]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: NULL aliasing_ppgtt on cleanup
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92 int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95 if (EXIT_COND)
96 return 0;
97
98 /* GPU is already declared terminally dead, give up. */
99 if (i915_terminally_wedged(error))
100 return -EIO;
101
102 /*
103 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104 * userspace. If it takes that long something really bad is going on and
105 * we should simply try to bail out and fail as gracefully as possible.
106 */
107 ret = wait_event_interruptible_timeout(error->reset_queue,
108 EXIT_COND,
109 10*HZ);
110 if (ret == 0) {
111 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112 return -EIO;
113 } else if (ret < 0) {
114 return ret;
115 }
116 #undef EXIT_COND
117
118 return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123 struct drm_i915_private *dev_priv = dev->dev_private;
124 int ret;
125
126 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127 if (ret)
128 return ret;
129
130 ret = mutex_lock_interruptible(&dev->struct_mutex);
131 if (ret)
132 return ret;
133
134 WARN_ON(i915_verify_lists(dev));
135 return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141 return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = dev->dev_private;
149 struct drm_i915_gem_init *args = data;
150
151 if (drm_core_check_feature(dev, DRIVER_MODESET))
152 return -ENODEV;
153
154 if (args->gtt_start >= args->gtt_end ||
155 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156 return -EINVAL;
157
158 /* GEM with user mode setting was never supported on ilk and later. */
159 if (INTEL_INFO(dev)->gen >= 5)
160 return -ENODEV;
161
162 mutex_lock(&dev->struct_mutex);
163 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164 args->gtt_end);
165 dev_priv->gtt.mappable_end = args->gtt_end;
166 mutex_unlock(&dev->struct_mutex);
167
168 return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173 struct drm_file *file)
174 {
175 struct drm_i915_private *dev_priv = dev->dev_private;
176 struct drm_i915_gem_get_aperture *args = data;
177 struct drm_i915_gem_object *obj;
178 size_t pinned;
179
180 pinned = 0;
181 mutex_lock(&dev->struct_mutex);
182 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183 if (obj->pin_count)
184 pinned += obj->gtt_space->size;
185 mutex_unlock(&dev->struct_mutex);
186
187 args->aper_size = dev_priv->gtt.total;
188 args->aper_available_size = args->aper_size - pinned;
189
190 return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195 struct drm_i915_private *dev_priv = dev->dev_private;
196 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202 kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207 struct drm_device *dev,
208 uint64_t size,
209 uint32_t *handle_p)
210 {
211 struct drm_i915_gem_object *obj;
212 int ret;
213 u32 handle;
214
215 size = roundup(size, PAGE_SIZE);
216 if (size == 0)
217 return -EINVAL;
218
219 /* Allocate the new object */
220 obj = i915_gem_alloc_object(dev, size);
221 if (obj == NULL)
222 return -ENOMEM;
223
224 ret = drm_gem_handle_create(file, &obj->base, &handle);
225 if (ret) {
226 drm_gem_object_release(&obj->base);
227 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228 i915_gem_object_free(obj);
229 return ret;
230 }
231
232 /* drop reference from allocate - handle holds it now */
233 drm_gem_object_unreference(&obj->base);
234 trace_i915_gem_object_create(obj);
235
236 *handle_p = handle;
237 return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242 struct drm_device *dev,
243 struct drm_mode_create_dumb *args)
244 {
245 /* have to work out size/pitch and return them */
246 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247 args->size = args->pitch * args->height;
248 return i915_gem_create(file, dev,
249 args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253 struct drm_device *dev,
254 uint32_t handle)
255 {
256 return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260 * Creates a new mm object and returns a handle to it.
261 */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264 struct drm_file *file)
265 {
266 struct drm_i915_gem_create *args = data;
267
268 return i915_gem_create(file, dev,
269 args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274 const char *gpu_vaddr, int gpu_offset,
275 int length)
276 {
277 int ret, cpu_offset = 0;
278
279 while (length > 0) {
280 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281 int this_length = min(cacheline_end - gpu_offset, length);
282 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285 gpu_vaddr + swizzled_gpu_offset,
286 this_length);
287 if (ret)
288 return ret + length;
289
290 cpu_offset += this_length;
291 gpu_offset += this_length;
292 length -= this_length;
293 }
294
295 return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300 const char __user *cpu_vaddr,
301 int length)
302 {
303 int ret, cpu_offset = 0;
304
305 while (length > 0) {
306 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307 int this_length = min(cacheline_end - gpu_offset, length);
308 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311 cpu_vaddr + cpu_offset,
312 this_length);
313 if (ret)
314 return ret + length;
315
316 cpu_offset += this_length;
317 gpu_offset += this_length;
318 length -= this_length;
319 }
320
321 return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325 * Flushes invalid cachelines before reading the target if
326 * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329 char __user *user_data,
330 bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332 char *vaddr;
333 int ret;
334
335 if (unlikely(page_do_bit17_swizzling))
336 return -EINVAL;
337
338 vaddr = kmap_atomic(page);
339 if (needs_clflush)
340 drm_clflush_virt_range(vaddr + shmem_page_offset,
341 page_length);
342 ret = __copy_to_user_inatomic(user_data,
343 vaddr + shmem_page_offset,
344 page_length);
345 kunmap_atomic(vaddr);
346
347 return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352 bool swizzled)
353 {
354 if (unlikely(swizzled)) {
355 unsigned long start = (unsigned long) addr;
356 unsigned long end = (unsigned long) addr + length;
357
358 /* For swizzling simply ensure that we always flush both
359 * channels. Lame, but simple and it works. Swizzled
360 * pwrite/pread is far from a hotpath - current userspace
361 * doesn't use it at all. */
362 start = round_down(start, 128);
363 end = round_up(end, 128);
364
365 drm_clflush_virt_range((void *)start, end - start);
366 } else {
367 drm_clflush_virt_range(addr, length);
368 }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373 * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376 char __user *user_data,
377 bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379 char *vaddr;
380 int ret;
381
382 vaddr = kmap(page);
383 if (needs_clflush)
384 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385 page_length,
386 page_do_bit17_swizzling);
387
388 if (page_do_bit17_swizzling)
389 ret = __copy_to_user_swizzled(user_data,
390 vaddr, shmem_page_offset,
391 page_length);
392 else
393 ret = __copy_to_user(user_data,
394 vaddr + shmem_page_offset,
395 page_length);
396 kunmap(page);
397
398 return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403 struct drm_i915_gem_object *obj,
404 struct drm_i915_gem_pread *args,
405 struct drm_file *file)
406 {
407 char __user *user_data;
408 ssize_t remain;
409 loff_t offset;
410 int shmem_page_offset, page_length, ret = 0;
411 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412 int prefaulted = 0;
413 int needs_clflush = 0;
414 struct sg_page_iter sg_iter;
415
416 user_data = to_user_ptr(args->data_ptr);
417 remain = args->size;
418
419 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
420
421 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
422 /* If we're not in the cpu read domain, set ourself into the gtt
423 * read domain and manually flush cachelines (if required). This
424 * optimizes for the case when the gpu will dirty the data
425 * anyway again before the next pread happens. */
426 if (obj->cache_level == I915_CACHE_NONE)
427 needs_clflush = 1;
428 if (obj->gtt_space) {
429 ret = i915_gem_object_set_to_gtt_domain(obj, false);
430 if (ret)
431 return ret;
432 }
433 }
434
435 ret = i915_gem_object_get_pages(obj);
436 if (ret)
437 return ret;
438
439 i915_gem_object_pin_pages(obj);
440
441 offset = args->offset;
442
443 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
444 offset >> PAGE_SHIFT) {
445 struct page *page = sg_page_iter_page(&sg_iter);
446
447 if (remain <= 0)
448 break;
449
450 /* Operation in this page
451 *
452 * shmem_page_offset = offset within page in shmem file
453 * page_length = bytes to copy for this page
454 */
455 shmem_page_offset = offset_in_page(offset);
456 page_length = remain;
457 if ((shmem_page_offset + page_length) > PAGE_SIZE)
458 page_length = PAGE_SIZE - shmem_page_offset;
459
460 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
461 (page_to_phys(page) & (1 << 17)) != 0;
462
463 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
464 user_data, page_do_bit17_swizzling,
465 needs_clflush);
466 if (ret == 0)
467 goto next_page;
468
469 mutex_unlock(&dev->struct_mutex);
470
471 if (!prefaulted) {
472 ret = fault_in_multipages_writeable(user_data, remain);
473 /* Userspace is tricking us, but we've already clobbered
474 * its pages with the prefault and promised to write the
475 * data up to the first fault. Hence ignore any errors
476 * and just continue. */
477 (void)ret;
478 prefaulted = 1;
479 }
480
481 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
482 user_data, page_do_bit17_swizzling,
483 needs_clflush);
484
485 mutex_lock(&dev->struct_mutex);
486
487 next_page:
488 mark_page_accessed(page);
489
490 if (ret)
491 goto out;
492
493 remain -= page_length;
494 user_data += page_length;
495 offset += page_length;
496 }
497
498 out:
499 i915_gem_object_unpin_pages(obj);
500
501 return ret;
502 }
503
504 /**
505 * Reads data from the object referenced by handle.
506 *
507 * On error, the contents of *data are undefined.
508 */
509 int
510 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
511 struct drm_file *file)
512 {
513 struct drm_i915_gem_pread *args = data;
514 struct drm_i915_gem_object *obj;
515 int ret = 0;
516
517 if (args->size == 0)
518 return 0;
519
520 if (!access_ok(VERIFY_WRITE,
521 to_user_ptr(args->data_ptr),
522 args->size))
523 return -EFAULT;
524
525 ret = i915_mutex_lock_interruptible(dev);
526 if (ret)
527 return ret;
528
529 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
530 if (&obj->base == NULL) {
531 ret = -ENOENT;
532 goto unlock;
533 }
534
535 /* Bounds check source. */
536 if (args->offset > obj->base.size ||
537 args->size > obj->base.size - args->offset) {
538 ret = -EINVAL;
539 goto out;
540 }
541
542 /* prime objects have no backing filp to GEM pread/pwrite
543 * pages from.
544 */
545 if (!obj->base.filp) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 trace_i915_gem_object_pread(obj, args->offset, args->size);
551
552 ret = i915_gem_shmem_pread(dev, obj, args, file);
553
554 out:
555 drm_gem_object_unreference(&obj->base);
556 unlock:
557 mutex_unlock(&dev->struct_mutex);
558 return ret;
559 }
560
561 /* This is the fast write path which cannot handle
562 * page faults in the source data
563 */
564
565 static inline int
566 fast_user_write(struct io_mapping *mapping,
567 loff_t page_base, int page_offset,
568 char __user *user_data,
569 int length)
570 {
571 void __iomem *vaddr_atomic;
572 void *vaddr;
573 unsigned long unwritten;
574
575 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
576 /* We can use the cpu mem copy function because this is X86. */
577 vaddr = (void __force*)vaddr_atomic + page_offset;
578 unwritten = __copy_from_user_inatomic_nocache(vaddr,
579 user_data, length);
580 io_mapping_unmap_atomic(vaddr_atomic);
581 return unwritten;
582 }
583
584 /**
585 * This is the fast pwrite path, where we copy the data directly from the
586 * user into the GTT, uncached.
587 */
588 static int
589 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pwrite *args,
592 struct drm_file *file)
593 {
594 drm_i915_private_t *dev_priv = dev->dev_private;
595 ssize_t remain;
596 loff_t offset, page_base;
597 char __user *user_data;
598 int page_offset, page_length, ret;
599
600 ret = i915_gem_object_pin(obj, 0, true, true);
601 if (ret)
602 goto out;
603
604 ret = i915_gem_object_set_to_gtt_domain(obj, true);
605 if (ret)
606 goto out_unpin;
607
608 ret = i915_gem_object_put_fence(obj);
609 if (ret)
610 goto out_unpin;
611
612 user_data = to_user_ptr(args->data_ptr);
613 remain = args->size;
614
615 offset = obj->gtt_offset + args->offset;
616
617 while (remain > 0) {
618 /* Operation in this page
619 *
620 * page_base = page offset within aperture
621 * page_offset = offset within page
622 * page_length = bytes to copy for this page
623 */
624 page_base = offset & PAGE_MASK;
625 page_offset = offset_in_page(offset);
626 page_length = remain;
627 if ((page_offset + remain) > PAGE_SIZE)
628 page_length = PAGE_SIZE - page_offset;
629
630 /* If we get a fault while copying data, then (presumably) our
631 * source page isn't available. Return the error and we'll
632 * retry in the slow path.
633 */
634 if (fast_user_write(dev_priv->gtt.mappable, page_base,
635 page_offset, user_data, page_length)) {
636 ret = -EFAULT;
637 goto out_unpin;
638 }
639
640 remain -= page_length;
641 user_data += page_length;
642 offset += page_length;
643 }
644
645 out_unpin:
646 i915_gem_object_unpin(obj);
647 out:
648 return ret;
649 }
650
651 /* Per-page copy function for the shmem pwrite fastpath.
