]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Store and use edram capabilities
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 struct i915_ggtt *ggtt = &dev_priv->ggtt;
135 struct drm_i915_gem_get_aperture *args = data;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = ggtt->base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 put_page(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 put_page(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct i915_ggtt *ggtt = &dev_priv->ggtt;
770 ssize_t remain;
771 loff_t offset, page_base;
772 char __user *user_data;
773 int page_offset, page_length, ret;
774
775 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
776 if (ret)
777 goto out;
778
779 ret = i915_gem_object_set_to_gtt_domain(obj, true);
780 if (ret)
781 goto out_unpin;
782
783 ret = i915_gem_object_put_fence(obj);
784 if (ret)
785 goto out_unpin;
786
787 user_data = to_user_ptr(args->data_ptr);
788 remain = args->size;
789
790 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
791
792 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
793
794 while (remain > 0) {
795 /* Operation in this page
796 *
797 * page_base = page offset within aperture
798 * page_offset = offset within page
799 * page_length = bytes to copy for this page
800 */
801 page_base = offset & PAGE_MASK;
802 page_offset = offset_in_page(offset);
803 page_length = remain;
804 if ((page_offset + remain) > PAGE_SIZE)
805 page_length = PAGE_SIZE - page_offset;
806
807 /* If we get a fault while copying data, then (presumably) our
808 * source page isn't available. Return the error and we'll
809 * retry in the slow path.
810 */
811 if (fast_user_write(ggtt->mappable, page_base,
812 page_offset, user_data, page_length)) {
813 ret = -EFAULT;
814 goto out_flush;
815 }
816
817 remain -= page_length;
818 user_data += page_length;
819 offset += page_length;
820 }
821
822 out_flush:
823 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
824 out_unpin:
825 i915_gem_object_ggtt_unpin(obj);
826 out:
827 return ret;
828 }
829
830 /* Per-page copy function for the shmem pwrite fastpath.
831 * Flushes invalid cachelines before writing to the target if
832 * needs_clflush_before is set and flushes out any written cachelines after
833 * writing if needs_clflush is set. */
834 static int
835 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
836 char __user *user_data,
837 bool page_do_bit17_swizzling,
838 bool needs_clflush_before,
839 bool needs_clflush_after)
840 {
841 char *vaddr;
842 int ret;
843
844 if (unlikely(page_do_bit17_swizzling))
845 return -EINVAL;
846
847 vaddr = kmap_atomic(page);
848 if (needs_clflush_before)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
852 user_data, page_length);
853 if (needs_clflush_after)
854 drm_clflush_virt_range(vaddr + shmem_page_offset,
855 page_length);
856 kunmap_atomic(vaddr);
857
858 return ret ? -EFAULT : 0;
859 }
860
861 /* Only difference to the fast-path function is that this can handle bit17
862 * and uses non-atomic copy and kmap functions. */
863 static int
864 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
865 char __user *user_data,
866 bool page_do_bit17_swizzling,
867 bool needs_clflush_before,
868 bool needs_clflush_after)
869 {
870 char *vaddr;
871 int ret;
872
873 vaddr = kmap(page);
874 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
875 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
876 page_length,
877 page_do_bit17_swizzling);
878 if (page_do_bit17_swizzling)
879 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
880 user_data,
881 page_length);
882 else
883 ret = __copy_from_user(vaddr + shmem_page_offset,
884 user_data,
885 page_length);
886 if (needs_clflush_after)
887 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
888 page_length,
889 page_do_bit17_swizzling);
890 kunmap(page);
891
892 return ret ? -EFAULT : 0;
893 }
894
895 static int
896 i915_gem_shmem_pwrite(struct drm_device *dev,
897 struct drm_i915_gem_object *obj,
898 struct drm_i915_gem_pwrite *args,
899 struct drm_file *file)
900 {
901 ssize_t remain;
902 loff_t offset;
903 char __user *user_data;
904 int shmem_page_offset, page_length, ret = 0;
905 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
906 int hit_slowpath = 0;
907 int needs_clflush_after = 0;
908 int needs_clflush_before = 0;
909 struct sg_page_iter sg_iter;
910
911 user_data = to_user_ptr(args->data_ptr);
912 remain = args->size;
913
914 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
915
916 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
917 /* If we're not in the cpu write domain, set ourself into the gtt
918 * write domain and manually flush cachelines (if required). This
919 * optimizes for the case when the gpu will use the data
920 * right away and we therefore have to clflush anyway. */
921 needs_clflush_after = cpu_write_needs_clflush(obj);
922 ret = i915_gem_object_wait_rendering(obj, false);
923 if (ret)
924 return ret;
925 }
926 /* Same trick applies to invalidate partially written cachelines read
927 * before writing. */
928 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
929 needs_clflush_before =
930 !cpu_cache_is_coherent(dev, obj->cache_level);
931
932 ret = i915_gem_object_get_pages(obj);
933 if (ret)
934 return ret;
935
936 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
937
938 i915_gem_object_pin_pages(obj);
939
940 offset = args->offset;
941 obj->dirty = 1;
942
943 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
944 offset >> PAGE_SHIFT) {
945 struct page *page = sg_page_iter_page(&sg_iter);
946 int partial_cacheline_write;
947
948 if (remain <= 0)
949 break;
950
951 /* Operation in this page
952 *
953 * shmem_page_offset = offset within page in shmem file
954 * page_length = bytes to copy for this page
955 */
956 shmem_page_offset = offset_in_page(offset);
957
958 page_length = remain;
959 if ((shmem_page_offset + page_length) > PAGE_SIZE)
960 page_length = PAGE_SIZE - shmem_page_offset;
961
962 /* If we don't overwrite a cacheline completely we need to be
963 * careful to have up-to-date data by first clflushing. Don't
964 * overcomplicate things and flush the entire patch. */
965 partial_cacheline_write = needs_clflush_before &&
966 ((shmem_page_offset | page_length)
967 & (boot_cpu_data.x86_clflush_size - 1));
968
969 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
970 (page_to_phys(page) & (1 << 17)) != 0;
971
972 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
973 user_data, page_do_bit17_swizzling,
974 partial_cacheline_write,
975 needs_clflush_after);
976 if (ret == 0)
977 goto next_page;
978
979 hit_slowpath = 1;
980 mutex_unlock(&dev->struct_mutex);
981 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
982 user_data, page_do_bit17_swizzling,
983 partial_cacheline_write,
984 needs_clflush_after);
985
986 mutex_lock(&dev->struct_mutex);
987
988 if (ret)
989 goto out;
990
991 next_page:
992 remain -= page_length;
993 user_data += page_length;
994 offset += page_length;
995 }
996
997 out:
998 i915_gem_object_unpin_pages(obj);
999
1000 if (hit_slowpath) {
1001 /*
1002 * Fixup: Flush cpu caches in case we didn't flush the dirty
1003 * cachelines in-line while writing and the object moved
1004 * out of the cpu write domain while we've dropped the lock.
1005 */
1006 if (!needs_clflush_after &&
1007 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1008 if (i915_gem_clflush_object(obj, obj->pin_display))
1009 needs_clflush_after = true;
1010 }
1011 }
1012
1013 if (needs_clflush_after)
1014 i915_gem_chipset_flush(dev);
1015 else
1016 obj->cache_dirty = true;
1017
1018 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1019 return ret;
1020 }
1021
1022 /**
1023 * Writes data to the object referenced by handle.
1024 *
1025 * On error, the contents of the buffer that were to be modified are undefined.
1026 */
1027 int
1028 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1029 struct drm_file *file)
1030 {
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 struct drm_i915_gem_pwrite *args = data;
1033 struct drm_i915_gem_object *obj;
1034 int ret;
1035
1036 if (args->size == 0)
1037 return 0;
1038
1039 if (!access_ok(VERIFY_READ,
1040 to_user_ptr(args->data_ptr),
1041 args->size))
1042 return -EFAULT;
1043
1044 if (likely(!i915.prefault_disable)) {
1045 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1046 args->size);
1047 if (ret)
1048 return -EFAULT;
1049 }
1050
1051 intel_runtime_pm_get(dev_priv);
1052
1053 ret = i915_mutex_lock_interruptible(dev);
1054 if (ret)
1055 goto put_rpm;
1056
1057 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1058 if (&obj->base == NULL) {
1059 ret = -ENOENT;
1060 goto unlock;
1061 }
1062
1063 /* Bounds check destination. */
1064 if (args->offset > obj->base.size ||
1065 args->size > obj->base.size - args->offset) {
1066 ret = -EINVAL;
1067 goto out;
1068 }
1069
1070 /* prime objects have no backing filp to GEM pread/pwrite
1071 * pages from.
1072 */
1073 if (!obj->base.filp) {
1074 ret = -EINVAL;
1075 goto out;
1076 }
1077
1078 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1079
1080 ret = -EFAULT;
1081 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1082 * it would end up going through the fenced access, and we'll get
1083 * different detiling behavior between reading and writing.
1084 * pread/pwrite currently are reading and writing from the CPU
1085 * perspective, requiring manual detiling by the client.
1086 */
1087 if (obj->tiling_mode == I915_TILING_NONE &&
1088 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1089 cpu_write_needs_clflush(obj)) {
1090 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1091 /* Note that the gtt paths might fail with non-page-backed user
1092 * pointers (e.g. gtt mappings when moving data between
1093 * textures). Fallback to the shmem path in that case. */
1094 }
1095
1096 if (ret == -EFAULT || ret == -ENOSPC) {
1097 if (obj->phys_handle)
1098 ret = i915_gem_phys_pwrite(obj, args, file);
1099 else
1100 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1101 }
1102
1103 out:
1104 drm_gem_object_unreference(&obj->base);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 put_rpm:
1108 intel_runtime_pm_put(dev_priv);
1109
1110 return ret;
1111 }
1112
1113 int
1114 i915_gem_check_wedge(struct i915_gpu_error *error,
1115 bool interruptible)
1116 {
1117 if (i915_reset_in_progress(error)) {
1118 /* Non-interruptible callers can't handle -EAGAIN, hence return
1119 * -EIO unconditionally for these. */
1120 if (!interruptible)
1121 return -EIO;
1122
1123 /* Recovery complete, but the reset failed ... */
1124 if (i915_terminally_wedged(error))
1125 return -EIO;
1126
1127 /*
1128 * Check if GPU Reset is in progress - we need intel_ring_begin
1129 * to work properly to reinit the hw state while the gpu is
1130 * still marked as reset-in-progress. Handle this with a flag.
1131 */
1132 if (!error->reload_in_reset)
1133 return -EAGAIN;
1134 }
1135
1136 return 0;
1137 }
1138
1139 static void fake_irq(unsigned long data)
1140 {
1141 wake_up_process((struct task_struct *)data);
1142 }
1143
1144 static bool missed_irq(struct drm_i915_private *dev_priv,
1145 struct intel_engine_cs *engine)
1146 {
1147 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1148 }
1149
1150 static unsigned long local_clock_us(unsigned *cpu)
1151 {
1152 unsigned long t;
1153
1154 /* Cheaply and approximately convert from nanoseconds to microseconds.
1155 * The result and subsequent calculations are also defined in the same
1156 * approximate microseconds units. The principal source of timing
1157 * error here is from the simple truncation.
1158 *
1159 * Note that local_clock() is only defined wrt to the current CPU;
1160 * the comparisons are no longer valid if we switch CPUs. Instead of
1161 * blocking preemption for the entire busywait, we can detect the CPU
1162 * switch and use that as indicator of system load and a reason to
1163 * stop busywaiting, see busywait_stop().
1164 */
1165 *cpu = get_cpu();
1166 t = local_clock() >> 10;
1167 put_cpu();
1168
1169 return t;
1170 }
1171
1172 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1173 {
1174 unsigned this_cpu;
1175
1176 if (time_after(local_clock_us(&this_cpu), timeout))
1177 return true;
1178
1179 return this_cpu != cpu;
1180 }
1181
1182 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1183 {
1184 unsigned long timeout;
1185 unsigned cpu;
1186
1187 /* When waiting for high frequency requests, e.g. during synchronous
1188 * rendering split between the CPU and GPU, the finite amount of time
1189 * required to set up the irq and wait upon it limits the response
1190 * rate. By busywaiting on the request completion for a short while we
1191 * can service the high frequency waits as quick as possible. However,
1192 * if it is a slow request, we want to sleep as quickly as possible.
1193 * The tradeoff between waiting and sleeping is roughly the time it
1194 * takes to sleep on a request, on the order of a microsecond.
1195 */
1196
1197 if (req->engine->irq_refcount)
1198 return -EBUSY;
1199
1200 /* Only spin if we know the GPU is processing this request */
1201 if (!i915_gem_request_started(req, true))
1202 return -EAGAIN;
1203
1204 timeout = local_clock_us(&cpu) + 5;
1205 while (!need_resched()) {
1206 if (i915_gem_request_completed(req, true))
1207 return 0;
1208
1209 if (signal_pending_state(state, current))
1210 break;
1211
1212 if (busywait_stop(timeout, cpu))
1213 break;
1214
1215 cpu_relax_lowlatency();
1216 }
1217
1218 if (i915_gem_request_completed(req, false))
1219 return 0;
1220
1221 return -EAGAIN;
1222 }
1223
1224 /**
1225 * __i915_wait_request - wait until execution of request has finished
1226 * @req: duh!
1227 * @reset_counter: reset sequence associated with the given request
1228 * @interruptible: do an interruptible wait (normally yes)
1229 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1230 *
1231 * Note: It is of utmost importance that the passed in seqno and reset_counter
1232 * values have been read by the caller in an smp safe manner. Where read-side
1233 * locks are involved, it is sufficient to read the reset_counter before
1234 * unlocking the lock that protects the seqno. For lockless tricks, the
1235 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1236 * inserted.
1237 *
1238 * Returns 0 if the request was found within the alloted time. Else returns the
1239 * errno with remaining time filled in timeout argument.
1240 */
1241 int __i915_wait_request(struct drm_i915_gem_request *req,
1242 unsigned reset_counter,
1243 bool interruptible,
1244 s64 *timeout,
1245 struct intel_rps_client *rps)
1246 {
1247 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1248 struct drm_device *dev = engine->dev;
1249 struct drm_i915_private *dev_priv = dev->dev_private;
1250 const bool irq_test_in_progress =
1251 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1252 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1253 DEFINE_WAIT(wait);
1254 unsigned long timeout_expire;
1255 s64 before = 0; /* Only to silence a compiler warning. */
1256 int ret;
1257
1258 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1259
1260 if (list_empty(&req->list))
1261 return 0;
1262
1263 if (i915_gem_request_completed(req, true))
1264 return 0;
1265
1266 timeout_expire = 0;
1267 if (timeout) {
1268 if (WARN_ON(*timeout < 0))
1269 return -EINVAL;
1270
1271 if (*timeout == 0)
1272 return -ETIME;
1273
1274 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1275
1276 /*
1277 * Record current time in case interrupted by signal, or wedged.
1278 */
1279 before = ktime_get_raw_ns();
1280 }
1281
1282 if (INTEL_INFO(dev_priv)->gen >= 6)
1283 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1284
1285 trace_i915_gem_request_wait_begin(req);
1286
1287 /* Optimistic spin for the next jiffie before touching IRQs */
1288 ret = __i915_spin_request(req, state);
1289 if (ret == 0)
1290 goto out;
1291
1292 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1293 ret = -ENODEV;
1294 goto out;
1295 }
1296
1297 for (;;) {
1298 struct timer_list timer;
1299
1300 prepare_to_wait(&engine->irq_queue, &wait, state);
1301
1302 /* We need to check whether any gpu reset happened in between
1303 * the caller grabbing the seqno and now ... */
1304 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1305 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1306 * is truely gone. */
1307 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1308 if (ret == 0)
1309 ret = -EAGAIN;
1310 break;
1311 }
1312
1313 if (i915_gem_request_completed(req, false)) {
1314 ret = 0;
1315 break;
1316 }
1317
1318 if (signal_pending_state(state, current)) {
1319 ret = -ERESTARTSYS;
1320 break;
1321 }
1322
1323 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1324 ret = -ETIME;
1325 break;
1326 }
1327
1328 timer.function = NULL;
1329 if (timeout || missed_irq(dev_priv, engine)) {
1330 unsigned long expire;
1331
1332 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1333 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1334 mod_timer(&timer, expire);
1335 }
1336
1337 io_schedule();
1338
1339 if (timer.function) {
1340 del_singleshot_timer_sync(&timer);
1341 destroy_timer_on_stack(&timer);
1342 }
1343 }
1344 if (!irq_test_in_progress)
1345 engine->irq_put(engine);
1346
1347 finish_wait(&engine->irq_queue, &wait);
1348
1349 out:
1350 trace_i915_gem_request_wait_end(req);
1351
1352 if (timeout) {
1353 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1354
1355 *timeout = tres < 0 ? 0 : tres;
1356
1357 /*
1358 * Apparently ktime isn't accurate enough and occasionally has a
1359 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1360 * things up to make the test happy. We allow up to 1 jiffy.
1361 *
1362 * This is a regrssion from the timespec->ktime conversion.
