]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915/skl: Implement WaBarrierPerformanceFixDisable
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/oom.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65 static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67 {
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69 }
70
71 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72 {
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77 }
78
79 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80 {
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89 }
90
91 /* some bookkeeping */
92 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94 {
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99 }
100
101 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103 {
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108 }
109
110 static int
111 i915_gem_wait_for_error(struct i915_gpu_error *error)
112 {
113 int ret;
114
115 #define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134 #undef EXIT_COND
135
136 return 0;
137 }
138
139 int i915_mutex_lock_interruptible(struct drm_device *dev)
140 {
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154 }
155
156 int
157 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
158 struct drm_file *file)
159 {
160 struct drm_i915_private *dev_priv = dev->dev_private;
161 struct drm_i915_gem_get_aperture *args = data;
162 struct drm_i915_gem_object *obj;
163 size_t pinned;
164
165 pinned = 0;
166 mutex_lock(&dev->struct_mutex);
167 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
168 if (i915_gem_obj_is_pinned(obj))
169 pinned += i915_gem_obj_ggtt_size(obj);
170 mutex_unlock(&dev->struct_mutex);
171
172 args->aper_size = dev_priv->gtt.base.total;
173 args->aper_available_size = args->aper_size - pinned;
174
175 return 0;
176 }
177
178 static int
179 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
180 {
181 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
182 char *vaddr = obj->phys_handle->vaddr;
183 struct sg_table *st;
184 struct scatterlist *sg;
185 int i;
186
187 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
188 return -EINVAL;
189
190 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191 struct page *page;
192 char *src;
193
194 page = shmem_read_mapping_page(mapping, i);
195 if (IS_ERR(page))
196 return PTR_ERR(page);
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 page_cache_release(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(obj->base.dev);
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (st == NULL)
211 return -ENOMEM;
212
213 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
214 kfree(st);
215 return -ENOMEM;
216 }
217
218 sg = st->sgl;
219 sg->offset = 0;
220 sg->length = obj->base.size;
221
222 sg_dma_address(sg) = obj->phys_handle->busaddr;
223 sg_dma_len(sg) = obj->base.size;
224
225 obj->pages = st;
226 obj->has_dma_mapping = true;
227 return 0;
228 }
229
230 static void
231 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
232 {
233 int ret;
234
235 BUG_ON(obj->madv == __I915_MADV_PURGED);
236
237 ret = i915_gem_object_set_to_cpu_domain(obj, true);
238 if (ret) {
239 /* In the event of a disaster, abandon all caches and
240 * hope for the best.
241 */
242 WARN_ON(ret != -EIO);
243 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
244 }
245
246 if (obj->madv == I915_MADV_DONTNEED)
247 obj->dirty = 0;
248
249 if (obj->dirty) {
250 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
251 char *vaddr = obj->phys_handle->vaddr;
252 int i;
253
254 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
255 struct page *page;
256 char *dst;
257
258 page = shmem_read_mapping_page(mapping, i);
259 if (IS_ERR(page))
260 continue;
261
262 dst = kmap_atomic(page);
263 drm_clflush_virt_range(vaddr, PAGE_SIZE);
264 memcpy(dst, vaddr, PAGE_SIZE);
265 kunmap_atomic(dst);
266
267 set_page_dirty(page);
268 if (obj->madv == I915_MADV_WILLNEED)
269 mark_page_accessed(page);
270 page_cache_release(page);
271 vaddr += PAGE_SIZE;
272 }
273 obj->dirty = 0;
274 }
275
276 sg_free_table(obj->pages);
277 kfree(obj->pages);
278
279 obj->has_dma_mapping = false;
280 }
281
282 static void
283 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
284 {
285 drm_pci_free(obj->base.dev, obj->phys_handle);
286 }
287
288 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
289 .get_pages = i915_gem_object_get_pages_phys,
290 .put_pages = i915_gem_object_put_pages_phys,
291 .release = i915_gem_object_release_phys,
292 };
293
294 static int
295 drop_pages(struct drm_i915_gem_object *obj)
296 {
297 struct i915_vma *vma, *next;
298 int ret;
299
300 drm_gem_object_reference(&obj->base);
301 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
302 if (i915_vma_unbind(vma))
303 break;
304
305 ret = i915_gem_object_put_pages(obj);
306 drm_gem_object_unreference(&obj->base);
307
308 return ret;
309 }
310
311 int
312 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
313 int align)
314 {
315 drm_dma_handle_t *phys;
316 int ret;
317
318 if (obj->phys_handle) {
319 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
320 return -EBUSY;
321
322 return 0;
323 }
324
325 if (obj->madv != I915_MADV_WILLNEED)
326 return -EFAULT;
327
328 if (obj->base.filp == NULL)
329 return -EINVAL;
330
331 ret = drop_pages(obj);
332 if (ret)
333 return ret;
334
335 /* create a new object */
336 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
337 if (!phys)
338 return -ENOMEM;
339
340 obj->phys_handle = phys;
341 obj->ops = &i915_gem_phys_ops;
342
343 return i915_gem_object_get_pages(obj);
344 }
345
346 static int
347 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
348 struct drm_i915_gem_pwrite *args,
349 struct drm_file *file_priv)
350 {
351 struct drm_device *dev = obj->base.dev;
352 void *vaddr = obj->phys_handle->vaddr + args->offset;
353 char __user *user_data = to_user_ptr(args->data_ptr);
354 int ret;
355
356 /* We manually control the domain here and pretend that it
357 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
358 */
359 ret = i915_gem_object_wait_rendering(obj, false);
360 if (ret)
361 return ret;
362
363 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
364 unsigned long unwritten;
365
366 /* The physical object once assigned is fixed for the lifetime
367 * of the obj, so we can safely drop the lock and continue
368 * to access vaddr.
369 */
370 mutex_unlock(&dev->struct_mutex);
371 unwritten = copy_from_user(vaddr, user_data, args->size);
372 mutex_lock(&dev->struct_mutex);
373 if (unwritten)
374 return -EFAULT;
375 }
376
377 drm_clflush_virt_range(vaddr, args->size);
378 i915_gem_chipset_flush(dev);
379 return 0;
380 }
381
382 void *i915_gem_object_alloc(struct drm_device *dev)
383 {
384 struct drm_i915_private *dev_priv = dev->dev_private;
385 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
386 }
387
388 void i915_gem_object_free(struct drm_i915_gem_object *obj)
389 {
390 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
391 kmem_cache_free(dev_priv->slab, obj);
392 }
393
394 static int
395 i915_gem_create(struct drm_file *file,
396 struct drm_device *dev,
397 uint64_t size,
398 uint32_t *handle_p)
399 {
400 struct drm_i915_gem_object *obj;
401 int ret;
402 u32 handle;
403
404 size = roundup(size, PAGE_SIZE);
405 if (size == 0)
406 return -EINVAL;
407
408 /* Allocate the new object */
409 obj = i915_gem_alloc_object(dev, size);
410 if (obj == NULL)
411 return -ENOMEM;
412
413 ret = drm_gem_handle_create(file, &obj->base, &handle);
414 /* drop reference from allocate - handle holds it now */
415 drm_gem_object_unreference_unlocked(&obj->base);
416 if (ret)
417 return ret;
418
419 *handle_p = handle;
420 return 0;
421 }
422
423 int
424 i915_gem_dumb_create(struct drm_file *file,
425 struct drm_device *dev,
426 struct drm_mode_create_dumb *args)
427 {
428 /* have to work out size/pitch and return them */
429 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
430 args->size = args->pitch * args->height;
431 return i915_gem_create(file, dev,
432 args->size, &args->handle);
433 }
434
435 /**
436 * Creates a new mm object and returns a handle to it.
437 */
438 int
439 i915_gem_create_ioctl(struct drm_device *dev, void *data,
440 struct drm_file *file)
441 {
442 struct drm_i915_gem_create *args = data;
443
444 return i915_gem_create(file, dev,
445 args->size, &args->handle);
446 }
447
448 static inline int
449 __copy_to_user_swizzled(char __user *cpu_vaddr,
450 const char *gpu_vaddr, int gpu_offset,
451 int length)
452 {
453 int ret, cpu_offset = 0;
454
455 while (length > 0) {
456 int cacheline_end = ALIGN(gpu_offset + 1, 64);
457 int this_length = min(cacheline_end - gpu_offset, length);
458 int swizzled_gpu_offset = gpu_offset ^ 64;
459
460 ret = __copy_to_user(cpu_vaddr + cpu_offset,
461 gpu_vaddr + swizzled_gpu_offset,
462 this_length);
463 if (ret)
464 return ret + length;
465
466 cpu_offset += this_length;
467 gpu_offset += this_length;
468 length -= this_length;
469 }
470
471 return 0;
472 }
473
474 static inline int
475 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
476 const char __user *cpu_vaddr,
477 int length)
478 {
479 int ret, cpu_offset = 0;
480
481 while (length > 0) {
482 int cacheline_end = ALIGN(gpu_offset + 1, 64);
483 int this_length = min(cacheline_end - gpu_offset, length);
484 int swizzled_gpu_offset = gpu_offset ^ 64;
485
486 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
487 cpu_vaddr + cpu_offset,
488 this_length);
489 if (ret)
490 return ret + length;
491
492 cpu_offset += this_length;
493 gpu_offset += this_length;
494 length -= this_length;
495 }
496
497 return 0;
498 }
499
500 /*
501 * Pins the specified object's pages and synchronizes the object with
502 * GPU accesses. Sets needs_clflush to non-zero if the caller should
503 * flush the object from the CPU cache.
504 */
505 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
506 int *needs_clflush)
507 {
508 int ret;
509
510 *needs_clflush = 0;
511
512 if (!obj->base.filp)
513 return -EINVAL;
514
515 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
516 /* If we're not in the cpu read domain, set ourself into the gtt
517 * read domain and manually flush cachelines (if required). This
518 * optimizes for the case when the gpu will dirty the data
519 * anyway again before the next pread happens. */
520 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
521 obj->cache_level);
522 ret = i915_gem_object_wait_rendering(obj, true);
523 if (ret)
524 return ret;
525
526 i915_gem_object_retire(obj);
527 }
528
529 ret = i915_gem_object_get_pages(obj);
530 if (ret)
531 return ret;
532
533 i915_gem_object_pin_pages(obj);
534
535 return ret;
536 }
537
538 /* Per-page copy function for the shmem pread fastpath.
539 * Flushes invalid cachelines before reading the target if
540 * needs_clflush is set. */
541 static int
542 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
543 char __user *user_data,
544 bool page_do_bit17_swizzling, bool needs_clflush)
545 {
546 char *vaddr;
547 int ret;
548
549 if (unlikely(page_do_bit17_swizzling))
550 return -EINVAL;
551
552 vaddr = kmap_atomic(page);
553 if (needs_clflush)
554 drm_clflush_virt_range(vaddr + shmem_page_offset,
555 page_length);
556 ret = __copy_to_user_inatomic(user_data,
557 vaddr + shmem_page_offset,
558 page_length);
559 kunmap_atomic(vaddr);
560
561 return ret ? -EFAULT : 0;
562 }
563
564 static void
565 shmem_clflush_swizzled_range(char *addr, unsigned long length,
566 bool swizzled)
567 {
568 if (unlikely(swizzled)) {
569 unsigned long start = (unsigned long) addr;
570 unsigned long end = (unsigned long) addr + length;
571
572 /* For swizzling simply ensure that we always flush both
573 * channels. Lame, but simple and it works. Swizzled
574 * pwrite/pread is far from a hotpath - current userspace
575 * doesn't use it at all. */
576 start = round_down(start, 128);
577 end = round_up(end, 128);
578
579 drm_clflush_virt_range((void *)start, end - start);
580 } else {
581 drm_clflush_virt_range(addr, length);
582 }
583
584 }
585
586 /* Only difference to the fast-path function is that this can handle bit17
587 * and uses non-atomic copy and kmap functions. */
588 static int
589 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
590 char __user *user_data,
591 bool page_do_bit17_swizzling, bool needs_clflush)
592 {
593 char *vaddr;
594 int ret;
595
596 vaddr = kmap(page);
597 if (needs_clflush)
598 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
599 page_length,
600 page_do_bit17_swizzling);
601
602 if (page_do_bit17_swizzling)
603 ret = __copy_to_user_swizzled(user_data,
604 vaddr, shmem_page_offset,
605 page_length);
606 else
607 ret = __copy_to_user(user_data,
608 vaddr + shmem_page_offset,
609 page_length);
610 kunmap(page);
611
612 return ret ? - EFAULT : 0;
613 }
614
615 static int
616 i915_gem_shmem_pread(struct drm_device *dev,
617 struct drm_i915_gem_object *obj,
618 struct drm_i915_gem_pread *args,
619 struct drm_file *file)
620 {
621 char __user *user_data;
622 ssize_t remain;
623 loff_t offset;
624 int shmem_page_offset, page_length, ret = 0;
625 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
626 int prefaulted = 0;
627 int needs_clflush = 0;
628 struct sg_page_iter sg_iter;
629
630 user_data = to_user_ptr(args->data_ptr);
631 remain = args->size;
632
633 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
634
635 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
636 if (ret)
637 return ret;
638
639 offset = args->offset;
640
641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
642 offset >> PAGE_SHIFT) {
643 struct page *page = sg_page_iter_page(&sg_iter);
644
645 if (remain <= 0)
646 break;
647
648 /* Operation in this page
649 *
650 * shmem_page_offset = offset within page in shmem file
651 * page_length = bytes to copy for this page
652 */
653 shmem_page_offset = offset_in_page(offset);
654 page_length = remain;
655 if ((shmem_page_offset + page_length) > PAGE_SIZE)
656 page_length = PAGE_SIZE - shmem_page_offset;
657
658 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
659 (page_to_phys(page) & (1 << 17)) != 0;
660
661 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
662 user_data, page_do_bit17_swizzling,
663 needs_clflush);
664 if (ret == 0)
665 goto next_page;
666
667 mutex_unlock(&dev->struct_mutex);
668
669 if (likely(!i915.prefault_disable) && !prefaulted) {
670 ret = fault_in_multipages_writeable(user_data, remain);
671 /* Userspace is tricking us, but we've already clobbered
672 * its pages with the prefault and promised to write the
673 * data up to the first fault. Hence ignore any errors
674 * and just continue. */
675 (void)ret;
676 prefaulted = 1;
677 }
678
679 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
680 user_data, page_do_bit17_swizzling,
681 needs_clflush);
682
683 mutex_lock(&dev->struct_mutex);
684
685 if (ret)
686 goto out;
687
688 next_page:
689 remain -= page_length;
690 user_data += page_length;
691 offset += page_length;
692 }
693
694 out:
695 i915_gem_object_unpin_pages(obj);
696
697 return ret;
698 }
699
700 /**
701 * Reads data from the object referenced by handle.
