]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
fd4872497a722b78d8e4bd673f422637f71910a0
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
41 bool force);
42 static __must_check int
43 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
44 struct i915_address_space *vm,
45 unsigned alignment,
46 bool map_and_fenceable,
47 bool nonblocking);
48 static int i915_gem_phys_pwrite(struct drm_device *dev,
49 struct drm_i915_gem_object *obj,
50 struct drm_i915_gem_pwrite *args,
51 struct drm_file *file);
52
53 static void i915_gem_write_fence(struct drm_device *dev, int reg,
54 struct drm_i915_gem_object *obj);
55 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
56 struct drm_i915_fence_reg *fence,
57 bool enable);
58
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
61 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 static inline bool
157 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158 {
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160 }
161
162 int
163 i915_gem_init_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165 {
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_init *args = data;
168
169 if (drm_core_check_feature(dev, DRIVER_MODESET))
170 return -ENODEV;
171
172 if (args->gtt_start >= args->gtt_end ||
173 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
174 return -EINVAL;
175
176 /* GEM with user mode setting was never supported on ilk and later. */
177 if (INTEL_INFO(dev)->gen >= 5)
178 return -ENODEV;
179
180 mutex_lock(&dev->struct_mutex);
181 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
182 args->gtt_end);
183 dev_priv->gtt.mappable_end = args->gtt_end;
184 mutex_unlock(&dev->struct_mutex);
185
186 return 0;
187 }
188
189 int
190 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
191 struct drm_file *file)
192 {
193 struct drm_i915_private *dev_priv = dev->dev_private;
194 struct drm_i915_gem_get_aperture *args = data;
195 struct drm_i915_gem_object *obj;
196 size_t pinned;
197
198 pinned = 0;
199 mutex_lock(&dev->struct_mutex);
200 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
201 if (obj->pin_count)
202 pinned += i915_gem_obj_ggtt_size(obj);
203 mutex_unlock(&dev->struct_mutex);
204
205 args->aper_size = dev_priv->gtt.base.total;
206 args->aper_available_size = args->aper_size - pinned;
207
208 return 0;
209 }
210
211 void *i915_gem_object_alloc(struct drm_device *dev)
212 {
213 struct drm_i915_private *dev_priv = dev->dev_private;
214 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
215 }
216
217 void i915_gem_object_free(struct drm_i915_gem_object *obj)
218 {
219 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
220 kmem_cache_free(dev_priv->slab, obj);
221 }
222
223 static int
224 i915_gem_create(struct drm_file *file,
225 struct drm_device *dev,
226 uint64_t size,
227 uint32_t *handle_p)
228 {
229 struct drm_i915_gem_object *obj;
230 int ret;
231 u32 handle;
232
233 size = roundup(size, PAGE_SIZE);
234 if (size == 0)
235 return -EINVAL;
236
237 /* Allocate the new object */
238 obj = i915_gem_alloc_object(dev, size);
239 if (obj == NULL)
240 return -ENOMEM;
241
242 ret = drm_gem_handle_create(file, &obj->base, &handle);
243 /* drop reference from allocate - handle holds it now */
244 drm_gem_object_unreference_unlocked(&obj->base);
245 if (ret)
246 return ret;
247
248 *handle_p = handle;
249 return 0;
250 }
251
252 int
253 i915_gem_dumb_create(struct drm_file *file,
254 struct drm_device *dev,
255 struct drm_mode_create_dumb *args)
256 {
257 /* have to work out size/pitch and return them */
258 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
259 args->size = args->pitch * args->height;
260 return i915_gem_create(file, dev,
261 args->size, &args->handle);
262 }
263
264 int i915_gem_dumb_destroy(struct drm_file *file,
265 struct drm_device *dev,
266 uint32_t handle)
267 {
268 return drm_gem_handle_delete(file, handle);
269 }
270
271 /**
272 * Creates a new mm object and returns a handle to it.
273 */
274 int
275 i915_gem_create_ioctl(struct drm_device *dev, void *data,
276 struct drm_file *file)
277 {
278 struct drm_i915_gem_create *args = data;
279
280 return i915_gem_create(file, dev,
281 args->size, &args->handle);
282 }
283
284 static inline int
285 __copy_to_user_swizzled(char __user *cpu_vaddr,
286 const char *gpu_vaddr, int gpu_offset,
287 int length)
288 {
289 int ret, cpu_offset = 0;
290
291 while (length > 0) {
292 int cacheline_end = ALIGN(gpu_offset + 1, 64);
293 int this_length = min(cacheline_end - gpu_offset, length);
294 int swizzled_gpu_offset = gpu_offset ^ 64;
295
296 ret = __copy_to_user(cpu_vaddr + cpu_offset,
297 gpu_vaddr + swizzled_gpu_offset,
298 this_length);
299 if (ret)
300 return ret + length;
301
302 cpu_offset += this_length;
303 gpu_offset += this_length;
304 length -= this_length;
305 }
306
307 return 0;
308 }
309
310 static inline int
311 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
312 const char __user *cpu_vaddr,
313 int length)
314 {
315 int ret, cpu_offset = 0;
316
317 while (length > 0) {
318 int cacheline_end = ALIGN(gpu_offset + 1, 64);
319 int this_length = min(cacheline_end - gpu_offset, length);
320 int swizzled_gpu_offset = gpu_offset ^ 64;
321
322 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
323 cpu_vaddr + cpu_offset,
324 this_length);
325 if (ret)
326 return ret + length;
327
328 cpu_offset += this_length;
329 gpu_offset += this_length;
330 length -= this_length;
331 }
332
333 return 0;
334 }
335
336 /* Per-page copy function for the shmem pread fastpath.
337 * Flushes invalid cachelines before reading the target if
338 * needs_clflush is set. */
339 static int
340 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
341 char __user *user_data,
342 bool page_do_bit17_swizzling, bool needs_clflush)
343 {
344 char *vaddr;
345 int ret;
346
347 if (unlikely(page_do_bit17_swizzling))
348 return -EINVAL;
349
350 vaddr = kmap_atomic(page);
351 if (needs_clflush)
352 drm_clflush_virt_range(vaddr + shmem_page_offset,
353 page_length);
354 ret = __copy_to_user_inatomic(user_data,
355 vaddr + shmem_page_offset,
356 page_length);
357 kunmap_atomic(vaddr);
358
359 return ret ? -EFAULT : 0;
360 }
361
362 static void
363 shmem_clflush_swizzled_range(char *addr, unsigned long length,
364 bool swizzled)
365 {
366 if (unlikely(swizzled)) {
367 unsigned long start = (unsigned long) addr;
368 unsigned long end = (unsigned long) addr + length;
369
370 /* For swizzling simply ensure that we always flush both
371 * channels. Lame, but simple and it works. Swizzled
372 * pwrite/pread is far from a hotpath - current userspace
373 * doesn't use it at all. */
374 start = round_down(start, 128);
375 end = round_up(end, 128);
376
377 drm_clflush_virt_range((void *)start, end - start);
378 } else {
379 drm_clflush_virt_range(addr, length);
380 }
381
382 }
383
384 /* Only difference to the fast-path function is that this can handle bit17
385 * and uses non-atomic copy and kmap functions. */
386 static int
387 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
388 char __user *user_data,
389 bool page_do_bit17_swizzling, bool needs_clflush)
390 {
391 char *vaddr;
392 int ret;
393
394 vaddr = kmap(page);
395 if (needs_clflush)
396 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
397 page_length,
398 page_do_bit17_swizzling);
399
400 if (page_do_bit17_swizzling)
401 ret = __copy_to_user_swizzled(user_data,
402 vaddr, shmem_page_offset,
403 page_length);
404 else
405 ret = __copy_to_user(user_data,
406 vaddr + shmem_page_offset,
407 page_length);
408 kunmap(page);
409
410 return ret ? - EFAULT : 0;
411 }
412
413 static int
414 i915_gem_shmem_pread(struct drm_device *dev,
415 struct drm_i915_gem_object *obj,
416 struct drm_i915_gem_pread *args,
417 struct drm_file *file)
418 {
419 char __user *user_data;
420 ssize_t remain;
421 loff_t offset;
422 int shmem_page_offset, page_length, ret = 0;
423 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
424 int prefaulted = 0;
425 int needs_clflush = 0;
426 struct sg_page_iter sg_iter;
427
428 user_data = to_user_ptr(args->data_ptr);
429 remain = args->size;
430
431 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
432
433 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
434 /* If we're not in the cpu read domain, set ourself into the gtt
435 * read domain and manually flush cachelines (if required). This
436 * optimizes for the case when the gpu will dirty the data
437 * anyway again before the next pread happens. */
438 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
439 if (i915_gem_obj_bound_any(obj)) {
440 ret = i915_gem_object_set_to_gtt_domain(obj, false);
441 if (ret)
442 return ret;
443 }
444 }
445
446 ret = i915_gem_object_get_pages(obj);
447 if (ret)
448 return ret;
449
450 i915_gem_object_pin_pages(obj);
451
452 offset = args->offset;
453
454 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
455 offset >> PAGE_SHIFT) {
456 struct page *page = sg_page_iter_page(&sg_iter);
457
458 if (remain <= 0)
459 break;
460
461 /* Operation in this page
462 *
463 * shmem_page_offset = offset within page in shmem file
464 * page_length = bytes to copy for this page
465 */
466 shmem_page_offset = offset_in_page(offset);
467 page_length = remain;
468 if ((shmem_page_offset + page_length) > PAGE_SIZE)
469 page_length = PAGE_SIZE - shmem_page_offset;
470
471 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
472 (page_to_phys(page) & (1 << 17)) != 0;
473
474 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
475 user_data, page_do_bit17_swizzling,
476 needs_clflush);
477 if (ret == 0)
478 goto next_page;
479
480 mutex_unlock(&dev->struct_mutex);
481
482 if (likely(!i915_prefault_disable) && !prefaulted) {
483 ret = fault_in_multipages_writeable(user_data, remain);
484 /* Userspace is tricking us, but we've already clobbered
485 * its pages with the prefault and promised to write the
486 * data up to the first fault. Hence ignore any errors
487 * and just continue. */
488 (void)ret;
489 prefaulted = 1;
490 }
491
492 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
493 user_data, page_do_bit17_swizzling,
494 needs_clflush);
495
496 mutex_lock(&dev->struct_mutex);
497
498 next_page:
499 mark_page_accessed(page);
500
501 if (ret)
502 goto out;
503
504 remain -= page_length;
505 user_data += page_length;
506 offset += page_length;
507 }
508
509 out:
510 i915_gem_object_unpin_pages(obj);
511
512 return ret;
513 }
514
515 /**
516 * Reads data from the object referenced by handle.
517 *
518 * On error, the contents of *data are undefined.
519 */
520 int
521 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
522 struct drm_file *file)
523 {
524 struct drm_i915_gem_pread *args = data;
525 struct drm_i915_gem_object *obj;
526 int ret = 0;
527
528 if (args->size == 0)
529 return 0;
530
531 if (!access_ok(VERIFY_WRITE,
532 to_user_ptr(args->data_ptr),
533 args->size))
534 return -EFAULT;
535
536 ret = i915_mutex_lock_interruptible(dev);
537 if (ret)
538 return ret;
539
540 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
541 if (&obj->base == NULL) {
542 ret = -ENOENT;
543 goto unlock;
544 }
545
546 /* Bounds check source. */
547 if (args->offset > obj->base.size ||
548 args->size > obj->base.size - args->offset) {
549 ret = -EINVAL;
550 goto out;
551 }
552
553 /* prime objects have no backing filp to GEM pread/pwrite
554 * pages from.
555 */
556 if (!obj->base.filp) {
557 ret = -EINVAL;
558 goto out;
559 }
560
561 trace_i915_gem_object_pread(obj, args->offset, args->size);
562
563 ret = i915_gem_shmem_pread(dev, obj, args, file);
564
565 out:
566 drm_gem_object_unreference(&obj->base);
567 unlock:
568 mutex_unlock(&dev->struct_mutex);
569 return ret;
570 }
571
572 /* This is the fast write path which cannot handle
573 * page faults in the source data
574 */
575
576 static inline int
577 fast_user_write(struct io_mapping *mapping,
578 loff_t page_base, int page_offset,
579 char __user *user_data,
580 int length)
581 {
582 void __iomem *vaddr_atomic;
583 void *vaddr;
584 unsigned long unwritten;
585
586 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
587 /* We can use the cpu mem copy function because this is X86. */
588 vaddr = (void __force*)vaddr_atomic + page_offset;
589 unwritten = __copy_from_user_inatomic_nocache(vaddr,
590 user_data, length);
591 io_mapping_unmap_atomic(vaddr_atomic);
592 return unwritten;
593 }
594
595 /**
596 * This is the fast pwrite path, where we copy the data directly from the
597 * user into the GTT, uncached.
598 */
599 static int
600 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
601 struct drm_i915_gem_object *obj,
602 struct drm_i915_gem_pwrite *args,
603 struct drm_file *file)
604 {
605 drm_i915_private_t *dev_priv = dev->dev_private;
606 ssize_t remain;
607 loff_t offset, page_base;
608 char __user *user_data;
609 int page_offset, page_length, ret;
610
611 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
612 if (ret)
613 goto out;
614
615 ret = i915_gem_object_set_to_gtt_domain(obj, true);
616 if (ret)
617 goto out_unpin;
618
619 ret = i915_gem_object_put_fence(obj);
620 if (ret)
621 goto out_unpin;
622
623 user_data = to_user_ptr(args->data_ptr);
624 remain = args->size;
625
626 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
627
628 while (remain > 0) {
629 /* Operation in this page
630 *
631 * page_base = page offset within aperture
632 * page_offset = offset within page
633 * page_length = bytes to copy for this page
634 */
635 page_base = offset & PAGE_MASK;
636 page_offset = offset_in_page(offset);
637 page_length = remain;
638 if ((page_offset + remain) > PAGE_SIZE)
639 page_length = PAGE_SIZE - page_offset;
640
641 /* If we get a fault while copying data, then (presumably) our
642 * source page isn't available. Return the error and we'll
643 * retry in the slow path.
644 */
645 if (fast_user_write(dev_priv->gtt.mappable, page_base,
646 page_offset, user_data, page_length)) {
647 ret = -EFAULT;
648 goto out_unpin;
649 }
650
651 remain -= page_length;
652 user_data += page_length;
653 offset += page_length;
654 }
655
656 out_unpin:
657 i915_gem_object_unpin(obj);
658 out:
659 return ret;
660 }
661
662 /* Per-page copy function for the shmem pwrite fastpath.
