]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Clear vma->bound on unbinding
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185 {
1186 unsigned long timeout;
1187
1188 if (i915_gem_request_get_ring(rq)->irq_refcount)
1189 return -EBUSY;
1190
1191 timeout = jiffies + 1;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(rq, true))
1194 return 0;
1195
1196 if (time_after_eq(jiffies, timeout))
1197 break;
1198
1199 cpu_relax_lowlatency();
1200 }
1201 if (i915_gem_request_completed(rq, false))
1202 return 0;
1203
1204 return -EAGAIN;
1205 }
1206
1207 /**
1208 * __i915_wait_request - wait until execution of request has finished
1209 * @req: duh!
1210 * @reset_counter: reset sequence associated with the given request
1211 * @interruptible: do an interruptible wait (normally yes)
1212 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1213 *
1214 * Note: It is of utmost importance that the passed in seqno and reset_counter
1215 * values have been read by the caller in an smp safe manner. Where read-side
1216 * locks are involved, it is sufficient to read the reset_counter before
1217 * unlocking the lock that protects the seqno. For lockless tricks, the
1218 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1219 * inserted.
1220 *
1221 * Returns 0 if the request was found within the alloted time. Else returns the
1222 * errno with remaining time filled in timeout argument.
1223 */
1224 int __i915_wait_request(struct drm_i915_gem_request *req,
1225 unsigned reset_counter,
1226 bool interruptible,
1227 s64 *timeout,
1228 struct drm_i915_file_private *file_priv)
1229 {
1230 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231 struct drm_device *dev = ring->dev;
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 const bool irq_test_in_progress =
1234 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235 DEFINE_WAIT(wait);
1236 unsigned long timeout_expire;
1237 s64 before, now;
1238 int ret;
1239
1240 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241
1242 if (i915_gem_request_completed(req, true))
1243 return 0;
1244
1245 timeout_expire = timeout ?
1246 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247
1248 if (INTEL_INFO(dev)->gen >= 6)
1249 gen6_rps_boost(dev_priv, file_priv);
1250
1251 /* Record current time in case interrupted by signal, or wedged */
1252 trace_i915_gem_request_wait_begin(req);
1253 before = ktime_get_raw_ns();
1254
1255 /* Optimistic spin for the next jiffie before touching IRQs */
1256 ret = __i915_spin_request(req);
1257 if (ret == 0)
1258 goto out;
1259
1260 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1261 ret = -ENODEV;
1262 goto out;
1263 }
1264
1265 for (;;) {
1266 struct timer_list timer;
1267
1268 prepare_to_wait(&ring->irq_queue, &wait,
1269 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270
1271 /* We need to check whether any gpu reset happened in between
1272 * the caller grabbing the seqno and now ... */
1273 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1274 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1275 * is truely gone. */
1276 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1277 if (ret == 0)
1278 ret = -EAGAIN;
1279 break;
1280 }
1281
1282 if (i915_gem_request_completed(req, false)) {
1283 ret = 0;
1284 break;
1285 }
1286
1287 if (interruptible && signal_pending(current)) {
1288 ret = -ERESTARTSYS;
1289 break;
1290 }
1291
1292 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 ret = -ETIME;
1294 break;
1295 }
1296
1297 timer.function = NULL;
1298 if (timeout || missed_irq(dev_priv, ring)) {
1299 unsigned long expire;
1300
1301 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 mod_timer(&timer, expire);
1304 }
1305
1306 io_schedule();
1307
1308 if (timer.function) {
1309 del_singleshot_timer_sync(&timer);
1310 destroy_timer_on_stack(&timer);
1311 }
1312 }
1313 if (!irq_test_in_progress)
1314 ring->irq_put(ring);
1315
1316 finish_wait(&ring->irq_queue, &wait);
1317
1318 out:
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(req);
1321
1322 if (timeout) {
1323 s64 tres = *timeout - (now - before);
1324
1325 *timeout = tres < 0 ? 0 : tres;
1326
1327 /*
1328 * Apparently ktime isn't accurate enough and occasionally has a
1329 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1330 * things up to make the test happy. We allow up to 1 jiffy.
1331 *
1332 * This is a regrssion from the timespec->ktime conversion.
1333 */
1334 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1335 *timeout = 0;
1336 }
1337
1338 return ret;
1339 }
1340
1341 /**
1342 * Waits for a request to be signaled, and cleans up the
1343 * request and object lists appropriately for that event.
1344 */
1345 int
1346 i915_wait_request(struct drm_i915_gem_request *req)
1347 {
1348 struct drm_device *dev;
1349 struct drm_i915_private *dev_priv;
1350 bool interruptible;
1351 unsigned reset_counter;
1352 int ret;
1353
1354 BUG_ON(req == NULL);
1355
1356 dev = req->ring->dev;
1357 dev_priv = dev->dev_private;
1358 interruptible = dev_priv->mm.interruptible;
1359
1360 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1361
1362 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 if (ret)
1364 return ret;
1365
1366 ret = i915_gem_check_olr(req);
1367 if (ret)
1368 return ret;
1369
1370 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371 i915_gem_request_reference(req);
1372 ret = __i915_wait_request(req, reset_counter,
1373 interruptible, NULL, NULL);
1374 i915_gem_request_unreference(req);
1375 return ret;
1376 }
1377
1378 static int
1379 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380 {
1381 if (!obj->active)
1382 return 0;
1383
1384 /* Manually manage the write flush as we may have not yet
1385 * retired the buffer.
1386 *
1387 * Note that the last_write_req is always the earlier of
1388 * the two (read/write) requests, so if we haved successfully waited,
1389 * we know we have passed the last write.
1390 */
1391 i915_gem_request_assign(&obj->last_write_req, NULL);
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * Ensures that all rendering to the object has completed and the object is
1398 * safe to unbind from the GTT or access from the CPU.
1399 */
1400 static __must_check int
1401 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1402 bool readonly)
1403 {
1404 struct drm_i915_gem_request *req;
1405 int ret;
1406
1407 req = readonly ? obj->last_write_req : obj->last_read_req;
1408 if (!req)
1409 return 0;
1410
1411 ret = i915_wait_request(req);
1412 if (ret)
1413 return ret;
1414
1415 return i915_gem_object_wait_rendering__tail(obj);
1416 }
1417
1418 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1419 * as the object state may change during this call.
1420 */
1421 static __must_check int
1422 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423 struct drm_i915_file_private *file_priv,
1424 bool readonly)
1425 {
1426 struct drm_i915_gem_request *req;
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 unsigned reset_counter;
1430 int ret;
1431
1432 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1433 BUG_ON(!dev_priv->mm.interruptible);
1434
1435 req = readonly ? obj->last_write_req : obj->last_read_req;
1436 if (!req)
1437 return 0;
1438
1439 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 if (ret)
1441 return ret;
1442
1443 ret = i915_gem_check_olr(req);
1444 if (ret)
1445 return ret;
1446
1447 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448 i915_gem_request_reference(req);
1449 mutex_unlock(&dev->struct_mutex);
1450 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451 mutex_lock(&dev->struct_mutex);
1452 i915_gem_request_unreference(req);
1453 if (ret)
1454 return ret;
1455
1456 return i915_gem_object_wait_rendering__tail(obj);
1457 }
1458
1459 /**
1460 * Called when user space prepares to use an object with the CPU, either
1461 * through the mmap ioctl's mapping or a GTT mapping.
1462 */
1463 int
1464 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465 struct drm_file *file)
1466 {
1467 struct drm_i915_gem_set_domain *args = data;
1468 struct drm_i915_gem_object *obj;
1469 uint32_t read_domains = args->read_domains;
1470 uint32_t write_domain = args->write_domain;
1471 int ret;
1472
1473 /* Only handle setting domains to types used by the CPU. */
1474 if (write_domain & I915_GEM_GPU_DOMAINS)
1475 return -EINVAL;
1476
1477 if (read_domains & I915_GEM_GPU_DOMAINS)
1478 return -EINVAL;
1479
1480 /* Having something in the write domain implies it's in the read
1481 * domain, and only that read domain. Enforce that in the request.
1482 */
1483 if (write_domain != 0 && read_domains != write_domain)
1484 return -EINVAL;
1485
1486 ret = i915_mutex_lock_interruptible(dev);
1487 if (ret)
1488 return ret;
1489
1490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491 if (&obj->base == NULL) {
1492 ret = -ENOENT;
1493 goto unlock;
1494 }
1495
1496 /* Try to flush the object off the GPU without holding the lock.
1497 * We will repeat the flush holding the lock in the normal manner
1498 * to catch cases where we are gazumped.
1499 */
1500 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1501 file->driver_priv,
1502 !write_domain);
1503 if (ret)
1504 goto unref;
1505
1506 if (read_domains & I915_GEM_DOMAIN_GTT)
1507 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508 else
1509 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510
1511 unref:
1512 drm_gem_object_unreference(&obj->base);
1513 unlock:
1514 mutex_unlock(&dev->struct_mutex);
1515 return ret;
1516 }
1517
1518 /**
1519 * Called when user space has done writes to this buffer
1520 */
1521 int
1522 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523 struct drm_file *file)
1524 {
1525 struct drm_i915_gem_sw_finish *args = data;
1526 struct drm_i915_gem_object *obj;
1527 int ret = 0;
1528
1529 ret = i915_mutex_lock_interruptible(dev);
1530 if (ret)
1531 return ret;
1532
1533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534 if (&obj->base == NULL) {
1535 ret = -ENOENT;
1536 goto unlock;
1537 }
1538
1539 /* Pinned buffers may be scanout, so flush the cache */
1540 if (obj->pin_display)
1541 i915_gem_object_flush_cpu_write_domain(obj);
1542
1543 drm_gem_object_unreference(&obj->base);
1544 unlock:
1545 mutex_unlock(&dev->struct_mutex);
1546 return ret;
1547 }
1548
1549 /**
1550 * Maps the contents of an object, returning the address it is mapped
1551 * into.
1552 *
1553 * While the mapping holds a reference on the contents of the object, it doesn't
1554 * imply a ref on the object itself.
1555 *
1556 * IMPORTANT:
1557 *
1558 * DRM driver writers who look a this function as an example for how to do GEM
1559 * mmap support, please don't implement mmap support like here. The modern way
1560 * to implement DRM mmap support is with an mmap offset ioctl (like
1561 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1562 * That way debug tooling like valgrind will understand what's going on, hiding
1563 * the mmap call in a driver private ioctl will break that. The i915 driver only
1564 * does cpu mmaps this way because we didn't know better.
1565 */
1566 int
1567 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568 struct drm_file *file)
1569 {
1570 struct drm_i915_gem_mmap *args = data;
1571 struct drm_gem_object *obj;
1572 unsigned long addr;
1573
1574 if (args->flags & ~(I915_MMAP_WC))
1575 return -EINVAL;
1576
1577 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1578 return -ENODEV;
1579
1580 obj = drm_gem_object_lookup(dev, file, args->handle);
1581 if (obj == NULL)
1582 return -ENOENT;
1583
1584 /* prime objects have no backing filp to GEM mmap
1585 * pages from.
1586 */
1587 if (!obj->filp) {
1588 drm_gem_object_unreference_unlocked(obj);
1589 return -EINVAL;
1590 }
1591
1592 addr = vm_mmap(obj->filp, 0, args->size,
1593 PROT_READ | PROT_WRITE, MAP_SHARED,
1594 args->offset);
1595 if (args->flags & I915_MMAP_WC) {
1596 struct mm_struct *mm = current->mm;
1597 struct vm_area_struct *vma;
1598
1599 down_write(&mm->mmap_sem);
1600 vma = find_vma(mm, addr);
1601 if (vma)
1602 vma->vm_page_prot =
1603 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1604 else
1605 addr = -ENOMEM;
1606 up_write(&mm->mmap_sem);
1607 }
1608 drm_gem_object_unreference_unlocked(obj);
1609 if (IS_ERR((void *)addr))
1610 return addr;
1611
1612 args->addr_ptr = (uint64_t) addr;
1613
1614 return 0;
1615 }
1616
1617 /**
1618 * i915_gem_fault - fault a page into the GTT
1619 * vma: VMA in question
1620 * vmf: fault info
1621 *
1622 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1623 * from userspace. The fault handler takes care of binding the object to
1624 * the GTT (if needed), allocating and programming a fence register (again,
1625 * only if needed based on whether the old reg is still valid or the object
1626 * is tiled) and inserting a new PTE into the faulting process.
1627 *
1628 * Note that the faulting process may involve evicting existing objects
1629 * from the GTT and/or fence registers to make room. So performance may
1630 * suffer if the GTT working set is large or there are few fence registers
1631 * left.
1632 */
1633 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634 {
1635 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1636 struct drm_device *dev = obj->base.dev;
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 pgoff_t page_offset;
1639 unsigned long pfn;
1640 int ret = 0;
1641 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1642
1643 intel_runtime_pm_get(dev_priv);
1644
1645 /* We don't use vmf->pgoff since that has the fake offset */
1646 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1647 PAGE_SHIFT;
1648
1649 ret = i915_mutex_lock_interruptible(dev);
1650 if (ret)
1651 goto out;
1652
1653 trace_i915_gem_object_fault(obj, page_offset, true, write);
1654
1655 /* Try to flush the object off the GPU first without holding the lock.
1656 * Upon reacquiring the lock, we will perform our sanity checks and then
1657 * repeat the flush holding the lock in the normal manner to catch cases
1658 * where we are gazumped.
1659 */
1660 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1661 if (ret)
1662 goto unlock;
1663
1664 /* Access to snoopable pages through the GTT is incoherent. */
1665 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1666 ret = -EFAULT;
1667 goto unlock;
1668 }
1669
1670 /* Now bind it into the GTT if needed */
1671 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1672 if (ret)
1673 goto unlock;
1674
1675 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1676 if (ret)
1677 goto unpin;
1678
1679 ret = i915_gem_object_get_fence(obj);
1680 if (ret)
1681 goto unpin;
1682
1683 /* Finally, remap it using the new GTT offset */
1684 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1685 pfn >>= PAGE_SHIFT;
1686
1687 if (!obj->fault_mappable) {
1688 unsigned long size = min_t(unsigned long,
1689 vma->vm_end - vma->vm_start,
1690 obj->base.size);
1691 int i;
1692
1693 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1694 ret = vm_insert_pfn(vma,
1695 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1696 pfn + i);
1697 if (ret)
1698 break;
1699 }
1700
1701 obj->fault_mappable = true;
1702 } else
1703 ret = vm_insert_pfn(vma,
1704 (unsigned long)vmf->virtual_address,
1705 pfn + page_offset);
1706 unpin:
1707 i915_gem_object_ggtt_unpin(obj);
1708 unlock:
1709 mutex_unlock(&dev->struct_mutex);
1710 out:
1711 switch (ret) {
1712 case -EIO:
1713 /*
1714 * We eat errors when the gpu is terminally wedged to avoid
1715 * userspace unduly crashing (gl has no provisions for mmaps to
1716 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1717 * and so needs to be reported.