702 *
703 * On error, the contents of *data are undefined.
704 */
705 int
706 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
707 struct drm_file *file)
708 {
709 struct drm_i915_gem_pread *args = data;
710 struct drm_i915_gem_object *obj;
711 int ret = 0;
712
713 if (args->size == 0)
714 return 0;
715
716 if (!access_ok(VERIFY_WRITE,
717 to_user_ptr(args->data_ptr),
718 args->size))
719 return -EFAULT;
720
721 ret = i915_mutex_lock_interruptible(dev);
722 if (ret)
723 return ret;
724
725 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
726 if (&obj->base == NULL) {
727 ret = -ENOENT;
728 goto unlock;
729 }
730
731 /* Bounds check source. */
732 if (args->offset > obj->base.size ||
733 args->size > obj->base.size - args->offset) {
734 ret = -EINVAL;
735 goto out;
736 }
737
738 /* prime objects have no backing filp to GEM pread/pwrite
739 * pages from.
740 */
741 if (!obj->base.filp) {
742 ret = -EINVAL;
743 goto out;
744 }
745
746 trace_i915_gem_object_pread(obj, args->offset, args->size);
747
748 ret = i915_gem_shmem_pread(dev, obj, args, file);
749
750 out:
751 drm_gem_object_unreference(&obj->base);
752 unlock:
753 mutex_unlock(&dev->struct_mutex);
754 return ret;
755 }
756
757 /* This is the fast write path which cannot handle
758 * page faults in the source data
759 */
760
761 static inline int
762 fast_user_write(struct io_mapping *mapping,
763 loff_t page_base, int page_offset,
764 char __user *user_data,
765 int length)
766 {
767 void __iomem *vaddr_atomic;
768 void *vaddr;
769 unsigned long unwritten;
770
771 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
772 /* We can use the cpu mem copy function because this is X86. */
773 vaddr = (void __force*)vaddr_atomic + page_offset;
774 unwritten = __copy_from_user_inatomic_nocache(vaddr,
775 user_data, length);
776 io_mapping_unmap_atomic(vaddr_atomic);
777 return unwritten;
778 }
779
780 /**
781 * This is the fast pwrite path, where we copy the data directly from the
782 * user into the GTT, uncached.
783 */
784 static int
785 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
786 struct drm_i915_gem_object *obj,
787 struct drm_i915_gem_pwrite *args,
788 struct drm_file *file)
789 {
790 struct drm_i915_private *dev_priv = dev->dev_private;
791 ssize_t remain;
792 loff_t offset, page_base;
793 char __user *user_data;
794 int page_offset, page_length, ret;
795
796 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
797 if (ret)
798 goto out;
799
800 ret = i915_gem_object_set_to_gtt_domain(obj, true);
801 if (ret)
802 goto out_unpin;
803
804 ret = i915_gem_object_put_fence(obj);
805 if (ret)
806 goto out_unpin;
807
808 user_data = to_user_ptr(args->data_ptr);
809 remain = args->size;
810
811 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
812
813 while (remain > 0) {
814 /* Operation in this page
815 *
816 * page_base = page offset within aperture
817 * page_offset = offset within page
818 * page_length = bytes to copy for this page
819 */
820 page_base = offset & PAGE_MASK;
821 page_offset = offset_in_page(offset);
822 page_length = remain;
823 if ((page_offset + remain) > PAGE_SIZE)
824 page_length = PAGE_SIZE - page_offset;
825
826 /* If we get a fault while copying data, then (presumably) our
827 * source page isn't available. Return the error and we'll
828 * retry in the slow path.
829 */
830 if (fast_user_write(dev_priv->gtt.mappable, page_base,
831 page_offset, user_data, page_length)) {
832 ret = -EFAULT;
833 goto out_unpin;
834 }
835
836 remain -= page_length;
837 user_data += page_length;
838 offset += page_length;
839 }
840
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 i915_gem_object_pin_pages(obj);
956
957 offset = args->offset;
958 obj->dirty = 1;
959
960 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
961 offset >> PAGE_SHIFT) {
962 struct page *page = sg_page_iter_page(&sg_iter);
963 int partial_cacheline_write;
964
965 if (remain <= 0)
966 break;
967
968 /* Operation in this page
969 *
970 * shmem_page_offset = offset within page in shmem file
971 * page_length = bytes to copy for this page
972 */
973 shmem_page_offset = offset_in_page(offset);
974
975 page_length = remain;
976 if ((shmem_page_offset + page_length) > PAGE_SIZE)
977 page_length = PAGE_SIZE - shmem_page_offset;
978
979 /* If we don't overwrite a cacheline completely we need to be
980 * careful to have up-to-date data by first clflushing. Don't
981 * overcomplicate things and flush the entire patch. */
982 partial_cacheline_write = needs_clflush_before &&
983 ((shmem_page_offset | page_length)
984 & (boot_cpu_data.x86_clflush_size - 1));
985
986 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
987 (page_to_phys(page) & (1 << 17)) != 0;
988
989 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
990 user_data, page_do_bit17_swizzling,
991 partial_cacheline_write,
992 needs_clflush_after);
993 if (ret == 0)
994 goto next_page;
995
996 hit_slowpath = 1;
997 mutex_unlock(&dev->struct_mutex);
998 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
999 user_data, page_do_bit17_swizzling,
1000 partial_cacheline_write,
1001 needs_clflush_after);
1002
1003 mutex_lock(&dev->struct_mutex);
1004
1005 if (ret)
1006 goto out;
1007
1008 next_page:
1009 remain -= page_length;
1010 user_data += page_length;
1011 offset += page_length;
1012 }
1013
1014 out:
1015 i915_gem_object_unpin_pages(obj);
1016
1017 if (hit_slowpath) {
1018 /*
1019 * Fixup: Flush cpu caches in case we didn't flush the dirty
1020 * cachelines in-line while writing and the object moved
1021 * out of the cpu write domain while we've dropped the lock.
1022 */
1023 if (!needs_clflush_after &&
1024 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1025 if (i915_gem_clflush_object(obj, obj->pin_display))
1026 i915_gem_chipset_flush(dev);
1027 }
1028 }
1029
1030 if (needs_clflush_after)
1031 i915_gem_chipset_flush(dev);
1032
1033 return ret;
1034 }
1035
1036 /**
1037 * Writes data to the object referenced by handle.
1038 *
1039 * On error, the contents of the buffer that were to be modified are undefined.
1040 */
1041 int
1042 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1043 struct drm_file *file)
1044 {
1045 struct drm_i915_private *dev_priv = dev->dev_private;
1046 struct drm_i915_gem_pwrite *args = data;
1047 struct drm_i915_gem_object *obj;
1048 int ret;
1049
1050 if (args->size == 0)
1051 return 0;
1052
1053 if (!access_ok(VERIFY_READ,
1054 to_user_ptr(args->data_ptr),
1055 args->size))
1056 return -EFAULT;
1057
1058 if (likely(!i915.prefault_disable)) {
1059 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1060 args->size);
1061 if (ret)
1062 return -EFAULT;
1063 }
1064
1065 intel_runtime_pm_get(dev_priv);
1066
1067 ret = i915_mutex_lock_interruptible(dev);
1068 if (ret)
1069 goto put_rpm;
1070
1071 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1072 if (&obj->base == NULL) {
1073 ret = -ENOENT;
1074 goto unlock;
1075 }
1076
1077 /* Bounds check destination. */
1078 if (args->offset > obj->base.size ||
1079 args->size > obj->base.size - args->offset) {
1080 ret = -EINVAL;
1081 goto out;
1082 }
1083
1084 /* prime objects have no backing filp to GEM pread/pwrite
1085 * pages from.
1086 */
1087 if (!obj->base.filp) {
1088 ret = -EINVAL;
1089 goto out;
1090 }
1091
1092 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1093
1094 ret = -EFAULT;
1095 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1096 * it would end up going through the fenced access, and we'll get
1097 * different detiling behavior between reading and writing.
1098 * pread/pwrite currently are reading and writing from the CPU
1099 * perspective, requiring manual detiling by the client.
1100 */
1101 if (obj->tiling_mode == I915_TILING_NONE &&
1102 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1103 cpu_write_needs_clflush(obj)) {
1104 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1105 /* Note that the gtt paths might fail with non-page-backed user
1106 * pointers (e.g. gtt mappings when moving data between
1107 * textures). Fallback to the shmem path in that case. */
1108 }
1109
1110 if (ret == -EFAULT || ret == -ENOSPC) {
1111 if (obj->phys_handle)
1112 ret = i915_gem_phys_pwrite(obj, args, file);
1113 else
1114 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1115 }
1116
1117 out:
1118 drm_gem_object_unreference(&obj->base);
1119 unlock:
1120 mutex_unlock(&dev->struct_mutex);
1121 put_rpm:
1122 intel_runtime_pm_put(dev_priv);
1123
1124 return ret;
1125 }
1126
1127 int
1128 i915_gem_check_wedge(struct i915_gpu_error *error,
1129 bool interruptible)
1130 {
1131 if (i915_reset_in_progress(error)) {
1132 /* Non-interruptible callers can't handle -EAGAIN, hence return
1133 * -EIO unconditionally for these. */
1134 if (!interruptible)
1135 return -EIO;
1136
1137 /* Recovery complete, but the reset failed ... */
1138 if (i915_terminally_wedged(error))
1139 return -EIO;
1140
1141 /*
1142 * Check if GPU Reset is in progress - we need intel_ring_begin
1143 * to work properly to reinit the hw state while the gpu is
1144 * still marked as reset-in-progress. Handle this with a flag.
1145 */
1146 if (!error->reload_in_reset)
1147 return -EAGAIN;
1148 }
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * Compare arbitrary request against outstanding lazy request. Emit on match.
1155 */
1156 int
1157 i915_gem_check_olr(struct drm_i915_gem_request *req)
1158 {
1159 int ret;
1160
1161 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1162
1163 ret = 0;
1164 if (req == req->ring->outstanding_lazy_request)
1165 ret = i915_add_request(req->ring);
1166
1167 return ret;
1168 }
1169
1170 static void fake_irq(unsigned long data)
1171 {
1172 wake_up_process((struct task_struct *)data);
1173 }
1174
1175 static bool missed_irq(struct drm_i915_private *dev_priv,
1176 struct intel_engine_cs *ring)
1177 {
1178 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1179 }
1180
1181 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1182 {
1183 if (file_priv == NULL)
1184 return true;
1185
1186 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1187 }
1188
1189 /**
1190 * __i915_wait_request - wait until execution of request has finished
1191 * @req: duh!
1192 * @reset_counter: reset sequence associated with the given request
1193 * @interruptible: do an interruptible wait (normally yes)
1194 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1195 *
1196 * Note: It is of utmost importance that the passed in seqno and reset_counter
1197 * values have been read by the caller in an smp safe manner. Where read-side
1198 * locks are involved, it is sufficient to read the reset_counter before
1199 * unlocking the lock that protects the seqno. For lockless tricks, the
1200 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1201 * inserted.
1202 *
1203 * Returns 0 if the request was found within the alloted time. Else returns the
1204 * errno with remaining time filled in timeout argument.
1205 */
1206 int __i915_wait_request(struct drm_i915_gem_request *req,
1207 unsigned reset_counter,
1208 bool interruptible,
1209 s64 *timeout,
1210 struct drm_i915_file_private *file_priv)
1211 {
1212 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1213 struct drm_device *dev = ring->dev;
1214 struct drm_i915_private *dev_priv = dev->dev_private;
1215 const bool irq_test_in_progress =
1216 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1217 DEFINE_WAIT(wait);
1218 unsigned long timeout_expire;
1219 s64 before, now;
1220 int ret;
1221
1222 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1223
1224 if (i915_gem_request_completed(req, true))
1225 return 0;
1226
1227 timeout_expire = timeout ?
1228 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1229
1230 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1231 gen6_rps_boost(dev_priv);
1232 if (file_priv)
1233 mod_delayed_work(dev_priv->wq,
1234 &file_priv->mm.idle_work,
1235 msecs_to_jiffies(100));
1236 }
1237
1238 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1239 return -ENODEV;
1240
1241 /* Record current time in case interrupted by signal, or wedged */
1242 trace_i915_gem_request_wait_begin(req);
1243 before = ktime_get_raw_ns();
1244 for (;;) {
1245 struct timer_list timer;
1246
1247 prepare_to_wait(&ring->irq_queue, &wait,
1248 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1249
1250 /* We need to check whether any gpu reset happened in between
1251 * the caller grabbing the seqno and now ... */
1252 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1253 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1254 * is truely gone. */
1255 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1256 if (ret == 0)
1257 ret = -EAGAIN;
1258 break;
1259 }
1260
1261 if (i915_gem_request_completed(req, false)) {
1262 ret = 0;
1263 break;
1264 }
1265
1266 if (interruptible && signal_pending(current)) {
1267 ret = -ERESTARTSYS;
1268 break;
1269 }
1270
1271 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1272 ret = -ETIME;
1273 break;
1274 }
1275
1276 timer.function = NULL;
1277 if (timeout || missed_irq(dev_priv, ring)) {
1278 unsigned long expire;
1279
1280 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1281 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1282 mod_timer(&timer, expire);
1283 }
1284
1285 io_schedule();
1286
1287 if (timer.function) {
1288 del_singleshot_timer_sync(&timer);
1289 destroy_timer_on_stack(&timer);
1290 }
1291 }
1292 now = ktime_get_raw_ns();
1293 trace_i915_gem_request_wait_end(req);
1294
1295 if (!irq_test_in_progress)
1296 ring->irq_put(ring);
1297
1298 finish_wait(&ring->irq_queue, &wait);
1299
1300 if (timeout) {
1301 s64 tres = *timeout - (now - before);
1302
1303 *timeout = tres < 0 ? 0 : tres;
1304
1305 /*
1306 * Apparently ktime isn't accurate enough and occasionally has a
1307 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1308 * things up to make the test happy. We allow up to 1 jiffy.
