]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: merge {i965, sandybridge}_write_fence_reg()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
167 args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204 kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209 struct drm_device *dev,
210 uint64_t size,
211 uint32_t *handle_p)
212 {
213 struct drm_i915_gem_object *obj;
214 int ret;
215 u32 handle;
216
217 size = roundup(size, PAGE_SIZE);
218 if (size == 0)
219 return -EINVAL;
220
221 /* Allocate the new object */
222 obj = i915_gem_alloc_object(dev, size);
223 if (obj == NULL)
224 return -ENOMEM;
225
226 ret = drm_gem_handle_create(file, &obj->base, &handle);
227 if (ret) {
228 drm_gem_object_release(&obj->base);
229 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230 i915_gem_object_free(obj);
231 return ret;
232 }
233
234 /* drop reference from allocate - handle holds it now */
235 drm_gem_object_unreference(&obj->base);
236 trace_i915_gem_object_create(obj);
237
238 *handle_p = handle;
239 return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244 struct drm_device *dev,
245 struct drm_mode_create_dumb *args)
246 {
247 /* have to work out size/pitch and return them */
248 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249 args->size = args->pitch * args->height;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255 struct drm_device *dev,
256 uint32_t handle)
257 {
258 return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262 * Creates a new mm object and returns a handle to it.
263 */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266 struct drm_file *file)
267 {
268 struct drm_i915_gem_create *args = data;
269
270 return i915_gem_create(file, dev,
271 args->size, &args->handle);
272 }
273
274 static inline int
275 __copy_to_user_swizzled(char __user *cpu_vaddr,
276 const char *gpu_vaddr, int gpu_offset,
277 int length)
278 {
279 int ret, cpu_offset = 0;
280
281 while (length > 0) {
282 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283 int this_length = min(cacheline_end - gpu_offset, length);
284 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 if (ret)
290 return ret + length;
291
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
297 return 0;
298 }
299
300 static inline int
301 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302 const char __user *cpu_vaddr,
303 int length)
304 {
305 int ret, cpu_offset = 0;
306
307 while (length > 0) {
308 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309 int this_length = min(cacheline_end - gpu_offset, length);
310 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 if (ret)
316 return ret + length;
317
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 return 0;
324 }
325
326 /* Per-page copy function for the shmem pread fastpath.
327 * Flushes invalid cachelines before reading the target if
328 * needs_clflush is set. */
329 static int
330 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331 char __user *user_data,
332 bool page_do_bit17_swizzling, bool needs_clflush)
333 {
334 char *vaddr;
335 int ret;
336
337 if (unlikely(page_do_bit17_swizzling))
338 return -EINVAL;
339
340 vaddr = kmap_atomic(page);
341 if (needs_clflush)
342 drm_clflush_virt_range(vaddr + shmem_page_offset,
343 page_length);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + shmem_page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
349 return ret ? -EFAULT : 0;
350 }
351
352 static void
353 shmem_clflush_swizzled_range(char *addr, unsigned long length,
354 bool swizzled)
355 {
356 if (unlikely(swizzled)) {
357 unsigned long start = (unsigned long) addr;
358 unsigned long end = (unsigned long) addr + length;
359
360 /* For swizzling simply ensure that we always flush both
361 * channels. Lame, but simple and it works. Swizzled
362 * pwrite/pread is far from a hotpath - current userspace
363 * doesn't use it at all. */
364 start = round_down(start, 128);
365 end = round_up(end, 128);
366
367 drm_clflush_virt_range((void *)start, end - start);
368 } else {
369 drm_clflush_virt_range(addr, length);
370 }
371
372 }
373
374 /* Only difference to the fast-path function is that this can handle bit17
375 * and uses non-atomic copy and kmap functions. */
376 static int
377 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381 char *vaddr;
382 int ret;
383
384 vaddr = kmap(page);
385 if (needs_clflush)
386 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387 page_length,
388 page_do_bit17_swizzling);
389
390 if (page_do_bit17_swizzling)
391 ret = __copy_to_user_swizzled(user_data,
392 vaddr, shmem_page_offset,
393 page_length);
394 else
395 ret = __copy_to_user(user_data,
396 vaddr + shmem_page_offset,
397 page_length);
398 kunmap(page);
399
400 return ret ? - EFAULT : 0;
401 }
402
403 static int
404 i915_gem_shmem_pread(struct drm_device *dev,
405 struct drm_i915_gem_object *obj,
406 struct drm_i915_gem_pread *args,
407 struct drm_file *file)
408 {
409 char __user *user_data;
410 ssize_t remain;
411 loff_t offset;
412 int shmem_page_offset, page_length, ret = 0;
413 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414 int prefaulted = 0;
415 int needs_clflush = 0;
416 struct scatterlist *sg;
417 int i;
418
419 user_data = (char __user *) (uintptr_t) args->data_ptr;
420 remain = args->size;
421
422 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423
424 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425 /* If we're not in the cpu read domain, set ourself into the gtt
426 * read domain and manually flush cachelines (if required). This
427 * optimizes for the case when the gpu will dirty the data
428 * anyway again before the next pread happens. */
429 if (obj->cache_level == I915_CACHE_NONE)
430 needs_clflush = 1;
431 if (obj->gtt_space) {
432 ret = i915_gem_object_set_to_gtt_domain(obj, false);
433 if (ret)
434 return ret;
435 }
436 }
437
438 ret = i915_gem_object_get_pages(obj);
439 if (ret)
440 return ret;
441
442 i915_gem_object_pin_pages(obj);
443
444 offset = args->offset;
445
446 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447 struct page *page;
448
449 if (i < offset >> PAGE_SHIFT)
450 continue;
451
452 if (remain <= 0)
453 break;
454
455 /* Operation in this page
456 *
457 * shmem_page_offset = offset within page in shmem file
458 * page_length = bytes to copy for this page
459 */
460 shmem_page_offset = offset_in_page(offset);
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
464
465 page = sg_page(sg);
466 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467 (page_to_phys(page) & (1 << 17)) != 0;
468
469 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470 user_data, page_do_bit17_swizzling,
471 needs_clflush);
472 if (ret == 0)
473 goto next_page;
474
475 mutex_unlock(&dev->struct_mutex);
476
477 if (!prefaulted) {
478 ret = fault_in_multipages_writeable(user_data, remain);
479 /* Userspace is tricking us, but we've already clobbered
480 * its pages with the prefault and promised to write the
481 * data up to the first fault. Hence ignore any errors
482 * and just continue. */
483 (void)ret;
484 prefaulted = 1;
485 }
486
487 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488 user_data, page_do_bit17_swizzling,
489 needs_clflush);
490
491 mutex_lock(&dev->struct_mutex);
492
493 next_page:
494 mark_page_accessed(page);
495
496 if (ret)
497 goto out;
498
499 remain -= page_length;
500 user_data += page_length;
501 offset += page_length;
502 }
503
504 out:
505 i915_gem_object_unpin_pages(obj);
506
507 return ret;
508 }
509
510 /**
511 * Reads data from the object referenced by handle.
512 *
513 * On error, the contents of *data are undefined.
514 */
515 int
516 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517 struct drm_file *file)
518 {
519 struct drm_i915_gem_pread *args = data;
520 struct drm_i915_gem_object *obj;
521 int ret = 0;
522
523 if (args->size == 0)
524 return 0;
525
526 if (!access_ok(VERIFY_WRITE,
527 (char __user *)(uintptr_t)args->data_ptr,
528 args->size))
529 return -EFAULT;
530
531 ret = i915_mutex_lock_interruptible(dev);
532 if (ret)
533 return ret;
534
535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536 if (&obj->base == NULL) {
537 ret = -ENOENT;
538 goto unlock;
539 }
540
541 /* Bounds check source. */
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
544 ret = -EINVAL;
545 goto out;
546 }
547
548 /* prime objects have no backing filp to GEM pread/pwrite
549 * pages from.
550 */
551 if (!obj->base.filp) {
552 ret = -EINVAL;
553 goto out;
554 }
555
556 trace_i915_gem_object_pread(obj, args->offset, args->size);
557
558 ret = i915_gem_shmem_pread(dev, obj, args, file);
559
560 out:
561 drm_gem_object_unreference(&obj->base);
562 unlock:
563 mutex_unlock(&dev->struct_mutex);
564 return ret;
565 }
566
567 /* This is the fast write path which cannot handle
568 * page faults in the source data
569 */
570
571 static inline int
572 fast_user_write(struct io_mapping *mapping,
573 loff_t page_base, int page_offset,
574 char __user *user_data,
575 int length)
576 {
577 void __iomem *vaddr_atomic;
578 void *vaddr;
579 unsigned long unwritten;
580
581 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582 /* We can use the cpu mem copy function because this is X86. */
583 vaddr = (void __force*)vaddr_atomic + page_offset;
584 unwritten = __copy_from_user_inatomic_nocache(vaddr,
585 user_data, length);
586 io_mapping_unmap_atomic(vaddr_atomic);
587 return unwritten;
588 }
589
590 /**
591 * This is the fast pwrite path, where we copy the data directly from the
592 * user into the GTT, uncached.
593 */
594 static int
595 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596 struct drm_i915_gem_object *obj,
597 struct drm_i915_gem_pwrite *args,
598 struct drm_file *file)
599 {
600 drm_i915_private_t *dev_priv = dev->dev_private;
601 ssize_t remain;
602 loff_t offset, page_base;
603 char __user *user_data;
604 int page_offset, page_length, ret;
605
606 ret = i915_gem_object_pin(obj, 0, true, true);
607 if (ret)
608 goto out;
609
610 ret = i915_gem_object_set_to_gtt_domain(obj, true);
611 if (ret)
612 goto out_unpin;
613
614 ret = i915_gem_object_put_fence(obj);
615 if (ret)
616 goto out_unpin;
617
618 user_data = (char __user *) (uintptr_t) args->data_ptr;
619 remain = args->size;
620
621 offset = obj->gtt_offset + args->offset;
622
623 while (remain > 0) {
624 /* Operation in this page
625 *
626 * page_base = page offset within aperture
627 * page_offset = offset within page
628 * page_length = bytes to copy for this page
629 */
630 page_base = offset & PAGE_MASK;
631 page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((page_offset + remain) > PAGE_SIZE)
634 page_length = PAGE_SIZE - page_offset;
635
636 /* If we get a fault while copying data, then (presumably) our
637 * source page isn't available. Return the error and we'll
638 * retry in the slow path.
639 */
640 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
641 page_offset, user_data, page_length)) {
642 ret = -EFAULT;
643 goto out_unpin;
644 }
645
646 remain -= page_length;
647 user_data += page_length;
648 offset += page_length;
649 }
650
651 out_unpin:
652 i915_gem_object_unpin(obj);
653 out:
654 return ret;
655 }
656
657 /* Per-page copy function for the shmem pwrite fastpath.
658 * Flushes invalid cachelines before writing to the target if
659 * needs_clflush_before is set and flushes out any written cachelines after
660 * writing if needs_clflush is set. */
661 static int
662 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663 char __user *user_data,
664 bool page_do_bit17_swizzling,
665 bool needs_clflush_before,
666 bool needs_clflush_after)
667 {
668 char *vaddr;
669 int ret;
670
671 if (unlikely(page_do_bit17_swizzling))
672 return -EINVAL;
673
674 vaddr = kmap_atomic(page);
675 if (needs_clflush_before)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679 user_data,
680 page_length);
681 if (needs_clflush_after)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 kunmap_atomic(vaddr);
685
686 return ret ? -EFAULT : 0;
687 }
688
689 /* Only difference to the fast-path function is that this can handle bit17
690 * and uses non-atomic copy and kmap functions. */
691 static int
692 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693 char __user *user_data,
694 bool page_do_bit17_swizzling,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
697 {
698 char *vaddr;
699 int ret;
700
701 vaddr = kmap(page);
702 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
706 if (page_do_bit17_swizzling)
707 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708 user_data,
709 page_length);
710 else
711 ret = __copy_from_user(vaddr + shmem_page_offset,
712 user_data,
713 page_length);
714 if (needs_clflush_after)
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
718 kunmap(page);
719
720 return ret ? -EFAULT : 0;
721 }
722
723 static int
724 i915_gem_shmem_pwrite(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file)
728 {
729 ssize_t remain;
730 loff_t offset;
731 char __user *user_data;
732 int shmem_page_offset, page_length, ret = 0;
733 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734 int hit_slowpath = 0;
735 int needs_clflush_after = 0;
736 int needs_clflush_before = 0;
737 int i;
738 struct scatterlist *sg;
739
740 user_data = (char __user *) (uintptr_t) args->data_ptr;
741 remain = args->size;
742
743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 if (obj->cache_level == I915_CACHE_NONE)
751 needs_clflush_after = 1;
752 if (obj->gtt_space) {
753 ret = i915_gem_object_set_to_gtt_domain(obj, true);
754 if (ret)
755 return ret;
756 }
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
764 ret = i915_gem_object_get_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_pin_pages(obj);
769
770 offset = args->offset;
771 obj->dirty = 1;
772
773 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774 struct page *page;
775 int partial_cacheline_write;
776
777 if (i < offset >> PAGE_SHIFT)
778 continue;
779
780 if (remain <= 0)
781 break;
782
783 /* Operation in this page
784 *
785 * shmem_page_offset = offset within page in shmem file
786 * page_length = bytes to copy for this page
787 */
788 shmem_page_offset = offset_in_page(offset);
789
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 /* If we don't overwrite a cacheline completely we need to be
795 * careful to have up-to-date data by first clflushing. Don't
796 * overcomplicate things and flush the entire patch. */
797 partial_cacheline_write = needs_clflush_before &&
798 ((shmem_page_offset | page_length)
799 & (boot_cpu_data.x86_clflush_size - 1));
800
801 page = sg_page(sg);
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 mutex_unlock(&dev->struct_mutex);
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
818
819 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822 set_page_dirty(page);
823 mark_page_accessed(page);
824
825 if (ret)
826 goto out;
827
828 remain -= page_length;
829 user_data += page_length;
830 offset += page_length;
831 }
832
833 out:
834 i915_gem_object_unpin_pages(obj);
835
836 if (hit_slowpath) {
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844 i915_gem_clflush_object(obj);
845 i915_gem_chipset_flush(dev);
846 }
847 }
848
849 if (needs_clflush_after)
850 i915_gem_chipset_flush(dev);
851
852 return ret;
853 }
854
855 /**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862 struct drm_file *file)
863 {
864 struct drm_i915_gem_pwrite *args = data;
865 struct drm_i915_gem_object *obj;
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 (char __user *)(uintptr_t)args->data_ptr,
873 args->size))
874 return -EFAULT;
875
876 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877 args->size);
878 if (ret)
879 return -EFAULT;
880
881 ret = i915_mutex_lock_interruptible(dev);
882 if (ret)
883 return ret;
884
885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886 if (&obj->base == NULL) {
887 ret = -ENOENT;
888 goto unlock;
889 }
890
891 /* Bounds check destination. */
892 if (args->offset > obj->base.size ||
893 args->size > obj->base.size - args->offset) {
894 ret = -EINVAL;
895 goto out;
896 }
897
898 /* prime objects have no backing filp to GEM pread/pwrite
899 * pages from.