1718 */
1719 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1720 ret = VM_FAULT_SIGBUS;
1721 break;
1722 }
1723 case -EAGAIN:
1724 /*
1725 * EAGAIN means the gpu is hung and we'll wait for the error
1726 * handler to reset everything when re-faulting in
1727 * i915_mutex_lock_interruptible.
1728 */
1729 case 0:
1730 case -ERESTARTSYS:
1731 case -EINTR:
1732 case -EBUSY:
1733 /*
1734 * EBUSY is ok: this just means that another thread
1735 * already did the job.
1736 */
1737 ret = VM_FAULT_NOPAGE;
1738 break;
1739 case -ENOMEM:
1740 ret = VM_FAULT_OOM;
1741 break;
1742 case -ENOSPC:
1743 case -EFAULT:
1744 ret = VM_FAULT_SIGBUS;
1745 break;
1746 default:
1747 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748 ret = VM_FAULT_SIGBUS;
1749 break;
1750 }
1751
1752 intel_runtime_pm_put(dev_priv);
1753 return ret;
1754 }
1755
1756 /**
1757 * i915_gem_release_mmap - remove physical page mappings
1758 * @obj: obj in question
1759 *
1760 * Preserve the reservation of the mmapping with the DRM core code, but
1761 * relinquish ownership of the pages back to the system.
1762 *
1763 * It is vital that we remove the page mapping if we have mapped a tiled
1764 * object through the GTT and then lose the fence register due to
1765 * resource pressure. Similarly if the object has been moved out of the
1766 * aperture, than pages mapped into userspace must be revoked. Removing the
1767 * mapping will then trigger a page fault on the next user access, allowing
1768 * fixup by i915_gem_fault().
1769 */
1770 void
1771 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772 {
1773 if (!obj->fault_mappable)
1774 return;
1775
1776 drm_vma_node_unmap(&obj->base.vma_node,
1777 obj->base.dev->anon_inode->i_mapping);
1778 obj->fault_mappable = false;
1779 }
1780
1781 void
1782 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1783 {
1784 struct drm_i915_gem_object *obj;
1785
1786 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1787 i915_gem_release_mmap(obj);
1788 }
1789
1790 uint32_t
1791 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792 {
1793 uint32_t gtt_size;
1794
1795 if (INTEL_INFO(dev)->gen >= 4 ||
1796 tiling_mode == I915_TILING_NONE)
1797 return size;
1798
1799 /* Previous chips need a power-of-two fence region when tiling */
1800 if (INTEL_INFO(dev)->gen == 3)
1801 gtt_size = 1024*1024;
1802 else
1803 gtt_size = 512*1024;
1804
1805 while (gtt_size < size)
1806 gtt_size <<= 1;
1807
1808 return gtt_size;
1809 }
1810
1811 /**
1812 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1813 * @obj: object to check
1814 *
1815 * Return the required GTT alignment for an object, taking into account
1816 * potential fence register mapping.
1817 */
1818 uint32_t
1819 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1820 int tiling_mode, bool fenced)
1821 {
1822 /*
1823 * Minimum alignment is 4k (GTT page size), but might be greater
1824 * if a fence register is needed for the object.
1825 */
1826 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1827 tiling_mode == I915_TILING_NONE)
1828 return 4096;
1829
1830 /*
1831 * Previous chips need to be aligned to the size of the smallest
1832 * fence register that can contain the object.
1833 */
1834 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1835 }
1836
1837 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1838 {
1839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840 int ret;
1841
1842 if (drm_vma_node_has_offset(&obj->base.vma_node))
1843 return 0;
1844
1845 dev_priv->mm.shrinker_no_lock_stealing = true;
1846
1847 ret = drm_gem_create_mmap_offset(&obj->base);
1848 if (ret != -ENOSPC)
1849 goto out;
1850
1851 /* Badly fragmented mmap space? The only way we can recover
1852 * space is by destroying unwanted objects. We can't randomly release
1853 * mmap_offsets as userspace expects them to be persistent for the
1854 * lifetime of the objects. The closest we can is to release the
1855 * offsets on purgeable objects by truncating it and marking it purged,
1856 * which prevents userspace from ever using that object again.
1857 */
1858 i915_gem_shrink(dev_priv,
1859 obj->base.size >> PAGE_SHIFT,
1860 I915_SHRINK_BOUND |
1861 I915_SHRINK_UNBOUND |
1862 I915_SHRINK_PURGEABLE);
1863 ret = drm_gem_create_mmap_offset(&obj->base);
1864 if (ret != -ENOSPC)
1865 goto out;
1866
1867 i915_gem_shrink_all(dev_priv);
1868 ret = drm_gem_create_mmap_offset(&obj->base);
1869 out:
1870 dev_priv->mm.shrinker_no_lock_stealing = false;
1871
1872 return ret;
1873 }
1874
1875 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1876 {
1877 drm_gem_free_mmap_offset(&obj->base);
1878 }
1879
1880 int
1881 i915_gem_mmap_gtt(struct drm_file *file,
1882 struct drm_device *dev,
1883 uint32_t handle,
1884 uint64_t *offset)
1885 {
1886 struct drm_i915_private *dev_priv = dev->dev_private;
1887 struct drm_i915_gem_object *obj;
1888 int ret;
1889
1890 ret = i915_mutex_lock_interruptible(dev);
1891 if (ret)
1892 return ret;
1893
1894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1895 if (&obj->base == NULL) {
1896 ret = -ENOENT;
1897 goto unlock;
1898 }
1899
1900 if (obj->base.size > dev_priv->gtt.mappable_end) {
1901 ret = -E2BIG;
1902 goto out;
1903 }
1904
1905 if (obj->madv != I915_MADV_WILLNEED) {
1906 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1907 ret = -EFAULT;
1908 goto out;
1909 }
1910
1911 ret = i915_gem_object_create_mmap_offset(obj);
1912 if (ret)
1913 goto out;
1914
1915 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1916
1917 out:
1918 drm_gem_object_unreference(&obj->base);
1919 unlock:
1920 mutex_unlock(&dev->struct_mutex);
1921 return ret;
1922 }
1923
1924 /**
1925 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1926 * @dev: DRM device
1927 * @data: GTT mapping ioctl data
1928 * @file: GEM object info
1929 *
1930 * Simply returns the fake offset to userspace so it can mmap it.
1931 * The mmap call will end up in drm_gem_mmap(), which will set things
1932 * up so we can get faults in the handler above.
1933 *
1934 * The fault handler will take care of binding the object into the GTT
1935 * (since it may have been evicted to make room for something), allocating
1936 * a fence register, and mapping the appropriate aperture address into
1937 * userspace.
1938 */
1939 int
1940 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1941 struct drm_file *file)
1942 {
1943 struct drm_i915_gem_mmap_gtt *args = data;
1944
1945 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1946 }
1947
1948 /* Immediately discard the backing storage */
1949 static void
1950 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1951 {
1952 i915_gem_object_free_mmap_offset(obj);
1953
1954 if (obj->base.filp == NULL)
1955 return;
1956
1957 /* Our goal here is to return as much of the memory as
1958 * is possible back to the system as we are called from OOM.
1959 * To do this we must instruct the shmfs to drop all of its
1960 * backing pages, *now*.
1961 */
1962 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1963 obj->madv = __I915_MADV_PURGED;
1964 }
1965
1966 /* Try to discard unwanted pages */
1967 static void
1968 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1969 {
1970 struct address_space *mapping;
1971
1972 switch (obj->madv) {
1973 case I915_MADV_DONTNEED:
1974 i915_gem_object_truncate(obj);
1975 case __I915_MADV_PURGED:
1976 return;
1977 }
1978
1979 if (obj->base.filp == NULL)
1980 return;
1981
1982 mapping = file_inode(obj->base.filp)->i_mapping,
1983 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1984 }
1985
1986 static void
1987 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1988 {
1989 struct sg_page_iter sg_iter;
1990 int ret;
1991
1992 BUG_ON(obj->madv == __I915_MADV_PURGED);
1993
1994 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1995 if (ret) {
1996 /* In the event of a disaster, abandon all caches and
1997 * hope for the best.
1998 */
1999 WARN_ON(ret != -EIO);
2000 i915_gem_clflush_object(obj, true);
2001 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2002 }
2003
2004 if (i915_gem_object_needs_bit17_swizzle(obj))
2005 i915_gem_object_save_bit_17_swizzle(obj);
2006
2007 if (obj->madv == I915_MADV_DONTNEED)
2008 obj->dirty = 0;
2009
2010 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2011 struct page *page = sg_page_iter_page(&sg_iter);
2012
2013 if (obj->dirty)
2014 set_page_dirty(page);
2015
2016 if (obj->madv == I915_MADV_WILLNEED)
2017 mark_page_accessed(page);
2018
2019 page_cache_release(page);
2020 }
2021 obj->dirty = 0;
2022
2023 sg_free_table(obj->pages);
2024 kfree(obj->pages);
2025 }
2026
2027 int
2028 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2029 {
2030 const struct drm_i915_gem_object_ops *ops = obj->ops;
2031
2032 if (obj->pages == NULL)
2033 return 0;
2034
2035 if (obj->pages_pin_count)
2036 return -EBUSY;
2037
2038 BUG_ON(i915_gem_obj_bound_any(obj));
2039
2040 /* ->put_pages might need to allocate memory for the bit17 swizzle
2041 * array, hence protect them from being reaped by removing them from gtt
2042 * lists early. */
2043 list_del(&obj->global_list);
2044
2045 ops->put_pages(obj);
2046 obj->pages = NULL;
2047
2048 i915_gem_object_invalidate(obj);
2049
2050 return 0;
2051 }
2052
2053 static int
2054 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2055 {
2056 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2057 int page_count, i;
2058 struct address_space *mapping;
2059 struct sg_table *st;
2060 struct scatterlist *sg;
2061 struct sg_page_iter sg_iter;
2062 struct page *page;
2063 unsigned long last_pfn = 0; /* suppress gcc warning */
2064 gfp_t gfp;
2065
2066 /* Assert that the object is not currently in any GPU domain. As it
2067 * wasn't in the GTT, there shouldn't be any way it could have been in
2068 * a GPU cache
2069 */
2070 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2071 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2072
2073 st = kmalloc(sizeof(*st), GFP_KERNEL);
2074 if (st == NULL)
2075 return -ENOMEM;
2076
2077 page_count = obj->base.size / PAGE_SIZE;
2078 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2079 kfree(st);
2080 return -ENOMEM;
2081 }
2082
2083 /* Get the list of pages out of our struct file. They'll be pinned
2084 * at this point until we release them.
2085 *
2086 * Fail silently without starting the shrinker
2087 */
2088 mapping = file_inode(obj->base.filp)->i_mapping;
2089 gfp = mapping_gfp_mask(mapping);
2090 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2091 gfp &= ~(__GFP_IO | __GFP_WAIT);
2092 sg = st->sgl;
2093 st->nents = 0;
2094 for (i = 0; i < page_count; i++) {
2095 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2096 if (IS_ERR(page)) {
2097 i915_gem_shrink(dev_priv,
2098 page_count,
2099 I915_SHRINK_BOUND |
2100 I915_SHRINK_UNBOUND |
2101 I915_SHRINK_PURGEABLE);
2102 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2103 }
2104 if (IS_ERR(page)) {
2105 /* We've tried hard to allocate the memory by reaping
2106 * our own buffer, now let the real VM do its job and
2107 * go down in flames if truly OOM.
2108 */
2109 i915_gem_shrink_all(dev_priv);
2110 page = shmem_read_mapping_page(mapping, i);
2111 if (IS_ERR(page))
2112 goto err_pages;
2113 }
2114 #ifdef CONFIG_SWIOTLB
2115 if (swiotlb_nr_tbl()) {
2116 st->nents++;
2117 sg_set_page(sg, page, PAGE_SIZE, 0);
2118 sg = sg_next(sg);
2119 continue;
2120 }
2121 #endif
2122 if (!i || page_to_pfn(page) != last_pfn + 1) {
2123 if (i)
2124 sg = sg_next(sg);
2125 st->nents++;
2126 sg_set_page(sg, page, PAGE_SIZE, 0);
2127 } else {
2128 sg->length += PAGE_SIZE;
2129 }
2130 last_pfn = page_to_pfn(page);
2131
2132 /* Check that the i965g/gm workaround works. */
2133 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2134 }
2135 #ifdef CONFIG_SWIOTLB
2136 if (!swiotlb_nr_tbl())
2137 #endif
2138 sg_mark_end(sg);
2139 obj->pages = st;
2140
2141 if (i915_gem_object_needs_bit17_swizzle(obj))
2142 i915_gem_object_do_bit_17_swizzle(obj);
2143
2144 if (obj->tiling_mode != I915_TILING_NONE &&
2145 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2146 i915_gem_object_pin_pages(obj);
2147
2148 return 0;
2149
2150 err_pages:
2151 sg_mark_end(sg);
2152 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2153 page_cache_release(sg_page_iter_page(&sg_iter));
2154 sg_free_table(st);
2155 kfree(st);
2156
2157 /* shmemfs first checks if there is enough memory to allocate the page
2158 * and reports ENOSPC should there be insufficient, along with the usual
2159 * ENOMEM for a genuine allocation failure.
2160 *
2161 * We use ENOSPC in our driver to mean that we have run out of aperture
2162 * space and so want to translate the error from shmemfs back to our
2163 * usual understanding of ENOMEM.
2164 */
2165 if (PTR_ERR(page) == -ENOSPC)
2166 return -ENOMEM;
2167 else
2168 return PTR_ERR(page);
2169 }
2170
2171 /* Ensure that the associated pages are gathered from the backing storage
2172 * and pinned into our object. i915_gem_object_get_pages() may be called
2173 * multiple times before they are released by a single call to
2174 * i915_gem_object_put_pages() - once the pages are no longer referenced
2175 * either as a result of memory pressure (reaping pages under the shrinker)
2176 * or as the object is itself released.