663 * Flushes invalid cachelines before writing to the target if
664 * needs_clflush_before is set and flushes out any written cachelines after
665 * writing if needs_clflush is set. */
666 static int
667 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
668 char __user *user_data,
669 bool page_do_bit17_swizzling,
670 bool needs_clflush_before,
671 bool needs_clflush_after)
672 {
673 char *vaddr;
674 int ret;
675
676 if (unlikely(page_do_bit17_swizzling))
677 return -EINVAL;
678
679 vaddr = kmap_atomic(page);
680 if (needs_clflush_before)
681 drm_clflush_virt_range(vaddr + shmem_page_offset,
682 page_length);
683 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
684 user_data,
685 page_length);
686 if (needs_clflush_after)
687 drm_clflush_virt_range(vaddr + shmem_page_offset,
688 page_length);
689 kunmap_atomic(vaddr);
690
691 return ret ? -EFAULT : 0;
692 }
693
694 /* Only difference to the fast-path function is that this can handle bit17
695 * and uses non-atomic copy and kmap functions. */
696 static int
697 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
698 char __user *user_data,
699 bool page_do_bit17_swizzling,
700 bool needs_clflush_before,
701 bool needs_clflush_after)
702 {
703 char *vaddr;
704 int ret;
705
706 vaddr = kmap(page);
707 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
708 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
709 page_length,
710 page_do_bit17_swizzling);
711 if (page_do_bit17_swizzling)
712 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
713 user_data,
714 page_length);
715 else
716 ret = __copy_from_user(vaddr + shmem_page_offset,
717 user_data,
718 page_length);
719 if (needs_clflush_after)
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
723 kunmap(page);
724
725 return ret ? -EFAULT : 0;
726 }
727
728 static int
729 i915_gem_shmem_pwrite(struct drm_device *dev,
730 struct drm_i915_gem_object *obj,
731 struct drm_i915_gem_pwrite *args,
732 struct drm_file *file)
733 {
734 ssize_t remain;
735 loff_t offset;
736 char __user *user_data;
737 int shmem_page_offset, page_length, ret = 0;
738 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
739 int hit_slowpath = 0;
740 int needs_clflush_after = 0;
741 int needs_clflush_before = 0;
742 struct sg_page_iter sg_iter;
743
744 user_data = to_user_ptr(args->data_ptr);
745 remain = args->size;
746
747 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
748
749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
750 /* If we're not in the cpu write domain, set ourself into the gtt
751 * write domain and manually flush cachelines (if required). This
752 * optimizes for the case when the gpu will use the data
753 * right away and we therefore have to clflush anyway. */
754 needs_clflush_after = cpu_write_needs_clflush(obj);
755 if (i915_gem_obj_bound_any(obj)) {
756 ret = i915_gem_object_set_to_gtt_domain(obj, true);
757 if (ret)
758 return ret;
759 }
760 }
761 /* Same trick applies to invalidate partially written cachelines read
762 * before writing. */
763 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
764 needs_clflush_before =
765 !cpu_cache_is_coherent(dev, obj->cache_level);
766
767 ret = i915_gem_object_get_pages(obj);
768 if (ret)
769 return ret;
770
771 i915_gem_object_pin_pages(obj);
772
773 offset = args->offset;
774 obj->dirty = 1;
775
776 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
777 offset >> PAGE_SHIFT) {
778 struct page *page = sg_page_iter_page(&sg_iter);
779 int partial_cacheline_write;
780
781 if (remain <= 0)
782 break;
783
784 /* Operation in this page
785 *
786 * shmem_page_offset = offset within page in shmem file
787 * page_length = bytes to copy for this page
788 */
789 shmem_page_offset = offset_in_page(offset);
790
791 page_length = remain;
792 if ((shmem_page_offset + page_length) > PAGE_SIZE)
793 page_length = PAGE_SIZE - shmem_page_offset;
794
795 /* If we don't overwrite a cacheline completely we need to be
796 * careful to have up-to-date data by first clflushing. Don't
797 * overcomplicate things and flush the entire patch. */
798 partial_cacheline_write = needs_clflush_before &&
799 ((shmem_page_offset | page_length)
800 & (boot_cpu_data.x86_clflush_size - 1));
801
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 mutex_unlock(&dev->struct_mutex);
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
818
819 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822 set_page_dirty(page);
823 mark_page_accessed(page);
824
825 if (ret)
826 goto out;
827
828 remain -= page_length;
829 user_data += page_length;
830 offset += page_length;
831 }
832
833 out:
834 i915_gem_object_unpin_pages(obj);
835
836 if (hit_slowpath) {
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844 if (i915_gem_clflush_object(obj, obj->pin_display))
845 i915_gem_chipset_flush(dev);
846 }
847 }
848
849 if (needs_clflush_after)
850 i915_gem_chipset_flush(dev);
851
852 return ret;
853 }
854
855 /**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862 struct drm_file *file)
863 {
864 struct drm_i915_gem_pwrite *args = data;
865 struct drm_i915_gem_object *obj;
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 to_user_ptr(args->data_ptr),
873 args->size))
874 return -EFAULT;
875
876 if (likely(!i915_prefault_disable)) {
877 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
878 args->size);
879 if (ret)
880 return -EFAULT;
881 }
882
883 ret = i915_mutex_lock_interruptible(dev);
884 if (ret)
885 return ret;
886
887 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
888 if (&obj->base == NULL) {
889 ret = -ENOENT;
890 goto unlock;
891 }
892
893 /* Bounds check destination. */
894 if (args->offset > obj->base.size ||
895 args->size > obj->base.size - args->offset) {
896 ret = -EINVAL;
897 goto out;
898 }
899
900 /* prime objects have no backing filp to GEM pread/pwrite
901 * pages from.
902 */
903 if (!obj->base.filp) {
904 ret = -EINVAL;
905 goto out;
906 }
907
908 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
909
910 ret = -EFAULT;
911 /* We can only do the GTT pwrite on untiled buffers, as otherwise
912 * it would end up going through the fenced access, and we'll get
913 * different detiling behavior between reading and writing.
914 * pread/pwrite currently are reading and writing from the CPU
915 * perspective, requiring manual detiling by the client.
916 */
917 if (obj->phys_obj) {
918 ret = i915_gem_phys_pwrite(dev, obj, args, file);
919 goto out;
920 }
921
922 if (obj->tiling_mode == I915_TILING_NONE &&
923 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
924 cpu_write_needs_clflush(obj)) {
925 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
926 /* Note that the gtt paths might fail with non-page-backed user
927 * pointers (e.g. gtt mappings when moving data between
928 * textures). Fallback to the shmem path in that case. */
929 }
930
931 if (ret == -EFAULT || ret == -ENOSPC)
932 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
933
934 out:
935 drm_gem_object_unreference(&obj->base);
936 unlock:
937 mutex_unlock(&dev->struct_mutex);
938 return ret;
939 }
940
941 int
942 i915_gem_check_wedge(struct i915_gpu_error *error,
943 bool interruptible)
944 {
945 if (i915_reset_in_progress(error)) {
946 /* Non-interruptible callers can't handle -EAGAIN, hence return
947 * -EIO unconditionally for these. */
948 if (!interruptible)
949 return -EIO;
950
951 /* Recovery complete, but the reset failed ... */
952 if (i915_terminally_wedged(error))
953 return -EIO;
954
955 return -EAGAIN;
956 }
957
958 return 0;
959 }
960
961 /*
962 * Compare seqno against outstanding lazy request. Emit a request if they are
963 * equal.
964 */
965 static int
966 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
967 {
968 int ret;
969
970 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
971
972 ret = 0;
973 if (seqno == ring->outstanding_lazy_request)
974 ret = i915_add_request(ring, NULL);
975
976 return ret;
977 }
978
979 /**
980 * __wait_seqno - wait until execution of seqno has finished
981 * @ring: the ring expected to report seqno
982 * @seqno: duh!
983 * @reset_counter: reset sequence associated with the given seqno
984 * @interruptible: do an interruptible wait (normally yes)
985 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
986 *
987 * Note: It is of utmost importance that the passed in seqno and reset_counter
988 * values have been read by the caller in an smp safe manner. Where read-side
989 * locks are involved, it is sufficient to read the reset_counter before
990 * unlocking the lock that protects the seqno. For lockless tricks, the
991 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
992 * inserted.
993 *
994 * Returns 0 if the seqno was found within the alloted time. Else returns the
995 * errno with remaining time filled in timeout argument.
996 */
997 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
998 unsigned reset_counter,
999 bool interruptible, struct timespec *timeout)
1000 {
1001 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1002 struct timespec before, now, wait_time={1,0};
1003 unsigned long timeout_jiffies;
1004 long end;
1005 bool wait_forever = true;
1006 int ret;
1007
1008 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1009 return 0;
1010
1011 trace_i915_gem_request_wait_begin(ring, seqno);
1012
1013 if (timeout != NULL) {
1014 wait_time = *timeout;
1015 wait_forever = false;
1016 }
1017
1018 timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1019
1020 if (WARN_ON(!ring->irq_get(ring)))
1021 return -ENODEV;
1022
1023 /* Record current time in case interrupted by signal, or wedged * */
1024 getrawmonotonic(&before);
1025
1026 #define EXIT_COND \
1027 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1028 i915_reset_in_progress(&dev_priv->gpu_error) || \
1029 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030 do {
1031 if (interruptible)
1032 end = wait_event_interruptible_timeout(ring->irq_queue,
1033 EXIT_COND,
1034 timeout_jiffies);
1035 else
1036 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1037 timeout_jiffies);
1038
1039 /* We need to check whether any gpu reset happened in between
1040 * the caller grabbing the seqno and now ... */
1041 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1042 end = -EAGAIN;
1043
1044 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1045 * gone. */
1046 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1047 if (ret)
1048 end = ret;
1049 } while (end == 0 && wait_forever);
1050
1051 getrawmonotonic(&now);
1052
1053 ring->irq_put(ring);
1054 trace_i915_gem_request_wait_end(ring, seqno);
1055 #undef EXIT_COND
1056
1057 if (timeout) {
1058 struct timespec sleep_time = timespec_sub(now, before);
1059 *timeout = timespec_sub(*timeout, sleep_time);
1060 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1061 set_normalized_timespec(timeout, 0, 0);
1062 }
1063
1064 switch (end) {
1065 case -EIO:
1066 case -EAGAIN: /* Wedged */
1067 case -ERESTARTSYS: /* Signal */
1068 return (int)end;
1069 case 0: /* Timeout */
1070 return -ETIME;
1071 default: /* Completed */
1072 WARN_ON(end < 0); /* We're not aware of other errors */
1073 return 0;
1074 }
1075 }
1076
1077 /**
1078 * Waits for a sequence number to be signaled, and cleans up the
1079 * request and object lists appropriately for that event.
1080 */
1081 int
1082 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1083 {
1084 struct drm_device *dev = ring->dev;
1085 struct drm_i915_private *dev_priv = dev->dev_private;
1086 bool interruptible = dev_priv->mm.interruptible;
1087 int ret;
1088
1089 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1090 BUG_ON(seqno == 0);
1091
1092 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1093 if (ret)
1094 return ret;
1095
1096 ret = i915_gem_check_olr(ring, seqno);
1097 if (ret)
1098 return ret;
1099
1100 return __wait_seqno(ring, seqno,
1101 atomic_read(&dev_priv->gpu_error.reset_counter),
1102 interruptible, NULL);
1103 }
1104
1105 static int
1106 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1107 struct intel_ring_buffer *ring)
1108 {
1109 i915_gem_retire_requests_ring(ring);
1110
1111 /* Manually manage the write flush as we may have not yet
1112 * retired the buffer.
1113 *
1114 * Note that the last_write_seqno is always the earlier of
1115 * the two (read/write) seqno, so if we haved successfully waited,
1116 * we know we have passed the last write.
1117 */
1118 obj->last_write_seqno = 0;
1119 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1120
1121 return 0;
1122 }
1123
1124 /**
1125 * Ensures that all rendering to the object has completed and the object is
1126 * safe to unbind from the GTT or access from the CPU.
1127 */
1128 static __must_check int
1129 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1130 bool readonly)
1131 {
1132 struct intel_ring_buffer *ring = obj->ring;
1133 u32 seqno;
1134 int ret;
1135
1136 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1137 if (seqno == 0)
1138 return 0;
1139
1140 ret = i915_wait_seqno(ring, seqno);
1141 if (ret)
1142 return ret;
1143
1144 return i915_gem_object_wait_rendering__tail(obj, ring);
1145 }
1146
1147 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1148 * as the object state may change during this call.
1149 */
1150 static __must_check int
1151 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1152 bool readonly)
1153 {
1154 struct drm_device *dev = obj->base.dev;
1155 struct drm_i915_private *dev_priv = dev->dev_private;
1156 struct intel_ring_buffer *ring = obj->ring;
1157 unsigned reset_counter;
1158 u32 seqno;
1159 int ret;
1160
1161 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1162 BUG_ON(!dev_priv->mm.interruptible);
1163
1164 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1165 if (seqno == 0)
1166 return 0;
1167
1168 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1169 if (ret)
1170 return ret;
1171
1172 ret = i915_gem_check_olr(ring, seqno);
1173 if (ret)
1174 return ret;
1175
1176 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1177 mutex_unlock(&dev->struct_mutex);
1178 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1179 mutex_lock(&dev->struct_mutex);
1180 if (ret)
1181 return ret;
1182
1183 return i915_gem_object_wait_rendering__tail(obj, ring);
1184 }
1185
1186 /**
1187 * Called when user space prepares to use an object with the CPU, either
1188 * through the mmap ioctl's mapping or a GTT mapping.
1189 */
1190 int
1191 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1192 struct drm_file *file)
1193 {
1194 struct drm_i915_gem_set_domain *args = data;
1195 struct drm_i915_gem_object *obj;
1196 uint32_t read_domains = args->read_domains;
1197 uint32_t write_domain = args->write_domain;
1198 int ret;
1199
1200 /* Only handle setting domains to types used by the CPU. */
1201 if (write_domain & I915_GEM_GPU_DOMAINS)
1202 return -EINVAL;
1203
1204 if (read_domains & I915_GEM_GPU_DOMAINS)
1205 return -EINVAL;
1206
1207 /* Having something in the write domain implies it's in the read
1208 * domain, and only that read domain. Enforce that in the request.
1209 */
1210 if (write_domain != 0 && read_domains != write_domain)
1211 return -EINVAL;
1212
1213 ret = i915_mutex_lock_interruptible(dev);
1214 if (ret)
1215 return ret;
1216
1217 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1218 if (&obj->base == NULL) {
1219 ret = -ENOENT;
1220 goto unlock;
1221 }
1222
1223 /* Try to flush the object off the GPU without holding the lock.
1224 * We will repeat the flush holding the lock in the normal manner
1225 * to catch cases where we are gazumped.
1226 */
1227 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1228 if (ret)
1229 goto unref;
1230
1231 if (read_domains & I915_GEM_DOMAIN_GTT) {
1232 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1233
1234 /* Silently promote "you're not bound, there was nothing to do"
1235 * to success, since the client was just asking us to
1236 * make sure everything was done.
1237 */
1238 if (ret == -EINVAL)
1239 ret = 0;
1240 } else {
1241 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1242 }
1243
1244 unref:
1245 drm_gem_object_unreference(&obj->base);
1246 unlock:
1247 mutex_unlock(&dev->struct_mutex);
1248 return ret;
1249 }
1250
1251 /**
1252 * Called when user space has done writes to this buffer
1253 */
1254 int
1255 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1256 struct drm_file *file)
1257 {
1258 struct drm_i915_gem_sw_finish *args = data;
1259 struct drm_i915_gem_object *obj;
1260 int ret = 0;
1261
1262 ret = i915_mutex_lock_interruptible(dev);
1263 if (ret)
1264 return ret;
1265
1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267 if (&obj->base == NULL) {
1268 ret = -ENOENT;
1269 goto unlock;
1270 }
1271
1272 /* Pinned buffers may be scanout, so flush the cache */
1273 if (obj->pin_display)
1274 i915_gem_object_flush_cpu_write_domain(obj, true);
1275
1276 drm_gem_object_unreference(&obj->base);
1277 unlock:
1278 mutex_unlock(&dev->struct_mutex);
1279 return ret;
1280 }
1281
1282 /**
1283 * Maps the contents of an object, returning the address it is mapped
1284 * into.
1285 *
1286 * While the mapping holds a reference on the contents of the object, it doesn't
1287 * imply a ref on the object itself.
1288 */
1289 int
1290 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1291 struct drm_file *file)
1292 {
1293 struct drm_i915_gem_mmap *args = data;
1294 struct drm_gem_object *obj;
1295 unsigned long addr;
1296
1297 obj = drm_gem_object_lookup(dev, file, args->handle);
1298 if (obj == NULL)
1299 return -ENOENT;
1300
1301 /* prime objects have no backing filp to GEM mmap
1302 * pages from.
1303 */
1304 if (!obj->filp) {
1305 drm_gem_object_unreference_unlocked(obj);
1306 return -EINVAL;
1307 }
1308
1309 addr = vm_mmap(obj->filp, 0, args->size,
1310 PROT_READ | PROT_WRITE, MAP_SHARED,
1311 args->offset);
1312 drm_gem_object_unreference_unlocked(obj);
1313 if (IS_ERR((void *)addr))
1314 return addr;
1315
1316 args->addr_ptr = (uint64_t) addr;
1317
1318 return 0;
1319 }
1320
1321 /**
1322 * i915_gem_fault - fault a page into the GTT
1323 * vma: VMA in question
1324 * vmf: fault info
1325 *
1326 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1327 * from userspace. The fault handler takes care of binding the object to
1328 * the GTT (if needed), allocating and programming a fence register (again,
1329 * only if needed based on whether the old reg is still valid or the object
1330 * is tiled) and inserting a new PTE into the faulting process.
1331 *
1332 * Note that the faulting process may involve evicting existing objects
1333 * from the GTT and/or fence registers to make room. So performance may
1334 * suffer if the GTT working set is large or there are few fence registers
1335 * left.
1336 */
1337 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1338 {
1339 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1340 struct drm_device *dev = obj->base.dev;
1341 drm_i915_private_t *dev_priv = dev->dev_private;
1342 pgoff_t page_offset;
1343 unsigned long pfn;
1344 int ret = 0;
1345 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1346
1347 /* We don't use vmf->pgoff since that has the fake offset */
1348 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1349 PAGE_SHIFT;
1350
1351 ret = i915_mutex_lock_interruptible(dev);
1352 if (ret)
1353 goto out;
1354
1355 trace_i915_gem_object_fault(obj, page_offset, true, write);
1356
1357 /* Access to snoopable pages through the GTT is incoherent. */
1358 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1359 ret = -EINVAL;
1360 goto unlock;
1361 }
1362
1363 /* Now bind it into the GTT if needed */
1364 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1365 if (ret)
1366 goto unlock;
1367
1368 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1369 if (ret)
1370 goto unpin;
1371
1372 ret = i915_gem_object_get_fence(obj);
1373 if (ret)
1374 goto unpin;
1375
1376 obj->fault_mappable = true;
1377
1378 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1379 pfn >>= PAGE_SHIFT;
1380 pfn += page_offset;
1381
1382 /* Finally, remap it using the new GTT offset */
1383 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1384 unpin:
1385 i915_gem_object_unpin(obj);
1386 unlock:
1387 mutex_unlock(&dev->struct_mutex);
1388 out:
1389 switch (ret) {
1390 case -EIO:
1391 /* If this -EIO is due to a gpu hang, give the reset code a
1392 * chance to clean up the mess. Otherwise return the proper
1393 * SIGBUS. */
1394 if (i915_terminally_wedged(&dev_priv->gpu_error))
1395 return VM_FAULT_SIGBUS;
1396 case -EAGAIN:
1397 /* Give the error handler a chance to run and move the
1398 * objects off the GPU active list. Next time we service the
1399 * fault, we should be able to transition the page into the
1400 * GTT without touching the GPU (and so avoid further
1401 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1402 * with coherency, just lost writes.