1363 */
1364 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1365 *timeout = 0;
1366 }
1367
1368 return ret;
1369 }
1370
1371 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1372 struct drm_file *file)
1373 {
1374 struct drm_i915_file_private *file_priv;
1375
1376 WARN_ON(!req || !file || req->file_priv);
1377
1378 if (!req || !file)
1379 return -EINVAL;
1380
1381 if (req->file_priv)
1382 return -EINVAL;
1383
1384 file_priv = file->driver_priv;
1385
1386 spin_lock(&file_priv->mm.lock);
1387 req->file_priv = file_priv;
1388 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1389 spin_unlock(&file_priv->mm.lock);
1390
1391 req->pid = get_pid(task_pid(current));
1392
1393 return 0;
1394 }
1395
1396 static inline void
1397 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1398 {
1399 struct drm_i915_file_private *file_priv = request->file_priv;
1400
1401 if (!file_priv)
1402 return;
1403
1404 spin_lock(&file_priv->mm.lock);
1405 list_del(&request->client_list);
1406 request->file_priv = NULL;
1407 spin_unlock(&file_priv->mm.lock);
1408
1409 put_pid(request->pid);
1410 request->pid = NULL;
1411 }
1412
1413 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1414 {
1415 trace_i915_gem_request_retire(request);
1416
1417 /* We know the GPU must have read the request to have
1418 * sent us the seqno + interrupt, so use the position
1419 * of tail of the request to update the last known position
1420 * of the GPU head.
1421 *
1422 * Note this requires that we are always called in request
1423 * completion order.
1424 */
1425 request->ringbuf->last_retired_head = request->postfix;
1426
1427 list_del_init(&request->list);
1428 i915_gem_request_remove_from_client(request);
1429
1430 i915_gem_request_unreference(request);
1431 }
1432
1433 static void
1434 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1435 {
1436 struct intel_engine_cs *engine = req->engine;
1437 struct drm_i915_gem_request *tmp;
1438
1439 lockdep_assert_held(&engine->dev->struct_mutex);
1440
1441 if (list_empty(&req->list))
1442 return;
1443
1444 do {
1445 tmp = list_first_entry(&engine->request_list,
1446 typeof(*tmp), list);
1447
1448 i915_gem_request_retire(tmp);
1449 } while (tmp != req);
1450
1451 WARN_ON(i915_verify_lists(engine->dev));
1452 }
1453
1454 /**
1455 * Waits for a request to be signaled, and cleans up the
1456 * request and object lists appropriately for that event.
1457 */
1458 int
1459 i915_wait_request(struct drm_i915_gem_request *req)
1460 {
1461 struct drm_device *dev;
1462 struct drm_i915_private *dev_priv;
1463 bool interruptible;
1464 int ret;
1465
1466 BUG_ON(req == NULL);
1467
1468 dev = req->engine->dev;
1469 dev_priv = dev->dev_private;
1470 interruptible = dev_priv->mm.interruptible;
1471
1472 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1473
1474 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1475 if (ret)
1476 return ret;
1477
1478 ret = __i915_wait_request(req,
1479 atomic_read(&dev_priv->gpu_error.reset_counter),
1480 interruptible, NULL, NULL);
1481 if (ret)
1482 return ret;
1483
1484 __i915_gem_request_retire__upto(req);
1485 return 0;
1486 }
1487
1488 /**
1489 * Ensures that all rendering to the object has completed and the object is
1490 * safe to unbind from the GTT or access from the CPU.
1491 */
1492 int
1493 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1494 bool readonly)
1495 {
1496 int ret, i;
1497
1498 if (!obj->active)
1499 return 0;
1500
1501 if (readonly) {
1502 if (obj->last_write_req != NULL) {
1503 ret = i915_wait_request(obj->last_write_req);
1504 if (ret)
1505 return ret;
1506
1507 i = obj->last_write_req->engine->id;
1508 if (obj->last_read_req[i] == obj->last_write_req)
1509 i915_gem_object_retire__read(obj, i);
1510 else
1511 i915_gem_object_retire__write(obj);
1512 }
1513 } else {
1514 for (i = 0; i < I915_NUM_ENGINES; i++) {
1515 if (obj->last_read_req[i] == NULL)
1516 continue;
1517
1518 ret = i915_wait_request(obj->last_read_req[i]);
1519 if (ret)
1520 return ret;
1521
1522 i915_gem_object_retire__read(obj, i);
1523 }
1524 RQ_BUG_ON(obj->active);
1525 }
1526
1527 return 0;
1528 }
1529
1530 static void
1531 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1532 struct drm_i915_gem_request *req)
1533 {
1534 int ring = req->engine->id;
1535
1536 if (obj->last_read_req[ring] == req)
1537 i915_gem_object_retire__read(obj, ring);
1538 else if (obj->last_write_req == req)
1539 i915_gem_object_retire__write(obj);
1540
1541 __i915_gem_request_retire__upto(req);
1542 }
1543
1544 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1545 * as the object state may change during this call.
1546 */
1547 static __must_check int
1548 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1549 struct intel_rps_client *rps,
1550 bool readonly)
1551 {
1552 struct drm_device *dev = obj->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1555 unsigned reset_counter;
1556 int ret, i, n = 0;
1557
1558 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1559 BUG_ON(!dev_priv->mm.interruptible);
1560
1561 if (!obj->active)
1562 return 0;
1563
1564 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1565 if (ret)
1566 return ret;
1567
1568 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1569
1570 if (readonly) {
1571 struct drm_i915_gem_request *req;
1572
1573 req = obj->last_write_req;
1574 if (req == NULL)
1575 return 0;
1576
1577 requests[n++] = i915_gem_request_reference(req);
1578 } else {
1579 for (i = 0; i < I915_NUM_ENGINES; i++) {
1580 struct drm_i915_gem_request *req;
1581
1582 req = obj->last_read_req[i];
1583 if (req == NULL)
1584 continue;
1585
1586 requests[n++] = i915_gem_request_reference(req);
1587 }
1588 }
1589
1590 mutex_unlock(&dev->struct_mutex);
1591 for (i = 0; ret == 0 && i < n; i++)
1592 ret = __i915_wait_request(requests[i], reset_counter, true,
1593 NULL, rps);
1594 mutex_lock(&dev->struct_mutex);
1595
1596 for (i = 0; i < n; i++) {
1597 if (ret == 0)
1598 i915_gem_object_retire_request(obj, requests[i]);
1599 i915_gem_request_unreference(requests[i]);
1600 }
1601
1602 return ret;
1603 }
1604
1605 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1606 {
1607 struct drm_i915_file_private *fpriv = file->driver_priv;
1608 return &fpriv->rps;
1609 }
1610
1611 /**
1612 * Called when user space prepares to use an object with the CPU, either
1613 * through the mmap ioctl's mapping or a GTT mapping.
1614 */
1615 int
1616 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1617 struct drm_file *file)
1618 {
1619 struct drm_i915_gem_set_domain *args = data;
1620 struct drm_i915_gem_object *obj;
1621 uint32_t read_domains = args->read_domains;
1622 uint32_t write_domain = args->write_domain;
1623 int ret;
1624
1625 /* Only handle setting domains to types used by the CPU. */
1626 if (write_domain & I915_GEM_GPU_DOMAINS)
1627 return -EINVAL;
1628
1629 if (read_domains & I915_GEM_GPU_DOMAINS)
1630 return -EINVAL;
1631
1632 /* Having something in the write domain implies it's in the read
1633 * domain, and only that read domain. Enforce that in the request.
1634 */
1635 if (write_domain != 0 && read_domains != write_domain)
1636 return -EINVAL;
1637
1638 ret = i915_mutex_lock_interruptible(dev);
1639 if (ret)
1640 return ret;
1641
1642 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1643 if (&obj->base == NULL) {
1644 ret = -ENOENT;
1645 goto unlock;
1646 }
1647
1648 /* Try to flush the object off the GPU without holding the lock.
1649 * We will repeat the flush holding the lock in the normal manner
1650 * to catch cases where we are gazumped.
1651 */
1652 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1653 to_rps_client(file),
1654 !write_domain);
1655 if (ret)
1656 goto unref;
1657
1658 if (read_domains & I915_GEM_DOMAIN_GTT)
1659 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1660 else
1661 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1662
1663 if (write_domain != 0)
1664 intel_fb_obj_invalidate(obj,
1665 write_domain == I915_GEM_DOMAIN_GTT ?
1666 ORIGIN_GTT : ORIGIN_CPU);
1667
1668 unref:
1669 drm_gem_object_unreference(&obj->base);
1670 unlock:
1671 mutex_unlock(&dev->struct_mutex);
1672 return ret;
1673 }
1674
1675 /**
1676 * Called when user space has done writes to this buffer
1677 */
1678 int
1679 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1680 struct drm_file *file)
1681 {
1682 struct drm_i915_gem_sw_finish *args = data;
1683 struct drm_i915_gem_object *obj;
1684 int ret = 0;
1685
1686 ret = i915_mutex_lock_interruptible(dev);
1687 if (ret)
1688 return ret;
1689
1690 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1691 if (&obj->base == NULL) {
1692 ret = -ENOENT;
1693 goto unlock;
1694 }
1695
1696 /* Pinned buffers may be scanout, so flush the cache */
1697 if (obj->pin_display)
1698 i915_gem_object_flush_cpu_write_domain(obj);
1699
1700 drm_gem_object_unreference(&obj->base);
1701 unlock:
1702 mutex_unlock(&dev->struct_mutex);
1703 return ret;
1704 }
1705
1706 /**
1707 * Maps the contents of an object, returning the address it is mapped
1708 * into.
1709 *
1710 * While the mapping holds a reference on the contents of the object, it doesn't
1711 * imply a ref on the object itself.
1712 *
1713 * IMPORTANT:
1714 *
1715 * DRM driver writers who look a this function as an example for how to do GEM
1716 * mmap support, please don't implement mmap support like here. The modern way
1717 * to implement DRM mmap support is with an mmap offset ioctl (like
1718 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1719 * That way debug tooling like valgrind will understand what's going on, hiding
1720 * the mmap call in a driver private ioctl will break that. The i915 driver only
1721 * does cpu mmaps this way because we didn't know better.
1722 */
1723 int
1724 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1725 struct drm_file *file)
1726 {
1727 struct drm_i915_gem_mmap *args = data;
1728 struct drm_gem_object *obj;
1729 unsigned long addr;
1730
1731 if (args->flags & ~(I915_MMAP_WC))
1732 return -EINVAL;
1733
1734 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1735 return -ENODEV;
1736
1737 obj = drm_gem_object_lookup(dev, file, args->handle);
1738 if (obj == NULL)
1739 return -ENOENT;
1740
1741 /* prime objects have no backing filp to GEM mmap
1742 * pages from.
1743 */
1744 if (!obj->filp) {
1745 drm_gem_object_unreference_unlocked(obj);
1746 return -EINVAL;
1747 }
1748
1749 addr = vm_mmap(obj->filp, 0, args->size,
1750 PROT_READ | PROT_WRITE, MAP_SHARED,
1751 args->offset);
1752 if (args->flags & I915_MMAP_WC) {
1753 struct mm_struct *mm = current->mm;
1754 struct vm_area_struct *vma;
1755
1756 down_write(&mm->mmap_sem);
1757 vma = find_vma(mm, addr);
1758 if (vma)
1759 vma->vm_page_prot =
1760 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1761 else
1762 addr = -ENOMEM;
1763 up_write(&mm->mmap_sem);
1764 }
1765 drm_gem_object_unreference_unlocked(obj);
1766 if (IS_ERR((void *)addr))
1767 return addr;
1768
1769 args->addr_ptr = (uint64_t) addr;
1770
1771 return 0;
1772 }
1773
1774 /**
1775 * i915_gem_fault - fault a page into the GTT
1776 * @vma: VMA in question
1777 * @vmf: fault info
1778 *
1779 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1780 * from userspace. The fault handler takes care of binding the object to
1781 * the GTT (if needed), allocating and programming a fence register (again,
1782 * only if needed based on whether the old reg is still valid or the object
1783 * is tiled) and inserting a new PTE into the faulting process.
1784 *
1785 * Note that the faulting process may involve evicting existing objects
1786 * from the GTT and/or fence registers to make room. So performance may
1787 * suffer if the GTT working set is large or there are few fence registers
1788 * left.
1789 */
1790 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1791 {
1792 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1793 struct drm_device *dev = obj->base.dev;
1794 struct drm_i915_private *dev_priv = to_i915(dev);
1795 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1796 struct i915_ggtt_view view = i915_ggtt_view_normal;
1797 pgoff_t page_offset;
1798 unsigned long pfn;
1799 int ret = 0;
1800 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1801
1802 intel_runtime_pm_get(dev_priv);
1803
1804 /* We don't use vmf->pgoff since that has the fake offset */
1805 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1806 PAGE_SHIFT;
1807
1808 ret = i915_mutex_lock_interruptible(dev);
1809 if (ret)
1810 goto out;
1811
1812 trace_i915_gem_object_fault(obj, page_offset, true, write);
1813
1814 /* Try to flush the object off the GPU first without holding the lock.
1815 * Upon reacquiring the lock, we will perform our sanity checks and then
1816 * repeat the flush holding the lock in the normal manner to catch cases
1817 * where we are gazumped.
1818 */
1819 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1820 if (ret)
1821 goto unlock;
1822
1823 /* Access to snoopable pages through the GTT is incoherent. */
1824 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1825 ret = -EFAULT;
1826 goto unlock;
1827 }
1828
1829 /* Use a partial view if the object is bigger than the aperture. */
1830 if (obj->base.size >= ggtt->mappable_end &&
1831 obj->tiling_mode == I915_TILING_NONE) {
1832 static const unsigned int chunk_size = 256; // 1 MiB
1833
1834 memset(&view, 0, sizeof(view));
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.params.partial.offset = rounddown(page_offset, chunk_size);
1837 view.params.partial.size =
1838 min_t(unsigned int,
1839 chunk_size,
1840 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1841 view.params.partial.offset);
1842 }
1843
1844 /* Now pin it into the GTT if needed */
1845 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1846 if (ret)
1847 goto unlock;
1848
1849 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1850 if (ret)
1851 goto unpin;
1852
1853 ret = i915_gem_object_get_fence(obj);
1854 if (ret)
1855 goto unpin;
1856
1857 /* Finally, remap it using the new GTT offset */
1858 pfn = ggtt->mappable_base +
1859 i915_gem_obj_ggtt_offset_view(obj, &view);
1860 pfn >>= PAGE_SHIFT;
1861
1862 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1863 /* Overriding existing pages in partial view does not cause
1864 * us any trouble as TLBs are still valid because the fault
1865 * is due to userspace losing part of the mapping or never
1866 * having accessed it before (at this partials' range).
1867 */
1868 unsigned long base = vma->vm_start +
1869 (view.params.partial.offset << PAGE_SHIFT);
1870 unsigned int i;
1871
1872 for (i = 0; i < view.params.partial.size; i++) {
1873 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1874 if (ret)
1875 break;
1876 }
1877
1878 obj->fault_mappable = true;
1879 } else {
1880 if (!obj->fault_mappable) {
1881 unsigned long size = min_t(unsigned long,
1882 vma->vm_end - vma->vm_start,
1883 obj->base.size);
1884 int i;
1885
1886 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1887 ret = vm_insert_pfn(vma,
1888 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1889 pfn + i);
1890 if (ret)
1891 break;
1892 }
1893
1894 obj->fault_mappable = true;
1895 } else
1896 ret = vm_insert_pfn(vma,
1897 (unsigned long)vmf->virtual_address,
1898 pfn + page_offset);
1899 }
1900 unpin:
1901 i915_gem_object_ggtt_unpin_view(obj, &view);
1902 unlock:
1903 mutex_unlock(&dev->struct_mutex);
1904 out:
1905 switch (ret) {
1906 case -EIO:
1907 /*
1908 * We eat errors when the gpu is terminally wedged to avoid
1909 * userspace unduly crashing (gl has no provisions for mmaps to
1910 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1911 * and so needs to be reported.
1912 */
1913 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1914 ret = VM_FAULT_SIGBUS;
1915 break;
1916 }
1917 case -EAGAIN:
1918 /*
1919 * EAGAIN means the gpu is hung and we'll wait for the error
1920 * handler to reset everything when re-faulting in
1921 * i915_mutex_lock_interruptible.
1922 */
1923 case 0:
1924 case -ERESTARTSYS:
1925 case -EINTR:
1926 case -EBUSY:
1927 /*
1928 * EBUSY is ok: this just means that another thread
1929 * already did the job.
1930 */
1931 ret = VM_FAULT_NOPAGE;
1932 break;
1933 case -ENOMEM:
1934 ret = VM_FAULT_OOM;
1935 break;
1936 case -ENOSPC:
1937 case -EFAULT:
1938 ret = VM_FAULT_SIGBUS;
1939 break;
1940 default:
1941 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1942 ret = VM_FAULT_SIGBUS;
1943 break;
1944 }
1945
1946 intel_runtime_pm_put(dev_priv);
1947 return ret;
1948 }
1949
1950 /**
1951 * i915_gem_release_mmap - remove physical page mappings
1952 * @obj: obj in question
1953 *
1954 * Preserve the reservation of the mmapping with the DRM core code, but
1955 * relinquish ownership of the pages back to the system.