900 */
901 if (!obj->base.filp) {
902 ret = -EINVAL;
903 goto out;
904 }
905
906 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
908 ret = -EFAULT;
909 /* We can only do the GTT pwrite on untiled buffers, as otherwise
910 * it would end up going through the fenced access, and we'll get
911 * different detiling behavior between reading and writing.
912 * pread/pwrite currently are reading and writing from the CPU
913 * perspective, requiring manual detiling by the client.
914 */
915 if (obj->phys_obj) {
916 ret = i915_gem_phys_pwrite(dev, obj, args, file);
917 goto out;
918 }
919
920 if (obj->cache_level == I915_CACHE_NONE &&
921 obj->tiling_mode == I915_TILING_NONE &&
922 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
924 /* Note that the gtt paths might fail with non-page-backed user
925 * pointers (e.g. gtt mappings when moving data between
926 * textures). Fallback to the shmem path in that case. */
927 }
928
929 if (ret == -EFAULT || ret == -ENOSPC)
930 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931
932 out:
933 drm_gem_object_unreference(&obj->base);
934 unlock:
935 mutex_unlock(&dev->struct_mutex);
936 return ret;
937 }
938
939 int
940 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941 bool interruptible)
942 {
943 if (atomic_read(&dev_priv->mm.wedged)) {
944 struct completion *x = &dev_priv->error_completion;
945 bool recovery_complete;
946 unsigned long flags;
947
948 /* Give the error handler a chance to run. */
949 spin_lock_irqsave(&x->wait.lock, flags);
950 recovery_complete = x->done > 0;
951 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but still wedged means reset failure. */
959 if (recovery_complete)
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966 }
967
968 /*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_request)
981 ret = i915_add_request(ring, NULL, NULL);
982
983 return ret;
984 }
985
986 /**
987 * __wait_seqno - wait until execution of seqno has finished
988 * @ring: the ring expected to report seqno
989 * @seqno: duh!
990 * @interruptible: do an interruptible wait (normally yes)
991 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992 *
993 * Returns 0 if the seqno was found within the alloted time. Else returns the
994 * errno with remaining time filled in timeout argument.
995 */
996 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997 bool interruptible, struct timespec *timeout)
998 {
999 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000 struct timespec before, now, wait_time={1,0};
1001 unsigned long timeout_jiffies;
1002 long end;
1003 bool wait_forever = true;
1004 int ret;
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 atomic_read(&dev_priv->mm.wedged))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037 if (ret)
1038 end = ret;
1039 } while (end == 0 && wait_forever);
1040
1041 getrawmonotonic(&now);
1042
1043 ring->irq_put(ring);
1044 trace_i915_gem_request_wait_end(ring, seqno);
1045 #undef EXIT_COND
1046
1047 if (timeout) {
1048 struct timespec sleep_time = timespec_sub(now, before);
1049 *timeout = timespec_sub(*timeout, sleep_time);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 if (timeout)
1059 set_normalized_timespec(timeout, 0, 0);
1060 return -ETIME;
1061 default: /* Completed */
1062 WARN_ON(end < 0); /* We're not aware of other errors */
1063 return 0;
1064 }
1065 }
1066
1067 /**
1068 * Waits for a sequence number to be signaled, and cleans up the
1069 * request and object lists appropriately for that event.
1070 */
1071 int
1072 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073 {
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 bool interruptible = dev_priv->mm.interruptible;
1077 int ret;
1078
1079 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080 BUG_ON(seqno == 0);
1081
1082 ret = i915_gem_check_wedge(dev_priv, interruptible);
1083 if (ret)
1084 return ret;
1085
1086 ret = i915_gem_check_olr(ring, seqno);
1087 if (ret)
1088 return ret;
1089
1090 return __wait_seqno(ring, seqno, interruptible, NULL);
1091 }
1092
1093 /**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100 {
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133 {
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
1147 ret = i915_gem_check_wedge(dev_priv, true);
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = __wait_seqno(ring, seqno, true, NULL);
1157 mutex_lock(&dev->struct_mutex);
1158
1159 i915_gem_retire_requests_ring(ring);
1160
1161 /* Manually manage the write flush as we may have not yet
1162 * retired the buffer.
1163 */
1164 if (obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
1176 */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179 struct drm_file *file)
1180 {
1181 struct drm_i915_gem_set_domain *args = data;
1182 struct drm_i915_gem_object *obj;
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
1185 int ret;
1186
1187 /* Only handle setting domains to types used by the CPU. */
1188 if (write_domain & I915_GEM_GPU_DOMAINS)
1189 return -EINVAL;
1190
1191 if (read_domains & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
1200 ret = i915_mutex_lock_interruptible(dev);
1201 if (ret)
1202 return ret;
1203
1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205 if (&obj->base == NULL) {
1206 ret = -ENOENT;
1207 goto unlock;
1208 }
1209
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
1227 } else {
1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229 }
1230
1231 unref:
1232 drm_gem_object_unreference(&obj->base);
1233 unlock:
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236 }
1237
1238 /**
1239 * Called when user space has done writes to this buffer
1240 */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243 struct drm_file *file)
1244 {
1245 struct drm_i915_gem_sw_finish *args = data;
1246 struct drm_i915_gem_object *obj;
1247 int ret = 0;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Pinned buffers may be scanout, so flush the cache */
1260 if (obj->pin_count)
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263 drm_gem_object_unreference(&obj->base);
1264 unlock:
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267 }
1268
1269 /**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278 struct drm_file *file)
1279 {
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
1282 unsigned long addr;
1283
1284 obj = drm_gem_object_lookup(dev, file, args->handle);
1285 if (obj == NULL)
1286 return -ENOENT;
1287
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
1296 addr = vm_mmap(obj->filp, 0, args->size,
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
1299 drm_gem_object_unreference_unlocked(obj);
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
1328 drm_i915_private_t *dev_priv = dev->dev_private;
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
1341
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
1350 /* Now bind it into the GTT if needed */
1351 ret = i915_gem_object_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
1354
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
1358
1359 ret = i915_gem_object_get_fence(obj);
1360 if (ret)
1361 goto unpin;
1362
1363 obj->fault_mappable = true;
1364
1365 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1366 page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371 i915_gem_object_unpin(obj);
1372 unlock:
1373 mutex_unlock(&dev->struct_mutex);
1374 out:
1375 switch (ret) {
1376 case -EIO:
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (!atomic_read(&dev_priv->mm.wedged))
1381 return VM_FAULT_SIGBUS;
1382 case -EAGAIN:
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
1390 set_need_resched();
1391 case 0:
1392 case -ERESTARTSYS:
1393 case -EINTR:
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
1399 return VM_FAULT_NOPAGE;
1400 case -ENOMEM:
1401 return VM_FAULT_OOM;
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
1404 default:
1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406 return VM_FAULT_SIGBUS;
1407 }
1408 }
1409
1410 /**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
1414 * Preserve the reservation of the mmapping with the DRM core code, but
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427 if (!obj->fault_mappable)
1428 return;
1429
1430 if (obj->base.dev->dev_mapping)
1431 unmap_mapping_range(obj->base.dev->dev_mapping,
1432 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433 obj->base.size, 1);
1434
1435 obj->fault_mappable = false;
1436 }
1437
1438 static uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441 uint32_t gtt_size;
1442
1443 if (INTEL_INFO(dev)->gen >= 4 ||
1444 tiling_mode == I915_TILING_NONE)
1445 return size;
1446
1447 /* Previous chips need a power-of-two fence region when tiling */
1448 if (INTEL_INFO(dev)->gen == 3)
1449 gtt_size = 1024*1024;
1450 else
1451 gtt_size = 512*1024;
1452
1453 while (gtt_size < size)
1454 gtt_size <<= 1;
1455
1456 return gtt_size;
1457 }
1458
1459 /**
1460 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461 * @obj: object to check
1462 *
1463 * Return the required GTT alignment for an object, taking into account
1464 * potential fence register mapping.
1465 */
1466 uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1468 int tiling_mode, bool fenced)
1469 {
1470 /*
1471 * Minimum alignment is 4k (GTT page size), but might be greater
1472 * if a fence register is needed for the object.
1473 */
1474 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1475 tiling_mode == I915_TILING_NONE)
1476 return 4096;
1477
1478 /*
1479 * Previous chips need to be aligned to the size of the smallest
1480 * fence register that can contain the object.
1481 */
1482 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1483 }
1484
1485 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1486 {
1487 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1488 int ret;
1489
1490 if (obj->base.map_list.map)
1491 return 0;
1492
1493 dev_priv->mm.shrinker_no_lock_stealing = true;
1494
1495 ret = drm_gem_create_mmap_offset(&obj->base);
1496 if (ret != -ENOSPC)
1497 goto out;
1498
1499 /* Badly fragmented mmap space? The only way we can recover
1500 * space is by destroying unwanted objects. We can't randomly release
1501 * mmap_offsets as userspace expects them to be persistent for the
1502 * lifetime of the objects. The closest we can is to release the
1503 * offsets on purgeable objects by truncating it and marking it purged,
1504 * which prevents userspace from ever using that object again.
1505 */
1506 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1507 ret = drm_gem_create_mmap_offset(&obj->base);
1508 if (ret != -ENOSPC)
1509 goto out;
1510
1511 i915_gem_shrink_all(dev_priv);
1512 ret = drm_gem_create_mmap_offset(&obj->base);
1513 out:
1514 dev_priv->mm.shrinker_no_lock_stealing = false;
1515
1516 return ret;
1517 }
1518
1519 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1520 {
1521 if (!obj->base.map_list.map)
1522 return;
1523
1524 drm_gem_free_mmap_offset(&obj->base);
1525 }
1526
1527 int
1528 i915_gem_mmap_gtt(struct drm_file *file,
1529 struct drm_device *dev,
1530 uint32_t handle,
1531 uint64_t *offset)
1532 {
1533 struct drm_i915_private *dev_priv = dev->dev_private;
1534 struct drm_i915_gem_object *obj;
1535 int ret;
1536
1537 ret = i915_mutex_lock_interruptible(dev);
1538 if (ret)
1539 return ret;
1540
1541 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1542 if (&obj->base == NULL) {
1543 ret = -ENOENT;
1544 goto unlock;
1545 }
1546
1547 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1548 ret = -E2BIG;
1549 goto out;
1550 }
1551
1552 if (obj->madv != I915_MADV_WILLNEED) {
1553 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1554 ret = -EINVAL;
1555 goto out;
1556 }
1557
1558 ret = i915_gem_object_create_mmap_offset(obj);
1559 if (ret)
1560 goto out;
1561
1562 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1563
1564 out:
1565 drm_gem_object_unreference(&obj->base);
1566 unlock:
1567 mutex_unlock(&dev->struct_mutex);
1568 return ret;
1569 }
1570
1571 /**
1572 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573 * @dev: DRM device
1574 * @data: GTT mapping ioctl data
1575 * @file: GEM object info
1576 *
1577 * Simply returns the fake offset to userspace so it can mmap it.
1578 * The mmap call will end up in drm_gem_mmap(), which will set things
1579 * up so we can get faults in the handler above.
1580 *
1581 * The fault handler will take care of binding the object into the GTT
1582 * (since it may have been evicted to make room for something), allocating
1583 * a fence register, and mapping the appropriate aperture address into
1584 * userspace.