1309 *
1310 * This is a regrssion from the timespec->ktime conversion.
1311 */
1312 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1313 *timeout = 0;
1314 }
1315
1316 return ret;
1317 }
1318
1319 /**
1320 * Waits for a request to be signaled, and cleans up the
1321 * request and object lists appropriately for that event.
1322 */
1323 int
1324 i915_wait_request(struct drm_i915_gem_request *req)
1325 {
1326 struct drm_device *dev;
1327 struct drm_i915_private *dev_priv;
1328 bool interruptible;
1329 unsigned reset_counter;
1330 int ret;
1331
1332 BUG_ON(req == NULL);
1333
1334 dev = req->ring->dev;
1335 dev_priv = dev->dev_private;
1336 interruptible = dev_priv->mm.interruptible;
1337
1338 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1339
1340 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1341 if (ret)
1342 return ret;
1343
1344 ret = i915_gem_check_olr(req);
1345 if (ret)
1346 return ret;
1347
1348 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349 i915_gem_request_reference(req);
1350 ret = __i915_wait_request(req, reset_counter,
1351 interruptible, NULL, NULL);
1352 i915_gem_request_unreference(req);
1353 return ret;
1354 }
1355
1356 static int
1357 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1358 {
1359 if (!obj->active)
1360 return 0;
1361
1362 /* Manually manage the write flush as we may have not yet
1363 * retired the buffer.
1364 *
1365 * Note that the last_write_req is always the earlier of
1366 * the two (read/write) requests, so if we haved successfully waited,
1367 * we know we have passed the last write.
1368 */
1369 i915_gem_request_assign(&obj->last_write_req, NULL);
1370
1371 return 0;
1372 }
1373
1374 /**
1375 * Ensures that all rendering to the object has completed and the object is
1376 * safe to unbind from the GTT or access from the CPU.
1377 */
1378 static __must_check int
1379 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1380 bool readonly)
1381 {
1382 struct drm_i915_gem_request *req;
1383 int ret;
1384
1385 req = readonly ? obj->last_write_req : obj->last_read_req;
1386 if (!req)
1387 return 0;
1388
1389 ret = i915_wait_request(req);
1390 if (ret)
1391 return ret;
1392
1393 return i915_gem_object_wait_rendering__tail(obj);
1394 }
1395
1396 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399 static __must_check int
1400 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401 struct drm_i915_file_private *file_priv,
1402 bool readonly)
1403 {
1404 struct drm_i915_gem_request *req;
1405 struct drm_device *dev = obj->base.dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407 unsigned reset_counter;
1408 int ret;
1409
1410 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1411 BUG_ON(!dev_priv->mm.interruptible);
1412
1413 req = readonly ? obj->last_write_req : obj->last_read_req;
1414 if (!req)
1415 return 0;
1416
1417 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1418 if (ret)
1419 return ret;
1420
1421 ret = i915_gem_check_olr(req);
1422 if (ret)
1423 return ret;
1424
1425 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1426 i915_gem_request_reference(req);
1427 mutex_unlock(&dev->struct_mutex);
1428 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1429 mutex_lock(&dev->struct_mutex);
1430 i915_gem_request_unreference(req);
1431 if (ret)
1432 return ret;
1433
1434 return i915_gem_object_wait_rendering__tail(obj);
1435 }
1436
1437 /**
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
1440 */
1441 int
1442 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443 struct drm_file *file)
1444 {
1445 struct drm_i915_gem_set_domain *args = data;
1446 struct drm_i915_gem_object *obj;
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
1449 int ret;
1450
1451 /* Only handle setting domains to types used by the CPU. */
1452 if (write_domain & I915_GEM_GPU_DOMAINS)
1453 return -EINVAL;
1454
1455 if (read_domains & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
1464 ret = i915_mutex_lock_interruptible(dev);
1465 if (ret)
1466 return ret;
1467
1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469 if (&obj->base == NULL) {
1470 ret = -ENOENT;
1471 goto unlock;
1472 }
1473
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
1481 if (ret)
1482 goto unref;
1483
1484 if (read_domains & I915_GEM_DOMAIN_GTT)
1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486 else
1487 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1488
1489 unref:
1490 drm_gem_object_unreference(&obj->base);
1491 unlock:
1492 mutex_unlock(&dev->struct_mutex);
1493 return ret;
1494 }
1495
1496 /**
1497 * Called when user space has done writes to this buffer
1498 */
1499 int
1500 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1501 struct drm_file *file)
1502 {
1503 struct drm_i915_gem_sw_finish *args = data;
1504 struct drm_i915_gem_object *obj;
1505 int ret = 0;
1506
1507 ret = i915_mutex_lock_interruptible(dev);
1508 if (ret)
1509 return ret;
1510
1511 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1512 if (&obj->base == NULL) {
1513 ret = -ENOENT;
1514 goto unlock;
1515 }
1516
1517 /* Pinned buffers may be scanout, so flush the cache */
1518 if (obj->pin_display)
1519 i915_gem_object_flush_cpu_write_domain(obj);
1520
1521 drm_gem_object_unreference(&obj->base);
1522 unlock:
1523 mutex_unlock(&dev->struct_mutex);
1524 return ret;
1525 }
1526
1527 /**
1528 * Maps the contents of an object, returning the address it is mapped
1529 * into.
1530 *
1531 * While the mapping holds a reference on the contents of the object, it doesn't
1532 * imply a ref on the object itself.
1533 *
1534 * IMPORTANT:
1535 *
1536 * DRM driver writers who look a this function as an example for how to do GEM
1537 * mmap support, please don't implement mmap support like here. The modern way
1538 * to implement DRM mmap support is with an mmap offset ioctl (like
1539 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1540 * That way debug tooling like valgrind will understand what's going on, hiding
1541 * the mmap call in a driver private ioctl will break that. The i915 driver only
1542 * does cpu mmaps this way because we didn't know better.
1543 */
1544 int
1545 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1546 struct drm_file *file)
1547 {
1548 struct drm_i915_gem_mmap *args = data;
1549 struct drm_gem_object *obj;
1550 unsigned long addr;
1551
1552 if (args->flags & ~(I915_MMAP_WC))
1553 return -EINVAL;
1554
1555 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1556 return -ENODEV;
1557
1558 obj = drm_gem_object_lookup(dev, file, args->handle);
1559 if (obj == NULL)
1560 return -ENOENT;
1561
1562 /* prime objects have no backing filp to GEM mmap
1563 * pages from.
1564 */
1565 if (!obj->filp) {
1566 drm_gem_object_unreference_unlocked(obj);
1567 return -EINVAL;
1568 }
1569
1570 addr = vm_mmap(obj->filp, 0, args->size,
1571 PROT_READ | PROT_WRITE, MAP_SHARED,
1572 args->offset);
1573 if (args->flags & I915_MMAP_WC) {
1574 struct mm_struct *mm = current->mm;
1575 struct vm_area_struct *vma;
1576
1577 down_write(&mm->mmap_sem);
1578 vma = find_vma(mm, addr);
1579 if (vma)
1580 vma->vm_page_prot =
1581 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1582 else
1583 addr = -ENOMEM;
1584 up_write(&mm->mmap_sem);
1585 }
1586 drm_gem_object_unreference_unlocked(obj);
1587 if (IS_ERR((void *)addr))
1588 return addr;
1589
1590 args->addr_ptr = (uint64_t) addr;
1591
1592 return 0;
1593 }
1594
1595 /**
1596 * i915_gem_fault - fault a page into the GTT
1597 * vma: VMA in question
1598 * vmf: fault info
1599 *
1600 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1601 * from userspace. The fault handler takes care of binding the object to
1602 * the GTT (if needed), allocating and programming a fence register (again,
1603 * only if needed based on whether the old reg is still valid or the object
1604 * is tiled) and inserting a new PTE into the faulting process.
1605 *
1606 * Note that the faulting process may involve evicting existing objects
1607 * from the GTT and/or fence registers to make room. So performance may
1608 * suffer if the GTT working set is large or there are few fence registers
1609 * left.
1610 */
1611 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1612 {
1613 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1614 struct drm_device *dev = obj->base.dev;
1615 struct drm_i915_private *dev_priv = dev->dev_private;
1616 pgoff_t page_offset;
1617 unsigned long pfn;
1618 int ret = 0;
1619 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1620
1621 intel_runtime_pm_get(dev_priv);
1622
1623 /* We don't use vmf->pgoff since that has the fake offset */
1624 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1625 PAGE_SHIFT;
1626
1627 ret = i915_mutex_lock_interruptible(dev);
1628 if (ret)
1629 goto out;
1630
1631 trace_i915_gem_object_fault(obj, page_offset, true, write);
1632
1633 /* Try to flush the object off the GPU first without holding the lock.
1634 * Upon reacquiring the lock, we will perform our sanity checks and then
1635 * repeat the flush holding the lock in the normal manner to catch cases
1636 * where we are gazumped.
1637 */
1638 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1639 if (ret)
1640 goto unlock;
1641
1642 /* Access to snoopable pages through the GTT is incoherent. */
1643 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1644 ret = -EFAULT;
1645 goto unlock;
1646 }
1647
1648 /* Now bind it into the GTT if needed */
1649 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1650 if (ret)
1651 goto unlock;
1652
1653 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1654 if (ret)
1655 goto unpin;
1656
1657 ret = i915_gem_object_get_fence(obj);
1658 if (ret)
1659 goto unpin;
1660
1661 /* Finally, remap it using the new GTT offset */
1662 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1663 pfn >>= PAGE_SHIFT;
1664
1665 if (!obj->fault_mappable) {
1666 unsigned long size = min_t(unsigned long,
1667 vma->vm_end - vma->vm_start,
1668 obj->base.size);
1669 int i;
1670
1671 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1672 ret = vm_insert_pfn(vma,
1673 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1674 pfn + i);
1675 if (ret)
1676 break;
1677 }
1678
1679 obj->fault_mappable = true;
1680 } else
1681 ret = vm_insert_pfn(vma,
1682 (unsigned long)vmf->virtual_address,
1683 pfn + page_offset);
1684 unpin:
1685 i915_gem_object_ggtt_unpin(obj);
1686 unlock:
1687 mutex_unlock(&dev->struct_mutex);
1688 out:
1689 switch (ret) {
1690 case -EIO:
1691 /*
1692 * We eat errors when the gpu is terminally wedged to avoid
1693 * userspace unduly crashing (gl has no provisions for mmaps to
1694 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1695 * and so needs to be reported.
1696 */
1697 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1698 ret = VM_FAULT_SIGBUS;
1699 break;
1700 }
1701 case -EAGAIN:
1702 /*
1703 * EAGAIN means the gpu is hung and we'll wait for the error
1704 * handler to reset everything when re-faulting in
1705 * i915_mutex_lock_interruptible.
1706 */
1707 case 0:
1708 case -ERESTARTSYS:
1709 case -EINTR:
1710 case -EBUSY:
1711 /*
1712 * EBUSY is ok: this just means that another thread
1713 * already did the job.
1714 */
1715 ret = VM_FAULT_NOPAGE;
1716 break;
1717 case -ENOMEM:
1718 ret = VM_FAULT_OOM;
1719 break;
1720 case -ENOSPC:
1721 case -EFAULT:
1722 ret = VM_FAULT_SIGBUS;
1723 break;
1724 default:
1725 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1726 ret = VM_FAULT_SIGBUS;
1727 break;
1728 }
1729
1730 intel_runtime_pm_put(dev_priv);
1731 return ret;
1732 }
1733
1734 /**
1735 * i915_gem_release_mmap - remove physical page mappings
1736 * @obj: obj in question
1737 *
1738 * Preserve the reservation of the mmapping with the DRM core code, but
1739 * relinquish ownership of the pages back to the system.
1740 *
1741 * It is vital that we remove the page mapping if we have mapped a tiled
1742 * object through the GTT and then lose the fence register due to
1743 * resource pressure. Similarly if the object has been moved out of the
1744 * aperture, than pages mapped into userspace must be revoked. Removing the
1745 * mapping will then trigger a page fault on the next user access, allowing
1746 * fixup by i915_gem_fault().
1747 */
1748 void
1749 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1750 {
1751 if (!obj->fault_mappable)
1752 return;
1753
1754 drm_vma_node_unmap(&obj->base.vma_node,
1755 obj->base.dev->anon_inode->i_mapping);
1756 obj->fault_mappable = false;
1757 }
1758
1759 void
1760 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1761 {
1762 struct drm_i915_gem_object *obj;
1763
1764 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1765 i915_gem_release_mmap(obj);
1766 }
1767
1768 uint32_t
1769 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1770 {
1771 uint32_t gtt_size;
1772
1773 if (INTEL_INFO(dev)->gen >= 4 ||
1774 tiling_mode == I915_TILING_NONE)
1775 return size;
1776
1777 /* Previous chips need a power-of-two fence region when tiling */
1778 if (INTEL_INFO(dev)->gen == 3)
1779 gtt_size = 1024*1024;
1780 else
1781 gtt_size = 512*1024;
1782
1783 while (gtt_size < size)
1784 gtt_size <<= 1;
1785
1786 return gtt_size;
1787 }
1788
1789 /**
1790 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1791 * @obj: object to check
1792 *
1793 * Return the required GTT alignment for an object, taking into account
1794 * potential fence register mapping.