652 * Flushes invalid cachelines before writing to the target if
653 * needs_clflush_before is set and flushes out any written cachelines after
654 * writing if needs_clflush is set. */
655 static int
656 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
657 char __user *user_data,
658 bool page_do_bit17_swizzling,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 if (unlikely(page_do_bit17_swizzling))
666 return -EINVAL;
667
668 vaddr = kmap_atomic(page);
669 if (needs_clflush_before)
670 drm_clflush_virt_range(vaddr + shmem_page_offset,
671 page_length);
672 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
673 user_data,
674 page_length);
675 if (needs_clflush_after)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 kunmap_atomic(vaddr);
679
680 return ret ? -EFAULT : 0;
681 }
682
683 /* Only difference to the fast-path function is that this can handle bit17
684 * and uses non-atomic copy and kmap functions. */
685 static int
686 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
687 char __user *user_data,
688 bool page_do_bit17_swizzling,
689 bool needs_clflush_before,
690 bool needs_clflush_after)
691 {
692 char *vaddr;
693 int ret;
694
695 vaddr = kmap(page);
696 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
697 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
698 page_length,
699 page_do_bit17_swizzling);
700 if (page_do_bit17_swizzling)
701 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
702 user_data,
703 page_length);
704 else
705 ret = __copy_from_user(vaddr + shmem_page_offset,
706 user_data,
707 page_length);
708 if (needs_clflush_after)
709 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
710 page_length,
711 page_do_bit17_swizzling);
712 kunmap(page);
713
714 return ret ? -EFAULT : 0;
715 }
716
717 static int
718 i915_gem_shmem_pwrite(struct drm_device *dev,
719 struct drm_i915_gem_object *obj,
720 struct drm_i915_gem_pwrite *args,
721 struct drm_file *file)
722 {
723 ssize_t remain;
724 loff_t offset;
725 char __user *user_data;
726 int shmem_page_offset, page_length, ret = 0;
727 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
728 int hit_slowpath = 0;
729 int needs_clflush_after = 0;
730 int needs_clflush_before = 0;
731 struct sg_page_iter sg_iter;
732
733 user_data = to_user_ptr(args->data_ptr);
734 remain = args->size;
735
736 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
737
738 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
739 /* If we're not in the cpu write domain, set ourself into the gtt
740 * write domain and manually flush cachelines (if required). This
741 * optimizes for the case when the gpu will use the data
742 * right away and we therefore have to clflush anyway. */
743 if (obj->cache_level == I915_CACHE_NONE)
744 needs_clflush_after = 1;
745 if (obj->gtt_space) {
746 ret = i915_gem_object_set_to_gtt_domain(obj, true);
747 if (ret)
748 return ret;
749 }
750 }
751 /* Same trick applies for invalidate partially written cachelines before
752 * writing. */
753 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
754 && obj->cache_level == I915_CACHE_NONE)
755 needs_clflush_before = 1;
756
757 ret = i915_gem_object_get_pages(obj);
758 if (ret)
759 return ret;
760
761 i915_gem_object_pin_pages(obj);
762
763 offset = args->offset;
764 obj->dirty = 1;
765
766 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
767 offset >> PAGE_SHIFT) {
768 struct page *page = sg_page_iter_page(&sg_iter);
769 int partial_cacheline_write;
770
771 if (remain <= 0)
772 break;
773
774 /* Operation in this page
775 *
776 * shmem_page_offset = offset within page in shmem file
777 * page_length = bytes to copy for this page
778 */
779 shmem_page_offset = offset_in_page(offset);
780
781 page_length = remain;
782 if ((shmem_page_offset + page_length) > PAGE_SIZE)
783 page_length = PAGE_SIZE - shmem_page_offset;
784
785 /* If we don't overwrite a cacheline completely we need to be
786 * careful to have up-to-date data by first clflushing. Don't
787 * overcomplicate things and flush the entire patch. */
788 partial_cacheline_write = needs_clflush_before &&
789 ((shmem_page_offset | page_length)
790 & (boot_cpu_data.x86_clflush_size - 1));
791
792 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
793 (page_to_phys(page) & (1 << 17)) != 0;
794
795 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
796 user_data, page_do_bit17_swizzling,
797 partial_cacheline_write,
798 needs_clflush_after);
799 if (ret == 0)
800 goto next_page;
801
802 hit_slowpath = 1;
803 mutex_unlock(&dev->struct_mutex);
804 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
805 user_data, page_do_bit17_swizzling,
806 partial_cacheline_write,
807 needs_clflush_after);
808
809 mutex_lock(&dev->struct_mutex);
810
811 next_page:
812 set_page_dirty(page);
813 mark_page_accessed(page);
814
815 if (ret)
816 goto out;
817
818 remain -= page_length;
819 user_data += page_length;
820 offset += page_length;
821 }
822
823 out:
824 i915_gem_object_unpin_pages(obj);
825
826 if (hit_slowpath) {
827 /*
828 * Fixup: Flush cpu caches in case we didn't flush the dirty
829 * cachelines in-line while writing and the object moved
830 * out of the cpu write domain while we've dropped the lock.
831 */
832 if (!needs_clflush_after &&
833 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
834 i915_gem_clflush_object(obj);
835 i915_gem_chipset_flush(dev);
836 }
837 }
838
839 if (needs_clflush_after)
840 i915_gem_chipset_flush(dev);
841
842 return ret;
843 }
844
845 /**
846 * Writes data to the object referenced by handle.
847 *
848 * On error, the contents of the buffer that were to be modified are undefined.
849 */
850 int
851 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
852 struct drm_file *file)
853 {
854 struct drm_i915_gem_pwrite *args = data;
855 struct drm_i915_gem_object *obj;
856 int ret;
857
858 if (args->size == 0)
859 return 0;
860
861 if (!access_ok(VERIFY_READ,
862 to_user_ptr(args->data_ptr),
863 args->size))
864 return -EFAULT;
865
866 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
867 args->size);
868 if (ret)
869 return -EFAULT;
870
871 ret = i915_mutex_lock_interruptible(dev);
872 if (ret)
873 return ret;
874
875 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
876 if (&obj->base == NULL) {
877 ret = -ENOENT;
878 goto unlock;
879 }
880
881 /* Bounds check destination. */
882 if (args->offset > obj->base.size ||
883 args->size > obj->base.size - args->offset) {
884 ret = -EINVAL;
885 goto out;
886 }
887
888 /* prime objects have no backing filp to GEM pread/pwrite
889 * pages from.
890 */
891 if (!obj->base.filp) {
892 ret = -EINVAL;
893 goto out;
894 }
895
896 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
897
898 ret = -EFAULT;
899 /* We can only do the GTT pwrite on untiled buffers, as otherwise
900 * it would end up going through the fenced access, and we'll get
901 * different detiling behavior between reading and writing.
902 * pread/pwrite currently are reading and writing from the CPU
903 * perspective, requiring manual detiling by the client.
904 */
905 if (obj->phys_obj) {
906 ret = i915_gem_phys_pwrite(dev, obj, args, file);
907 goto out;
908 }
909
910 if (obj->cache_level == I915_CACHE_NONE &&
911 obj->tiling_mode == I915_TILING_NONE &&
912 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
913 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
914 /* Note that the gtt paths might fail with non-page-backed user
915 * pointers (e.g. gtt mappings when moving data between
916 * textures). Fallback to the shmem path in that case. */
917 }
918
919 if (ret == -EFAULT || ret == -ENOSPC)
920 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
921
922 out:
923 drm_gem_object_unreference(&obj->base);
924 unlock:
925 mutex_unlock(&dev->struct_mutex);
926 return ret;
927 }
928
929 int
930 i915_gem_check_wedge(struct i915_gpu_error *error,
931 bool interruptible)
932 {
933 if (i915_reset_in_progress(error)) {
934 /* Non-interruptible callers can't handle -EAGAIN, hence return
935 * -EIO unconditionally for these. */
936 if (!interruptible)
937 return -EIO;
938
939 /* Recovery complete, but the reset failed ... */
940 if (i915_terminally_wedged(error))
941 return -EIO;
942
943 return -EAGAIN;
944 }
945
946 return 0;
947 }
948
949 /*
950 * Compare seqno against outstanding lazy request. Emit a request if they are
951 * equal.
952 */
953 static int
954 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
955 {
956 int ret;
957
958 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
959
960 ret = 0;
961 if (seqno == ring->outstanding_lazy_request)
962 ret = i915_add_request(ring, NULL, NULL);
963
964 return ret;
965 }
966
967 /**
968 * __wait_seqno - wait until execution of seqno has finished
969 * @ring: the ring expected to report seqno
970 * @seqno: duh!
971 * @reset_counter: reset sequence associated with the given seqno
972 * @interruptible: do an interruptible wait (normally yes)
973 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
974 *
975 * Note: It is of utmost importance that the passed in seqno and reset_counter
976 * values have been read by the caller in an smp safe manner. Where read-side
977 * locks are involved, it is sufficient to read the reset_counter before
978 * unlocking the lock that protects the seqno. For lockless tricks, the
979 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
980 * inserted.
981 *
982 * Returns 0 if the seqno was found within the alloted time. Else returns the
983 * errno with remaining time filled in timeout argument.
984 */
985 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
986 unsigned reset_counter,
987 bool interruptible, struct timespec *timeout)
988 {
989 drm_i915_private_t *dev_priv = ring->dev->dev_private;
990 struct timespec before, now, wait_time={1,0};
991 unsigned long timeout_jiffies;
992 long end;
993 bool wait_forever = true;
994 int ret;
995
996 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
997 return 0;
998
999 trace_i915_gem_request_wait_begin(ring, seqno);
1000
1001 if (timeout != NULL) {
1002 wait_time = *timeout;
1003 wait_forever = false;
1004 }
1005
1006 timeout_jiffies = timespec_to_jiffies(&wait_time);
1007
1008 if (WARN_ON(!ring->irq_get(ring)))
1009 return -ENODEV;
1010
1011 /* Record current time in case interrupted by signal, or wedged * */
1012 getrawmonotonic(&before);
1013
1014 #define EXIT_COND \
1015 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1016 i915_reset_in_progress(&dev_priv->gpu_error) || \
1017 reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1018 do {
1019 if (interruptible)
1020 end = wait_event_interruptible_timeout(ring->irq_queue,
1021 EXIT_COND,
1022 timeout_jiffies);
1023 else
1024 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1025 timeout_jiffies);
1026
1027 /* We need to check whether any gpu reset happened in between
1028 * the caller grabbing the seqno and now ... */
1029 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1030 end = -EAGAIN;
1031
1032 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1033 * gone. */
1034 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1035 if (ret)
1036 end = ret;
1037 } while (end == 0 && wait_forever);
1038
1039 getrawmonotonic(&now);
1040
1041 ring->irq_put(ring);
1042 trace_i915_gem_request_wait_end(ring, seqno);
1043 #undef EXIT_COND
1044
1045 if (timeout) {
1046 struct timespec sleep_time = timespec_sub(now, before);
1047 *timeout = timespec_sub(*timeout, sleep_time);
1048 }
1049
1050 switch (end) {
1051 case -EIO:
1052 case -EAGAIN: /* Wedged */
1053 case -ERESTARTSYS: /* Signal */
1054 return (int)end;
1055 case 0: /* Timeout */
1056 if (timeout)
1057 set_normalized_timespec(timeout, 0, 0);
1058 return -ETIME;
1059 default: /* Completed */
1060 WARN_ON(end < 0); /* We're not aware of other errors */
1061 return 0;
1062 }
1063 }
1064
1065 /**
1066 * Waits for a sequence number to be signaled, and cleans up the
1067 * request and object lists appropriately for that event.
1068 */
1069 int
1070 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1071 {
1072 struct drm_device *dev = ring->dev;
1073 struct drm_i915_private *dev_priv = dev->dev_private;
1074 bool interruptible = dev_priv->mm.interruptible;
1075 int ret;
1076
1077 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1078 BUG_ON(seqno == 0);
1079
1080 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1081 if (ret)
1082 return ret;
1083
1084 ret = i915_gem_check_olr(ring, seqno);
1085 if (ret)
1086 return ret;
1087
1088 return __wait_seqno(ring, seqno,
1089 atomic_read(&dev_priv->gpu_error.reset_counter),
1090 interruptible, NULL);
1091 }
1092
1093 /**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100 {
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133 {
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 unsigned reset_counter;
1138 u32 seqno;
1139 int ret;
1140
1141 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1142 BUG_ON(!dev_priv->mm.interruptible);
1143
1144 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1145 if (seqno == 0)
1146 return 0;
1147
1148 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1149 if (ret)
1150 return ret;
1151
1152 ret = i915_gem_check_olr(ring, seqno);
1153 if (ret)
1154 return ret;
1155
1156 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1157 mutex_unlock(&dev->struct_mutex);
1158 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1159 mutex_lock(&dev->struct_mutex);
1160
1161 i915_gem_retire_requests_ring(ring);
1162
1163 /* Manually manage the write flush as we may have not yet
1164 * retired the buffer.
1165 */
1166 if (obj->last_write_seqno &&
1167 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1168 obj->last_write_seqno = 0;
1169 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1170 }
1171
1172 return ret;
1173 }
1174
1175 /**
1176 * Called when user space prepares to use an object with the CPU, either
1177 * through the mmap ioctl's mapping or a GTT mapping.
1178 */
1179 int
1180 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1181 struct drm_file *file)
1182 {
1183 struct drm_i915_gem_set_domain *args = data;
1184 struct drm_i915_gem_object *obj;
1185 uint32_t read_domains = args->read_domains;
1186 uint32_t write_domain = args->write_domain;
1187 int ret;
1188
1189 /* Only handle setting domains to types used by the CPU. */
1190 if (write_domain & I915_GEM_GPU_DOMAINS)
1191 return -EINVAL;
1192
1193 if (read_domains & I915_GEM_GPU_DOMAINS)
1194 return -EINVAL;
1195
1196 /* Having something in the write domain implies it's in the read
1197 * domain, and only that read domain. Enforce that in the request.
1198 */
1199 if (write_domain != 0 && read_domains != write_domain)
1200 return -EINVAL;
1201
1202 ret = i915_mutex_lock_interruptible(dev);
1203 if (ret)
1204 return ret;
1205
1206 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1207 if (&obj->base == NULL) {
1208 ret = -ENOENT;
1209 goto unlock;
1210 }
1211
1212 /* Try to flush the object off the GPU without holding the lock.
1213 * We will repeat the flush holding the lock in the normal manner
1214 * to catch cases where we are gazumped.
1215 */
1216 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1217 if (ret)
1218 goto unref;
1219
1220 if (read_domains & I915_GEM_DOMAIN_GTT) {
1221 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1222
1223 /* Silently promote "you're not bound, there was nothing to do"
1224 * to success, since the client was just asking us to
1225 * make sure everything was done.
1226 */
1227 if (ret == -EINVAL)
1228 ret = 0;
1229 } else {
1230 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1231 }
1232
1233 unref:
1234 drm_gem_object_unreference(&obj->base);
1235 unlock:
1236 mutex_unlock(&dev->struct_mutex);
1237 return ret;
1238 }
1239
1240 /**
1241 * Called when user space has done writes to this buffer
1242 */
1243 int
1244 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1245 struct drm_file *file)
1246 {
1247 struct drm_i915_gem_sw_finish *args = data;
1248 struct drm_i915_gem_object *obj;
1249 int ret = 0;
1250
1251 ret = i915_mutex_lock_interruptible(dev);
1252 if (ret)
1253 return ret;
1254
1255 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1256 if (&obj->base == NULL) {
1257 ret = -ENOENT;
1258 goto unlock;
1259 }
1260
1261 /* Pinned buffers may be scanout, so flush the cache */
1262 if (obj->pin_count)
1263 i915_gem_object_flush_cpu_write_domain(obj);
1264
1265 drm_gem_object_unreference(&obj->base);
1266 unlock:
1267 mutex_unlock(&dev->struct_mutex);
1268 return ret;
1269 }
1270
1271 /**
1272 * Maps the contents of an object, returning the address it is mapped
1273 * into.
1274 *
1275 * While the mapping holds a reference on the contents of the object, it doesn't
1276 * imply a ref on the object itself.
1277 */
1278 int
1279 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1280 struct drm_file *file)
1281 {
1282 struct drm_i915_gem_mmap *args = data;
1283 struct drm_gem_object *obj;
1284 unsigned long addr;
1285
1286 obj = drm_gem_object_lookup(dev, file, args->handle);
1287 if (obj == NULL)
1288 return -ENOENT;
1289
1290 /* prime objects have no backing filp to GEM mmap
1291 * pages from.
1292 */
1293 if (!obj->filp) {
1294 drm_gem_object_unreference_unlocked(obj);
1295 return -EINVAL;
1296 }
1297
1298 addr = vm_mmap(obj->filp, 0, args->size,
1299 PROT_READ | PROT_WRITE, MAP_SHARED,
1300 args->offset);
1301 drm_gem_object_unreference_unlocked(obj);
1302 if (IS_ERR((void *)addr))
1303 return addr;
1304
1305 args->addr_ptr = (uint64_t) addr;
1306
1307 return 0;
1308 }
1309
1310 /**
1311 * i915_gem_fault - fault a page into the GTT
1312 * vma: VMA in question
1313 * vmf: fault info
1314 *
1315 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1316 * from userspace. The fault handler takes care of binding the object to
1317 * the GTT (if needed), allocating and programming a fence register (again,
1318 * only if needed based on whether the old reg is still valid or the object
1319 * is tiled) and inserting a new PTE into the faulting process.