2177 */
2178 int
2179 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2180 {
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 const struct drm_i915_gem_object_ops *ops = obj->ops;
2183 int ret;
2184
2185 if (obj->pages)
2186 return 0;
2187
2188 if (obj->madv != I915_MADV_WILLNEED) {
2189 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2190 return -EFAULT;
2191 }
2192
2193 BUG_ON(obj->pages_pin_count);
2194
2195 ret = ops->get_pages(obj);
2196 if (ret)
2197 return ret;
2198
2199 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2200
2201 obj->get_page.sg = obj->pages->sgl;
2202 obj->get_page.last = 0;
2203
2204 return 0;
2205 }
2206
2207 static void
2208 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2209 struct intel_engine_cs *ring)
2210 {
2211 struct drm_i915_gem_request *req;
2212 struct intel_engine_cs *old_ring;
2213
2214 BUG_ON(ring == NULL);
2215
2216 req = intel_ring_get_request(ring);
2217 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2218
2219 if (old_ring != ring && obj->last_write_req) {
2220 /* Keep the request relative to the current ring */
2221 i915_gem_request_assign(&obj->last_write_req, req);
2222 }
2223
2224 /* Add a reference if we're newly entering the active list. */
2225 if (!obj->active) {
2226 drm_gem_object_reference(&obj->base);
2227 obj->active = 1;
2228 }
2229
2230 list_move_tail(&obj->ring_list, &ring->active_list);
2231
2232 i915_gem_request_assign(&obj->last_read_req, req);
2233 }
2234
2235 void i915_vma_move_to_active(struct i915_vma *vma,
2236 struct intel_engine_cs *ring)
2237 {
2238 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2239 return i915_gem_object_move_to_active(vma->obj, ring);
2240 }
2241
2242 static void
2243 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2244 {
2245 struct i915_vma *vma;
2246
2247 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2248 BUG_ON(!obj->active);
2249
2250 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2251 if (!list_empty(&vma->mm_list))
2252 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2253 }
2254
2255 intel_fb_obj_flush(obj, true);
2256
2257 list_del_init(&obj->ring_list);
2258
2259 i915_gem_request_assign(&obj->last_read_req, NULL);
2260 i915_gem_request_assign(&obj->last_write_req, NULL);
2261 obj->base.write_domain = 0;
2262
2263 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2264
2265 obj->active = 0;
2266 drm_gem_object_unreference(&obj->base);
2267
2268 WARN_ON(i915_verify_lists(dev));
2269 }
2270
2271 static void
2272 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2273 {
2274 if (obj->last_read_req == NULL)
2275 return;
2276
2277 if (i915_gem_request_completed(obj->last_read_req, true))
2278 i915_gem_object_move_to_inactive(obj);
2279 }
2280
2281 static int
2282 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 struct intel_engine_cs *ring;
2286 int ret, i, j;
2287
2288 /* Carefully retire all requests without writing to the rings */
2289 for_each_ring(ring, dev_priv, i) {
2290 ret = intel_ring_idle(ring);
2291 if (ret)
2292 return ret;
2293 }
2294 i915_gem_retire_requests(dev);
2295
2296 /* Finally reset hw state */
2297 for_each_ring(ring, dev_priv, i) {
2298 intel_ring_init_seqno(ring, seqno);
2299
2300 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2301 ring->semaphore.sync_seqno[j] = 0;
2302 }
2303
2304 return 0;
2305 }
2306
2307 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2308 {
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 int ret;
2311
2312 if (seqno == 0)
2313 return -EINVAL;
2314
2315 /* HWS page needs to be set less than what we
2316 * will inject to ring
2317 */
2318 ret = i915_gem_init_seqno(dev, seqno - 1);
2319 if (ret)
2320 return ret;
2321
2322 /* Carefully set the last_seqno value so that wrap
2323 * detection still works
2324 */
2325 dev_priv->next_seqno = seqno;
2326 dev_priv->last_seqno = seqno - 1;
2327 if (dev_priv->last_seqno == 0)
2328 dev_priv->last_seqno--;
2329
2330 return 0;
2331 }
2332
2333 int
2334 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337
2338 /* reserve 0 for non-seqno */
2339 if (dev_priv->next_seqno == 0) {
2340 int ret = i915_gem_init_seqno(dev, 0);
2341 if (ret)
2342 return ret;
2343
2344 dev_priv->next_seqno = 1;
2345 }
2346
2347 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2348 return 0;
2349 }
2350
2351 int __i915_add_request(struct intel_engine_cs *ring,
2352 struct drm_file *file,
2353 struct drm_i915_gem_object *obj)
2354 {
2355 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2356 struct drm_i915_gem_request *request;
2357 struct intel_ringbuffer *ringbuf;
2358 u32 request_start;
2359 int ret;
2360
2361 request = ring->outstanding_lazy_request;
2362 if (WARN_ON(request == NULL))
2363 return -ENOMEM;
2364
2365 if (i915.enable_execlists) {
2366 ringbuf = request->ctx->engine[ring->id].ringbuf;
2367 } else
2368 ringbuf = ring->buffer;
2369
2370 request_start = intel_ring_get_tail(ringbuf);
2371 /*
2372 * Emit any outstanding flushes - execbuf can fail to emit the flush
2373 * after having emitted the batchbuffer command. Hence we need to fix
2374 * things up similar to emitting the lazy request. The difference here
2375 * is that the flush _must_ happen before the next request, no matter
2376 * what.
2377 */
2378 if (i915.enable_execlists) {
2379 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2380 if (ret)
2381 return ret;
2382 } else {
2383 ret = intel_ring_flush_all_caches(ring);
2384 if (ret)
2385 return ret;
2386 }
2387
2388 /* Record the position of the start of the request so that
2389 * should we detect the updated seqno part-way through the
2390 * GPU processing the request, we never over-estimate the
2391 * position of the head.
2392 */
2393 request->postfix = intel_ring_get_tail(ringbuf);
2394
2395 if (i915.enable_execlists) {
2396 ret = ring->emit_request(ringbuf, request);
2397 if (ret)
2398 return ret;
2399 } else {
2400 ret = ring->add_request(ring);
2401 if (ret)
2402 return ret;
2403
2404 request->tail = intel_ring_get_tail(ringbuf);
2405 }
2406
2407 request->head = request_start;
2408
2409 /* Whilst this request exists, batch_obj will be on the
2410 * active_list, and so will hold the active reference. Only when this
2411 * request is retired will the the batch_obj be moved onto the
2412 * inactive_list and lose its active reference. Hence we do not need
2413 * to explicitly hold another reference here.
2414 */
2415 request->batch_obj = obj;
2416
2417 if (!i915.enable_execlists) {
2418 /* Hold a reference to the current context so that we can inspect
2419 * it later in case a hangcheck error event fires.
2420 */
2421 request->ctx = ring->last_context;
2422 if (request->ctx)
2423 i915_gem_context_reference(request->ctx);
2424 }
2425
2426 request->emitted_jiffies = jiffies;
2427 list_add_tail(&request->list, &ring->request_list);
2428 request->file_priv = NULL;
2429
2430 if (file) {
2431 struct drm_i915_file_private *file_priv = file->driver_priv;
2432
2433 spin_lock(&file_priv->mm.lock);
2434 request->file_priv = file_priv;
2435 list_add_tail(&request->client_list,
2436 &file_priv->mm.request_list);
2437 spin_unlock(&file_priv->mm.lock);
2438
2439 request->pid = get_pid(task_pid(current));
2440 }
2441
2442 trace_i915_gem_request_add(request);
2443 ring->outstanding_lazy_request = NULL;
2444
2445 i915_queue_hangcheck(ring->dev);
2446
2447 queue_delayed_work(dev_priv->wq,
2448 &dev_priv->mm.retire_work,
2449 round_jiffies_up_relative(HZ));
2450 intel_mark_busy(dev_priv->dev);
2451
2452 return 0;
2453 }
2454
2455 static inline void
2456 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2457 {
2458 struct drm_i915_file_private *file_priv = request->file_priv;
2459
2460 if (!file_priv)
2461 return;
2462
2463 spin_lock(&file_priv->mm.lock);
2464 list_del(&request->client_list);
2465 request->file_priv = NULL;
2466 spin_unlock(&file_priv->mm.lock);
2467 }
2468
2469 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2470 const struct intel_context *ctx)
2471 {
2472 unsigned long elapsed;
2473
2474 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2475
2476 if (ctx->hang_stats.banned)
2477 return true;
2478
2479 if (ctx->hang_stats.ban_period_seconds &&
2480 elapsed <= ctx->hang_stats.ban_period_seconds) {
2481 if (!i915_gem_context_is_default(ctx)) {
2482 DRM_DEBUG("context hanging too fast, banning!\n");
2483 return true;
2484 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2485 if (i915_stop_ring_allow_warn(dev_priv))
2486 DRM_ERROR("gpu hanging too fast, banning!\n");
2487 return true;
2488 }
2489 }
2490
2491 return false;
2492 }
2493
2494 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2495 struct intel_context *ctx,
2496 const bool guilty)
2497 {
2498 struct i915_ctx_hang_stats *hs;
2499
2500 if (WARN_ON(!ctx))
2501 return;
2502
2503 hs = &ctx->hang_stats;
2504
2505 if (guilty) {
2506 hs->banned = i915_context_is_banned(dev_priv, ctx);
2507 hs->batch_active++;
2508 hs->guilty_ts = get_seconds();
2509 } else {
2510 hs->batch_pending++;
2511 }
2512 }
2513
2514 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2515 {
2516 list_del(&request->list);
2517 i915_gem_request_remove_from_client(request);
2518
2519 put_pid(request->pid);
2520
2521 i915_gem_request_unreference(request);
2522 }
2523
2524 void i915_gem_request_free(struct kref *req_ref)
2525 {
2526 struct drm_i915_gem_request *req = container_of(req_ref,
2527 typeof(*req), ref);
2528 struct intel_context *ctx = req->ctx;
2529
2530 if (ctx) {
2531 if (i915.enable_execlists) {
2532 struct intel_engine_cs *ring = req->ring;
2533
2534 if (ctx != ring->default_context)
2535 intel_lr_context_unpin(ring, ctx);
2536 }
2537
2538 i915_gem_context_unreference(ctx);
2539 }
2540
2541 kmem_cache_free(req->i915->requests, req);
2542 }
2543
2544 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2545 struct intel_context *ctx)
2546 {
2547 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2548 struct drm_i915_gem_request *rq;
2549 int ret;
2550
2551 if (ring->outstanding_lazy_request)
2552 return 0;
2553
2554 rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2555 if (rq == NULL)
2556 return -ENOMEM;
2557
2558 kref_init(&rq->ref);
2559 rq->i915 = dev_priv;
2560
2561 ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2562 if (ret) {
2563 kfree(rq);
2564 return ret;
2565 }
2566
2567 rq->ring = ring;
2568
2569 if (i915.enable_execlists)
2570 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2571 else
2572 ret = intel_ring_alloc_request_extras(rq);
2573 if (ret) {
2574 kfree(rq);
2575 return ret;
2576 }
2577
2578 ring->outstanding_lazy_request = rq;
2579 return 0;
2580 }
2581
2582 struct drm_i915_gem_request *
2583 i915_gem_find_active_request(struct intel_engine_cs *ring)
2584 {
2585 struct drm_i915_gem_request *request;
2586
2587 list_for_each_entry(request, &ring->request_list, list) {
2588 if (i915_gem_request_completed(request, false))
2589 continue;
2590
2591 return request;
2592 }
2593
2594 return NULL;
2595 }
2596
2597 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2598 struct intel_engine_cs *ring)
2599 {
2600 struct drm_i915_gem_request *request;
2601 bool ring_hung;
2602
2603 request = i915_gem_find_active_request(ring);
2604
2605 if (request == NULL)
2606 return;
2607
2608 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2609
2610 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2611
2612 list_for_each_entry_continue(request, &ring->request_list, list)
2613 i915_set_reset_status(dev_priv, request->ctx, false);
2614 }
2615
2616 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2617 struct intel_engine_cs *ring)
2618 {
2619 while (!list_empty(&ring->active_list)) {
2620 struct drm_i915_gem_object *obj;
2621
2622 obj = list_first_entry(&ring->active_list,
2623 struct drm_i915_gem_object,
2624 ring_list);
2625
2626 i915_gem_object_move_to_inactive(obj);
2627 }
2628
2629 /*
2630 * Clear the execlists queue up before freeing the requests, as those
2631 * are the ones that keep the context and ringbuffer backing objects
2632 * pinned in place.
2633 */
2634 while (!list_empty(&ring->execlist_queue)) {
2635 struct drm_i915_gem_request *submit_req;
2636
2637 submit_req = list_first_entry(&ring->execlist_queue,
2638 struct drm_i915_gem_request,
2639 execlist_link);
2640 list_del(&submit_req->execlist_link);
2641
2642 if (submit_req->ctx != ring->default_context)
2643 intel_lr_context_unpin(ring, submit_req->ctx);
2644
2645 i915_gem_request_unreference(submit_req);
2646 }
2647
2648 /*
2649 * We must free the requests after all the corresponding objects have
2650 * been moved off active lists. Which is the same order as the normal
2651 * retire_requests function does. This is important if object hold
2652 * implicit references on things like e.g. ppgtt address spaces through
2653 * the request.
2654 */
2655 while (!list_empty(&ring->request_list)) {
2656 struct drm_i915_gem_request *request;
2657
2658 request = list_first_entry(&ring->request_list,
2659 struct drm_i915_gem_request,
2660 list);
2661
2662 i915_gem_free_request(request);
2663 }
2664
2665 /* This may not have been flushed before the reset, so clean it now */
2666 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2667 }
2668
2669 void i915_gem_restore_fences(struct drm_device *dev)
2670 {
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 int i;
2673
2674 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2675 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2676
2677 /*
2678 * Commit delayed tiling changes if we have an object still
2679 * attached to the fence, otherwise just clear the fence.
2680 */
2681 if (reg->obj) {
2682 i915_gem_object_update_fence(reg->obj, reg,
2683 reg->obj->tiling_mode);
2684 } else {
2685 i915_gem_write_fence(dev, i, NULL);
2686 }
2687 }
2688 }
2689
2690 void i915_gem_reset(struct drm_device *dev)
2691 {
2692 struct drm_i915_private *dev_priv = dev->dev_private;
2693 struct intel_engine_cs *ring;
2694 int i;
2695
2696 /*
2697 * Before we free the objects from the requests, we need to inspect
2698 * them for finding the guilty party. As the requests only borrow
2699 * their reference to the objects, the inspection must be done first.