1795 */
1796 uint32_t
1797 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1798 int tiling_mode, bool fenced)
1799 {
1800 /*
1801 * Minimum alignment is 4k (GTT page size), but might be greater
1802 * if a fence register is needed for the object.
1803 */
1804 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1805 tiling_mode == I915_TILING_NONE)
1806 return 4096;
1807
1808 /*
1809 * Previous chips need to be aligned to the size of the smallest
1810 * fence register that can contain the object.
1811 */
1812 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1813 }
1814
1815 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1816 {
1817 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1818 int ret;
1819
1820 if (drm_vma_node_has_offset(&obj->base.vma_node))
1821 return 0;
1822
1823 dev_priv->mm.shrinker_no_lock_stealing = true;
1824
1825 ret = drm_gem_create_mmap_offset(&obj->base);
1826 if (ret != -ENOSPC)
1827 goto out;
1828
1829 /* Badly fragmented mmap space? The only way we can recover
1830 * space is by destroying unwanted objects. We can't randomly release
1831 * mmap_offsets as userspace expects them to be persistent for the
1832 * lifetime of the objects. The closest we can is to release the
1833 * offsets on purgeable objects by truncating it and marking it purged,
1834 * which prevents userspace from ever using that object again.
1835 */
1836 i915_gem_shrink(dev_priv,
1837 obj->base.size >> PAGE_SHIFT,
1838 I915_SHRINK_BOUND |
1839 I915_SHRINK_UNBOUND |
1840 I915_SHRINK_PURGEABLE);
1841 ret = drm_gem_create_mmap_offset(&obj->base);
1842 if (ret != -ENOSPC)
1843 goto out;
1844
1845 i915_gem_shrink_all(dev_priv);
1846 ret = drm_gem_create_mmap_offset(&obj->base);
1847 out:
1848 dev_priv->mm.shrinker_no_lock_stealing = false;
1849
1850 return ret;
1851 }
1852
1853 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1854 {
1855 drm_gem_free_mmap_offset(&obj->base);
1856 }
1857
1858 int
1859 i915_gem_mmap_gtt(struct drm_file *file,
1860 struct drm_device *dev,
1861 uint32_t handle,
1862 uint64_t *offset)
1863 {
1864 struct drm_i915_private *dev_priv = dev->dev_private;
1865 struct drm_i915_gem_object *obj;
1866 int ret;
1867
1868 ret = i915_mutex_lock_interruptible(dev);
1869 if (ret)
1870 return ret;
1871
1872 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1873 if (&obj->base == NULL) {
1874 ret = -ENOENT;
1875 goto unlock;
1876 }
1877
1878 if (obj->base.size > dev_priv->gtt.mappable_end) {
1879 ret = -E2BIG;
1880 goto out;
1881 }
1882
1883 if (obj->madv != I915_MADV_WILLNEED) {
1884 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1885 ret = -EFAULT;
1886 goto out;
1887 }
1888
1889 ret = i915_gem_object_create_mmap_offset(obj);
1890 if (ret)
1891 goto out;
1892
1893 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1894
1895 out:
1896 drm_gem_object_unreference(&obj->base);
1897 unlock:
1898 mutex_unlock(&dev->struct_mutex);
1899 return ret;
1900 }
1901
1902 /**
1903 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1904 * @dev: DRM device
1905 * @data: GTT mapping ioctl data
1906 * @file: GEM object info
1907 *
1908 * Simply returns the fake offset to userspace so it can mmap it.
1909 * The mmap call will end up in drm_gem_mmap(), which will set things
1910 * up so we can get faults in the handler above.
1911 *
1912 * The fault handler will take care of binding the object into the GTT
1913 * (since it may have been evicted to make room for something), allocating
1914 * a fence register, and mapping the appropriate aperture address into
1915 * userspace.
1916 */
1917 int
1918 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1919 struct drm_file *file)
1920 {
1921 struct drm_i915_gem_mmap_gtt *args = data;
1922
1923 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1924 }
1925
1926 static inline int
1927 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1928 {
1929 return obj->madv == I915_MADV_DONTNEED;
1930 }
1931
1932 /* Immediately discard the backing storage */
1933 static void
1934 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1935 {
1936 i915_gem_object_free_mmap_offset(obj);
1937
1938 if (obj->base.filp == NULL)
1939 return;
1940
1941 /* Our goal here is to return as much of the memory as
1942 * is possible back to the system as we are called from OOM.
1943 * To do this we must instruct the shmfs to drop all of its
1944 * backing pages, *now*.
1945 */
1946 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1947 obj->madv = __I915_MADV_PURGED;
1948 }
1949
1950 /* Try to discard unwanted pages */
1951 static void
1952 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1953 {
1954 struct address_space *mapping;
1955
1956 switch (obj->madv) {
1957 case I915_MADV_DONTNEED:
1958 i915_gem_object_truncate(obj);
1959 case __I915_MADV_PURGED:
1960 return;
1961 }
1962
1963 if (obj->base.filp == NULL)
1964 return;
1965
1966 mapping = file_inode(obj->base.filp)->i_mapping,
1967 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1968 }
1969
1970 static void
1971 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1972 {
1973 struct sg_page_iter sg_iter;
1974 int ret;
1975
1976 BUG_ON(obj->madv == __I915_MADV_PURGED);
1977
1978 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1979 if (ret) {
1980 /* In the event of a disaster, abandon all caches and
1981 * hope for the best.
1982 */
1983 WARN_ON(ret != -EIO);
1984 i915_gem_clflush_object(obj, true);
1985 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1986 }
1987
1988 if (i915_gem_object_needs_bit17_swizzle(obj))
1989 i915_gem_object_save_bit_17_swizzle(obj);
1990
1991 if (obj->madv == I915_MADV_DONTNEED)
1992 obj->dirty = 0;
1993
1994 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1995 struct page *page = sg_page_iter_page(&sg_iter);
1996
1997 if (obj->dirty)
1998 set_page_dirty(page);
1999
2000 if (obj->madv == I915_MADV_WILLNEED)
2001 mark_page_accessed(page);
2002
2003 page_cache_release(page);
2004 }
2005 obj->dirty = 0;
2006
2007 sg_free_table(obj->pages);
2008 kfree(obj->pages);
2009 }
2010
2011 int
2012 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2013 {
2014 const struct drm_i915_gem_object_ops *ops = obj->ops;
2015
2016 if (obj->pages == NULL)
2017 return 0;
2018
2019 if (obj->pages_pin_count)
2020 return -EBUSY;
2021
2022 BUG_ON(i915_gem_obj_bound_any(obj));
2023
2024 /* ->put_pages might need to allocate memory for the bit17 swizzle
2025 * array, hence protect them from being reaped by removing them from gtt
2026 * lists early. */
2027 list_del(&obj->global_list);
2028
2029 ops->put_pages(obj);
2030 obj->pages = NULL;
2031
2032 i915_gem_object_invalidate(obj);
2033
2034 return 0;
2035 }
2036
2037 unsigned long
2038 i915_gem_shrink(struct drm_i915_private *dev_priv,
2039 long target, unsigned flags)
2040 {
2041 const struct {
2042 struct list_head *list;
2043 unsigned int bit;
2044 } phases[] = {
2045 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2046 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2047 { NULL, 0 },
2048 }, *phase;
2049 unsigned long count = 0;
2050
2051 /*
2052 * As we may completely rewrite the (un)bound list whilst unbinding
2053 * (due to retiring requests) we have to strictly process only
2054 * one element of the list at the time, and recheck the list
2055 * on every iteration.
2056 *
2057 * In particular, we must hold a reference whilst removing the
2058 * object as we may end up waiting for and/or retiring the objects.
2059 * This might release the final reference (held by the active list)
2060 * and result in the object being freed from under us. This is
2061 * similar to the precautions the eviction code must take whilst
2062 * removing objects.
2063 *
2064 * Also note that although these lists do not hold a reference to
2065 * the object we can safely grab one here: The final object
2066 * unreferencing and the bound_list are both protected by the
2067 * dev->struct_mutex and so we won't ever be able to observe an
2068 * object on the bound_list with a reference count equals 0.
2069 */
2070 for (phase = phases; phase->list; phase++) {
2071 struct list_head still_in_list;
2072
2073 if ((flags & phase->bit) == 0)
2074 continue;
2075
2076 INIT_LIST_HEAD(&still_in_list);
2077 while (count < target && !list_empty(phase->list)) {
2078 struct drm_i915_gem_object *obj;
2079 struct i915_vma *vma, *v;
2080
2081 obj = list_first_entry(phase->list,
2082 typeof(*obj), global_list);
2083 list_move_tail(&obj->global_list, &still_in_list);
2084
2085 if (flags & I915_SHRINK_PURGEABLE &&
2086 !i915_gem_object_is_purgeable(obj))
2087 continue;
2088
2089 drm_gem_object_reference(&obj->base);
2090
2091 /* For the unbound phase, this should be a no-op! */
2092 list_for_each_entry_safe(vma, v,
2093 &obj->vma_list, vma_link)
2094 if (i915_vma_unbind(vma))
2095 break;
2096
2097 if (i915_gem_object_put_pages(obj) == 0)
2098 count += obj->base.size >> PAGE_SHIFT;
2099
2100 drm_gem_object_unreference(&obj->base);
2101 }
2102 list_splice(&still_in_list, phase->list);
2103 }
2104
2105 return count;
2106 }
2107
2108 static unsigned long
2109 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2110 {
2111 i915_gem_evict_everything(dev_priv->dev);
2112 return i915_gem_shrink(dev_priv, LONG_MAX,
2113 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2114 }
2115
2116 static int
2117 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2118 {
2119 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2120 int page_count, i;
2121 struct address_space *mapping;
2122 struct sg_table *st;
2123 struct scatterlist *sg;
2124 struct sg_page_iter sg_iter;
2125 struct page *page;
2126 unsigned long last_pfn = 0; /* suppress gcc warning */
2127 gfp_t gfp;
2128
2129 /* Assert that the object is not currently in any GPU domain. As it
2130 * wasn't in the GTT, there shouldn't be any way it could have been in
2131 * a GPU cache
2132 */
2133 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2134 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2135
2136 st = kmalloc(sizeof(*st), GFP_KERNEL);
2137 if (st == NULL)
2138 return -ENOMEM;
2139
2140 page_count = obj->base.size / PAGE_SIZE;
2141 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2142 kfree(st);
2143 return -ENOMEM;
2144 }
2145
2146 /* Get the list of pages out of our struct file. They'll be pinned
2147 * at this point until we release them.
2148 *
2149 * Fail silently without starting the shrinker
2150 */
2151 mapping = file_inode(obj->base.filp)->i_mapping;
2152 gfp = mapping_gfp_mask(mapping);
2153 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2154 gfp &= ~(__GFP_IO | __GFP_WAIT);
2155 sg = st->sgl;
2156 st->nents = 0;
2157 for (i = 0; i < page_count; i++) {
2158 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2159 if (IS_ERR(page)) {
2160 i915_gem_shrink(dev_priv,
2161 page_count,
2162 I915_SHRINK_BOUND |
2163 I915_SHRINK_UNBOUND |
2164 I915_SHRINK_PURGEABLE);
2165 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2166 }
2167 if (IS_ERR(page)) {
2168 /* We've tried hard to allocate the memory by reaping
2169 * our own buffer, now let the real VM do its job and
2170 * go down in flames if truly OOM.
2171 */
2172 i915_gem_shrink_all(dev_priv);
2173 page = shmem_read_mapping_page(mapping, i);
2174 if (IS_ERR(page))
2175 goto err_pages;
2176 }
2177 #ifdef CONFIG_SWIOTLB
2178 if (swiotlb_nr_tbl()) {
2179 st->nents++;
2180 sg_set_page(sg, page, PAGE_SIZE, 0);
2181 sg = sg_next(sg);
2182 continue;
2183 }
2184 #endif
2185 if (!i || page_to_pfn(page) != last_pfn + 1) {
2186 if (i)
2187 sg = sg_next(sg);
2188 st->nents++;
2189 sg_set_page(sg, page, PAGE_SIZE, 0);
2190 } else {
2191 sg->length += PAGE_SIZE;
2192 }
2193 last_pfn = page_to_pfn(page);
2194
2195 /* Check that the i965g/gm workaround works. */
2196 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2197 }
2198 #ifdef CONFIG_SWIOTLB
2199 if (!swiotlb_nr_tbl())
2200 #endif
2201 sg_mark_end(sg);
2202 obj->pages = st;
2203
2204 if (i915_gem_object_needs_bit17_swizzle(obj))
2205 i915_gem_object_do_bit_17_swizzle(obj);
2206
2207 if (obj->tiling_mode != I915_TILING_NONE &&
2208 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2209 i915_gem_object_pin_pages(obj);
2210
2211 return 0;
2212
2213 err_pages:
2214 sg_mark_end(sg);
2215 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2216 page_cache_release(sg_page_iter_page(&sg_iter));
2217 sg_free_table(st);
2218 kfree(st);
2219
2220 /* shmemfs first checks if there is enough memory to allocate the page
2221 * and reports ENOSPC should there be insufficient, along with the usual
2222 * ENOMEM for a genuine allocation failure.
2223 *
2224 * We use ENOSPC in our driver to mean that we have run out of aperture
2225 * space and so want to translate the error from shmemfs back to our
2226 * usual understanding of ENOMEM.
2227 */
2228 if (PTR_ERR(page) == -ENOSPC)
2229 return -ENOMEM;
2230 else
2231 return PTR_ERR(page);
2232 }
2233
2234 /* Ensure that the associated pages are gathered from the backing storage
2235 * and pinned into our object. i915_gem_object_get_pages() may be called
2236 * multiple times before they are released by a single call to
2237 * i915_gem_object_put_pages() - once the pages are no longer referenced
2238 * either as a result of memory pressure (reaping pages under the shrinker)
2239 * or as the object is itself released.