1320 *
1321 * Note that the faulting process may involve evicting existing objects
1322 * from the GTT and/or fence registers to make room. So performance may
1323 * suffer if the GTT working set is large or there are few fence registers
1324 * left.
1325 */
1326 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1327 {
1328 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1329 struct drm_device *dev = obj->base.dev;
1330 drm_i915_private_t *dev_priv = dev->dev_private;
1331 pgoff_t page_offset;
1332 unsigned long pfn;
1333 int ret = 0;
1334 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1335
1336 /* We don't use vmf->pgoff since that has the fake offset */
1337 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1338 PAGE_SHIFT;
1339
1340 ret = i915_mutex_lock_interruptible(dev);
1341 if (ret)
1342 goto out;
1343
1344 trace_i915_gem_object_fault(obj, page_offset, true, write);
1345
1346 /* Access to snoopable pages through the GTT is incoherent. */
1347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1348 ret = -EINVAL;
1349 goto unlock;
1350 }
1351
1352 /* Now bind it into the GTT if needed */
1353 ret = i915_gem_object_pin(obj, 0, true, false);
1354 if (ret)
1355 goto unlock;
1356
1357 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1358 if (ret)
1359 goto unpin;
1360
1361 ret = i915_gem_object_get_fence(obj);
1362 if (ret)
1363 goto unpin;
1364
1365 obj->fault_mappable = true;
1366
1367 pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1368 page_offset;
1369
1370 /* Finally, remap it using the new GTT offset */
1371 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1372 unpin:
1373 i915_gem_object_unpin(obj);
1374 unlock:
1375 mutex_unlock(&dev->struct_mutex);
1376 out:
1377 switch (ret) {
1378 case -EIO:
1379 /* If this -EIO is due to a gpu hang, give the reset code a
1380 * chance to clean up the mess. Otherwise return the proper
1381 * SIGBUS. */
1382 if (i915_terminally_wedged(&dev_priv->gpu_error))
1383 return VM_FAULT_SIGBUS;
1384 case -EAGAIN:
1385 /* Give the error handler a chance to run and move the
1386 * objects off the GPU active list. Next time we service the
1387 * fault, we should be able to transition the page into the
1388 * GTT without touching the GPU (and so avoid further
1389 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1390 * with coherency, just lost writes.
1391 */
1392 set_need_resched();
1393 case 0:
1394 case -ERESTARTSYS:
1395 case -EINTR:
1396 case -EBUSY:
1397 /*
1398 * EBUSY is ok: this just means that another thread
1399 * already did the job.
1400 */
1401 return VM_FAULT_NOPAGE;
1402 case -ENOMEM:
1403 return VM_FAULT_OOM;
1404 case -ENOSPC:
1405 return VM_FAULT_SIGBUS;
1406 default:
1407 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1408 return VM_FAULT_SIGBUS;
1409 }
1410 }
1411
1412 /**
1413 * i915_gem_release_mmap - remove physical page mappings
1414 * @obj: obj in question
1415 *
1416 * Preserve the reservation of the mmapping with the DRM core code, but
1417 * relinquish ownership of the pages back to the system.
1418 *
1419 * It is vital that we remove the page mapping if we have mapped a tiled
1420 * object through the GTT and then lose the fence register due to
1421 * resource pressure. Similarly if the object has been moved out of the
1422 * aperture, than pages mapped into userspace must be revoked. Removing the
1423 * mapping will then trigger a page fault on the next user access, allowing
1424 * fixup by i915_gem_fault().
1425 */
1426 void
1427 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1428 {
1429 if (!obj->fault_mappable)
1430 return;
1431
1432 if (obj->base.dev->dev_mapping)
1433 unmap_mapping_range(obj->base.dev->dev_mapping,
1434 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1435 obj->base.size, 1);
1436
1437 obj->fault_mappable = false;
1438 }
1439
1440 uint32_t
1441 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1442 {
1443 uint32_t gtt_size;
1444
1445 if (INTEL_INFO(dev)->gen >= 4 ||
1446 tiling_mode == I915_TILING_NONE)
1447 return size;
1448
1449 /* Previous chips need a power-of-two fence region when tiling */
1450 if (INTEL_INFO(dev)->gen == 3)
1451 gtt_size = 1024*1024;
1452 else
1453 gtt_size = 512*1024;
1454
1455 while (gtt_size < size)
1456 gtt_size <<= 1;
1457
1458 return gtt_size;
1459 }
1460
1461 /**
1462 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1463 * @obj: object to check
1464 *
1465 * Return the required GTT alignment for an object, taking into account
1466 * potential fence register mapping.
1467 */
1468 uint32_t
1469 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1470 int tiling_mode, bool fenced)
1471 {
1472 /*
1473 * Minimum alignment is 4k (GTT page size), but might be greater
1474 * if a fence register is needed for the object.
1475 */
1476 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1477 tiling_mode == I915_TILING_NONE)
1478 return 4096;
1479
1480 /*
1481 * Previous chips need to be aligned to the size of the smallest
1482 * fence register that can contain the object.
1483 */
1484 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1485 }
1486
1487 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1488 {
1489 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1490 int ret;
1491
1492 if (obj->base.map_list.map)
1493 return 0;
1494
1495 dev_priv->mm.shrinker_no_lock_stealing = true;
1496
1497 ret = drm_gem_create_mmap_offset(&obj->base);
1498 if (ret != -ENOSPC)
1499 goto out;
1500
1501 /* Badly fragmented mmap space? The only way we can recover
1502 * space is by destroying unwanted objects. We can't randomly release
1503 * mmap_offsets as userspace expects them to be persistent for the
1504 * lifetime of the objects. The closest we can is to release the
1505 * offsets on purgeable objects by truncating it and marking it purged,
1506 * which prevents userspace from ever using that object again.
1507 */
1508 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1509 ret = drm_gem_create_mmap_offset(&obj->base);
1510 if (ret != -ENOSPC)
1511 goto out;
1512
1513 i915_gem_shrink_all(dev_priv);
1514 ret = drm_gem_create_mmap_offset(&obj->base);
1515 out:
1516 dev_priv->mm.shrinker_no_lock_stealing = false;
1517
1518 return ret;
1519 }
1520
1521 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1522 {
1523 if (!obj->base.map_list.map)
1524 return;
1525
1526 drm_gem_free_mmap_offset(&obj->base);
1527 }
1528
1529 int
1530 i915_gem_mmap_gtt(struct drm_file *file,
1531 struct drm_device *dev,
1532 uint32_t handle,
1533 uint64_t *offset)
1534 {
1535 struct drm_i915_private *dev_priv = dev->dev_private;
1536 struct drm_i915_gem_object *obj;
1537 int ret;
1538
1539 ret = i915_mutex_lock_interruptible(dev);
1540 if (ret)
1541 return ret;
1542
1543 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1544 if (&obj->base == NULL) {
1545 ret = -ENOENT;
1546 goto unlock;
1547 }
1548
1549 if (obj->base.size > dev_priv->gtt.mappable_end) {
1550 ret = -E2BIG;
1551 goto out;
1552 }
1553
1554 if (obj->madv != I915_MADV_WILLNEED) {
1555 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1556 ret = -EINVAL;
1557 goto out;
1558 }
1559
1560 ret = i915_gem_object_create_mmap_offset(obj);
1561 if (ret)
1562 goto out;
1563
1564 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1565
1566 out:
1567 drm_gem_object_unreference(&obj->base);
1568 unlock:
1569 mutex_unlock(&dev->struct_mutex);
1570 return ret;
1571 }
1572
1573 /**
1574 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1575 * @dev: DRM device
1576 * @data: GTT mapping ioctl data
1577 * @file: GEM object info
1578 *
1579 * Simply returns the fake offset to userspace so it can mmap it.
1580 * The mmap call will end up in drm_gem_mmap(), which will set things
1581 * up so we can get faults in the handler above.
1582 *
1583 * The fault handler will take care of binding the object into the GTT
1584 * (since it may have been evicted to make room for something), allocating
1585 * a fence register, and mapping the appropriate aperture address into
1586 * userspace.
1587 */
1588 int
1589 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1590 struct drm_file *file)
1591 {
1592 struct drm_i915_gem_mmap_gtt *args = data;
1593
1594 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1595 }
1596
1597 /* Immediately discard the backing storage */
1598 static void
1599 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1600 {
1601 struct inode *inode;
1602
1603 i915_gem_object_free_mmap_offset(obj);
1604
1605 if (obj->base.filp == NULL)
1606 return;
1607
1608 /* Our goal here is to return as much of the memory as
1609 * is possible back to the system as we are called from OOM.
1610 * To do this we must instruct the shmfs to drop all of its
1611 * backing pages, *now*.
1612 */
1613 inode = file_inode(obj->base.filp);
1614 shmem_truncate_range(inode, 0, (loff_t)-1);
1615
1616 obj->madv = __I915_MADV_PURGED;
1617 }
1618
1619 static inline int
1620 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1621 {
1622 return obj->madv == I915_MADV_DONTNEED;
1623 }
1624
1625 static void
1626 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1627 {
1628 struct sg_page_iter sg_iter;
1629 int ret;
1630
1631 BUG_ON(obj->madv == __I915_MADV_PURGED);
1632
1633 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1634 if (ret) {
1635 /* In the event of a disaster, abandon all caches and
1636 * hope for the best.
1637 */
1638 WARN_ON(ret != -EIO);
1639 i915_gem_clflush_object(obj);
1640 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1641 }
1642
1643 if (i915_gem_object_needs_bit17_swizzle(obj))
1644 i915_gem_object_save_bit_17_swizzle(obj);
1645
1646 if (obj->madv == I915_MADV_DONTNEED)
1647 obj->dirty = 0;
1648
1649 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1650 struct page *page = sg_page_iter_page(&sg_iter);
1651
1652 if (obj->dirty)
1653 set_page_dirty(page);
1654
1655 if (obj->madv == I915_MADV_WILLNEED)
1656 mark_page_accessed(page);
1657
1658 page_cache_release(page);
1659 }
1660 obj->dirty = 0;
1661
1662 sg_free_table(obj->pages);
1663 kfree(obj->pages);
1664 }
1665
1666 int
1667 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1668 {
1669 const struct drm_i915_gem_object_ops *ops = obj->ops;
1670
1671 if (obj->pages == NULL)
1672 return 0;
1673
1674 BUG_ON(obj->gtt_space);
1675
1676 if (obj->pages_pin_count)
1677 return -EBUSY;
1678
1679 /* ->put_pages might need to allocate memory for the bit17 swizzle
1680 * array, hence protect them from being reaped by removing them from gtt
1681 * lists early. */
1682 list_del(&obj->gtt_list);
1683
1684 ops->put_pages(obj);
1685 obj->pages = NULL;
1686
1687 if (i915_gem_object_is_purgeable(obj))
1688 i915_gem_object_truncate(obj);
1689
1690 return 0;
1691 }
1692
1693 static long
1694 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1695 bool purgeable_only)
1696 {
1697 struct drm_i915_gem_object *obj, *next;
1698 long count = 0;
1699
1700 list_for_each_entry_safe(obj, next,
1701 &dev_priv->mm.unbound_list,
1702 gtt_list) {
1703 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1704 i915_gem_object_put_pages(obj) == 0) {
1705 count += obj->base.size >> PAGE_SHIFT;
1706 if (count >= target)
1707 return count;
1708 }
1709 }
1710
1711 list_for_each_entry_safe(obj, next,
1712 &dev_priv->mm.inactive_list,
1713 mm_list) {
1714 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1715 i915_gem_object_unbind(obj) == 0 &&
1716 i915_gem_object_put_pages(obj) == 0) {
1717 count += obj->base.size >> PAGE_SHIFT;
1718 if (count >= target)
1719 return count;
1720 }
1721 }
1722
1723 return count;
1724 }
1725
1726 static long
1727 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1728 {
1729 return __i915_gem_shrink(dev_priv, target, true);
1730 }
1731
1732 static void
1733 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1734 {
1735 struct drm_i915_gem_object *obj, *next;
1736
1737 i915_gem_evict_everything(dev_priv->dev);
1738
1739 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1740 i915_gem_object_put_pages(obj);
1741 }
1742
1743 static int
1744 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1745 {
1746 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1747 int page_count, i;
1748 struct address_space *mapping;
1749 struct sg_table *st;
1750 struct scatterlist *sg;
1751 struct sg_page_iter sg_iter;
1752 struct page *page;
1753 unsigned long last_pfn = 0; /* suppress gcc warning */
1754 gfp_t gfp;
1755
1756 /* Assert that the object is not currently in any GPU domain. As it
1757 * wasn't in the GTT, there shouldn't be any way it could have been in
1758 * a GPU cache
1759 */
1760 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1761 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1762
1763 st = kmalloc(sizeof(*st), GFP_KERNEL);
1764 if (st == NULL)
1765 return -ENOMEM;
1766
1767 page_count = obj->base.size / PAGE_SIZE;
1768 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1769 sg_free_table(st);
1770 kfree(st);
1771 return -ENOMEM;
1772 }
1773
1774 /* Get the list of pages out of our struct file. They'll be pinned
1775 * at this point until we release them.
1776 *
1777 * Fail silently without starting the shrinker
1778 */
1779 mapping = file_inode(obj->base.filp)->i_mapping;
1780 gfp = mapping_gfp_mask(mapping);
1781 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1782 gfp &= ~(__GFP_IO | __GFP_WAIT);
1783 sg = st->sgl;
1784 st->nents = 0;
1785 for (i = 0; i < page_count; i++) {
1786 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787 if (IS_ERR(page)) {
1788 i915_gem_purge(dev_priv, page_count);
1789 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1790 }
1791 if (IS_ERR(page)) {
1792 /* We've tried hard to allocate the memory by reaping
1793 * our own buffer, now let the real VM do its job and
1794 * go down in flames if truly OOM.
1795 */
1796 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1797 gfp |= __GFP_IO | __GFP_WAIT;
1798
1799 i915_gem_shrink_all(dev_priv);
1800 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1801 if (IS_ERR(page))
1802 goto err_pages;
1803
1804 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1805 gfp &= ~(__GFP_IO | __GFP_WAIT);
1806 }
1807
1808 if (!i || page_to_pfn(page) != last_pfn + 1) {
1809 if (i)
1810 sg = sg_next(sg);
1811 st->nents++;
1812 sg_set_page(sg, page, PAGE_SIZE, 0);
1813 } else {
1814 sg->length += PAGE_SIZE;
1815 }
1816 last_pfn = page_to_pfn(page);
1817 }
1818
1819 sg_mark_end(sg);
1820 obj->pages = st;
1821
1822 if (i915_gem_object_needs_bit17_swizzle(obj))
1823 i915_gem_object_do_bit_17_swizzle(obj);
1824
1825 return 0;
1826
1827 err_pages:
1828 sg_mark_end(sg);
1829 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1830 page_cache_release(sg_page_iter_page(&sg_iter));
1831 sg_free_table(st);
1832 kfree(st);
1833 return PTR_ERR(page);
1834 }
1835
1836 /* Ensure that the associated pages are gathered from the backing storage
1837 * and pinned into our object. i915_gem_object_get_pages() may be called
1838 * multiple times before they are released by a single call to
1839 * i915_gem_object_put_pages() - once the pages are no longer referenced
1840 * either as a result of memory pressure (reaping pages under the shrinker)
1841 * or as the object is itself released.