1403 */
1404 set_need_resched();
1405 case 0:
1406 case -ERESTARTSYS:
1407 case -EINTR:
1408 case -EBUSY:
1409 /*
1410 * EBUSY is ok: this just means that another thread
1411 * already did the job.
1412 */
1413 return VM_FAULT_NOPAGE;
1414 case -ENOMEM:
1415 return VM_FAULT_OOM;
1416 case -ENOSPC:
1417 return VM_FAULT_SIGBUS;
1418 default:
1419 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1420 return VM_FAULT_SIGBUS;
1421 }
1422 }
1423
1424 /**
1425 * i915_gem_release_mmap - remove physical page mappings
1426 * @obj: obj in question
1427 *
1428 * Preserve the reservation of the mmapping with the DRM core code, but
1429 * relinquish ownership of the pages back to the system.
1430 *
1431 * It is vital that we remove the page mapping if we have mapped a tiled
1432 * object through the GTT and then lose the fence register due to
1433 * resource pressure. Similarly if the object has been moved out of the
1434 * aperture, than pages mapped into userspace must be revoked. Removing the
1435 * mapping will then trigger a page fault on the next user access, allowing
1436 * fixup by i915_gem_fault().
1437 */
1438 void
1439 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1440 {
1441 if (!obj->fault_mappable)
1442 return;
1443
1444 if (obj->base.dev->dev_mapping)
1445 unmap_mapping_range(obj->base.dev->dev_mapping,
1446 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1447 obj->base.size, 1);
1448
1449 obj->fault_mappable = false;
1450 }
1451
1452 uint32_t
1453 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1454 {
1455 uint32_t gtt_size;
1456
1457 if (INTEL_INFO(dev)->gen >= 4 ||
1458 tiling_mode == I915_TILING_NONE)
1459 return size;
1460
1461 /* Previous chips need a power-of-two fence region when tiling */
1462 if (INTEL_INFO(dev)->gen == 3)
1463 gtt_size = 1024*1024;
1464 else
1465 gtt_size = 512*1024;
1466
1467 while (gtt_size < size)
1468 gtt_size <<= 1;
1469
1470 return gtt_size;
1471 }
1472
1473 /**
1474 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1475 * @obj: object to check
1476 *
1477 * Return the required GTT alignment for an object, taking into account
1478 * potential fence register mapping.
1479 */
1480 uint32_t
1481 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1482 int tiling_mode, bool fenced)
1483 {
1484 /*
1485 * Minimum alignment is 4k (GTT page size), but might be greater
1486 * if a fence register is needed for the object.
1487 */
1488 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1489 tiling_mode == I915_TILING_NONE)
1490 return 4096;
1491
1492 /*
1493 * Previous chips need to be aligned to the size of the smallest
1494 * fence register that can contain the object.
1495 */
1496 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1497 }
1498
1499 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1500 {
1501 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1502 int ret;
1503
1504 if (obj->base.map_list.map)
1505 return 0;
1506
1507 dev_priv->mm.shrinker_no_lock_stealing = true;
1508
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
1511 goto out;
1512
1513 /* Badly fragmented mmap space? The only way we can recover
1514 * space is by destroying unwanted objects. We can't randomly release
1515 * mmap_offsets as userspace expects them to be persistent for the
1516 * lifetime of the objects. The closest we can is to release the
1517 * offsets on purgeable objects by truncating it and marking it purged,
1518 * which prevents userspace from ever using that object again.
1519 */
1520 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1521 ret = drm_gem_create_mmap_offset(&obj->base);
1522 if (ret != -ENOSPC)
1523 goto out;
1524
1525 i915_gem_shrink_all(dev_priv);
1526 ret = drm_gem_create_mmap_offset(&obj->base);
1527 out:
1528 dev_priv->mm.shrinker_no_lock_stealing = false;
1529
1530 return ret;
1531 }
1532
1533 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1534 {
1535 if (!obj->base.map_list.map)
1536 return;
1537
1538 drm_gem_free_mmap_offset(&obj->base);
1539 }
1540
1541 int
1542 i915_gem_mmap_gtt(struct drm_file *file,
1543 struct drm_device *dev,
1544 uint32_t handle,
1545 uint64_t *offset)
1546 {
1547 struct drm_i915_private *dev_priv = dev->dev_private;
1548 struct drm_i915_gem_object *obj;
1549 int ret;
1550
1551 ret = i915_mutex_lock_interruptible(dev);
1552 if (ret)
1553 return ret;
1554
1555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1556 if (&obj->base == NULL) {
1557 ret = -ENOENT;
1558 goto unlock;
1559 }
1560
1561 if (obj->base.size > dev_priv->gtt.mappable_end) {
1562 ret = -E2BIG;
1563 goto out;
1564 }
1565
1566 if (obj->madv != I915_MADV_WILLNEED) {
1567 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1568 ret = -EINVAL;
1569 goto out;
1570 }
1571
1572 ret = i915_gem_object_create_mmap_offset(obj);
1573 if (ret)
1574 goto out;
1575
1576 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1577
1578 out:
1579 drm_gem_object_unreference(&obj->base);
1580 unlock:
1581 mutex_unlock(&dev->struct_mutex);
1582 return ret;
1583 }
1584
1585 /**
1586 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1587 * @dev: DRM device
1588 * @data: GTT mapping ioctl data
1589 * @file: GEM object info
1590 *
1591 * Simply returns the fake offset to userspace so it can mmap it.
1592 * The mmap call will end up in drm_gem_mmap(), which will set things
1593 * up so we can get faults in the handler above.
1594 *
1595 * The fault handler will take care of binding the object into the GTT
1596 * (since it may have been evicted to make room for something), allocating
1597 * a fence register, and mapping the appropriate aperture address into
1598 * userspace.
1599 */
1600 int
1601 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1602 struct drm_file *file)
1603 {
1604 struct drm_i915_gem_mmap_gtt *args = data;
1605
1606 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1607 }
1608
1609 /* Immediately discard the backing storage */
1610 static void
1611 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1612 {
1613 struct inode *inode;
1614
1615 i915_gem_object_free_mmap_offset(obj);
1616
1617 if (obj->base.filp == NULL)
1618 return;
1619
1620 /* Our goal here is to return as much of the memory as
1621 * is possible back to the system as we are called from OOM.
1622 * To do this we must instruct the shmfs to drop all of its
1623 * backing pages, *now*.
1624 */
1625 inode = file_inode(obj->base.filp);
1626 shmem_truncate_range(inode, 0, (loff_t)-1);
1627
1628 obj->madv = __I915_MADV_PURGED;
1629 }
1630
1631 static inline int
1632 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1633 {
1634 return obj->madv == I915_MADV_DONTNEED;
1635 }
1636
1637 static void
1638 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1639 {
1640 struct sg_page_iter sg_iter;
1641 int ret;
1642
1643 BUG_ON(obj->madv == __I915_MADV_PURGED);
1644
1645 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1646 if (ret) {
1647 /* In the event of a disaster, abandon all caches and
1648 * hope for the best.
1649 */
1650 WARN_ON(ret != -EIO);
1651 i915_gem_clflush_object(obj, true);
1652 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1653 }
1654
1655 if (i915_gem_object_needs_bit17_swizzle(obj))
1656 i915_gem_object_save_bit_17_swizzle(obj);
1657
1658 if (obj->madv == I915_MADV_DONTNEED)
1659 obj->dirty = 0;
1660
1661 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1662 struct page *page = sg_page_iter_page(&sg_iter);
1663
1664 if (obj->dirty)
1665 set_page_dirty(page);
1666
1667 if (obj->madv == I915_MADV_WILLNEED)
1668 mark_page_accessed(page);
1669
1670 page_cache_release(page);
1671 }
1672 obj->dirty = 0;
1673
1674 sg_free_table(obj->pages);
1675 kfree(obj->pages);
1676 }
1677
1678 int
1679 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1680 {
1681 const struct drm_i915_gem_object_ops *ops = obj->ops;
1682
1683 if (obj->pages == NULL)
1684 return 0;
1685
1686 if (obj->pages_pin_count)
1687 return -EBUSY;
1688
1689 BUG_ON(i915_gem_obj_bound_any(obj));
1690
1691 /* ->put_pages might need to allocate memory for the bit17 swizzle
1692 * array, hence protect them from being reaped by removing them from gtt
1693 * lists early. */
1694 list_del(&obj->global_list);
1695
1696 ops->put_pages(obj);
1697 obj->pages = NULL;
1698
1699 if (i915_gem_object_is_purgeable(obj))
1700 i915_gem_object_truncate(obj);
1701
1702 return 0;
1703 }
1704
1705 static long
1706 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1707 bool purgeable_only)
1708 {
1709 struct drm_i915_gem_object *obj, *next;
1710 long count = 0;
1711
1712 list_for_each_entry_safe(obj, next,
1713 &dev_priv->mm.unbound_list,
1714 global_list) {
1715 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1716 i915_gem_object_put_pages(obj) == 0) {
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 list_for_each_entry_safe(obj, next, &dev_priv->mm.bound_list,
1724 global_list) {
1725 struct i915_vma *vma, *v;
1726
1727 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1728 continue;
1729
1730 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1731 if (i915_vma_unbind(vma))
1732 break;
1733
1734 if (!i915_gem_object_put_pages(obj)) {
1735 count += obj->base.size >> PAGE_SHIFT;
1736 if (count >= target)
1737 return count;
1738 }
1739 }
1740
1741 return count;
1742 }
1743
1744 static long
1745 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1746 {
1747 return __i915_gem_shrink(dev_priv, target, true);
1748 }
1749
1750 static void
1751 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1752 {
1753 struct drm_i915_gem_object *obj, *next;
1754
1755 i915_gem_evict_everything(dev_priv->dev);
1756
1757 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1758 global_list)
1759 i915_gem_object_put_pages(obj);
1760 }
1761
1762 static int
1763 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1764 {
1765 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1766 int page_count, i;
1767 struct address_space *mapping;
1768 struct sg_table *st;
1769 struct scatterlist *sg;
1770 struct sg_page_iter sg_iter;
1771 struct page *page;
1772 unsigned long last_pfn = 0; /* suppress gcc warning */
1773 gfp_t gfp;
1774
1775 /* Assert that the object is not currently in any GPU domain. As it
1776 * wasn't in the GTT, there shouldn't be any way it could have been in
1777 * a GPU cache
1778 */
1779 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1780 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1781
1782 st = kmalloc(sizeof(*st), GFP_KERNEL);
1783 if (st == NULL)
1784 return -ENOMEM;
1785
1786 page_count = obj->base.size / PAGE_SIZE;
1787 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1788 sg_free_table(st);
1789 kfree(st);
1790 return -ENOMEM;
1791 }
1792
1793 /* Get the list of pages out of our struct file. They'll be pinned
1794 * at this point until we release them.
1795 *
1796 * Fail silently without starting the shrinker
1797 */
1798 mapping = file_inode(obj->base.filp)->i_mapping;
1799 gfp = mapping_gfp_mask(mapping);
1800 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1801 gfp &= ~(__GFP_IO | __GFP_WAIT);
1802 sg = st->sgl;
1803 st->nents = 0;
1804 for (i = 0; i < page_count; i++) {
1805 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806 if (IS_ERR(page)) {
1807 i915_gem_purge(dev_priv, page_count);
1808 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 }
1810 if (IS_ERR(page)) {
1811 /* We've tried hard to allocate the memory by reaping
1812 * our own buffer, now let the real VM do its job and
1813 * go down in flames if truly OOM.
1814 */
1815 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1816 gfp |= __GFP_IO | __GFP_WAIT;
1817
1818 i915_gem_shrink_all(dev_priv);
1819 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1820 if (IS_ERR(page))
1821 goto err_pages;
1822
1823 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1824 gfp &= ~(__GFP_IO | __GFP_WAIT);
1825 }
1826 #ifdef CONFIG_SWIOTLB
1827 if (swiotlb_nr_tbl()) {
1828 st->nents++;
1829 sg_set_page(sg, page, PAGE_SIZE, 0);
1830 sg = sg_next(sg);
1831 continue;
1832 }
1833 #endif
1834 if (!i || page_to_pfn(page) != last_pfn + 1) {
1835 if (i)
1836 sg = sg_next(sg);
1837 st->nents++;
1838 sg_set_page(sg, page, PAGE_SIZE, 0);
1839 } else {
1840 sg->length += PAGE_SIZE;
1841 }
1842 last_pfn = page_to_pfn(page);
1843 }
1844 #ifdef CONFIG_SWIOTLB
1845 if (!swiotlb_nr_tbl())
1846 #endif
1847 sg_mark_end(sg);
1848 obj->pages = st;
1849
1850 if (i915_gem_object_needs_bit17_swizzle(obj))
1851 i915_gem_object_do_bit_17_swizzle(obj);
1852
1853 return 0;
1854
1855 err_pages:
1856 sg_mark_end(sg);
1857 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1858 page_cache_release(sg_page_iter_page(&sg_iter));
1859 sg_free_table(st);
1860 kfree(st);
1861 return PTR_ERR(page);
1862 }
1863
1864 /* Ensure that the associated pages are gathered from the backing storage
1865 * and pinned into our object. i915_gem_object_get_pages() may be called
1866 * multiple times before they are released by a single call to
1867 * i915_gem_object_put_pages() - once the pages are no longer referenced
1868 * either as a result of memory pressure (reaping pages under the shrinker)
1869 * or as the object is itself released.