2240 */
2241 int
2242 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2243 {
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 const struct drm_i915_gem_object_ops *ops = obj->ops;
2246 int ret;
2247
2248 if (obj->pages)
2249 return 0;
2250
2251 if (obj->madv != I915_MADV_WILLNEED) {
2252 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2253 return -EFAULT;
2254 }
2255
2256 BUG_ON(obj->pages_pin_count);
2257
2258 ret = ops->get_pages(obj);
2259 if (ret)
2260 return ret;
2261
2262 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2263 return 0;
2264 }
2265
2266 static void
2267 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2268 struct intel_engine_cs *ring)
2269 {
2270 struct drm_i915_gem_request *req;
2271 struct intel_engine_cs *old_ring;
2272
2273 BUG_ON(ring == NULL);
2274
2275 req = intel_ring_get_request(ring);
2276 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2277
2278 if (old_ring != ring && obj->last_write_req) {
2279 /* Keep the request relative to the current ring */
2280 i915_gem_request_assign(&obj->last_write_req, req);
2281 }
2282
2283 /* Add a reference if we're newly entering the active list. */
2284 if (!obj->active) {
2285 drm_gem_object_reference(&obj->base);
2286 obj->active = 1;
2287 }
2288
2289 list_move_tail(&obj->ring_list, &ring->active_list);
2290
2291 i915_gem_request_assign(&obj->last_read_req, req);
2292 }
2293
2294 void i915_vma_move_to_active(struct i915_vma *vma,
2295 struct intel_engine_cs *ring)
2296 {
2297 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2298 return i915_gem_object_move_to_active(vma->obj, ring);
2299 }
2300
2301 static void
2302 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2303 {
2304 struct i915_vma *vma;
2305
2306 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2307 BUG_ON(!obj->active);
2308
2309 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2310 if (!list_empty(&vma->mm_list))
2311 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2312 }
2313
2314 intel_fb_obj_flush(obj, true);
2315
2316 list_del_init(&obj->ring_list);
2317
2318 i915_gem_request_assign(&obj->last_read_req, NULL);
2319 i915_gem_request_assign(&obj->last_write_req, NULL);
2320 obj->base.write_domain = 0;
2321
2322 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2323
2324 obj->active = 0;
2325 drm_gem_object_unreference(&obj->base);
2326
2327 WARN_ON(i915_verify_lists(dev));
2328 }
2329
2330 static void
2331 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2332 {
2333 if (obj->last_read_req == NULL)
2334 return;
2335
2336 if (i915_gem_request_completed(obj->last_read_req, true))
2337 i915_gem_object_move_to_inactive(obj);
2338 }
2339
2340 static int
2341 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2342 {
2343 struct drm_i915_private *dev_priv = dev->dev_private;
2344 struct intel_engine_cs *ring;
2345 int ret, i, j;
2346
2347 /* Carefully retire all requests without writing to the rings */
2348 for_each_ring(ring, dev_priv, i) {
2349 ret = intel_ring_idle(ring);
2350 if (ret)
2351 return ret;
2352 }
2353 i915_gem_retire_requests(dev);
2354
2355 /* Finally reset hw state */
2356 for_each_ring(ring, dev_priv, i) {
2357 intel_ring_init_seqno(ring, seqno);
2358
2359 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2360 ring->semaphore.sync_seqno[j] = 0;
2361 }
2362
2363 return 0;
2364 }
2365
2366 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2367 {
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 int ret;
2370
2371 if (seqno == 0)
2372 return -EINVAL;
2373
2374 /* HWS page needs to be set less than what we
2375 * will inject to ring
2376 */
2377 ret = i915_gem_init_seqno(dev, seqno - 1);
2378 if (ret)
2379 return ret;
2380
2381 /* Carefully set the last_seqno value so that wrap
2382 * detection still works
2383 */
2384 dev_priv->next_seqno = seqno;
2385 dev_priv->last_seqno = seqno - 1;
2386 if (dev_priv->last_seqno == 0)
2387 dev_priv->last_seqno--;
2388
2389 return 0;
2390 }
2391
2392 int
2393 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2394 {
2395 struct drm_i915_private *dev_priv = dev->dev_private;
2396
2397 /* reserve 0 for non-seqno */
2398 if (dev_priv->next_seqno == 0) {
2399 int ret = i915_gem_init_seqno(dev, 0);
2400 if (ret)
2401 return ret;
2402
2403 dev_priv->next_seqno = 1;
2404 }
2405
2406 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2407 return 0;
2408 }
2409
2410 int __i915_add_request(struct intel_engine_cs *ring,
2411 struct drm_file *file,
2412 struct drm_i915_gem_object *obj)
2413 {
2414 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2415 struct drm_i915_gem_request *request;
2416 struct intel_ringbuffer *ringbuf;
2417 u32 request_start;
2418 int ret;
2419
2420 request = ring->outstanding_lazy_request;
2421 if (WARN_ON(request == NULL))
2422 return -ENOMEM;
2423
2424 if (i915.enable_execlists) {
2425 ringbuf = request->ctx->engine[ring->id].ringbuf;
2426 } else
2427 ringbuf = ring->buffer;
2428
2429 request_start = intel_ring_get_tail(ringbuf);
2430 /*
2431 * Emit any outstanding flushes - execbuf can fail to emit the flush
2432 * after having emitted the batchbuffer command. Hence we need to fix
2433 * things up similar to emitting the lazy request. The difference here
2434 * is that the flush _must_ happen before the next request, no matter
2435 * what.
2436 */
2437 if (i915.enable_execlists) {
2438 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2439 if (ret)
2440 return ret;
2441 } else {
2442 ret = intel_ring_flush_all_caches(ring);
2443 if (ret)
2444 return ret;
2445 }
2446
2447 /* Record the position of the start of the request so that
2448 * should we detect the updated seqno part-way through the
2449 * GPU processing the request, we never over-estimate the
2450 * position of the head.
2451 */
2452 request->postfix = intel_ring_get_tail(ringbuf);
2453
2454 if (i915.enable_execlists) {
2455 ret = ring->emit_request(ringbuf, request);
2456 if (ret)
2457 return ret;
2458 } else {
2459 ret = ring->add_request(ring);
2460 if (ret)
2461 return ret;
2462 }
2463
2464 request->head = request_start;
2465 request->tail = intel_ring_get_tail(ringbuf);
2466
2467 /* Whilst this request exists, batch_obj will be on the
2468 * active_list, and so will hold the active reference. Only when this
2469 * request is retired will the the batch_obj be moved onto the
2470 * inactive_list and lose its active reference. Hence we do not need
2471 * to explicitly hold another reference here.
2472 */
2473 request->batch_obj = obj;
2474
2475 if (!i915.enable_execlists) {
2476 /* Hold a reference to the current context so that we can inspect
2477 * it later in case a hangcheck error event fires.
2478 */
2479 request->ctx = ring->last_context;
2480 if (request->ctx)
2481 i915_gem_context_reference(request->ctx);
2482 }
2483
2484 request->emitted_jiffies = jiffies;
2485 list_add_tail(&request->list, &ring->request_list);
2486 request->file_priv = NULL;
2487
2488 if (file) {
2489 struct drm_i915_file_private *file_priv = file->driver_priv;
2490
2491 spin_lock(&file_priv->mm.lock);
2492 request->file_priv = file_priv;
2493 list_add_tail(&request->client_list,
2494 &file_priv->mm.request_list);
2495 spin_unlock(&file_priv->mm.lock);
2496 }
2497
2498 trace_i915_gem_request_add(request);
2499 ring->outstanding_lazy_request = NULL;
2500
2501 i915_queue_hangcheck(ring->dev);
2502
2503 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2504 queue_delayed_work(dev_priv->wq,
2505 &dev_priv->mm.retire_work,
2506 round_jiffies_up_relative(HZ));
2507 intel_mark_busy(dev_priv->dev);
2508
2509 return 0;
2510 }
2511
2512 static inline void
2513 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2514 {
2515 struct drm_i915_file_private *file_priv = request->file_priv;
2516
2517 if (!file_priv)
2518 return;
2519
2520 spin_lock(&file_priv->mm.lock);
2521 list_del(&request->client_list);
2522 request->file_priv = NULL;
2523 spin_unlock(&file_priv->mm.lock);
2524 }
2525
2526 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2527 const struct intel_context *ctx)
2528 {
2529 unsigned long elapsed;
2530
2531 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2532
2533 if (ctx->hang_stats.banned)
2534 return true;
2535
2536 if (ctx->hang_stats.ban_period_seconds &&
2537 elapsed <= ctx->hang_stats.ban_period_seconds) {
2538 if (!i915_gem_context_is_default(ctx)) {
2539 DRM_DEBUG("context hanging too fast, banning!\n");
2540 return true;
2541 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2542 if (i915_stop_ring_allow_warn(dev_priv))
2543 DRM_ERROR("gpu hanging too fast, banning!\n");
2544 return true;
2545 }
2546 }
2547
2548 return false;
2549 }
2550
2551 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2552 struct intel_context *ctx,
2553 const bool guilty)
2554 {
2555 struct i915_ctx_hang_stats *hs;
2556
2557 if (WARN_ON(!ctx))
2558 return;
2559
2560 hs = &ctx->hang_stats;
2561
2562 if (guilty) {
2563 hs->banned = i915_context_is_banned(dev_priv, ctx);
2564 hs->batch_active++;
2565 hs->guilty_ts = get_seconds();
2566 } else {
2567 hs->batch_pending++;
2568 }
2569 }
2570
2571 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2572 {
2573 list_del(&request->list);
2574 i915_gem_request_remove_from_client(request);
2575
2576 i915_gem_request_unreference(request);
2577 }
2578
2579 void i915_gem_request_free(struct kref *req_ref)
2580 {
2581 struct drm_i915_gem_request *req = container_of(req_ref,
2582 typeof(*req), ref);
2583 struct intel_context *ctx = req->ctx;
2584
2585 if (ctx) {
2586 if (i915.enable_execlists) {
2587 struct intel_engine_cs *ring = req->ring;
2588
2589 if (ctx != ring->default_context)
2590 intel_lr_context_unpin(ring, ctx);
2591 }
2592
2593 i915_gem_context_unreference(ctx);
2594 }
2595
2596 kfree(req);
2597 }
2598
2599 struct drm_i915_gem_request *
2600 i915_gem_find_active_request(struct intel_engine_cs *ring)
2601 {
2602 struct drm_i915_gem_request *request;
2603
2604 list_for_each_entry(request, &ring->request_list, list) {
2605 if (i915_gem_request_completed(request, false))
2606 continue;
2607
2608 return request;
2609 }
2610
2611 return NULL;
2612 }
2613
2614 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2615 struct intel_engine_cs *ring)
2616 {
2617 struct drm_i915_gem_request *request;
2618 bool ring_hung;
2619
2620 request = i915_gem_find_active_request(ring);
2621
2622 if (request == NULL)
2623 return;
2624
2625 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2626
2627 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2628
2629 list_for_each_entry_continue(request, &ring->request_list, list)
2630 i915_set_reset_status(dev_priv, request->ctx, false);
2631 }
2632
2633 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2634 struct intel_engine_cs *ring)
2635 {
2636 while (!list_empty(&ring->active_list)) {
2637 struct drm_i915_gem_object *obj;
2638
2639 obj = list_first_entry(&ring->active_list,
2640 struct drm_i915_gem_object,
2641 ring_list);
2642
2643 i915_gem_object_move_to_inactive(obj);
2644 }
2645
2646 /*
2647 * Clear the execlists queue up before freeing the requests, as those
2648 * are the ones that keep the context and ringbuffer backing objects
2649 * pinned in place.
2650 */
2651 while (!list_empty(&ring->execlist_queue)) {
2652 struct drm_i915_gem_request *submit_req;
2653
2654 submit_req = list_first_entry(&ring->execlist_queue,
2655 struct drm_i915_gem_request,
2656 execlist_link);
2657 list_del(&submit_req->execlist_link);
2658 intel_runtime_pm_put(dev_priv);
2659
2660 if (submit_req->ctx != ring->default_context)
2661 intel_lr_context_unpin(ring, submit_req->ctx);
2662
2663 i915_gem_context_unreference(submit_req->ctx);
2664 kfree(submit_req);
2665 }
2666
2667 /*
2668 * We must free the requests after all the corresponding objects have
2669 * been moved off active lists. Which is the same order as the normal
2670 * retire_requests function does. This is important if object hold
2671 * implicit references on things like e.g. ppgtt address spaces through
2672 * the request.
2673 */
2674 while (!list_empty(&ring->request_list)) {
2675 struct drm_i915_gem_request *request;
2676
2677 request = list_first_entry(&ring->request_list,
2678 struct drm_i915_gem_request,
2679 list);
2680
2681 i915_gem_free_request(request);
2682 }
2683
2684 /* This may not have been flushed before the reset, so clean it now */
2685 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2686 }
2687
2688 void i915_gem_restore_fences(struct drm_device *dev)
2689 {
2690 struct drm_i915_private *dev_priv = dev->dev_private;
2691 int i;
2692
2693 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2694 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2695
2696 /*
2697 * Commit delayed tiling changes if we have an object still
2698 * attached to the fence, otherwise just clear the fence.
2699 */
2700 if (reg->obj) {
2701 i915_gem_object_update_fence(reg->obj, reg,
2702 reg->obj->tiling_mode);
2703 } else {
2704 i915_gem_write_fence(dev, i, NULL);
2705 }
2706 }
2707 }
2708
2709 void i915_gem_reset(struct drm_device *dev)
2710 {
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712 struct intel_engine_cs *ring;
2713 int i;
2714
2715 /*
2716 * Before we free the objects from the requests, we need to inspect
2717 * them for finding the guilty party. As the requests only borrow
2718 * their reference to the objects, the inspection must be done first.