2700 */
2701 for_each_ring(ring, dev_priv, i)
2702 i915_gem_reset_ring_status(dev_priv, ring);
2703
2704 for_each_ring(ring, dev_priv, i)
2705 i915_gem_reset_ring_cleanup(dev_priv, ring);
2706
2707 i915_gem_context_reset(dev);
2708
2709 i915_gem_restore_fences(dev);
2710 }
2711
2712 /**
2713 * This function clears the request list as sequence numbers are passed.
2714 */
2715 void
2716 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2717 {
2718 if (list_empty(&ring->request_list))
2719 return;
2720
2721 WARN_ON(i915_verify_lists(ring->dev));
2722
2723 /* Retire requests first as we use it above for the early return.
2724 * If we retire requests last, we may use a later seqno and so clear
2725 * the requests lists without clearing the active list, leading to
2726 * confusion.
2727 */
2728 while (!list_empty(&ring->request_list)) {
2729 struct drm_i915_gem_request *request;
2730
2731 request = list_first_entry(&ring->request_list,
2732 struct drm_i915_gem_request,
2733 list);
2734
2735 if (!i915_gem_request_completed(request, true))
2736 break;
2737
2738 trace_i915_gem_request_retire(request);
2739
2740 /* We know the GPU must have read the request to have
2741 * sent us the seqno + interrupt, so use the position
2742 * of tail of the request to update the last known position
2743 * of the GPU head.
2744 */
2745 request->ringbuf->last_retired_head = request->postfix;
2746
2747 i915_gem_free_request(request);
2748 }
2749
2750 /* Move any buffers on the active list that are no longer referenced
2751 * by the ringbuffer to the flushing/inactive lists as appropriate,
2752 * before we free the context associated with the requests.
2753 */
2754 while (!list_empty(&ring->active_list)) {
2755 struct drm_i915_gem_object *obj;
2756
2757 obj = list_first_entry(&ring->active_list,
2758 struct drm_i915_gem_object,
2759 ring_list);
2760
2761 if (!i915_gem_request_completed(obj->last_read_req, true))
2762 break;
2763
2764 i915_gem_object_move_to_inactive(obj);
2765 }
2766
2767 if (unlikely(ring->trace_irq_req &&
2768 i915_gem_request_completed(ring->trace_irq_req, true))) {
2769 ring->irq_put(ring);
2770 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2771 }
2772
2773 WARN_ON(i915_verify_lists(ring->dev));
2774 }
2775
2776 bool
2777 i915_gem_retire_requests(struct drm_device *dev)
2778 {
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780 struct intel_engine_cs *ring;
2781 bool idle = true;
2782 int i;
2783
2784 for_each_ring(ring, dev_priv, i) {
2785 i915_gem_retire_requests_ring(ring);
2786 idle &= list_empty(&ring->request_list);
2787 if (i915.enable_execlists) {
2788 unsigned long flags;
2789
2790 spin_lock_irqsave(&ring->execlist_lock, flags);
2791 idle &= list_empty(&ring->execlist_queue);
2792 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2793
2794 intel_execlists_retire_requests(ring);
2795 }
2796 }
2797
2798 if (idle)
2799 mod_delayed_work(dev_priv->wq,
2800 &dev_priv->mm.idle_work,
2801 msecs_to_jiffies(100));
2802
2803 return idle;
2804 }
2805
2806 static void
2807 i915_gem_retire_work_handler(struct work_struct *work)
2808 {
2809 struct drm_i915_private *dev_priv =
2810 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2811 struct drm_device *dev = dev_priv->dev;
2812 bool idle;
2813
2814 /* Come back later if the device is busy... */
2815 idle = false;
2816 if (mutex_trylock(&dev->struct_mutex)) {
2817 idle = i915_gem_retire_requests(dev);
2818 mutex_unlock(&dev->struct_mutex);
2819 }
2820 if (!idle)
2821 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2822 round_jiffies_up_relative(HZ));
2823 }
2824
2825 static void
2826 i915_gem_idle_work_handler(struct work_struct *work)
2827 {
2828 struct drm_i915_private *dev_priv =
2829 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2830 struct drm_device *dev = dev_priv->dev;
2831 struct intel_engine_cs *ring;
2832 int i;
2833
2834 for_each_ring(ring, dev_priv, i)
2835 if (!list_empty(&ring->request_list))
2836 return;
2837
2838 intel_mark_idle(dev);
2839
2840 if (mutex_trylock(&dev->struct_mutex)) {
2841 struct intel_engine_cs *ring;
2842 int i;
2843
2844 for_each_ring(ring, dev_priv, i)
2845 i915_gem_batch_pool_fini(&ring->batch_pool);
2846
2847 mutex_unlock(&dev->struct_mutex);
2848 }
2849 }
2850
2851 /**
2852 * Ensures that an object will eventually get non-busy by flushing any required
2853 * write domains, emitting any outstanding lazy request and retiring and
2854 * completed requests.
2855 */
2856 static int
2857 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2858 {
2859 struct intel_engine_cs *ring;
2860 int ret;
2861
2862 if (obj->active) {
2863 ring = i915_gem_request_get_ring(obj->last_read_req);
2864
2865 ret = i915_gem_check_olr(obj->last_read_req);
2866 if (ret)
2867 return ret;
2868
2869 i915_gem_retire_requests_ring(ring);
2870 }
2871
2872 return 0;
2873 }
2874
2875 /**
2876 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2877 * @DRM_IOCTL_ARGS: standard ioctl arguments
2878 *
2879 * Returns 0 if successful, else an error is returned with the remaining time in
2880 * the timeout parameter.
2881 * -ETIME: object is still busy after timeout
2882 * -ERESTARTSYS: signal interrupted the wait
2883 * -ENONENT: object doesn't exist
2884 * Also possible, but rare:
2885 * -EAGAIN: GPU wedged
2886 * -ENOMEM: damn
2887 * -ENODEV: Internal IRQ fail
2888 * -E?: The add request failed
2889 *
2890 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2891 * non-zero timeout parameter the wait ioctl will wait for the given number of
2892 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2893 * without holding struct_mutex the object may become re-busied before this
2894 * function completes. A similar but shorter * race condition exists in the busy
2895 * ioctl
2896 */
2897 int
2898 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2899 {
2900 struct drm_i915_private *dev_priv = dev->dev_private;
2901 struct drm_i915_gem_wait *args = data;
2902 struct drm_i915_gem_object *obj;
2903 struct drm_i915_gem_request *req;
2904 unsigned reset_counter;
2905 int ret = 0;
2906
2907 if (args->flags != 0)
2908 return -EINVAL;
2909
2910 ret = i915_mutex_lock_interruptible(dev);
2911 if (ret)
2912 return ret;
2913
2914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2915 if (&obj->base == NULL) {
2916 mutex_unlock(&dev->struct_mutex);
2917 return -ENOENT;
2918 }
2919
2920 /* Need to make sure the object gets inactive eventually. */
2921 ret = i915_gem_object_flush_active(obj);
2922 if (ret)
2923 goto out;
2924
2925 if (!obj->active || !obj->last_read_req)
2926 goto out;
2927
2928 req = obj->last_read_req;
2929
2930 /* Do this after OLR check to make sure we make forward progress polling
2931 * on this IOCTL with a timeout == 0 (like busy ioctl)
2932 */
2933 if (args->timeout_ns == 0) {
2934 ret = -ETIME;
2935 goto out;
2936 }
2937
2938 drm_gem_object_unreference(&obj->base);
2939 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2940 i915_gem_request_reference(req);
2941 mutex_unlock(&dev->struct_mutex);
2942
2943 ret = __i915_wait_request(req, reset_counter, true,
2944 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2945 file->driver_priv);
2946 i915_gem_request_unreference__unlocked(req);
2947 return ret;
2948
2949 out:
2950 drm_gem_object_unreference(&obj->base);
2951 mutex_unlock(&dev->struct_mutex);
2952 return ret;
2953 }
2954
2955 /**
2956 * i915_gem_object_sync - sync an object to a ring.
2957 *
2958 * @obj: object which may be in use on another ring.
2959 * @to: ring we wish to use the object on. May be NULL.
2960 *
2961 * This code is meant to abstract object synchronization with the GPU.
2962 * Calling with NULL implies synchronizing the object with the CPU
2963 * rather than a particular GPU ring.
2964 *
2965 * Returns 0 if successful, else propagates up the lower layer error.
2966 */
2967 int
2968 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2969 struct intel_engine_cs *to)
2970 {
2971 struct intel_engine_cs *from;
2972 u32 seqno;
2973 int ret, idx;
2974
2975 from = i915_gem_request_get_ring(obj->last_read_req);
2976
2977 if (from == NULL || to == from)
2978 return 0;
2979
2980 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2981 return i915_gem_object_wait_rendering(obj, false);
2982
2983 idx = intel_ring_sync_index(from, to);
2984
2985 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2986 /* Optimization: Avoid semaphore sync when we are sure we already
2987 * waited for an object with higher seqno */
2988 if (seqno <= from->semaphore.sync_seqno[idx])
2989 return 0;
2990
2991 ret = i915_gem_check_olr(obj->last_read_req);
2992 if (ret)
2993 return ret;
2994
2995 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2996 ret = to->semaphore.sync_to(to, from, seqno);
2997 if (!ret)
2998 /* We use last_read_req because sync_to()
2999 * might have just caused seqno wrap under
3000 * the radar.
3001 */
3002 from->semaphore.sync_seqno[idx] =
3003 i915_gem_request_get_seqno(obj->last_read_req);
3004
3005 return ret;
3006 }
3007
3008 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3009 {
3010 u32 old_write_domain, old_read_domains;
3011
3012 /* Force a pagefault for domain tracking on next user access */
3013 i915_gem_release_mmap(obj);
3014
3015 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3016 return;
3017
3018 /* Wait for any direct GTT access to complete */
3019 mb();
3020
3021 old_read_domains = obj->base.read_domains;
3022 old_write_domain = obj->base.write_domain;
3023
3024 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3025 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3026
3027 trace_i915_gem_object_change_domain(obj,
3028 old_read_domains,
3029 old_write_domain);
3030 }
3031
3032 int i915_vma_unbind(struct i915_vma *vma)
3033 {
3034 struct drm_i915_gem_object *obj = vma->obj;
3035 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3036 int ret;
3037
3038 if (list_empty(&vma->vma_link))
3039 return 0;
3040
3041 if (!drm_mm_node_allocated(&vma->node)) {
3042 i915_gem_vma_destroy(vma);
3043 return 0;
3044 }
3045
3046 if (vma->pin_count)
3047 return -EBUSY;
3048
3049 BUG_ON(obj->pages == NULL);
3050
3051 ret = i915_gem_object_finish_gpu(obj);
3052 if (ret)
3053 return ret;
3054 /* Continue on if we fail due to EIO, the GPU is hung so we
3055 * should be safe and we need to cleanup or else we might
3056 * cause memory corruption through use-after-free.
3057 */
3058
3059 if (i915_is_ggtt(vma->vm) &&
3060 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3061 i915_gem_object_finish_gtt(obj);
3062
3063 /* release the fence reg _after_ flushing */
3064 ret = i915_gem_object_put_fence(obj);
3065 if (ret)
3066 return ret;
3067 }
3068
3069 trace_i915_vma_unbind(vma);
3070
3071 vma->vm->unbind_vma(vma);
3072 vma->bound = 0;
3073
3074 list_del_init(&vma->mm_list);
3075 if (i915_is_ggtt(vma->vm)) {
3076 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3077 obj->map_and_fenceable = false;
3078 } else if (vma->ggtt_view.pages) {
3079 sg_free_table(vma->ggtt_view.pages);
3080 kfree(vma->ggtt_view.pages);
3081 vma->ggtt_view.pages = NULL;
3082 }
3083 }
3084
3085 drm_mm_remove_node(&vma->node);
3086 i915_gem_vma_destroy(vma);
3087
3088 /* Since the unbound list is global, only move to that list if
3089 * no more VMAs exist. */
3090 if (list_empty(&obj->vma_list)) {
3091 /* Throw away the active reference before
3092 * moving to the unbound list. */
3093 i915_gem_object_retire(obj);
3094
3095 i915_gem_gtt_finish_object(obj);
3096 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3097 }
3098
3099 /* And finally now the object is completely decoupled from this vma,
3100 * we can drop its hold on the backing storage and allow it to be
3101 * reaped by the shrinker.
3102 */
3103 i915_gem_object_unpin_pages(obj);
3104
3105 return 0;
3106 }
3107
3108 int i915_gpu_idle(struct drm_device *dev)
3109 {
3110 struct drm_i915_private *dev_priv = dev->dev_private;
3111 struct intel_engine_cs *ring;
3112 int ret, i;
3113
3114 /* Flush everything onto the inactive list. */
3115 for_each_ring(ring, dev_priv, i) {
3116 if (!i915.enable_execlists) {
3117 ret = i915_switch_context(ring, ring->default_context);
3118 if (ret)
3119 return ret;
3120 }
3121
3122 ret = intel_ring_idle(ring);
3123 if (ret)
3124 return ret;
3125 }
3126
3127 return 0;
3128 }
3129
3130 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3131 struct drm_i915_gem_object *obj)
3132 {
3133 struct drm_i915_private *dev_priv = dev->dev_private;
3134 int fence_reg;
3135 int fence_pitch_shift;
3136
3137 if (INTEL_INFO(dev)->gen >= 6) {
3138 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3139 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3140 } else {
3141 fence_reg = FENCE_REG_965_0;
3142 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3143 }
3144
3145 fence_reg += reg * 8;
3146
3147 /* To w/a incoherency with non-atomic 64-bit register updates,
3148 * we split the 64-bit update into two 32-bit writes. In order
3149 * for a partial fence not to be evaluated between writes, we
3150 * precede the update with write to turn off the fence register,
3151 * and only enable the fence as the last step.
3152 *
3153 * For extra levels of paranoia, we make sure each step lands
3154 * before applying the next step.