1870 */
1871 int
1872 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1873 {
1874 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1875 const struct drm_i915_gem_object_ops *ops = obj->ops;
1876 int ret;
1877
1878 if (obj->pages)
1879 return 0;
1880
1881 if (obj->madv != I915_MADV_WILLNEED) {
1882 DRM_ERROR("Attempting to obtain a purgeable object\n");
1883 return -EINVAL;
1884 }
1885
1886 BUG_ON(obj->pages_pin_count);
1887
1888 ret = ops->get_pages(obj);
1889 if (ret)
1890 return ret;
1891
1892 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1893 return 0;
1894 }
1895
1896 void
1897 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1898 struct intel_ring_buffer *ring)
1899 {
1900 struct drm_device *dev = obj->base.dev;
1901 struct drm_i915_private *dev_priv = dev->dev_private;
1902 u32 seqno = intel_ring_get_seqno(ring);
1903
1904 BUG_ON(ring == NULL);
1905 if (obj->ring != ring && obj->last_write_seqno) {
1906 /* Keep the seqno relative to the current ring */
1907 obj->last_write_seqno = seqno;
1908 }
1909 obj->ring = ring;
1910
1911 /* Add a reference if we're newly entering the active list. */
1912 if (!obj->active) {
1913 drm_gem_object_reference(&obj->base);
1914 obj->active = 1;
1915 }
1916
1917 list_move_tail(&obj->ring_list, &ring->active_list);
1918
1919 obj->last_read_seqno = seqno;
1920
1921 if (obj->fenced_gpu_access) {
1922 obj->last_fenced_seqno = seqno;
1923
1924 /* Bump MRU to take account of the delayed flush */
1925 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1926 struct drm_i915_fence_reg *reg;
1927
1928 reg = &dev_priv->fence_regs[obj->fence_reg];
1929 list_move_tail(&reg->lru_list,
1930 &dev_priv->mm.fence_list);
1931 }
1932 }
1933 }
1934
1935 static void
1936 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1937 {
1938 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1939 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1940 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1941
1942 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1943 BUG_ON(!obj->active);
1944
1945 list_move_tail(&vma->mm_list, &ggtt_vm->inactive_list);
1946
1947 list_del_init(&obj->ring_list);
1948 obj->ring = NULL;
1949
1950 obj->last_read_seqno = 0;
1951 obj->last_write_seqno = 0;
1952 obj->base.write_domain = 0;
1953
1954 obj->last_fenced_seqno = 0;
1955 obj->fenced_gpu_access = false;
1956
1957 obj->active = 0;
1958 drm_gem_object_unreference(&obj->base);
1959
1960 WARN_ON(i915_verify_lists(dev));
1961 }
1962
1963 static int
1964 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966 struct drm_i915_private *dev_priv = dev->dev_private;
1967 struct intel_ring_buffer *ring;
1968 int ret, i, j;
1969
1970 /* Carefully retire all requests without writing to the rings */
1971 for_each_ring(ring, dev_priv, i) {
1972 ret = intel_ring_idle(ring);
1973 if (ret)
1974 return ret;
1975 }
1976 i915_gem_retire_requests(dev);
1977
1978 /* Finally reset hw state */
1979 for_each_ring(ring, dev_priv, i) {
1980 intel_ring_init_seqno(ring, seqno);
1981
1982 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1983 ring->sync_seqno[j] = 0;
1984 }
1985
1986 return 0;
1987 }
1988
1989 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1990 {
1991 struct drm_i915_private *dev_priv = dev->dev_private;
1992 int ret;
1993
1994 if (seqno == 0)
1995 return -EINVAL;
1996
1997 /* HWS page needs to be set less than what we
1998 * will inject to ring
1999 */
2000 ret = i915_gem_init_seqno(dev, seqno - 1);
2001 if (ret)
2002 return ret;
2003
2004 /* Carefully set the last_seqno value so that wrap
2005 * detection still works
2006 */
2007 dev_priv->next_seqno = seqno;
2008 dev_priv->last_seqno = seqno - 1;
2009 if (dev_priv->last_seqno == 0)
2010 dev_priv->last_seqno--;
2011
2012 return 0;
2013 }
2014
2015 int
2016 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2017 {
2018 struct drm_i915_private *dev_priv = dev->dev_private;
2019
2020 /* reserve 0 for non-seqno */
2021 if (dev_priv->next_seqno == 0) {
2022 int ret = i915_gem_init_seqno(dev, 0);
2023 if (ret)
2024 return ret;
2025
2026 dev_priv->next_seqno = 1;
2027 }
2028
2029 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2030 return 0;
2031 }
2032
2033 int __i915_add_request(struct intel_ring_buffer *ring,
2034 struct drm_file *file,
2035 struct drm_i915_gem_object *obj,
2036 u32 *out_seqno)
2037 {
2038 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2039 struct drm_i915_gem_request *request;
2040 u32 request_ring_position, request_start;
2041 int was_empty;
2042 int ret;
2043
2044 request_start = intel_ring_get_tail(ring);
2045 /*
2046 * Emit any outstanding flushes - execbuf can fail to emit the flush
2047 * after having emitted the batchbuffer command. Hence we need to fix
2048 * things up similar to emitting the lazy request. The difference here
2049 * is that the flush _must_ happen before the next request, no matter
2050 * what.
2051 */
2052 ret = intel_ring_flush_all_caches(ring);
2053 if (ret)
2054 return ret;
2055
2056 request = kmalloc(sizeof(*request), GFP_KERNEL);
2057 if (request == NULL)
2058 return -ENOMEM;
2059
2060
2061 /* Record the position of the start of the request so that
2062 * should we detect the updated seqno part-way through the
2063 * GPU processing the request, we never over-estimate the
2064 * position of the head.
2065 */
2066 request_ring_position = intel_ring_get_tail(ring);
2067
2068 ret = ring->add_request(ring);
2069 if (ret) {
2070 kfree(request);
2071 return ret;
2072 }
2073
2074 request->seqno = intel_ring_get_seqno(ring);
2075 request->ring = ring;
2076 request->head = request_start;
2077 request->tail = request_ring_position;
2078 request->ctx = ring->last_context;
2079 request->batch_obj = obj;
2080
2081 /* Whilst this request exists, batch_obj will be on the
2082 * active_list, and so will hold the active reference. Only when this
2083 * request is retired will the the batch_obj be moved onto the
2084 * inactive_list and lose its active reference. Hence we do not need
2085 * to explicitly hold another reference here.
2086 */
2087
2088 if (request->ctx)
2089 i915_gem_context_reference(request->ctx);
2090
2091 request->emitted_jiffies = jiffies;
2092 was_empty = list_empty(&ring->request_list);
2093 list_add_tail(&request->list, &ring->request_list);
2094 request->file_priv = NULL;
2095
2096 if (file) {
2097 struct drm_i915_file_private *file_priv = file->driver_priv;
2098
2099 spin_lock(&file_priv->mm.lock);
2100 request->file_priv = file_priv;
2101 list_add_tail(&request->client_list,
2102 &file_priv->mm.request_list);
2103 spin_unlock(&file_priv->mm.lock);
2104 }
2105
2106 trace_i915_gem_request_add(ring, request->seqno);
2107 ring->outstanding_lazy_request = 0;
2108
2109 if (!dev_priv->ums.mm_suspended) {
2110 i915_queue_hangcheck(ring->dev);
2111
2112 if (was_empty) {
2113 queue_delayed_work(dev_priv->wq,
2114 &dev_priv->mm.retire_work,
2115 round_jiffies_up_relative(HZ));
2116 intel_mark_busy(dev_priv->dev);
2117 }
2118 }
2119
2120 if (out_seqno)
2121 *out_seqno = request->seqno;
2122 return 0;
2123 }
2124
2125 static inline void
2126 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2127 {
2128 struct drm_i915_file_private *file_priv = request->file_priv;
2129
2130 if (!file_priv)
2131 return;
2132
2133 spin_lock(&file_priv->mm.lock);
2134 if (request->file_priv) {
2135 list_del(&request->client_list);
2136 request->file_priv = NULL;
2137 }
2138 spin_unlock(&file_priv->mm.lock);
2139 }
2140
2141 static bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj,
2142 struct i915_address_space *vm)
2143 {
2144 if (acthd >= i915_gem_obj_offset(obj, vm) &&
2145 acthd < i915_gem_obj_offset(obj, vm) + obj->base.size)
2146 return true;
2147
2148 return false;
2149 }
2150
2151 static bool i915_head_inside_request(const u32 acthd_unmasked,
2152 const u32 request_start,
2153 const u32 request_end)
2154 {
2155 const u32 acthd = acthd_unmasked & HEAD_ADDR;
2156
2157 if (request_start < request_end) {
2158 if (acthd >= request_start && acthd < request_end)
2159 return true;
2160 } else if (request_start > request_end) {
2161 if (acthd >= request_start || acthd < request_end)
2162 return true;
2163 }
2164
2165 return false;
2166 }
2167
2168 static struct i915_address_space *
2169 request_to_vm(struct drm_i915_gem_request *request)
2170 {
2171 struct drm_i915_private *dev_priv = request->ring->dev->dev_private;
2172 struct i915_address_space *vm;
2173
2174 vm = &dev_priv->gtt.base;
2175
2176 return vm;
2177 }
2178
2179 static bool i915_request_guilty(struct drm_i915_gem_request *request,
2180 const u32 acthd, bool *inside)
2181 {
2182 /* There is a possibility that unmasked head address
2183 * pointing inside the ring, matches the batch_obj address range.
2184 * However this is extremely unlikely.
2185 */
2186 if (request->batch_obj) {
2187 if (i915_head_inside_object(acthd, request->batch_obj,
2188 request_to_vm(request))) {
2189 *inside = true;
2190 return true;
2191 }
2192 }
2193
2194 if (i915_head_inside_request(acthd, request->head, request->tail)) {
2195 *inside = false;
2196 return true;
2197 }
2198
2199 return false;
2200 }
2201
2202 static void i915_set_reset_status(struct intel_ring_buffer *ring,
2203 struct drm_i915_gem_request *request,
2204 u32 acthd)
2205 {
2206 struct i915_ctx_hang_stats *hs = NULL;
2207 bool inside, guilty;
2208 unsigned long offset = 0;
2209
2210 /* Innocent until proven guilty */
2211 guilty = false;
2212
2213 if (request->batch_obj)
2214 offset = i915_gem_obj_offset(request->batch_obj,
2215 request_to_vm(request));
2216
2217 if (ring->hangcheck.action != HANGCHECK_WAIT &&
2218 i915_request_guilty(request, acthd, &inside)) {
2219 DRM_ERROR("%s hung %s bo (0x%lx ctx %d) at 0x%x\n",
2220 ring->name,
2221 inside ? "inside" : "flushing",
2222 offset,
2223 request->ctx ? request->ctx->id : 0,
2224 acthd);
2225
2226 guilty = true;
2227 }
2228
2229 /* If contexts are disabled or this is the default context, use
2230 * file_priv->reset_state
2231 */
2232 if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
2233 hs = &request->ctx->hang_stats;
2234 else if (request->file_priv)
2235 hs = &request->file_priv->hang_stats;
2236
2237 if (hs) {
2238 if (guilty)
2239 hs->batch_active++;
2240 else
2241 hs->batch_pending++;
2242 }
2243 }
2244
2245 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2246 {
2247 list_del(&request->list);
2248 i915_gem_request_remove_from_client(request);
2249
2250 if (request->ctx)
2251 i915_gem_context_unreference(request->ctx);
2252
2253 kfree(request);
2254 }
2255
2256 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2257 struct intel_ring_buffer *ring)
2258 {
2259 u32 completed_seqno;
2260 u32 acthd;
2261
2262 acthd = intel_ring_get_active_head(ring);
2263 completed_seqno = ring->get_seqno(ring, false);
2264
2265 while (!list_empty(&ring->request_list)) {
2266 struct drm_i915_gem_request *request;
2267
2268 request = list_first_entry(&ring->request_list,
2269 struct drm_i915_gem_request,
2270 list);
2271
2272 if (request->seqno > completed_seqno)
2273 i915_set_reset_status(ring, request, acthd);
2274
2275 i915_gem_free_request(request);
2276 }
2277
2278 while (!list_empty(&ring->active_list)) {
2279 struct drm_i915_gem_object *obj;
2280
2281 obj = list_first_entry(&ring->active_list,
2282 struct drm_i915_gem_object,
2283 ring_list);
2284
2285 i915_gem_object_move_to_inactive(obj);
2286 }
2287 }
2288
2289 void i915_gem_restore_fences(struct drm_device *dev)
2290 {
2291 struct drm_i915_private *dev_priv = dev->dev_private;
2292 int i;
2293
2294 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2295 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2296
2297 /*
2298 * Commit delayed tiling changes if we have an object still
2299 * attached to the fence, otherwise just clear the fence.
2300 */
2301 if (reg->obj) {
2302 i915_gem_object_update_fence(reg->obj, reg,
2303 reg->obj->tiling_mode);
2304 } else {
2305 i915_gem_write_fence(dev, i, NULL);
2306 }
2307 }
2308 }
2309
2310 void i915_gem_reset(struct drm_device *dev)
2311 {
2312 struct drm_i915_private *dev_priv = dev->dev_private;
2313 struct intel_ring_buffer *ring;
2314 int i;
2315
2316 for_each_ring(ring, dev_priv, i)
2317 i915_gem_reset_ring_lists(dev_priv, ring);
2318
2319 i915_gem_restore_fences(dev);
2320 }
2321
2322 /**
2323 * This function clears the request list as sequence numbers are passed.
2324 */
2325 void
2326 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2327 {
2328 uint32_t seqno;
2329
2330 if (list_empty(&ring->request_list))
2331 return;
2332
2333 WARN_ON(i915_verify_lists(ring->dev));
2334
2335 seqno = ring->get_seqno(ring, true);
2336
2337 while (!list_empty(&ring->request_list)) {
2338 struct drm_i915_gem_request *request;
2339
2340 request = list_first_entry(&ring->request_list,
2341 struct drm_i915_gem_request,
2342 list);
2343
2344 if (!i915_seqno_passed(seqno, request->seqno))
2345 break;
2346
2347 trace_i915_gem_request_retire(ring, request->seqno);
2348 /* We know the GPU must have read the request to have
2349 * sent us the seqno + interrupt, so use the position
2350 * of tail of the request to update the last known position
2351 * of the GPU head.
2352 */
2353 ring->last_retired_head = request->tail;
2354
2355 i915_gem_free_request(request);
2356 }
2357
2358 /* Move any buffers on the active list that are no longer referenced
2359 * by the ringbuffer to the flushing/inactive lists as appropriate.
2360 */
2361 while (!list_empty(&ring->active_list)) {
2362 struct drm_i915_gem_object *obj;
2363
2364 obj = list_first_entry(&ring->active_list,
2365 struct drm_i915_gem_object,
2366 ring_list);
2367
2368 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2369 break;
2370
2371 i915_gem_object_move_to_inactive(obj);
2372 }
2373
2374 if (unlikely(ring->trace_irq_seqno &&
2375 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2376 ring->irq_put(ring);
2377 ring->trace_irq_seqno = 0;
2378 }
2379
2380 WARN_ON(i915_verify_lists(ring->dev));
2381 }
2382
2383 void
2384 i915_gem_retire_requests(struct drm_device *dev)
2385 {
2386 drm_i915_private_t *dev_priv = dev->dev_private;
2387 struct intel_ring_buffer *ring;
2388 int i;
2389
2390 for_each_ring(ring, dev_priv, i)
2391 i915_gem_retire_requests_ring(ring);
2392 }
2393
2394 static void
2395 i915_gem_retire_work_handler(struct work_struct *work)
2396 {
2397 drm_i915_private_t *dev_priv;
2398 struct drm_device *dev;
2399 struct intel_ring_buffer *ring;
2400 bool idle;
2401 int i;
2402
2403 dev_priv = container_of(work, drm_i915_private_t,
2404 mm.retire_work.work);
2405 dev = dev_priv->dev;
2406
2407 /* Come back later if the device is busy... */
2408 if (!mutex_trylock(&dev->struct_mutex)) {
2409 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2410 round_jiffies_up_relative(HZ));
2411 return;
2412 }
2413
2414 i915_gem_retire_requests(dev);
2415
2416 /* Send a periodic flush down the ring so we don't hold onto GEM
2417 * objects indefinitely.
2418 */
2419 idle = true;
2420 for_each_ring(ring, dev_priv, i) {
2421 if (ring->gpu_caches_dirty)
2422 i915_add_request(ring, NULL);
2423
2424 idle &= list_empty(&ring->request_list);
2425 }
2426
2427 if (!dev_priv->ums.mm_suspended && !idle)
2428 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2429 round_jiffies_up_relative(HZ));
2430 if (idle)
2431 intel_mark_idle(dev);
2432
2433 mutex_unlock(&dev->struct_mutex);
2434 }
2435
2436 /**
2437 * Ensures that an object will eventually get non-busy by flushing any required
2438 * write domains, emitting any outstanding lazy request and retiring and
2439 * completed requests.
2440 */
2441 static int
2442 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2443 {
2444 int ret;
2445
2446 if (obj->active) {
2447 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2448 if (ret)
2449 return ret;
2450
2451 i915_gem_retire_requests_ring(obj->ring);
2452 }
2453
2454 return 0;
2455 }
2456
2457 /**
2458 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2459 * @DRM_IOCTL_ARGS: standard ioctl arguments
2460 *
2461 * Returns 0 if successful, else an error is returned with the remaining time in
2462 * the timeout parameter.
2463 * -ETIME: object is still busy after timeout
2464 * -ERESTARTSYS: signal interrupted the wait
2465 * -ENONENT: object doesn't exist
2466 * Also possible, but rare:
2467 * -EAGAIN: GPU wedged
2468 * -ENOMEM: damn
2469 * -ENODEV: Internal IRQ fail
2470 * -E?: The add request failed
2471 *
2472 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2473 * non-zero timeout parameter the wait ioctl will wait for the given number of
2474 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2475 * without holding struct_mutex the object may become re-busied before this
2476 * function completes. A similar but shorter * race condition exists in the busy
2477 * ioctl
2478 */
2479 int
2480 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2481 {
2482 drm_i915_private_t *dev_priv = dev->dev_private;
2483 struct drm_i915_gem_wait *args = data;
2484 struct drm_i915_gem_object *obj;
2485 struct intel_ring_buffer *ring = NULL;
2486 struct timespec timeout_stack, *timeout = NULL;
2487 unsigned reset_counter;
2488 u32 seqno = 0;
2489 int ret = 0;
2490
2491 if (args->timeout_ns >= 0) {
2492 timeout_stack = ns_to_timespec(args->timeout_ns);
2493 timeout = &timeout_stack;
2494 }
2495
2496 ret = i915_mutex_lock_interruptible(dev);
2497 if (ret)
2498 return ret;
2499
2500 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2501 if (&obj->base == NULL) {
2502 mutex_unlock(&dev->struct_mutex);
2503 return -ENOENT;
2504 }
2505
2506 /* Need to make sure the object gets inactive eventually. */
2507 ret = i915_gem_object_flush_active(obj);
2508 if (ret)
2509 goto out;
2510
2511 if (obj->active) {
2512 seqno = obj->last_read_seqno;
2513 ring = obj->ring;
2514 }
2515
2516 if (seqno == 0)
2517 goto out;
2518
2519 /* Do this after OLR check to make sure we make forward progress polling
2520 * on this IOCTL with a 0 timeout (like busy ioctl)
2521 */
2522 if (!args->timeout_ns) {
2523 ret = -ETIME;
2524 goto out;
2525 }
2526
2527 drm_gem_object_unreference(&obj->base);
2528 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2529 mutex_unlock(&dev->struct_mutex);
2530
2531 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2532 if (timeout)
2533 args->timeout_ns = timespec_to_ns(timeout);
2534 return ret;
2535
2536 out:
2537 drm_gem_object_unreference(&obj->base);
2538 mutex_unlock(&dev->struct_mutex);
2539 return ret;
2540 }
2541
2542 /**
2543 * i915_gem_object_sync - sync an object to a ring.