1956 *
1957 * It is vital that we remove the page mapping if we have mapped a tiled
1958 * object through the GTT and then lose the fence register due to
1959 * resource pressure. Similarly if the object has been moved out of the
1960 * aperture, than pages mapped into userspace must be revoked. Removing the
1961 * mapping will then trigger a page fault on the next user access, allowing
1962 * fixup by i915_gem_fault().
1963 */
1964 void
1965 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1966 {
1967 if (!obj->fault_mappable)
1968 return;
1969
1970 drm_vma_node_unmap(&obj->base.vma_node,
1971 obj->base.dev->anon_inode->i_mapping);
1972 obj->fault_mappable = false;
1973 }
1974
1975 void
1976 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1977 {
1978 struct drm_i915_gem_object *obj;
1979
1980 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1981 i915_gem_release_mmap(obj);
1982 }
1983
1984 uint32_t
1985 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1986 {
1987 uint32_t gtt_size;
1988
1989 if (INTEL_INFO(dev)->gen >= 4 ||
1990 tiling_mode == I915_TILING_NONE)
1991 return size;
1992
1993 /* Previous chips need a power-of-two fence region when tiling */
1994 if (INTEL_INFO(dev)->gen == 3)
1995 gtt_size = 1024*1024;
1996 else
1997 gtt_size = 512*1024;
1998
1999 while (gtt_size < size)
2000 gtt_size <<= 1;
2001
2002 return gtt_size;
2003 }
2004
2005 /**
2006 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2007 * @obj: object to check
2008 *
2009 * Return the required GTT alignment for an object, taking into account
2010 * potential fence register mapping.
2011 */
2012 uint32_t
2013 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2014 int tiling_mode, bool fenced)
2015 {
2016 /*
2017 * Minimum alignment is 4k (GTT page size), but might be greater
2018 * if a fence register is needed for the object.
2019 */
2020 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2021 tiling_mode == I915_TILING_NONE)
2022 return 4096;
2023
2024 /*
2025 * Previous chips need to be aligned to the size of the smallest
2026 * fence register that can contain the object.
2027 */
2028 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2029 }
2030
2031 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2032 {
2033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2034 int ret;
2035
2036 if (drm_vma_node_has_offset(&obj->base.vma_node))
2037 return 0;
2038
2039 dev_priv->mm.shrinker_no_lock_stealing = true;
2040
2041 ret = drm_gem_create_mmap_offset(&obj->base);
2042 if (ret != -ENOSPC)
2043 goto out;
2044
2045 /* Badly fragmented mmap space? The only way we can recover
2046 * space is by destroying unwanted objects. We can't randomly release
2047 * mmap_offsets as userspace expects them to be persistent for the
2048 * lifetime of the objects. The closest we can is to release the
2049 * offsets on purgeable objects by truncating it and marking it purged,
2050 * which prevents userspace from ever using that object again.
2051 */
2052 i915_gem_shrink(dev_priv,
2053 obj->base.size >> PAGE_SHIFT,
2054 I915_SHRINK_BOUND |
2055 I915_SHRINK_UNBOUND |
2056 I915_SHRINK_PURGEABLE);
2057 ret = drm_gem_create_mmap_offset(&obj->base);
2058 if (ret != -ENOSPC)
2059 goto out;
2060
2061 i915_gem_shrink_all(dev_priv);
2062 ret = drm_gem_create_mmap_offset(&obj->base);
2063 out:
2064 dev_priv->mm.shrinker_no_lock_stealing = false;
2065
2066 return ret;
2067 }
2068
2069 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2070 {
2071 drm_gem_free_mmap_offset(&obj->base);
2072 }
2073
2074 int
2075 i915_gem_mmap_gtt(struct drm_file *file,
2076 struct drm_device *dev,
2077 uint32_t handle,
2078 uint64_t *offset)
2079 {
2080 struct drm_i915_gem_object *obj;
2081 int ret;
2082
2083 ret = i915_mutex_lock_interruptible(dev);
2084 if (ret)
2085 return ret;
2086
2087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2088 if (&obj->base == NULL) {
2089 ret = -ENOENT;
2090 goto unlock;
2091 }
2092
2093 if (obj->madv != I915_MADV_WILLNEED) {
2094 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2095 ret = -EFAULT;
2096 goto out;
2097 }
2098
2099 ret = i915_gem_object_create_mmap_offset(obj);
2100 if (ret)
2101 goto out;
2102
2103 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2104
2105 out:
2106 drm_gem_object_unreference(&obj->base);
2107 unlock:
2108 mutex_unlock(&dev->struct_mutex);
2109 return ret;
2110 }
2111
2112 /**
2113 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2114 * @dev: DRM device
2115 * @data: GTT mapping ioctl data
2116 * @file: GEM object info
2117 *
2118 * Simply returns the fake offset to userspace so it can mmap it.
2119 * The mmap call will end up in drm_gem_mmap(), which will set things
2120 * up so we can get faults in the handler above.
2121 *
2122 * The fault handler will take care of binding the object into the GTT
2123 * (since it may have been evicted to make room for something), allocating
2124 * a fence register, and mapping the appropriate aperture address into
2125 * userspace.
2126 */
2127 int
2128 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2129 struct drm_file *file)
2130 {
2131 struct drm_i915_gem_mmap_gtt *args = data;
2132
2133 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2134 }
2135
2136 /* Immediately discard the backing storage */
2137 static void
2138 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2139 {
2140 i915_gem_object_free_mmap_offset(obj);
2141
2142 if (obj->base.filp == NULL)
2143 return;
2144
2145 /* Our goal here is to return as much of the memory as
2146 * is possible back to the system as we are called from OOM.
2147 * To do this we must instruct the shmfs to drop all of its
2148 * backing pages, *now*.
2149 */
2150 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2151 obj->madv = __I915_MADV_PURGED;
2152 }
2153
2154 /* Try to discard unwanted pages */
2155 static void
2156 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2157 {
2158 struct address_space *mapping;
2159
2160 switch (obj->madv) {
2161 case I915_MADV_DONTNEED:
2162 i915_gem_object_truncate(obj);
2163 case __I915_MADV_PURGED:
2164 return;
2165 }
2166
2167 if (obj->base.filp == NULL)
2168 return;
2169
2170 mapping = file_inode(obj->base.filp)->i_mapping,
2171 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2172 }
2173
2174 static void
2175 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2176 {
2177 struct sg_page_iter sg_iter;
2178 int ret;
2179
2180 BUG_ON(obj->madv == __I915_MADV_PURGED);
2181
2182 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2183 if (ret) {
2184 /* In the event of a disaster, abandon all caches and
2185 * hope for the best.
2186 */
2187 WARN_ON(ret != -EIO);
2188 i915_gem_clflush_object(obj, true);
2189 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2190 }
2191
2192 i915_gem_gtt_finish_object(obj);
2193
2194 if (i915_gem_object_needs_bit17_swizzle(obj))
2195 i915_gem_object_save_bit_17_swizzle(obj);
2196
2197 if (obj->madv == I915_MADV_DONTNEED)
2198 obj->dirty = 0;
2199
2200 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2201 struct page *page = sg_page_iter_page(&sg_iter);
2202
2203 if (obj->dirty)
2204 set_page_dirty(page);
2205
2206 if (obj->madv == I915_MADV_WILLNEED)
2207 mark_page_accessed(page);
2208
2209 put_page(page);
2210 }
2211 obj->dirty = 0;
2212
2213 sg_free_table(obj->pages);
2214 kfree(obj->pages);
2215 }
2216
2217 int
2218 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2219 {
2220 const struct drm_i915_gem_object_ops *ops = obj->ops;
2221
2222 if (obj->pages == NULL)
2223 return 0;
2224
2225 if (obj->pages_pin_count)
2226 return -EBUSY;
2227
2228 BUG_ON(i915_gem_obj_bound_any(obj));
2229
2230 /* ->put_pages might need to allocate memory for the bit17 swizzle
2231 * array, hence protect them from being reaped by removing them from gtt
2232 * lists early. */
2233 list_del(&obj->global_list);
2234
2235 if (obj->mapping) {
2236 if (is_vmalloc_addr(obj->mapping))
2237 vunmap(obj->mapping);
2238 else
2239 kunmap(kmap_to_page(obj->mapping));
2240 obj->mapping = NULL;
2241 }
2242
2243 ops->put_pages(obj);
2244 obj->pages = NULL;
2245
2246 i915_gem_object_invalidate(obj);
2247
2248 return 0;
2249 }
2250
2251 static int
2252 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2253 {
2254 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2255 int page_count, i;
2256 struct address_space *mapping;
2257 struct sg_table *st;
2258 struct scatterlist *sg;
2259 struct sg_page_iter sg_iter;
2260 struct page *page;
2261 unsigned long last_pfn = 0; /* suppress gcc warning */
2262 int ret;
2263 gfp_t gfp;
2264
2265 /* Assert that the object is not currently in any GPU domain. As it
2266 * wasn't in the GTT, there shouldn't be any way it could have been in
2267 * a GPU cache
2268 */
2269 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2270 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2271
2272 st = kmalloc(sizeof(*st), GFP_KERNEL);
2273 if (st == NULL)
2274 return -ENOMEM;
2275
2276 page_count = obj->base.size / PAGE_SIZE;
2277 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2278 kfree(st);
2279 return -ENOMEM;
2280 }
2281
2282 /* Get the list of pages out of our struct file. They'll be pinned
2283 * at this point until we release them.
2284 *
2285 * Fail silently without starting the shrinker
2286 */
2287 mapping = file_inode(obj->base.filp)->i_mapping;
2288 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2289 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2290 sg = st->sgl;
2291 st->nents = 0;
2292 for (i = 0; i < page_count; i++) {
2293 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2294 if (IS_ERR(page)) {
2295 i915_gem_shrink(dev_priv,
2296 page_count,
2297 I915_SHRINK_BOUND |
2298 I915_SHRINK_UNBOUND |
2299 I915_SHRINK_PURGEABLE);
2300 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2301 }
2302 if (IS_ERR(page)) {
2303 /* We've tried hard to allocate the memory by reaping
2304 * our own buffer, now let the real VM do its job and
2305 * go down in flames if truly OOM.
2306 */
2307 i915_gem_shrink_all(dev_priv);
2308 page = shmem_read_mapping_page(mapping, i);
2309 if (IS_ERR(page)) {
2310 ret = PTR_ERR(page);
2311 goto err_pages;
2312 }
2313 }
2314 #ifdef CONFIG_SWIOTLB
2315 if (swiotlb_nr_tbl()) {
2316 st->nents++;
2317 sg_set_page(sg, page, PAGE_SIZE, 0);
2318 sg = sg_next(sg);
2319 continue;
2320 }
2321 #endif
2322 if (!i || page_to_pfn(page) != last_pfn + 1) {
2323 if (i)
2324 sg = sg_next(sg);
2325 st->nents++;
2326 sg_set_page(sg, page, PAGE_SIZE, 0);
2327 } else {
2328 sg->length += PAGE_SIZE;
2329 }
2330 last_pfn = page_to_pfn(page);
2331
2332 /* Check that the i965g/gm workaround works. */
2333 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2334 }
2335 #ifdef CONFIG_SWIOTLB
2336 if (!swiotlb_nr_tbl())
2337 #endif
2338 sg_mark_end(sg);
2339 obj->pages = st;
2340
2341 ret = i915_gem_gtt_prepare_object(obj);
2342 if (ret)
2343 goto err_pages;
2344
2345 if (i915_gem_object_needs_bit17_swizzle(obj))
2346 i915_gem_object_do_bit_17_swizzle(obj);
2347
2348 if (obj->tiling_mode != I915_TILING_NONE &&
2349 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2350 i915_gem_object_pin_pages(obj);
2351
2352 return 0;
2353
2354 err_pages:
2355 sg_mark_end(sg);
2356 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2357 put_page(sg_page_iter_page(&sg_iter));
2358 sg_free_table(st);
2359 kfree(st);
2360
2361 /* shmemfs first checks if there is enough memory to allocate the page
2362 * and reports ENOSPC should there be insufficient, along with the usual
2363 * ENOMEM for a genuine allocation failure.
2364 *
2365 * We use ENOSPC in our driver to mean that we have run out of aperture
2366 * space and so want to translate the error from shmemfs back to our
2367 * usual understanding of ENOMEM.
2368 */
2369 if (ret == -ENOSPC)
2370 ret = -ENOMEM;
2371
2372 return ret;
2373 }
2374
2375 /* Ensure that the associated pages are gathered from the backing storage
2376 * and pinned into our object. i915_gem_object_get_pages() may be called
2377 * multiple times before they are released by a single call to
2378 * i915_gem_object_put_pages() - once the pages are no longer referenced
2379 * either as a result of memory pressure (reaping pages under the shrinker)
2380 * or as the object is itself released.
2381 */
2382 int
2383 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2384 {
2385 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2386 const struct drm_i915_gem_object_ops *ops = obj->ops;
2387 int ret;
2388
2389 if (obj->pages)
2390 return 0;
2391
2392 if (obj->madv != I915_MADV_WILLNEED) {
2393 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2394 return -EFAULT;
2395 }
2396
2397 BUG_ON(obj->pages_pin_count);
2398
2399 ret = ops->get_pages(obj);
2400 if (ret)
2401 return ret;
2402
2403 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2404
2405 obj->get_page.sg = obj->pages->sgl;
2406 obj->get_page.last = 0;
2407
2408 return 0;
2409 }
2410
2411 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2412 {
2413 int ret;
2414
2415 lockdep_assert_held(&obj->base.dev->struct_mutex);
2416
2417 ret = i915_gem_object_get_pages(obj);
2418 if (ret)
2419 return ERR_PTR(ret);
2420
2421 i915_gem_object_pin_pages(obj);
2422
2423 if (obj->mapping == NULL) {
2424 struct page **pages;
2425
2426 pages = NULL;
2427 if (obj->base.size == PAGE_SIZE)
2428 obj->mapping = kmap(sg_page(obj->pages->sgl));
2429 else
2430 pages = drm_malloc_gfp(obj->base.size >> PAGE_SHIFT,
2431 sizeof(*pages),
2432 GFP_TEMPORARY);
2433 if (pages != NULL) {
2434 struct sg_page_iter sg_iter;
2435 int n;
2436
2437 n = 0;
2438 for_each_sg_page(obj->pages->sgl, &sg_iter,
2439 obj->pages->nents, 0)
2440 pages[n++] = sg_page_iter_page(&sg_iter);
2441
2442 obj->mapping = vmap(pages, n, 0, PAGE_KERNEL);
2443 drm_free_large(pages);
2444 }
2445 if (obj->mapping == NULL) {
2446 i915_gem_object_unpin_pages(obj);
2447 return ERR_PTR(-ENOMEM);
2448 }
2449 }
2450
2451 return obj->mapping;
2452 }
2453
2454 void i915_vma_move_to_active(struct i915_vma *vma,
2455 struct drm_i915_gem_request *req)
2456 {
2457 struct drm_i915_gem_object *obj = vma->obj;
2458 struct intel_engine_cs *engine;
2459
2460 engine = i915_gem_request_get_engine(req);
2461
2462 /* Add a reference if we're newly entering the active list. */
2463 if (obj->active == 0)
2464 drm_gem_object_reference(&obj->base);
2465 obj->active |= intel_engine_flag(engine);
2466
2467 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2468 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2469
2470 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2471 }
2472
2473 static void
2474 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2475 {
2476 RQ_BUG_ON(obj->last_write_req == NULL);
2477 RQ_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2478
2479 i915_gem_request_assign(&obj->last_write_req, NULL);
2480 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2481 }
2482
2483 static void
2484 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2485 {
2486 struct i915_vma *vma;
2487
2488 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2489 RQ_BUG_ON(!(obj->active & (1 << ring)));
2490
2491 list_del_init(&obj->engine_list[ring]);
2492 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2493
2494 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2495 i915_gem_object_retire__write(obj);
2496
2497 obj->active &= ~(1 << ring);
2498 if (obj->active)
2499 return;
2500
2501 /* Bump our place on the bound list to keep it roughly in LRU order
2502 * so that we don't steal from recently used but inactive objects
2503 * (unless we are forced to ofc!)
