);
4748 dev_priv->mm.phys_objs[id - 1] = NULL;
4749 }
4750
4751 void i915_gem_free_all_phys_object(struct drm_device *dev)
4752 {
4753 int i;
4754
4755 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4756 i915_gem_free_phys_object(dev, i);
4757 }
4758
4759 void i915_gem_detach_phys_object(struct drm_device *dev,
4760 struct drm_i915_gem_object *obj)
4761 {
4762 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4763 char *vaddr;
4764 int i;
4765 int page_count;
4766
4767 if (!obj->phys_obj)
4768 return;
4769 vaddr = obj->phys_obj->handle->vaddr;
4770
4771 page_count = obj->base.size / PAGE_SIZE;
4772 for (i = 0; i < page_count; i++) {
4773 struct page *page = shmem_read_mapping_page(mapping, i);
4774 if (!IS_ERR(page)) {
4775 char *dst = kmap_atomic(page);
4776 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4777 kunmap_atomic(dst);
4778
4779 drm_clflush_pages(&page, 1);
4780
4781 set_page_dirty(page);
4782 mark_page_accessed(page);
4783 page_cache_release(page);
4784 }
4785 }
4786 i915_gem_chipset_flush(dev);
4787
4788 obj->phys_obj->cur_obj = NULL;
4789 obj->phys_obj = NULL;
4790 }
4791
4792 int
4793 i915_gem_attach_phys_object(struct drm_device *dev,
4794 struct drm_i915_gem_object *obj,
4795 int id,
4796 int align)
4797 {
4798 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4799 drm_i915_private_t *dev_priv = dev->dev_private;
4800 int ret = 0;
4801 int page_count;
4802 int i;
4803
4804 if (id > I915_MAX_PHYS_OBJECT)
4805 return -EINVAL;
4806
4807 if (obj->phys_obj) {
4808 if (obj->phys_obj->id == id)
4809 return 0;
4810 i915_gem_detach_phys_object(dev, obj);
4811 }
4812
4813 /* create a new object */
4814 if (!dev_priv->mm.phys_objs[id - 1]) {
4815 ret = i915_gem_init_phys_object(dev, id,
4816 obj->base.size, align);
4817 if (ret) {
4818 DRM_ERROR("failed to init phys object %d size: %zu\n",
4819 id, obj->base.size);
4820 return ret;
4821 }
4822 }
4823
4824 /* bind to the object */
4825 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4826 obj->phys_obj->cur_obj = obj;
4827
4828 page_count = obj->base.size / PAGE_SIZE;
4829
4830 for (i = 0; i < page_count; i++) {
4831 struct page *page;
4832 char *dst, *src;
4833
4834 page = shmem_read_mapping_page(mapping, i);
4835 if (IS_ERR(page))
4836 return PTR_ERR(page);
4837
4838 src = kmap_atomic(page);
4839 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4840 memcpy(dst, src, PAGE_SIZE);
4841 kunmap_atomic(src);
4842
4843 mark_page_accessed(page);
4844 page_cache_release(page);
4845 }
4846
4847 return 0;
4848 }
4849
4850 static int
4851 i915_gem_phys_pwrite(struct drm_device *dev,
4852 struct drm_i915_gem_object *obj,
4853 struct drm_i915_gem_pwrite *args,
4854 struct drm_file *file_priv)
4855 {
4856 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4857 char __user *user_data = to_user_ptr(args->data_ptr);
4858
4859 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4860 unsigned long unwritten;
4861
4862 /* The physical object once assigned is fixed for the lifetime
4863 * of the obj, so we can safely drop the lock and continue
4864 * to access vaddr.
4865 */
4866 mutex_unlock(&dev->struct_mutex);
4867 unwritten = copy_from_user(vaddr, user_data, args->size);
4868 mutex_lock(&dev->struct_mutex);
4869 if (unwritten)
4870 return -EFAULT;
4871 }
4872
4873 i915_gem_chipset_flush(dev);
4874 return 0;
4875 }
4876
4877 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4878 {
4879 struct drm_i915_file_private *file_priv = file->driver_priv;
4880
4881 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4882
4883 /* Clean up our request list when the client is going away, so that
4884 * later retire_requests won't dereference our soon-to-be-gone
4885 * file_priv.