2544 *
2545 * @obj: object which may be in use on another ring.
2546 * @to: ring we wish to use the object on. May be NULL.
2547 *
2548 * This code is meant to abstract object synchronization with the GPU.
2549 * Calling with NULL implies synchronizing the object with the CPU
2550 * rather than a particular GPU ring.
2551 *
2552 * Returns 0 if successful, else propagates up the lower layer error.
2553 */
2554 int
2555 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2556 struct intel_ring_buffer *to)
2557 {
2558 struct intel_ring_buffer *from = obj->ring;
2559 u32 seqno;
2560 int ret, idx;
2561
2562 if (from == NULL || to == from)
2563 return 0;
2564
2565 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2566 return i915_gem_object_wait_rendering(obj, false);
2567
2568 idx = intel_ring_sync_index(from, to);
2569
2570 seqno = obj->last_read_seqno;
2571 if (seqno <= from->sync_seqno[idx])
2572 return 0;
2573
2574 ret = i915_gem_check_olr(obj->ring, seqno);
2575 if (ret)
2576 return ret;
2577
2578 ret = to->sync_to(to, from, seqno);
2579 if (!ret)
2580 /* We use last_read_seqno because sync_to()
2581 * might have just caused seqno wrap under
2582 * the radar.
2583 */
2584 from->sync_seqno[idx] = obj->last_read_seqno;
2585
2586 return ret;
2587 }
2588
2589 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2590 {
2591 u32 old_write_domain, old_read_domains;
2592
2593 /* Force a pagefault for domain tracking on next user access */
2594 i915_gem_release_mmap(obj);
2595
2596 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2597 return;
2598
2599 /* Wait for any direct GTT access to complete */
2600 mb();
2601
2602 old_read_domains = obj->base.read_domains;
2603 old_write_domain = obj->base.write_domain;
2604
2605 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2606 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2607
2608 trace_i915_gem_object_change_domain(obj,
2609 old_read_domains,
2610 old_write_domain);
2611 }
2612
2613 int i915_vma_unbind(struct i915_vma *vma)
2614 {
2615 struct drm_i915_gem_object *obj = vma->obj;
2616 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2617 int ret;
2618
2619 if (list_empty(&vma->vma_link))
2620 return 0;
2621
2622 if (!drm_mm_node_allocated(&vma->node))
2623 goto destroy;
2624
2625 if (obj->pin_count)
2626 return -EBUSY;
2627
2628 BUG_ON(obj->pages == NULL);
2629
2630 ret = i915_gem_object_finish_gpu(obj);
2631 if (ret)
2632 return ret;
2633 /* Continue on if we fail due to EIO, the GPU is hung so we
2634 * should be safe and we need to cleanup or else we might
2635 * cause memory corruption through use-after-free.
2636 */
2637
2638 i915_gem_object_finish_gtt(obj);
2639
2640 /* release the fence reg _after_ flushing */
2641 ret = i915_gem_object_put_fence(obj);
2642 if (ret)
2643 return ret;
2644
2645 trace_i915_vma_unbind(vma);
2646
2647 if (obj->has_global_gtt_mapping)
2648 i915_gem_gtt_unbind_object(obj);
2649 if (obj->has_aliasing_ppgtt_mapping) {
2650 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2651 obj->has_aliasing_ppgtt_mapping = 0;
2652 }
2653 i915_gem_gtt_finish_object(obj);
2654 i915_gem_object_unpin_pages(obj);
2655
2656 list_del(&vma->mm_list);
2657 /* Avoid an unnecessary call to unbind on rebind. */
2658 if (i915_is_ggtt(vma->vm))
2659 obj->map_and_fenceable = true;
2660
2661 drm_mm_remove_node(&vma->node);
2662
2663 destroy:
2664 i915_gem_vma_destroy(vma);
2665
2666 /* Since the unbound list is global, only move to that list if
2667 * no more VMAs exist.
2668 * NB: Until we have real VMAs there will only ever be one */
2669 WARN_ON(!list_empty(&obj->vma_list));
2670 if (list_empty(&obj->vma_list))
2671 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2672
2673 return 0;
2674 }
2675
2676 /**
2677 * Unbinds an object from the global GTT aperture.
2678 */
2679 int
2680 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2681 {
2682 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2683 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2684
2685 if (!i915_gem_obj_ggtt_bound(obj))
2686 return 0;
2687
2688 if (obj->pin_count)
2689 return -EBUSY;
2690
2691 BUG_ON(obj->pages == NULL);
2692
2693 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2694 }
2695
2696 int i915_gpu_idle(struct drm_device *dev)
2697 {
2698 drm_i915_private_t *dev_priv = dev->dev_private;
2699 struct intel_ring_buffer *ring;
2700 int ret, i;
2701
2702 /* Flush everything onto the inactive list. */
2703 for_each_ring(ring, dev_priv, i) {
2704 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2705 if (ret)
2706 return ret;
2707
2708 ret = intel_ring_idle(ring);
2709 if (ret)
2710 return ret;
2711 }
2712
2713 return 0;
2714 }
2715
2716 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2717 struct drm_i915_gem_object *obj)
2718 {
2719 drm_i915_private_t *dev_priv = dev->dev_private;
2720 int fence_reg;
2721 int fence_pitch_shift;
2722
2723 if (INTEL_INFO(dev)->gen >= 6) {
2724 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2725 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2726 } else {
2727 fence_reg = FENCE_REG_965_0;
2728 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2729 }
2730
2731 fence_reg += reg * 8;
2732
2733 /* To w/a incoherency with non-atomic 64-bit register updates,
2734 * we split the 64-bit update into two 32-bit writes. In order
2735 * for a partial fence not to be evaluated between writes, we
2736 * precede the update with write to turn off the fence register,
2737 * and only enable the fence as the last step.
2738 *
2739 * For extra levels of paranoia, we make sure each step lands
2740 * before applying the next step.
2741 */
2742 I915_WRITE(fence_reg, 0);
2743 POSTING_READ(fence_reg);
2744
2745 if (obj) {
2746 u32 size = i915_gem_obj_ggtt_size(obj);
2747 uint64_t val;
2748
2749 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2750 0xfffff000) << 32;
2751 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2752 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2753 if (obj->tiling_mode == I915_TILING_Y)
2754 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2755 val |= I965_FENCE_REG_VALID;
2756
2757 I915_WRITE(fence_reg + 4, val >> 32);
2758 POSTING_READ(fence_reg + 4);
2759
2760 I915_WRITE(fence_reg + 0, val);
2761 POSTING_READ(fence_reg);
2762 } else {
2763 I915_WRITE(fence_reg + 4, 0);
2764 POSTING_READ(fence_reg + 4);
2765 }
2766 }
2767
2768 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2769 struct drm_i915_gem_object *obj)
2770 {
2771 drm_i915_private_t *dev_priv = dev->dev_private;
2772 u32 val;
2773
2774 if (obj) {
2775 u32 size = i915_gem_obj_ggtt_size(obj);
2776 int pitch_val;
2777 int tile_width;
2778
2779 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2780 (size & -size) != size ||
2781 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2782 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2783 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2784
2785 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2786 tile_width = 128;
2787 else
2788 tile_width = 512;
2789
2790 /* Note: pitch better be a power of two tile widths */
2791 pitch_val = obj->stride / tile_width;
2792 pitch_val = ffs(pitch_val) - 1;
2793
2794 val = i915_gem_obj_ggtt_offset(obj);
2795 if (obj->tiling_mode == I915_TILING_Y)
2796 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2797 val |= I915_FENCE_SIZE_BITS(size);
2798 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2799 val |= I830_FENCE_REG_VALID;
2800 } else
2801 val = 0;
2802
2803 if (reg < 8)
2804 reg = FENCE_REG_830_0 + reg * 4;
2805 else
2806 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2807
2808 I915_WRITE(reg, val);
2809 POSTING_READ(reg);
2810 }
2811
2812 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2813 struct drm_i915_gem_object *obj)
2814 {
2815 drm_i915_private_t *dev_priv = dev->dev_private;
2816 uint32_t val;
2817
2818 if (obj) {
2819 u32 size = i915_gem_obj_ggtt_size(obj);
2820 uint32_t pitch_val;
2821
2822 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2823 (size & -size) != size ||
2824 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2825 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2826 i915_gem_obj_ggtt_offset(obj), size);
2827
2828 pitch_val = obj->stride / 128;
2829 pitch_val = ffs(pitch_val) - 1;
2830
2831 val = i915_gem_obj_ggtt_offset(obj);
2832 if (obj->tiling_mode == I915_TILING_Y)
2833 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2834 val |= I830_FENCE_SIZE_BITS(size);
2835 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2836 val |= I830_FENCE_REG_VALID;
2837 } else
2838 val = 0;
2839
2840 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2841 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2842 }
2843
2844 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2845 {
2846 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2847 }
2848
2849 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2850 struct drm_i915_gem_object *obj)
2851 {
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853
2854 /* Ensure that all CPU reads are completed before installing a fence
2855 * and all writes before removing the fence.
2856 */
2857 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2858 mb();
2859
2860 WARN(obj && (!obj->stride || !obj->tiling_mode),
2861 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2862 obj->stride, obj->tiling_mode);
2863
2864 switch (INTEL_INFO(dev)->gen) {
2865 case 7:
2866 case 6:
2867 case 5:
2868 case 4: i965_write_fence_reg(dev, reg, obj); break;
2869 case 3: i915_write_fence_reg(dev, reg, obj); break;
2870 case 2: i830_write_fence_reg(dev, reg, obj); break;
2871 default: BUG();
2872 }
2873
2874 /* And similarly be paranoid that no direct access to this region
2875 * is reordered to before the fence is installed.
2876 */
2877 if (i915_gem_object_needs_mb(obj))
2878 mb();
2879 }
2880
2881 static inline int fence_number(struct drm_i915_private *dev_priv,
2882 struct drm_i915_fence_reg *fence)
2883 {
2884 return fence - dev_priv->fence_regs;
2885 }
2886
2887 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2888 struct drm_i915_fence_reg *fence,
2889 bool enable)
2890 {
2891 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2892 int reg = fence_number(dev_priv, fence);
2893
2894 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2895
2896 if (enable) {
2897 obj->fence_reg = reg;
2898 fence->obj = obj;
2899 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2900 } else {
2901 obj->fence_reg = I915_FENCE_REG_NONE;
2902 fence->obj = NULL;
2903 list_del_init(&fence->lru_list);
2904 }
2905 obj->fence_dirty = false;
2906 }
2907
2908 static int
2909 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2910 {
2911 if (obj->last_fenced_seqno) {
2912 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2913 if (ret)
2914 return ret;
2915
2916 obj->last_fenced_seqno = 0;
2917 }
2918
2919 obj->fenced_gpu_access = false;
2920 return 0;
2921 }
2922
2923 int
2924 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2925 {
2926 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2927 struct drm_i915_fence_reg *fence;
2928 int ret;
2929
2930 ret = i915_gem_object_wait_fence(obj);
2931 if (ret)
2932 return ret;
2933
2934 if (obj->fence_reg == I915_FENCE_REG_NONE)
2935 return 0;
2936
2937 fence = &dev_priv->fence_regs[obj->fence_reg];
2938
2939 i915_gem_object_fence_lost(obj);
2940 i915_gem_object_update_fence(obj, fence, false);
2941
2942 return 0;
2943 }
2944
2945 static struct drm_i915_fence_reg *
2946 i915_find_fence_reg(struct drm_device *dev)
2947 {
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 struct drm_i915_fence_reg *reg, *avail;
2950 int i;
2951
2952 /* First try to find a free reg */
2953 avail = NULL;
2954 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2955 reg = &dev_priv->fence_regs[i];
2956 if (!reg->obj)
2957 return reg;
2958
2959 if (!reg->pin_count)
2960 avail = reg;
2961 }
2962
2963 if (avail == NULL)
2964 return NULL;
2965
2966 /* None available, try to steal one or wait for a user to finish */
2967 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2968 if (reg->pin_count)
2969 continue;
2970
2971 return reg;
2972 }
2973
2974 return NULL;
2975 }
2976
2977 /**
2978 * i915_gem_object_get_fence - set up fencing for an object
2979 * @obj: object to map through a fence reg
2980 *
2981 * When mapping objects through the GTT, userspace wants to be able to write
2982 * to them without having to worry about swizzling if the object is tiled.
2983 * This function walks the fence regs looking for a free one for @obj,
2984 * stealing one if it can't find any.
2985 *
2986 * It then sets up the reg based on the object's properties: address, pitch
2987 * and tiling format.
2988 *
2989 * For an untiled surface, this removes any existing fence.
2990 */
2991 int
2992 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2993 {
2994 struct drm_device *dev = obj->base.dev;
2995 struct drm_i915_private *dev_priv = dev->dev_private;
2996 bool enable = obj->tiling_mode != I915_TILING_NONE;
2997 struct drm_i915_fence_reg *reg;
2998 int ret;
2999
3000 /* Have we updated the tiling parameters upon the object and so
3001 * will need to serialise the write to the associated fence register?
3002 */
3003 if (obj->fence_dirty) {
3004 ret = i915_gem_object_wait_fence(obj);
3005 if (ret)
3006 return ret;
3007 }
3008
3009 /* Just update our place in the LRU if our fence is getting reused. */
3010 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3011 reg = &dev_priv->fence_regs[obj->fence_reg];
3012 if (!obj->fence_dirty) {
3013 list_move_tail(&reg->lru_list,
3014 &dev_priv->mm.fence_list);
3015 return 0;
3016 }
3017 } else if (enable) {
3018 reg = i915_find_fence_reg(dev);
3019 if (reg == NULL)
3020 return -EDEADLK;
3021
3022 if (reg->obj) {
3023 struct drm_i915_gem_object *old = reg->obj;
3024
3025 ret = i915_gem_object_wait_fence(old);
3026 if (ret)
3027 return ret;
3028
3029 i915_gem_object_fence_lost(old);
3030 }
3031 } else
3032 return 0;
3033
3034 i915_gem_object_update_fence(obj, reg, enable);
3035
3036 return 0;
3037 }
3038
3039 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3040 struct drm_mm_node *gtt_space,
3041 unsigned long cache_level)
3042 {
3043 struct drm_mm_node *other;
3044
3045 /* On non-LLC machines we have to be careful when putting differing
3046 * types of snoopable memory together to avoid the prefetcher
3047 * crossing memory domains and dying.
3048 */
3049 if (HAS_LLC(dev))
3050 return true;
3051
3052 if (!drm_mm_node_allocated(gtt_space))
3053 return true;
3054
3055 if (list_empty(&gtt_space->node_list))
3056 return true;
3057
3058 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3059 if (other->allocated && !other->hole_follows && other->color != cache_level)
3060 return false;
3061
3062 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3063 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3064 return false;
3065
3066 return true;
3067 }
3068
3069 static void i915_gem_verify_gtt(struct drm_device *dev)
3070 {
3071 #if WATCH_GTT
3072 struct drm_i915_private *dev_priv = dev->dev_private;
3073 struct drm_i915_gem_object *obj;
3074 int err = 0;
3075
3076 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3077 if (obj->gtt_space == NULL) {
3078 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3079 err++;
3080 continue;
3081 }
3082
3083 if (obj->cache_level != obj->gtt_space->color) {
3084 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3085 i915_gem_obj_ggtt_offset(obj),
3086 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3087 obj->cache_level,
3088 obj->gtt_space->color);
3089 err++;
3090 continue;
3091 }
3092
3093 if (!i915_gem_valid_gtt_space(dev,
3094 obj->gtt_space,
3095 obj->cache_level)) {
3096 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3097 i915_gem_obj_ggtt_offset(obj),
3098 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3099 obj->cache_level);
3100 err++;
3101 continue;
3102 }
3103 }
3104
3105 WARN_ON(err);
3106 #endif
3107 }
3108
3109 /**
3110 * Finds free space in the GTT aperture and binds the object there.