2504 */
2505 list_move_tail(&obj->global_list,
2506 &to_i915(obj->base.dev)->mm.bound_list);
2507
2508 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2509 if (!list_empty(&vma->vm_link))
2510 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2511 }
2512
2513 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2514 drm_gem_object_unreference(&obj->base);
2515 }
2516
2517 static int
2518 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2519 {
2520 struct drm_i915_private *dev_priv = dev->dev_private;
2521 struct intel_engine_cs *engine;
2522 int ret;
2523
2524 /* Carefully retire all requests without writing to the rings */
2525 for_each_engine(engine, dev_priv) {
2526 ret = intel_engine_idle(engine);
2527 if (ret)
2528 return ret;
2529 }
2530 i915_gem_retire_requests(dev);
2531
2532 /* Finally reset hw state */
2533 for_each_engine(engine, dev_priv)
2534 intel_ring_init_seqno(engine, seqno);
2535
2536 return 0;
2537 }
2538
2539 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2540 {
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 int ret;
2543
2544 if (seqno == 0)
2545 return -EINVAL;
2546
2547 /* HWS page needs to be set less than what we
2548 * will inject to ring
2549 */
2550 ret = i915_gem_init_seqno(dev, seqno - 1);
2551 if (ret)
2552 return ret;
2553
2554 /* Carefully set the last_seqno value so that wrap
2555 * detection still works
2556 */
2557 dev_priv->next_seqno = seqno;
2558 dev_priv->last_seqno = seqno - 1;
2559 if (dev_priv->last_seqno == 0)
2560 dev_priv->last_seqno--;
2561
2562 return 0;
2563 }
2564
2565 int
2566 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2567 {
2568 struct drm_i915_private *dev_priv = dev->dev_private;
2569
2570 /* reserve 0 for non-seqno */
2571 if (dev_priv->next_seqno == 0) {
2572 int ret = i915_gem_init_seqno(dev, 0);
2573 if (ret)
2574 return ret;
2575
2576 dev_priv->next_seqno = 1;
2577 }
2578
2579 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2580 return 0;
2581 }
2582
2583 /*
2584 * NB: This function is not allowed to fail. Doing so would mean the the
2585 * request is not being tracked for completion but the work itself is
2586 * going to happen on the hardware. This would be a Bad Thing(tm).
2587 */
2588 void __i915_add_request(struct drm_i915_gem_request *request,
2589 struct drm_i915_gem_object *obj,
2590 bool flush_caches)
2591 {
2592 struct intel_engine_cs *engine;
2593 struct drm_i915_private *dev_priv;
2594 struct intel_ringbuffer *ringbuf;
2595 u32 request_start;
2596 int ret;
2597
2598 if (WARN_ON(request == NULL))
2599 return;
2600
2601 engine = request->engine;
2602 dev_priv = request->i915;
2603 ringbuf = request->ringbuf;
2604
2605 /*
2606 * To ensure that this call will not fail, space for its emissions
2607 * should already have been reserved in the ring buffer. Let the ring
2608 * know that it is time to use that space up.
2609 */
2610 intel_ring_reserved_space_use(ringbuf);
2611
2612 request_start = intel_ring_get_tail(ringbuf);
2613 /*
2614 * Emit any outstanding flushes - execbuf can fail to emit the flush
2615 * after having emitted the batchbuffer command. Hence we need to fix
2616 * things up similar to emitting the lazy request. The difference here
2617 * is that the flush _must_ happen before the next request, no matter
2618 * what.
2619 */
2620 if (flush_caches) {
2621 if (i915.enable_execlists)
2622 ret = logical_ring_flush_all_caches(request);
2623 else
2624 ret = intel_ring_flush_all_caches(request);
2625 /* Not allowed to fail! */
2626 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2627 }
2628
2629 trace_i915_gem_request_add(request);
2630
2631 request->head = request_start;
2632
2633 /* Whilst this request exists, batch_obj will be on the
2634 * active_list, and so will hold the active reference. Only when this
2635 * request is retired will the the batch_obj be moved onto the
2636 * inactive_list and lose its active reference. Hence we do not need
2637 * to explicitly hold another reference here.
2638 */
2639 request->batch_obj = obj;
2640
2641 /* Seal the request and mark it as pending execution. Note that
2642 * we may inspect this state, without holding any locks, during
2643 * hangcheck. Hence we apply the barrier to ensure that we do not
2644 * see a more recent value in the hws than we are tracking.
2645 */
2646 request->emitted_jiffies = jiffies;
2647 request->previous_seqno = engine->last_submitted_seqno;
2648 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2649 list_add_tail(&request->list, &engine->request_list);
2650
2651 /* Record the position of the start of the request so that
2652 * should we detect the updated seqno part-way through the
2653 * GPU processing the request, we never over-estimate the
2654 * position of the head.
2655 */
2656 request->postfix = intel_ring_get_tail(ringbuf);
2657
2658 if (i915.enable_execlists)
2659 ret = engine->emit_request(request);
2660 else {
2661 ret = engine->add_request(request);
2662
2663 request->tail = intel_ring_get_tail(ringbuf);
2664 }
2665 /* Not allowed to fail! */
2666 WARN(ret, "emit|add_request failed: %d!\n", ret);
2667
2668 i915_queue_hangcheck(engine->dev);
2669
2670 queue_delayed_work(dev_priv->wq,
2671 &dev_priv->mm.retire_work,
2672 round_jiffies_up_relative(HZ));
2673 intel_mark_busy(dev_priv->dev);
2674
2675 /* Sanity check that the reserved size was large enough. */
2676 intel_ring_reserved_space_end(ringbuf);
2677 }
2678
2679 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2680 const struct intel_context *ctx)
2681 {
2682 unsigned long elapsed;
2683
2684 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2685
2686 if (ctx->hang_stats.banned)
2687 return true;
2688
2689 if (ctx->hang_stats.ban_period_seconds &&
2690 elapsed <= ctx->hang_stats.ban_period_seconds) {
2691 if (!i915_gem_context_is_default(ctx)) {
2692 DRM_DEBUG("context hanging too fast, banning!\n");
2693 return true;
2694 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2695 if (i915_stop_ring_allow_warn(dev_priv))
2696 DRM_ERROR("gpu hanging too fast, banning!\n");
2697 return true;
2698 }
2699 }
2700
2701 return false;
2702 }
2703
2704 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2705 struct intel_context *ctx,
2706 const bool guilty)
2707 {
2708 struct i915_ctx_hang_stats *hs;
2709
2710 if (WARN_ON(!ctx))
2711 return;
2712
2713 hs = &ctx->hang_stats;
2714
2715 if (guilty) {
2716 hs->banned = i915_context_is_banned(dev_priv, ctx);
2717 hs->batch_active++;
2718 hs->guilty_ts = get_seconds();
2719 } else {
2720 hs->batch_pending++;
2721 }
2722 }
2723
2724 void i915_gem_request_free(struct kref *req_ref)
2725 {
2726 struct drm_i915_gem_request *req = container_of(req_ref,
2727 typeof(*req), ref);
2728 struct intel_context *ctx = req->ctx;
2729
2730 if (req->file_priv)
2731 i915_gem_request_remove_from_client(req);
2732
2733 if (ctx) {
2734 if (i915.enable_execlists && ctx != req->i915->kernel_context)
2735 intel_lr_context_unpin(ctx, req->engine);
2736
2737 i915_gem_context_unreference(ctx);
2738 }
2739
2740 kmem_cache_free(req->i915->requests, req);
2741 }
2742
2743 static inline int
2744 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2745 struct intel_context *ctx,
2746 struct drm_i915_gem_request **req_out)
2747 {
2748 struct drm_i915_private *dev_priv = to_i915(engine->dev);
2749 struct drm_i915_gem_request *req;
2750 int ret;
2751
2752 if (!req_out)
2753 return -EINVAL;
2754
2755 *req_out = NULL;
2756
2757 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2758 if (req == NULL)
2759 return -ENOMEM;
2760
2761 ret = i915_gem_get_seqno(engine->dev, &req->seqno);
2762 if (ret)
2763 goto err;
2764
2765 kref_init(&req->ref);
2766 req->i915 = dev_priv;
2767 req->engine = engine;
2768 req->ctx = ctx;
2769 i915_gem_context_reference(req->ctx);
2770
2771 if (i915.enable_execlists)
2772 ret = intel_logical_ring_alloc_request_extras(req);
2773 else
2774 ret = intel_ring_alloc_request_extras(req);
2775 if (ret) {
2776 i915_gem_context_unreference(req->ctx);
2777 goto err;
2778 }
2779
2780 /*
2781 * Reserve space in the ring buffer for all the commands required to
2782 * eventually emit this request. This is to guarantee that the
2783 * i915_add_request() call can't fail. Note that the reserve may need
2784 * to be redone if the request is not actually submitted straight
2785 * away, e.g. because a GPU scheduler has deferred it.
2786 */
2787 if (i915.enable_execlists)
2788 ret = intel_logical_ring_reserve_space(req);
2789 else
2790 ret = intel_ring_reserve_space(req);
2791 if (ret) {
2792 /*
2793 * At this point, the request is fully allocated even if not
2794 * fully prepared. Thus it can be cleaned up using the proper
2795 * free code.
2796 */
2797 i915_gem_request_cancel(req);
2798 return ret;
2799 }
2800
2801 *req_out = req;
2802 return 0;
2803
2804 err:
2805 kmem_cache_free(dev_priv->requests, req);
2806 return ret;
2807 }
2808
2809 /**
2810 * i915_gem_request_alloc - allocate a request structure
2811 *
2812 * @engine: engine that we wish to issue the request on.
2813 * @ctx: context that the request will be associated with.
2814 * This can be NULL if the request is not directly related to
2815 * any specific user context, in which case this function will
2816 * choose an appropriate context to use.
2817 *
2818 * Returns a pointer to the allocated request if successful,
2819 * or an error code if not.
2820 */
2821 struct drm_i915_gem_request *
2822 i915_gem_request_alloc(struct intel_engine_cs *engine,
2823 struct intel_context *ctx)
2824 {
2825 struct drm_i915_gem_request *req;
2826 int err;
2827
2828 if (ctx == NULL)
2829 ctx = to_i915(engine->dev)->kernel_context;
2830 err = __i915_gem_request_alloc(engine, ctx, &req);
2831 return err ? ERR_PTR(err) : req;
2832 }
2833
2834 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2835 {
2836 intel_ring_reserved_space_cancel(req->ringbuf);
2837
2838 i915_gem_request_unreference(req);
2839 }
2840
2841 struct drm_i915_gem_request *
2842 i915_gem_find_active_request(struct intel_engine_cs *engine)
2843 {
2844 struct drm_i915_gem_request *request;
2845
2846 list_for_each_entry(request, &engine->request_list, list) {
2847 if (i915_gem_request_completed(request, false))
2848 continue;
2849
2850 return request;
2851 }
2852
2853 return NULL;
2854 }
2855
2856 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2857 struct intel_engine_cs *engine)
2858 {
2859 struct drm_i915_gem_request *request;
2860 bool ring_hung;
2861
2862 request = i915_gem_find_active_request(engine);
2863
2864 if (request == NULL)
2865 return;
2866
2867 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2868
2869 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2870
2871 list_for_each_entry_continue(request, &engine->request_list, list)
2872 i915_set_reset_status(dev_priv, request->ctx, false);
2873 }
2874
2875 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2876 struct intel_engine_cs *engine)
2877 {
2878 struct intel_ringbuffer *buffer;
2879
2880 while (!list_empty(&engine->active_list)) {
2881 struct drm_i915_gem_object *obj;
2882
2883 obj = list_first_entry(&engine->active_list,
2884 struct drm_i915_gem_object,
2885 engine_list[engine->id]);
2886
2887 i915_gem_object_retire__read(obj, engine->id);
2888 }
2889
2890 /*
2891 * Clear the execlists queue up before freeing the requests, as those
2892 * are the ones that keep the context and ringbuffer backing objects
2893 * pinned in place.
2894 */
2895
2896 if (i915.enable_execlists) {
2897 /* Ensure irq handler finishes or is cancelled. */
2898 tasklet_kill(&engine->irq_tasklet);
2899
2900 spin_lock_bh(&engine->execlist_lock);
2901 /* list_splice_tail_init checks for empty lists */
2902 list_splice_tail_init(&engine->execlist_queue,
2903 &engine->execlist_retired_req_list);
2904 spin_unlock_bh(&engine->execlist_lock);
2905
2906 intel_execlists_retire_requests(engine);
2907 }
2908
2909 /*
2910 * We must free the requests after all the corresponding objects have
2911 * been moved off active lists. Which is the same order as the normal
2912 * retire_requests function does. This is important if object hold
2913 * implicit references on things like e.g. ppgtt address spaces through
2914 * the request.
2915 */
2916 while (!list_empty(&engine->request_list)) {
2917 struct drm_i915_gem_request *request;
2918
2919 request = list_first_entry(&engine->request_list,
2920 struct drm_i915_gem_request,
2921 list);
2922
2923 i915_gem_request_retire(request);
2924 }
2925
2926 /* Having flushed all requests from all queues, we know that all
2927 * ringbuffers must now be empty. However, since we do not reclaim
2928 * all space when retiring the request (to prevent HEADs colliding
2929 * with rapid ringbuffer wraparound) the amount of available space
2930 * upon reset is less than when we start. Do one more pass over
2931 * all the ringbuffers to reset last_retired_head.
2932 */
2933 list_for_each_entry(buffer, &engine->buffers, link) {
2934 buffer->last_retired_head = buffer->tail;
2935 intel_ring_update_space(buffer);
2936 }
2937
2938 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2939 }
2940
2941 void i915_gem_reset(struct drm_device *dev)
2942 {
2943 struct drm_i915_private *dev_priv = dev->dev_private;
2944 struct intel_engine_cs *engine;
2945
2946 /*
2947 * Before we free the objects from the requests, we need to inspect
2948 * them for finding the guilty party. As the requests only borrow
2949 * their reference to the objects, the inspection must be done first.
2950 */
2951 for_each_engine(engine, dev_priv)
2952 i915_gem_reset_engine_status(dev_priv, engine);
2953
2954 for_each_engine(engine, dev_priv)
2955 i915_gem_reset_engine_cleanup(dev_priv, engine);
2956
2957 i915_gem_context_reset(dev);
2958
2959 i915_gem_restore_fences(dev);
2960
2961 WARN_ON(i915_verify_lists(dev));
2962 }
2963
2964 /**
2965 * This function clears the request list as sequence numbers are passed.
2966 */
2967 void
2968 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2969 {
2970 WARN_ON(i915_verify_lists(engine->dev));
2971
2972 /* Retire requests first as we use it above for the early return.
2973 * If we retire requests last, we may use a later seqno and so clear
2974 * the requests lists without clearing the active list, leading to
2975 * confusion.
2976 */
2977 while (!list_empty(&engine->request_list)) {
2978 struct drm_i915_gem_request *request;
2979
2980 request = list_first_entry(&engine->request_list,
2981 struct drm_i915_gem_request,
2982 list);
2983
2984 if (!i915_gem_request_completed(request, true))
2985 break;
2986
2987 i915_gem_request_retire(request);
2988 }
2989
2990 /* Move any buffers on the active list that are no longer referenced
2991 * by the ringbuffer to the flushing/inactive lists as appropriate,
2992 * before we free the context associated with the requests.
2993 */
2994 while (!list_empty(&engine->active_list)) {
2995 struct drm_i915_gem_object *obj;
2996
2997 obj = list_first_entry(&engine->active_list,
2998 struct drm_i915_gem_object,
2999 engine_list[engine->id]);
3000
3001 if (!list_empty(&obj->last_read_req[engine->id]->list))
3002 break;
3003
3004 i915_gem_object_retire__read(obj, engine->id);
3005 }
3006
3007 if (unlikely(engine->trace_irq_req &&
3008 i915_gem_request_completed(engine->trace_irq_req, true))) {
3009 engine->irq_put(engine);
3010 i915_gem_request_assign(&engine->trace_irq_req, NULL);
3011 }
3012
3013 WARN_ON(i915_verify_lists(engine->dev));
3014 }
3015
3016 bool
3017 i915_gem_retire_requests(struct drm_device *dev)
3018 {
3019 struct drm_i915_private *dev_priv = dev->dev_private;
3020 struct intel_engine_cs *engine;
3021 bool idle = true;
3022
3023 for_each_engine(engine, dev_priv) {
3024 i915_gem_retire_requests_ring(engine);
3025 idle &= list_empty(&engine->request_list);
3026 if (i915.enable_execlists) {
3027 spin_lock_bh(&engine->execlist_lock);
3028 idle &= list_empty(&engine->execlist_queue);
3029 spin_unlock_bh(&engine->execlist_lock);
3030
3031 intel_execlists_retire_requests(engine);
3032 }
3033 }
3034
3035 if (idle)
3036 mod_delayed_work(dev_priv->wq,
3037 &dev_priv->mm.idle_work,
3038 msecs_to_jiffies(100));
3039
3040 return idle;
3041 }
3042
3043 static void
3044 i915_gem_retire_work_handler(struct work_struct *work)
3045 {
3046 struct drm_i915_private *dev_priv =
3047 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3048 struct drm_device *dev = dev_priv->dev;
3049 bool idle;
3050
3051 /* Come back later if the device is busy... */
3052 idle = false;
3053 if (mutex_trylock(&dev->struct_mutex)) {
3054 idle = i915_gem_retire_requests(dev);
3055 mutex_unlock(&dev->struct_mutex);
3056 }
3057 if (!idle)
3058 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3059 round_jiffies_up_relative(HZ));
3060 }
3061
3062 static void
3063 i915_gem_idle_work_handler(struct work_struct *work)
3064 {
3065 struct drm_i915_private *dev_priv =
3066 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3067 struct drm_device *dev = dev_priv->dev;
3068 struct intel_engine_cs *engine;
3069
3070 for_each_engine(engine, dev_priv)
3071 if (!list_empty(&engine->request_list))
3072 return;
3073
3074 /* we probably should sync with hangcheck here, using cancel_work_sync.