3155 */
3156 I915_WRITE(fence_reg, 0);
3157 POSTING_READ(fence_reg);
3158
3159 if (obj) {
3160 u32 size = i915_gem_obj_ggtt_size(obj);
3161 uint64_t val;
3162
3163 /* Adjust fence size to match tiled area */
3164 if (obj->tiling_mode != I915_TILING_NONE) {
3165 uint32_t row_size = obj->stride *
3166 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3167 size = (size / row_size) * row_size;
3168 }
3169
3170 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3171 0xfffff000) << 32;
3172 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3173 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3174 if (obj->tiling_mode == I915_TILING_Y)
3175 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3176 val |= I965_FENCE_REG_VALID;
3177
3178 I915_WRITE(fence_reg + 4, val >> 32);
3179 POSTING_READ(fence_reg + 4);
3180
3181 I915_WRITE(fence_reg + 0, val);
3182 POSTING_READ(fence_reg);
3183 } else {
3184 I915_WRITE(fence_reg + 4, 0);
3185 POSTING_READ(fence_reg + 4);
3186 }
3187 }
3188
3189 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3190 struct drm_i915_gem_object *obj)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 u32 val;
3194
3195 if (obj) {
3196 u32 size = i915_gem_obj_ggtt_size(obj);
3197 int pitch_val;
3198 int tile_width;
3199
3200 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3201 (size & -size) != size ||
3202 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3203 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3204 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3205
3206 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3207 tile_width = 128;
3208 else
3209 tile_width = 512;
3210
3211 /* Note: pitch better be a power of two tile widths */
3212 pitch_val = obj->stride / tile_width;
3213 pitch_val = ffs(pitch_val) - 1;
3214
3215 val = i915_gem_obj_ggtt_offset(obj);
3216 if (obj->tiling_mode == I915_TILING_Y)
3217 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3218 val |= I915_FENCE_SIZE_BITS(size);
3219 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3220 val |= I830_FENCE_REG_VALID;
3221 } else
3222 val = 0;
3223
3224 if (reg < 8)
3225 reg = FENCE_REG_830_0 + reg * 4;
3226 else
3227 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3228
3229 I915_WRITE(reg, val);
3230 POSTING_READ(reg);
3231 }
3232
3233 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3234 struct drm_i915_gem_object *obj)
3235 {
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 uint32_t val;
3238
3239 if (obj) {
3240 u32 size = i915_gem_obj_ggtt_size(obj);
3241 uint32_t pitch_val;
3242
3243 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3244 (size & -size) != size ||
3245 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3246 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3247 i915_gem_obj_ggtt_offset(obj), size);
3248
3249 pitch_val = obj->stride / 128;
3250 pitch_val = ffs(pitch_val) - 1;
3251
3252 val = i915_gem_obj_ggtt_offset(obj);
3253 if (obj->tiling_mode == I915_TILING_Y)
3254 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3255 val |= I830_FENCE_SIZE_BITS(size);
3256 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3257 val |= I830_FENCE_REG_VALID;
3258 } else
3259 val = 0;
3260
3261 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3262 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3263 }
3264
3265 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3266 {
3267 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3268 }
3269
3270 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3271 struct drm_i915_gem_object *obj)
3272 {
3273 struct drm_i915_private *dev_priv = dev->dev_private;
3274
3275 /* Ensure that all CPU reads are completed before installing a fence
3276 * and all writes before removing the fence.
3277 */
3278 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3279 mb();
3280
3281 WARN(obj && (!obj->stride || !obj->tiling_mode),
3282 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3283 obj->stride, obj->tiling_mode);
3284
3285 if (IS_GEN2(dev))
3286 i830_write_fence_reg(dev, reg, obj);
3287 else if (IS_GEN3(dev))
3288 i915_write_fence_reg(dev, reg, obj);
3289 else if (INTEL_INFO(dev)->gen >= 4)
3290 i965_write_fence_reg(dev, reg, obj);
3291
3292 /* And similarly be paranoid that no direct access to this region
3293 * is reordered to before the fence is installed.
3294 */
3295 if (i915_gem_object_needs_mb(obj))
3296 mb();
3297 }
3298
3299 static inline int fence_number(struct drm_i915_private *dev_priv,
3300 struct drm_i915_fence_reg *fence)
3301 {
3302 return fence - dev_priv->fence_regs;
3303 }
3304
3305 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3306 struct drm_i915_fence_reg *fence,
3307 bool enable)
3308 {
3309 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3310 int reg = fence_number(dev_priv, fence);
3311
3312 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3313
3314 if (enable) {
3315 obj->fence_reg = reg;
3316 fence->obj = obj;
3317 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3318 } else {
3319 obj->fence_reg = I915_FENCE_REG_NONE;
3320 fence->obj = NULL;
3321 list_del_init(&fence->lru_list);
3322 }
3323 obj->fence_dirty = false;
3324 }
3325
3326 static int
3327 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3328 {
3329 if (obj->last_fenced_req) {
3330 int ret = i915_wait_request(obj->last_fenced_req);
3331 if (ret)
3332 return ret;
3333
3334 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3335 }
3336
3337 return 0;
3338 }
3339
3340 int
3341 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3342 {
3343 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3344 struct drm_i915_fence_reg *fence;
3345 int ret;
3346
3347 ret = i915_gem_object_wait_fence(obj);
3348 if (ret)
3349 return ret;
3350
3351 if (obj->fence_reg == I915_FENCE_REG_NONE)
3352 return 0;
3353
3354 fence = &dev_priv->fence_regs[obj->fence_reg];
3355
3356 if (WARN_ON(fence->pin_count))
3357 return -EBUSY;
3358
3359 i915_gem_object_fence_lost(obj);
3360 i915_gem_object_update_fence(obj, fence, false);
3361
3362 return 0;
3363 }
3364
3365 static struct drm_i915_fence_reg *
3366 i915_find_fence_reg(struct drm_device *dev)
3367 {
3368 struct drm_i915_private *dev_priv = dev->dev_private;
3369 struct drm_i915_fence_reg *reg, *avail;
3370 int i;
3371
3372 /* First try to find a free reg */
3373 avail = NULL;
3374 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3375 reg = &dev_priv->fence_regs[i];
3376 if (!reg->obj)
3377 return reg;
3378
3379 if (!reg->pin_count)
3380 avail = reg;
3381 }
3382
3383 if (avail == NULL)
3384 goto deadlock;
3385
3386 /* None available, try to steal one or wait for a user to finish */
3387 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3388 if (reg->pin_count)
3389 continue;
3390
3391 return reg;
3392 }
3393
3394 deadlock:
3395 /* Wait for completion of pending flips which consume fences */
3396 if (intel_has_pending_fb_unpin(dev))
3397 return ERR_PTR(-EAGAIN);
3398
3399 return ERR_PTR(-EDEADLK);
3400 }
3401
3402 /**
3403 * i915_gem_object_get_fence - set up fencing for an object
3404 * @obj: object to map through a fence reg
3405 *
3406 * When mapping objects through the GTT, userspace wants to be able to write
3407 * to them without having to worry about swizzling if the object is tiled.
3408 * This function walks the fence regs looking for a free one for @obj,
3409 * stealing one if it can't find any.
3410 *
3411 * It then sets up the reg based on the object's properties: address, pitch
3412 * and tiling format.
3413 *
3414 * For an untiled surface, this removes any existing fence.
3415 */
3416 int
3417 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3418 {
3419 struct drm_device *dev = obj->base.dev;
3420 struct drm_i915_private *dev_priv = dev->dev_private;
3421 bool enable = obj->tiling_mode != I915_TILING_NONE;
3422 struct drm_i915_fence_reg *reg;
3423 int ret;
3424
3425 /* Have we updated the tiling parameters upon the object and so
3426 * will need to serialise the write to the associated fence register?
3427 */
3428 if (obj->fence_dirty) {
3429 ret = i915_gem_object_wait_fence(obj);
3430 if (ret)
3431 return ret;
3432 }
3433
3434 /* Just update our place in the LRU if our fence is getting reused. */
3435 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3436 reg = &dev_priv->fence_regs[obj->fence_reg];
3437 if (!obj->fence_dirty) {
3438 list_move_tail(&reg->lru_list,
3439 &dev_priv->mm.fence_list);
3440 return 0;
3441 }
3442 } else if (enable) {
3443 if (WARN_ON(!obj->map_and_fenceable))
3444 return -EINVAL;
3445
3446 reg = i915_find_fence_reg(dev);
3447 if (IS_ERR(reg))
3448 return PTR_ERR(reg);
3449
3450 if (reg->obj) {
3451 struct drm_i915_gem_object *old = reg->obj;
3452
3453 ret = i915_gem_object_wait_fence(old);
3454 if (ret)
3455 return ret;
3456
3457 i915_gem_object_fence_lost(old);
3458 }
3459 } else
3460 return 0;
3461
3462 i915_gem_object_update_fence(obj, reg, enable);
3463
3464 return 0;
3465 }
3466
3467 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3468 unsigned long cache_level)
3469 {
3470 struct drm_mm_node *gtt_space = &vma->node;
3471 struct drm_mm_node *other;
3472
3473 /*
3474 * On some machines we have to be careful when putting differing types
3475 * of snoopable memory together to avoid the prefetcher crossing memory
3476 * domains and dying. During vm initialisation, we decide whether or not
3477 * these constraints apply and set the drm_mm.color_adjust
3478 * appropriately.
3479 */
3480 if (vma->vm->mm.color_adjust == NULL)
3481 return true;
3482
3483 if (!drm_mm_node_allocated(gtt_space))
3484 return true;
3485
3486 if (list_empty(&gtt_space->node_list))
3487 return true;
3488
3489 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3490 if (other->allocated && !other->hole_follows && other->color != cache_level)
3491 return false;
3492
3493 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3494 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3495 return false;
3496
3497 return true;
3498 }
3499
3500 /**
3501 * Finds free space in the GTT aperture and binds the object there.
3502 */
3503 static struct i915_vma *
3504 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3505 struct i915_address_space *vm,
3506 const struct i915_ggtt_view *ggtt_view,
3507 unsigned alignment,
3508 uint64_t flags)
3509 {
3510 struct drm_device *dev = obj->base.dev;
3511 struct drm_i915_private *dev_priv = dev->dev_private;
3512 u32 size, fence_size, fence_alignment, unfenced_alignment;
3513 unsigned long start =
3514 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3515 unsigned long end =
3516 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3517 struct i915_vma *vma;
3518 int ret;
3519
3520 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3521 return ERR_PTR(-EINVAL);
3522
3523 fence_size = i915_gem_get_gtt_size(dev,
3524 obj->base.size,
3525 obj->tiling_mode);
3526 fence_alignment = i915_gem_get_gtt_alignment(dev,
3527 obj->base.size,
3528 obj->tiling_mode, true);
3529 unfenced_alignment =
3530 i915_gem_get_gtt_alignment(dev,
3531 obj->base.size,
3532 obj->tiling_mode, false);
3533
3534 if (alignment == 0)
3535 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3536 unfenced_alignment;
3537 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3538 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3539 return ERR_PTR(-EINVAL);
3540 }
3541
3542 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543
3544 /* If the object is bigger than the entire aperture, reject it early
3545 * before evicting everything in a vain attempt to find space.
3546 */
3547 if (obj->base.size > end) {
3548 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3549 obj->base.size,
3550 flags & PIN_MAPPABLE ? "mappable" : "total",
3551 end);
3552 return ERR_PTR(-E2BIG);
3553 }
3554
3555 ret = i915_gem_object_get_pages(obj);
3556 if (ret)
3557 return ERR_PTR(ret);
3558
3559 i915_gem_object_pin_pages(obj);
3560
3561 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3562 i915_gem_obj_lookup_or_create_vma(obj, vm);
3563
3564 if (IS_ERR(vma))
3565 goto err_unpin;
3566
3567 search_free:
3568 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3569 size, alignment,
3570 obj->cache_level,
3571 start, end,
3572 DRM_MM_SEARCH_DEFAULT,
3573 DRM_MM_CREATE_DEFAULT);
3574 if (ret) {
3575 ret = i915_gem_evict_something(dev, vm, size, alignment,
3576 obj->cache_level,
3577 start, end,
3578 flags);
3579 if (ret == 0)
3580 goto search_free;
3581
3582 goto err_free_vma;
3583 }
3584 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3585 ret = -EINVAL;
3586 goto err_remove_node;
3587 }
3588
3589 ret = i915_gem_gtt_prepare_object(obj);
3590 if (ret)
3591 goto err_remove_node;
3592
3593 trace_i915_vma_bind(vma, flags);
3594 ret = i915_vma_bind(vma, obj->cache_level, flags);
3595 if (ret)
3596 goto err_finish_gtt;
3597
3598 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3599 list_add_tail(&vma->mm_list, &vm->inactive_list);
3600
3601 return vma;
3602
3603 err_finish_gtt:
3604 i915_gem_gtt_finish_object(obj);
3605 err_remove_node:
3606 drm_mm_remove_node(&vma->node);
3607 err_free_vma:
3608 i915_gem_vma_destroy(vma);
3609 vma = ERR_PTR(ret);
3610 err_unpin:
3611 i915_gem_object_unpin_pages(obj);
3612 return vma;
3613 }
3614
3615 bool
3616 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3617 bool force)
3618 {
3619 /* If we don't have a page list set up, then we're not pinned
3620 * to GPU, and we can ignore the cache flush because it'll happen
3621 * again at bind time.
3622 */
3623 if (obj->pages == NULL)
3624 return false;
3625
3626 /*
3627 * Stolen memory is always coherent with the GPU as it is explicitly
3628 * marked as wc by the system, or the system is cache-coherent.
3629 */
3630 if (obj->stolen || obj->phys_handle)
3631 return false;
3632
3633 /* If the GPU is snooping the contents of the CPU cache,
3634 * we do not need to manually clear the CPU cache lines. However,
3635 * the caches are only snooped when the render cache is
3636 * flushed/invalidated. As we always have to emit invalidations
3637 * and flushes when moving into and out of the RENDER domain, correct
3638 * snooping behaviour occurs naturally as the result of our domain
3639 * tracking.
3640 */
3641 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3642 obj->cache_dirty = true;
3643 return false;
3644 }
3645
3646 trace_i915_gem_object_clflush(obj);
3647 drm_clflush_sg(obj->pages);
3648 obj->cache_dirty = false;
3649
3650 return true;
3651 }
3652
3653 /** Flushes the GTT write domain for the object if it's dirty. */
3654 static void
3655 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3656 {
3657 uint32_t old_write_domain;
3658
3659 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3660 return;
3661
3662 /* No actual flushing is required for the GTT write domain. Writes
3663 * to it immediately go to main memory as far as we know, so there's
3664 * no chipset flush. It also doesn't land in render cache.
3665 *
3666 * However, we do have to enforce the order so that all writes through
3667 * the GTT land before any writes to the device, such as updates to
3668 * the GATT itself.