1585 */
1586 int
1587 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588 struct drm_file *file)
1589 {
1590 struct drm_i915_gem_mmap_gtt *args = data;
1591
1592 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593 }
1594
1595 /* Immediately discard the backing storage */
1596 static void
1597 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1598 {
1599 struct inode *inode;
1600
1601 i915_gem_object_free_mmap_offset(obj);
1602
1603 if (obj->base.filp == NULL)
1604 return;
1605
1606 /* Our goal here is to return as much of the memory as
1607 * is possible back to the system as we are called from OOM.
1608 * To do this we must instruct the shmfs to drop all of its
1609 * backing pages, *now*.
1610 */
1611 inode = obj->base.filp->f_path.dentry->d_inode;
1612 shmem_truncate_range(inode, 0, (loff_t)-1);
1613
1614 obj->madv = __I915_MADV_PURGED;
1615 }
1616
1617 static inline int
1618 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619 {
1620 return obj->madv == I915_MADV_DONTNEED;
1621 }
1622
1623 static void
1624 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1625 {
1626 int page_count = obj->base.size / PAGE_SIZE;
1627 struct scatterlist *sg;
1628 int ret, i;
1629
1630 BUG_ON(obj->madv == __I915_MADV_PURGED);
1631
1632 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1633 if (ret) {
1634 /* In the event of a disaster, abandon all caches and
1635 * hope for the best.
1636 */
1637 WARN_ON(ret != -EIO);
1638 i915_gem_clflush_object(obj);
1639 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1640 }
1641
1642 if (i915_gem_object_needs_bit17_swizzle(obj))
1643 i915_gem_object_save_bit_17_swizzle(obj);
1644
1645 if (obj->madv == I915_MADV_DONTNEED)
1646 obj->dirty = 0;
1647
1648 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1649 struct page *page = sg_page(sg);
1650
1651 if (obj->dirty)
1652 set_page_dirty(page);
1653
1654 if (obj->madv == I915_MADV_WILLNEED)
1655 mark_page_accessed(page);
1656
1657 page_cache_release(page);
1658 }
1659 obj->dirty = 0;
1660
1661 sg_free_table(obj->pages);
1662 kfree(obj->pages);
1663 }
1664
1665 static int
1666 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1667 {
1668 const struct drm_i915_gem_object_ops *ops = obj->ops;
1669
1670 if (obj->pages == NULL)
1671 return 0;
1672
1673 BUG_ON(obj->gtt_space);
1674
1675 if (obj->pages_pin_count)
1676 return -EBUSY;
1677
1678 /* ->put_pages might need to allocate memory for the bit17 swizzle
1679 * array, hence protect them from being reaped by removing them from gtt
1680 * lists early. */
1681 list_del(&obj->gtt_list);
1682
1683 ops->put_pages(obj);
1684 obj->pages = NULL;
1685
1686 if (i915_gem_object_is_purgeable(obj))
1687 i915_gem_object_truncate(obj);
1688
1689 return 0;
1690 }
1691
1692 static long
1693 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1694 {
1695 struct drm_i915_gem_object *obj, *next;
1696 long count = 0;
1697
1698 list_for_each_entry_safe(obj, next,
1699 &dev_priv->mm.unbound_list,
1700 gtt_list) {
1701 if (i915_gem_object_is_purgeable(obj) &&
1702 i915_gem_object_put_pages(obj) == 0) {
1703 count += obj->base.size >> PAGE_SHIFT;
1704 if (count >= target)
1705 return count;
1706 }
1707 }
1708
1709 list_for_each_entry_safe(obj, next,
1710 &dev_priv->mm.inactive_list,
1711 mm_list) {
1712 if (i915_gem_object_is_purgeable(obj) &&
1713 i915_gem_object_unbind(obj) == 0 &&
1714 i915_gem_object_put_pages(obj) == 0) {
1715 count += obj->base.size >> PAGE_SHIFT;
1716 if (count >= target)
1717 return count;
1718 }
1719 }
1720
1721 return count;
1722 }
1723
1724 static void
1725 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1726 {
1727 struct drm_i915_gem_object *obj, *next;
1728
1729 i915_gem_evict_everything(dev_priv->dev);
1730
1731 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1732 i915_gem_object_put_pages(obj);
1733 }
1734
1735 static int
1736 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1737 {
1738 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1739 int page_count, i;
1740 struct address_space *mapping;
1741 struct sg_table *st;
1742 struct scatterlist *sg;
1743 struct page *page;
1744 gfp_t gfp;
1745
1746 /* Assert that the object is not currently in any GPU domain. As it
1747 * wasn't in the GTT, there shouldn't be any way it could have been in
1748 * a GPU cache
1749 */
1750 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1751 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1752
1753 st = kmalloc(sizeof(*st), GFP_KERNEL);
1754 if (st == NULL)
1755 return -ENOMEM;
1756
1757 page_count = obj->base.size / PAGE_SIZE;
1758 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1759 sg_free_table(st);
1760 kfree(st);
1761 return -ENOMEM;
1762 }
1763
1764 /* Get the list of pages out of our struct file. They'll be pinned
1765 * at this point until we release them.
1766 *
1767 * Fail silently without starting the shrinker
1768 */
1769 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1770 gfp = mapping_gfp_mask(mapping);
1771 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1772 gfp &= ~(__GFP_IO | __GFP_WAIT);
1773 for_each_sg(st->sgl, sg, page_count, i) {
1774 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1775 if (IS_ERR(page)) {
1776 i915_gem_purge(dev_priv, page_count);
1777 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1778 }
1779 if (IS_ERR(page)) {
1780 /* We've tried hard to allocate the memory by reaping
1781 * our own buffer, now let the real VM do its job and
1782 * go down in flames if truly OOM.
1783 */
1784 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1785 gfp |= __GFP_IO | __GFP_WAIT;
1786
1787 i915_gem_shrink_all(dev_priv);
1788 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1789 if (IS_ERR(page))
1790 goto err_pages;
1791
1792 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1793 gfp &= ~(__GFP_IO | __GFP_WAIT);
1794 }
1795
1796 sg_set_page(sg, page, PAGE_SIZE, 0);
1797 }
1798
1799 obj->pages = st;
1800
1801 if (i915_gem_object_needs_bit17_swizzle(obj))
1802 i915_gem_object_do_bit_17_swizzle(obj);
1803
1804 return 0;
1805
1806 err_pages:
1807 for_each_sg(st->sgl, sg, i, page_count)
1808 page_cache_release(sg_page(sg));
1809 sg_free_table(st);
1810 kfree(st);
1811 return PTR_ERR(page);
1812 }
1813
1814 /* Ensure that the associated pages are gathered from the backing storage
1815 * and pinned into our object. i915_gem_object_get_pages() may be called
1816 * multiple times before they are released by a single call to
1817 * i915_gem_object_put_pages() - once the pages are no longer referenced
1818 * either as a result of memory pressure (reaping pages under the shrinker)
1819 * or as the object is itself released.
1820 */
1821 int
1822 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1823 {
1824 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1825 const struct drm_i915_gem_object_ops *ops = obj->ops;
1826 int ret;
1827
1828 if (obj->pages)
1829 return 0;
1830
1831 BUG_ON(obj->pages_pin_count);
1832
1833 ret = ops->get_pages(obj);
1834 if (ret)
1835 return ret;
1836
1837 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1838 return 0;
1839 }
1840
1841 void
1842 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1843 struct intel_ring_buffer *ring)
1844 {
1845 struct drm_device *dev = obj->base.dev;
1846 struct drm_i915_private *dev_priv = dev->dev_private;
1847 u32 seqno = intel_ring_get_seqno(ring);
1848
1849 BUG_ON(ring == NULL);
1850 obj->ring = ring;
1851
1852 /* Add a reference if we're newly entering the active list. */
1853 if (!obj->active) {
1854 drm_gem_object_reference(&obj->base);
1855 obj->active = 1;
1856 }
1857
1858 /* Move from whatever list we were on to the tail of execution. */
1859 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1860 list_move_tail(&obj->ring_list, &ring->active_list);
1861
1862 obj->last_read_seqno = seqno;
1863
1864 if (obj->fenced_gpu_access) {
1865 obj->last_fenced_seqno = seqno;
1866
1867 /* Bump MRU to take account of the delayed flush */
1868 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1869 struct drm_i915_fence_reg *reg;
1870
1871 reg = &dev_priv->fence_regs[obj->fence_reg];
1872 list_move_tail(&reg->lru_list,
1873 &dev_priv->mm.fence_list);
1874 }
1875 }
1876 }
1877
1878 static void
1879 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1880 {
1881 struct drm_device *dev = obj->base.dev;
1882 struct drm_i915_private *dev_priv = dev->dev_private;
1883
1884 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1885 BUG_ON(!obj->active);
1886
1887 if (obj->pin_count) /* are we a framebuffer? */
1888 intel_mark_fb_idle(obj);
1889
1890 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1891
1892 list_del_init(&obj->ring_list);
1893 obj->ring = NULL;
1894
1895 obj->last_read_seqno = 0;
1896 obj->last_write_seqno = 0;
1897 obj->base.write_domain = 0;
1898
1899 obj->last_fenced_seqno = 0;
1900 obj->fenced_gpu_access = false;
1901
1902 obj->active = 0;
1903 drm_gem_object_unreference(&obj->base);
1904
1905 WARN_ON(i915_verify_lists(dev));
1906 }
1907
1908 static int
1909 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1910 {
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct intel_ring_buffer *ring;
1913 int ret, i, j;
1914
1915 /* Carefully retire all requests without writing to the rings */
1916 for_each_ring(ring, dev_priv, i) {
1917 ret = intel_ring_idle(ring);
1918 if (ret)
1919 return ret;
1920 }
1921 i915_gem_retire_requests(dev);
1922
1923 /* Finally reset hw state */
1924 for_each_ring(ring, dev_priv, i) {
1925 intel_ring_init_seqno(ring, seqno);
1926
1927 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1928 ring->sync_seqno[j] = 0;
1929 }
1930
1931 return 0;
1932 }
1933
1934 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1935 {
1936 struct drm_i915_private *dev_priv = dev->dev_private;
1937 int ret;
1938
1939 if (seqno == 0)
1940 return -EINVAL;
1941
1942 /* HWS page needs to be set less than what we
1943 * will inject to ring
1944 */
1945 ret = i915_gem_init_seqno(dev, seqno - 1);
1946 if (ret)
1947 return ret;
1948
1949 /* Carefully set the last_seqno value so that wrap
1950 * detection still works
1951 */
1952 dev_priv->next_seqno = seqno;
1953 dev_priv->last_seqno = seqno - 1;
1954 if (dev_priv->last_seqno == 0)
1955 dev_priv->last_seqno--;
1956
1957 return 0;
1958 }
1959
1960 int
1961 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1962 {
1963 struct drm_i915_private *dev_priv = dev->dev_private;
1964
1965 /* reserve 0 for non-seqno */
1966 if (dev_priv->next_seqno == 0) {
1967 int ret = i915_gem_init_seqno(dev, 0);
1968 if (ret)
1969 return ret;
1970
1971 dev_priv->next_seqno = 1;
1972 }
1973
1974 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1975 return 0;
1976 }
1977
1978 int
1979 i915_add_request(struct intel_ring_buffer *ring,
1980 struct drm_file *file,
1981 u32 *out_seqno)
1982 {
1983 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1984 struct drm_i915_gem_request *request;
1985 u32 request_ring_position;
1986 int was_empty;
1987 int ret;
1988
1989 /*
1990 * Emit any outstanding flushes - execbuf can fail to emit the flush
1991 * after having emitted the batchbuffer command. Hence we need to fix
1992 * things up similar to emitting the lazy request. The difference here
1993 * is that the flush _must_ happen before the next request, no matter
1994 * what.
1995 */
1996 ret = intel_ring_flush_all_caches(ring);
1997 if (ret)
1998 return ret;
1999
2000 request = kmalloc(sizeof(*request), GFP_KERNEL);
2001 if (request == NULL)
2002 return -ENOMEM;
2003
2004
2005 /* Record the position of the start of the request so that
2006 * should we detect the updated seqno part-way through the
2007 * GPU processing the request, we never over-estimate the
2008 * position of the head.