3075 * Also locking seems to be fubar here, engine->request_list is protected
3076 * by dev->struct_mutex. */
3077
3078 intel_mark_idle(dev);
3079
3080 if (mutex_trylock(&dev->struct_mutex)) {
3081 for_each_engine(engine, dev_priv)
3082 i915_gem_batch_pool_fini(&engine->batch_pool);
3083
3084 mutex_unlock(&dev->struct_mutex);
3085 }
3086 }
3087
3088 /**
3089 * Ensures that an object will eventually get non-busy by flushing any required
3090 * write domains, emitting any outstanding lazy request and retiring and
3091 * completed requests.
3092 */
3093 static int
3094 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3095 {
3096 int i;
3097
3098 if (!obj->active)
3099 return 0;
3100
3101 for (i = 0; i < I915_NUM_ENGINES; i++) {
3102 struct drm_i915_gem_request *req;
3103
3104 req = obj->last_read_req[i];
3105 if (req == NULL)
3106 continue;
3107
3108 if (list_empty(&req->list))
3109 goto retire;
3110
3111 if (i915_gem_request_completed(req, true)) {
3112 __i915_gem_request_retire__upto(req);
3113 retire:
3114 i915_gem_object_retire__read(obj, i);
3115 }
3116 }
3117
3118 return 0;
3119 }
3120
3121 /**
3122 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3123 * @DRM_IOCTL_ARGS: standard ioctl arguments
3124 *
3125 * Returns 0 if successful, else an error is returned with the remaining time in
3126 * the timeout parameter.
3127 * -ETIME: object is still busy after timeout
3128 * -ERESTARTSYS: signal interrupted the wait
3129 * -ENONENT: object doesn't exist
3130 * Also possible, but rare:
3131 * -EAGAIN: GPU wedged
3132 * -ENOMEM: damn
3133 * -ENODEV: Internal IRQ fail
3134 * -E?: The add request failed
3135 *
3136 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3137 * non-zero timeout parameter the wait ioctl will wait for the given number of
3138 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3139 * without holding struct_mutex the object may become re-busied before this
3140 * function completes. A similar but shorter * race condition exists in the busy
3141 * ioctl
3142 */
3143 int
3144 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3145 {
3146 struct drm_i915_private *dev_priv = dev->dev_private;
3147 struct drm_i915_gem_wait *args = data;
3148 struct drm_i915_gem_object *obj;
3149 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3150 unsigned reset_counter;
3151 int i, n = 0;
3152 int ret;
3153
3154 if (args->flags != 0)
3155 return -EINVAL;
3156
3157 ret = i915_mutex_lock_interruptible(dev);
3158 if (ret)
3159 return ret;
3160
3161 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3162 if (&obj->base == NULL) {
3163 mutex_unlock(&dev->struct_mutex);
3164 return -ENOENT;
3165 }
3166
3167 /* Need to make sure the object gets inactive eventually. */
3168 ret = i915_gem_object_flush_active(obj);
3169 if (ret)
3170 goto out;
3171
3172 if (!obj->active)
3173 goto out;
3174
3175 /* Do this after OLR check to make sure we make forward progress polling
3176 * on this IOCTL with a timeout == 0 (like busy ioctl)
3177 */
3178 if (args->timeout_ns == 0) {
3179 ret = -ETIME;
3180 goto out;
3181 }
3182
3183 drm_gem_object_unreference(&obj->base);
3184 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3185
3186 for (i = 0; i < I915_NUM_ENGINES; i++) {
3187 if (obj->last_read_req[i] == NULL)
3188 continue;
3189
3190 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3191 }
3192
3193 mutex_unlock(&dev->struct_mutex);
3194
3195 for (i = 0; i < n; i++) {
3196 if (ret == 0)
3197 ret = __i915_wait_request(req[i], reset_counter, true,
3198 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3199 to_rps_client(file));
3200 i915_gem_request_unreference__unlocked(req[i]);
3201 }
3202 return ret;
3203
3204 out:
3205 drm_gem_object_unreference(&obj->base);
3206 mutex_unlock(&dev->struct_mutex);
3207 return ret;
3208 }
3209
3210 static int
3211 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3212 struct intel_engine_cs *to,
3213 struct drm_i915_gem_request *from_req,
3214 struct drm_i915_gem_request **to_req)
3215 {
3216 struct intel_engine_cs *from;
3217 int ret;
3218
3219 from = i915_gem_request_get_engine(from_req);
3220 if (to == from)
3221 return 0;
3222
3223 if (i915_gem_request_completed(from_req, true))
3224 return 0;
3225
3226 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3227 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3228 ret = __i915_wait_request(from_req,
3229 atomic_read(&i915->gpu_error.reset_counter),
3230 i915->mm.interruptible,
3231 NULL,
3232 &i915->rps.semaphores);
3233 if (ret)
3234 return ret;
3235
3236 i915_gem_object_retire_request(obj, from_req);
3237 } else {
3238 int idx = intel_ring_sync_index(from, to);
3239 u32 seqno = i915_gem_request_get_seqno(from_req);
3240
3241 WARN_ON(!to_req);
3242
3243 if (seqno <= from->semaphore.sync_seqno[idx])
3244 return 0;
3245
3246 if (*to_req == NULL) {
3247 struct drm_i915_gem_request *req;
3248
3249 req = i915_gem_request_alloc(to, NULL);
3250 if (IS_ERR(req))
3251 return PTR_ERR(req);
3252
3253 *to_req = req;
3254 }
3255
3256 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3257 ret = to->semaphore.sync_to(*to_req, from, seqno);
3258 if (ret)
3259 return ret;
3260
3261 /* We use last_read_req because sync_to()
3262 * might have just caused seqno wrap under
3263 * the radar.
3264 */
3265 from->semaphore.sync_seqno[idx] =
3266 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3267 }
3268
3269 return 0;
3270 }
3271
3272 /**
3273 * i915_gem_object_sync - sync an object to a ring.
3274 *
3275 * @obj: object which may be in use on another ring.
3276 * @to: ring we wish to use the object on. May be NULL.
3277 * @to_req: request we wish to use the object for. See below.
3278 * This will be allocated and returned if a request is
3279 * required but not passed in.
3280 *
3281 * This code is meant to abstract object synchronization with the GPU.
3282 * Calling with NULL implies synchronizing the object with the CPU
3283 * rather than a particular GPU ring. Conceptually we serialise writes
3284 * between engines inside the GPU. We only allow one engine to write
3285 * into a buffer at any time, but multiple readers. To ensure each has
3286 * a coherent view of memory, we must:
3287 *
3288 * - If there is an outstanding write request to the object, the new
3289 * request must wait for it to complete (either CPU or in hw, requests
3290 * on the same ring will be naturally ordered).
3291 *
3292 * - If we are a write request (pending_write_domain is set), the new
3293 * request must wait for outstanding read requests to complete.
3294 *
3295 * For CPU synchronisation (NULL to) no request is required. For syncing with
3296 * rings to_req must be non-NULL. However, a request does not have to be
3297 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3298 * request will be allocated automatically and returned through *to_req. Note
3299 * that it is not guaranteed that commands will be emitted (because the system
3300 * might already be idle). Hence there is no need to create a request that
3301 * might never have any work submitted. Note further that if a request is
3302 * returned in *to_req, it is the responsibility of the caller to submit
3303 * that request (after potentially adding more work to it).
3304 *
3305 * Returns 0 if successful, else propagates up the lower layer error.
3306 */
3307 int
3308 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3309 struct intel_engine_cs *to,
3310 struct drm_i915_gem_request **to_req)
3311 {
3312 const bool readonly = obj->base.pending_write_domain == 0;
3313 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3314 int ret, i, n;
3315
3316 if (!obj->active)
3317 return 0;
3318
3319 if (to == NULL)
3320 return i915_gem_object_wait_rendering(obj, readonly);
3321
3322 n = 0;
3323 if (readonly) {
3324 if (obj->last_write_req)
3325 req[n++] = obj->last_write_req;
3326 } else {
3327 for (i = 0; i < I915_NUM_ENGINES; i++)
3328 if (obj->last_read_req[i])
3329 req[n++] = obj->last_read_req[i];
3330 }
3331 for (i = 0; i < n; i++) {
3332 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3333 if (ret)
3334 return ret;
3335 }
3336
3337 return 0;
3338 }
3339
3340 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3341 {
3342 u32 old_write_domain, old_read_domains;
3343
3344 /* Force a pagefault for domain tracking on next user access */
3345 i915_gem_release_mmap(obj);
3346
3347 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3348 return;
3349
3350 /* Wait for any direct GTT access to complete */
3351 mb();
3352
3353 old_read_domains = obj->base.read_domains;
3354 old_write_domain = obj->base.write_domain;
3355
3356 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3357 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3358
3359 trace_i915_gem_object_change_domain(obj,
3360 old_read_domains,
3361 old_write_domain);
3362 }
3363
3364 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3365 {
3366 struct drm_i915_gem_object *obj = vma->obj;
3367 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3368 int ret;
3369
3370 if (list_empty(&vma->obj_link))
3371 return 0;
3372
3373 if (!drm_mm_node_allocated(&vma->node)) {
3374 i915_gem_vma_destroy(vma);
3375 return 0;
3376 }
3377
3378 if (vma->pin_count)
3379 return -EBUSY;
3380
3381 BUG_ON(obj->pages == NULL);
3382
3383 if (wait) {
3384 ret = i915_gem_object_wait_rendering(obj, false);
3385 if (ret)
3386 return ret;
3387 }
3388
3389 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3390 i915_gem_object_finish_gtt(obj);
3391
3392 /* release the fence reg _after_ flushing */
3393 ret = i915_gem_object_put_fence(obj);
3394 if (ret)
3395 return ret;
3396 }
3397
3398 trace_i915_vma_unbind(vma);
3399
3400 vma->vm->unbind_vma(vma);
3401 vma->bound = 0;
3402
3403 list_del_init(&vma->vm_link);
3404 if (vma->is_ggtt) {
3405 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3406 obj->map_and_fenceable = false;
3407 } else if (vma->ggtt_view.pages) {
3408 sg_free_table(vma->ggtt_view.pages);
3409 kfree(vma->ggtt_view.pages);
3410 }
3411 vma->ggtt_view.pages = NULL;
3412 }
3413
3414 drm_mm_remove_node(&vma->node);
3415 i915_gem_vma_destroy(vma);
3416
3417 /* Since the unbound list is global, only move to that list if
3418 * no more VMAs exist. */
3419 if (list_empty(&obj->vma_list))
3420 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3421
3422 /* And finally now the object is completely decoupled from this vma,
3423 * we can drop its hold on the backing storage and allow it to be
3424 * reaped by the shrinker.
3425 */
3426 i915_gem_object_unpin_pages(obj);
3427
3428 return 0;
3429 }
3430
3431 int i915_vma_unbind(struct i915_vma *vma)
3432 {
3433 return __i915_vma_unbind(vma, true);
3434 }
3435
3436 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3437 {
3438 return __i915_vma_unbind(vma, false);
3439 }
3440
3441 int i915_gpu_idle(struct drm_device *dev)
3442 {
3443 struct drm_i915_private *dev_priv = dev->dev_private;
3444 struct intel_engine_cs *engine;
3445 int ret;
3446
3447 /* Flush everything onto the inactive list. */
3448 for_each_engine(engine, dev_priv) {
3449 if (!i915.enable_execlists) {
3450 struct drm_i915_gem_request *req;
3451
3452 req = i915_gem_request_alloc(engine, NULL);
3453 if (IS_ERR(req))
3454 return PTR_ERR(req);
3455
3456 ret = i915_switch_context(req);
3457 if (ret) {
3458 i915_gem_request_cancel(req);
3459 return ret;
3460 }
3461
3462 i915_add_request_no_flush(req);
3463 }
3464
3465 ret = intel_engine_idle(engine);
3466 if (ret)
3467 return ret;
3468 }
3469
3470 WARN_ON(i915_verify_lists(dev));
3471 return 0;
3472 }
3473
3474 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3475 unsigned long cache_level)
3476 {
3477 struct drm_mm_node *gtt_space = &vma->node;
3478 struct drm_mm_node *other;
3479
3480 /*
3481 * On some machines we have to be careful when putting differing types
3482 * of snoopable memory together to avoid the prefetcher crossing memory
3483 * domains and dying. During vm initialisation, we decide whether or not
3484 * these constraints apply and set the drm_mm.color_adjust
3485 * appropriately.
3486 */
3487 if (vma->vm->mm.color_adjust == NULL)
3488 return true;
3489
3490 if (!drm_mm_node_allocated(gtt_space))
3491 return true;
3492
3493 if (list_empty(&gtt_space->node_list))
3494 return true;
3495
3496 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3497 if (other->allocated && !other->hole_follows && other->color != cache_level)
3498 return false;
3499
3500 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3501 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3502 return false;
3503
3504 return true;
3505 }
3506
3507 /**
3508 * Finds free space in the GTT aperture and binds the object or a view of it
3509 * there.
3510 */
3511 static struct i915_vma *
3512 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3513 struct i915_address_space *vm,
3514 const struct i915_ggtt_view *ggtt_view,
3515 unsigned alignment,
3516 uint64_t flags)
3517 {
3518 struct drm_device *dev = obj->base.dev;
3519 struct drm_i915_private *dev_priv = to_i915(dev);
3520 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3521 u32 fence_alignment, unfenced_alignment;
3522 u32 search_flag, alloc_flag;
3523 u64 start, end;
3524 u64 size, fence_size;
3525 struct i915_vma *vma;
3526 int ret;
3527
3528 if (i915_is_ggtt(vm)) {
3529 u32 view_size;
3530
3531 if (WARN_ON(!ggtt_view))
3532 return ERR_PTR(-EINVAL);
3533
3534 view_size = i915_ggtt_view_size(obj, ggtt_view);
3535
3536 fence_size = i915_gem_get_gtt_size(dev,
3537 view_size,
3538 obj->tiling_mode);
3539 fence_alignment = i915_gem_get_gtt_alignment(dev,
3540 view_size,
3541 obj->tiling_mode,
3542 true);
3543 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3544 view_size,
3545 obj->tiling_mode,
3546 false);
3547 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3548 } else {
3549 fence_size = i915_gem_get_gtt_size(dev,
3550 obj->base.size,
3551 obj->tiling_mode);
3552 fence_alignment = i915_gem_get_gtt_alignment(dev,
3553 obj->base.size,
3554 obj->tiling_mode,
3555 true);
3556 unfenced_alignment =
3557 i915_gem_get_gtt_alignment(dev,
3558 obj->base.size,
3559 obj->tiling_mode,
3560 false);
3561 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3562 }
3563
3564 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3565 end = vm->total;
3566 if (flags & PIN_MAPPABLE)
3567 end = min_t(u64, end, ggtt->mappable_end);
3568 if (flags & PIN_ZONE_4G)
3569 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3570
3571 if (alignment == 0)
3572 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3573 unfenced_alignment;
3574 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3575 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3576 ggtt_view ? ggtt_view->type : 0,
3577 alignment);
3578 return ERR_PTR(-EINVAL);
3579 }
3580
3581 /* If binding the object/GGTT view requires more space than the entire
3582 * aperture has, reject it early before evicting everything in a vain
3583 * attempt to find space.
3584 */
3585 if (size > end) {
3586 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3587 ggtt_view ? ggtt_view->type : 0,
3588 size,
3589 flags & PIN_MAPPABLE ? "mappable" : "total",
3590 end);
3591 return ERR_PTR(-E2BIG);
3592 }
3593
3594 ret = i915_gem_object_get_pages(obj);
3595 if (ret)
3596 return ERR_PTR(ret);
3597
3598 i915_gem_object_pin_pages(obj);
3599
3600 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3601 i915_gem_obj_lookup_or_create_vma(obj, vm);
3602
3603 if (IS_ERR(vma))
3604 goto err_unpin;
3605
3606 if (flags & PIN_OFFSET_FIXED) {
3607 uint64_t offset = flags & PIN_OFFSET_MASK;
3608
3609 if (offset & (alignment - 1) || offset + size > end) {
3610 ret = -EINVAL;
3611 goto err_free_vma;
3612 }
3613 vma->node.start = offset;
3614 vma->node.size = size;
3615 vma->node.color = obj->cache_level;
3616 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3617 if (ret) {
3618 ret = i915_gem_evict_for_vma(vma);
3619 if (ret == 0)
3620 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3621 }
3622 if (ret)
3623 goto err_free_vma;
3624 } else {
3625 if (flags & PIN_HIGH) {
3626 search_flag = DRM_MM_SEARCH_BELOW;
3627 alloc_flag = DRM_MM_CREATE_TOP;
3628 } else {
3629 search_flag = DRM_MM_SEARCH_DEFAULT;
3630 alloc_flag = DRM_MM_CREATE_DEFAULT;
3631 }
3632
3633 search_free:
3634 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3635 size, alignment,
3636 obj->cache_level,
3637 start, end,
3638 search_flag,
3639 alloc_flag);
3640 if (ret) {
3641 ret = i915_gem_evict_something(dev, vm, size, alignment,
3642 obj->cache_level,
3643 start, end,
3644 flags);
3645 if (ret == 0)
3646 goto search_free;
3647
3648 goto err_free_vma;
3649 }
3650 }
3651 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3652 ret = -EINVAL;
3653 goto err_remove_node;
3654 }
3655
3656 trace_i915_vma_bind(vma, flags);
3657 ret = i915_vma_bind(vma, obj->cache_level, flags);
3658 if (ret)
3659 goto err_remove_node;
3660
3661 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3662 list_add_tail(&vma->vm_link, &vm->inactive_list);
3663
3664 return vma;
3665
3666 err_remove_node:
3667 drm_mm_remove_node(&vma->node);
3668 err_free_vma:
3669 i915_gem_vma_destroy(vma);
3670 vma = ERR_PTR(ret);
3671 err_unpin:
3672 i915_gem_object_unpin_pages(obj);
3673 return vma;
3674 }
3675
3676 bool
3677 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3678 bool force)
3679 {
3680 /* If we don't have a page list set up, then we're not pinned
3681 * to GPU, and we can ignore the cache flush because it'll happen
3682 * again at bind time.