3669 */
3670 wmb();
3671
3672 old_write_domain = obj->base.write_domain;
3673 obj->base.write_domain = 0;
3674
3675 intel_fb_obj_flush(obj, false);
3676
3677 trace_i915_gem_object_change_domain(obj,
3678 obj->base.read_domains,
3679 old_write_domain);
3680 }
3681
3682 /** Flushes the CPU write domain for the object if it's dirty. */
3683 static void
3684 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3685 {
3686 uint32_t old_write_domain;
3687
3688 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3689 return;
3690
3691 if (i915_gem_clflush_object(obj, obj->pin_display))
3692 i915_gem_chipset_flush(obj->base.dev);
3693
3694 old_write_domain = obj->base.write_domain;
3695 obj->base.write_domain = 0;
3696
3697 intel_fb_obj_flush(obj, false);
3698
3699 trace_i915_gem_object_change_domain(obj,
3700 obj->base.read_domains,
3701 old_write_domain);
3702 }
3703
3704 /**
3705 * Moves a single object to the GTT read, and possibly write domain.
3706 *
3707 * This function returns when the move is complete, including waiting on
3708 * flushes to occur.
3709 */
3710 int
3711 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3712 {
3713 uint32_t old_write_domain, old_read_domains;
3714 struct i915_vma *vma;
3715 int ret;
3716
3717 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3718 return 0;
3719
3720 ret = i915_gem_object_wait_rendering(obj, !write);
3721 if (ret)
3722 return ret;
3723
3724 i915_gem_object_retire(obj);
3725
3726 /* Flush and acquire obj->pages so that we are coherent through
3727 * direct access in memory with previous cached writes through
3728 * shmemfs and that our cache domain tracking remains valid.
3729 * For example, if the obj->filp was moved to swap without us
3730 * being notified and releasing the pages, we would mistakenly
3731 * continue to assume that the obj remained out of the CPU cached
3732 * domain.
3733 */
3734 ret = i915_gem_object_get_pages(obj);
3735 if (ret)
3736 return ret;
3737
3738 i915_gem_object_flush_cpu_write_domain(obj);
3739
3740 /* Serialise direct access to this object with the barriers for
3741 * coherent writes from the GPU, by effectively invalidating the
3742 * GTT domain upon first access.
3743 */
3744 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3745 mb();
3746
3747 old_write_domain = obj->base.write_domain;
3748 old_read_domains = obj->base.read_domains;
3749
3750 /* It should now be out of any other write domains, and we can update
3751 * the domain values for our changes.
3752 */
3753 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3754 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3755 if (write) {
3756 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3757 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3758 obj->dirty = 1;
3759 }
3760
3761 if (write)
3762 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3763
3764 trace_i915_gem_object_change_domain(obj,
3765 old_read_domains,
3766 old_write_domain);
3767
3768 /* And bump the LRU for this access */
3769 vma = i915_gem_obj_to_ggtt(obj);
3770 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3771 list_move_tail(&vma->mm_list,
3772 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3773
3774 return 0;
3775 }
3776
3777 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3778 enum i915_cache_level cache_level)
3779 {
3780 struct drm_device *dev = obj->base.dev;
3781 struct i915_vma *vma, *next;
3782 int ret;
3783
3784 if (obj->cache_level == cache_level)
3785 return 0;
3786
3787 if (i915_gem_obj_is_pinned(obj)) {
3788 DRM_DEBUG("can not change the cache level of pinned objects\n");
3789 return -EBUSY;
3790 }
3791
3792 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3793 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3794 ret = i915_vma_unbind(vma);
3795 if (ret)
3796 return ret;
3797 }
3798 }
3799
3800 if (i915_gem_obj_bound_any(obj)) {
3801 ret = i915_gem_object_finish_gpu(obj);
3802 if (ret)
3803 return ret;
3804
3805 i915_gem_object_finish_gtt(obj);
3806
3807 /* Before SandyBridge, you could not use tiling or fence
3808 * registers with snooped memory, so relinquish any fences
3809 * currently pointing to our region in the aperture.
3810 */
3811 if (INTEL_INFO(dev)->gen < 6) {
3812 ret = i915_gem_object_put_fence(obj);
3813 if (ret)
3814 return ret;
3815 }
3816
3817 list_for_each_entry(vma, &obj->vma_list, vma_link)
3818 if (drm_mm_node_allocated(&vma->node)) {
3819 ret = i915_vma_bind(vma, cache_level,
3820 PIN_UPDATE);
3821 if (ret)
3822 return ret;
3823 }
3824 }
3825
3826 list_for_each_entry(vma, &obj->vma_list, vma_link)
3827 vma->node.color = cache_level;
3828 obj->cache_level = cache_level;
3829
3830 if (obj->cache_dirty &&
3831 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3832 cpu_write_needs_clflush(obj)) {
3833 if (i915_gem_clflush_object(obj, true))
3834 i915_gem_chipset_flush(obj->base.dev);
3835 }
3836
3837 return 0;
3838 }
3839
3840 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3841 struct drm_file *file)
3842 {
3843 struct drm_i915_gem_caching *args = data;
3844 struct drm_i915_gem_object *obj;
3845 int ret;
3846
3847 ret = i915_mutex_lock_interruptible(dev);
3848 if (ret)
3849 return ret;
3850
3851 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3852 if (&obj->base == NULL) {
3853 ret = -ENOENT;
3854 goto unlock;
3855 }
3856
3857 switch (obj->cache_level) {
3858 case I915_CACHE_LLC:
3859 case I915_CACHE_L3_LLC:
3860 args->caching = I915_CACHING_CACHED;
3861 break;
3862
3863 case I915_CACHE_WT:
3864 args->caching = I915_CACHING_DISPLAY;
3865 break;
3866
3867 default:
3868 args->caching = I915_CACHING_NONE;
3869 break;
3870 }
3871
3872 drm_gem_object_unreference(&obj->base);
3873 unlock:
3874 mutex_unlock(&dev->struct_mutex);
3875 return ret;
3876 }
3877
3878 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3879 struct drm_file *file)
3880 {
3881 struct drm_i915_gem_caching *args = data;
3882 struct drm_i915_gem_object *obj;
3883 enum i915_cache_level level;
3884 int ret;
3885
3886 switch (args->caching) {
3887 case I915_CACHING_NONE:
3888 level = I915_CACHE_NONE;
3889 break;
3890 case I915_CACHING_CACHED:
3891 level = I915_CACHE_LLC;
3892 break;
3893 case I915_CACHING_DISPLAY:
3894 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3895 break;
3896 default:
3897 return -EINVAL;
3898 }
3899
3900 ret = i915_mutex_lock_interruptible(dev);
3901 if (ret)
3902 return ret;
3903
3904 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3905 if (&obj->base == NULL) {
3906 ret = -ENOENT;
3907 goto unlock;
3908 }
3909
3910 ret = i915_gem_object_set_cache_level(obj, level);
3911
3912 drm_gem_object_unreference(&obj->base);
3913 unlock:
3914 mutex_unlock(&dev->struct_mutex);
3915 return ret;
3916 }
3917
3918 /*
3919 * Prepare buffer for display plane (scanout, cursors, etc).
3920 * Can be called from an uninterruptible phase (modesetting) and allows
3921 * any flushes to be pipelined (for pageflips).
3922 */
3923 int
3924 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3925 u32 alignment,
3926 struct intel_engine_cs *pipelined,
3927 const struct i915_ggtt_view *view)
3928 {
3929 u32 old_read_domains, old_write_domain;
3930 int ret;
3931
3932 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3933 ret = i915_gem_object_sync(obj, pipelined);
3934 if (ret)
3935 return ret;
3936 }
3937
3938 /* Mark the pin_display early so that we account for the
3939 * display coherency whilst setting up the cache domains.
3940 */
3941 obj->pin_display++;
3942
3943 /* The display engine is not coherent with the LLC cache on gen6. As
3944 * a result, we make sure that the pinning that is about to occur is
3945 * done with uncached PTEs. This is lowest common denominator for all
3946 * chipsets.
3947 *
3948 * However for gen6+, we could do better by using the GFDT bit instead
3949 * of uncaching, which would allow us to flush all the LLC-cached data
3950 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3951 */
3952 ret = i915_gem_object_set_cache_level(obj,
3953 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3954 if (ret)
3955 goto err_unpin_display;
3956
3957 /* As the user may map the buffer once pinned in the display plane
3958 * (e.g. libkms for the bootup splash), we have to ensure that we
3959 * always use map_and_fenceable for all scanout buffers.
3960 */
3961 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3962 view->type == I915_GGTT_VIEW_NORMAL ?
3963 PIN_MAPPABLE : 0);
3964 if (ret)
3965 goto err_unpin_display;
3966
3967 i915_gem_object_flush_cpu_write_domain(obj);
3968
3969 old_write_domain = obj->base.write_domain;
3970 old_read_domains = obj->base.read_domains;
3971
3972 /* It should now be out of any other write domains, and we can update
3973 * the domain values for our changes.
3974 */
3975 obj->base.write_domain = 0;
3976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3977
3978 trace_i915_gem_object_change_domain(obj,
3979 old_read_domains,
3980 old_write_domain);
3981
3982 return 0;
3983
3984 err_unpin_display:
3985 obj->pin_display--;
3986 return ret;
3987 }
3988
3989 void
3990 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3991 const struct i915_ggtt_view *view)
3992 {
3993 if (WARN_ON(obj->pin_display == 0))
3994 return;
3995
3996 i915_gem_object_ggtt_unpin_view(obj, view);
3997
3998 obj->pin_display--;
3999 }
4000
4001 int
4002 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4003 {
4004 int ret;
4005
4006 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4007 return 0;
4008
4009 ret = i915_gem_object_wait_rendering(obj, false);
4010 if (ret)
4011 return ret;
4012
4013 /* Ensure that we invalidate the GPU's caches and TLBs. */
4014 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4015 return 0;
4016 }
4017
4018 /**
4019 * Moves a single object to the CPU read, and possibly write domain.
4020 *
4021 * This function returns when the move is complete, including waiting on
4022 * flushes to occur.
4023 */
4024 int
4025 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4026 {
4027 uint32_t old_write_domain, old_read_domains;
4028 int ret;
4029
4030 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4031 return 0;
4032
4033 ret = i915_gem_object_wait_rendering(obj, !write);
4034 if (ret)
4035 return ret;
4036
4037 i915_gem_object_retire(obj);
4038 i915_gem_object_flush_gtt_write_domain(obj);
4039
4040 old_write_domain = obj->base.write_domain;
4041 old_read_domains = obj->base.read_domains;
4042
4043 /* Flush the CPU cache if it's still invalid. */
4044 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4045 i915_gem_clflush_object(obj, false);
4046
4047 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4048 }
4049
4050 /* It should now be out of any other write domains, and we can update
4051 * the domain values for our changes.
4052 */
4053 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4054
4055 /* If we're writing through the CPU, then the GPU read domains will
4056 * need to be invalidated at next use.
4057 */
4058 if (write) {
4059 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4060 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4061 }
4062
4063 if (write)
4064 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4065
4066 trace_i915_gem_object_change_domain(obj,
4067 old_read_domains,
4068 old_write_domain);
4069
4070 return 0;
4071 }
4072
4073 /* Throttle our rendering by waiting until the ring has completed our requests
4074 * emitted over 20 msec ago.
4075 *
4076 * Note that if we were to use the current jiffies each time around the loop,
4077 * we wouldn't escape the function with any frames outstanding if the time to
4078 * render a frame was over 20ms.
4079 *
4080 * This should get us reasonable parallelism between CPU and GPU but also
4081 * relatively low latency when blocking on a particular request to finish.
4082 */
4083 static int
4084 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4085 {
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 struct drm_i915_file_private *file_priv = file->driver_priv;
4088 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4089 struct drm_i915_gem_request *request, *target = NULL;
4090 unsigned reset_counter;
4091 int ret;
4092
4093 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4094 if (ret)
4095 return ret;
4096
4097 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4098 if (ret)
4099 return ret;
4100
4101 spin_lock(&file_priv->mm.lock);
4102 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4103 if (time_after_eq(request->emitted_jiffies, recent_enough))
4104 break;
4105
4106 target = request;
4107 }
4108 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4109 if (target)
4110 i915_gem_request_reference(target);
4111 spin_unlock(&file_priv->mm.lock);
4112
4113 if (target == NULL)
4114 return 0;
4115
4116 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4117 if (ret == 0)
4118 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4119
4120 i915_gem_request_unreference__unlocked(target);
4121
4122 return ret;
4123 }
4124
4125 static bool
4126 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4127 {
4128 struct drm_i915_gem_object *obj = vma->obj;
4129
4130 if (alignment &&
4131 vma->node.start & (alignment - 1))
4132 return true;
4133
4134 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4135 return true;
4136
4137 if (flags & PIN_OFFSET_BIAS &&
4138 vma->node.start < (flags & PIN_OFFSET_MASK))
4139 return true;
4140
4141 return false;
4142 }
4143
4144 static int
4145 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4146 struct i915_address_space *vm,
4147 const struct i915_ggtt_view *ggtt_view,
4148 uint32_t alignment,
4149 uint64_t flags)
4150 {
4151 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4152 struct i915_vma *vma;
4153 unsigned bound;
4154 int ret;
4155
4156 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4157 return -ENODEV;
4158
4159 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4160 return -EINVAL;
4161
4162 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4163 return -EINVAL;
4164
4165 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4166 return -EINVAL;
4167
4168 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4169 i915_gem_obj_to_vma(obj, vm);
4170
4171 if (IS_ERR(vma))
4172 return PTR_ERR(vma);
4173
4174 if (vma) {
4175 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4176 return -EBUSY;
4177
4178 if (i915_vma_misplaced(vma, alignment, flags)) {
4179 unsigned long offset;
4180 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4181 i915_gem_obj_offset(obj, vm);
4182 WARN(vma->pin_count,
4183 "bo is already pinned in %s with incorrect alignment:"
4184 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4185 " obj->map_and_fenceable=%d\n",
4186 ggtt_view ? "ggtt" : "ppgtt",
4187 offset,
4188 alignment,
4189 !!(flags & PIN_MAPPABLE),
4190 obj->map_and_fenceable);
4191 ret = i915_vma_unbind(vma);
4192 if (ret)
4193 return ret;
4194
4195 vma = NULL;
4196 }
4197 }
4198
4199 bound = vma ? vma->bound : 0;
4200 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4201 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4202 flags);
4203 if (IS_ERR(vma))
4204 return PTR_ERR(vma);
4205 } else {
4206 ret = i915_vma_bind(vma, obj->cache_level, flags);
4207 if (ret)
4208 return ret;
4209 }
4210
4211 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4212 bool mappable, fenceable;
4213 u32 fence_size, fence_alignment;
4214
4215 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4216 obj->base.size,
4217 obj->tiling_mode);
4218 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4219 obj->base.size,
4220 obj->tiling_mode,
4221 true);
4222
4223 fenceable = (vma->node.size == fence_size &&
4224 (vma->node.start & (fence_alignment - 1)) == 0);
4225
4226 mappable = (vma->node.start + fence_size <=
4227 dev_priv->gtt.mappable_end);
4228
4229 obj->map_and_fenceable = mappable && fenceable;
4230 }
4231
4232 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4233
4234 vma->pin_count++;
4235 return 0;
4236 }
4237
4238 int
4239 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4240 struct i915_address_space *vm,
4241 uint32_t alignment,
4242 uint64_t flags)
4243 {
4244 return i915_gem_object_do_pin(obj, vm,
4245 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4246 alignment, flags);
4247 }
4248
4249 int
4250 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4251 const struct i915_ggtt_view *view,
4252 uint32_t alignment,
4253 uint64_t flags)
4254 {
4255 if (WARN_ONCE(!view, "no view specified"))
4256 return -EINVAL;
4257
4258 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4259 alignment, flags | PIN_GLOBAL);
4260 }
4261
4262 void
4263 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4264 const struct i915_ggtt_view *view)
4265 {
4266 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4267
4268 BUG_ON(!vma);
4269 WARN_ON(vma->pin_count == 0);
4270 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4271
4272 --vma->pin_count;
4273 }
4274
4275 bool
4276 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4277 {
4278 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4279 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4280 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4281
4282 WARN_ON(!ggtt_vma ||
4283 dev_priv->fence_regs[obj->fence_reg].pin_count >
4284 ggtt_vma->pin_count);
4285 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4286 return true;
4287 } else
4288 return false;
4289 }
4290
4291 void
4292 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4293 {
4294 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4296 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4297 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4298 }
4299 }
4300
4301 int
4302 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4303 struct drm_file *file)
4304 {
4305 struct drm_i915_gem_busy *args = data;
4306 struct drm_i915_gem_object *obj;
4307 int ret;
4308
4309 ret = i915_mutex_lock_interruptible(dev);
4310 if (ret)
4311 return ret;
4312
4313 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4314 if (&obj->base == NULL) {
4315 ret = -ENOENT;
4316 goto unlock;
4317 }
4318
4319 /* Count all active objects as busy, even if they are currently not used
4320 * by the gpu. Users of this interface expect objects to eventually
4321 * become non-busy without any further actions, therefore emit any
4322 * necessary flushes here.