2719 */
2720 for_each_ring(ring, dev_priv, i)
2721 i915_gem_reset_ring_status(dev_priv, ring);
2722
2723 for_each_ring(ring, dev_priv, i)
2724 i915_gem_reset_ring_cleanup(dev_priv, ring);
2725
2726 i915_gem_context_reset(dev);
2727
2728 i915_gem_restore_fences(dev);
2729 }
2730
2731 /**
2732 * This function clears the request list as sequence numbers are passed.
2733 */
2734 void
2735 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2736 {
2737 if (list_empty(&ring->request_list))
2738 return;
2739
2740 WARN_ON(i915_verify_lists(ring->dev));
2741
2742 /* Move any buffers on the active list that are no longer referenced
2743 * by the ringbuffer to the flushing/inactive lists as appropriate,
2744 * before we free the context associated with the requests.
2745 */
2746 while (!list_empty(&ring->active_list)) {
2747 struct drm_i915_gem_object *obj;
2748
2749 obj = list_first_entry(&ring->active_list,
2750 struct drm_i915_gem_object,
2751 ring_list);
2752
2753 if (!i915_gem_request_completed(obj->last_read_req, true))
2754 break;
2755
2756 i915_gem_object_move_to_inactive(obj);
2757 }
2758
2759
2760 while (!list_empty(&ring->request_list)) {
2761 struct drm_i915_gem_request *request;
2762 struct intel_ringbuffer *ringbuf;
2763
2764 request = list_first_entry(&ring->request_list,
2765 struct drm_i915_gem_request,
2766 list);
2767
2768 if (!i915_gem_request_completed(request, true))
2769 break;
2770
2771 trace_i915_gem_request_retire(request);
2772
2773 /* This is one of the few common intersection points
2774 * between legacy ringbuffer submission and execlists:
2775 * we need to tell them apart in order to find the correct
2776 * ringbuffer to which the request belongs to.
2777 */
2778 if (i915.enable_execlists) {
2779 struct intel_context *ctx = request->ctx;
2780 ringbuf = ctx->engine[ring->id].ringbuf;
2781 } else
2782 ringbuf = ring->buffer;
2783
2784 /* We know the GPU must have read the request to have
2785 * sent us the seqno + interrupt, so use the position
2786 * of tail of the request to update the last known position
2787 * of the GPU head.
2788 */
2789 ringbuf->last_retired_head = request->postfix;
2790
2791 i915_gem_free_request(request);
2792 }
2793
2794 if (unlikely(ring->trace_irq_req &&
2795 i915_gem_request_completed(ring->trace_irq_req, true))) {
2796 ring->irq_put(ring);
2797 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2798 }
2799
2800 WARN_ON(i915_verify_lists(ring->dev));
2801 }
2802
2803 bool
2804 i915_gem_retire_requests(struct drm_device *dev)
2805 {
2806 struct drm_i915_private *dev_priv = dev->dev_private;
2807 struct intel_engine_cs *ring;
2808 bool idle = true;
2809 int i;
2810
2811 for_each_ring(ring, dev_priv, i) {
2812 i915_gem_retire_requests_ring(ring);
2813 idle &= list_empty(&ring->request_list);
2814 if (i915.enable_execlists) {
2815 unsigned long flags;
2816
2817 spin_lock_irqsave(&ring->execlist_lock, flags);
2818 idle &= list_empty(&ring->execlist_queue);
2819 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2820
2821 intel_execlists_retire_requests(ring);
2822 }
2823 }
2824
2825 if (idle)
2826 mod_delayed_work(dev_priv->wq,
2827 &dev_priv->mm.idle_work,
2828 msecs_to_jiffies(100));
2829
2830 return idle;
2831 }
2832
2833 static void
2834 i915_gem_retire_work_handler(struct work_struct *work)
2835 {
2836 struct drm_i915_private *dev_priv =
2837 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2838 struct drm_device *dev = dev_priv->dev;
2839 bool idle;
2840
2841 /* Come back later if the device is busy... */
2842 idle = false;
2843 if (mutex_trylock(&dev->struct_mutex)) {
2844 idle = i915_gem_retire_requests(dev);
2845 mutex_unlock(&dev->struct_mutex);
2846 }
2847 if (!idle)
2848 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2849 round_jiffies_up_relative(HZ));
2850 }
2851
2852 static void
2853 i915_gem_idle_work_handler(struct work_struct *work)
2854 {
2855 struct drm_i915_private *dev_priv =
2856 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2857
2858 intel_mark_idle(dev_priv->dev);
2859 }
2860
2861 /**
2862 * Ensures that an object will eventually get non-busy by flushing any required
2863 * write domains, emitting any outstanding lazy request and retiring and
2864 * completed requests.
2865 */
2866 static int
2867 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2868 {
2869 struct intel_engine_cs *ring;
2870 int ret;
2871
2872 if (obj->active) {
2873 ring = i915_gem_request_get_ring(obj->last_read_req);
2874
2875 ret = i915_gem_check_olr(obj->last_read_req);
2876 if (ret)
2877 return ret;
2878
2879 i915_gem_retire_requests_ring(ring);
2880 }
2881
2882 return 0;
2883 }
2884
2885 /**
2886 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2887 * @DRM_IOCTL_ARGS: standard ioctl arguments
2888 *
2889 * Returns 0 if successful, else an error is returned with the remaining time in
2890 * the timeout parameter.
2891 * -ETIME: object is still busy after timeout
2892 * -ERESTARTSYS: signal interrupted the wait
2893 * -ENONENT: object doesn't exist
2894 * Also possible, but rare:
2895 * -EAGAIN: GPU wedged
2896 * -ENOMEM: damn
2897 * -ENODEV: Internal IRQ fail
2898 * -E?: The add request failed
2899 *
2900 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2901 * non-zero timeout parameter the wait ioctl will wait for the given number of
2902 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2903 * without holding struct_mutex the object may become re-busied before this
2904 * function completes. A similar but shorter * race condition exists in the busy
2905 * ioctl
2906 */
2907 int
2908 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2909 {
2910 struct drm_i915_private *dev_priv = dev->dev_private;
2911 struct drm_i915_gem_wait *args = data;
2912 struct drm_i915_gem_object *obj;
2913 struct drm_i915_gem_request *req;
2914 unsigned reset_counter;
2915 int ret = 0;
2916
2917 if (args->flags != 0)
2918 return -EINVAL;
2919
2920 ret = i915_mutex_lock_interruptible(dev);
2921 if (ret)
2922 return ret;
2923
2924 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2925 if (&obj->base == NULL) {
2926 mutex_unlock(&dev->struct_mutex);
2927 return -ENOENT;
2928 }
2929
2930 /* Need to make sure the object gets inactive eventually. */
2931 ret = i915_gem_object_flush_active(obj);
2932 if (ret)
2933 goto out;
2934
2935 if (!obj->active || !obj->last_read_req)
2936 goto out;
2937
2938 req = obj->last_read_req;
2939
2940 /* Do this after OLR check to make sure we make forward progress polling
2941 * on this IOCTL with a timeout <=0 (like busy ioctl)
2942 */
2943 if (args->timeout_ns <= 0) {
2944 ret = -ETIME;
2945 goto out;
2946 }
2947
2948 drm_gem_object_unreference(&obj->base);
2949 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2950 i915_gem_request_reference(req);
2951 mutex_unlock(&dev->struct_mutex);
2952
2953 ret = __i915_wait_request(req, reset_counter, true, &args->timeout_ns,
2954 file->driver_priv);
2955 mutex_lock(&dev->struct_mutex);
2956 i915_gem_request_unreference(req);
2957 mutex_unlock(&dev->struct_mutex);
2958 return ret;
2959
2960 out:
2961 drm_gem_object_unreference(&obj->base);
2962 mutex_unlock(&dev->struct_mutex);
2963 return ret;
2964 }
2965
2966 /**
2967 * i915_gem_object_sync - sync an object to a ring.
2968 *
2969 * @obj: object which may be in use on another ring.
2970 * @to: ring we wish to use the object on. May be NULL.
2971 *
2972 * This code is meant to abstract object synchronization with the GPU.
2973 * Calling with NULL implies synchronizing the object with the CPU
2974 * rather than a particular GPU ring.
2975 *
2976 * Returns 0 if successful, else propagates up the lower layer error.
2977 */
2978 int
2979 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2980 struct intel_engine_cs *to)
2981 {
2982 struct intel_engine_cs *from;
2983 u32 seqno;
2984 int ret, idx;
2985
2986 from = i915_gem_request_get_ring(obj->last_read_req);
2987
2988 if (from == NULL || to == from)
2989 return 0;
2990
2991 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2992 return i915_gem_object_wait_rendering(obj, false);
2993
2994 idx = intel_ring_sync_index(from, to);
2995
2996 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2997 /* Optimization: Avoid semaphore sync when we are sure we already
2998 * waited for an object with higher seqno */
2999 if (seqno <= from->semaphore.sync_seqno[idx])
3000 return 0;
3001
3002 ret = i915_gem_check_olr(obj->last_read_req);
3003 if (ret)
3004 return ret;
3005
3006 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3007 ret = to->semaphore.sync_to(to, from, seqno);
3008 if (!ret)
3009 /* We use last_read_req because sync_to()
3010 * might have just caused seqno wrap under
3011 * the radar.
3012 */
3013 from->semaphore.sync_seqno[idx] =
3014 i915_gem_request_get_seqno(obj->last_read_req);
3015
3016 return ret;
3017 }
3018
3019 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3020 {
3021 u32 old_write_domain, old_read_domains;
3022
3023 /* Force a pagefault for domain tracking on next user access */
3024 i915_gem_release_mmap(obj);
3025
3026 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3027 return;
3028
3029 /* Wait for any direct GTT access to complete */
3030 mb();
3031
3032 old_read_domains = obj->base.read_domains;
3033 old_write_domain = obj->base.write_domain;
3034
3035 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3036 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3037
3038 trace_i915_gem_object_change_domain(obj,
3039 old_read_domains,
3040 old_write_domain);
3041 }
3042
3043 int i915_vma_unbind(struct i915_vma *vma)
3044 {
3045 struct drm_i915_gem_object *obj = vma->obj;
3046 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3047 int ret;
3048
3049 if (list_empty(&vma->vma_link))
3050 return 0;
3051
3052 if (!drm_mm_node_allocated(&vma->node)) {
3053 i915_gem_vma_destroy(vma);
3054 return 0;
3055 }
3056
3057 if (vma->pin_count)
3058 return -EBUSY;
3059
3060 BUG_ON(obj->pages == NULL);
3061
3062 ret = i915_gem_object_finish_gpu(obj);
3063 if (ret)
3064 return ret;
3065 /* Continue on if we fail due to EIO, the GPU is hung so we
3066 * should be safe and we need to cleanup or else we might
3067 * cause memory corruption through use-after-free.
3068 */
3069
3070 if (i915_is_ggtt(vma->vm) &&
3071 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3072 i915_gem_object_finish_gtt(obj);
3073
3074 /* release the fence reg _after_ flushing */
3075 ret = i915_gem_object_put_fence(obj);
3076 if (ret)
3077 return ret;
3078 }
3079
3080 trace_i915_vma_unbind(vma);
3081
3082 vma->unbind_vma(vma);
3083
3084 list_del_init(&vma->mm_list);
3085 if (i915_is_ggtt(vma->vm)) {
3086 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3087 obj->map_and_fenceable = false;
3088 } else if (vma->ggtt_view.pages) {
3089 sg_free_table(vma->ggtt_view.pages);
3090 kfree(vma->ggtt_view.pages);
3091 vma->ggtt_view.pages = NULL;
3092 }
3093 }
3094
3095 drm_mm_remove_node(&vma->node);
3096 i915_gem_vma_destroy(vma);
3097
3098 /* Since the unbound list is global, only move to that list if
3099 * no more VMAs exist. */
3100 if (list_empty(&obj->vma_list)) {
3101 /* Throw away the active reference before
3102 * moving to the unbound list. */
3103 i915_gem_object_retire(obj);
3104
3105 i915_gem_gtt_finish_object(obj);
3106 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3107 }
3108
3109 /* And finally now the object is completely decoupled from this vma,
3110 * we can drop its hold on the backing storage and allow it to be
3111 * reaped by the shrinker.
3112 */
3113 i915_gem_object_unpin_pages(obj);
3114
3115 return 0;
3116 }
3117
3118 int i915_gpu_idle(struct drm_device *dev)
3119 {
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 struct intel_engine_cs *ring;
3122 int ret, i;
3123
3124 /* Flush everything onto the inactive list. */
3125 for_each_ring(ring, dev_priv, i) {
3126 if (!i915.enable_execlists) {
3127 ret = i915_switch_context(ring, ring->default_context);
3128 if (ret)
3129 return ret;
3130 }
3131
3132 ret = intel_ring_idle(ring);
3133 if (ret)
3134 return ret;
3135 }
3136
3137 return 0;
3138 }
3139
3140 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3141 struct drm_i915_gem_object *obj)
3142 {
3143 struct drm_i915_private *dev_priv = dev->dev_private;
3144 int fence_reg;
3145 int fence_pitch_shift;
3146
3147 if (INTEL_INFO(dev)->gen >= 6) {
3148 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3149 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3150 } else {
3151 fence_reg = FENCE_REG_965_0;
3152 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3153 }
3154
3155 fence_reg += reg * 8;
3156
3157 /* To w/a incoherency with non-atomic 64-bit register updates,
3158 * we split the 64-bit update into two 32-bit writes. In order
3159 * for a partial fence not to be evaluated between writes, we
3160 * precede the update with write to turn off the fence register,
3161 * and only enable the fence as the last step.
3162 *
3163 * For extra levels of paranoia, we make sure each step lands
3164 * before applying the next step.