2009 */
2010 request_ring_position = intel_ring_get_tail(ring);
2011
2012 ret = ring->add_request(ring);
2013 if (ret) {
2014 kfree(request);
2015 return ret;
2016 }
2017
2018 request->seqno = intel_ring_get_seqno(ring);
2019 request->ring = ring;
2020 request->tail = request_ring_position;
2021 request->emitted_jiffies = jiffies;
2022 was_empty = list_empty(&ring->request_list);
2023 list_add_tail(&request->list, &ring->request_list);
2024 request->file_priv = NULL;
2025
2026 if (file) {
2027 struct drm_i915_file_private *file_priv = file->driver_priv;
2028
2029 spin_lock(&file_priv->mm.lock);
2030 request->file_priv = file_priv;
2031 list_add_tail(&request->client_list,
2032 &file_priv->mm.request_list);
2033 spin_unlock(&file_priv->mm.lock);
2034 }
2035
2036 trace_i915_gem_request_add(ring, request->seqno);
2037 ring->outstanding_lazy_request = 0;
2038
2039 if (!dev_priv->mm.suspended) {
2040 if (i915_enable_hangcheck) {
2041 mod_timer(&dev_priv->hangcheck_timer,
2042 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2043 }
2044 if (was_empty) {
2045 queue_delayed_work(dev_priv->wq,
2046 &dev_priv->mm.retire_work,
2047 round_jiffies_up_relative(HZ));
2048 intel_mark_busy(dev_priv->dev);
2049 }
2050 }
2051
2052 if (out_seqno)
2053 *out_seqno = request->seqno;
2054 return 0;
2055 }
2056
2057 static inline void
2058 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2059 {
2060 struct drm_i915_file_private *file_priv = request->file_priv;
2061
2062 if (!file_priv)
2063 return;
2064
2065 spin_lock(&file_priv->mm.lock);
2066 if (request->file_priv) {
2067 list_del(&request->client_list);
2068 request->file_priv = NULL;
2069 }
2070 spin_unlock(&file_priv->mm.lock);
2071 }
2072
2073 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2074 struct intel_ring_buffer *ring)
2075 {
2076 while (!list_empty(&ring->request_list)) {
2077 struct drm_i915_gem_request *request;
2078
2079 request = list_first_entry(&ring->request_list,
2080 struct drm_i915_gem_request,
2081 list);
2082
2083 list_del(&request->list);
2084 i915_gem_request_remove_from_client(request);
2085 kfree(request);
2086 }
2087
2088 while (!list_empty(&ring->active_list)) {
2089 struct drm_i915_gem_object *obj;
2090
2091 obj = list_first_entry(&ring->active_list,
2092 struct drm_i915_gem_object,
2093 ring_list);
2094
2095 i915_gem_object_move_to_inactive(obj);
2096 }
2097 }
2098
2099 static void i915_gem_reset_fences(struct drm_device *dev)
2100 {
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 int i;
2103
2104 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2105 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2106
2107 i915_gem_write_fence(dev, i, NULL);
2108
2109 if (reg->obj)
2110 i915_gem_object_fence_lost(reg->obj);
2111
2112 reg->pin_count = 0;
2113 reg->obj = NULL;
2114 INIT_LIST_HEAD(&reg->lru_list);
2115 }
2116
2117 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2118 }
2119
2120 void i915_gem_reset(struct drm_device *dev)
2121 {
2122 struct drm_i915_private *dev_priv = dev->dev_private;
2123 struct drm_i915_gem_object *obj;
2124 struct intel_ring_buffer *ring;
2125 int i;
2126
2127 for_each_ring(ring, dev_priv, i)
2128 i915_gem_reset_ring_lists(dev_priv, ring);
2129
2130 /* Move everything out of the GPU domains to ensure we do any
2131 * necessary invalidation upon reuse.
2132 */
2133 list_for_each_entry(obj,
2134 &dev_priv->mm.inactive_list,
2135 mm_list)
2136 {
2137 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2138 }
2139
2140 /* The fence registers are invalidated so clear them out */
2141 i915_gem_reset_fences(dev);
2142 }
2143
2144 /**
2145 * This function clears the request list as sequence numbers are passed.
2146 */
2147 void
2148 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2149 {
2150 uint32_t seqno;
2151
2152 if (list_empty(&ring->request_list))
2153 return;
2154
2155 WARN_ON(i915_verify_lists(ring->dev));
2156
2157 seqno = ring->get_seqno(ring, true);
2158
2159 while (!list_empty(&ring->request_list)) {
2160 struct drm_i915_gem_request *request;
2161
2162 request = list_first_entry(&ring->request_list,
2163 struct drm_i915_gem_request,
2164 list);
2165
2166 if (!i915_seqno_passed(seqno, request->seqno))
2167 break;
2168
2169 trace_i915_gem_request_retire(ring, request->seqno);
2170 /* We know the GPU must have read the request to have
2171 * sent us the seqno + interrupt, so use the position
2172 * of tail of the request to update the last known position
2173 * of the GPU head.
2174 */
2175 ring->last_retired_head = request->tail;
2176
2177 list_del(&request->list);
2178 i915_gem_request_remove_from_client(request);
2179 kfree(request);
2180 }
2181
2182 /* Move any buffers on the active list that are no longer referenced
2183 * by the ringbuffer to the flushing/inactive lists as appropriate.
2184 */
2185 while (!list_empty(&ring->active_list)) {
2186 struct drm_i915_gem_object *obj;
2187
2188 obj = list_first_entry(&ring->active_list,
2189 struct drm_i915_gem_object,
2190 ring_list);
2191
2192 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2193 break;
2194
2195 i915_gem_object_move_to_inactive(obj);
2196 }
2197
2198 if (unlikely(ring->trace_irq_seqno &&
2199 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2200 ring->irq_put(ring);
2201 ring->trace_irq_seqno = 0;
2202 }
2203
2204 WARN_ON(i915_verify_lists(ring->dev));
2205 }
2206
2207 void
2208 i915_gem_retire_requests(struct drm_device *dev)
2209 {
2210 drm_i915_private_t *dev_priv = dev->dev_private;
2211 struct intel_ring_buffer *ring;
2212 int i;
2213
2214 for_each_ring(ring, dev_priv, i)
2215 i915_gem_retire_requests_ring(ring);
2216 }
2217
2218 static void
2219 i915_gem_retire_work_handler(struct work_struct *work)
2220 {
2221 drm_i915_private_t *dev_priv;
2222 struct drm_device *dev;
2223 struct intel_ring_buffer *ring;
2224 bool idle;
2225 int i;
2226
2227 dev_priv = container_of(work, drm_i915_private_t,
2228 mm.retire_work.work);
2229 dev = dev_priv->dev;
2230
2231 /* Come back later if the device is busy... */
2232 if (!mutex_trylock(&dev->struct_mutex)) {
2233 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2234 round_jiffies_up_relative(HZ));
2235 return;
2236 }
2237
2238 i915_gem_retire_requests(dev);
2239
2240 /* Send a periodic flush down the ring so we don't hold onto GEM
2241 * objects indefinitely.
2242 */
2243 idle = true;
2244 for_each_ring(ring, dev_priv, i) {
2245 if (ring->gpu_caches_dirty)
2246 i915_add_request(ring, NULL, NULL);
2247
2248 idle &= list_empty(&ring->request_list);
2249 }
2250
2251 if (!dev_priv->mm.suspended && !idle)
2252 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253 round_jiffies_up_relative(HZ));
2254 if (idle)
2255 intel_mark_idle(dev);
2256
2257 mutex_unlock(&dev->struct_mutex);
2258 }
2259
2260 /**
2261 * Ensures that an object will eventually get non-busy by flushing any required
2262 * write domains, emitting any outstanding lazy request and retiring and
2263 * completed requests.
2264 */
2265 static int
2266 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2267 {
2268 int ret;
2269
2270 if (obj->active) {
2271 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2272 if (ret)
2273 return ret;
2274
2275 i915_gem_retire_requests_ring(obj->ring);
2276 }
2277
2278 return 0;
2279 }
2280
2281 /**
2282 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2283 * @DRM_IOCTL_ARGS: standard ioctl arguments
2284 *
2285 * Returns 0 if successful, else an error is returned with the remaining time in
2286 * the timeout parameter.
2287 * -ETIME: object is still busy after timeout
2288 * -ERESTARTSYS: signal interrupted the wait
2289 * -ENONENT: object doesn't exist
2290 * Also possible, but rare:
2291 * -EAGAIN: GPU wedged
2292 * -ENOMEM: damn
2293 * -ENODEV: Internal IRQ fail
2294 * -E?: The add request failed
2295 *
2296 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2297 * non-zero timeout parameter the wait ioctl will wait for the given number of
2298 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2299 * without holding struct_mutex the object may become re-busied before this
2300 * function completes. A similar but shorter * race condition exists in the busy
2301 * ioctl
2302 */
2303 int
2304 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2305 {
2306 struct drm_i915_gem_wait *args = data;
2307 struct drm_i915_gem_object *obj;
2308 struct intel_ring_buffer *ring = NULL;
2309 struct timespec timeout_stack, *timeout = NULL;
2310 u32 seqno = 0;
2311 int ret = 0;
2312
2313 if (args->timeout_ns >= 0) {
2314 timeout_stack = ns_to_timespec(args->timeout_ns);
2315 timeout = &timeout_stack;
2316 }
2317
2318 ret = i915_mutex_lock_interruptible(dev);
2319 if (ret)
2320 return ret;
2321
2322 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2323 if (&obj->base == NULL) {
2324 mutex_unlock(&dev->struct_mutex);
2325 return -ENOENT;
2326 }
2327
2328 /* Need to make sure the object gets inactive eventually. */
2329 ret = i915_gem_object_flush_active(obj);
2330 if (ret)
2331 goto out;
2332
2333 if (obj->active) {
2334 seqno = obj->last_read_seqno;
2335 ring = obj->ring;
2336 }
2337
2338 if (seqno == 0)
2339 goto out;
2340
2341 /* Do this after OLR check to make sure we make forward progress polling
2342 * on this IOCTL with a 0 timeout (like busy ioctl)
2343 */
2344 if (!args->timeout_ns) {
2345 ret = -ETIME;
2346 goto out;
2347 }
2348
2349 drm_gem_object_unreference(&obj->base);
2350 mutex_unlock(&dev->struct_mutex);
2351
2352 ret = __wait_seqno(ring, seqno, true, timeout);
2353 if (timeout) {
2354 WARN_ON(!timespec_valid(timeout));
2355 args->timeout_ns = timespec_to_ns(timeout);
2356 }
2357 return ret;
2358
2359 out:
2360 drm_gem_object_unreference(&obj->base);
2361 mutex_unlock(&dev->struct_mutex);
2362 return ret;
2363 }
2364
2365 /**
2366 * i915_gem_object_sync - sync an object to a ring.
2367 *
2368 * @obj: object which may be in use on another ring.
2369 * @to: ring we wish to use the object on. May be NULL.
2370 *
2371 * This code is meant to abstract object synchronization with the GPU.
2372 * Calling with NULL implies synchronizing the object with the CPU
2373 * rather than a particular GPU ring.
2374 *
2375 * Returns 0 if successful, else propagates up the lower layer error.
2376 */
2377 int
2378 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2379 struct intel_ring_buffer *to)
2380 {
2381 struct intel_ring_buffer *from = obj->ring;
2382 u32 seqno;
2383 int ret, idx;
2384
2385 if (from == NULL || to == from)
2386 return 0;
2387
2388 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2389 return i915_gem_object_wait_rendering(obj, false);
2390
2391 idx = intel_ring_sync_index(from, to);
2392
2393 seqno = obj->last_read_seqno;
2394 if (seqno <= from->sync_seqno[idx])
2395 return 0;
2396
2397 ret = i915_gem_check_olr(obj->ring, seqno);
2398 if (ret)
2399 return ret;
2400
2401 ret = to->sync_to(to, from, seqno);
2402 if (!ret)
2403 /* We use last_read_seqno because sync_to()
2404 * might have just caused seqno wrap under
2405 * the radar.
2406 */
2407 from->sync_seqno[idx] = obj->last_read_seqno;
2408
2409 return ret;
2410 }
2411
2412 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2413 {
2414 u32 old_write_domain, old_read_domains;
2415
2416 /* Act a barrier for all accesses through the GTT */
2417 mb();
2418
2419 /* Force a pagefault for domain tracking on next user access */
2420 i915_gem_release_mmap(obj);
2421
2422 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2423 return;
2424
2425 old_read_domains = obj->base.read_domains;
2426 old_write_domain = obj->base.write_domain;
2427
2428 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2429 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2430
2431 trace_i915_gem_object_change_domain(obj,
2432 old_read_domains,
2433 old_write_domain);
2434 }
2435
2436 /**
2437 * Unbinds an object from the GTT aperture.
2438 */
2439 int
2440 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2441 {
2442 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2443 int ret = 0;
2444
2445 if (obj->gtt_space == NULL)
2446 return 0;
2447
2448 if (obj->pin_count)
2449 return -EBUSY;
2450
2451 BUG_ON(obj->pages == NULL);
2452
2453 ret = i915_gem_object_finish_gpu(obj);
2454 if (ret)
2455 return ret;
2456 /* Continue on if we fail due to EIO, the GPU is hung so we
2457 * should be safe and we need to cleanup or else we might
2458 * cause memory corruption through use-after-free.