4323 */
4324 ret = i915_gem_object_flush_active(obj);
4325
4326 args->busy = obj->active;
4327 if (obj->last_read_req) {
4328 struct intel_engine_cs *ring;
4329 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4330 ring = i915_gem_request_get_ring(obj->last_read_req);
4331 args->busy |= intel_ring_flag(ring) << 16;
4332 }
4333
4334 drm_gem_object_unreference(&obj->base);
4335 unlock:
4336 mutex_unlock(&dev->struct_mutex);
4337 return ret;
4338 }
4339
4340 int
4341 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4342 struct drm_file *file_priv)
4343 {
4344 return i915_gem_ring_throttle(dev, file_priv);
4345 }
4346
4347 int
4348 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4349 struct drm_file *file_priv)
4350 {
4351 struct drm_i915_private *dev_priv = dev->dev_private;
4352 struct drm_i915_gem_madvise *args = data;
4353 struct drm_i915_gem_object *obj;
4354 int ret;
4355
4356 switch (args->madv) {
4357 case I915_MADV_DONTNEED:
4358 case I915_MADV_WILLNEED:
4359 break;
4360 default:
4361 return -EINVAL;
4362 }
4363
4364 ret = i915_mutex_lock_interruptible(dev);
4365 if (ret)
4366 return ret;
4367
4368 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4369 if (&obj->base == NULL) {
4370 ret = -ENOENT;
4371 goto unlock;
4372 }
4373
4374 if (i915_gem_obj_is_pinned(obj)) {
4375 ret = -EINVAL;
4376 goto out;
4377 }
4378
4379 if (obj->pages &&
4380 obj->tiling_mode != I915_TILING_NONE &&
4381 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4382 if (obj->madv == I915_MADV_WILLNEED)
4383 i915_gem_object_unpin_pages(obj);
4384 if (args->madv == I915_MADV_WILLNEED)
4385 i915_gem_object_pin_pages(obj);
4386 }
4387
4388 if (obj->madv != __I915_MADV_PURGED)
4389 obj->madv = args->madv;
4390
4391 /* if the object is no longer attached, discard its backing storage */
4392 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4393 i915_gem_object_truncate(obj);
4394
4395 args->retained = obj->madv != __I915_MADV_PURGED;
4396
4397 out:
4398 drm_gem_object_unreference(&obj->base);
4399 unlock:
4400 mutex_unlock(&dev->struct_mutex);
4401 return ret;
4402 }
4403
4404 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4405 const struct drm_i915_gem_object_ops *ops)
4406 {
4407 INIT_LIST_HEAD(&obj->global_list);
4408 INIT_LIST_HEAD(&obj->ring_list);
4409 INIT_LIST_HEAD(&obj->obj_exec_link);
4410 INIT_LIST_HEAD(&obj->vma_list);
4411 INIT_LIST_HEAD(&obj->batch_pool_link);
4412
4413 obj->ops = ops;
4414
4415 obj->fence_reg = I915_FENCE_REG_NONE;
4416 obj->madv = I915_MADV_WILLNEED;
4417
4418 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4419 }
4420
4421 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4422 .get_pages = i915_gem_object_get_pages_gtt,
4423 .put_pages = i915_gem_object_put_pages_gtt,
4424 };
4425
4426 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4427 size_t size)
4428 {
4429 struct drm_i915_gem_object *obj;
4430 struct address_space *mapping;
4431 gfp_t mask;
4432
4433 obj = i915_gem_object_alloc(dev);
4434 if (obj == NULL)
4435 return NULL;
4436
4437 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4438 i915_gem_object_free(obj);
4439 return NULL;
4440 }
4441
4442 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4443 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4444 /* 965gm cannot relocate objects above 4GiB. */
4445 mask &= ~__GFP_HIGHMEM;
4446 mask |= __GFP_DMA32;
4447 }
4448
4449 mapping = file_inode(obj->base.filp)->i_mapping;
4450 mapping_set_gfp_mask(mapping, mask);
4451
4452 i915_gem_object_init(obj, &i915_gem_object_ops);
4453
4454 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4455 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4456
4457 if (HAS_LLC(dev)) {
4458 /* On some devices, we can have the GPU use the LLC (the CPU
4459 * cache) for about a 10% performance improvement
4460 * compared to uncached. Graphics requests other than
4461 * display scanout are coherent with the CPU in
4462 * accessing this cache. This means in this mode we
4463 * don't need to clflush on the CPU side, and on the
4464 * GPU side we only need to flush internal caches to
4465 * get data visible to the CPU.
4466 *
4467 * However, we maintain the display planes as UC, and so
4468 * need to rebind when first used as such.
4469 */
4470 obj->cache_level = I915_CACHE_LLC;
4471 } else
4472 obj->cache_level = I915_CACHE_NONE;
4473
4474 trace_i915_gem_object_create(obj);
4475
4476 return obj;
4477 }
4478
4479 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4480 {
4481 /* If we are the last user of the backing storage (be it shmemfs
4482 * pages or stolen etc), we know that the pages are going to be
4483 * immediately released. In this case, we can then skip copying
4484 * back the contents from the GPU.
4485 */
4486
4487 if (obj->madv != I915_MADV_WILLNEED)
4488 return false;
4489
4490 if (obj->base.filp == NULL)
4491 return true;
4492
4493 /* At first glance, this looks racy, but then again so would be
4494 * userspace racing mmap against close. However, the first external
4495 * reference to the filp can only be obtained through the
4496 * i915_gem_mmap_ioctl() which safeguards us against the user
4497 * acquiring such a reference whilst we are in the middle of
4498 * freeing the object.
4499 */
4500 return atomic_long_read(&obj->base.filp->f_count) == 1;
4501 }
4502
4503 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4504 {
4505 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4506 struct drm_device *dev = obj->base.dev;
4507 struct drm_i915_private *dev_priv = dev->dev_private;
4508 struct i915_vma *vma, *next;
4509
4510 intel_runtime_pm_get(dev_priv);
4511
4512 trace_i915_gem_object_destroy(obj);
4513
4514 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4515 int ret;
4516
4517 vma->pin_count = 0;
4518 ret = i915_vma_unbind(vma);
4519 if (WARN_ON(ret == -ERESTARTSYS)) {
4520 bool was_interruptible;
4521
4522 was_interruptible = dev_priv->mm.interruptible;
4523 dev_priv->mm.interruptible = false;
4524
4525 WARN_ON(i915_vma_unbind(vma));
4526
4527 dev_priv->mm.interruptible = was_interruptible;
4528 }
4529 }
4530
4531 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4532 * before progressing. */
4533 if (obj->stolen)
4534 i915_gem_object_unpin_pages(obj);
4535
4536 WARN_ON(obj->frontbuffer_bits);
4537
4538 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4539 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4540 obj->tiling_mode != I915_TILING_NONE)
4541 i915_gem_object_unpin_pages(obj);
4542
4543 if (WARN_ON(obj->pages_pin_count))
4544 obj->pages_pin_count = 0;
4545 if (discard_backing_storage(obj))
4546 obj->madv = I915_MADV_DONTNEED;
4547 i915_gem_object_put_pages(obj);
4548 i915_gem_object_free_mmap_offset(obj);
4549
4550 BUG_ON(obj->pages);
4551
4552 if (obj->base.import_attach)
4553 drm_prime_gem_destroy(&obj->base, NULL);
4554
4555 if (obj->ops->release)
4556 obj->ops->release(obj);
4557
4558 drm_gem_object_release(&obj->base);
4559 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4560
4561 kfree(obj->bit_17);
4562 i915_gem_object_free(obj);
4563
4564 intel_runtime_pm_put(dev_priv);
4565 }
4566
4567 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4568 struct i915_address_space *vm)
4569 {
4570 struct i915_vma *vma;
4571 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4572 if (i915_is_ggtt(vma->vm) &&
4573 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4574 continue;
4575 if (vma->vm == vm)
4576 return vma;
4577 }
4578 return NULL;
4579 }
4580
4581 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4582 const struct i915_ggtt_view *view)
4583 {
4584 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4585 struct i915_vma *vma;
4586
4587 if (WARN_ONCE(!view, "no view specified"))
4588 return ERR_PTR(-EINVAL);
4589
4590 list_for_each_entry(vma, &obj->vma_list, vma_link)
4591 if (vma->vm == ggtt &&
4592 i915_ggtt_view_equal(&vma->ggtt_view, view))
4593 return vma;
4594 return NULL;
4595 }
4596
4597 void i915_gem_vma_destroy(struct i915_vma *vma)
4598 {
4599 struct i915_address_space *vm = NULL;
4600 WARN_ON(vma->node.allocated);
4601
4602 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4603 if (!list_empty(&vma->exec_list))
4604 return;
4605
4606 vm = vma->vm;
4607
4608 if (!i915_is_ggtt(vm))
4609 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4610
4611 list_del(&vma->vma_link);
4612
4613 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4614 }
4615
4616 static void
4617 i915_gem_stop_ringbuffers(struct drm_device *dev)
4618 {
4619 struct drm_i915_private *dev_priv = dev->dev_private;
4620 struct intel_engine_cs *ring;
4621 int i;
4622
4623 for_each_ring(ring, dev_priv, i)
4624 dev_priv->gt.stop_ring(ring);
4625 }
4626
4627 int
4628 i915_gem_suspend(struct drm_device *dev)
4629 {
4630 struct drm_i915_private *dev_priv = dev->dev_private;
4631 int ret = 0;
4632
4633 mutex_lock(&dev->struct_mutex);
4634 ret = i915_gpu_idle(dev);
4635 if (ret)
4636 goto err;
4637
4638 i915_gem_retire_requests(dev);
4639
4640 i915_gem_stop_ringbuffers(dev);
4641 mutex_unlock(&dev->struct_mutex);
4642
4643 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4644 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4645 flush_delayed_work(&dev_priv->mm.idle_work);
4646
4647 /* Assert that we sucessfully flushed all the work and
4648 * reset the GPU back to its idle, low power state.
4649 */
4650 WARN_ON(dev_priv->mm.busy);
4651
4652 return 0;
4653
4654 err:
4655 mutex_unlock(&dev->struct_mutex);
4656 return ret;
4657 }
4658
4659 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4660 {
4661 struct drm_device *dev = ring->dev;
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4664 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4665 int i, ret;
4666
4667 if (!HAS_L3_DPF(dev) || !remap_info)
4668 return 0;
4669
4670 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4671 if (ret)
4672 return ret;
4673
4674 /*
4675 * Note: We do not worry about the concurrent register cacheline hang
4676 * here because no other code should access these registers other than
4677 * at initialization time.