3683 */
3684 if (obj->pages == NULL)
3685 return false;
3686
3687 /*
3688 * Stolen memory is always coherent with the GPU as it is explicitly
3689 * marked as wc by the system, or the system is cache-coherent.
3690 */
3691 if (obj->stolen || obj->phys_handle)
3692 return false;
3693
3694 /* If the GPU is snooping the contents of the CPU cache,
3695 * we do not need to manually clear the CPU cache lines. However,
3696 * the caches are only snooped when the render cache is
3697 * flushed/invalidated. As we always have to emit invalidations
3698 * and flushes when moving into and out of the RENDER domain, correct
3699 * snooping behaviour occurs naturally as the result of our domain
3700 * tracking.
3701 */
3702 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3703 obj->cache_dirty = true;
3704 return false;
3705 }
3706
3707 trace_i915_gem_object_clflush(obj);
3708 drm_clflush_sg(obj->pages);
3709 obj->cache_dirty = false;
3710
3711 return true;
3712 }
3713
3714 /** Flushes the GTT write domain for the object if it's dirty. */
3715 static void
3716 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3717 {
3718 uint32_t old_write_domain;
3719
3720 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3721 return;
3722
3723 /* No actual flushing is required for the GTT write domain. Writes
3724 * to it immediately go to main memory as far as we know, so there's
3725 * no chipset flush. It also doesn't land in render cache.
3726 *
3727 * However, we do have to enforce the order so that all writes through
3728 * the GTT land before any writes to the device, such as updates to
3729 * the GATT itself.
3730 */
3731 wmb();
3732
3733 old_write_domain = obj->base.write_domain;
3734 obj->base.write_domain = 0;
3735
3736 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3737
3738 trace_i915_gem_object_change_domain(obj,
3739 obj->base.read_domains,
3740 old_write_domain);
3741 }
3742
3743 /** Flushes the CPU write domain for the object if it's dirty. */
3744 static void
3745 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3746 {
3747 uint32_t old_write_domain;
3748
3749 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3750 return;
3751
3752 if (i915_gem_clflush_object(obj, obj->pin_display))
3753 i915_gem_chipset_flush(obj->base.dev);
3754
3755 old_write_domain = obj->base.write_domain;
3756 obj->base.write_domain = 0;
3757
3758 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3759
3760 trace_i915_gem_object_change_domain(obj,
3761 obj->base.read_domains,
3762 old_write_domain);
3763 }
3764
3765 /**
3766 * Moves a single object to the GTT read, and possibly write domain.
3767 *
3768 * This function returns when the move is complete, including waiting on
3769 * flushes to occur.
3770 */
3771 int
3772 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3773 {
3774 struct drm_device *dev = obj->base.dev;
3775 struct drm_i915_private *dev_priv = to_i915(dev);
3776 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3777 uint32_t old_write_domain, old_read_domains;
3778 struct i915_vma *vma;
3779 int ret;
3780
3781 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3782 return 0;
3783
3784 ret = i915_gem_object_wait_rendering(obj, !write);
3785 if (ret)
3786 return ret;
3787
3788 /* Flush and acquire obj->pages so that we are coherent through
3789 * direct access in memory with previous cached writes through
3790 * shmemfs and that our cache domain tracking remains valid.
3791 * For example, if the obj->filp was moved to swap without us
3792 * being notified and releasing the pages, we would mistakenly
3793 * continue to assume that the obj remained out of the CPU cached
3794 * domain.
3795 */
3796 ret = i915_gem_object_get_pages(obj);
3797 if (ret)
3798 return ret;
3799
3800 i915_gem_object_flush_cpu_write_domain(obj);
3801
3802 /* Serialise direct access to this object with the barriers for
3803 * coherent writes from the GPU, by effectively invalidating the
3804 * GTT domain upon first access.
3805 */
3806 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3807 mb();
3808
3809 old_write_domain = obj->base.write_domain;
3810 old_read_domains = obj->base.read_domains;
3811
3812 /* It should now be out of any other write domains, and we can update
3813 * the domain values for our changes.
3814 */
3815 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3816 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3817 if (write) {
3818 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3819 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3820 obj->dirty = 1;
3821 }
3822
3823 trace_i915_gem_object_change_domain(obj,
3824 old_read_domains,
3825 old_write_domain);
3826
3827 /* And bump the LRU for this access */
3828 vma = i915_gem_obj_to_ggtt(obj);
3829 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3830 list_move_tail(&vma->vm_link,
3831 &ggtt->base.inactive_list);
3832
3833 return 0;
3834 }
3835
3836 /**
3837 * Changes the cache-level of an object across all VMA.
3838 *
3839 * After this function returns, the object will be in the new cache-level
3840 * across all GTT and the contents of the backing storage will be coherent,
3841 * with respect to the new cache-level. In order to keep the backing storage
3842 * coherent for all users, we only allow a single cache level to be set
3843 * globally on the object and prevent it from being changed whilst the
3844 * hardware is reading from the object. That is if the object is currently
3845 * on the scanout it will be set to uncached (or equivalent display
3846 * cache coherency) and all non-MOCS GPU access will also be uncached so
3847 * that all direct access to the scanout remains coherent.
3848 */
3849 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3850 enum i915_cache_level cache_level)
3851 {
3852 struct drm_device *dev = obj->base.dev;
3853 struct i915_vma *vma, *next;
3854 bool bound = false;
3855 int ret = 0;
3856
3857 if (obj->cache_level == cache_level)
3858 goto out;
3859
3860 /* Inspect the list of currently bound VMA and unbind any that would
3861 * be invalid given the new cache-level. This is principally to
3862 * catch the issue of the CS prefetch crossing page boundaries and
3863 * reading an invalid PTE on older architectures.
3864 */
3865 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3866 if (!drm_mm_node_allocated(&vma->node))
3867 continue;
3868
3869 if (vma->pin_count) {
3870 DRM_DEBUG("can not change the cache level of pinned objects\n");
3871 return -EBUSY;
3872 }
3873
3874 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3875 ret = i915_vma_unbind(vma);
3876 if (ret)
3877 return ret;
3878 } else
3879 bound = true;
3880 }
3881
3882 /* We can reuse the existing drm_mm nodes but need to change the
3883 * cache-level on the PTE. We could simply unbind them all and
3884 * rebind with the correct cache-level on next use. However since
3885 * we already have a valid slot, dma mapping, pages etc, we may as
3886 * rewrite the PTE in the belief that doing so tramples upon less
3887 * state and so involves less work.
3888 */
3889 if (bound) {
3890 /* Before we change the PTE, the GPU must not be accessing it.
3891 * If we wait upon the object, we know that all the bound
3892 * VMA are no longer active.
3893 */
3894 ret = i915_gem_object_wait_rendering(obj, false);
3895 if (ret)
3896 return ret;
3897
3898 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3899 /* Access to snoopable pages through the GTT is
3900 * incoherent and on some machines causes a hard
3901 * lockup. Relinquish the CPU mmaping to force
3902 * userspace to refault in the pages and we can
3903 * then double check if the GTT mapping is still
3904 * valid for that pointer access.
3905 */
3906 i915_gem_release_mmap(obj);
3907
3908 /* As we no longer need a fence for GTT access,
3909 * we can relinquish it now (and so prevent having
3910 * to steal a fence from someone else on the next
3911 * fence request). Note GPU activity would have
3912 * dropped the fence as all snoopable access is
3913 * supposed to be linear.
3914 */
3915 ret = i915_gem_object_put_fence(obj);
3916 if (ret)
3917 return ret;
3918 } else {
3919 /* We either have incoherent backing store and
3920 * so no GTT access or the architecture is fully
3921 * coherent. In such cases, existing GTT mmaps
3922 * ignore the cache bit in the PTE and we can
3923 * rewrite it without confusing the GPU or having
3924 * to force userspace to fault back in its mmaps.
3925 */
3926 }
3927
3928 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3929 if (!drm_mm_node_allocated(&vma->node))
3930 continue;
3931
3932 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3933 if (ret)
3934 return ret;
3935 }
3936 }
3937
3938 list_for_each_entry(vma, &obj->vma_list, obj_link)
3939 vma->node.color = cache_level;
3940 obj->cache_level = cache_level;
3941
3942 out:
3943 /* Flush the dirty CPU caches to the backing storage so that the
3944 * object is now coherent at its new cache level (with respect
3945 * to the access domain).
3946 */
3947 if (obj->cache_dirty &&
3948 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3949 cpu_write_needs_clflush(obj)) {
3950 if (i915_gem_clflush_object(obj, true))
3951 i915_gem_chipset_flush(obj->base.dev);
3952 }
3953
3954 return 0;
3955 }
3956
3957 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3958 struct drm_file *file)
3959 {
3960 struct drm_i915_gem_caching *args = data;
3961 struct drm_i915_gem_object *obj;
3962
3963 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3964 if (&obj->base == NULL)
3965 return -ENOENT;
3966
3967 switch (obj->cache_level) {
3968 case I915_CACHE_LLC:
3969 case I915_CACHE_L3_LLC:
3970 args->caching = I915_CACHING_CACHED;
3971 break;
3972
3973 case I915_CACHE_WT:
3974 args->caching = I915_CACHING_DISPLAY;
3975 break;
3976
3977 default:
3978 args->caching = I915_CACHING_NONE;
3979 break;
3980 }
3981
3982 drm_gem_object_unreference_unlocked(&obj->base);
3983 return 0;
3984 }
3985
3986 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3987 struct drm_file *file)
3988 {
3989 struct drm_i915_private *dev_priv = dev->dev_private;
3990 struct drm_i915_gem_caching *args = data;
3991 struct drm_i915_gem_object *obj;
3992 enum i915_cache_level level;
3993 int ret;
3994
3995 switch (args->caching) {
3996 case I915_CACHING_NONE:
3997 level = I915_CACHE_NONE;
3998 break;
3999 case I915_CACHING_CACHED:
4000 /*
4001 * Due to a HW issue on BXT A stepping, GPU stores via a
4002 * snooped mapping may leave stale data in a corresponding CPU
4003 * cacheline, whereas normally such cachelines would get
4004 * invalidated.
4005 */
4006 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4007 return -ENODEV;
4008
4009 level = I915_CACHE_LLC;
4010 break;
4011 case I915_CACHING_DISPLAY:
4012 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4013 break;
4014 default:
4015 return -EINVAL;
4016 }
4017
4018 intel_runtime_pm_get(dev_priv);
4019
4020 ret = i915_mutex_lock_interruptible(dev);
4021 if (ret)
4022 goto rpm_put;
4023
4024 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4025 if (&obj->base == NULL) {
4026 ret = -ENOENT;
4027 goto unlock;
4028 }
4029
4030 ret = i915_gem_object_set_cache_level(obj, level);
4031
4032 drm_gem_object_unreference(&obj->base);
4033 unlock:
4034 mutex_unlock(&dev->struct_mutex);
4035 rpm_put:
4036 intel_runtime_pm_put(dev_priv);
4037
4038 return ret;
4039 }
4040
4041 /*
4042 * Prepare buffer for display plane (scanout, cursors, etc).
4043 * Can be called from an uninterruptible phase (modesetting) and allows
4044 * any flushes to be pipelined (for pageflips).
4045 */
4046 int
4047 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4048 u32 alignment,
4049 const struct i915_ggtt_view *view)
4050 {
4051 u32 old_read_domains, old_write_domain;
4052 int ret;
4053
4054 /* Mark the pin_display early so that we account for the
4055 * display coherency whilst setting up the cache domains.
4056 */
4057 obj->pin_display++;
4058
4059 /* The display engine is not coherent with the LLC cache on gen6. As
4060 * a result, we make sure that the pinning that is about to occur is
4061 * done with uncached PTEs. This is lowest common denominator for all
4062 * chipsets.
4063 *
4064 * However for gen6+, we could do better by using the GFDT bit instead
4065 * of uncaching, which would allow us to flush all the LLC-cached data
4066 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4067 */
4068 ret = i915_gem_object_set_cache_level(obj,
4069 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4070 if (ret)
4071 goto err_unpin_display;
4072
4073 /* As the user may map the buffer once pinned in the display plane
4074 * (e.g. libkms for the bootup splash), we have to ensure that we
4075 * always use map_and_fenceable for all scanout buffers.
4076 */
4077 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4078 view->type == I915_GGTT_VIEW_NORMAL ?
4079 PIN_MAPPABLE : 0);
4080 if (ret)
4081 goto err_unpin_display;
4082
4083 i915_gem_object_flush_cpu_write_domain(obj);
4084
4085 old_write_domain = obj->base.write_domain;
4086 old_read_domains = obj->base.read_domains;
4087
4088 /* It should now be out of any other write domains, and we can update
4089 * the domain values for our changes.
4090 */
4091 obj->base.write_domain = 0;
4092 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4093
4094 trace_i915_gem_object_change_domain(obj,
4095 old_read_domains,
4096 old_write_domain);
4097
4098 return 0;
4099
4100 err_unpin_display:
4101 obj->pin_display--;
4102 return ret;
4103 }
4104
4105 void
4106 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4107 const struct i915_ggtt_view *view)
4108 {
4109 if (WARN_ON(obj->pin_display == 0))
4110 return;
4111
4112 i915_gem_object_ggtt_unpin_view(obj, view);
4113
4114 obj->pin_display--;
4115 }
4116
4117 /**
4118 * Moves a single object to the CPU read, and possibly write domain.
4119 *
4120 * This function returns when the move is complete, including waiting on
4121 * flushes to occur.
4122 */
4123 int
4124 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4125 {
4126 uint32_t old_write_domain, old_read_domains;
4127 int ret;
4128
4129 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4130 return 0;
4131
4132 ret = i915_gem_object_wait_rendering(obj, !write);
4133 if (ret)
4134 return ret;
4135
4136 i915_gem_object_flush_gtt_write_domain(obj);
4137
4138 old_write_domain = obj->base.write_domain;
4139 old_read_domains = obj->base.read_domains;
4140
4141 /* Flush the CPU cache if it's still invalid. */
4142 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4143 i915_gem_clflush_object(obj, false);
4144
4145 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4146 }
4147
4148 /* It should now be out of any other write domains, and we can update
4149 * the domain values for our changes.
4150 */
4151 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4152
4153 /* If we're writing through the CPU, then the GPU read domains will
4154 * need to be invalidated at next use.
4155 */
4156 if (write) {
4157 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4158 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4159 }
4160
4161 trace_i915_gem_object_change_domain(obj,
4162 old_read_domains,
4163 old_write_domain);
4164
4165 return 0;
4166 }
4167
4168 /* Throttle our rendering by waiting until the ring has completed our requests
4169 * emitted over 20 msec ago.
4170 *
4171 * Note that if we were to use the current jiffies each time around the loop,
4172 * we wouldn't escape the function with any frames outstanding if the time to
4173 * render a frame was over 20ms.
4174 *
4175 * This should get us reasonable parallelism between CPU and GPU but also
4176 * relatively low latency when blocking on a particular request to finish.
4177 */
4178 static int
4179 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4180 {
4181 struct drm_i915_private *dev_priv = dev->dev_private;
4182 struct drm_i915_file_private *file_priv = file->driver_priv;
4183 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4184 struct drm_i915_gem_request *request, *target = NULL;
4185 unsigned reset_counter;
4186 int ret;
4187
4188 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4189 if (ret)
4190 return ret;
4191
4192 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4193 if (ret)
4194 return ret;
4195
4196 spin_lock(&file_priv->mm.lock);
4197 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4198 if (time_after_eq(request->emitted_jiffies, recent_enough))
4199 break;
4200
4201 /*
4202 * Note that the request might not have been submitted yet.
4203 * In which case emitted_jiffies will be zero.