2459 */
2460
2461 i915_gem_object_finish_gtt(obj);
2462
2463 /* release the fence reg _after_ flushing */
2464 ret = i915_gem_object_put_fence(obj);
2465 if (ret)
2466 return ret;
2467
2468 trace_i915_gem_object_unbind(obj);
2469
2470 if (obj->has_global_gtt_mapping)
2471 i915_gem_gtt_unbind_object(obj);
2472 if (obj->has_aliasing_ppgtt_mapping) {
2473 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2474 obj->has_aliasing_ppgtt_mapping = 0;
2475 }
2476 i915_gem_gtt_finish_object(obj);
2477
2478 list_del(&obj->mm_list);
2479 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2480 /* Avoid an unnecessary call to unbind on rebind. */
2481 obj->map_and_fenceable = true;
2482
2483 drm_mm_put_block(obj->gtt_space);
2484 obj->gtt_space = NULL;
2485 obj->gtt_offset = 0;
2486
2487 return 0;
2488 }
2489
2490 int i915_gpu_idle(struct drm_device *dev)
2491 {
2492 drm_i915_private_t *dev_priv = dev->dev_private;
2493 struct intel_ring_buffer *ring;
2494 int ret, i;
2495
2496 /* Flush everything onto the inactive list. */
2497 for_each_ring(ring, dev_priv, i) {
2498 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2499 if (ret)
2500 return ret;
2501
2502 ret = intel_ring_idle(ring);
2503 if (ret)
2504 return ret;
2505 }
2506
2507 return 0;
2508 }
2509
2510 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2511 struct drm_i915_gem_object *obj)
2512 {
2513 drm_i915_private_t *dev_priv = dev->dev_private;
2514 int fence_reg;
2515 int fence_pitch_shift;
2516 uint64_t val;
2517
2518 if (INTEL_INFO(dev)->gen >= 6) {
2519 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2520 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2521 } else {
2522 fence_reg = FENCE_REG_965_0;
2523 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2524 }
2525
2526 if (obj) {
2527 u32 size = obj->gtt_space->size;
2528
2529 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2530 0xfffff000) << 32;
2531 val |= obj->gtt_offset & 0xfffff000;
2532 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2533 if (obj->tiling_mode == I915_TILING_Y)
2534 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2535 val |= I965_FENCE_REG_VALID;
2536 } else
2537 val = 0;
2538
2539 fence_reg += reg * 8;
2540 I915_WRITE64(fence_reg, val);
2541 POSTING_READ(fence_reg);
2542 }
2543
2544 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2545 struct drm_i915_gem_object *obj)
2546 {
2547 drm_i915_private_t *dev_priv = dev->dev_private;
2548 u32 val;
2549
2550 if (obj) {
2551 u32 size = obj->gtt_space->size;
2552 int pitch_val;
2553 int tile_width;
2554
2555 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2556 (size & -size) != size ||
2557 (obj->gtt_offset & (size - 1)),
2558 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2559 obj->gtt_offset, obj->map_and_fenceable, size);
2560
2561 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2562 tile_width = 128;
2563 else
2564 tile_width = 512;
2565
2566 /* Note: pitch better be a power of two tile widths */
2567 pitch_val = obj->stride / tile_width;
2568 pitch_val = ffs(pitch_val) - 1;
2569
2570 val = obj->gtt_offset;
2571 if (obj->tiling_mode == I915_TILING_Y)
2572 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2573 val |= I915_FENCE_SIZE_BITS(size);
2574 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2575 val |= I830_FENCE_REG_VALID;
2576 } else
2577 val = 0;
2578
2579 if (reg < 8)
2580 reg = FENCE_REG_830_0 + reg * 4;
2581 else
2582 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2583
2584 I915_WRITE(reg, val);
2585 POSTING_READ(reg);
2586 }
2587
2588 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2589 struct drm_i915_gem_object *obj)
2590 {
2591 drm_i915_private_t *dev_priv = dev->dev_private;
2592 uint32_t val;
2593
2594 if (obj) {
2595 u32 size = obj->gtt_space->size;
2596 uint32_t pitch_val;
2597
2598 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2599 (size & -size) != size ||
2600 (obj->gtt_offset & (size - 1)),
2601 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2602 obj->gtt_offset, size);
2603
2604 pitch_val = obj->stride / 128;
2605 pitch_val = ffs(pitch_val) - 1;
2606
2607 val = obj->gtt_offset;
2608 if (obj->tiling_mode == I915_TILING_Y)
2609 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2610 val |= I830_FENCE_SIZE_BITS(size);
2611 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2612 val |= I830_FENCE_REG_VALID;
2613 } else
2614 val = 0;
2615
2616 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2617 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2618 }
2619
2620 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2621 struct drm_i915_gem_object *obj)
2622 {
2623 switch (INTEL_INFO(dev)->gen) {
2624 case 7:
2625 case 6:
2626 case 5:
2627 case 4: i965_write_fence_reg(dev, reg, obj); break;
2628 case 3: i915_write_fence_reg(dev, reg, obj); break;
2629 case 2: i830_write_fence_reg(dev, reg, obj); break;
2630 default: BUG();
2631 }
2632 }
2633
2634 static inline int fence_number(struct drm_i915_private *dev_priv,
2635 struct drm_i915_fence_reg *fence)
2636 {
2637 return fence - dev_priv->fence_regs;
2638 }
2639
2640 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2641 struct drm_i915_fence_reg *fence,
2642 bool enable)
2643 {
2644 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2645 int reg = fence_number(dev_priv, fence);
2646
2647 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2648
2649 if (enable) {
2650 obj->fence_reg = reg;
2651 fence->obj = obj;
2652 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2653 } else {
2654 obj->fence_reg = I915_FENCE_REG_NONE;
2655 fence->obj = NULL;
2656 list_del_init(&fence->lru_list);
2657 }
2658 }
2659
2660 static int
2661 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2662 {
2663 if (obj->last_fenced_seqno) {
2664 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2665 if (ret)
2666 return ret;
2667
2668 obj->last_fenced_seqno = 0;
2669 }
2670
2671 /* Ensure that all CPU reads are completed before installing a fence
2672 * and all writes before removing the fence.
2673 */
2674 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2675 mb();
2676
2677 obj->fenced_gpu_access = false;
2678 return 0;
2679 }
2680
2681 int
2682 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2683 {
2684 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2685 int ret;
2686
2687 ret = i915_gem_object_flush_fence(obj);
2688 if (ret)
2689 return ret;
2690
2691 if (obj->fence_reg == I915_FENCE_REG_NONE)
2692 return 0;
2693
2694 i915_gem_object_update_fence(obj,
2695 &dev_priv->fence_regs[obj->fence_reg],
2696 false);
2697 i915_gem_object_fence_lost(obj);
2698
2699 return 0;
2700 }
2701
2702 static struct drm_i915_fence_reg *
2703 i915_find_fence_reg(struct drm_device *dev)
2704 {
2705 struct drm_i915_private *dev_priv = dev->dev_private;
2706 struct drm_i915_fence_reg *reg, *avail;
2707 int i;
2708
2709 /* First try to find a free reg */
2710 avail = NULL;
2711 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2712 reg = &dev_priv->fence_regs[i];
2713 if (!reg->obj)
2714 return reg;
2715
2716 if (!reg->pin_count)
2717 avail = reg;
2718 }
2719
2720 if (avail == NULL)
2721 return NULL;
2722
2723 /* None available, try to steal one or wait for a user to finish */
2724 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2725 if (reg->pin_count)
2726 continue;
2727
2728 return reg;
2729 }
2730
2731 return NULL;
2732 }
2733
2734 /**
2735 * i915_gem_object_get_fence - set up fencing for an object
2736 * @obj: object to map through a fence reg
2737 *
2738 * When mapping objects through the GTT, userspace wants to be able to write
2739 * to them without having to worry about swizzling if the object is tiled.
2740 * This function walks the fence regs looking for a free one for @obj,
2741 * stealing one if it can't find any.
2742 *
2743 * It then sets up the reg based on the object's properties: address, pitch
2744 * and tiling format.
2745 *
2746 * For an untiled surface, this removes any existing fence.
2747 */
2748 int
2749 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2750 {
2751 struct drm_device *dev = obj->base.dev;
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 bool enable = obj->tiling_mode != I915_TILING_NONE;
2754 struct drm_i915_fence_reg *reg;
2755 int ret;
2756
2757 /* Have we updated the tiling parameters upon the object and so
2758 * will need to serialise the write to the associated fence register?
2759 */
2760 if (obj->fence_dirty) {
2761 ret = i915_gem_object_flush_fence(obj);
2762 if (ret)
2763 return ret;
2764 }
2765
2766 /* Just update our place in the LRU if our fence is getting reused. */
2767 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2768 reg = &dev_priv->fence_regs[obj->fence_reg];
2769 if (!obj->fence_dirty) {
2770 list_move_tail(&reg->lru_list,
2771 &dev_priv->mm.fence_list);
2772 return 0;
2773 }
2774 } else if (enable) {
2775 reg = i915_find_fence_reg(dev);
2776 if (reg == NULL)
2777 return -EDEADLK;
2778
2779 if (reg->obj) {
2780 struct drm_i915_gem_object *old = reg->obj;
2781
2782 ret = i915_gem_object_flush_fence(old);
2783 if (ret)
2784 return ret;
2785
2786 i915_gem_object_fence_lost(old);
2787 }
2788 } else
2789 return 0;
2790
2791 i915_gem_object_update_fence(obj, reg, enable);
2792 obj->fence_dirty = false;
2793
2794 return 0;
2795 }
2796
2797 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2798 struct drm_mm_node *gtt_space,
2799 unsigned long cache_level)
2800 {
2801 struct drm_mm_node *other;
2802
2803 /* On non-LLC machines we have to be careful when putting differing
2804 * types of snoopable memory together to avoid the prefetcher
2805 * crossing memory domains and dying.
2806 */
2807 if (HAS_LLC(dev))
2808 return true;
2809
2810 if (gtt_space == NULL)
2811 return true;
2812
2813 if (list_empty(&gtt_space->node_list))
2814 return true;
2815
2816 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2817 if (other->allocated && !other->hole_follows && other->color != cache_level)
2818 return false;
2819
2820 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2821 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2822 return false;
2823
2824 return true;
2825 }
2826
2827 static void i915_gem_verify_gtt(struct drm_device *dev)
2828 {
2829 #if WATCH_GTT
2830 struct drm_i915_private *dev_priv = dev->dev_private;
2831 struct drm_i915_gem_object *obj;
2832 int err = 0;
2833
2834 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2835 if (obj->gtt_space == NULL) {
2836 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2837 err++;
2838 continue;
2839 }
2840
2841 if (obj->cache_level != obj->gtt_space->color) {
2842 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2843 obj->gtt_space->start,
2844 obj->gtt_space->start + obj->gtt_space->size,
2845 obj->cache_level,
2846 obj->gtt_space->color);
2847 err++;
2848 continue;
2849 }
2850
2851 if (!i915_gem_valid_gtt_space(dev,
2852 obj->gtt_space,
2853 obj->cache_level)) {
2854 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2855 obj->gtt_space->start,
2856 obj->gtt_space->start + obj->gtt_space->size,
2857 obj->cache_level);
2858 err++;
2859 continue;
2860 }
2861 }
2862
2863 WARN_ON(err);
2864 #endif
2865 }
2866
2867 /**
2868 * Finds free space in the GTT aperture and binds the object there.
2869 */
2870 static int
2871 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2872 unsigned alignment,
2873 bool map_and_fenceable,
2874 bool nonblocking)
2875 {
2876 struct drm_device *dev = obj->base.dev;
2877 drm_i915_private_t *dev_priv = dev->dev_private;
2878 struct drm_mm_node *node;
2879 u32 size, fence_size, fence_alignment, unfenced_alignment;
2880 bool mappable, fenceable;
2881 int ret;
2882
2883 if (obj->madv != I915_MADV_WILLNEED) {
2884 DRM_ERROR("Attempting to bind a purgeable object\n");
2885 return -EINVAL;
2886 }
2887
2888 fence_size = i915_gem_get_gtt_size(dev,
2889 obj->base.size,
2890 obj->tiling_mode);
2891 fence_alignment = i915_gem_get_gtt_alignment(dev,
2892 obj->base.size,
2893 obj->tiling_mode, true);
2894 unfenced_alignment =
2895 i915_gem_get_gtt_alignment(dev,
2896 obj->base.size,
2897 obj->tiling_mode, false);
2898
2899 if (alignment == 0)
2900 alignment = map_and_fenceable ? fence_alignment :
2901 unfenced_alignment;
2902 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2903 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2904 return -EINVAL;
2905 }
2906
2907 size = map_and_fenceable ? fence_size : obj->base.size;
2908
2909 /* If the object is bigger than the entire aperture, reject it early
2910 * before evicting everything in a vain attempt to find space.
2911 */
2912 if (obj->base.size >
2913 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2914 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2915 return -E2BIG;
2916 }
2917
2918 ret = i915_gem_object_get_pages(obj);
2919 if (ret)
2920 return ret;
2921
2922 i915_gem_object_pin_pages(obj);
2923
2924 node = kzalloc(sizeof(*node), GFP_KERNEL);
2925 if (node == NULL) {
2926 i915_gem_object_unpin_pages(obj);
2927 return -ENOMEM;
2928 }
2929
2930 search_free:
2931 if (map_and_fenceable)
2932 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2933 size, alignment, obj->cache_level,
2934 0, dev_priv->mm.gtt_mappable_end);
2935 else
2936 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2937 size, alignment, obj->cache_level);
2938 if (ret) {
2939 ret = i915_gem_evict_something(dev, size, alignment,
2940 obj->cache_level,
2941 map_and_fenceable,
2942 nonblocking);
2943 if (ret == 0)
2944 goto search_free;
2945
2946 i915_gem_object_unpin_pages(obj);
2947 kfree(node);
2948 return ret;
2949 }
2950 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2951 i915_gem_object_unpin_pages(obj);
2952 drm_mm_put_block(node);
2953 return -EINVAL;
2954 }
2955
2956 ret = i915_gem_gtt_prepare_object(obj);
2957 if (ret) {
2958 i915_gem_object_unpin_pages(obj);
2959 drm_mm_put_block(node);
2960 return ret;
2961 }
2962
2963 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2964 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2965
2966 obj->gtt_space = node;
2967 obj->gtt_offset = node->start;
2968
2969 fenceable =
2970 node->size == fence_size &&
2971 (node->start & (fence_alignment - 1)) == 0;
2972
2973 mappable =
2974 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2975
2976 obj->map_and_fenceable = mappable && fenceable;
2977
2978 i915_gem_object_unpin_pages(obj);
2979 trace_i915_gem_object_bind(obj, map_and_fenceable);
2980 i915_gem_verify_gtt(dev);
2981 return 0;
2982 }
2983
2984 void
2985 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2986 {
2987 /* If we don't have a page list set up, then we're not pinned
2988 * to GPU, and we can ignore the cache flush because it'll happen
2989 * again at bind time.