4886 */
4887 spin_lock(&file_priv->mm.lock);
4888 while (!list_empty(&file_priv->mm.request_list)) {
4889 struct drm_i915_gem_request *request;
4890
4891 request = list_first_entry(&file_priv->mm.request_list,
4892 struct drm_i915_gem_request,
4893 client_list);
4894 list_del(&request->client_list);
4895 request->file_priv = NULL;
4896 }
4897 spin_unlock(&file_priv->mm.lock);
4898 }
4899
4900 static void
4901 i915_gem_file_idle_work_handler(struct work_struct *work)
4902 {
4903 struct drm_i915_file_private *file_priv =
4904 container_of(work, typeof(*file_priv), mm.idle_work.work);
4905
4906 atomic_set(&file_priv->rps_wait_boost, false);
4907 }
4908
4909 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4910 {
4911 struct drm_i915_file_private *file_priv;
4912
4913 DRM_DEBUG_DRIVER("\n");
4914
4915 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4916 if (!file_priv)
4917 return -ENOMEM;
4918
4919 file->driver_priv = file_priv;
4920 file_priv->dev_priv = dev->dev_private;
4921
4922 spin_lock_init(&file_priv->mm.lock);
4923 INIT_LIST_HEAD(&file_priv->mm.request_list);
4924 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4925 i915_gem_file_idle_work_handler);
4926
4927 idr_init(&file_priv->context_idr);
4928
4929 return 0;
4930 }
4931
4932 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4933 {
4934 if (!mutex_is_locked(mutex))
4935 return false;
4936
4937 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4938 return mutex->owner == task;
4939 #else
4940 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4941 return false;
4942 #endif
4943 }
4944
4945 static unsigned long
4946 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4947 {
4948 struct drm_i915_private *dev_priv =
4949 container_of(shrinker,
4950 struct drm_i915_private,
4951 mm.inactive_shrinker);
4952 struct drm_device *dev = dev_priv->dev;
4953 struct drm_i915_gem_object *obj;
4954 bool unlock = true;
4955 unsigned long count;
4956
4957 if (!mutex_trylock(&dev->struct_mutex)) {
4958 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4959 return 0;
4960
4961 if (dev_priv->mm.shrinker_no_lock_stealing)
4962 return 0;
4963
4964 unlock = false;
4965 }
4966
4967 count = 0;
4968 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4969 if (obj->pages_pin_count == 0)
4970 count += obj->base.size >> PAGE_SHIFT;
4971
4972 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4973 if (obj->active)
4974 continue;
4975
4976 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4977 count += obj->base.size >> PAGE_SHIFT;
4978 }
4979
4980 if (unlock)
4981 mutex_unlock(&dev->struct_mutex);
4982
4983 return count;
4984 }
4985
4986 /* All the new VM stuff */
4987 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4988 struct i915_address_space *vm)
4989 {
4990 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991 struct i915_vma *vma;
4992
4993 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4994 vm = &dev_priv->gtt.base;
4995
4996 BUG_ON(list_empty(&o->vma_list));
4997 list_for_each_entry(vma, &o->vma_list, vma_link) {
4998 if (vma->vm == vm)
4999 return vma->node.start;
5000
5001 }
5002 return -1;
5003 }
5004
5005 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5006 struct i915_address_space *vm)
5007 {
5008 struct i915_vma *vma;
5009
5010 list_for_each_entry(vma, &o->vma_list, vma_link)
5011 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5012 return true;
5013
5014 return false;
5015 }
5016
5017 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5018 {
5019 struct i915_vma *vma;
5020
5021 list_for_each_entry(vma, &o->vma_list, vma_link)
5022 if (drm_mm_node_allocated(&vma->node))
5023 return true;
5024
5025 return false;
5026 }
5027
5028 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5029 struct i915_address_space *vm)
5030 {
5031 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5032 struct i915_vma *vma;
5033
5034 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
5035 vm = &dev_priv->gtt.base;
5036
5037 BUG_ON(list_empty(&o->vma_list));
5038
5039 list_for_each_entry(vma, &o->vma_list, vma_link)
5040 if (vma->vm == vm)
5041 return vma->node.size;
5042
5043 return 0;
5044 }
5045
5046 static unsigned long
5047 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5048 {
5049 struct drm_i915_private *dev_priv =
5050 container_of(shrinker,
5051 struct drm_i915_private,
5052 mm.inactive_shrinker);
5053 struct drm_device *dev = dev_priv->dev;
5054 unsigned long freed;
5055 bool unlock = true;
5056
5057 if (!mutex_trylock(&dev->struct_mutex)) {
5058 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5059 return SHRINK_STOP;
5060
5061 if (dev_priv->mm.shrinker_no_lock_stealing)
5062 return SHRINK_STOP;
5063
5064 unlock = false;
5065 }
5066
5067 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5068 if (freed < sc->nr_to_scan)
5069 freed += __i915_gem_shrink(dev_priv,
5070 sc->nr_to_scan - freed,
5071 false);
5072 if (freed < sc->nr_to_scan)
5073 freed += i915_gem_shrink_all(dev_priv);
5074
5075 if (unlock)
5076 mutex_unlock(&dev->struct_mutex);
5077
5078 return freed;
5079 }
5080
5081 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5082 {
5083 struct i915_vma *vma;
5084
5085 if (WARN_ON(list_empty(&obj->vma_list)))
5086 return NULL;
5087
5088 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5089 if (WARN_ON(vma->vm != obj_to_ggtt(obj)))
5090 return NULL;
5091
5092 return vma;
5093 }