1842 */
1843 int
1844 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1845 {
1846 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1847 const struct drm_i915_gem_object_ops *ops = obj->ops;
1848 int ret;
1849
1850 if (obj->pages)
1851 return 0;
1852
1853 if (obj->madv != I915_MADV_WILLNEED) {
1854 DRM_ERROR("Attempting to obtain a purgeable object\n");
1855 return -EINVAL;
1856 }
1857
1858 BUG_ON(obj->pages_pin_count);
1859
1860 ret = ops->get_pages(obj);
1861 if (ret)
1862 return ret;
1863
1864 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1865 return 0;
1866 }
1867
1868 void
1869 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1870 struct intel_ring_buffer *ring)
1871 {
1872 struct drm_device *dev = obj->base.dev;
1873 struct drm_i915_private *dev_priv = dev->dev_private;
1874 u32 seqno = intel_ring_get_seqno(ring);
1875
1876 BUG_ON(ring == NULL);
1877 obj->ring = ring;
1878
1879 /* Add a reference if we're newly entering the active list. */
1880 if (!obj->active) {
1881 drm_gem_object_reference(&obj->base);
1882 obj->active = 1;
1883 }
1884
1885 /* Move from whatever list we were on to the tail of execution. */
1886 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1887 list_move_tail(&obj->ring_list, &ring->active_list);
1888
1889 obj->last_read_seqno = seqno;
1890
1891 if (obj->fenced_gpu_access) {
1892 obj->last_fenced_seqno = seqno;
1893
1894 /* Bump MRU to take account of the delayed flush */
1895 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1896 struct drm_i915_fence_reg *reg;
1897
1898 reg = &dev_priv->fence_regs[obj->fence_reg];
1899 list_move_tail(&reg->lru_list,
1900 &dev_priv->mm.fence_list);
1901 }
1902 }
1903 }
1904
1905 static void
1906 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1907 {
1908 struct drm_device *dev = obj->base.dev;
1909 struct drm_i915_private *dev_priv = dev->dev_private;
1910
1911 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1912 BUG_ON(!obj->active);
1913
1914 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1915
1916 list_del_init(&obj->ring_list);
1917 obj->ring = NULL;
1918
1919 obj->last_read_seqno = 0;
1920 obj->last_write_seqno = 0;
1921 obj->base.write_domain = 0;
1922
1923 obj->last_fenced_seqno = 0;
1924 obj->fenced_gpu_access = false;
1925
1926 obj->active = 0;
1927 drm_gem_object_unreference(&obj->base);
1928
1929 WARN_ON(i915_verify_lists(dev));
1930 }
1931
1932 static int
1933 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1934 {
1935 struct drm_i915_private *dev_priv = dev->dev_private;
1936 struct intel_ring_buffer *ring;
1937 int ret, i, j;
1938
1939 /* Carefully retire all requests without writing to the rings */
1940 for_each_ring(ring, dev_priv, i) {
1941 ret = intel_ring_idle(ring);
1942 if (ret)
1943 return ret;
1944 }
1945 i915_gem_retire_requests(dev);
1946
1947 /* Finally reset hw state */
1948 for_each_ring(ring, dev_priv, i) {
1949 intel_ring_init_seqno(ring, seqno);
1950
1951 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1952 ring->sync_seqno[j] = 0;
1953 }
1954
1955 return 0;
1956 }
1957
1958 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1959 {
1960 struct drm_i915_private *dev_priv = dev->dev_private;
1961 int ret;
1962
1963 if (seqno == 0)
1964 return -EINVAL;
1965
1966 /* HWS page needs to be set less than what we
1967 * will inject to ring
1968 */
1969 ret = i915_gem_init_seqno(dev, seqno - 1);
1970 if (ret)
1971 return ret;
1972
1973 /* Carefully set the last_seqno value so that wrap
1974 * detection still works
1975 */
1976 dev_priv->next_seqno = seqno;
1977 dev_priv->last_seqno = seqno - 1;
1978 if (dev_priv->last_seqno == 0)
1979 dev_priv->last_seqno--;
1980
1981 return 0;
1982 }
1983
1984 int
1985 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1986 {
1987 struct drm_i915_private *dev_priv = dev->dev_private;
1988
1989 /* reserve 0 for non-seqno */
1990 if (dev_priv->next_seqno == 0) {
1991 int ret = i915_gem_init_seqno(dev, 0);
1992 if (ret)
1993 return ret;
1994
1995 dev_priv->next_seqno = 1;
1996 }
1997
1998 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1999 return 0;
2000 }
2001
2002 int
2003 i915_add_request(struct intel_ring_buffer *ring,
2004 struct drm_file *file,
2005 u32 *out_seqno)
2006 {
2007 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2008 struct drm_i915_gem_request *request;
2009 u32 request_ring_position;
2010 int was_empty;
2011 int ret;
2012
2013 /*
2014 * Emit any outstanding flushes - execbuf can fail to emit the flush
2015 * after having emitted the batchbuffer command. Hence we need to fix
2016 * things up similar to emitting the lazy request. The difference here
2017 * is that the flush _must_ happen before the next request, no matter
2018 * what.
2019 */
2020 ret = intel_ring_flush_all_caches(ring);
2021 if (ret)
2022 return ret;
2023
2024 request = kmalloc(sizeof(*request), GFP_KERNEL);
2025 if (request == NULL)
2026 return -ENOMEM;
2027
2028
2029 /* Record the position of the start of the request so that
2030 * should we detect the updated seqno part-way through the
2031 * GPU processing the request, we never over-estimate the
2032 * position of the head.
2033 */
2034 request_ring_position = intel_ring_get_tail(ring);
2035
2036 ret = ring->add_request(ring);
2037 if (ret) {
2038 kfree(request);
2039 return ret;
2040 }
2041
2042 request->seqno = intel_ring_get_seqno(ring);
2043 request->ring = ring;
2044 request->tail = request_ring_position;
2045 request->emitted_jiffies = jiffies;
2046 was_empty = list_empty(&ring->request_list);
2047 list_add_tail(&request->list, &ring->request_list);
2048 request->file_priv = NULL;
2049
2050 if (file) {
2051 struct drm_i915_file_private *file_priv = file->driver_priv;
2052
2053 spin_lock(&file_priv->mm.lock);
2054 request->file_priv = file_priv;
2055 list_add_tail(&request->client_list,
2056 &file_priv->mm.request_list);
2057 spin_unlock(&file_priv->mm.lock);
2058 }
2059
2060 trace_i915_gem_request_add(ring, request->seqno);
2061 ring->outstanding_lazy_request = 0;
2062
2063 if (!dev_priv->mm.suspended) {
2064 if (i915_enable_hangcheck) {
2065 mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2066 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2067 }
2068 if (was_empty) {
2069 queue_delayed_work(dev_priv->wq,
2070 &dev_priv->mm.retire_work,
2071 round_jiffies_up_relative(HZ));
2072 intel_mark_busy(dev_priv->dev);
2073 }
2074 }
2075
2076 if (out_seqno)
2077 *out_seqno = request->seqno;
2078 return 0;
2079 }
2080
2081 static inline void
2082 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2083 {
2084 struct drm_i915_file_private *file_priv = request->file_priv;
2085
2086 if (!file_priv)
2087 return;
2088
2089 spin_lock(&file_priv->mm.lock);
2090 if (request->file_priv) {
2091 list_del(&request->client_list);
2092 request->file_priv = NULL;
2093 }
2094 spin_unlock(&file_priv->mm.lock);
2095 }
2096
2097 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2098 struct intel_ring_buffer *ring)
2099 {
2100 while (!list_empty(&ring->request_list)) {
2101 struct drm_i915_gem_request *request;
2102
2103 request = list_first_entry(&ring->request_list,
2104 struct drm_i915_gem_request,
2105 list);
2106
2107 list_del(&request->list);
2108 i915_gem_request_remove_from_client(request);
2109 kfree(request);
2110 }
2111
2112 while (!list_empty(&ring->active_list)) {
2113 struct drm_i915_gem_object *obj;
2114
2115 obj = list_first_entry(&ring->active_list,
2116 struct drm_i915_gem_object,
2117 ring_list);
2118
2119 i915_gem_object_move_to_inactive(obj);
2120 }
2121 }
2122
2123 static void i915_gem_reset_fences(struct drm_device *dev)
2124 {
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 int i;
2127
2128 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2130
2131 if (reg->obj)
2132 i915_gem_object_fence_lost(reg->obj);
2133
2134 i915_gem_write_fence(dev, i, NULL);
2135
2136 reg->pin_count = 0;
2137 reg->obj = NULL;
2138 INIT_LIST_HEAD(&reg->lru_list);
2139 }
2140
2141 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2142 }
2143
2144 void i915_gem_reset(struct drm_device *dev)
2145 {
2146 struct drm_i915_private *dev_priv = dev->dev_private;
2147 struct drm_i915_gem_object *obj;
2148 struct intel_ring_buffer *ring;
2149 int i;
2150
2151 for_each_ring(ring, dev_priv, i)
2152 i915_gem_reset_ring_lists(dev_priv, ring);
2153
2154 /* Move everything out of the GPU domains to ensure we do any
2155 * necessary invalidation upon reuse.
2156 */
2157 list_for_each_entry(obj,
2158 &dev_priv->mm.inactive_list,
2159 mm_list)
2160 {
2161 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2162 }
2163
2164 /* The fence registers are invalidated so clear them out */
2165 i915_gem_reset_fences(dev);
2166 }
2167
2168 /**
2169 * This function clears the request list as sequence numbers are passed.
2170 */
2171 void
2172 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2173 {
2174 uint32_t seqno;
2175
2176 if (list_empty(&ring->request_list))
2177 return;
2178
2179 WARN_ON(i915_verify_lists(ring->dev));
2180
2181 seqno = ring->get_seqno(ring, true);
2182
2183 while (!list_empty(&ring->request_list)) {
2184 struct drm_i915_gem_request *request;
2185
2186 request = list_first_entry(&ring->request_list,
2187 struct drm_i915_gem_request,
2188 list);
2189
2190 if (!i915_seqno_passed(seqno, request->seqno))
2191 break;
2192
2193 trace_i915_gem_request_retire(ring, request->seqno);
2194 /* We know the GPU must have read the request to have
2195 * sent us the seqno + interrupt, so use the position
2196 * of tail of the request to update the last known position
2197 * of the GPU head.
2198 */
2199 ring->last_retired_head = request->tail;
2200
2201 list_del(&request->list);
2202 i915_gem_request_remove_from_client(request);
2203 kfree(request);
2204 }
2205
2206 /* Move any buffers on the active list that are no longer referenced
2207 * by the ringbuffer to the flushing/inactive lists as appropriate.
2208 */
2209 while (!list_empty(&ring->active_list)) {
2210 struct drm_i915_gem_object *obj;
2211
2212 obj = list_first_entry(&ring->active_list,
2213 struct drm_i915_gem_object,
2214 ring_list);
2215
2216 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2217 break;
2218
2219 i915_gem_object_move_to_inactive(obj);
2220 }
2221
2222 if (unlikely(ring->trace_irq_seqno &&
2223 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2224 ring->irq_put(ring);
2225 ring->trace_irq_seqno = 0;
2226 }
2227
2228 WARN_ON(i915_verify_lists(ring->dev));
2229 }
2230
2231 void
2232 i915_gem_retire_requests(struct drm_device *dev)
2233 {
2234 drm_i915_private_t *dev_priv = dev->dev_private;
2235 struct intel_ring_buffer *ring;
2236 int i;
2237
2238 for_each_ring(ring, dev_priv, i)
2239 i915_gem_retire_requests_ring(ring);
2240 }
2241
2242 static void
2243 i915_gem_retire_work_handler(struct work_struct *work)
2244 {
2245 drm_i915_private_t *dev_priv;
2246 struct drm_device *dev;
2247 struct intel_ring_buffer *ring;
2248 bool idle;
2249 int i;
2250
2251 dev_priv = container_of(work, drm_i915_private_t,
2252 mm.retire_work.work);
2253 dev = dev_priv->dev;
2254
2255 /* Come back later if the device is busy... */
2256 if (!mutex_trylock(&dev->struct_mutex)) {
2257 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2258 round_jiffies_up_relative(HZ));
2259 return;
2260 }
2261
2262 i915_gem_retire_requests(dev);
2263
2264 /* Send a periodic flush down the ring so we don't hold onto GEM
2265 * objects indefinitely.
2266 */
2267 idle = true;
2268 for_each_ring(ring, dev_priv, i) {
2269 if (ring->gpu_caches_dirty)
2270 i915_add_request(ring, NULL, NULL);
2271
2272 idle &= list_empty(&ring->request_list);
2273 }
2274
2275 if (!dev_priv->mm.suspended && !idle)
2276 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2277 round_jiffies_up_relative(HZ));
2278 if (idle)
2279 intel_mark_idle(dev);
2280
2281 mutex_unlock(&dev->struct_mutex);
2282 }
2283
2284 /**
2285 * Ensures that an object will eventually get non-busy by flushing any required
2286 * write domains, emitting any outstanding lazy request and retiring and
2287 * completed requests.
2288 */
2289 static int
2290 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2291 {
2292 int ret;
2293
2294 if (obj->active) {
2295 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2296 if (ret)
2297 return ret;
2298
2299 i915_gem_retire_requests_ring(obj->ring);
2300 }
2301
2302 return 0;
2303 }
2304
2305 /**
2306 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2307 * @DRM_IOCTL_ARGS: standard ioctl arguments
2308 *
2309 * Returns 0 if successful, else an error is returned with the remaining time in
2310 * the timeout parameter.