2990 */
2991 if (obj->pages == NULL)
2992 return;
2993
2994 /* If the GPU is snooping the contents of the CPU cache,
2995 * we do not need to manually clear the CPU cache lines. However,
2996 * the caches are only snooped when the render cache is
2997 * flushed/invalidated. As we always have to emit invalidations
2998 * and flushes when moving into and out of the RENDER domain, correct
2999 * snooping behaviour occurs naturally as the result of our domain
3000 * tracking.
3001 */
3002 if (obj->cache_level != I915_CACHE_NONE)
3003 return;
3004
3005 trace_i915_gem_object_clflush(obj);
3006
3007 drm_clflush_sg(obj->pages);
3008 }
3009
3010 /** Flushes the GTT write domain for the object if it's dirty. */
3011 static void
3012 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3013 {
3014 uint32_t old_write_domain;
3015
3016 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3017 return;
3018
3019 /* No actual flushing is required for the GTT write domain. Writes
3020 * to it immediately go to main memory as far as we know, so there's
3021 * no chipset flush. It also doesn't land in render cache.
3022 *
3023 * However, we do have to enforce the order so that all writes through
3024 * the GTT land before any writes to the device, such as updates to
3025 * the GATT itself.
3026 */
3027 wmb();
3028
3029 old_write_domain = obj->base.write_domain;
3030 obj->base.write_domain = 0;
3031
3032 trace_i915_gem_object_change_domain(obj,
3033 obj->base.read_domains,
3034 old_write_domain);
3035 }
3036
3037 /** Flushes the CPU write domain for the object if it's dirty. */
3038 static void
3039 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3040 {
3041 uint32_t old_write_domain;
3042
3043 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3044 return;
3045
3046 i915_gem_clflush_object(obj);
3047 i915_gem_chipset_flush(obj->base.dev);
3048 old_write_domain = obj->base.write_domain;
3049 obj->base.write_domain = 0;
3050
3051 trace_i915_gem_object_change_domain(obj,
3052 obj->base.read_domains,
3053 old_write_domain);
3054 }
3055
3056 /**
3057 * Moves a single object to the GTT read, and possibly write domain.
3058 *
3059 * This function returns when the move is complete, including waiting on
3060 * flushes to occur.
3061 */
3062 int
3063 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3064 {
3065 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3066 uint32_t old_write_domain, old_read_domains;
3067 int ret;
3068
3069 /* Not valid to be called on unbound objects. */
3070 if (obj->gtt_space == NULL)
3071 return -EINVAL;
3072
3073 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3074 return 0;
3075
3076 ret = i915_gem_object_wait_rendering(obj, !write);
3077 if (ret)
3078 return ret;
3079
3080 i915_gem_object_flush_cpu_write_domain(obj);
3081
3082 old_write_domain = obj->base.write_domain;
3083 old_read_domains = obj->base.read_domains;
3084
3085 /* It should now be out of any other write domains, and we can update
3086 * the domain values for our changes.
3087 */
3088 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3089 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3090 if (write) {
3091 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3092 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3093 obj->dirty = 1;
3094 }
3095
3096 trace_i915_gem_object_change_domain(obj,
3097 old_read_domains,
3098 old_write_domain);
3099
3100 /* And bump the LRU for this access */
3101 if (i915_gem_object_is_inactive(obj))
3102 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3103
3104 return 0;
3105 }
3106
3107 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3108 enum i915_cache_level cache_level)
3109 {
3110 struct drm_device *dev = obj->base.dev;
3111 drm_i915_private_t *dev_priv = dev->dev_private;
3112 int ret;
3113
3114 if (obj->cache_level == cache_level)
3115 return 0;
3116
3117 if (obj->pin_count) {
3118 DRM_DEBUG("can not change the cache level of pinned objects\n");
3119 return -EBUSY;
3120 }
3121
3122 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3123 ret = i915_gem_object_unbind(obj);
3124 if (ret)
3125 return ret;
3126 }
3127
3128 if (obj->gtt_space) {
3129 ret = i915_gem_object_finish_gpu(obj);
3130 if (ret)
3131 return ret;
3132
3133 i915_gem_object_finish_gtt(obj);
3134
3135 /* Before SandyBridge, you could not use tiling or fence
3136 * registers with snooped memory, so relinquish any fences
3137 * currently pointing to our region in the aperture.
3138 */
3139 if (INTEL_INFO(dev)->gen < 6) {
3140 ret = i915_gem_object_put_fence(obj);
3141 if (ret)
3142 return ret;
3143 }
3144
3145 if (obj->has_global_gtt_mapping)
3146 i915_gem_gtt_bind_object(obj, cache_level);
3147 if (obj->has_aliasing_ppgtt_mapping)
3148 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3149 obj, cache_level);
3150
3151 obj->gtt_space->color = cache_level;
3152 }
3153
3154 if (cache_level == I915_CACHE_NONE) {
3155 u32 old_read_domains, old_write_domain;
3156
3157 /* If we're coming from LLC cached, then we haven't
3158 * actually been tracking whether the data is in the
3159 * CPU cache or not, since we only allow one bit set
3160 * in obj->write_domain and have been skipping the clflushes.
3161 * Just set it to the CPU cache for now.
3162 */
3163 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3164 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3165
3166 old_read_domains = obj->base.read_domains;
3167 old_write_domain = obj->base.write_domain;
3168
3169 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3170 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3171
3172 trace_i915_gem_object_change_domain(obj,
3173 old_read_domains,
3174 old_write_domain);
3175 }
3176
3177 obj->cache_level = cache_level;
3178 i915_gem_verify_gtt(dev);
3179 return 0;
3180 }
3181
3182 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3183 struct drm_file *file)
3184 {
3185 struct drm_i915_gem_caching *args = data;
3186 struct drm_i915_gem_object *obj;
3187 int ret;
3188
3189 ret = i915_mutex_lock_interruptible(dev);
3190 if (ret)
3191 return ret;
3192
3193 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3194 if (&obj->base == NULL) {
3195 ret = -ENOENT;
3196 goto unlock;
3197 }
3198
3199 args->caching = obj->cache_level != I915_CACHE_NONE;
3200
3201 drm_gem_object_unreference(&obj->base);
3202 unlock:
3203 mutex_unlock(&dev->struct_mutex);
3204 return ret;
3205 }
3206
3207 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3208 struct drm_file *file)
3209 {
3210 struct drm_i915_gem_caching *args = data;
3211 struct drm_i915_gem_object *obj;
3212 enum i915_cache_level level;
3213 int ret;
3214
3215 switch (args->caching) {
3216 case I915_CACHING_NONE:
3217 level = I915_CACHE_NONE;
3218 break;
3219 case I915_CACHING_CACHED:
3220 level = I915_CACHE_LLC;
3221 break;
3222 default:
3223 return -EINVAL;
3224 }
3225
3226 ret = i915_mutex_lock_interruptible(dev);
3227 if (ret)
3228 return ret;
3229
3230 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3231 if (&obj->base == NULL) {
3232 ret = -ENOENT;
3233 goto unlock;
3234 }
3235
3236 ret = i915_gem_object_set_cache_level(obj, level);
3237
3238 drm_gem_object_unreference(&obj->base);
3239 unlock:
3240 mutex_unlock(&dev->struct_mutex);
3241 return ret;
3242 }
3243
3244 /*
3245 * Prepare buffer for display plane (scanout, cursors, etc).
3246 * Can be called from an uninterruptible phase (modesetting) and allows
3247 * any flushes to be pipelined (for pageflips).
3248 */
3249 int
3250 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3251 u32 alignment,
3252 struct intel_ring_buffer *pipelined)
3253 {
3254 u32 old_read_domains, old_write_domain;
3255 int ret;
3256
3257 if (pipelined != obj->ring) {
3258 ret = i915_gem_object_sync(obj, pipelined);
3259 if (ret)
3260 return ret;
3261 }
3262
3263 /* The display engine is not coherent with the LLC cache on gen6. As
3264 * a result, we make sure that the pinning that is about to occur is
3265 * done with uncached PTEs. This is lowest common denominator for all
3266 * chipsets.
3267 *
3268 * However for gen6+, we could do better by using the GFDT bit instead
3269 * of uncaching, which would allow us to flush all the LLC-cached data
3270 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3271 */
3272 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3273 if (ret)
3274 return ret;
3275
3276 /* As the user may map the buffer once pinned in the display plane
3277 * (e.g. libkms for the bootup splash), we have to ensure that we
3278 * always use map_and_fenceable for all scanout buffers.
3279 */
3280 ret = i915_gem_object_pin(obj, alignment, true, false);
3281 if (ret)
3282 return ret;
3283
3284 i915_gem_object_flush_cpu_write_domain(obj);
3285
3286 old_write_domain = obj->base.write_domain;
3287 old_read_domains = obj->base.read_domains;
3288
3289 /* It should now be out of any other write domains, and we can update
3290 * the domain values for our changes.
3291 */
3292 obj->base.write_domain = 0;
3293 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3294
3295 trace_i915_gem_object_change_domain(obj,
3296 old_read_domains,
3297 old_write_domain);
3298
3299 return 0;
3300 }
3301
3302 int
3303 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3304 {
3305 int ret;
3306
3307 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3308 return 0;
3309
3310 ret = i915_gem_object_wait_rendering(obj, false);
3311 if (ret)
3312 return ret;
3313
3314 /* Ensure that we invalidate the GPU's caches and TLBs. */
3315 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3316 return 0;
3317 }
3318
3319 /**
3320 * Moves a single object to the CPU read, and possibly write domain.
3321 *
3322 * This function returns when the move is complete, including waiting on
3323 * flushes to occur.
3324 */
3325 int
3326 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3327 {
3328 uint32_t old_write_domain, old_read_domains;
3329 int ret;
3330
3331 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3332 return 0;
3333
3334 ret = i915_gem_object_wait_rendering(obj, !write);
3335 if (ret)
3336 return ret;
3337
3338 i915_gem_object_flush_gtt_write_domain(obj);
3339
3340 old_write_domain = obj->base.write_domain;
3341 old_read_domains = obj->base.read_domains;
3342
3343 /* Flush the CPU cache if it's still invalid. */
3344 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3345 i915_gem_clflush_object(obj);
3346
3347 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3348 }
3349
3350 /* It should now be out of any other write domains, and we can update
3351 * the domain values for our changes.
3352 */
3353 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3354
3355 /* If we're writing through the CPU, then the GPU read domains will
3356 * need to be invalidated at next use.
3357 */
3358 if (write) {
3359 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3360 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3361 }
3362
3363 trace_i915_gem_object_change_domain(obj,
3364 old_read_domains,
3365 old_write_domain);
3366
3367 return 0;
3368 }
3369
3370 /* Throttle our rendering by waiting until the ring has completed our requests
3371 * emitted over 20 msec ago.
3372 *
3373 * Note that if we were to use the current jiffies each time around the loop,
3374 * we wouldn't escape the function with any frames outstanding if the time to
3375 * render a frame was over 20ms.
3376 *
3377 * This should get us reasonable parallelism between CPU and GPU but also
3378 * relatively low latency when blocking on a particular request to finish.