3111 */
3112 static int
3113 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3114 struct i915_address_space *vm,
3115 unsigned alignment,
3116 bool map_and_fenceable,
3117 bool nonblocking)
3118 {
3119 struct drm_device *dev = obj->base.dev;
3120 drm_i915_private_t *dev_priv = dev->dev_private;
3121 u32 size, fence_size, fence_alignment, unfenced_alignment;
3122 size_t gtt_max =
3123 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3124 struct i915_vma *vma;
3125 int ret;
3126
3127 if (WARN_ON(!list_empty(&obj->vma_list)))
3128 return -EBUSY;
3129
3130 fence_size = i915_gem_get_gtt_size(dev,
3131 obj->base.size,
3132 obj->tiling_mode);
3133 fence_alignment = i915_gem_get_gtt_alignment(dev,
3134 obj->base.size,
3135 obj->tiling_mode, true);
3136 unfenced_alignment =
3137 i915_gem_get_gtt_alignment(dev,
3138 obj->base.size,
3139 obj->tiling_mode, false);
3140
3141 if (alignment == 0)
3142 alignment = map_and_fenceable ? fence_alignment :
3143 unfenced_alignment;
3144 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3145 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3146 return -EINVAL;
3147 }
3148
3149 size = map_and_fenceable ? fence_size : obj->base.size;
3150
3151 /* If the object is bigger than the entire aperture, reject it early
3152 * before evicting everything in a vain attempt to find space.
3153 */
3154 if (obj->base.size > gtt_max) {
3155 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3156 obj->base.size,
3157 map_and_fenceable ? "mappable" : "total",
3158 gtt_max);
3159 return -E2BIG;
3160 }
3161
3162 ret = i915_gem_object_get_pages(obj);
3163 if (ret)
3164 return ret;
3165
3166 i915_gem_object_pin_pages(obj);
3167
3168 /* FIXME: For now we only ever use 1 VMA per object */
3169 BUG_ON(!i915_is_ggtt(vm));
3170 WARN_ON(!list_empty(&obj->vma_list));
3171
3172 vma = i915_gem_vma_create(obj, vm);
3173 if (IS_ERR(vma)) {
3174 ret = PTR_ERR(vma);
3175 goto err_unpin;
3176 }
3177
3178 search_free:
3179 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3180 size, alignment,
3181 obj->cache_level, 0, gtt_max);
3182 if (ret) {
3183 ret = i915_gem_evict_something(dev, vm, size, alignment,
3184 obj->cache_level,
3185 map_and_fenceable,
3186 nonblocking);
3187 if (ret == 0)
3188 goto search_free;
3189
3190 goto err_free_vma;
3191 }
3192 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3193 obj->cache_level))) {
3194 ret = -EINVAL;
3195 goto err_remove_node;
3196 }
3197
3198 ret = i915_gem_gtt_prepare_object(obj);
3199 if (ret)
3200 goto err_remove_node;
3201
3202 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3203 list_add_tail(&vma->mm_list, &vm->inactive_list);
3204
3205 if (i915_is_ggtt(vm)) {
3206 bool mappable, fenceable;
3207
3208 fenceable = (vma->node.size == fence_size &&
3209 (vma->node.start & (fence_alignment - 1)) == 0);
3210
3211 mappable = (vma->node.start + obj->base.size <=
3212 dev_priv->gtt.mappable_end);
3213
3214 obj->map_and_fenceable = mappable && fenceable;
3215 }
3216
3217 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3218
3219 trace_i915_vma_bind(vma, map_and_fenceable);
3220 i915_gem_verify_gtt(dev);
3221 return 0;
3222
3223 err_remove_node:
3224 drm_mm_remove_node(&vma->node);
3225 err_free_vma:
3226 i915_gem_vma_destroy(vma);
3227 err_unpin:
3228 i915_gem_object_unpin_pages(obj);
3229 return ret;
3230 }
3231
3232 bool
3233 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3234 bool force)
3235 {
3236 /* If we don't have a page list set up, then we're not pinned
3237 * to GPU, and we can ignore the cache flush because it'll happen
3238 * again at bind time.
3239 */
3240 if (obj->pages == NULL)
3241 return false;
3242
3243 /*
3244 * Stolen memory is always coherent with the GPU as it is explicitly
3245 * marked as wc by the system, or the system is cache-coherent.
3246 */
3247 if (obj->stolen)
3248 return false;
3249
3250 /* If the GPU is snooping the contents of the CPU cache,
3251 * we do not need to manually clear the CPU cache lines. However,
3252 * the caches are only snooped when the render cache is
3253 * flushed/invalidated. As we always have to emit invalidations
3254 * and flushes when moving into and out of the RENDER domain, correct
3255 * snooping behaviour occurs naturally as the result of our domain
3256 * tracking.
3257 */
3258 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3259 return false;
3260
3261 trace_i915_gem_object_clflush(obj);
3262 drm_clflush_sg(obj->pages);
3263
3264 return true;
3265 }
3266
3267 /** Flushes the GTT write domain for the object if it's dirty. */
3268 static void
3269 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3270 {
3271 uint32_t old_write_domain;
3272
3273 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3274 return;
3275
3276 /* No actual flushing is required for the GTT write domain. Writes
3277 * to it immediately go to main memory as far as we know, so there's
3278 * no chipset flush. It also doesn't land in render cache.
3279 *
3280 * However, we do have to enforce the order so that all writes through
3281 * the GTT land before any writes to the device, such as updates to
3282 * the GATT itself.
3283 */
3284 wmb();
3285
3286 old_write_domain = obj->base.write_domain;
3287 obj->base.write_domain = 0;
3288
3289 trace_i915_gem_object_change_domain(obj,
3290 obj->base.read_domains,
3291 old_write_domain);
3292 }
3293
3294 /** Flushes the CPU write domain for the object if it's dirty. */
3295 static void
3296 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3297 bool force)
3298 {
3299 uint32_t old_write_domain;
3300
3301 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3302 return;
3303
3304 if (i915_gem_clflush_object(obj, force))
3305 i915_gem_chipset_flush(obj->base.dev);
3306
3307 old_write_domain = obj->base.write_domain;
3308 obj->base.write_domain = 0;
3309
3310 trace_i915_gem_object_change_domain(obj,
3311 obj->base.read_domains,
3312 old_write_domain);
3313 }
3314
3315 /**
3316 * Moves a single object to the GTT read, and possibly write domain.
3317 *
3318 * This function returns when the move is complete, including waiting on
3319 * flushes to occur.
3320 */
3321 int
3322 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3323 {
3324 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3325 uint32_t old_write_domain, old_read_domains;
3326 int ret;
3327
3328 /* Not valid to be called on unbound objects. */
3329 if (!i915_gem_obj_bound_any(obj))
3330 return -EINVAL;
3331
3332 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3333 return 0;
3334
3335 ret = i915_gem_object_wait_rendering(obj, !write);
3336 if (ret)
3337 return ret;
3338
3339 i915_gem_object_flush_cpu_write_domain(obj, false);
3340
3341 /* Serialise direct access to this object with the barriers for
3342 * coherent writes from the GPU, by effectively invalidating the
3343 * GTT domain upon first access.
3344 */
3345 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3346 mb();
3347
3348 old_write_domain = obj->base.write_domain;
3349 old_read_domains = obj->base.read_domains;
3350
3351 /* It should now be out of any other write domains, and we can update
3352 * the domain values for our changes.
3353 */
3354 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3355 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3356 if (write) {
3357 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3358 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3359 obj->dirty = 1;
3360 }
3361
3362 trace_i915_gem_object_change_domain(obj,
3363 old_read_domains,
3364 old_write_domain);
3365
3366 /* And bump the LRU for this access */
3367 if (i915_gem_object_is_inactive(obj)) {
3368 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
3369 &dev_priv->gtt.base);
3370 if (vma)
3371 list_move_tail(&vma->mm_list,
3372 &dev_priv->gtt.base.inactive_list);
3373
3374 }
3375
3376 return 0;
3377 }
3378
3379 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3380 enum i915_cache_level cache_level)
3381 {
3382 struct drm_device *dev = obj->base.dev;
3383 drm_i915_private_t *dev_priv = dev->dev_private;
3384 struct i915_vma *vma;
3385 int ret;
3386
3387 if (obj->cache_level == cache_level)
3388 return 0;
3389
3390 if (obj->pin_count) {
3391 DRM_DEBUG("can not change the cache level of pinned objects\n");
3392 return -EBUSY;
3393 }
3394
3395 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3396 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3397 ret = i915_vma_unbind(vma);
3398 if (ret)
3399 return ret;
3400
3401 break;
3402 }
3403 }
3404
3405 if (i915_gem_obj_bound_any(obj)) {
3406 ret = i915_gem_object_finish_gpu(obj);
3407 if (ret)
3408 return ret;
3409
3410 i915_gem_object_finish_gtt(obj);
3411
3412 /* Before SandyBridge, you could not use tiling or fence
3413 * registers with snooped memory, so relinquish any fences
3414 * currently pointing to our region in the aperture.
3415 */
3416 if (INTEL_INFO(dev)->gen < 6) {
3417 ret = i915_gem_object_put_fence(obj);
3418 if (ret)
3419 return ret;
3420 }
3421
3422 if (obj->has_global_gtt_mapping)
3423 i915_gem_gtt_bind_object(obj, cache_level);
3424 if (obj->has_aliasing_ppgtt_mapping)
3425 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3426 obj, cache_level);
3427 }
3428
3429 list_for_each_entry(vma, &obj->vma_list, vma_link)
3430 vma->node.color = cache_level;
3431 obj->cache_level = cache_level;
3432
3433 if (cpu_write_needs_clflush(obj)) {
3434 u32 old_read_domains, old_write_domain;
3435
3436 /* If we're coming from LLC cached, then we haven't
3437 * actually been tracking whether the data is in the
3438 * CPU cache or not, since we only allow one bit set
3439 * in obj->write_domain and have been skipping the clflushes.
3440 * Just set it to the CPU cache for now.
3441 */
3442 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3443 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3444
3445 old_read_domains = obj->base.read_domains;
3446 old_write_domain = obj->base.write_domain;
3447
3448 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3449 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3450
3451 trace_i915_gem_object_change_domain(obj,
3452 old_read_domains,
3453 old_write_domain);
3454 }
3455
3456 i915_gem_verify_gtt(dev);
3457 return 0;
3458 }
3459
3460 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3461 struct drm_file *file)
3462 {
3463 struct drm_i915_gem_caching *args = data;
3464 struct drm_i915_gem_object *obj;
3465 int ret;
3466
3467 ret = i915_mutex_lock_interruptible(dev);
3468 if (ret)
3469 return ret;
3470
3471 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3472 if (&obj->base == NULL) {
3473 ret = -ENOENT;
3474 goto unlock;
3475 }
3476
3477 switch (obj->cache_level) {
3478 case I915_CACHE_LLC:
3479 case I915_CACHE_L3_LLC:
3480 args->caching = I915_CACHING_CACHED;
3481 break;
3482
3483 case I915_CACHE_WT:
3484 args->caching = I915_CACHING_DISPLAY;
3485 break;
3486
3487 default:
3488 args->caching = I915_CACHING_NONE;
3489 break;
3490 }
3491
3492 drm_gem_object_unreference(&obj->base);
3493 unlock:
3494 mutex_unlock(&dev->struct_mutex);
3495 return ret;
3496 }
3497
3498 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3499 struct drm_file *file)
3500 {
3501 struct drm_i915_gem_caching *args = data;
3502 struct drm_i915_gem_object *obj;
3503 enum i915_cache_level level;
3504 int ret;
3505
3506 switch (args->caching) {
3507 case I915_CACHING_NONE:
3508 level = I915_CACHE_NONE;
3509 break;
3510 case I915_CACHING_CACHED:
3511 level = I915_CACHE_LLC;
3512 break;
3513 case I915_CACHING_DISPLAY:
3514 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3515 break;
3516 default:
3517 return -EINVAL;
3518 }
3519
3520 ret = i915_mutex_lock_interruptible(dev);
3521 if (ret)
3522 return ret;
3523
3524 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3525 if (&obj->base == NULL) {
3526 ret = -ENOENT;
3527 goto unlock;
3528 }
3529
3530 ret = i915_gem_object_set_cache_level(obj, level);
3531
3532 drm_gem_object_unreference(&obj->base);
3533 unlock:
3534 mutex_unlock(&dev->struct_mutex);
3535 return ret;
3536 }
3537
3538 static bool is_pin_display(struct drm_i915_gem_object *obj)
3539 {
3540 /* There are 3 sources that pin objects:
3541 * 1. The display engine (scanouts, sprites, cursors);
3542 * 2. Reservations for execbuffer;
3543 * 3. The user.
3544 *
3545 * We can ignore reservations as we hold the struct_mutex and
3546 * are only called outside of the reservation path. The user
3547 * can only increment pin_count once, and so if after
3548 * subtracting the potential reference by the user, any pin_count
3549 * remains, it must be due to another use by the display engine.
3550 */
3551 return obj->pin_count - !!obj->user_pin_count;
3552 }
3553
3554 /*
3555 * Prepare buffer for display plane (scanout, cursors, etc).
3556 * Can be called from an uninterruptible phase (modesetting) and allows
3557 * any flushes to be pipelined (for pageflips).
3558 */
3559 int
3560 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3561 u32 alignment,
3562 struct intel_ring_buffer *pipelined)
3563 {
3564 u32 old_read_domains, old_write_domain;
3565 int ret;
3566
3567 if (pipelined != obj->ring) {
3568 ret = i915_gem_object_sync(obj, pipelined);
3569 if (ret)
3570 return ret;
3571 }
3572
3573 /* Mark the pin_display early so that we account for the
3574 * display coherency whilst setting up the cache domains.
3575 */
3576 obj->pin_display = true;
3577
3578 /* The display engine is not coherent with the LLC cache on gen6. As
3579 * a result, we make sure that the pinning that is about to occur is
3580 * done with uncached PTEs. This is lowest common denominator for all
3581 * chipsets.
3582 *
3583 * However for gen6+, we could do better by using the GFDT bit instead
3584 * of uncaching, which would allow us to flush all the LLC-cached data
3585 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3586 */
3587 ret = i915_gem_object_set_cache_level(obj,
3588 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3589 if (ret)
3590 goto err_unpin_display;
3591
3592 /* As the user may map the buffer once pinned in the display plane
3593 * (e.g. libkms for the bootup splash), we have to ensure that we
3594 * always use map_and_fenceable for all scanout buffers.
3595 */
3596 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3597 if (ret)
3598 goto err_unpin_display;
3599
3600 i915_gem_object_flush_cpu_write_domain(obj, true);
3601
3602 old_write_domain = obj->base.write_domain;
3603 old_read_domains = obj->base.read_domains;
3604
3605 /* It should now be out of any other write domains, and we can update
3606 * the domain values for our changes.
3607 */
3608 obj->base.write_domain = 0;
3609 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3610
3611 trace_i915_gem_object_change_domain(obj,
3612 old_read_domains,
3613 old_write_domain);
3614
3615 return 0;
3616
3617 err_unpin_display:
3618 obj->pin_display = is_pin_display(obj);
3619 return ret;
3620 }
3621
3622 void
3623 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3624 {
3625 i915_gem_object_unpin(obj);
3626 obj->pin_display = is_pin_display(obj);
3627 }
3628
3629 int
3630 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3631 {
3632 int ret;
3633
3634 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3635 return 0;
3636
3637 ret = i915_gem_object_wait_rendering(obj, false);
3638 if (ret)
3639 return ret;
3640
3641 /* Ensure that we invalidate the GPU's caches and TLBs. */
3642 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3643 return 0;
3644 }
3645
3646 /**
3647 * Moves a single object to the CPU read, and possibly write domain.
3648 *
3649 * This function returns when the move is complete, including waiting on
3650 * flushes to occur.
3651 */
3652 int
3653 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3654 {
3655 uint32_t old_write_domain, old_read_domains;
3656 int ret;
3657
3658 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3659 return 0;
3660
3661 ret = i915_gem_object_wait_rendering(obj, !write);
3662 if (ret)
3663 return ret;
3664
3665 i915_gem_object_flush_gtt_write_domain(obj);
3666
3667 old_write_domain = obj->base.write_domain;
3668 old_read_domains = obj->base.read_domains;
3669
3670 /* Flush the CPU cache if it's still invalid. */
3671 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3672 i915_gem_clflush_object(obj, false);
3673
3674 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3675 }
3676
3677 /* It should now be out of any other write domains, and we can update
3678 * the domain values for our changes.
3679 */
3680 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3681
3682 /* If we're writing through the CPU, then the GPU read domains will
3683 * need to be invalidated at next use.