2311 * -ETIME: object is still busy after timeout
2312 * -ERESTARTSYS: signal interrupted the wait
2313 * -ENONENT: object doesn't exist
2314 * Also possible, but rare:
2315 * -EAGAIN: GPU wedged
2316 * -ENOMEM: damn
2317 * -ENODEV: Internal IRQ fail
2318 * -E?: The add request failed
2319 *
2320 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2321 * non-zero timeout parameter the wait ioctl will wait for the given number of
2322 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2323 * without holding struct_mutex the object may become re-busied before this
2324 * function completes. A similar but shorter * race condition exists in the busy
2325 * ioctl
2326 */
2327 int
2328 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2329 {
2330 drm_i915_private_t *dev_priv = dev->dev_private;
2331 struct drm_i915_gem_wait *args = data;
2332 struct drm_i915_gem_object *obj;
2333 struct intel_ring_buffer *ring = NULL;
2334 struct timespec timeout_stack, *timeout = NULL;
2335 unsigned reset_counter;
2336 u32 seqno = 0;
2337 int ret = 0;
2338
2339 if (args->timeout_ns >= 0) {
2340 timeout_stack = ns_to_timespec(args->timeout_ns);
2341 timeout = &timeout_stack;
2342 }
2343
2344 ret = i915_mutex_lock_interruptible(dev);
2345 if (ret)
2346 return ret;
2347
2348 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2349 if (&obj->base == NULL) {
2350 mutex_unlock(&dev->struct_mutex);
2351 return -ENOENT;
2352 }
2353
2354 /* Need to make sure the object gets inactive eventually. */
2355 ret = i915_gem_object_flush_active(obj);
2356 if (ret)
2357 goto out;
2358
2359 if (obj->active) {
2360 seqno = obj->last_read_seqno;
2361 ring = obj->ring;
2362 }
2363
2364 if (seqno == 0)
2365 goto out;
2366
2367 /* Do this after OLR check to make sure we make forward progress polling
2368 * on this IOCTL with a 0 timeout (like busy ioctl)
2369 */
2370 if (!args->timeout_ns) {
2371 ret = -ETIME;
2372 goto out;
2373 }
2374
2375 drm_gem_object_unreference(&obj->base);
2376 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2377 mutex_unlock(&dev->struct_mutex);
2378
2379 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2380 if (timeout) {
2381 WARN_ON(!timespec_valid(timeout));
2382 args->timeout_ns = timespec_to_ns(timeout);
2383 }
2384 return ret;
2385
2386 out:
2387 drm_gem_object_unreference(&obj->base);
2388 mutex_unlock(&dev->struct_mutex);
2389 return ret;
2390 }
2391
2392 /**
2393 * i915_gem_object_sync - sync an object to a ring.
2394 *
2395 * @obj: object which may be in use on another ring.
2396 * @to: ring we wish to use the object on. May be NULL.
2397 *
2398 * This code is meant to abstract object synchronization with the GPU.
2399 * Calling with NULL implies synchronizing the object with the CPU
2400 * rather than a particular GPU ring.
2401 *
2402 * Returns 0 if successful, else propagates up the lower layer error.
2403 */
2404 int
2405 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2406 struct intel_ring_buffer *to)
2407 {
2408 struct intel_ring_buffer *from = obj->ring;
2409 u32 seqno;
2410 int ret, idx;
2411
2412 if (from == NULL || to == from)
2413 return 0;
2414
2415 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2416 return i915_gem_object_wait_rendering(obj, false);
2417
2418 idx = intel_ring_sync_index(from, to);
2419
2420 seqno = obj->last_read_seqno;
2421 if (seqno <= from->sync_seqno[idx])
2422 return 0;
2423
2424 ret = i915_gem_check_olr(obj->ring, seqno);
2425 if (ret)
2426 return ret;
2427
2428 ret = to->sync_to(to, from, seqno);
2429 if (!ret)
2430 /* We use last_read_seqno because sync_to()
2431 * might have just caused seqno wrap under
2432 * the radar.
2433 */
2434 from->sync_seqno[idx] = obj->last_read_seqno;
2435
2436 return ret;
2437 }
2438
2439 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2440 {
2441 u32 old_write_domain, old_read_domains;
2442
2443 /* Force a pagefault for domain tracking on next user access */
2444 i915_gem_release_mmap(obj);
2445
2446 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2447 return;
2448
2449 /* Wait for any direct GTT access to complete */
2450 mb();
2451
2452 old_read_domains = obj->base.read_domains;
2453 old_write_domain = obj->base.write_domain;
2454
2455 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2456 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2457
2458 trace_i915_gem_object_change_domain(obj,
2459 old_read_domains,
2460 old_write_domain);
2461 }
2462
2463 /**
2464 * Unbinds an object from the GTT aperture.
2465 */
2466 int
2467 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2468 {
2469 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2470 int ret;
2471
2472 if (obj->gtt_space == NULL)
2473 return 0;
2474
2475 if (obj->pin_count)
2476 return -EBUSY;
2477
2478 BUG_ON(obj->pages == NULL);
2479
2480 ret = i915_gem_object_finish_gpu(obj);
2481 if (ret)
2482 return ret;
2483 /* Continue on if we fail due to EIO, the GPU is hung so we
2484 * should be safe and we need to cleanup or else we might
2485 * cause memory corruption through use-after-free.
2486 */
2487
2488 i915_gem_object_finish_gtt(obj);
2489
2490 /* release the fence reg _after_ flushing */
2491 ret = i915_gem_object_put_fence(obj);
2492 if (ret)
2493 return ret;
2494
2495 trace_i915_gem_object_unbind(obj);
2496
2497 if (obj->has_global_gtt_mapping)
2498 i915_gem_gtt_unbind_object(obj);
2499 if (obj->has_aliasing_ppgtt_mapping) {
2500 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2501 obj->has_aliasing_ppgtt_mapping = 0;
2502 }
2503 i915_gem_gtt_finish_object(obj);
2504
2505 list_del(&obj->mm_list);
2506 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2507 /* Avoid an unnecessary call to unbind on rebind. */
2508 obj->map_and_fenceable = true;
2509
2510 drm_mm_put_block(obj->gtt_space);
2511 obj->gtt_space = NULL;
2512 obj->gtt_offset = 0;
2513
2514 return 0;
2515 }
2516
2517 int i915_gpu_idle(struct drm_device *dev)
2518 {
2519 drm_i915_private_t *dev_priv = dev->dev_private;
2520 struct intel_ring_buffer *ring;
2521 int ret, i;
2522
2523 /* Flush everything onto the inactive list. */
2524 for_each_ring(ring, dev_priv, i) {
2525 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2526 if (ret)
2527 return ret;
2528
2529 ret = intel_ring_idle(ring);
2530 if (ret)
2531 return ret;
2532 }
2533
2534 return 0;
2535 }
2536
2537 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2538 struct drm_i915_gem_object *obj)
2539 {
2540 drm_i915_private_t *dev_priv = dev->dev_private;
2541 int fence_reg;
2542 int fence_pitch_shift;
2543 uint64_t val;
2544
2545 if (INTEL_INFO(dev)->gen >= 6) {
2546 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2547 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2548 } else {
2549 fence_reg = FENCE_REG_965_0;
2550 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2551 }
2552
2553 if (obj) {
2554 u32 size = obj->gtt_space->size;
2555
2556 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2557 0xfffff000) << 32;
2558 val |= obj->gtt_offset & 0xfffff000;
2559 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2560 if (obj->tiling_mode == I915_TILING_Y)
2561 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2562 val |= I965_FENCE_REG_VALID;
2563 } else
2564 val = 0;
2565
2566 fence_reg += reg * 8;
2567 I915_WRITE64(fence_reg, val);
2568 POSTING_READ(fence_reg);
2569 }
2570
2571 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2572 struct drm_i915_gem_object *obj)
2573 {
2574 drm_i915_private_t *dev_priv = dev->dev_private;
2575 u32 val;
2576
2577 if (obj) {
2578 u32 size = obj->gtt_space->size;
2579 int pitch_val;
2580 int tile_width;
2581
2582 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2583 (size & -size) != size ||
2584 (obj->gtt_offset & (size - 1)),
2585 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2586 obj->gtt_offset, obj->map_and_fenceable, size);
2587
2588 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2589 tile_width = 128;
2590 else
2591 tile_width = 512;
2592
2593 /* Note: pitch better be a power of two tile widths */
2594 pitch_val = obj->stride / tile_width;
2595 pitch_val = ffs(pitch_val) - 1;
2596
2597 val = obj->gtt_offset;
2598 if (obj->tiling_mode == I915_TILING_Y)
2599 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2600 val |= I915_FENCE_SIZE_BITS(size);
2601 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2602 val |= I830_FENCE_REG_VALID;
2603 } else
2604 val = 0;
2605
2606 if (reg < 8)
2607 reg = FENCE_REG_830_0 + reg * 4;
2608 else
2609 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2610
2611 I915_WRITE(reg, val);
2612 POSTING_READ(reg);
2613 }
2614
2615 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2616 struct drm_i915_gem_object *obj)
2617 {
2618 drm_i915_private_t *dev_priv = dev->dev_private;
2619 uint32_t val;
2620
2621 if (obj) {
2622 u32 size = obj->gtt_space->size;
2623 uint32_t pitch_val;
2624
2625 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2626 (size & -size) != size ||
2627 (obj->gtt_offset & (size - 1)),
2628 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2629 obj->gtt_offset, size);
2630
2631 pitch_val = obj->stride / 128;
2632 pitch_val = ffs(pitch_val) - 1;
2633
2634 val = obj->gtt_offset;
2635 if (obj->tiling_mode == I915_TILING_Y)
2636 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2637 val |= I830_FENCE_SIZE_BITS(size);
2638 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2639 val |= I830_FENCE_REG_VALID;
2640 } else
2641 val = 0;
2642
2643 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2644 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2645 }
2646
2647 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2648 {
2649 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2650 }
2651
2652 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2653 struct drm_i915_gem_object *obj)
2654 {
2655 struct drm_i915_private *dev_priv = dev->dev_private;
2656
2657 /* Ensure that all CPU reads are completed before installing a fence
2658 * and all writes before removing the fence.
2659 */
2660 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2661 mb();
2662
2663 switch (INTEL_INFO(dev)->gen) {
2664 case 7:
2665 case 6:
2666 case 5:
2667 case 4: i965_write_fence_reg(dev, reg, obj); break;
2668 case 3: i915_write_fence_reg(dev, reg, obj); break;
2669 case 2: i830_write_fence_reg(dev, reg, obj); break;
2670 default: BUG();
2671 }
2672
2673 /* And similarly be paranoid that no direct access to this region
2674 * is reordered to before the fence is installed.
2675 */
2676 if (i915_gem_object_needs_mb(obj))
2677 mb();
2678 }
2679
2680 static inline int fence_number(struct drm_i915_private *dev_priv,
2681 struct drm_i915_fence_reg *fence)
2682 {
2683 return fence - dev_priv->fence_regs;
2684 }
2685
2686 static void i915_gem_write_fence__ipi(void *data)
2687 {
2688 wbinvd();
2689 }
2690
2691 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2692 struct drm_i915_fence_reg *fence,
2693 bool enable)
2694 {
2695 struct drm_device *dev = obj->base.dev;
2696 struct drm_i915_private *dev_priv = dev->dev_private;
2697 int fence_reg = fence_number(dev_priv, fence);
2698
2699 /* In order to fully serialize access to the fenced region and
2700 * the update to the fence register we need to take extreme
2701 * measures on SNB+. In theory, the write to the fence register
2702 * flushes all memory transactions before, and coupled with the
2703 * mb() placed around the register write we serialise all memory
2704 * operations with respect to the changes in the tiler. Yet, on
2705 * SNB+ we need to take a step further and emit an explicit wbinvd()
2706 * on each processor in order to manually flush all memory
2707 * transactions before updating the fence register.
2708 */
2709 if (HAS_LLC(obj->base.dev))
2710 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2711 i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2712
2713 if (enable) {
2714 obj->fence_reg = fence_reg;
2715 fence->obj = obj;
2716 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2717 } else {
2718 obj->fence_reg = I915_FENCE_REG_NONE;
2719 fence->obj = NULL;
2720 list_del_init(&fence->lru_list);
2721 }
2722 }
2723
2724 static int
2725 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2726 {
2727 if (obj->last_fenced_seqno) {
2728 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2729 if (ret)
2730 return ret;
2731
2732 obj->last_fenced_seqno = 0;
2733 }
2734
2735 obj->fenced_gpu_access = false;
2736 return 0;
2737 }
2738
2739 int
2740 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2741 {
2742 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2743 struct drm_i915_fence_reg *fence;
2744 int ret;
2745
2746 ret = i915_gem_object_wait_fence(obj);
2747 if (ret)
2748 return ret;
2749
2750 if (obj->fence_reg == I915_FENCE_REG_NONE)
2751 return 0;
2752
2753 fence = &dev_priv->fence_regs[obj->fence_reg];
2754
2755 i915_gem_object_fence_lost(obj);
2756 i915_gem_object_update_fence(obj, fence, false);
2757
2758 return 0;
2759 }
2760
2761 static struct drm_i915_fence_reg *
2762 i915_find_fence_reg(struct drm_device *dev)
2763 {
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 struct drm_i915_fence_reg *reg, *avail;
2766 int i;
2767
2768 /* First try to find a free reg */
2769 avail = NULL;
2770 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2771 reg = &dev_priv->fence_regs[i];
2772 if (!reg->obj)
2773 return reg;
2774
2775 if (!reg->pin_count)
2776 avail = reg;
2777 }
2778
2779 if (avail == NULL)
2780 return NULL;
2781
2782 /* None available, try to steal one or wait for a user to finish */
2783 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2784 if (reg->pin_count)
2785 continue;
2786
2787 return reg;
2788 }
2789
2790 return NULL;
2791 }
2792
2793 /**
2794 * i915_gem_object_get_fence - set up fencing for an object
2795 * @obj: object to map through a fence reg
2796 *
2797 * When mapping objects through the GTT, userspace wants to be able to write
2798 * to them without having to worry about swizzling if the object is tiled.
2799 * This function walks the fence regs looking for a free one for @obj,
2800 * stealing one if it can't find any.
2801 *
2802 * It then sets up the reg based on the object's properties: address, pitch
2803 * and tiling format.
2804 *
2805 * For an untiled surface, this removes any existing fence.
2806 */
2807 int
2808 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2809 {
2810 struct drm_device *dev = obj->base.dev;
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 bool enable = obj->tiling_mode != I915_TILING_NONE;
2813 struct drm_i915_fence_reg *reg;
2814 int ret;
2815
2816 /* Have we updated the tiling parameters upon the object and so
2817 * will need to serialise the write to the associated fence register?
2818 */
2819 if (obj->fence_dirty) {
2820 ret = i915_gem_object_wait_fence(obj);
2821 if (ret)
2822 return ret;
2823 }
2824
2825 /* Just update our place in the LRU if our fence is getting reused. */
2826 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2827 reg = &dev_priv->fence_regs[obj->fence_reg];
2828 if (!obj->fence_dirty) {
2829 list_move_tail(&reg->lru_list,
2830 &dev_priv->mm.fence_list);
2831 return 0;
2832 }
2833 } else if (enable) {
2834 reg = i915_find_fence_reg(dev);
2835 if (reg == NULL)
2836 return -EDEADLK;
2837
2838 if (reg->obj) {
2839 struct drm_i915_gem_object *old = reg->obj;
2840
2841 ret = i915_gem_object_wait_fence(old);
2842 if (ret)
2843 return ret;
2844
2845 i915_gem_object_fence_lost(old);
2846 }
2847 } else
2848 return 0;
2849
2850 i915_gem_object_update_fence(obj, reg, enable);
2851 obj->fence_dirty = false;
2852
2853 return 0;
2854 }
2855
2856 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2857 struct drm_mm_node *gtt_space,
2858 unsigned long cache_level)
2859 {
2860 struct drm_mm_node *other;
2861
2862 /* On non-LLC machines we have to be careful when putting differing
2863 * types of snoopable memory together to avoid the prefetcher
2864 * crossing memory domains and dying.