3379 */
3380 static int
3381 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3382 {
3383 struct drm_i915_private *dev_priv = dev->dev_private;
3384 struct drm_i915_file_private *file_priv = file->driver_priv;
3385 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3386 struct drm_i915_gem_request *request;
3387 struct intel_ring_buffer *ring = NULL;
3388 u32 seqno = 0;
3389 int ret;
3390
3391 if (atomic_read(&dev_priv->mm.wedged))
3392 return -EIO;
3393
3394 spin_lock(&file_priv->mm.lock);
3395 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3396 if (time_after_eq(request->emitted_jiffies, recent_enough))
3397 break;
3398
3399 ring = request->ring;
3400 seqno = request->seqno;
3401 }
3402 spin_unlock(&file_priv->mm.lock);
3403
3404 if (seqno == 0)
3405 return 0;
3406
3407 ret = __wait_seqno(ring, seqno, true, NULL);
3408 if (ret == 0)
3409 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3410
3411 return ret;
3412 }
3413
3414 int
3415 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3416 uint32_t alignment,
3417 bool map_and_fenceable,
3418 bool nonblocking)
3419 {
3420 int ret;
3421
3422 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3423 return -EBUSY;
3424
3425 if (obj->gtt_space != NULL) {
3426 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3427 (map_and_fenceable && !obj->map_and_fenceable)) {
3428 WARN(obj->pin_count,
3429 "bo is already pinned with incorrect alignment:"
3430 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3431 " obj->map_and_fenceable=%d\n",
3432 obj->gtt_offset, alignment,
3433 map_and_fenceable,
3434 obj->map_and_fenceable);
3435 ret = i915_gem_object_unbind(obj);
3436 if (ret)
3437 return ret;
3438 }
3439 }
3440
3441 if (obj->gtt_space == NULL) {
3442 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3443
3444 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3445 map_and_fenceable,
3446 nonblocking);
3447 if (ret)
3448 return ret;
3449
3450 if (!dev_priv->mm.aliasing_ppgtt)
3451 i915_gem_gtt_bind_object(obj, obj->cache_level);
3452 }
3453
3454 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3455 i915_gem_gtt_bind_object(obj, obj->cache_level);
3456
3457 obj->pin_count++;
3458 obj->pin_mappable |= map_and_fenceable;
3459
3460 return 0;
3461 }
3462
3463 void
3464 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3465 {
3466 BUG_ON(obj->pin_count == 0);
3467 BUG_ON(obj->gtt_space == NULL);
3468
3469 if (--obj->pin_count == 0)
3470 obj->pin_mappable = false;
3471 }
3472
3473 int
3474 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3475 struct drm_file *file)
3476 {
3477 struct drm_i915_gem_pin *args = data;
3478 struct drm_i915_gem_object *obj;
3479 int ret;
3480
3481 ret = i915_mutex_lock_interruptible(dev);
3482 if (ret)
3483 return ret;
3484
3485 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3486 if (&obj->base == NULL) {
3487 ret = -ENOENT;
3488 goto unlock;
3489 }
3490
3491 if (obj->madv != I915_MADV_WILLNEED) {
3492 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3493 ret = -EINVAL;
3494 goto out;
3495 }
3496
3497 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3498 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3499 args->handle);
3500 ret = -EINVAL;
3501 goto out;
3502 }
3503
3504 obj->user_pin_count++;
3505 obj->pin_filp = file;
3506 if (obj->user_pin_count == 1) {
3507 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3508 if (ret)
3509 goto out;
3510 }
3511
3512 /* XXX - flush the CPU caches for pinned objects
3513 * as the X server doesn't manage domains yet
3514 */
3515 i915_gem_object_flush_cpu_write_domain(obj);
3516 args->offset = obj->gtt_offset;
3517 out:
3518 drm_gem_object_unreference(&obj->base);
3519 unlock:
3520 mutex_unlock(&dev->struct_mutex);
3521 return ret;
3522 }
3523
3524 int
3525 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3526 struct drm_file *file)
3527 {
3528 struct drm_i915_gem_pin *args = data;
3529 struct drm_i915_gem_object *obj;
3530 int ret;
3531
3532 ret = i915_mutex_lock_interruptible(dev);
3533 if (ret)
3534 return ret;
3535
3536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537 if (&obj->base == NULL) {
3538 ret = -ENOENT;
3539 goto unlock;
3540 }
3541
3542 if (obj->pin_filp != file) {
3543 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3544 args->handle);
3545 ret = -EINVAL;
3546 goto out;
3547 }
3548 obj->user_pin_count--;
3549 if (obj->user_pin_count == 0) {
3550 obj->pin_filp = NULL;
3551 i915_gem_object_unpin(obj);
3552 }
3553
3554 out:
3555 drm_gem_object_unreference(&obj->base);
3556 unlock:
3557 mutex_unlock(&dev->struct_mutex);
3558 return ret;
3559 }
3560
3561 int
3562 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3563 struct drm_file *file)
3564 {
3565 struct drm_i915_gem_busy *args = data;
3566 struct drm_i915_gem_object *obj;
3567 int ret;
3568
3569 ret = i915_mutex_lock_interruptible(dev);
3570 if (ret)
3571 return ret;
3572
3573 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3574 if (&obj->base == NULL) {
3575 ret = -ENOENT;
3576 goto unlock;
3577 }
3578
3579 /* Count all active objects as busy, even if they are currently not used
3580 * by the gpu. Users of this interface expect objects to eventually
3581 * become non-busy without any further actions, therefore emit any
3582 * necessary flushes here.
3583 */
3584 ret = i915_gem_object_flush_active(obj);
3585
3586 args->busy = obj->active;
3587 if (obj->ring) {
3588 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3589 args->busy |= intel_ring_flag(obj->ring) << 16;
3590 }
3591
3592 drm_gem_object_unreference(&obj->base);
3593 unlock:
3594 mutex_unlock(&dev->struct_mutex);
3595 return ret;
3596 }
3597
3598 int
3599 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3600 struct drm_file *file_priv)
3601 {
3602 return i915_gem_ring_throttle(dev, file_priv);
3603 }
3604
3605 int
3606 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3607 struct drm_file *file_priv)
3608 {
3609 struct drm_i915_gem_madvise *args = data;
3610 struct drm_i915_gem_object *obj;
3611 int ret;
3612
3613 switch (args->madv) {
3614 case I915_MADV_DONTNEED:
3615 case I915_MADV_WILLNEED:
3616 break;
3617 default:
3618 return -EINVAL;
3619 }
3620
3621 ret = i915_mutex_lock_interruptible(dev);
3622 if (ret)
3623 return ret;
3624
3625 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3626 if (&obj->base == NULL) {
3627 ret = -ENOENT;
3628 goto unlock;
3629 }
3630
3631 if (obj->pin_count) {
3632 ret = -EINVAL;
3633 goto out;
3634 }
3635
3636 if (obj->madv != __I915_MADV_PURGED)
3637 obj->madv = args->madv;
3638
3639 /* if the object is no longer attached, discard its backing storage */
3640 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3641 i915_gem_object_truncate(obj);
3642
3643 args->retained = obj->madv != __I915_MADV_PURGED;
3644
3645 out:
3646 drm_gem_object_unreference(&obj->base);
3647 unlock:
3648 mutex_unlock(&dev->struct_mutex);
3649 return ret;
3650 }
3651
3652 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3653 const struct drm_i915_gem_object_ops *ops)
3654 {
3655 INIT_LIST_HEAD(&obj->mm_list);
3656 INIT_LIST_HEAD(&obj->gtt_list);
3657 INIT_LIST_HEAD(&obj->ring_list);
3658 INIT_LIST_HEAD(&obj->exec_list);
3659
3660 obj->ops = ops;
3661
3662 obj->fence_reg = I915_FENCE_REG_NONE;
3663 obj->madv = I915_MADV_WILLNEED;
3664 /* Avoid an unnecessary call to unbind on the first bind. */
3665 obj->map_and_fenceable = true;
3666
3667 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3668 }
3669
3670 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3671 .get_pages = i915_gem_object_get_pages_gtt,
3672 .put_pages = i915_gem_object_put_pages_gtt,
3673 };
3674
3675 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3676 size_t size)
3677 {
3678 struct drm_i915_gem_object *obj;
3679 struct address_space *mapping;
3680 gfp_t mask;
3681
3682 obj = i915_gem_object_alloc(dev);
3683 if (obj == NULL)
3684 return NULL;
3685
3686 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3687 i915_gem_object_free(obj);
3688 return NULL;
3689 }
3690
3691 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3692 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3693 /* 965gm cannot relocate objects above 4GiB. */
3694 mask &= ~__GFP_HIGHMEM;
3695 mask |= __GFP_DMA32;
3696 }
3697
3698 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3699 mapping_set_gfp_mask(mapping, mask);
3700
3701 i915_gem_object_init(obj, &i915_gem_object_ops);
3702
3703 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3704 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705
3706 if (HAS_LLC(dev)) {
3707 /* On some devices, we can have the GPU use the LLC (the CPU
3708 * cache) for about a 10% performance improvement
3709 * compared to uncached. Graphics requests other than
3710 * display scanout are coherent with the CPU in
3711 * accessing this cache. This means in this mode we
3712 * don't need to clflush on the CPU side, and on the
3713 * GPU side we only need to flush internal caches to
3714 * get data visible to the CPU.
3715 *
3716 * However, we maintain the display planes as UC, and so
3717 * need to rebind when first used as such.
3718 */
3719 obj->cache_level = I915_CACHE_LLC;
3720 } else
3721 obj->cache_level = I915_CACHE_NONE;
3722
3723 return obj;
3724 }
3725
3726 int i915_gem_init_object(struct drm_gem_object *obj)
3727 {
3728 BUG();
3729
3730 return 0;
3731 }
3732
3733 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3734 {
3735 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3736 struct drm_device *dev = obj->base.dev;
3737 drm_i915_private_t *dev_priv = dev->dev_private;
3738
3739 trace_i915_gem_object_destroy(obj);
3740
3741 if (obj->phys_obj)
3742 i915_gem_detach_phys_object(dev, obj);
3743
3744 obj->pin_count = 0;
3745 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3746 bool was_interruptible;
3747
3748 was_interruptible = dev_priv->mm.interruptible;
3749 dev_priv->mm.interruptible = false;
3750
3751 WARN_ON(i915_gem_object_unbind(obj));
3752
3753 dev_priv->mm.interruptible = was_interruptible;
3754 }
3755
3756 obj->pages_pin_count = 0;
3757 i915_gem_object_put_pages(obj);
3758 i915_gem_object_free_mmap_offset(obj);
3759 i915_gem_object_release_stolen(obj);
3760
3761 BUG_ON(obj->pages);
3762
3763 if (obj->base.import_attach)
3764 drm_prime_gem_destroy(&obj->base, NULL);
3765
3766 drm_gem_object_release(&obj->base);
3767 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3768
3769 kfree(obj->bit_17);
3770 i915_gem_object_free(obj);
3771 }
3772
3773 int
3774 i915_gem_idle(struct drm_device *dev)
3775 {
3776 drm_i915_private_t *dev_priv = dev->dev_private;
3777 int ret;
3778
3779 mutex_lock(&dev->struct_mutex);
3780
3781 if (dev_priv->mm.suspended) {
3782 mutex_unlock(&dev->struct_mutex);
3783 return 0;
3784 }
3785
3786 ret = i915_gpu_idle(dev);
3787 if (ret) {
3788 mutex_unlock(&dev->struct_mutex);
3789 return ret;
3790 }
3791 i915_gem_retire_requests(dev);
3792
3793 /* Under UMS, be paranoid and evict. */
3794 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3795 i915_gem_evict_everything(dev);
3796
3797 i915_gem_reset_fences(dev);
3798
3799 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3800 * We need to replace this with a semaphore, or something.
3801 * And not confound mm.suspended!
3802 */
3803 dev_priv->mm.suspended = 1;
3804 del_timer_sync(&dev_priv->hangcheck_timer);
3805
3806 i915_kernel_lost_context(dev);
3807 i915_gem_cleanup_ringbuffer(dev);
3808
3809 mutex_unlock(&dev->struct_mutex);
3810
3811 /* Cancel the retire work handler, which should be idle now. */
3812 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3813
3814 return 0;
3815 }
3816
3817 void i915_gem_l3_remap(struct drm_device *dev)
3818 {
3819 drm_i915_private_t *dev_priv = dev->dev_private;
3820 u32 misccpctl;
3821 int i;
3822
3823 if (!IS_IVYBRIDGE(dev))
3824 return;
3825
3826 if (!dev_priv->l3_parity.remap_info)
3827 return;
3828
3829 misccpctl = I915_READ(GEN7_MISCCPCTL);
3830 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3831 POSTING_READ(GEN7_MISCCPCTL);
3832
3833 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3834 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3835 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3836 DRM_DEBUG("0x%x was already programmed to %x\n",
3837 GEN7_L3LOG_BASE + i, remap);
3838 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3839 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3840 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3841 }
3842
3843 /* Make sure all the writes land before disabling dop clock gating */
3844 POSTING_READ(GEN7_L3LOG_BASE);
3845
3846 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3847 }
3848
3849 void i915_gem_init_swizzling(struct drm_device *dev)
3850 {
3851 drm_i915_private_t *dev_priv = dev->dev_private;
3852
3853 if (INTEL_INFO(dev)->gen < 5 ||
3854 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3855 return;
3856
3857 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3858 DISP_TILE_SURFACE_SWIZZLING);
3859
3860 if (IS_GEN5(dev))
3861 return;
3862
3863 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3864 if (IS_GEN6(dev))
3865 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3866 else if (IS_GEN7(dev))
3867 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3868 else
3869 BUG();
3870 }
3871
3872 static bool
3873 intel_enable_blt(struct drm_device *dev)
3874 {
3875 if (!HAS_BLT(dev))
3876 return false;
3877
3878 /* The blitter was dysfunctional on early prototypes */
3879 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3880 DRM_INFO("BLT not supported on this pre-production hardware;"
3881 " graphics performance will be degraded.\n");
3882 return false;
3883 }
3884
3885 return true;
3886 }
3887
3888 int
3889 i915_gem_init_hw(struct drm_device *dev)
3890 {
3891 drm_i915_private_t *dev_priv = dev->dev_private;
3892 int ret;
3893
3894 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3895 return -EIO;
3896
3897 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3898 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3899
3900 i915_gem_l3_remap(dev);
3901
3902 i915_gem_init_swizzling(dev);
3903
3904 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3905
3906 ret = intel_init_render_ring_buffer(dev);
3907 if (ret)
3908 return ret;
3909
3910 if (HAS_BSD(dev)) {
3911 ret = intel_init_bsd_ring_buffer(dev);
3912 if (ret)
3913 goto cleanup_render_ring;
3914 }
3915
3916 if (intel_enable_blt(dev)) {
3917 ret = intel_init_blt_ring_buffer(dev);
3918 if (ret)
3919 goto cleanup_bsd_ring;
3920 }
3921
3922 /*
3923 * XXX: There was some w/a described somewhere suggesting loading
3924 * contexts before PPGTT.