4204 */
4205 if (!request->emitted_jiffies)
4206 continue;
4207
4208 target = request;
4209 }
4210 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4211 if (target)
4212 i915_gem_request_reference(target);
4213 spin_unlock(&file_priv->mm.lock);
4214
4215 if (target == NULL)
4216 return 0;
4217
4218 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4219 if (ret == 0)
4220 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4221
4222 i915_gem_request_unreference__unlocked(target);
4223
4224 return ret;
4225 }
4226
4227 static bool
4228 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4229 {
4230 struct drm_i915_gem_object *obj = vma->obj;
4231
4232 if (alignment &&
4233 vma->node.start & (alignment - 1))
4234 return true;
4235
4236 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4237 return true;
4238
4239 if (flags & PIN_OFFSET_BIAS &&
4240 vma->node.start < (flags & PIN_OFFSET_MASK))
4241 return true;
4242
4243 if (flags & PIN_OFFSET_FIXED &&
4244 vma->node.start != (flags & PIN_OFFSET_MASK))
4245 return true;
4246
4247 return false;
4248 }
4249
4250 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4251 {
4252 struct drm_i915_gem_object *obj = vma->obj;
4253 bool mappable, fenceable;
4254 u32 fence_size, fence_alignment;
4255
4256 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4257 obj->base.size,
4258 obj->tiling_mode);
4259 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4260 obj->base.size,
4261 obj->tiling_mode,
4262 true);
4263
4264 fenceable = (vma->node.size == fence_size &&
4265 (vma->node.start & (fence_alignment - 1)) == 0);
4266
4267 mappable = (vma->node.start + fence_size <=
4268 to_i915(obj->base.dev)->ggtt.mappable_end);
4269
4270 obj->map_and_fenceable = mappable && fenceable;
4271 }
4272
4273 static int
4274 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4275 struct i915_address_space *vm,
4276 const struct i915_ggtt_view *ggtt_view,
4277 uint32_t alignment,
4278 uint64_t flags)
4279 {
4280 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4281 struct i915_vma *vma;
4282 unsigned bound;
4283 int ret;
4284
4285 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4286 return -ENODEV;
4287
4288 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4289 return -EINVAL;
4290
4291 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4292 return -EINVAL;
4293
4294 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4295 return -EINVAL;
4296
4297 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4298 i915_gem_obj_to_vma(obj, vm);
4299
4300 if (vma) {
4301 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4302 return -EBUSY;
4303
4304 if (i915_vma_misplaced(vma, alignment, flags)) {
4305 WARN(vma->pin_count,
4306 "bo is already pinned in %s with incorrect alignment:"
4307 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4308 " obj->map_and_fenceable=%d\n",
4309 ggtt_view ? "ggtt" : "ppgtt",
4310 upper_32_bits(vma->node.start),
4311 lower_32_bits(vma->node.start),
4312 alignment,
4313 !!(flags & PIN_MAPPABLE),
4314 obj->map_and_fenceable);
4315 ret = i915_vma_unbind(vma);
4316 if (ret)
4317 return ret;
4318
4319 vma = NULL;
4320 }
4321 }
4322
4323 bound = vma ? vma->bound : 0;
4324 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4325 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4326 flags);
4327 if (IS_ERR(vma))
4328 return PTR_ERR(vma);
4329 } else {
4330 ret = i915_vma_bind(vma, obj->cache_level, flags);
4331 if (ret)
4332 return ret;
4333 }
4334
4335 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4336 (bound ^ vma->bound) & GLOBAL_BIND) {
4337 __i915_vma_set_map_and_fenceable(vma);
4338 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4339 }
4340
4341 vma->pin_count++;
4342 return 0;
4343 }
4344
4345 int
4346 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4347 struct i915_address_space *vm,
4348 uint32_t alignment,
4349 uint64_t flags)
4350 {
4351 return i915_gem_object_do_pin(obj, vm,
4352 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4353 alignment, flags);
4354 }
4355
4356 int
4357 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4358 const struct i915_ggtt_view *view,
4359 uint32_t alignment,
4360 uint64_t flags)
4361 {
4362 struct drm_device *dev = obj->base.dev;
4363 struct drm_i915_private *dev_priv = to_i915(dev);
4364 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4365
4366 BUG_ON(!view);
4367
4368 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4369 alignment, flags | PIN_GLOBAL);
4370 }
4371
4372 void
4373 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4374 const struct i915_ggtt_view *view)
4375 {
4376 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4377
4378 BUG_ON(!vma);
4379 WARN_ON(vma->pin_count == 0);
4380 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4381
4382 --vma->pin_count;
4383 }
4384
4385 int
4386 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4387 struct drm_file *file)
4388 {
4389 struct drm_i915_gem_busy *args = data;
4390 struct drm_i915_gem_object *obj;
4391 int ret;
4392
4393 ret = i915_mutex_lock_interruptible(dev);
4394 if (ret)
4395 return ret;
4396
4397 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4398 if (&obj->base == NULL) {
4399 ret = -ENOENT;
4400 goto unlock;
4401 }
4402
4403 /* Count all active objects as busy, even if they are currently not used
4404 * by the gpu. Users of this interface expect objects to eventually
4405 * become non-busy without any further actions, therefore emit any
4406 * necessary flushes here.
4407 */
4408 ret = i915_gem_object_flush_active(obj);
4409 if (ret)
4410 goto unref;
4411
4412 args->busy = 0;
4413 if (obj->active) {
4414 int i;
4415
4416 for (i = 0; i < I915_NUM_ENGINES; i++) {
4417 struct drm_i915_gem_request *req;
4418
4419 req = obj->last_read_req[i];
4420 if (req)
4421 args->busy |= 1 << (16 + req->engine->exec_id);
4422 }
4423 if (obj->last_write_req)
4424 args->busy |= obj->last_write_req->engine->exec_id;
4425 }
4426
4427 unref:
4428 drm_gem_object_unreference(&obj->base);
4429 unlock:
4430 mutex_unlock(&dev->struct_mutex);
4431 return ret;
4432 }
4433
4434 int
4435 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4436 struct drm_file *file_priv)
4437 {
4438 return i915_gem_ring_throttle(dev, file_priv);
4439 }
4440
4441 int
4442 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4443 struct drm_file *file_priv)
4444 {
4445 struct drm_i915_private *dev_priv = dev->dev_private;
4446 struct drm_i915_gem_madvise *args = data;
4447 struct drm_i915_gem_object *obj;
4448 int ret;
4449
4450 switch (args->madv) {
4451 case I915_MADV_DONTNEED:
4452 case I915_MADV_WILLNEED:
4453 break;
4454 default:
4455 return -EINVAL;
4456 }
4457
4458 ret = i915_mutex_lock_interruptible(dev);
4459 if (ret)
4460 return ret;
4461
4462 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4463 if (&obj->base == NULL) {
4464 ret = -ENOENT;
4465 goto unlock;
4466 }
4467
4468 if (i915_gem_obj_is_pinned(obj)) {
4469 ret = -EINVAL;
4470 goto out;
4471 }
4472
4473 if (obj->pages &&
4474 obj->tiling_mode != I915_TILING_NONE &&
4475 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4476 if (obj->madv == I915_MADV_WILLNEED)
4477 i915_gem_object_unpin_pages(obj);
4478 if (args->madv == I915_MADV_WILLNEED)
4479 i915_gem_object_pin_pages(obj);
4480 }
4481
4482 if (obj->madv != __I915_MADV_PURGED)
4483 obj->madv = args->madv;
4484
4485 /* if the object is no longer attached, discard its backing storage */
4486 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4487 i915_gem_object_truncate(obj);
4488
4489 args->retained = obj->madv != __I915_MADV_PURGED;
4490
4491 out:
4492 drm_gem_object_unreference(&obj->base);
4493 unlock:
4494 mutex_unlock(&dev->struct_mutex);
4495 return ret;
4496 }
4497
4498 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4499 const struct drm_i915_gem_object_ops *ops)
4500 {
4501 int i;
4502
4503 INIT_LIST_HEAD(&obj->global_list);
4504 for (i = 0; i < I915_NUM_ENGINES; i++)
4505 INIT_LIST_HEAD(&obj->engine_list[i]);
4506 INIT_LIST_HEAD(&obj->obj_exec_link);
4507 INIT_LIST_HEAD(&obj->vma_list);
4508 INIT_LIST_HEAD(&obj->batch_pool_link);
4509
4510 obj->ops = ops;
4511
4512 obj->fence_reg = I915_FENCE_REG_NONE;
4513 obj->madv = I915_MADV_WILLNEED;
4514
4515 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4516 }
4517
4518 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4519 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4520 .get_pages = i915_gem_object_get_pages_gtt,
4521 .put_pages = i915_gem_object_put_pages_gtt,
4522 };
4523
4524 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4525 size_t size)
4526 {
4527 struct drm_i915_gem_object *obj;
4528 struct address_space *mapping;
4529 gfp_t mask;
4530
4531 obj = i915_gem_object_alloc(dev);
4532 if (obj == NULL)
4533 return NULL;
4534
4535 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4536 i915_gem_object_free(obj);
4537 return NULL;
4538 }
4539
4540 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4541 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4542 /* 965gm cannot relocate objects above 4GiB. */
4543 mask &= ~__GFP_HIGHMEM;
4544 mask |= __GFP_DMA32;
4545 }
4546
4547 mapping = file_inode(obj->base.filp)->i_mapping;
4548 mapping_set_gfp_mask(mapping, mask);
4549
4550 i915_gem_object_init(obj, &i915_gem_object_ops);
4551
4552 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4553 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4554
4555 if (HAS_LLC(dev)) {
4556 /* On some devices, we can have the GPU use the LLC (the CPU
4557 * cache) for about a 10% performance improvement
4558 * compared to uncached. Graphics requests other than
4559 * display scanout are coherent with the CPU in
4560 * accessing this cache. This means in this mode we
4561 * don't need to clflush on the CPU side, and on the
4562 * GPU side we only need to flush internal caches to
4563 * get data visible to the CPU.
4564 *
4565 * However, we maintain the display planes as UC, and so
4566 * need to rebind when first used as such.
4567 */
4568 obj->cache_level = I915_CACHE_LLC;
4569 } else
4570 obj->cache_level = I915_CACHE_NONE;
4571
4572 trace_i915_gem_object_create(obj);
4573
4574 return obj;
4575 }
4576
4577 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4578 {
4579 /* If we are the last user of the backing storage (be it shmemfs
4580 * pages or stolen etc), we know that the pages are going to be
4581 * immediately released. In this case, we can then skip copying
4582 * back the contents from the GPU.
4583 */
4584
4585 if (obj->madv != I915_MADV_WILLNEED)
4586 return false;
4587
4588 if (obj->base.filp == NULL)
4589 return true;
4590
4591 /* At first glance, this looks racy, but then again so would be
4592 * userspace racing mmap against close. However, the first external
4593 * reference to the filp can only be obtained through the
4594 * i915_gem_mmap_ioctl() which safeguards us against the user
4595 * acquiring such a reference whilst we are in the middle of
4596 * freeing the object.
4597 */
4598 return atomic_long_read(&obj->base.filp->f_count) == 1;
4599 }
4600
4601 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4602 {
4603 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4604 struct drm_device *dev = obj->base.dev;
4605 struct drm_i915_private *dev_priv = dev->dev_private;
4606 struct i915_vma *vma, *next;
4607
4608 intel_runtime_pm_get(dev_priv);
4609
4610 trace_i915_gem_object_destroy(obj);
4611
4612 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4613 int ret;
4614
4615 vma->pin_count = 0;
4616 ret = i915_vma_unbind(vma);
4617 if (WARN_ON(ret == -ERESTARTSYS)) {
4618 bool was_interruptible;
4619
4620 was_interruptible = dev_priv->mm.interruptible;
4621 dev_priv->mm.interruptible = false;
4622
4623 WARN_ON(i915_vma_unbind(vma));
4624
4625 dev_priv->mm.interruptible = was_interruptible;
4626 }
4627 }
4628
4629 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4630 * before progressing. */
4631 if (obj->stolen)
4632 i915_gem_object_unpin_pages(obj);
4633
4634 WARN_ON(obj->frontbuffer_bits);
4635
4636 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4637 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4638 obj->tiling_mode != I915_TILING_NONE)
4639 i915_gem_object_unpin_pages(obj);
4640
4641 if (WARN_ON(obj->pages_pin_count))
4642 obj->pages_pin_count = 0;
4643 if (discard_backing_storage(obj))
4644 obj->madv = I915_MADV_DONTNEED;
4645 i915_gem_object_put_pages(obj);
4646 i915_gem_object_free_mmap_offset(obj);
4647
4648 BUG_ON(obj->pages);
4649
4650 if (obj->base.import_attach)
4651 drm_prime_gem_destroy(&obj->base, NULL);
4652
4653 if (obj->ops->release)
4654 obj->ops->release(obj);
4655
4656 drm_gem_object_release(&obj->base);
4657 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4658
4659 kfree(obj->bit_17);
4660 i915_gem_object_free(obj);
4661
4662 intel_runtime_pm_put(dev_priv);
4663 }
4664
4665 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4666 struct i915_address_space *vm)
4667 {
4668 struct i915_vma *vma;
4669 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4670 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4671 vma->vm == vm)
4672 return vma;
4673 }
4674 return NULL;
4675 }
4676
4677 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4678 const struct i915_ggtt_view *view)
4679 {
4680 struct drm_device *dev = obj->base.dev;
4681 struct drm_i915_private *dev_priv = to_i915(dev);
4682 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4683 struct i915_vma *vma;
4684
4685 BUG_ON(!view);
4686
4687 list_for_each_entry(vma, &obj->vma_list, obj_link)
4688 if (vma->vm == &ggtt->base &&
4689 i915_ggtt_view_equal(&vma->ggtt_view, view))
4690 return vma;
4691 return NULL;
4692 }
4693
4694 void i915_gem_vma_destroy(struct i915_vma *vma)
4695 {
4696 WARN_ON(vma->node.allocated);
4697
4698 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4699 if (!list_empty(&vma->exec_list))
4700 return;
4701
4702 if (!vma->is_ggtt)
4703 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4704
4705 list_del(&vma->obj_link);
4706
4707 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4708 }
4709
4710 static void
4711 i915_gem_stop_engines(struct drm_device *dev)
4712 {
4713 struct drm_i915_private *dev_priv = dev->dev_private;
4714 struct intel_engine_cs *engine;
4715
4716 for_each_engine(engine, dev_priv)
4717 dev_priv->gt.stop_engine(engine);
4718 }
4719
4720 int
4721 i915_gem_suspend(struct drm_device *dev)
4722 {
4723 struct drm_i915_private *dev_priv = dev->dev_private;
4724 int ret = 0;
4725
4726 mutex_lock(&dev->struct_mutex);
4727 ret = i915_gpu_idle(dev);
4728 if (ret)
4729 goto err;
4730
4731 i915_gem_retire_requests(dev);
4732
4733 i915_gem_stop_engines(dev);
4734 mutex_unlock(&dev->struct_mutex);
4735
4736 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4737 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4738 flush_delayed_work(&dev_priv->mm.idle_work);
4739
4740 /* Assert that we sucessfully flushed all the work and
4741 * reset the GPU back to its idle, low power state.
4742 */
4743 WARN_ON(dev_priv->mm.busy);
4744
4745 return 0;
4746
4747 err:
4748 mutex_unlock(&dev->struct_mutex);
4749 return ret;
4750 }
4751
4752 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4753 {
4754 struct intel_engine_cs *engine = req->engine;
4755 struct drm_device *dev = engine->dev;
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4758 int i, ret;
4759
4760 if (!HAS_L3_DPF(dev) || !remap_info)
4761 return 0;
4762
4763 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4764 if (ret)
4765 return ret;
4766
4767 /*
4768 * Note: We do not worry about the concurrent register cacheline hang
4769 * here because no other code should access these registers other than
4770 * at initialization time.