2865 */
2866 if (HAS_LLC(dev))
2867 return true;
2868
2869 if (gtt_space == NULL)
2870 return true;
2871
2872 if (list_empty(&gtt_space->node_list))
2873 return true;
2874
2875 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2876 if (other->allocated && !other->hole_follows && other->color != cache_level)
2877 return false;
2878
2879 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2880 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2881 return false;
2882
2883 return true;
2884 }
2885
2886 static void i915_gem_verify_gtt(struct drm_device *dev)
2887 {
2888 #if WATCH_GTT
2889 struct drm_i915_private *dev_priv = dev->dev_private;
2890 struct drm_i915_gem_object *obj;
2891 int err = 0;
2892
2893 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2894 if (obj->gtt_space == NULL) {
2895 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2896 err++;
2897 continue;
2898 }
2899
2900 if (obj->cache_level != obj->gtt_space->color) {
2901 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2902 obj->gtt_space->start,
2903 obj->gtt_space->start + obj->gtt_space->size,
2904 obj->cache_level,
2905 obj->gtt_space->color);
2906 err++;
2907 continue;
2908 }
2909
2910 if (!i915_gem_valid_gtt_space(dev,
2911 obj->gtt_space,
2912 obj->cache_level)) {
2913 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2914 obj->gtt_space->start,
2915 obj->gtt_space->start + obj->gtt_space->size,
2916 obj->cache_level);
2917 err++;
2918 continue;
2919 }
2920 }
2921
2922 WARN_ON(err);
2923 #endif
2924 }
2925
2926 /**
2927 * Finds free space in the GTT aperture and binds the object there.
2928 */
2929 static int
2930 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2931 unsigned alignment,
2932 bool map_and_fenceable,
2933 bool nonblocking)
2934 {
2935 struct drm_device *dev = obj->base.dev;
2936 drm_i915_private_t *dev_priv = dev->dev_private;
2937 struct drm_mm_node *node;
2938 u32 size, fence_size, fence_alignment, unfenced_alignment;
2939 bool mappable, fenceable;
2940 int ret;
2941
2942 fence_size = i915_gem_get_gtt_size(dev,
2943 obj->base.size,
2944 obj->tiling_mode);
2945 fence_alignment = i915_gem_get_gtt_alignment(dev,
2946 obj->base.size,
2947 obj->tiling_mode, true);
2948 unfenced_alignment =
2949 i915_gem_get_gtt_alignment(dev,
2950 obj->base.size,
2951 obj->tiling_mode, false);
2952
2953 if (alignment == 0)
2954 alignment = map_and_fenceable ? fence_alignment :
2955 unfenced_alignment;
2956 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2957 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2958 return -EINVAL;
2959 }
2960
2961 size = map_and_fenceable ? fence_size : obj->base.size;
2962
2963 /* If the object is bigger than the entire aperture, reject it early
2964 * before evicting everything in a vain attempt to find space.
2965 */
2966 if (obj->base.size >
2967 (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2968 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2969 return -E2BIG;
2970 }
2971
2972 ret = i915_gem_object_get_pages(obj);
2973 if (ret)
2974 return ret;
2975
2976 i915_gem_object_pin_pages(obj);
2977
2978 node = kzalloc(sizeof(*node), GFP_KERNEL);
2979 if (node == NULL) {
2980 i915_gem_object_unpin_pages(obj);
2981 return -ENOMEM;
2982 }
2983
2984 search_free:
2985 if (map_and_fenceable)
2986 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2987 size, alignment, obj->cache_level,
2988 0, dev_priv->gtt.mappable_end);
2989 else
2990 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2991 size, alignment, obj->cache_level);
2992 if (ret) {
2993 ret = i915_gem_evict_something(dev, size, alignment,
2994 obj->cache_level,
2995 map_and_fenceable,
2996 nonblocking);
2997 if (ret == 0)
2998 goto search_free;
2999
3000 i915_gem_object_unpin_pages(obj);
3001 kfree(node);
3002 return ret;
3003 }
3004 if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3005 i915_gem_object_unpin_pages(obj);
3006 drm_mm_put_block(node);
3007 return -EINVAL;
3008 }
3009
3010 ret = i915_gem_gtt_prepare_object(obj);
3011 if (ret) {
3012 i915_gem_object_unpin_pages(obj);
3013 drm_mm_put_block(node);
3014 return ret;
3015 }
3016
3017 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3018 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3019
3020 obj->gtt_space = node;
3021 obj->gtt_offset = node->start;
3022
3023 fenceable =
3024 node->size == fence_size &&
3025 (node->start & (fence_alignment - 1)) == 0;
3026
3027 mappable =
3028 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3029
3030 obj->map_and_fenceable = mappable && fenceable;
3031
3032 i915_gem_object_unpin_pages(obj);
3033 trace_i915_gem_object_bind(obj, map_and_fenceable);
3034 i915_gem_verify_gtt(dev);
3035 return 0;
3036 }
3037
3038 void
3039 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3040 {
3041 /* If we don't have a page list set up, then we're not pinned
3042 * to GPU, and we can ignore the cache flush because it'll happen
3043 * again at bind time.
3044 */
3045 if (obj->pages == NULL)
3046 return;
3047
3048 /*
3049 * Stolen memory is always coherent with the GPU as it is explicitly
3050 * marked as wc by the system, or the system is cache-coherent.
3051 */
3052 if (obj->stolen)
3053 return;
3054
3055 /* If the GPU is snooping the contents of the CPU cache,
3056 * we do not need to manually clear the CPU cache lines. However,
3057 * the caches are only snooped when the render cache is
3058 * flushed/invalidated. As we always have to emit invalidations
3059 * and flushes when moving into and out of the RENDER domain, correct
3060 * snooping behaviour occurs naturally as the result of our domain
3061 * tracking.
3062 */
3063 if (obj->cache_level != I915_CACHE_NONE)
3064 return;
3065
3066 trace_i915_gem_object_clflush(obj);
3067
3068 drm_clflush_sg(obj->pages);
3069 }
3070
3071 /** Flushes the GTT write domain for the object if it's dirty. */
3072 static void
3073 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3074 {
3075 uint32_t old_write_domain;
3076
3077 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3078 return;
3079
3080 /* No actual flushing is required for the GTT write domain. Writes
3081 * to it immediately go to main memory as far as we know, so there's
3082 * no chipset flush. It also doesn't land in render cache.
3083 *
3084 * However, we do have to enforce the order so that all writes through
3085 * the GTT land before any writes to the device, such as updates to
3086 * the GATT itself.
3087 */
3088 wmb();
3089
3090 old_write_domain = obj->base.write_domain;
3091 obj->base.write_domain = 0;
3092
3093 trace_i915_gem_object_change_domain(obj,
3094 obj->base.read_domains,
3095 old_write_domain);
3096 }
3097
3098 /** Flushes the CPU write domain for the object if it's dirty. */
3099 static void
3100 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3101 {
3102 uint32_t old_write_domain;
3103
3104 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3105 return;
3106
3107 i915_gem_clflush_object(obj);
3108 i915_gem_chipset_flush(obj->base.dev);
3109 old_write_domain = obj->base.write_domain;
3110 obj->base.write_domain = 0;
3111
3112 trace_i915_gem_object_change_domain(obj,
3113 obj->base.read_domains,
3114 old_write_domain);
3115 }
3116
3117 /**
3118 * Moves a single object to the GTT read, and possibly write domain.
3119 *
3120 * This function returns when the move is complete, including waiting on
3121 * flushes to occur.
3122 */
3123 int
3124 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3125 {
3126 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3127 uint32_t old_write_domain, old_read_domains;
3128 int ret;
3129
3130 /* Not valid to be called on unbound objects. */
3131 if (obj->gtt_space == NULL)
3132 return -EINVAL;
3133
3134 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3135 return 0;
3136
3137 ret = i915_gem_object_wait_rendering(obj, !write);
3138 if (ret)
3139 return ret;
3140
3141 i915_gem_object_flush_cpu_write_domain(obj);
3142
3143 /* Serialise direct access to this object with the barriers for
3144 * coherent writes from the GPU, by effectively invalidating the
3145 * GTT domain upon first access.
3146 */
3147 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3148 mb();
3149
3150 old_write_domain = obj->base.write_domain;
3151 old_read_domains = obj->base.read_domains;
3152
3153 /* It should now be out of any other write domains, and we can update
3154 * the domain values for our changes.
3155 */
3156 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3157 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3158 if (write) {
3159 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3160 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3161 obj->dirty = 1;
3162 }
3163
3164 trace_i915_gem_object_change_domain(obj,
3165 old_read_domains,
3166 old_write_domain);
3167
3168 /* And bump the LRU for this access */
3169 if (i915_gem_object_is_inactive(obj))
3170 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3171
3172 return 0;
3173 }
3174
3175 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3176 enum i915_cache_level cache_level)
3177 {
3178 struct drm_device *dev = obj->base.dev;
3179 drm_i915_private_t *dev_priv = dev->dev_private;
3180 int ret;
3181
3182 if (obj->cache_level == cache_level)
3183 return 0;
3184
3185 if (obj->pin_count) {
3186 DRM_DEBUG("can not change the cache level of pinned objects\n");
3187 return -EBUSY;
3188 }
3189
3190 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3191 ret = i915_gem_object_unbind(obj);
3192 if (ret)
3193 return ret;
3194 }
3195
3196 if (obj->gtt_space) {
3197 ret = i915_gem_object_finish_gpu(obj);
3198 if (ret)
3199 return ret;
3200
3201 i915_gem_object_finish_gtt(obj);
3202
3203 /* Before SandyBridge, you could not use tiling or fence
3204 * registers with snooped memory, so relinquish any fences
3205 * currently pointing to our region in the aperture.
3206 */
3207 if (INTEL_INFO(dev)->gen < 6) {
3208 ret = i915_gem_object_put_fence(obj);
3209 if (ret)
3210 return ret;
3211 }
3212
3213 if (obj->has_global_gtt_mapping)
3214 i915_gem_gtt_bind_object(obj, cache_level);
3215 if (obj->has_aliasing_ppgtt_mapping)
3216 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3217 obj, cache_level);
3218
3219 obj->gtt_space->color = cache_level;
3220 }
3221
3222 if (cache_level == I915_CACHE_NONE) {
3223 u32 old_read_domains, old_write_domain;
3224
3225 /* If we're coming from LLC cached, then we haven't
3226 * actually been tracking whether the data is in the
3227 * CPU cache or not, since we only allow one bit set
3228 * in obj->write_domain and have been skipping the clflushes.
3229 * Just set it to the CPU cache for now.
3230 */
3231 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3232 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3233
3234 old_read_domains = obj->base.read_domains;
3235 old_write_domain = obj->base.write_domain;
3236
3237 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3238 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3239
3240 trace_i915_gem_object_change_domain(obj,
3241 old_read_domains,
3242 old_write_domain);
3243 }
3244
3245 obj->cache_level = cache_level;
3246 i915_gem_verify_gtt(dev);
3247 return 0;
3248 }
3249
3250 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3251 struct drm_file *file)
3252 {
3253 struct drm_i915_gem_caching *args = data;
3254 struct drm_i915_gem_object *obj;
3255 int ret;
3256
3257 ret = i915_mutex_lock_interruptible(dev);
3258 if (ret)
3259 return ret;
3260
3261 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3262 if (&obj->base == NULL) {
3263 ret = -ENOENT;
3264 goto unlock;
3265 }
3266
3267 args->caching = obj->cache_level != I915_CACHE_NONE;
3268
3269 drm_gem_object_unreference(&obj->base);
3270 unlock:
3271 mutex_unlock(&dev->struct_mutex);
3272 return ret;
3273 }
3274
3275 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3276 struct drm_file *file)
3277 {
3278 struct drm_i915_gem_caching *args = data;
3279 struct drm_i915_gem_object *obj;
3280 enum i915_cache_level level;
3281 int ret;
3282
3283 switch (args->caching) {
3284 case I915_CACHING_NONE:
3285 level = I915_CACHE_NONE;
3286 break;
3287 case I915_CACHING_CACHED:
3288 level = I915_CACHE_LLC;
3289 break;
3290 default:
3291 return -EINVAL;
3292 }
3293
3294 ret = i915_mutex_lock_interruptible(dev);
3295 if (ret)
3296 return ret;
3297
3298 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3299 if (&obj->base == NULL) {
3300 ret = -ENOENT;
3301 goto unlock;
3302 }
3303
3304 ret = i915_gem_object_set_cache_level(obj, level);
3305
3306 drm_gem_object_unreference(&obj->base);
3307 unlock:
3308 mutex_unlock(&dev->struct_mutex);
3309 return ret;
3310 }
3311
3312 /*
3313 * Prepare buffer for display plane (scanout, cursors, etc).
3314 * Can be called from an uninterruptible phase (modesetting) and allows
3315 * any flushes to be pipelined (for pageflips).
3316 */
3317 int
3318 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3319 u32 alignment,
3320 struct intel_ring_buffer *pipelined)
3321 {
3322 u32 old_read_domains, old_write_domain;
3323 int ret;
3324
3325 if (pipelined != obj->ring) {
3326 ret = i915_gem_object_sync(obj, pipelined);
3327 if (ret)
3328 return ret;
3329 }
3330
3331 /* The display engine is not coherent with the LLC cache on gen6. As
3332 * a result, we make sure that the pinning that is about to occur is
3333 * done with uncached PTEs. This is lowest common denominator for all
3334 * chipsets.
3335 *
3336 * However for gen6+, we could do better by using the GFDT bit instead
3337 * of uncaching, which would allow us to flush all the LLC-cached data
3338 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3339 */
3340 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3341 if (ret)
3342 return ret;
3343
3344 /* As the user may map the buffer once pinned in the display plane
3345 * (e.g. libkms for the bootup splash), we have to ensure that we
3346 * always use map_and_fenceable for all scanout buffers.
3347 */
3348 ret = i915_gem_object_pin(obj, alignment, true, false);
3349 if (ret)
3350 return ret;
3351
3352 i915_gem_object_flush_cpu_write_domain(obj);
3353
3354 old_write_domain = obj->base.write_domain;
3355 old_read_domains = obj->base.read_domains;
3356
3357 /* It should now be out of any other write domains, and we can update
3358 * the domain values for our changes.
3359 */
3360 obj->base.write_domain = 0;
3361 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3362
3363 trace_i915_gem_object_change_domain(obj,
3364 old_read_domains,
3365 old_write_domain);
3366
3367 return 0;
3368 }
3369
3370 int
3371 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3372 {
3373 int ret;
3374
3375 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3376 return 0;
3377
3378 ret = i915_gem_object_wait_rendering(obj, false);
3379 if (ret)
3380 return ret;
3381
3382 /* Ensure that we invalidate the GPU's caches and TLBs. */
3383 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3384 return 0;
3385 }
3386
3387 /**
3388 * Moves a single object to the CPU read, and possibly write domain.