3684 */
3685 if (write) {
3686 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3687 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3688 }
3689
3690 trace_i915_gem_object_change_domain(obj,
3691 old_read_domains,
3692 old_write_domain);
3693
3694 return 0;
3695 }
3696
3697 /* Throttle our rendering by waiting until the ring has completed our requests
3698 * emitted over 20 msec ago.
3699 *
3700 * Note that if we were to use the current jiffies each time around the loop,
3701 * we wouldn't escape the function with any frames outstanding if the time to
3702 * render a frame was over 20ms.
3703 *
3704 * This should get us reasonable parallelism between CPU and GPU but also
3705 * relatively low latency when blocking on a particular request to finish.
3706 */
3707 static int
3708 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3709 {
3710 struct drm_i915_private *dev_priv = dev->dev_private;
3711 struct drm_i915_file_private *file_priv = file->driver_priv;
3712 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3713 struct drm_i915_gem_request *request;
3714 struct intel_ring_buffer *ring = NULL;
3715 unsigned reset_counter;
3716 u32 seqno = 0;
3717 int ret;
3718
3719 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3720 if (ret)
3721 return ret;
3722
3723 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3724 if (ret)
3725 return ret;
3726
3727 spin_lock(&file_priv->mm.lock);
3728 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3729 if (time_after_eq(request->emitted_jiffies, recent_enough))
3730 break;
3731
3732 ring = request->ring;
3733 seqno = request->seqno;
3734 }
3735 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3736 spin_unlock(&file_priv->mm.lock);
3737
3738 if (seqno == 0)
3739 return 0;
3740
3741 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3742 if (ret == 0)
3743 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3744
3745 return ret;
3746 }
3747
3748 int
3749 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3750 struct i915_address_space *vm,
3751 uint32_t alignment,
3752 bool map_and_fenceable,
3753 bool nonblocking)
3754 {
3755 struct i915_vma *vma;
3756 int ret;
3757
3758 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3759 return -EBUSY;
3760
3761 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3762
3763 vma = i915_gem_obj_to_vma(obj, vm);
3764
3765 if (vma) {
3766 if ((alignment &&
3767 vma->node.start & (alignment - 1)) ||
3768 (map_and_fenceable && !obj->map_and_fenceable)) {
3769 WARN(obj->pin_count,
3770 "bo is already pinned with incorrect alignment:"
3771 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3772 " obj->map_and_fenceable=%d\n",
3773 i915_gem_obj_offset(obj, vm), alignment,
3774 map_and_fenceable,
3775 obj->map_and_fenceable);
3776 ret = i915_vma_unbind(vma);
3777 if (ret)
3778 return ret;
3779 }
3780 }
3781
3782 if (!i915_gem_obj_bound(obj, vm)) {
3783 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3784
3785 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3786 map_and_fenceable,
3787 nonblocking);
3788 if (ret)
3789 return ret;
3790
3791 if (!dev_priv->mm.aliasing_ppgtt)
3792 i915_gem_gtt_bind_object(obj, obj->cache_level);
3793 }
3794
3795 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3796 i915_gem_gtt_bind_object(obj, obj->cache_level);
3797
3798 obj->pin_count++;
3799 obj->pin_mappable |= map_and_fenceable;
3800
3801 return 0;
3802 }
3803
3804 void
3805 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3806 {
3807 BUG_ON(obj->pin_count == 0);
3808 BUG_ON(!i915_gem_obj_bound_any(obj));
3809
3810 if (--obj->pin_count == 0)
3811 obj->pin_mappable = false;
3812 }
3813
3814 int
3815 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3816 struct drm_file *file)
3817 {
3818 struct drm_i915_gem_pin *args = data;
3819 struct drm_i915_gem_object *obj;
3820 int ret;
3821
3822 ret = i915_mutex_lock_interruptible(dev);
3823 if (ret)
3824 return ret;
3825
3826 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3827 if (&obj->base == NULL) {
3828 ret = -ENOENT;
3829 goto unlock;
3830 }
3831
3832 if (obj->madv != I915_MADV_WILLNEED) {
3833 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3834 ret = -EINVAL;
3835 goto out;
3836 }
3837
3838 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3839 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3840 args->handle);
3841 ret = -EINVAL;
3842 goto out;
3843 }
3844
3845 if (obj->user_pin_count == 0) {
3846 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3847 if (ret)
3848 goto out;
3849 }
3850
3851 obj->user_pin_count++;
3852 obj->pin_filp = file;
3853
3854 args->offset = i915_gem_obj_ggtt_offset(obj);
3855 out:
3856 drm_gem_object_unreference(&obj->base);
3857 unlock:
3858 mutex_unlock(&dev->struct_mutex);
3859 return ret;
3860 }
3861
3862 int
3863 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3864 struct drm_file *file)
3865 {
3866 struct drm_i915_gem_pin *args = data;
3867 struct drm_i915_gem_object *obj;
3868 int ret;
3869
3870 ret = i915_mutex_lock_interruptible(dev);
3871 if (ret)
3872 return ret;
3873
3874 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3875 if (&obj->base == NULL) {
3876 ret = -ENOENT;
3877 goto unlock;
3878 }
3879
3880 if (obj->pin_filp != file) {
3881 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3882 args->handle);
3883 ret = -EINVAL;
3884 goto out;
3885 }
3886 obj->user_pin_count--;
3887 if (obj->user_pin_count == 0) {
3888 obj->pin_filp = NULL;
3889 i915_gem_object_unpin(obj);
3890 }
3891
3892 out:
3893 drm_gem_object_unreference(&obj->base);
3894 unlock:
3895 mutex_unlock(&dev->struct_mutex);
3896 return ret;
3897 }
3898
3899 int
3900 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3901 struct drm_file *file)
3902 {
3903 struct drm_i915_gem_busy *args = data;
3904 struct drm_i915_gem_object *obj;
3905 int ret;
3906
3907 ret = i915_mutex_lock_interruptible(dev);
3908 if (ret)
3909 return ret;
3910
3911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912 if (&obj->base == NULL) {
3913 ret = -ENOENT;
3914 goto unlock;
3915 }
3916
3917 /* Count all active objects as busy, even if they are currently not used
3918 * by the gpu. Users of this interface expect objects to eventually
3919 * become non-busy without any further actions, therefore emit any
3920 * necessary flushes here.
3921 */
3922 ret = i915_gem_object_flush_active(obj);
3923
3924 args->busy = obj->active;
3925 if (obj->ring) {
3926 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3927 args->busy |= intel_ring_flag(obj->ring) << 16;
3928 }
3929
3930 drm_gem_object_unreference(&obj->base);
3931 unlock:
3932 mutex_unlock(&dev->struct_mutex);
3933 return ret;
3934 }
3935
3936 int
3937 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3938 struct drm_file *file_priv)
3939 {
3940 return i915_gem_ring_throttle(dev, file_priv);
3941 }
3942
3943 int
3944 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3945 struct drm_file *file_priv)
3946 {
3947 struct drm_i915_gem_madvise *args = data;
3948 struct drm_i915_gem_object *obj;
3949 int ret;
3950
3951 switch (args->madv) {
3952 case I915_MADV_DONTNEED:
3953 case I915_MADV_WILLNEED:
3954 break;
3955 default:
3956 return -EINVAL;
3957 }
3958
3959 ret = i915_mutex_lock_interruptible(dev);
3960 if (ret)
3961 return ret;
3962
3963 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3964 if (&obj->base == NULL) {
3965 ret = -ENOENT;
3966 goto unlock;
3967 }
3968
3969 if (obj->pin_count) {
3970 ret = -EINVAL;
3971 goto out;
3972 }
3973
3974 if (obj->madv != __I915_MADV_PURGED)
3975 obj->madv = args->madv;
3976
3977 /* if the object is no longer attached, discard its backing storage */
3978 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3979 i915_gem_object_truncate(obj);
3980
3981 args->retained = obj->madv != __I915_MADV_PURGED;
3982
3983 out:
3984 drm_gem_object_unreference(&obj->base);
3985 unlock:
3986 mutex_unlock(&dev->struct_mutex);
3987 return ret;
3988 }
3989
3990 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3991 const struct drm_i915_gem_object_ops *ops)
3992 {
3993 INIT_LIST_HEAD(&obj->global_list);
3994 INIT_LIST_HEAD(&obj->ring_list);
3995 INIT_LIST_HEAD(&obj->exec_list);
3996 INIT_LIST_HEAD(&obj->vma_list);
3997
3998 obj->ops = ops;
3999
4000 obj->fence_reg = I915_FENCE_REG_NONE;
4001 obj->madv = I915_MADV_WILLNEED;
4002 /* Avoid an unnecessary call to unbind on the first bind. */
4003 obj->map_and_fenceable = true;
4004
4005 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4006 }
4007
4008 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4009 .get_pages = i915_gem_object_get_pages_gtt,
4010 .put_pages = i915_gem_object_put_pages_gtt,
4011 };
4012
4013 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4014 size_t size)
4015 {
4016 struct drm_i915_gem_object *obj;
4017 struct address_space *mapping;
4018 gfp_t mask;
4019
4020 obj = i915_gem_object_alloc(dev);
4021 if (obj == NULL)
4022 return NULL;
4023
4024 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4025 i915_gem_object_free(obj);
4026 return NULL;
4027 }
4028
4029 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4030 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4031 /* 965gm cannot relocate objects above 4GiB. */
4032 mask &= ~__GFP_HIGHMEM;
4033 mask |= __GFP_DMA32;
4034 }
4035
4036 mapping = file_inode(obj->base.filp)->i_mapping;
4037 mapping_set_gfp_mask(mapping, mask);
4038
4039 i915_gem_object_init(obj, &i915_gem_object_ops);
4040
4041 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4042 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4043
4044 if (HAS_LLC(dev)) {
4045 /* On some devices, we can have the GPU use the LLC (the CPU
4046 * cache) for about a 10% performance improvement
4047 * compared to uncached. Graphics requests other than
4048 * display scanout are coherent with the CPU in
4049 * accessing this cache. This means in this mode we
4050 * don't need to clflush on the CPU side, and on the
4051 * GPU side we only need to flush internal caches to
4052 * get data visible to the CPU.
4053 *
4054 * However, we maintain the display planes as UC, and so
4055 * need to rebind when first used as such.
4056 */
4057 obj->cache_level = I915_CACHE_LLC;
4058 } else
4059 obj->cache_level = I915_CACHE_NONE;
4060
4061 trace_i915_gem_object_create(obj);
4062
4063 return obj;
4064 }
4065
4066 int i915_gem_init_object(struct drm_gem_object *obj)
4067 {
4068 BUG();
4069
4070 return 0;
4071 }
4072
4073 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4074 {
4075 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4076 struct drm_device *dev = obj->base.dev;
4077 drm_i915_private_t *dev_priv = dev->dev_private;
4078 struct i915_vma *vma, *next;
4079
4080 trace_i915_gem_object_destroy(obj);
4081
4082 if (obj->phys_obj)
4083 i915_gem_detach_phys_object(dev, obj);
4084
4085 obj->pin_count = 0;
4086 /* NB: 0 or 1 elements */
4087 WARN_ON(!list_empty(&obj->vma_list) &&
4088 !list_is_singular(&obj->vma_list));
4089 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4090 int ret = i915_vma_unbind(vma);
4091 if (WARN_ON(ret == -ERESTARTSYS)) {
4092 bool was_interruptible;
4093
4094 was_interruptible = dev_priv->mm.interruptible;
4095 dev_priv->mm.interruptible = false;
4096
4097 WARN_ON(i915_vma_unbind(vma));
4098
4099 dev_priv->mm.interruptible = was_interruptible;
4100 }
4101 }
4102
4103 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4104 * before progressing. */
4105 if (obj->stolen)
4106 i915_gem_object_unpin_pages(obj);
4107
4108 if (WARN_ON(obj->pages_pin_count))
4109 obj->pages_pin_count = 0;
4110 i915_gem_object_put_pages(obj);
4111 i915_gem_object_free_mmap_offset(obj);
4112 i915_gem_object_release_stolen(obj);
4113
4114 BUG_ON(obj->pages);
4115
4116 if (obj->base.import_attach)
4117 drm_prime_gem_destroy(&obj->base, NULL);
4118
4119 drm_gem_object_release(&obj->base);
4120 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4121
4122 kfree(obj->bit_17);
4123 i915_gem_object_free(obj);
4124 }
4125
4126 struct i915_vma *i915_gem_vma_create(struct drm_i915_gem_object *obj,
4127 struct i915_address_space *vm)
4128 {
4129 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
4130 if (vma == NULL)
4131 return ERR_PTR(-ENOMEM);
4132
4133 INIT_LIST_HEAD(&vma->vma_link);
4134 INIT_LIST_HEAD(&vma->mm_list);
4135 vma->vm = vm;
4136 vma->obj = obj;
4137
4138 /* Keep GGTT vmas first to make debug easier */
4139 if (i915_is_ggtt(vm))
4140 list_add(&vma->vma_link, &obj->vma_list);
4141 else
4142 list_add_tail(&vma->vma_link, &obj->vma_list);
4143
4144 return vma;
4145 }
4146
4147 void i915_gem_vma_destroy(struct i915_vma *vma)
4148 {
4149 WARN_ON(vma->node.allocated);
4150 list_del(&vma->vma_link);
4151 kfree(vma);
4152 }
4153
4154 int
4155 i915_gem_idle(struct drm_device *dev)
4156 {
4157 drm_i915_private_t *dev_priv = dev->dev_private;
4158 int ret;
4159
4160 if (dev_priv->ums.mm_suspended) {
4161 mutex_unlock(&dev->struct_mutex);
4162 return 0;
4163 }
4164
4165 ret = i915_gpu_idle(dev);
4166 if (ret) {
4167 mutex_unlock(&dev->struct_mutex);
4168 return ret;
4169 }
4170 i915_gem_retire_requests(dev);
4171
4172 /* Under UMS, be paranoid and evict. */
4173 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4174 i915_gem_evict_everything(dev);
4175
4176 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4177
4178 i915_kernel_lost_context(dev);
4179 i915_gem_cleanup_ringbuffer(dev);
4180
4181 /* Cancel the retire work handler, which should be idle now. */
4182 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4183
4184 return 0;
4185 }
4186
4187 void i915_gem_l3_remap(struct drm_device *dev)
4188 {
4189 drm_i915_private_t *dev_priv = dev->dev_private;
4190 u32 misccpctl;
4191 int i;
4192
4193 if (!HAS_L3_GPU_CACHE(dev))
4194 return;
4195
4196 if (!dev_priv->l3_parity.remap_info)
4197 return;
4198
4199 misccpctl = I915_READ(GEN7_MISCCPCTL);
4200 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
4201 POSTING_READ(GEN7_MISCCPCTL);
4202
4203 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4204 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
4205 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
4206 DRM_DEBUG("0x%x was already programmed to %x\n",
4207 GEN7_L3LOG_BASE + i, remap);
4208 if (remap && !dev_priv->l3_parity.remap_info[i/4])
4209 DRM_DEBUG_DRIVER("Clearing remapped register\n");
4210 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
4211 }
4212
4213 /* Make sure all the writes land before disabling dop clock gating */
4214 POSTING_READ(GEN7_L3LOG_BASE);
4215
4216 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
4217 }
4218
4219 void i915_gem_init_swizzling(struct drm_device *dev)
4220 {
4221 drm_i915_private_t *dev_priv = dev->dev_private;
4222
4223 if (INTEL_INFO(dev)->gen < 5 ||
4224 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4225 return;
4226
4227 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4228 DISP_TILE_SURFACE_SWIZZLING);
4229
4230 if (IS_GEN5(dev))
4231 return;
4232
4233 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4234 if (IS_GEN6(dev))
4235 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4236 else if (IS_GEN7(dev))
4237 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4238 else
4239 BUG();
4240 }
4241
4242 static bool
4243 intel_enable_blt(struct drm_device *dev)
4244 {
4245 if (!HAS_BLT(dev))
4246 return false;
4247
4248 /* The blitter was dysfunctional on early prototypes */
4249 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4250 DRM_INFO("BLT not supported on this pre-production hardware;"
4251 " graphics performance will be degraded.\n");
4252 return false;
4253 }
4254
4255 return true;
4256 }
4257
4258 static int i915_gem_init_rings(struct drm_device *dev)
4259 {
4260 struct drm_i915_private *dev_priv = dev->dev_private;
4261 int ret;
4262
4263 ret = intel_init_render_ring_buffer(dev);
4264 if (ret)
4265 return ret;
4266
4267 if (HAS_BSD(dev)) {
4268 ret = intel_init_bsd_ring_buffer(dev);
4269 if (ret)
4270 goto cleanup_render_ring;
4271 }
4272
4273 if (intel_enable_blt(dev)) {
4274 ret = intel_init_blt_ring_buffer(dev);
4275 if (ret)
4276 goto cleanup_bsd_ring;
4277 }
4278
4279 if (HAS_VEBOX(dev)) {
4280 ret = intel_init_vebox_ring_buffer(dev);
4281 if (ret)
4282 goto cleanup_blt_ring;
4283 }
4284
4285
4286 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4287 if (ret)
4288 goto cleanup_vebox_ring;
4289
4290 return 0;
4291
4292 cleanup_vebox_ring:
4293 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4294 cleanup_blt_ring:
4295 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4296 cleanup_bsd_ring:
4297 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4298 cleanup_render_ring:
4299 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4300
4301 return ret;
4302 }
4303
4304 int
4305 i915_gem_init_hw(struct drm_device *dev)
4306 {
4307 drm_i915_private_t *dev_priv = dev->dev_private;
4308 int ret;
4309
4310 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4311 return -EIO;
4312
4313 if (dev_priv->ellc_size)
4314 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4315
4316 if (HAS_PCH_NOP(dev)) {
4317 u32 temp = I915_READ(GEN7_MSG_CTL);
4318 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4319 I915_WRITE(GEN7_MSG_CTL, temp);
4320 }
4321
4322 i915_gem_l3_remap(dev);
4323
4324 i915_gem_init_swizzling(dev);
4325
4326 ret = i915_gem_init_rings(dev);
4327 if (ret)
4328 return ret;
4329
4330 /*
4331 * XXX: There was some w/a described somewhere suggesting loading
4332 * contexts before PPGTT.