3925 */
3926 i915_gem_context_init(dev);
3927 i915_gem_init_ppgtt(dev);
3928
3929 return 0;
3930
3931 cleanup_bsd_ring:
3932 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3933 cleanup_render_ring:
3934 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3935 return ret;
3936 }
3937
3938 int i915_gem_init(struct drm_device *dev)
3939 {
3940 struct drm_i915_private *dev_priv = dev->dev_private;
3941 int ret;
3942
3943 mutex_lock(&dev->struct_mutex);
3944 i915_gem_init_global_gtt(dev);
3945 ret = i915_gem_init_hw(dev);
3946 mutex_unlock(&dev->struct_mutex);
3947 if (ret) {
3948 i915_gem_cleanup_aliasing_ppgtt(dev);
3949 return ret;
3950 }
3951
3952 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
3953 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3954 dev_priv->dri1.allow_batchbuffer = 1;
3955 return 0;
3956 }
3957
3958 void
3959 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3960 {
3961 drm_i915_private_t *dev_priv = dev->dev_private;
3962 struct intel_ring_buffer *ring;
3963 int i;
3964
3965 for_each_ring(ring, dev_priv, i)
3966 intel_cleanup_ring_buffer(ring);
3967 }
3968
3969 int
3970 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3971 struct drm_file *file_priv)
3972 {
3973 drm_i915_private_t *dev_priv = dev->dev_private;
3974 int ret;
3975
3976 if (drm_core_check_feature(dev, DRIVER_MODESET))
3977 return 0;
3978
3979 if (atomic_read(&dev_priv->mm.wedged)) {
3980 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3981 atomic_set(&dev_priv->mm.wedged, 0);
3982 }
3983
3984 mutex_lock(&dev->struct_mutex);
3985 dev_priv->mm.suspended = 0;
3986
3987 ret = i915_gem_init_hw(dev);
3988 if (ret != 0) {
3989 mutex_unlock(&dev->struct_mutex);
3990 return ret;
3991 }
3992
3993 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3994 mutex_unlock(&dev->struct_mutex);
3995
3996 ret = drm_irq_install(dev);
3997 if (ret)
3998 goto cleanup_ringbuffer;
3999
4000 return 0;
4001
4002 cleanup_ringbuffer:
4003 mutex_lock(&dev->struct_mutex);
4004 i915_gem_cleanup_ringbuffer(dev);
4005 dev_priv->mm.suspended = 1;
4006 mutex_unlock(&dev->struct_mutex);
4007
4008 return ret;
4009 }
4010
4011 int
4012 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4013 struct drm_file *file_priv)
4014 {
4015 if (drm_core_check_feature(dev, DRIVER_MODESET))
4016 return 0;
4017
4018 drm_irq_uninstall(dev);
4019 return i915_gem_idle(dev);
4020 }
4021
4022 void
4023 i915_gem_lastclose(struct drm_device *dev)
4024 {
4025 int ret;
4026
4027 if (drm_core_check_feature(dev, DRIVER_MODESET))
4028 return;
4029
4030 ret = i915_gem_idle(dev);
4031 if (ret)
4032 DRM_ERROR("failed to idle hardware: %d\n", ret);
4033 }
4034
4035 static void
4036 init_ring_lists(struct intel_ring_buffer *ring)
4037 {
4038 INIT_LIST_HEAD(&ring->active_list);
4039 INIT_LIST_HEAD(&ring->request_list);
4040 }
4041
4042 void
4043 i915_gem_load(struct drm_device *dev)
4044 {
4045 drm_i915_private_t *dev_priv = dev->dev_private;
4046 int i;
4047
4048 dev_priv->slab =
4049 kmem_cache_create("i915_gem_object",
4050 sizeof(struct drm_i915_gem_object), 0,
4051 SLAB_HWCACHE_ALIGN,
4052 NULL);
4053
4054 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4055 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4056 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4057 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4058 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4059 for (i = 0; i < I915_NUM_RINGS; i++)
4060 init_ring_lists(&dev_priv->ring[i]);
4061 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4062 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4063 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4064 i915_gem_retire_work_handler);
4065 init_completion(&dev_priv->error_completion);
4066
4067 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4068 if (IS_GEN3(dev)) {
4069 I915_WRITE(MI_ARB_STATE,
4070 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4071 }
4072
4073 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4074
4075 /* Old X drivers will take 0-2 for front, back, depth buffers */
4076 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4077 dev_priv->fence_reg_start = 3;
4078
4079 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4080 dev_priv->num_fence_regs = 16;
4081 else
4082 dev_priv->num_fence_regs = 8;
4083
4084 /* Initialize fence registers to zero */
4085 i915_gem_reset_fences(dev);
4086
4087 i915_gem_detect_bit_6_swizzle(dev);
4088 init_waitqueue_head(&dev_priv->pending_flip_queue);
4089
4090 dev_priv->mm.interruptible = true;
4091
4092 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4093 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4094 register_shrinker(&dev_priv->mm.inactive_shrinker);
4095 }
4096
4097 /*
4098 * Create a physically contiguous memory object for this object
4099 * e.g. for cursor + overlay regs
4100 */
4101 static int i915_gem_init_phys_object(struct drm_device *dev,
4102 int id, int size, int align)
4103 {
4104 drm_i915_private_t *dev_priv = dev->dev_private;
4105 struct drm_i915_gem_phys_object *phys_obj;
4106 int ret;
4107
4108 if (dev_priv->mm.phys_objs[id - 1] || !size)
4109 return 0;
4110
4111 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4112 if (!phys_obj)
4113 return -ENOMEM;
4114
4115 phys_obj->id = id;
4116
4117 phys_obj->handle = drm_pci_alloc(dev, size, align);
4118 if (!phys_obj->handle) {
4119 ret = -ENOMEM;
4120 goto kfree_obj;
4121 }
4122 #ifdef CONFIG_X86
4123 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4124 #endif
4125
4126 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4127
4128 return 0;
4129 kfree_obj:
4130 kfree(phys_obj);
4131 return ret;
4132 }
4133
4134 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4135 {
4136 drm_i915_private_t *dev_priv = dev->dev_private;
4137 struct drm_i915_gem_phys_object *phys_obj;
4138
4139 if (!dev_priv->mm.phys_objs[id - 1])
4140 return;
4141
4142 phys_obj = dev_priv->mm.phys_objs[id - 1];
4143 if (phys_obj->cur_obj) {
4144 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4145 }
4146
4147 #ifdef CONFIG_X86
4148 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4149 #endif
4150 drm_pci_free(dev, phys_obj->handle);
4151 kfree(phys_obj);
4152 dev_priv->mm.phys_objs[id - 1] = NULL;
4153 }
4154
4155 void i915_gem_free_all_phys_object(struct drm_device *dev)
4156 {
4157 int i;
4158
4159 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4160 i915_gem_free_phys_object(dev, i);
4161 }
4162
4163 void i915_gem_detach_phys_object(struct drm_device *dev,
4164 struct drm_i915_gem_object *obj)
4165 {
4166 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4167 char *vaddr;
4168 int i;
4169 int page_count;
4170
4171 if (!obj->phys_obj)
4172 return;
4173 vaddr = obj->phys_obj->handle->vaddr;
4174
4175 page_count = obj->base.size / PAGE_SIZE;
4176 for (i = 0; i < page_count; i++) {
4177 struct page *page = shmem_read_mapping_page(mapping, i);
4178 if (!IS_ERR(page)) {
4179 char *dst = kmap_atomic(page);
4180 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4181 kunmap_atomic(dst);
4182
4183 drm_clflush_pages(&page, 1);
4184
4185 set_page_dirty(page);
4186 mark_page_accessed(page);
4187 page_cache_release(page);
4188 }
4189 }
4190 i915_gem_chipset_flush(dev);
4191
4192 obj->phys_obj->cur_obj = NULL;
4193 obj->phys_obj = NULL;
4194 }
4195
4196 int
4197 i915_gem_attach_phys_object(struct drm_device *dev,
4198 struct drm_i915_gem_object *obj,
4199 int id,
4200 int align)
4201 {
4202 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4203 drm_i915_private_t *dev_priv = dev->dev_private;
4204 int ret = 0;
4205 int page_count;
4206 int i;
4207
4208 if (id > I915_MAX_PHYS_OBJECT)
4209 return -EINVAL;
4210
4211 if (obj->phys_obj) {
4212 if (obj->phys_obj->id == id)
4213 return 0;
4214 i915_gem_detach_phys_object(dev, obj);
4215 }
4216
4217 /* create a new object */
4218 if (!dev_priv->mm.phys_objs[id - 1]) {
4219 ret = i915_gem_init_phys_object(dev, id,
4220 obj->base.size, align);
4221 if (ret) {
4222 DRM_ERROR("failed to init phys object %d size: %zu\n",
4223 id, obj->base.size);
4224 return ret;
4225 }
4226 }
4227
4228 /* bind to the object */
4229 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4230 obj->phys_obj->cur_obj = obj;
4231
4232 page_count = obj->base.size / PAGE_SIZE;
4233
4234 for (i = 0; i < page_count; i++) {
4235 struct page *page;
4236 char *dst, *src;
4237
4238 page = shmem_read_mapping_page(mapping, i);
4239 if (IS_ERR(page))
4240 return PTR_ERR(page);
4241
4242 src = kmap_atomic(page);
4243 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4244 memcpy(dst, src, PAGE_SIZE);
4245 kunmap_atomic(src);
4246
4247 mark_page_accessed(page);
4248 page_cache_release(page);
4249 }
4250
4251 return 0;
4252 }
4253
4254 static int
4255 i915_gem_phys_pwrite(struct drm_device *dev,
4256 struct drm_i915_gem_object *obj,
4257 struct drm_i915_gem_pwrite *args,
4258 struct drm_file *file_priv)
4259 {
4260 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4261 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4262
4263 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4264 unsigned long unwritten;
4265
4266 /* The physical object once assigned is fixed for the lifetime
4267 * of the obj, so we can safely drop the lock and continue
4268 * to access vaddr.
4269 */
4270 mutex_unlock(&dev->struct_mutex);
4271 unwritten = copy_from_user(vaddr, user_data, args->size);
4272 mutex_lock(&dev->struct_mutex);
4273 if (unwritten)
4274 return -EFAULT;
4275 }
4276
4277 i915_gem_chipset_flush(dev);
4278 return 0;
4279 }
4280
4281 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4282 {
4283 struct drm_i915_file_private *file_priv = file->driver_priv;
4284
4285 /* Clean up our request list when the client is going away, so that
4286 * later retire_requests won't dereference our soon-to-be-gone
4287 * file_priv.
4288 */
4289 spin_lock(&file_priv->mm.lock);
4290 while (!list_empty(&file_priv->mm.request_list)) {
4291 struct drm_i915_gem_request *request;
4292
4293 request = list_first_entry(&file_priv->mm.request_list,
4294 struct drm_i915_gem_request,
4295 client_list);
4296 list_del(&request->client_list);
4297 request->file_priv = NULL;
4298 }
4299 spin_unlock(&file_priv->mm.lock);
4300 }
4301
4302 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4303 {
4304 if (!mutex_is_locked(mutex))
4305 return false;
4306
4307 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4308 return mutex->owner == task;
4309 #else
4310 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4311 return false;
4312 #endif
4313 }
4314
4315 static int
4316 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4317 {
4318 struct drm_i915_private *dev_priv =
4319 container_of(shrinker,
4320 struct drm_i915_private,
4321 mm.inactive_shrinker);
4322 struct drm_device *dev = dev_priv->dev;
4323 struct drm_i915_gem_object *obj;
4324 int nr_to_scan = sc->nr_to_scan;
4325 bool unlock = true;
4326 int cnt;
4327
4328 if (!mutex_trylock(&dev->struct_mutex)) {
4329 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4330 return 0;
4331
4332 if (dev_priv->mm.shrinker_no_lock_stealing)
4333 return 0;
4334
4335 unlock = false;
4336 }
4337
4338 if (nr_to_scan) {
4339 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4340 if (nr_to_scan > 0)
4341 i915_gem_shrink_all(dev_priv);
4342 }
4343
4344 cnt = 0;
4345 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4346 if (obj->pages_pin_count == 0)
4347 cnt += obj->base.size >> PAGE_SHIFT;
4348 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4349 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4350 cnt += obj->base.size >> PAGE_SHIFT;
4351
4352 if (unlock)
4353 mutex_unlock(&dev->struct_mutex);
4354 return cnt;
4355 }