3389 *
3390 * This function returns when the move is complete, including waiting on
3391 * flushes to occur.
3392 */
3393 int
3394 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3395 {
3396 uint32_t old_write_domain, old_read_domains;
3397 int ret;
3398
3399 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3400 return 0;
3401
3402 ret = i915_gem_object_wait_rendering(obj, !write);
3403 if (ret)
3404 return ret;
3405
3406 i915_gem_object_flush_gtt_write_domain(obj);
3407
3408 old_write_domain = obj->base.write_domain;
3409 old_read_domains = obj->base.read_domains;
3410
3411 /* Flush the CPU cache if it's still invalid. */
3412 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3413 i915_gem_clflush_object(obj);
3414
3415 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3416 }
3417
3418 /* It should now be out of any other write domains, and we can update
3419 * the domain values for our changes.
3420 */
3421 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3422
3423 /* If we're writing through the CPU, then the GPU read domains will
3424 * need to be invalidated at next use.
3425 */
3426 if (write) {
3427 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3428 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3429 }
3430
3431 trace_i915_gem_object_change_domain(obj,
3432 old_read_domains,
3433 old_write_domain);
3434
3435 return 0;
3436 }
3437
3438 /* Throttle our rendering by waiting until the ring has completed our requests
3439 * emitted over 20 msec ago.
3440 *
3441 * Note that if we were to use the current jiffies each time around the loop,
3442 * we wouldn't escape the function with any frames outstanding if the time to
3443 * render a frame was over 20ms.
3444 *
3445 * This should get us reasonable parallelism between CPU and GPU but also
3446 * relatively low latency when blocking on a particular request to finish.
3447 */
3448 static int
3449 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3450 {
3451 struct drm_i915_private *dev_priv = dev->dev_private;
3452 struct drm_i915_file_private *file_priv = file->driver_priv;
3453 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3454 struct drm_i915_gem_request *request;
3455 struct intel_ring_buffer *ring = NULL;
3456 unsigned reset_counter;
3457 u32 seqno = 0;
3458 int ret;
3459
3460 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3461 if (ret)
3462 return ret;
3463
3464 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3465 if (ret)
3466 return ret;
3467
3468 spin_lock(&file_priv->mm.lock);
3469 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3470 if (time_after_eq(request->emitted_jiffies, recent_enough))
3471 break;
3472
3473 ring = request->ring;
3474 seqno = request->seqno;
3475 }
3476 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3477 spin_unlock(&file_priv->mm.lock);
3478
3479 if (seqno == 0)
3480 return 0;
3481
3482 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3483 if (ret == 0)
3484 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3485
3486 return ret;
3487 }
3488
3489 int
3490 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3491 uint32_t alignment,
3492 bool map_and_fenceable,
3493 bool nonblocking)
3494 {
3495 int ret;
3496
3497 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3498 return -EBUSY;
3499
3500 if (obj->gtt_space != NULL) {
3501 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3502 (map_and_fenceable && !obj->map_and_fenceable)) {
3503 WARN(obj->pin_count,
3504 "bo is already pinned with incorrect alignment:"
3505 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3506 " obj->map_and_fenceable=%d\n",
3507 obj->gtt_offset, alignment,
3508 map_and_fenceable,
3509 obj->map_and_fenceable);
3510 ret = i915_gem_object_unbind(obj);
3511 if (ret)
3512 return ret;
3513 }
3514 }
3515
3516 if (obj->gtt_space == NULL) {
3517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3518
3519 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3520 map_and_fenceable,
3521 nonblocking);
3522 if (ret)
3523 return ret;
3524
3525 if (!dev_priv->mm.aliasing_ppgtt)
3526 i915_gem_gtt_bind_object(obj, obj->cache_level);
3527 }
3528
3529 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3530 i915_gem_gtt_bind_object(obj, obj->cache_level);
3531
3532 obj->pin_count++;
3533 obj->pin_mappable |= map_and_fenceable;
3534
3535 return 0;
3536 }
3537
3538 void
3539 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3540 {
3541 BUG_ON(obj->pin_count == 0);
3542 BUG_ON(obj->gtt_space == NULL);
3543
3544 if (--obj->pin_count == 0)
3545 obj->pin_mappable = false;
3546 }
3547
3548 int
3549 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3550 struct drm_file *file)
3551 {
3552 struct drm_i915_gem_pin *args = data;
3553 struct drm_i915_gem_object *obj;
3554 int ret;
3555
3556 ret = i915_mutex_lock_interruptible(dev);
3557 if (ret)
3558 return ret;
3559
3560 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3561 if (&obj->base == NULL) {
3562 ret = -ENOENT;
3563 goto unlock;
3564 }
3565
3566 if (obj->madv != I915_MADV_WILLNEED) {
3567 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3568 ret = -EINVAL;
3569 goto out;
3570 }
3571
3572 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3573 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3574 args->handle);
3575 ret = -EINVAL;
3576 goto out;
3577 }
3578
3579 if (obj->user_pin_count == 0) {
3580 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3581 if (ret)
3582 goto out;
3583 }
3584
3585 obj->user_pin_count++;
3586 obj->pin_filp = file;
3587
3588 /* XXX - flush the CPU caches for pinned objects
3589 * as the X server doesn't manage domains yet
3590 */
3591 i915_gem_object_flush_cpu_write_domain(obj);
3592 args->offset = obj->gtt_offset;
3593 out:
3594 drm_gem_object_unreference(&obj->base);
3595 unlock:
3596 mutex_unlock(&dev->struct_mutex);
3597 return ret;
3598 }
3599
3600 int
3601 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3602 struct drm_file *file)
3603 {
3604 struct drm_i915_gem_pin *args = data;
3605 struct drm_i915_gem_object *obj;
3606 int ret;
3607
3608 ret = i915_mutex_lock_interruptible(dev);
3609 if (ret)
3610 return ret;
3611
3612 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3613 if (&obj->base == NULL) {
3614 ret = -ENOENT;
3615 goto unlock;
3616 }
3617
3618 if (obj->pin_filp != file) {
3619 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3620 args->handle);
3621 ret = -EINVAL;
3622 goto out;
3623 }
3624 obj->user_pin_count--;
3625 if (obj->user_pin_count == 0) {
3626 obj->pin_filp = NULL;
3627 i915_gem_object_unpin(obj);
3628 }
3629
3630 out:
3631 drm_gem_object_unreference(&obj->base);
3632 unlock:
3633 mutex_unlock(&dev->struct_mutex);
3634 return ret;
3635 }
3636
3637 int
3638 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3639 struct drm_file *file)
3640 {
3641 struct drm_i915_gem_busy *args = data;
3642 struct drm_i915_gem_object *obj;
3643 int ret;
3644
3645 ret = i915_mutex_lock_interruptible(dev);
3646 if (ret)
3647 return ret;
3648
3649 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3650 if (&obj->base == NULL) {
3651 ret = -ENOENT;
3652 goto unlock;
3653 }
3654
3655 /* Count all active objects as busy, even if they are currently not used
3656 * by the gpu. Users of this interface expect objects to eventually
3657 * become non-busy without any further actions, therefore emit any
3658 * necessary flushes here.
3659 */
3660 ret = i915_gem_object_flush_active(obj);
3661
3662 args->busy = obj->active;
3663 if (obj->ring) {
3664 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3665 args->busy |= intel_ring_flag(obj->ring) << 16;
3666 }
3667
3668 drm_gem_object_unreference(&obj->base);
3669 unlock:
3670 mutex_unlock(&dev->struct_mutex);
3671 return ret;
3672 }
3673
3674 int
3675 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3676 struct drm_file *file_priv)
3677 {
3678 return i915_gem_ring_throttle(dev, file_priv);
3679 }
3680
3681 int
3682 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3683 struct drm_file *file_priv)
3684 {
3685 struct drm_i915_gem_madvise *args = data;
3686 struct drm_i915_gem_object *obj;
3687 int ret;
3688
3689 switch (args->madv) {
3690 case I915_MADV_DONTNEED:
3691 case I915_MADV_WILLNEED:
3692 break;
3693 default:
3694 return -EINVAL;
3695 }
3696
3697 ret = i915_mutex_lock_interruptible(dev);
3698 if (ret)
3699 return ret;
3700
3701 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3702 if (&obj->base == NULL) {
3703 ret = -ENOENT;
3704 goto unlock;
3705 }
3706
3707 if (obj->pin_count) {
3708 ret = -EINVAL;
3709 goto out;
3710 }
3711
3712 if (obj->madv != __I915_MADV_PURGED)
3713 obj->madv = args->madv;
3714
3715 /* if the object is no longer attached, discard its backing storage */
3716 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3717 i915_gem_object_truncate(obj);
3718
3719 args->retained = obj->madv != __I915_MADV_PURGED;
3720
3721 out:
3722 drm_gem_object_unreference(&obj->base);
3723 unlock:
3724 mutex_unlock(&dev->struct_mutex);
3725 return ret;
3726 }
3727
3728 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3729 const struct drm_i915_gem_object_ops *ops)
3730 {
3731 INIT_LIST_HEAD(&obj->mm_list);
3732 INIT_LIST_HEAD(&obj->gtt_list);
3733 INIT_LIST_HEAD(&obj->ring_list);
3734 INIT_LIST_HEAD(&obj->exec_list);
3735
3736 obj->ops = ops;
3737
3738 obj->fence_reg = I915_FENCE_REG_NONE;
3739 obj->madv = I915_MADV_WILLNEED;
3740 /* Avoid an unnecessary call to unbind on the first bind. */
3741 obj->map_and_fenceable = true;
3742
3743 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3744 }
3745
3746 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3747 .get_pages = i915_gem_object_get_pages_gtt,
3748 .put_pages = i915_gem_object_put_pages_gtt,
3749 };
3750
3751 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3752 size_t size)
3753 {
3754 struct drm_i915_gem_object *obj;
3755 struct address_space *mapping;
3756 gfp_t mask;
3757
3758 obj = i915_gem_object_alloc(dev);
3759 if (obj == NULL)
3760 return NULL;
3761
3762 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3763 i915_gem_object_free(obj);
3764 return NULL;
3765 }
3766
3767 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3768 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3769 /* 965gm cannot relocate objects above 4GiB. */
3770 mask &= ~__GFP_HIGHMEM;
3771 mask |= __GFP_DMA32;
3772 }
3773
3774 mapping = file_inode(obj->base.filp)->i_mapping;
3775 mapping_set_gfp_mask(mapping, mask);
3776
3777 i915_gem_object_init(obj, &i915_gem_object_ops);
3778
3779 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3780 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3781
3782 if (HAS_LLC(dev)) {
3783 /* On some devices, we can have the GPU use the LLC (the CPU
3784 * cache) for about a 10% performance improvement
3785 * compared to uncached. Graphics requests other than
3786 * display scanout are coherent with the CPU in
3787 * accessing this cache. This means in this mode we
3788 * don't need to clflush on the CPU side, and on the
3789 * GPU side we only need to flush internal caches to
3790 * get data visible to the CPU.
3791 *
3792 * However, we maintain the display planes as UC, and so
3793 * need to rebind when first used as such.
3794 */
3795 obj->cache_level = I915_CACHE_LLC;
3796 } else
3797 obj->cache_level = I915_CACHE_NONE;
3798
3799 return obj;
3800 }
3801
3802 int i915_gem_init_object(struct drm_gem_object *obj)
3803 {
3804 BUG();
3805
3806 return 0;
3807 }
3808
3809 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3810 {
3811 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3812 struct drm_device *dev = obj->base.dev;
3813 drm_i915_private_t *dev_priv = dev->dev_private;
3814
3815 trace_i915_gem_object_destroy(obj);
3816
3817 if (obj->phys_obj)
3818 i915_gem_detach_phys_object(dev, obj);
3819
3820 obj->pin_count = 0;
3821 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3822 bool was_interruptible;
3823
3824 was_interruptible = dev_priv->mm.interruptible;
3825 dev_priv->mm.interruptible = false;
3826
3827 WARN_ON(i915_gem_object_unbind(obj));
3828
3829 dev_priv->mm.interruptible = was_interruptible;
3830 }
3831
3832 obj->pages_pin_count = 0;
3833 i915_gem_object_put_pages(obj);
3834 i915_gem_object_free_mmap_offset(obj);
3835 i915_gem_object_release_stolen(obj);
3836
3837 BUG_ON(obj->pages);
3838
3839 if (obj->base.import_attach)
3840 drm_prime_gem_destroy(&obj->base, NULL);
3841
3842 drm_gem_object_release(&obj->base);
3843 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3844
3845 kfree(obj->bit_17);
3846 i915_gem_object_free(obj);
3847 }
3848
3849 int
3850 i915_gem_idle(struct drm_device *dev)
3851 {
3852 drm_i915_private_t *dev_priv = dev->dev_private;
3853 int ret;
3854
3855 mutex_lock(&dev->struct_mutex);
3856
3857 if (dev_priv->mm.suspended) {
3858 mutex_unlock(&dev->struct_mutex);
3859 return 0;
3860 }
3861
3862 ret = i915_gpu_idle(dev);
3863 if (ret) {
3864 mutex_unlock(&dev->struct_mutex);
3865 return ret;
3866 }
3867 i915_gem_retire_requests(dev);
3868
3869 /* Under UMS, be paranoid and evict. */
3870 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3871 i915_gem_evict_everything(dev);
3872
3873 i915_gem_reset_fences(dev);
3874
3875 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3876 * We need to replace this with a semaphore, or something.
3877 * And not confound mm.suspended!