3165 */
3166 I915_WRITE(fence_reg, 0);
3167 POSTING_READ(fence_reg);
3168
3169 if (obj) {
3170 u32 size = i915_gem_obj_ggtt_size(obj);
3171 uint64_t val;
3172
3173 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3174 0xfffff000) << 32;
3175 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3176 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3177 if (obj->tiling_mode == I915_TILING_Y)
3178 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3179 val |= I965_FENCE_REG_VALID;
3180
3181 I915_WRITE(fence_reg + 4, val >> 32);
3182 POSTING_READ(fence_reg + 4);
3183
3184 I915_WRITE(fence_reg + 0, val);
3185 POSTING_READ(fence_reg);
3186 } else {
3187 I915_WRITE(fence_reg + 4, 0);
3188 POSTING_READ(fence_reg + 4);
3189 }
3190 }
3191
3192 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3193 struct drm_i915_gem_object *obj)
3194 {
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196 u32 val;
3197
3198 if (obj) {
3199 u32 size = i915_gem_obj_ggtt_size(obj);
3200 int pitch_val;
3201 int tile_width;
3202
3203 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3204 (size & -size) != size ||
3205 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3206 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3207 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3208
3209 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3210 tile_width = 128;
3211 else
3212 tile_width = 512;
3213
3214 /* Note: pitch better be a power of two tile widths */
3215 pitch_val = obj->stride / tile_width;
3216 pitch_val = ffs(pitch_val) - 1;
3217
3218 val = i915_gem_obj_ggtt_offset(obj);
3219 if (obj->tiling_mode == I915_TILING_Y)
3220 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3221 val |= I915_FENCE_SIZE_BITS(size);
3222 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3223 val |= I830_FENCE_REG_VALID;
3224 } else
3225 val = 0;
3226
3227 if (reg < 8)
3228 reg = FENCE_REG_830_0 + reg * 4;
3229 else
3230 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3231
3232 I915_WRITE(reg, val);
3233 POSTING_READ(reg);
3234 }
3235
3236 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3237 struct drm_i915_gem_object *obj)
3238 {
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 uint32_t val;
3241
3242 if (obj) {
3243 u32 size = i915_gem_obj_ggtt_size(obj);
3244 uint32_t pitch_val;
3245
3246 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3247 (size & -size) != size ||
3248 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3249 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3250 i915_gem_obj_ggtt_offset(obj), size);
3251
3252 pitch_val = obj->stride / 128;
3253 pitch_val = ffs(pitch_val) - 1;
3254
3255 val = i915_gem_obj_ggtt_offset(obj);
3256 if (obj->tiling_mode == I915_TILING_Y)
3257 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3258 val |= I830_FENCE_SIZE_BITS(size);
3259 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3260 val |= I830_FENCE_REG_VALID;
3261 } else
3262 val = 0;
3263
3264 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3265 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3266 }
3267
3268 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3269 {
3270 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3271 }
3272
3273 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3274 struct drm_i915_gem_object *obj)
3275 {
3276 struct drm_i915_private *dev_priv = dev->dev_private;
3277
3278 /* Ensure that all CPU reads are completed before installing a fence
3279 * and all writes before removing the fence.
3280 */
3281 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3282 mb();
3283
3284 WARN(obj && (!obj->stride || !obj->tiling_mode),
3285 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3286 obj->stride, obj->tiling_mode);
3287
3288 if (IS_GEN2(dev))
3289 i830_write_fence_reg(dev, reg, obj);
3290 else if (IS_GEN3(dev))
3291 i915_write_fence_reg(dev, reg, obj);
3292 else if (INTEL_INFO(dev)->gen >= 4)
3293 i965_write_fence_reg(dev, reg, obj);
3294
3295 /* And similarly be paranoid that no direct access to this region
3296 * is reordered to before the fence is installed.
3297 */
3298 if (i915_gem_object_needs_mb(obj))
3299 mb();
3300 }
3301
3302 static inline int fence_number(struct drm_i915_private *dev_priv,
3303 struct drm_i915_fence_reg *fence)
3304 {
3305 return fence - dev_priv->fence_regs;
3306 }
3307
3308 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3309 struct drm_i915_fence_reg *fence,
3310 bool enable)
3311 {
3312 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3313 int reg = fence_number(dev_priv, fence);
3314
3315 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3316
3317 if (enable) {
3318 obj->fence_reg = reg;
3319 fence->obj = obj;
3320 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3321 } else {
3322 obj->fence_reg = I915_FENCE_REG_NONE;
3323 fence->obj = NULL;
3324 list_del_init(&fence->lru_list);
3325 }
3326 obj->fence_dirty = false;
3327 }
3328
3329 static int
3330 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3331 {
3332 if (obj->last_fenced_req) {
3333 int ret = i915_wait_request(obj->last_fenced_req);
3334 if (ret)
3335 return ret;
3336
3337 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3338 }
3339
3340 return 0;
3341 }
3342
3343 int
3344 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3345 {
3346 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3347 struct drm_i915_fence_reg *fence;
3348 int ret;
3349
3350 ret = i915_gem_object_wait_fence(obj);
3351 if (ret)
3352 return ret;
3353
3354 if (obj->fence_reg == I915_FENCE_REG_NONE)
3355 return 0;
3356
3357 fence = &dev_priv->fence_regs[obj->fence_reg];
3358
3359 if (WARN_ON(fence->pin_count))
3360 return -EBUSY;
3361
3362 i915_gem_object_fence_lost(obj);
3363 i915_gem_object_update_fence(obj, fence, false);
3364
3365 return 0;
3366 }
3367
3368 static struct drm_i915_fence_reg *
3369 i915_find_fence_reg(struct drm_device *dev)
3370 {
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372 struct drm_i915_fence_reg *reg, *avail;
3373 int i;
3374
3375 /* First try to find a free reg */
3376 avail = NULL;
3377 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3378 reg = &dev_priv->fence_regs[i];
3379 if (!reg->obj)
3380 return reg;
3381
3382 if (!reg->pin_count)
3383 avail = reg;
3384 }
3385
3386 if (avail == NULL)
3387 goto deadlock;
3388
3389 /* None available, try to steal one or wait for a user to finish */
3390 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3391 if (reg->pin_count)
3392 continue;
3393
3394 return reg;
3395 }
3396
3397 deadlock:
3398 /* Wait for completion of pending flips which consume fences */
3399 if (intel_has_pending_fb_unpin(dev))
3400 return ERR_PTR(-EAGAIN);
3401
3402 return ERR_PTR(-EDEADLK);
3403 }
3404
3405 /**
3406 * i915_gem_object_get_fence - set up fencing for an object
3407 * @obj: object to map through a fence reg
3408 *
3409 * When mapping objects through the GTT, userspace wants to be able to write
3410 * to them without having to worry about swizzling if the object is tiled.
3411 * This function walks the fence regs looking for a free one for @obj,
3412 * stealing one if it can't find any.
3413 *
3414 * It then sets up the reg based on the object's properties: address, pitch
3415 * and tiling format.
3416 *
3417 * For an untiled surface, this removes any existing fence.
3418 */
3419 int
3420 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3421 {
3422 struct drm_device *dev = obj->base.dev;
3423 struct drm_i915_private *dev_priv = dev->dev_private;
3424 bool enable = obj->tiling_mode != I915_TILING_NONE;
3425 struct drm_i915_fence_reg *reg;
3426 int ret;
3427
3428 /* Have we updated the tiling parameters upon the object and so
3429 * will need to serialise the write to the associated fence register?
3430 */
3431 if (obj->fence_dirty) {
3432 ret = i915_gem_object_wait_fence(obj);
3433 if (ret)
3434 return ret;
3435 }
3436
3437 /* Just update our place in the LRU if our fence is getting reused. */
3438 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3439 reg = &dev_priv->fence_regs[obj->fence_reg];
3440 if (!obj->fence_dirty) {
3441 list_move_tail(&reg->lru_list,
3442 &dev_priv->mm.fence_list);
3443 return 0;
3444 }
3445 } else if (enable) {
3446 if (WARN_ON(!obj->map_and_fenceable))
3447 return -EINVAL;
3448
3449 reg = i915_find_fence_reg(dev);
3450 if (IS_ERR(reg))
3451 return PTR_ERR(reg);
3452
3453 if (reg->obj) {
3454 struct drm_i915_gem_object *old = reg->obj;
3455
3456 ret = i915_gem_object_wait_fence(old);
3457 if (ret)
3458 return ret;
3459
3460 i915_gem_object_fence_lost(old);
3461 }
3462 } else
3463 return 0;
3464
3465 i915_gem_object_update_fence(obj, reg, enable);
3466
3467 return 0;
3468 }
3469
3470 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3471 unsigned long cache_level)
3472 {
3473 struct drm_mm_node *gtt_space = &vma->node;
3474 struct drm_mm_node *other;
3475
3476 /*
3477 * On some machines we have to be careful when putting differing types
3478 * of snoopable memory together to avoid the prefetcher crossing memory
3479 * domains and dying. During vm initialisation, we decide whether or not
3480 * these constraints apply and set the drm_mm.color_adjust
3481 * appropriately.
3482 */
3483 if (vma->vm->mm.color_adjust == NULL)
3484 return true;
3485
3486 if (!drm_mm_node_allocated(gtt_space))
3487 return true;
3488
3489 if (list_empty(&gtt_space->node_list))
3490 return true;
3491
3492 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3493 if (other->allocated && !other->hole_follows && other->color != cache_level)
3494 return false;
3495
3496 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3497 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3498 return false;
3499
3500 return true;
3501 }
3502
3503 /**
3504 * Finds free space in the GTT aperture and binds the object there.
3505 */
3506 static struct i915_vma *
3507 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3508 struct i915_address_space *vm,
3509 unsigned alignment,
3510 uint64_t flags,
3511 const struct i915_ggtt_view *view)
3512 {
3513 struct drm_device *dev = obj->base.dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 u32 size, fence_size, fence_alignment, unfenced_alignment;
3516 unsigned long start =
3517 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3518 unsigned long end =
3519 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3520 struct i915_vma *vma;
3521 int ret;
3522
3523 fence_size = i915_gem_get_gtt_size(dev,
3524 obj->base.size,
3525 obj->tiling_mode);
3526 fence_alignment = i915_gem_get_gtt_alignment(dev,
3527 obj->base.size,
3528 obj->tiling_mode, true);
3529 unfenced_alignment =
3530 i915_gem_get_gtt_alignment(dev,
3531 obj->base.size,
3532 obj->tiling_mode, false);
3533
3534 if (alignment == 0)
3535 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3536 unfenced_alignment;
3537 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3538 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3539 return ERR_PTR(-EINVAL);
3540 }
3541
3542 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3543
3544 /* If the object is bigger than the entire aperture, reject it early
3545 * before evicting everything in a vain attempt to find space.
3546 */
3547 if (obj->base.size > end) {
3548 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3549 obj->base.size,
3550 flags & PIN_MAPPABLE ? "mappable" : "total",
3551 end);
3552 return ERR_PTR(-E2BIG);
3553 }
3554
3555 ret = i915_gem_object_get_pages(obj);
3556 if (ret)
3557 return ERR_PTR(ret);
3558
3559 i915_gem_object_pin_pages(obj);
3560
3561 vma = i915_gem_obj_lookup_or_create_vma_view(obj, vm, view);
3562 if (IS_ERR(vma))
3563 goto err_unpin;
3564
3565 search_free:
3566 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3567 size, alignment,
3568 obj->cache_level,
3569 start, end,
3570 DRM_MM_SEARCH_DEFAULT,
3571 DRM_MM_CREATE_DEFAULT);
3572 if (ret) {
3573 ret = i915_gem_evict_something(dev, vm, size, alignment,
3574 obj->cache_level,
3575 start, end,
3576 flags);
3577 if (ret == 0)
3578 goto search_free;
3579
3580 goto err_free_vma;
3581 }
3582 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3583 ret = -EINVAL;
3584 goto err_remove_node;
3585 }
3586
3587 ret = i915_gem_gtt_prepare_object(obj);
3588 if (ret)
3589 goto err_remove_node;
3590
3591 trace_i915_vma_bind(vma, flags);
3592 ret = i915_vma_bind(vma, obj->cache_level,
3593 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3594 if (ret)
3595 goto err_finish_gtt;
3596
3597 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3598 list_add_tail(&vma->mm_list, &vm->inactive_list);
3599
3600 return vma;
3601
3602 err_finish_gtt:
3603 i915_gem_gtt_finish_object(obj);
3604 err_remove_node:
3605 drm_mm_remove_node(&vma->node);
3606 err_free_vma:
3607 i915_gem_vma_destroy(vma);
3608 vma = ERR_PTR(ret);
3609 err_unpin:
3610 i915_gem_object_unpin_pages(obj);
3611 return vma;
3612 }
3613
3614 bool
3615 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3616 bool force)
3617 {
3618 /* If we don't have a page list set up, then we're not pinned
3619 * to GPU, and we can ignore the cache flush because it'll happen
3620 * again at bind time.
3621 */
3622 if (obj->pages == NULL)
3623 return false;
3624
3625 /*
3626 * Stolen memory is always coherent with the GPU as it is explicitly
3627 * marked as wc by the system, or the system is cache-coherent.
3628 */
3629 if (obj->stolen || obj->phys_handle)
3630 return false;
3631
3632 /* If the GPU is snooping the contents of the CPU cache,
3633 * we do not need to manually clear the CPU cache lines. However,
3634 * the caches are only snooped when the render cache is
3635 * flushed/invalidated. As we always have to emit invalidations
3636 * and flushes when moving into and out of the RENDER domain, correct
3637 * snooping behaviour occurs naturally as the result of our domain
3638 * tracking.
3639 */
3640 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3641 obj->cache_dirty = true;
3642 return false;
3643 }
3644
3645 trace_i915_gem_object_clflush(obj);
3646 drm_clflush_sg(obj->pages);
3647 obj->cache_dirty = false;
3648
3649 return true;
3650 }
3651
3652 /** Flushes the GTT write domain for the object if it's dirty. */
3653 static void
3654 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3655 {
3656 uint32_t old_write_domain;
3657
3658 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3659 return;
3660
3661 /* No actual flushing is required for the GTT write domain. Writes
3662 * to it immediately go to main memory as far as we know, so there's
3663 * no chipset flush. It also doesn't land in render cache.