4333 */
4334 i915_gem_context_init(dev);
4335 if (dev_priv->mm.aliasing_ppgtt) {
4336 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4337 if (ret) {
4338 i915_gem_cleanup_aliasing_ppgtt(dev);
4339 DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4340 }
4341 }
4342
4343 return 0;
4344 }
4345
4346 int i915_gem_init(struct drm_device *dev)
4347 {
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4349 int ret;
4350
4351 mutex_lock(&dev->struct_mutex);
4352
4353 if (IS_VALLEYVIEW(dev)) {
4354 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4355 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4356 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4357 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4358 }
4359
4360 i915_gem_init_global_gtt(dev);
4361
4362 ret = i915_gem_init_hw(dev);
4363 mutex_unlock(&dev->struct_mutex);
4364 if (ret) {
4365 i915_gem_cleanup_aliasing_ppgtt(dev);
4366 return ret;
4367 }
4368
4369 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4370 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4371 dev_priv->dri1.allow_batchbuffer = 1;
4372 return 0;
4373 }
4374
4375 void
4376 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4377 {
4378 drm_i915_private_t *dev_priv = dev->dev_private;
4379 struct intel_ring_buffer *ring;
4380 int i;
4381
4382 for_each_ring(ring, dev_priv, i)
4383 intel_cleanup_ring_buffer(ring);
4384 }
4385
4386 int
4387 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4388 struct drm_file *file_priv)
4389 {
4390 struct drm_i915_private *dev_priv = dev->dev_private;
4391 int ret;
4392
4393 if (drm_core_check_feature(dev, DRIVER_MODESET))
4394 return 0;
4395
4396 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4397 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4398 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4399 }
4400
4401 mutex_lock(&dev->struct_mutex);
4402 dev_priv->ums.mm_suspended = 0;
4403
4404 ret = i915_gem_init_hw(dev);
4405 if (ret != 0) {
4406 mutex_unlock(&dev->struct_mutex);
4407 return ret;
4408 }
4409
4410 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4411 mutex_unlock(&dev->struct_mutex);
4412
4413 ret = drm_irq_install(dev);
4414 if (ret)
4415 goto cleanup_ringbuffer;
4416
4417 return 0;
4418
4419 cleanup_ringbuffer:
4420 mutex_lock(&dev->struct_mutex);
4421 i915_gem_cleanup_ringbuffer(dev);
4422 dev_priv->ums.mm_suspended = 1;
4423 mutex_unlock(&dev->struct_mutex);
4424
4425 return ret;
4426 }
4427
4428 int
4429 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4430 struct drm_file *file_priv)
4431 {
4432 struct drm_i915_private *dev_priv = dev->dev_private;
4433 int ret;
4434
4435 if (drm_core_check_feature(dev, DRIVER_MODESET))
4436 return 0;
4437
4438 drm_irq_uninstall(dev);
4439
4440 mutex_lock(&dev->struct_mutex);
4441 ret = i915_gem_idle(dev);
4442
4443 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4444 * We need to replace this with a semaphore, or something.
4445 * And not confound ums.mm_suspended!
4446 */
4447 if (ret != 0)
4448 dev_priv->ums.mm_suspended = 1;
4449 mutex_unlock(&dev->struct_mutex);
4450
4451 return ret;
4452 }
4453
4454 void
4455 i915_gem_lastclose(struct drm_device *dev)
4456 {
4457 int ret;
4458
4459 if (drm_core_check_feature(dev, DRIVER_MODESET))
4460 return;
4461
4462 mutex_lock(&dev->struct_mutex);
4463 ret = i915_gem_idle(dev);
4464 if (ret)
4465 DRM_ERROR("failed to idle hardware: %d\n", ret);
4466 mutex_unlock(&dev->struct_mutex);
4467 }
4468
4469 static void
4470 init_ring_lists(struct intel_ring_buffer *ring)
4471 {
4472 INIT_LIST_HEAD(&ring->active_list);
4473 INIT_LIST_HEAD(&ring->request_list);
4474 }
4475
4476 static void i915_init_vm(struct drm_i915_private *dev_priv,
4477 struct i915_address_space *vm)
4478 {
4479 vm->dev = dev_priv->dev;
4480 INIT_LIST_HEAD(&vm->active_list);
4481 INIT_LIST_HEAD(&vm->inactive_list);
4482 INIT_LIST_HEAD(&vm->global_link);
4483 list_add(&vm->global_link, &dev_priv->vm_list);
4484 }
4485
4486 void
4487 i915_gem_load(struct drm_device *dev)
4488 {
4489 drm_i915_private_t *dev_priv = dev->dev_private;
4490 int i;
4491
4492 dev_priv->slab =
4493 kmem_cache_create("i915_gem_object",
4494 sizeof(struct drm_i915_gem_object), 0,
4495 SLAB_HWCACHE_ALIGN,
4496 NULL);
4497
4498 INIT_LIST_HEAD(&dev_priv->vm_list);
4499 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4500
4501 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4502 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4503 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4504 for (i = 0; i < I915_NUM_RINGS; i++)
4505 init_ring_lists(&dev_priv->ring[i]);
4506 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4507 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4508 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4509 i915_gem_retire_work_handler);
4510 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4511
4512 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4513 if (IS_GEN3(dev)) {
4514 I915_WRITE(MI_ARB_STATE,
4515 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4516 }
4517
4518 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4519
4520 /* Old X drivers will take 0-2 for front, back, depth buffers */
4521 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4522 dev_priv->fence_reg_start = 3;
4523
4524 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4525 dev_priv->num_fence_regs = 32;
4526 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4527 dev_priv->num_fence_regs = 16;
4528 else
4529 dev_priv->num_fence_regs = 8;
4530
4531 /* Initialize fence registers to zero */
4532 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4533 i915_gem_restore_fences(dev);
4534
4535 i915_gem_detect_bit_6_swizzle(dev);
4536 init_waitqueue_head(&dev_priv->pending_flip_queue);
4537
4538 dev_priv->mm.interruptible = true;
4539
4540 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4541 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4542 register_shrinker(&dev_priv->mm.inactive_shrinker);
4543 }
4544
4545 /*
4546 * Create a physically contiguous memory object for this object
4547 * e.g. for cursor + overlay regs
4548 */
4549 static int i915_gem_init_phys_object(struct drm_device *dev,
4550 int id, int size, int align)
4551 {
4552 drm_i915_private_t *dev_priv = dev->dev_private;
4553 struct drm_i915_gem_phys_object *phys_obj;
4554 int ret;
4555
4556 if (dev_priv->mm.phys_objs[id - 1] || !size)
4557 return 0;
4558
4559 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4560 if (!phys_obj)
4561 return -ENOMEM;
4562
4563 phys_obj->id = id;
4564
4565 phys_obj->handle = drm_pci_alloc(dev, size, align);
4566 if (!phys_obj->handle) {
4567 ret = -ENOMEM;
4568 goto kfree_obj;
4569 }
4570 #ifdef CONFIG_X86
4571 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4572 #endif
4573
4574 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4575
4576 return 0;
4577 kfree_obj:
4578 kfree(phys_obj);
4579 return ret;
4580 }
4581
4582 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4583 {
4584 drm_i915_private_t *dev_priv = dev->dev_private;
4585 struct drm_i915_gem_phys_object *phys_obj;
4586
4587 if (!dev_priv->mm.phys_objs[id - 1])
4588 return;
4589
4590 phys_obj = dev_priv->mm.phys_objs[id - 1];
4591 if (phys_obj->cur_obj) {
4592 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4593 }
4594
4595 #ifdef CONFIG_X86
4596 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4597 #endif
4598 drm_pci_free(dev, phys_obj->handle);
4599 kfree(phys_obj);
4600 dev_priv->mm.phys_objs[id - 1] = NULL;
4601 }
4602
4603 void i915_gem_free_all_phys_object(struct drm_device *dev)
4604 {
4605 int i;
4606
4607 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4608 i915_gem_free_phys_object(dev, i);
4609 }
4610
4611 void i915_gem_detach_phys_object(struct drm_device *dev,
4612 struct drm_i915_gem_object *obj)
4613 {
4614 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4615 char *vaddr;
4616 int i;
4617 int page_count;
4618
4619 if (!obj->phys_obj)
4620 return;
4621 vaddr = obj->phys_obj->handle->vaddr;
4622
4623 page_count = obj->base.size / PAGE_SIZE;
4624 for (i = 0; i < page_count; i++) {
4625 struct page *page = shmem_read_mapping_page(mapping, i);
4626 if (!IS_ERR(page)) {
4627 char *dst = kmap_atomic(page);
4628 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4629 kunmap_atomic(dst);
4630
4631 drm_clflush_pages(&page, 1);
4632
4633 set_page_dirty(page);
4634 mark_page_accessed(page);
4635 page_cache_release(page);
4636 }
4637 }
4638 i915_gem_chipset_flush(dev);
4639
4640 obj->phys_obj->cur_obj = NULL;
4641 obj->phys_obj = NULL;
4642 }
4643
4644 int
4645 i915_gem_attach_phys_object(struct drm_device *dev,
4646 struct drm_i915_gem_object *obj,
4647 int id,
4648 int align)
4649 {
4650 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4651 drm_i915_private_t *dev_priv = dev->dev_private;
4652 int ret = 0;
4653 int page_count;
4654 int i;
4655
4656 if (id > I915_MAX_PHYS_OBJECT)
4657 return -EINVAL;
4658
4659 if (obj->phys_obj) {
4660 if (obj->phys_obj->id == id)
4661 return 0;
4662 i915_gem_detach_phys_object(dev, obj);
4663 }
4664
4665 /* create a new object */
4666 if (!dev_priv->mm.phys_objs[id - 1]) {
4667 ret = i915_gem_init_phys_object(dev, id,
4668 obj->base.size, align);
4669 if (ret) {
4670 DRM_ERROR("failed to init phys object %d size: %zu\n",
4671 id, obj->base.size);
4672 return ret;
4673 }
4674 }
4675
4676 /* bind to the object */
4677 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4678 obj->phys_obj->cur_obj = obj;
4679
4680 page_count = obj->base.size / PAGE_SIZE;
4681
4682 for (i = 0; i < page_count; i++) {
4683 struct page *page;
4684 char *dst, *src;
4685
4686 page = shmem_read_mapping_page(mapping, i);
4687 if (IS_ERR(page))
4688 return PTR_ERR(page);
4689
4690 src = kmap_atomic(page);
4691 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4692 memcpy(dst, src, PAGE_SIZE);
4693 kunmap_atomic(src);
4694
4695 mark_page_accessed(page);
4696 page_cache_release(page);
4697 }
4698
4699 return 0;
4700 }
4701
4702 static int
4703 i915_gem_phys_pwrite(struct drm_device *dev,
4704 struct drm_i915_gem_object *obj,
4705 struct drm_i915_gem_pwrite *args,
4706 struct drm_file *file_priv)
4707 {
4708 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4709 char __user *user_data = to_user_ptr(args->data_ptr);
4710
4711 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4712 unsigned long unwritten;
4713
4714 /* The physical object once assigned is fixed for the lifetime
4715 * of the obj, so we can safely drop the lock and continue
4716 * to access vaddr.
4717 */
4718 mutex_unlock(&dev->struct_mutex);
4719 unwritten = copy_from_user(vaddr, user_data, args->size);
4720 mutex_lock(&dev->struct_mutex);
4721 if (unwritten)
4722 return -EFAULT;
4723 }
4724
4725 i915_gem_chipset_flush(dev);
4726 return 0;
4727 }
4728
4729 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4730 {
4731 struct drm_i915_file_private *file_priv = file->driver_priv;
4732
4733 /* Clean up our request list when the client is going away, so that
4734 * later retire_requests won't dereference our soon-to-be-gone
4735 * file_priv.
4736 */
4737 spin_lock(&file_priv->mm.lock);
4738 while (!list_empty(&file_priv->mm.request_list)) {
4739 struct drm_i915_gem_request *request;
4740
4741 request = list_first_entry(&file_priv->mm.request_list,
4742 struct drm_i915_gem_request,
4743 client_list);
4744 list_del(&request->client_list);
4745 request->file_priv = NULL;
4746 }
4747 spin_unlock(&file_priv->mm.lock);
4748 }
4749
4750 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4751 {
4752 if (!mutex_is_locked(mutex))
4753 return false;
4754
4755 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4756 return mutex->owner == task;
4757 #else
4758 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4759 return false;
4760 #endif
4761 }
4762
4763 static int
4764 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4765 {
4766 struct drm_i915_private *dev_priv =
4767 container_of(shrinker,
4768 struct drm_i915_private,
4769 mm.inactive_shrinker);
4770 struct drm_device *dev = dev_priv->dev;
4771 struct drm_i915_gem_object *obj;
4772 int nr_to_scan = sc->nr_to_scan;
4773 bool unlock = true;
4774 int cnt;
4775
4776 if (!mutex_trylock(&dev->struct_mutex)) {
4777 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4778 return 0;
4779
4780 if (dev_priv->mm.shrinker_no_lock_stealing)
4781 return 0;
4782
4783 unlock = false;
4784 }
4785
4786 if (nr_to_scan) {
4787 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4788 if (nr_to_scan > 0)
4789 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4790 false);
4791 if (nr_to_scan > 0)
4792 i915_gem_shrink_all(dev_priv);
4793 }
4794
4795 cnt = 0;
4796 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4797 if (obj->pages_pin_count == 0)
4798 cnt += obj->base.size >> PAGE_SHIFT;
4799
4800 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4801 if (obj->active)
4802 continue;
4803
4804 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4805 cnt += obj->base.size >> PAGE_SHIFT;
4806 }
4807
4808 if (unlock)
4809 mutex_unlock(&dev->struct_mutex);
4810 return cnt;
4811 }
4812
4813 /* All the new VM stuff */
4814 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4815 struct i915_address_space *vm)
4816 {
4817 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4818 struct i915_vma *vma;
4819
4820 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4821 vm = &dev_priv->gtt.base;
4822
4823 BUG_ON(list_empty(&o->vma_list));
4824 list_for_each_entry(vma, &o->vma_list, vma_link) {
4825 if (vma->vm == vm)
4826 return vma->node.start;
4827
4828 }
4829 return -1;
4830 }
4831
4832 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4833 struct i915_address_space *vm)
4834 {
4835 struct i915_vma *vma;
4836
4837 list_for_each_entry(vma, &o->vma_list, vma_link)
4838 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4839 return true;
4840
4841 return false;
4842 }
4843
4844 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4845 {
4846 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4847 struct i915_address_space *vm;
4848
4849 list_for_each_entry(vm, &dev_priv->vm_list, global_link)
4850 if (i915_gem_obj_bound(o, vm))
4851 return true;
4852
4853 return false;
4854 }
4855
4856 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4857 struct i915_address_space *vm)
4858 {
4859 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4860 struct i915_vma *vma;
4861
4862 if (vm == &dev_priv->mm.aliasing_ppgtt->base)
4863 vm = &dev_priv->gtt.base;
4864
4865 BUG_ON(list_empty(&o->vma_list));
4866
4867 list_for_each_entry(vma, &o->vma_list, vma_link)
4868 if (vma->vm == vm)
4869 return vma->node.size;
4870
4871 return 0;
4872 }
4873
4874 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4875 struct i915_address_space *vm)
4876 {
4877 struct i915_vma *vma;
4878 list_for_each_entry(vma, &obj->vma_list, vma_link)
4879 if (vma->vm == vm)
4880 return vma;
4881
4882 return NULL;
4883 }