3878 */
3879 dev_priv->mm.suspended = 1;
3880 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3881
3882 i915_kernel_lost_context(dev);
3883 i915_gem_cleanup_ringbuffer(dev);
3884
3885 mutex_unlock(&dev->struct_mutex);
3886
3887 /* Cancel the retire work handler, which should be idle now. */
3888 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3889
3890 return 0;
3891 }
3892
3893 void i915_gem_l3_remap(struct drm_device *dev)
3894 {
3895 drm_i915_private_t *dev_priv = dev->dev_private;
3896 u32 misccpctl;
3897 int i;
3898
3899 if (!HAS_L3_GPU_CACHE(dev))
3900 return;
3901
3902 if (!dev_priv->l3_parity.remap_info)
3903 return;
3904
3905 misccpctl = I915_READ(GEN7_MISCCPCTL);
3906 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3907 POSTING_READ(GEN7_MISCCPCTL);
3908
3909 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3910 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3911 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3912 DRM_DEBUG("0x%x was already programmed to %x\n",
3913 GEN7_L3LOG_BASE + i, remap);
3914 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3915 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3916 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3917 }
3918
3919 /* Make sure all the writes land before disabling dop clock gating */
3920 POSTING_READ(GEN7_L3LOG_BASE);
3921
3922 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3923 }
3924
3925 void i915_gem_init_swizzling(struct drm_device *dev)
3926 {
3927 drm_i915_private_t *dev_priv = dev->dev_private;
3928
3929 if (INTEL_INFO(dev)->gen < 5 ||
3930 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3931 return;
3932
3933 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3934 DISP_TILE_SURFACE_SWIZZLING);
3935
3936 if (IS_GEN5(dev))
3937 return;
3938
3939 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3940 if (IS_GEN6(dev))
3941 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3942 else if (IS_GEN7(dev))
3943 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3944 else
3945 BUG();
3946 }
3947
3948 static bool
3949 intel_enable_blt(struct drm_device *dev)
3950 {
3951 if (!HAS_BLT(dev))
3952 return false;
3953
3954 /* The blitter was dysfunctional on early prototypes */
3955 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3956 DRM_INFO("BLT not supported on this pre-production hardware;"
3957 " graphics performance will be degraded.\n");
3958 return false;
3959 }
3960
3961 return true;
3962 }
3963
3964 static int i915_gem_init_rings(struct drm_device *dev)
3965 {
3966 struct drm_i915_private *dev_priv = dev->dev_private;
3967 int ret;
3968
3969 ret = intel_init_render_ring_buffer(dev);
3970 if (ret)
3971 return ret;
3972
3973 if (HAS_BSD(dev)) {
3974 ret = intel_init_bsd_ring_buffer(dev);
3975 if (ret)
3976 goto cleanup_render_ring;
3977 }
3978
3979 if (intel_enable_blt(dev)) {
3980 ret = intel_init_blt_ring_buffer(dev);
3981 if (ret)
3982 goto cleanup_bsd_ring;
3983 }
3984
3985 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3986 if (ret)
3987 goto cleanup_blt_ring;
3988
3989 return 0;
3990
3991 cleanup_blt_ring:
3992 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3993 cleanup_bsd_ring:
3994 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3995 cleanup_render_ring:
3996 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3997
3998 return ret;
3999 }
4000
4001 int
4002 i915_gem_init_hw(struct drm_device *dev)
4003 {
4004 drm_i915_private_t *dev_priv = dev->dev_private;
4005 int ret;
4006
4007 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4008 return -EIO;
4009
4010 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4011 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4012
4013 if (HAS_PCH_NOP(dev)) {
4014 u32 temp = I915_READ(GEN7_MSG_CTL);
4015 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4016 I915_WRITE(GEN7_MSG_CTL, temp);
4017 }
4018
4019 i915_gem_l3_remap(dev);
4020
4021 i915_gem_init_swizzling(dev);
4022
4023 ret = i915_gem_init_rings(dev);
4024 if (ret)
4025 return ret;
4026
4027 /*
4028 * XXX: There was some w/a described somewhere suggesting loading
4029 * contexts before PPGTT.
4030 */
4031 i915_gem_context_init(dev);
4032 if (dev_priv->mm.aliasing_ppgtt)
4033 dev_priv->mm.aliasing_ppgtt->enable(dev);
4034
4035 return 0;
4036 }
4037
4038 int i915_gem_init(struct drm_device *dev)
4039 {
4040 struct drm_i915_private *dev_priv = dev->dev_private;
4041 int ret;
4042
4043 mutex_lock(&dev->struct_mutex);
4044
4045 if (IS_VALLEYVIEW(dev)) {
4046 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4047 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4048 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4049 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4050 }
4051
4052 i915_gem_init_global_gtt(dev);
4053
4054 ret = i915_gem_init_hw(dev);
4055 mutex_unlock(&dev->struct_mutex);
4056 if (ret) {
4057 i915_gem_cleanup_aliasing_ppgtt(dev);
4058 return ret;
4059 }
4060
4061 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4062 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4063 dev_priv->dri1.allow_batchbuffer = 1;
4064 return 0;
4065 }
4066
4067 void
4068 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4069 {
4070 drm_i915_private_t *dev_priv = dev->dev_private;
4071 struct intel_ring_buffer *ring;
4072 int i;
4073
4074 for_each_ring(ring, dev_priv, i)
4075 intel_cleanup_ring_buffer(ring);
4076 }
4077
4078 int
4079 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4080 struct drm_file *file_priv)
4081 {
4082 drm_i915_private_t *dev_priv = dev->dev_private;
4083 int ret;
4084
4085 if (drm_core_check_feature(dev, DRIVER_MODESET))
4086 return 0;
4087
4088 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4089 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4090 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4091 }
4092
4093 mutex_lock(&dev->struct_mutex);
4094 dev_priv->mm.suspended = 0;
4095
4096 ret = i915_gem_init_hw(dev);
4097 if (ret != 0) {
4098 mutex_unlock(&dev->struct_mutex);
4099 return ret;
4100 }
4101
4102 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4103 mutex_unlock(&dev->struct_mutex);
4104
4105 ret = drm_irq_install(dev);
4106 if (ret)
4107 goto cleanup_ringbuffer;
4108
4109 return 0;
4110
4111 cleanup_ringbuffer:
4112 mutex_lock(&dev->struct_mutex);
4113 i915_gem_cleanup_ringbuffer(dev);
4114 dev_priv->mm.suspended = 1;
4115 mutex_unlock(&dev->struct_mutex);
4116
4117 return ret;
4118 }
4119
4120 int
4121 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4122 struct drm_file *file_priv)
4123 {
4124 if (drm_core_check_feature(dev, DRIVER_MODESET))
4125 return 0;
4126
4127 drm_irq_uninstall(dev);
4128 return i915_gem_idle(dev);
4129 }
4130
4131 void
4132 i915_gem_lastclose(struct drm_device *dev)
4133 {
4134 int ret;
4135
4136 if (drm_core_check_feature(dev, DRIVER_MODESET))
4137 return;
4138
4139 ret = i915_gem_idle(dev);
4140 if (ret)
4141 DRM_ERROR("failed to idle hardware: %d\n", ret);
4142 }
4143
4144 static void
4145 init_ring_lists(struct intel_ring_buffer *ring)
4146 {
4147 INIT_LIST_HEAD(&ring->active_list);
4148 INIT_LIST_HEAD(&ring->request_list);
4149 }
4150
4151 void
4152 i915_gem_load(struct drm_device *dev)
4153 {
4154 drm_i915_private_t *dev_priv = dev->dev_private;
4155 int i;
4156
4157 dev_priv->slab =
4158 kmem_cache_create("i915_gem_object",
4159 sizeof(struct drm_i915_gem_object), 0,
4160 SLAB_HWCACHE_ALIGN,
4161 NULL);
4162
4163 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4164 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4165 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4166 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4167 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4168 for (i = 0; i < I915_NUM_RINGS; i++)
4169 init_ring_lists(&dev_priv->ring[i]);
4170 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4171 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4172 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4173 i915_gem_retire_work_handler);
4174 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4175
4176 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4177 if (IS_GEN3(dev)) {
4178 I915_WRITE(MI_ARB_STATE,
4179 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4180 }
4181
4182 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4183
4184 /* Old X drivers will take 0-2 for front, back, depth buffers */
4185 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4186 dev_priv->fence_reg_start = 3;
4187
4188 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4189 dev_priv->num_fence_regs = 16;
4190 else
4191 dev_priv->num_fence_regs = 8;
4192
4193 /* Initialize fence registers to zero */
4194 i915_gem_reset_fences(dev);
4195
4196 i915_gem_detect_bit_6_swizzle(dev);
4197 init_waitqueue_head(&dev_priv->pending_flip_queue);
4198
4199 dev_priv->mm.interruptible = true;
4200
4201 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4202 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4203 register_shrinker(&dev_priv->mm.inactive_shrinker);
4204 }
4205
4206 /*
4207 * Create a physically contiguous memory object for this object
4208 * e.g. for cursor + overlay regs
4209 */
4210 static int i915_gem_init_phys_object(struct drm_device *dev,
4211 int id, int size, int align)
4212 {
4213 drm_i915_private_t *dev_priv = dev->dev_private;
4214 struct drm_i915_gem_phys_object *phys_obj;
4215 int ret;
4216
4217 if (dev_priv->mm.phys_objs[id - 1] || !size)
4218 return 0;
4219
4220 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4221 if (!phys_obj)
4222 return -ENOMEM;
4223
4224 phys_obj->id = id;
4225
4226 phys_obj->handle = drm_pci_alloc(dev, size, align);
4227 if (!phys_obj->handle) {
4228 ret = -ENOMEM;
4229 goto kfree_obj;
4230 }
4231 #ifdef CONFIG_X86
4232 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4233 #endif
4234
4235 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4236
4237 return 0;
4238 kfree_obj:
4239 kfree(phys_obj);
4240 return ret;
4241 }
4242
4243 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4244 {
4245 drm_i915_private_t *dev_priv = dev->dev_private;
4246 struct drm_i915_gem_phys_object *phys_obj;
4247
4248 if (!dev_priv->mm.phys_objs[id - 1])
4249 return;
4250
4251 phys_obj = dev_priv->mm.phys_objs[id - 1];
4252 if (phys_obj->cur_obj) {
4253 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4254 }
4255
4256 #ifdef CONFIG_X86
4257 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4258 #endif
4259 drm_pci_free(dev, phys_obj->handle);
4260 kfree(phys_obj);
4261 dev_priv->mm.phys_objs[id - 1] = NULL;
4262 }
4263
4264 void i915_gem_free_all_phys_object(struct drm_device *dev)
4265 {
4266 int i;
4267
4268 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4269 i915_gem_free_phys_object(dev, i);
4270 }
4271
4272 void i915_gem_detach_phys_object(struct drm_device *dev,
4273 struct drm_i915_gem_object *obj)
4274 {
4275 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4276 char *vaddr;
4277 int i;
4278 int page_count;
4279
4280 if (!obj->phys_obj)
4281 return;
4282 vaddr = obj->phys_obj->handle->vaddr;
4283
4284 page_count = obj->base.size / PAGE_SIZE;
4285 for (i = 0; i < page_count; i++) {
4286 struct page *page = shmem_read_mapping_page(mapping, i);
4287 if (!IS_ERR(page)) {
4288 char *dst = kmap_atomic(page);
4289 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4290 kunmap_atomic(dst);
4291
4292 drm_clflush_pages(&page, 1);
4293
4294 set_page_dirty(page);
4295 mark_page_accessed(page);
4296 page_cache_release(page);
4297 }
4298 }
4299 i915_gem_chipset_flush(dev);
4300
4301 obj->phys_obj->cur_obj = NULL;
4302 obj->phys_obj = NULL;
4303 }
4304
4305 int
4306 i915_gem_attach_phys_object(struct drm_device *dev,
4307 struct drm_i915_gem_object *obj,
4308 int id,
4309 int align)
4310 {
4311 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4312 drm_i915_private_t *dev_priv = dev->dev_private;
4313 int ret = 0;
4314 int page_count;
4315 int i;
4316
4317 if (id > I915_MAX_PHYS_OBJECT)
4318 return -EINVAL;
4319
4320 if (obj->phys_obj) {
4321 if (obj->phys_obj->id == id)
4322 return 0;
4323 i915_gem_detach_phys_object(dev, obj);
4324 }
4325
4326 /* create a new object */
4327 if (!dev_priv->mm.phys_objs[id - 1]) {
4328 ret = i915_gem_init_phys_object(dev, id,
4329 obj->base.size, align);
4330 if (ret) {
4331 DRM_ERROR("failed to init phys object %d size: %zu\n",
4332 id, obj->base.size);
4333 return ret;
4334 }
4335 }
4336
4337 /* bind to the object */
4338 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4339 obj->phys_obj->cur_obj = obj;
4340
4341 page_count = obj->base.size / PAGE_SIZE;
4342
4343 for (i = 0; i < page_count; i++) {
4344 struct page *page;
4345 char *dst, *src;
4346
4347 page = shmem_read_mapping_page(mapping, i);
4348 if (IS_ERR(page))
4349 return PTR_ERR(page);
4350
4351 src = kmap_atomic(page);
4352 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4353 memcpy(dst, src, PAGE_SIZE);
4354 kunmap_atomic(src);
4355
4356 mark_page_accessed(page);
4357 page_cache_release(page);
4358 }
4359
4360 return 0;
4361 }
4362
4363 static int
4364 i915_gem_phys_pwrite(struct drm_device *dev,
4365 struct drm_i915_gem_object *obj,
4366 struct drm_i915_gem_pwrite *args,
4367 struct drm_file *file_priv)
4368 {
4369 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4370 char __user *user_data = to_user_ptr(args->data_ptr);
4371
4372 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4373 unsigned long unwritten;
4374
4375 /* The physical object once assigned is fixed for the lifetime
4376 * of the obj, so we can safely drop the lock and continue
4377 * to access vaddr.
4378 */
4379 mutex_unlock(&dev->struct_mutex);
4380 unwritten = copy_from_user(vaddr, user_data, args->size);
4381 mutex_lock(&dev->struct_mutex);
4382 if (unwritten)
4383 return -EFAULT;
4384 }
4385
4386 i915_gem_chipset_flush(dev);
4387 return 0;
4388 }
4389
4390 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4391 {
4392 struct drm_i915_file_private *file_priv = file->driver_priv;
4393
4394 /* Clean up our request list when the client is going away, so that
4395 * later retire_requests won't dereference our soon-to-be-gone
4396 * file_priv.
4397 */
4398 spin_lock(&file_priv->mm.lock);
4399 while (!list_empty(&file_priv->mm.request_list)) {
4400 struct drm_i915_gem_request *request;
4401
4402 request = list_first_entry(&file_priv->mm.request_list,
4403 struct drm_i915_gem_request,
4404 client_list);
4405 list_del(&request->client_list);
4406 request->file_priv = NULL;
4407 }
4408 spin_unlock(&file_priv->mm.lock);
4409 }
4410
4411 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4412 {
4413 if (!mutex_is_locked(mutex))
4414 return false;
4415
4416 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4417 return mutex->owner == task;
4418 #else
4419 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4420 return false;
4421 #endif
4422 }
4423
4424 static int
4425 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4426 {
4427 struct drm_i915_private *dev_priv =
4428 container_of(shrinker,
4429 struct drm_i915_private,
4430 mm.inactive_shrinker);
4431 struct drm_device *dev = dev_priv->dev;
4432 struct drm_i915_gem_object *obj;
4433 int nr_to_scan = sc->nr_to_scan;
4434 bool unlock = true;
4435 int cnt;
4436
4437 if (!mutex_trylock(&dev->struct_mutex)) {
4438 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4439 return 0;
4440
4441 if (dev_priv->mm.shrinker_no_lock_stealing)
4442 return 0;
4443
4444 unlock = false;
4445 }
4446
4447 if (nr_to_scan) {
4448 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4449 if (nr_to_scan > 0)
4450 nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4451 false);
4452 if (nr_to_scan > 0)
4453 i915_gem_shrink_all(dev_priv);
4454 }
4455
4456 cnt = 0;
4457 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4458 if (obj->pages_pin_count == 0)
4459 cnt += obj->base.size >> PAGE_SHIFT;
4460 list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4461 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4462 cnt += obj->base.size >> PAGE_SHIFT;
4463
4464 if (unlock)
4465 mutex_unlock(&dev->struct_mutex);
4466 return cnt;
4467 }