4771 */
4772 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4773 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
4774 intel_ring_emit_reg(engine, GEN7_L3LOG(slice, i));
4775 intel_ring_emit(engine, remap_info[i]);
4776 }
4777
4778 intel_ring_advance(engine);
4779
4780 return ret;
4781 }
4782
4783 void i915_gem_init_swizzling(struct drm_device *dev)
4784 {
4785 struct drm_i915_private *dev_priv = dev->dev_private;
4786
4787 if (INTEL_INFO(dev)->gen < 5 ||
4788 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4789 return;
4790
4791 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4792 DISP_TILE_SURFACE_SWIZZLING);
4793
4794 if (IS_GEN5(dev))
4795 return;
4796
4797 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4798 if (IS_GEN6(dev))
4799 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4800 else if (IS_GEN7(dev))
4801 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4802 else if (IS_GEN8(dev))
4803 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4804 else
4805 BUG();
4806 }
4807
4808 static void init_unused_ring(struct drm_device *dev, u32 base)
4809 {
4810 struct drm_i915_private *dev_priv = dev->dev_private;
4811
4812 I915_WRITE(RING_CTL(base), 0);
4813 I915_WRITE(RING_HEAD(base), 0);
4814 I915_WRITE(RING_TAIL(base), 0);
4815 I915_WRITE(RING_START(base), 0);
4816 }
4817
4818 static void init_unused_rings(struct drm_device *dev)
4819 {
4820 if (IS_I830(dev)) {
4821 init_unused_ring(dev, PRB1_BASE);
4822 init_unused_ring(dev, SRB0_BASE);
4823 init_unused_ring(dev, SRB1_BASE);
4824 init_unused_ring(dev, SRB2_BASE);
4825 init_unused_ring(dev, SRB3_BASE);
4826 } else if (IS_GEN2(dev)) {
4827 init_unused_ring(dev, SRB0_BASE);
4828 init_unused_ring(dev, SRB1_BASE);
4829 } else if (IS_GEN3(dev)) {
4830 init_unused_ring(dev, PRB1_BASE);
4831 init_unused_ring(dev, PRB2_BASE);
4832 }
4833 }
4834
4835 int i915_gem_init_engines(struct drm_device *dev)
4836 {
4837 struct drm_i915_private *dev_priv = dev->dev_private;
4838 int ret;
4839
4840 ret = intel_init_render_ring_buffer(dev);
4841 if (ret)
4842 return ret;
4843
4844 if (HAS_BSD(dev)) {
4845 ret = intel_init_bsd_ring_buffer(dev);
4846 if (ret)
4847 goto cleanup_render_ring;
4848 }
4849
4850 if (HAS_BLT(dev)) {
4851 ret = intel_init_blt_ring_buffer(dev);
4852 if (ret)
4853 goto cleanup_bsd_ring;
4854 }
4855
4856 if (HAS_VEBOX(dev)) {
4857 ret = intel_init_vebox_ring_buffer(dev);
4858 if (ret)
4859 goto cleanup_blt_ring;
4860 }
4861
4862 if (HAS_BSD2(dev)) {
4863 ret = intel_init_bsd2_ring_buffer(dev);
4864 if (ret)
4865 goto cleanup_vebox_ring;
4866 }
4867
4868 return 0;
4869
4870 cleanup_vebox_ring:
4871 intel_cleanup_engine(&dev_priv->engine[VECS]);
4872 cleanup_blt_ring:
4873 intel_cleanup_engine(&dev_priv->engine[BCS]);
4874 cleanup_bsd_ring:
4875 intel_cleanup_engine(&dev_priv->engine[VCS]);
4876 cleanup_render_ring:
4877 intel_cleanup_engine(&dev_priv->engine[RCS]);
4878
4879 return ret;
4880 }
4881
4882 int
4883 i915_gem_init_hw(struct drm_device *dev)
4884 {
4885 struct drm_i915_private *dev_priv = dev->dev_private;
4886 struct intel_engine_cs *engine;
4887 int ret, j;
4888
4889 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4890 return -EIO;
4891
4892 /* Double layer security blanket, see i915_gem_init() */
4893 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4894
4895 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4896 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4897
4898 if (IS_HASWELL(dev))
4899 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4900 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4901
4902 if (HAS_PCH_NOP(dev)) {
4903 if (IS_IVYBRIDGE(dev)) {
4904 u32 temp = I915_READ(GEN7_MSG_CTL);
4905 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4906 I915_WRITE(GEN7_MSG_CTL, temp);
4907 } else if (INTEL_INFO(dev)->gen >= 7) {
4908 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4909 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4910 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4911 }
4912 }
4913
4914 i915_gem_init_swizzling(dev);
4915
4916 /*
4917 * At least 830 can leave some of the unused rings
4918 * "active" (ie. head != tail) after resume which
4919 * will prevent c3 entry. Makes sure all unused rings
4920 * are totally idle.
4921 */
4922 init_unused_rings(dev);
4923
4924 BUG_ON(!dev_priv->kernel_context);
4925
4926 ret = i915_ppgtt_init_hw(dev);
4927 if (ret) {
4928 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4929 goto out;
4930 }
4931
4932 /* Need to do basic initialisation of all rings first: */
4933 for_each_engine(engine, dev_priv) {
4934 ret = engine->init_hw(engine);
4935 if (ret)
4936 goto out;
4937 }
4938
4939 /* We can't enable contexts until all firmware is loaded */
4940 if (HAS_GUC_UCODE(dev)) {
4941 ret = intel_guc_ucode_load(dev);
4942 if (ret) {
4943 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4944 ret = -EIO;
4945 goto out;
4946 }
4947 }
4948
4949 /*
4950 * Increment the next seqno by 0x100 so we have a visible break
4951 * on re-initialisation
4952 */
4953 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4954 if (ret)
4955 goto out;
4956
4957 /* Now it is safe to go back round and do everything else: */
4958 for_each_engine(engine, dev_priv) {
4959 struct drm_i915_gem_request *req;
4960
4961 req = i915_gem_request_alloc(engine, NULL);
4962 if (IS_ERR(req)) {
4963 ret = PTR_ERR(req);
4964 i915_gem_cleanup_engines(dev);
4965 goto out;
4966 }
4967
4968 if (engine->id == RCS) {
4969 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4970 i915_gem_l3_remap(req, j);
4971 }
4972
4973 ret = i915_ppgtt_init_ring(req);
4974 if (ret && ret != -EIO) {
4975 DRM_ERROR("PPGTT enable %s failed %d\n",
4976 engine->name, ret);
4977 i915_gem_request_cancel(req);
4978 i915_gem_cleanup_engines(dev);
4979 goto out;
4980 }
4981
4982 ret = i915_gem_context_enable(req);
4983 if (ret && ret != -EIO) {
4984 DRM_ERROR("Context enable %s failed %d\n",
4985 engine->name, ret);
4986 i915_gem_request_cancel(req);
4987 i915_gem_cleanup_engines(dev);
4988 goto out;
4989 }
4990
4991 i915_add_request_no_flush(req);
4992 }
4993
4994 out:
4995 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4996 return ret;
4997 }
4998
4999 int i915_gem_init(struct drm_device *dev)
5000 {
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 int ret;
5003
5004 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5005 i915.enable_execlists);
5006
5007 mutex_lock(&dev->struct_mutex);
5008
5009 if (!i915.enable_execlists) {
5010 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5011 dev_priv->gt.init_engines = i915_gem_init_engines;
5012 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5013 dev_priv->gt.stop_engine = intel_stop_engine;
5014 } else {
5015 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5016 dev_priv->gt.init_engines = intel_logical_rings_init;
5017 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5018 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5019 }
5020
5021 /* This is just a security blanket to placate dragons.
5022 * On some systems, we very sporadically observe that the first TLBs
5023 * used by the CS may be stale, despite us poking the TLB reset. If
5024 * we hold the forcewake during initialisation these problems
5025 * just magically go away.
5026 */
5027 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5028
5029 ret = i915_gem_init_userptr(dev);
5030 if (ret)
5031 goto out_unlock;
5032
5033 i915_gem_init_ggtt(dev);
5034
5035 ret = i915_gem_context_init(dev);
5036 if (ret)
5037 goto out_unlock;
5038
5039 ret = dev_priv->gt.init_engines(dev);
5040 if (ret)
5041 goto out_unlock;
5042
5043 ret = i915_gem_init_hw(dev);
5044 if (ret == -EIO) {
5045 /* Allow ring initialisation to fail by marking the GPU as
5046 * wedged. But we only want to do this where the GPU is angry,
5047 * for all other failure, such as an allocation failure, bail.
5048 */
5049 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5050 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5051 ret = 0;
5052 }
5053
5054 out_unlock:
5055 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5056 mutex_unlock(&dev->struct_mutex);
5057
5058 return ret;
5059 }
5060
5061 void
5062 i915_gem_cleanup_engines(struct drm_device *dev)
5063 {
5064 struct drm_i915_private *dev_priv = dev->dev_private;
5065 struct intel_engine_cs *engine;
5066
5067 for_each_engine(engine, dev_priv)
5068 dev_priv->gt.cleanup_engine(engine);
5069
5070 if (i915.enable_execlists)
5071 /*
5072 * Neither the BIOS, ourselves or any other kernel
5073 * expects the system to be in execlists mode on startup,
5074 * so we need to reset the GPU back to legacy mode.
5075 */
5076 intel_gpu_reset(dev, ALL_ENGINES);
5077 }
5078
5079 static void
5080 init_engine_lists(struct intel_engine_cs *engine)
5081 {
5082 INIT_LIST_HEAD(&engine->active_list);
5083 INIT_LIST_HEAD(&engine->request_list);
5084 }
5085
5086 void
5087 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5088 {
5089 struct drm_device *dev = dev_priv->dev;
5090
5091 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5092 !IS_CHERRYVIEW(dev_priv))
5093 dev_priv->num_fence_regs = 32;
5094 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5095 IS_I945GM(dev_priv) || IS_G33(dev_priv))
5096 dev_priv->num_fence_regs = 16;
5097 else
5098 dev_priv->num_fence_regs = 8;
5099
5100 if (intel_vgpu_active(dev))
5101 dev_priv->num_fence_regs =
5102 I915_READ(vgtif_reg(avail_rs.fence_num));
5103
5104 /* Initialize fence registers to zero */
5105 i915_gem_restore_fences(dev);
5106
5107 i915_gem_detect_bit_6_swizzle(dev);
5108 }
5109
5110 void
5111 i915_gem_load_init(struct drm_device *dev)
5112 {
5113 struct drm_i915_private *dev_priv = dev->dev_private;
5114 int i;
5115
5116 dev_priv->objects =
5117 kmem_cache_create("i915_gem_object",
5118 sizeof(struct drm_i915_gem_object), 0,
5119 SLAB_HWCACHE_ALIGN,
5120 NULL);
5121 dev_priv->vmas =
5122 kmem_cache_create("i915_gem_vma",
5123 sizeof(struct i915_vma), 0,
5124 SLAB_HWCACHE_ALIGN,
5125 NULL);
5126 dev_priv->requests =
5127 kmem_cache_create("i915_gem_request",
5128 sizeof(struct drm_i915_gem_request), 0,
5129 SLAB_HWCACHE_ALIGN,
5130 NULL);
5131
5132 INIT_LIST_HEAD(&dev_priv->vm_list);
5133 INIT_LIST_HEAD(&dev_priv->context_list);
5134 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5135 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5136 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5137 for (i = 0; i < I915_NUM_ENGINES; i++)
5138 init_engine_lists(&dev_priv->engine[i]);
5139 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5140 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5141 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5142 i915_gem_retire_work_handler);
5143 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5144 i915_gem_idle_work_handler);
5145 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5146
5147 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5148
5149 /*
5150 * Set initial sequence number for requests.
5151 * Using this number allows the wraparound to happen early,
5152 * catching any obvious problems.
5153 */
5154 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5155 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5156
5157 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5158
5159 init_waitqueue_head(&dev_priv->pending_flip_queue);
5160
5161 dev_priv->mm.interruptible = true;
5162
5163 mutex_init(&dev_priv->fb_tracking.lock);
5164 }
5165
5166 void i915_gem_load_cleanup(struct drm_device *dev)
5167 {
5168 struct drm_i915_private *dev_priv = to_i915(dev);
5169
5170 kmem_cache_destroy(dev_priv->requests);
5171 kmem_cache_destroy(dev_priv->vmas);
5172 kmem_cache_destroy(dev_priv->objects);
5173 }
5174
5175 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5176 {
5177 struct drm_i915_file_private *file_priv = file->driver_priv;
5178
5179 /* Clean up our request list when the client is going away, so that
5180 * later retire_requests won't dereference our soon-to-be-gone
5181 * file_priv.
5182 */
5183 spin_lock(&file_priv->mm.lock);
5184 while (!list_empty(&file_priv->mm.request_list)) {
5185 struct drm_i915_gem_request *request;
5186
5187 request = list_first_entry(&file_priv->mm.request_list,
5188 struct drm_i915_gem_request,
5189 client_list);
5190 list_del(&request->client_list);
5191 request->file_priv = NULL;
5192 }
5193 spin_unlock(&file_priv->mm.lock);
5194
5195 if (!list_empty(&file_priv->rps.link)) {
5196 spin_lock(&to_i915(dev)->rps.client_lock);
5197 list_del(&file_priv->rps.link);
5198 spin_unlock(&to_i915(dev)->rps.client_lock);
5199 }
5200 }
5201
5202 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5203 {
5204 struct drm_i915_file_private *file_priv;
5205 int ret;
5206
5207 DRM_DEBUG_DRIVER("\n");
5208
5209 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5210 if (!file_priv)
5211 return -ENOMEM;
5212
5213 file->driver_priv = file_priv;
5214 file_priv->dev_priv = dev->dev_private;
5215 file_priv->file = file;
5216 INIT_LIST_HEAD(&file_priv->rps.link);
5217
5218 spin_lock_init(&file_priv->mm.lock);
5219 INIT_LIST_HEAD(&file_priv->mm.request_list);
5220
5221 file_priv->bsd_ring = -1;
5222
5223 ret = i915_gem_context_open(dev, file);
5224 if (ret)
5225 kfree(file_priv);
5226
5227 return ret;
5228 }
5229
5230 /**
5231 * i915_gem_track_fb - update frontbuffer tracking
5232 * @old: current GEM buffer for the frontbuffer slots
5233 * @new: new GEM buffer for the frontbuffer slots
5234 * @frontbuffer_bits: bitmask of frontbuffer slots
5235 *
5236 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5237 * from @old and setting them in @new. Both @old and @new can be NULL.
5238 */
5239 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5240 struct drm_i915_gem_object *new,
5241 unsigned frontbuffer_bits)
5242 {
5243 if (old) {
5244 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5245 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5246 old->frontbuffer_bits &= ~frontbuffer_bits;
5247 }
5248
5249 if (new) {
5250 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5251 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5252 new->frontbuffer_bits |= frontbuffer_bits;
5253 }
5254 }
5255
5256 /* All the new VM stuff */
5257 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5258 struct i915_address_space *vm)
5259 {
5260 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5261 struct i915_vma *vma;
5262
5263 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5264
5265 list_for_each_entry(vma, &o->vma_list, obj_link) {
5266 if (vma->is_ggtt &&
5267 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5268 continue;
5269 if (vma->vm == vm)
5270 return vma->node.start;
5271 }
5272
5273 WARN(1, "%s vma for this object not found.\n",
5274 i915_is_ggtt(vm) ? "global" : "ppgtt");
5275 return -1;
5276 }
5277
5278 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5279 const struct i915_ggtt_view *view)
5280 {
5281 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5282 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5283 struct i915_vma *vma;
5284
5285 list_for_each_entry(vma, &o->vma_list, obj_link)
5286 if (vma->vm == &ggtt->base &&
5287 i915_ggtt_view_equal(&vma->ggtt_view, view))
5288 return vma->node.start;
5289
5290 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5291 return -1;
5292 }
5293
5294 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5295 struct i915_address_space *vm)
5296 {
5297 struct i915_vma *vma;
5298
5299 list_for_each_entry(vma, &o->vma_list, obj_link) {
5300 if (vma->is_ggtt &&
5301 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5302 continue;
5303 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5304 return true;
5305 }
5306
5307 return false;
5308 }
5309
5310 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5311 const struct i915_ggtt_view *view)
5312 {
5313 struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5314 struct i915_ggtt *ggtt = &dev_priv->ggtt;
5315 struct i915_vma *vma;
5316
5317 list_for_each_entry(vma, &o->vma_list, obj_link)
5318 if (vma->vm == &ggtt->base &&
5319 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5320 drm_mm_node_allocated(&vma->node))
5321 return true;
5322
5323 return false;
5324 }
5325
5326 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5327 {
5328 struct i915_vma *vma;
5329
5330 list_for_each_entry(vma, &o->vma_list, obj_link)
5331 if (drm_mm_node_allocated(&vma->node))
5332 return true;
5333
5334 return false;
5335 }
5336
5337 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5338 struct i915_address_space *vm)
5339 {
5340 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5341 struct i915_vma *vma;
5342
5343 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5344
5345 BUG_ON(list_empty(&o->vma_list));
5346
5347 list_for_each_entry(vma, &o->vma_list, obj_link) {
5348 if (vma->is_ggtt &&
5349 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5350 continue;
5351 if (vma->vm == vm)
5352 return vma->node.size;
5353 }
5354 return 0;
5355 }
5356
5357 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5358 {
5359 struct i915_vma *vma;
5360 list_for_each_entry(vma, &obj->vma_list, obj_link)
5361 if (vma->pin_count > 0)
5362 return true;
5363
5364 return false;
5365 }
5366
5367 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5368 struct page *
5369 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5370 {
5371 struct page *page;
5372
5373 /* Only default objects have per-page dirty tracking */
5374 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5375 return NULL;
5376
5377 page = i915_gem_object_get_page(obj, n);
5378 set_page_dirty(page);
5379 return page;
5380 }
5381
5382 /* Allocate a new GEM object and fill it with the supplied data */
5383 struct drm_i915_gem_object *
5384 i915_gem_object_create_from_data(struct drm_device *dev,
5385 const void *data, size_t size)
5386 {
5387 struct drm_i915_gem_object *obj;
5388 struct sg_table *sg;
5389 size_t bytes;
5390 int ret;
5391
5392 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5393 if (IS_ERR_OR_NULL(obj))
5394 return obj;
5395
5396 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5397 if (ret)
5398 goto fail;
5399
5400 ret = i915_gem_object_get_pages(obj);
5401 if (ret)
5402 goto fail;
5403
5404 i915_gem_object_pin_pages(obj);
5405 sg = obj->pages;
5406 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5407 obj->dirty = 1; /* Backing store is now out of date */
5408 i915_gem_object_unpin_pages(obj);
5409
5410 if (WARN_ON(bytes != size)) {
5411 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5412 ret = -EFAULT;
5413 goto fail;
5414 }
5415
5416 return obj;
5417
5418 fail:
5419 drm_gem_object_unreference(&obj->base);
5420 return ERR_PTR(ret);
5421 }