4678 */
4679 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4680 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4681 intel_ring_emit(ring, reg_base + i);
4682 intel_ring_emit(ring, remap_info[i/4]);
4683 }
4684
4685 intel_ring_advance(ring);
4686
4687 return ret;
4688 }
4689
4690 void i915_gem_init_swizzling(struct drm_device *dev)
4691 {
4692 struct drm_i915_private *dev_priv = dev->dev_private;
4693
4694 if (INTEL_INFO(dev)->gen < 5 ||
4695 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4696 return;
4697
4698 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4699 DISP_TILE_SURFACE_SWIZZLING);
4700
4701 if (IS_GEN5(dev))
4702 return;
4703
4704 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4705 if (IS_GEN6(dev))
4706 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4707 else if (IS_GEN7(dev))
4708 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4709 else if (IS_GEN8(dev))
4710 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4711 else
4712 BUG();
4713 }
4714
4715 static bool
4716 intel_enable_blt(struct drm_device *dev)
4717 {
4718 if (!HAS_BLT(dev))
4719 return false;
4720
4721 /* The blitter was dysfunctional on early prototypes */
4722 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4723 DRM_INFO("BLT not supported on this pre-production hardware;"
4724 " graphics performance will be degraded.\n");
4725 return false;
4726 }
4727
4728 return true;
4729 }
4730
4731 static void init_unused_ring(struct drm_device *dev, u32 base)
4732 {
4733 struct drm_i915_private *dev_priv = dev->dev_private;
4734
4735 I915_WRITE(RING_CTL(base), 0);
4736 I915_WRITE(RING_HEAD(base), 0);
4737 I915_WRITE(RING_TAIL(base), 0);
4738 I915_WRITE(RING_START(base), 0);
4739 }
4740
4741 static void init_unused_rings(struct drm_device *dev)
4742 {
4743 if (IS_I830(dev)) {
4744 init_unused_ring(dev, PRB1_BASE);
4745 init_unused_ring(dev, SRB0_BASE);
4746 init_unused_ring(dev, SRB1_BASE);
4747 init_unused_ring(dev, SRB2_BASE);
4748 init_unused_ring(dev, SRB3_BASE);
4749 } else if (IS_GEN2(dev)) {
4750 init_unused_ring(dev, SRB0_BASE);
4751 init_unused_ring(dev, SRB1_BASE);
4752 } else if (IS_GEN3(dev)) {
4753 init_unused_ring(dev, PRB1_BASE);
4754 init_unused_ring(dev, PRB2_BASE);
4755 }
4756 }
4757
4758 int i915_gem_init_rings(struct drm_device *dev)
4759 {
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 int ret;
4762
4763 ret = intel_init_render_ring_buffer(dev);
4764 if (ret)
4765 return ret;
4766
4767 if (HAS_BSD(dev)) {
4768 ret = intel_init_bsd_ring_buffer(dev);
4769 if (ret)
4770 goto cleanup_render_ring;
4771 }
4772
4773 if (intel_enable_blt(dev)) {
4774 ret = intel_init_blt_ring_buffer(dev);
4775 if (ret)
4776 goto cleanup_bsd_ring;
4777 }
4778
4779 if (HAS_VEBOX(dev)) {
4780 ret = intel_init_vebox_ring_buffer(dev);
4781 if (ret)
4782 goto cleanup_blt_ring;
4783 }
4784
4785 if (HAS_BSD2(dev)) {
4786 ret = intel_init_bsd2_ring_buffer(dev);
4787 if (ret)
4788 goto cleanup_vebox_ring;
4789 }
4790
4791 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4792 if (ret)
4793 goto cleanup_bsd2_ring;
4794
4795 return 0;
4796
4797 cleanup_bsd2_ring:
4798 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4799 cleanup_vebox_ring:
4800 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4801 cleanup_blt_ring:
4802 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4803 cleanup_bsd_ring:
4804 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4805 cleanup_render_ring:
4806 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4807
4808 return ret;
4809 }
4810
4811 int
4812 i915_gem_init_hw(struct drm_device *dev)
4813 {
4814 struct drm_i915_private *dev_priv = dev->dev_private;
4815 struct intel_engine_cs *ring;
4816 int ret, i;
4817
4818 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4819 return -EIO;
4820
4821 /* Double layer security blanket, see i915_gem_init() */
4822 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4823
4824 if (dev_priv->ellc_size)
4825 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4826
4827 if (IS_HASWELL(dev))
4828 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4829 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4830
4831 if (HAS_PCH_NOP(dev)) {
4832 if (IS_IVYBRIDGE(dev)) {
4833 u32 temp = I915_READ(GEN7_MSG_CTL);
4834 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4835 I915_WRITE(GEN7_MSG_CTL, temp);
4836 } else if (INTEL_INFO(dev)->gen >= 7) {
4837 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4838 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4839 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4840 }
4841 }
4842
4843 i915_gem_init_swizzling(dev);
4844
4845 /*
4846 * At least 830 can leave some of the unused rings
4847 * "active" (ie. head != tail) after resume which
4848 * will prevent c3 entry. Makes sure all unused rings
4849 * are totally idle.
4850 */
4851 init_unused_rings(dev);
4852
4853 for_each_ring(ring, dev_priv, i) {
4854 ret = ring->init_hw(ring);
4855 if (ret)
4856 goto out;
4857 }
4858
4859 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4860 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4861
4862 ret = i915_ppgtt_init_hw(dev);
4863 if (ret && ret != -EIO) {
4864 DRM_ERROR("PPGTT enable failed %d\n", ret);
4865 i915_gem_cleanup_ringbuffer(dev);
4866 }
4867
4868 ret = i915_gem_context_enable(dev_priv);
4869 if (ret && ret != -EIO) {
4870 DRM_ERROR("Context enable failed %d\n", ret);
4871 i915_gem_cleanup_ringbuffer(dev);
4872
4873 goto out;
4874 }
4875
4876 out:
4877 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4878 return ret;
4879 }
4880
4881 int i915_gem_init(struct drm_device *dev)
4882 {
4883 struct drm_i915_private *dev_priv = dev->dev_private;
4884 int ret;
4885
4886 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4887 i915.enable_execlists);
4888
4889 mutex_lock(&dev->struct_mutex);
4890
4891 if (IS_VALLEYVIEW(dev)) {
4892 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4893 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4894 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4895 VLV_GTLC_ALLOWWAKEACK), 10))
4896 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4897 }
4898
4899 if (!i915.enable_execlists) {
4900 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4901 dev_priv->gt.init_rings = i915_gem_init_rings;
4902 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4903 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4904 } else {
4905 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4906 dev_priv->gt.init_rings = intel_logical_rings_init;
4907 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4908 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4909 }
4910
4911 /* This is just a security blanket to placate dragons.
4912 * On some systems, we very sporadically observe that the first TLBs
4913 * used by the CS may be stale, despite us poking the TLB reset. If
4914 * we hold the forcewake during initialisation these problems
4915 * just magically go away.
4916 */
4917 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4918
4919 ret = i915_gem_init_userptr(dev);
4920 if (ret)
4921 goto out_unlock;
4922
4923 i915_gem_init_global_gtt(dev);
4924
4925 ret = i915_gem_context_init(dev);
4926 if (ret)
4927 goto out_unlock;
4928
4929 ret = dev_priv->gt.init_rings(dev);
4930 if (ret)
4931 goto out_unlock;
4932
4933 ret = i915_gem_init_hw(dev);
4934 if (ret == -EIO) {
4935 /* Allow ring initialisation to fail by marking the GPU as
4936 * wedged. But we only want to do this where the GPU is angry,
4937 * for all other failure, such as an allocation failure, bail.
4938 */
4939 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4940 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4941 ret = 0;
4942 }
4943
4944 out_unlock:
4945 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4946 mutex_unlock(&dev->struct_mutex);
4947
4948 return ret;
4949 }
4950
4951 void
4952 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4953 {
4954 struct drm_i915_private *dev_priv = dev->dev_private;
4955 struct intel_engine_cs *ring;
4956 int i;
4957
4958 for_each_ring(ring, dev_priv, i)
4959 dev_priv->gt.cleanup_ring(ring);
4960 }
4961
4962 static void
4963 init_ring_lists(struct intel_engine_cs *ring)
4964 {
4965 INIT_LIST_HEAD(&ring->active_list);
4966 INIT_LIST_HEAD(&ring->request_list);
4967 }
4968
4969 void i915_init_vm(struct drm_i915_private *dev_priv,
4970 struct i915_address_space *vm)
4971 {
4972 if (!i915_is_ggtt(vm))
4973 drm_mm_init(&vm->mm, vm->start, vm->total);
4974 vm->dev = dev_priv->dev;
4975 INIT_LIST_HEAD(&vm->active_list);
4976 INIT_LIST_HEAD(&vm->inactive_list);
4977 INIT_LIST_HEAD(&vm->global_link);
4978 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4979 }
4980
4981 void
4982 i915_gem_load(struct drm_device *dev)
4983 {
4984 struct drm_i915_private *dev_priv = dev->dev_private;
4985 int i;
4986
4987 dev_priv->objects =
4988 kmem_cache_create("i915_gem_object",
4989 sizeof(struct drm_i915_gem_object), 0,
4990 SLAB_HWCACHE_ALIGN,
4991 NULL);
4992 dev_priv->vmas =
4993 kmem_cache_create("i915_gem_vma",
4994 sizeof(struct i915_vma), 0,
4995 SLAB_HWCACHE_ALIGN,
4996 NULL);
4997 dev_priv->requests =
4998 kmem_cache_create("i915_gem_request",
4999 sizeof(struct drm_i915_gem_request), 0,
5000 SLAB_HWCACHE_ALIGN,
5001 NULL);
5002
5003 INIT_LIST_HEAD(&dev_priv->vm_list);
5004 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5005
5006 INIT_LIST_HEAD(&dev_priv->context_list);
5007 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5008 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5009 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5010 for (i = 0; i < I915_NUM_RINGS; i++)
5011 init_ring_lists(&dev_priv->ring[i]);
5012 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5013 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5014 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5015 i915_gem_retire_work_handler);
5016 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5017 i915_gem_idle_work_handler);
5018 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5019
5020 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5021
5022 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5023 dev_priv->num_fence_regs = 32;
5024 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5025 dev_priv->num_fence_regs = 16;
5026 else
5027 dev_priv->num_fence_regs = 8;
5028
5029 if (intel_vgpu_active(dev))
5030 dev_priv->num_fence_regs =
5031 I915_READ(vgtif_reg(avail_rs.fence_num));
5032
5033 /* Initialize fence registers to zero */
5034 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5035 i915_gem_restore_fences(dev);
5036
5037 i915_gem_detect_bit_6_swizzle(dev);
5038 init_waitqueue_head(&dev_priv->pending_flip_queue);
5039
5040 dev_priv->mm.interruptible = true;
5041
5042 i915_gem_shrinker_init(dev_priv);
5043
5044 mutex_init(&dev_priv->fb_tracking.lock);
5045 }
5046
5047 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5048 {
5049 struct drm_i915_file_private *file_priv = file->driver_priv;
5050
5051 /* Clean up our request list when the client is going away, so that
5052 * later retire_requests won't dereference our soon-to-be-gone
5053 * file_priv.
5054 */
5055 spin_lock(&file_priv->mm.lock);
5056 while (!list_empty(&file_priv->mm.request_list)) {
5057 struct drm_i915_gem_request *request;
5058
5059 request = list_first_entry(&file_priv->mm.request_list,
5060 struct drm_i915_gem_request,
5061 client_list);
5062 list_del(&request->client_list);
5063 request->file_priv = NULL;
5064 }
5065 spin_unlock(&file_priv->mm.lock);
5066
5067 if (!list_empty(&file_priv->rps_boost)) {
5068 mutex_lock(&to_i915(dev)->rps.hw_lock);
5069 list_del(&file_priv->rps_boost);
5070 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5071 }
5072 }
5073
5074 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5075 {
5076 struct drm_i915_file_private *file_priv;
5077 int ret;
5078
5079 DRM_DEBUG_DRIVER("\n");
5080
5081 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5082 if (!file_priv)
5083 return -ENOMEM;
5084
5085 file->driver_priv = file_priv;
5086 file_priv->dev_priv = dev->dev_private;
5087 file_priv->file = file;
5088 INIT_LIST_HEAD(&file_priv->rps_boost);
5089
5090 spin_lock_init(&file_priv->mm.lock);
5091 INIT_LIST_HEAD(&file_priv->mm.request_list);
5092
5093 ret = i915_gem_context_open(dev, file);
5094 if (ret)
5095 kfree(file_priv);
5096
5097 return ret;
5098 }
5099
5100 /**
5101 * i915_gem_track_fb - update frontbuffer tracking
5102 * old: current GEM buffer for the frontbuffer slots
5103 * new: new GEM buffer for the frontbuffer slots
5104 * frontbuffer_bits: bitmask of frontbuffer slots
5105 *
5106 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5107 * from @old and setting them in @new. Both @old and @new can be NULL.
5108 */
5109 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5110 struct drm_i915_gem_object *new,
5111 unsigned frontbuffer_bits)
5112 {
5113 if (old) {
5114 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5115 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5116 old->frontbuffer_bits &= ~frontbuffer_bits;
5117 }
5118
5119 if (new) {
5120 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5121 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5122 new->frontbuffer_bits |= frontbuffer_bits;
5123 }
5124 }
5125
5126 /* All the new VM stuff */
5127 unsigned long
5128 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5129 struct i915_address_space *vm)
5130 {
5131 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5132 struct i915_vma *vma;
5133
5134 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5135
5136 list_for_each_entry(vma, &o->vma_list, vma_link) {
5137 if (i915_is_ggtt(vma->vm) &&
5138 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5139 continue;
5140 if (vma->vm == vm)
5141 return vma->node.start;
5142 }
5143
5144 WARN(1, "%s vma for this object not found.\n",
5145 i915_is_ggtt(vm) ? "global" : "ppgtt");
5146 return -1;
5147 }
5148
5149 unsigned long
5150 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5151 const struct i915_ggtt_view *view)
5152 {
5153 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5154 struct i915_vma *vma;
5155
5156 list_for_each_entry(vma, &o->vma_list, vma_link)
5157 if (vma->vm == ggtt &&
5158 i915_ggtt_view_equal(&vma->ggtt_view, view))
5159 return vma->node.start;
5160
5161 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5162 return -1;
5163 }
5164
5165 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5166 struct i915_address_space *vm)
5167 {
5168 struct i915_vma *vma;
5169
5170 list_for_each_entry(vma, &o->vma_list, vma_link) {
5171 if (i915_is_ggtt(vma->vm) &&
5172 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5173 continue;
5174 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5175 return true;
5176 }
5177
5178 return false;
5179 }
5180
5181 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5182 const struct i915_ggtt_view *view)
5183 {
5184 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5185 struct i915_vma *vma;
5186
5187 list_for_each_entry(vma, &o->vma_list, vma_link)
5188 if (vma->vm == ggtt &&
5189 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5190 drm_mm_node_allocated(&vma->node))
5191 return true;
5192
5193 return false;
5194 }
5195
5196 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5197 {
5198 struct i915_vma *vma;
5199
5200 list_for_each_entry(vma, &o->vma_list, vma_link)
5201 if (drm_mm_node_allocated(&vma->node))
5202 return true;
5203
5204 return false;
5205 }
5206
5207 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5208 struct i915_address_space *vm)
5209 {
5210 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5211 struct i915_vma *vma;
5212
5213 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5214
5215 BUG_ON(list_empty(&o->vma_list));
5216
5217 list_for_each_entry(vma, &o->vma_list, vma_link) {
5218 if (i915_is_ggtt(vma->vm) &&
5219 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5220 continue;
5221 if (vma->vm == vm)
5222 return vma->node.size;
5223 }
5224 return 0;
5225 }
5226
5227 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5228 {
5229 struct i915_vma *vma;
5230 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5231 if (i915_is_ggtt(vma->vm) &&
5232 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5233 continue;
5234 if (vma->pin_count > 0)
5235 return true;
5236 }
5237 return false;
5238 }
5239