3664 *
3665 * However, we do have to enforce the order so that all writes through
3666 * the GTT land before any writes to the device, such as updates to
3667 * the GATT itself.
3668 */
3669 wmb();
3670
3671 old_write_domain = obj->base.write_domain;
3672 obj->base.write_domain = 0;
3673
3674 intel_fb_obj_flush(obj, false);
3675
3676 trace_i915_gem_object_change_domain(obj,
3677 obj->base.read_domains,
3678 old_write_domain);
3679 }
3680
3681 /** Flushes the CPU write domain for the object if it's dirty. */
3682 static void
3683 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3684 {
3685 uint32_t old_write_domain;
3686
3687 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3688 return;
3689
3690 if (i915_gem_clflush_object(obj, obj->pin_display))
3691 i915_gem_chipset_flush(obj->base.dev);
3692
3693 old_write_domain = obj->base.write_domain;
3694 obj->base.write_domain = 0;
3695
3696 intel_fb_obj_flush(obj, false);
3697
3698 trace_i915_gem_object_change_domain(obj,
3699 obj->base.read_domains,
3700 old_write_domain);
3701 }
3702
3703 /**
3704 * Moves a single object to the GTT read, and possibly write domain.
3705 *
3706 * This function returns when the move is complete, including waiting on
3707 * flushes to occur.
3708 */
3709 int
3710 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3711 {
3712 uint32_t old_write_domain, old_read_domains;
3713 struct i915_vma *vma;
3714 int ret;
3715
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3718
3719 ret = i915_gem_object_wait_rendering(obj, !write);
3720 if (ret)
3721 return ret;
3722
3723 i915_gem_object_retire(obj);
3724
3725 /* Flush and acquire obj->pages so that we are coherent through
3726 * direct access in memory with previous cached writes through
3727 * shmemfs and that our cache domain tracking remains valid.
3728 * For example, if the obj->filp was moved to swap without us
3729 * being notified and releasing the pages, we would mistakenly
3730 * continue to assume that the obj remained out of the CPU cached
3731 * domain.
3732 */
3733 ret = i915_gem_object_get_pages(obj);
3734 if (ret)
3735 return ret;
3736
3737 i915_gem_object_flush_cpu_write_domain(obj);
3738
3739 /* Serialise direct access to this object with the barriers for
3740 * coherent writes from the GPU, by effectively invalidating the
3741 * GTT domain upon first access.
3742 */
3743 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3744 mb();
3745
3746 old_write_domain = obj->base.write_domain;
3747 old_read_domains = obj->base.read_domains;
3748
3749 /* It should now be out of any other write domains, and we can update
3750 * the domain values for our changes.
3751 */
3752 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3753 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3754 if (write) {
3755 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3756 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3757 obj->dirty = 1;
3758 }
3759
3760 if (write)
3761 intel_fb_obj_invalidate(obj, NULL);
3762
3763 trace_i915_gem_object_change_domain(obj,
3764 old_read_domains,
3765 old_write_domain);
3766
3767 /* And bump the LRU for this access */
3768 vma = i915_gem_obj_to_ggtt(obj);
3769 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3770 list_move_tail(&vma->mm_list,
3771 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3772
3773 return 0;
3774 }
3775
3776 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3777 enum i915_cache_level cache_level)
3778 {
3779 struct drm_device *dev = obj->base.dev;
3780 struct i915_vma *vma, *next;
3781 int ret;
3782
3783 if (obj->cache_level == cache_level)
3784 return 0;
3785
3786 if (i915_gem_obj_is_pinned(obj)) {
3787 DRM_DEBUG("can not change the cache level of pinned objects\n");
3788 return -EBUSY;
3789 }
3790
3791 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3792 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3793 ret = i915_vma_unbind(vma);
3794 if (ret)
3795 return ret;
3796 }
3797 }
3798
3799 if (i915_gem_obj_bound_any(obj)) {
3800 ret = i915_gem_object_finish_gpu(obj);
3801 if (ret)
3802 return ret;
3803
3804 i915_gem_object_finish_gtt(obj);
3805
3806 /* Before SandyBridge, you could not use tiling or fence
3807 * registers with snooped memory, so relinquish any fences
3808 * currently pointing to our region in the aperture.
3809 */
3810 if (INTEL_INFO(dev)->gen < 6) {
3811 ret = i915_gem_object_put_fence(obj);
3812 if (ret)
3813 return ret;
3814 }
3815
3816 list_for_each_entry(vma, &obj->vma_list, vma_link)
3817 if (drm_mm_node_allocated(&vma->node)) {
3818 ret = i915_vma_bind(vma, cache_level,
3819 vma->bound & GLOBAL_BIND);
3820 if (ret)
3821 return ret;
3822 }
3823 }
3824
3825 list_for_each_entry(vma, &obj->vma_list, vma_link)
3826 vma->node.color = cache_level;
3827 obj->cache_level = cache_level;
3828
3829 if (obj->cache_dirty &&
3830 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3831 cpu_write_needs_clflush(obj)) {
3832 if (i915_gem_clflush_object(obj, true))
3833 i915_gem_chipset_flush(obj->base.dev);
3834 }
3835
3836 return 0;
3837 }
3838
3839 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file)
3841 {
3842 struct drm_i915_gem_caching *args = data;
3843 struct drm_i915_gem_object *obj;
3844 int ret;
3845
3846 ret = i915_mutex_lock_interruptible(dev);
3847 if (ret)
3848 return ret;
3849
3850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851 if (&obj->base == NULL) {
3852 ret = -ENOENT;
3853 goto unlock;
3854 }
3855
3856 switch (obj->cache_level) {
3857 case I915_CACHE_LLC:
3858 case I915_CACHE_L3_LLC:
3859 args->caching = I915_CACHING_CACHED;
3860 break;
3861
3862 case I915_CACHE_WT:
3863 args->caching = I915_CACHING_DISPLAY;
3864 break;
3865
3866 default:
3867 args->caching = I915_CACHING_NONE;
3868 break;
3869 }
3870
3871 drm_gem_object_unreference(&obj->base);
3872 unlock:
3873 mutex_unlock(&dev->struct_mutex);
3874 return ret;
3875 }
3876
3877 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file)
3879 {
3880 struct drm_i915_gem_caching *args = data;
3881 struct drm_i915_gem_object *obj;
3882 enum i915_cache_level level;
3883 int ret;
3884
3885 switch (args->caching) {
3886 case I915_CACHING_NONE:
3887 level = I915_CACHE_NONE;
3888 break;
3889 case I915_CACHING_CACHED:
3890 level = I915_CACHE_LLC;
3891 break;
3892 case I915_CACHING_DISPLAY:
3893 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894 break;
3895 default:
3896 return -EINVAL;
3897 }
3898
3899 ret = i915_mutex_lock_interruptible(dev);
3900 if (ret)
3901 return ret;
3902
3903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904 if (&obj->base == NULL) {
3905 ret = -ENOENT;
3906 goto unlock;
3907 }
3908
3909 ret = i915_gem_object_set_cache_level(obj, level);
3910
3911 drm_gem_object_unreference(&obj->base);
3912 unlock:
3913 mutex_unlock(&dev->struct_mutex);
3914 return ret;
3915 }
3916
3917 static bool is_pin_display(struct drm_i915_gem_object *obj)
3918 {
3919 struct i915_vma *vma;
3920
3921 vma = i915_gem_obj_to_ggtt(obj);
3922 if (!vma)
3923 return false;
3924
3925 /* There are 2 sources that pin objects:
3926 * 1. The display engine (scanouts, sprites, cursors);
3927 * 2. Reservations for execbuffer;
3928 *
3929 * We can ignore reservations as we hold the struct_mutex and
3930 * are only called outside of the reservation path.
3931 */
3932 return vma->pin_count;
3933 }
3934
3935 /*
3936 * Prepare buffer for display plane (scanout, cursors, etc).
3937 * Can be called from an uninterruptible phase (modesetting) and allows
3938 * any flushes to be pipelined (for pageflips).
3939 */
3940 int
3941 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3942 u32 alignment,
3943 struct intel_engine_cs *pipelined)
3944 {
3945 u32 old_read_domains, old_write_domain;
3946 bool was_pin_display;
3947 int ret;
3948
3949 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3950 ret = i915_gem_object_sync(obj, pipelined);
3951 if (ret)
3952 return ret;
3953 }
3954
3955 /* Mark the pin_display early so that we account for the
3956 * display coherency whilst setting up the cache domains.
3957 */
3958 was_pin_display = obj->pin_display;
3959 obj->pin_display = true;
3960
3961 /* The display engine is not coherent with the LLC cache on gen6. As
3962 * a result, we make sure that the pinning that is about to occur is
3963 * done with uncached PTEs. This is lowest common denominator for all
3964 * chipsets.
3965 *
3966 * However for gen6+, we could do better by using the GFDT bit instead
3967 * of uncaching, which would allow us to flush all the LLC-cached data
3968 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3969 */
3970 ret = i915_gem_object_set_cache_level(obj,
3971 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3972 if (ret)
3973 goto err_unpin_display;
3974
3975 /* As the user may map the buffer once pinned in the display plane
3976 * (e.g. libkms for the bootup splash), we have to ensure that we
3977 * always use map_and_fenceable for all scanout buffers.
3978 */
3979 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3980 if (ret)
3981 goto err_unpin_display;
3982
3983 i915_gem_object_flush_cpu_write_domain(obj);
3984
3985 old_write_domain = obj->base.write_domain;
3986 old_read_domains = obj->base.read_domains;
3987
3988 /* It should now be out of any other write domains, and we can update
3989 * the domain values for our changes.
3990 */
3991 obj->base.write_domain = 0;
3992 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3993
3994 trace_i915_gem_object_change_domain(obj,
3995 old_read_domains,
3996 old_write_domain);
3997
3998 return 0;
3999
4000 err_unpin_display:
4001 WARN_ON(was_pin_display != is_pin_display(obj));
4002 obj->pin_display = was_pin_display;
4003 return ret;
4004 }
4005
4006 void
4007 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
4008 {
4009 i915_gem_object_ggtt_unpin(obj);
4010 obj->pin_display = is_pin_display(obj);
4011 }
4012
4013 int
4014 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4015 {
4016 int ret;
4017
4018 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4019 return 0;
4020
4021 ret = i915_gem_object_wait_rendering(obj, false);
4022 if (ret)
4023 return ret;
4024
4025 /* Ensure that we invalidate the GPU's caches and TLBs. */
4026 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4027 return 0;
4028 }
4029
4030 /**
4031 * Moves a single object to the CPU read, and possibly write domain.
4032 *
4033 * This function returns when the move is complete, including waiting on
4034 * flushes to occur.
4035 */
4036 int
4037 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4038 {
4039 uint32_t old_write_domain, old_read_domains;
4040 int ret;
4041
4042 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4043 return 0;
4044
4045 ret = i915_gem_object_wait_rendering(obj, !write);
4046 if (ret)
4047 return ret;
4048
4049 i915_gem_object_retire(obj);
4050 i915_gem_object_flush_gtt_write_domain(obj);
4051
4052 old_write_domain = obj->base.write_domain;
4053 old_read_domains = obj->base.read_domains;
4054
4055 /* Flush the CPU cache if it's still invalid. */
4056 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4057 i915_gem_clflush_object(obj, false);
4058
4059 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4060 }
4061
4062 /* It should now be out of any other write domains, and we can update
4063 * the domain values for our changes.
4064 */
4065 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4066
4067 /* If we're writing through the CPU, then the GPU read domains will
4068 * need to be invalidated at next use.
4069 */
4070 if (write) {
4071 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4072 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4073 }
4074
4075 if (write)
4076 intel_fb_obj_invalidate(obj, NULL);
4077
4078 trace_i915_gem_object_change_domain(obj,
4079 old_read_domains,
4080 old_write_domain);
4081
4082 return 0;
4083 }
4084
4085 /* Throttle our rendering by waiting until the ring has completed our requests
4086 * emitted over 20 msec ago.
4087 *
4088 * Note that if we were to use the current jiffies each time around the loop,
4089 * we wouldn't escape the function with any frames outstanding if the time to
4090 * render a frame was over 20ms.
4091 *
4092 * This should get us reasonable parallelism between CPU and GPU but also
4093 * relatively low latency when blocking on a particular request to finish.
4094 */
4095 static int
4096 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4097 {
4098 struct drm_i915_private *dev_priv = dev->dev_private;
4099 struct drm_i915_file_private *file_priv = file->driver_priv;
4100 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4101 struct drm_i915_gem_request *request, *target = NULL;
4102 unsigned reset_counter;
4103 int ret;
4104
4105 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4106 if (ret)
4107 return ret;
4108
4109 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4110 if (ret)
4111 return ret;
4112
4113 spin_lock(&file_priv->mm.lock);
4114 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4115 if (time_after_eq(request->emitted_jiffies, recent_enough))
4116 break;
4117
4118 target = request;
4119 }
4120 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4121 if (target)
4122 i915_gem_request_reference(target);
4123 spin_unlock(&file_priv->mm.lock);
4124
4125 if (target == NULL)
4126 return 0;
4127
4128 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4129 if (ret == 0)
4130 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4131
4132 mutex_lock(&dev->struct_mutex);
4133 i915_gem_request_unreference(target);
4134 mutex_unlock(&dev->struct_mutex);
4135
4136 return ret;
4137 }
4138
4139 static bool
4140 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4141 {
4142 struct drm_i915_gem_object *obj = vma->obj;
4143
4144 if (alignment &&
4145 vma->node.start & (alignment - 1))
4146 return true;
4147
4148 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4149 return true;
4150
4151 if (flags & PIN_OFFSET_BIAS &&
4152 vma->node.start < (flags & PIN_OFFSET_MASK))
4153 return true;
4154
4155 return false;
4156 }
4157
4158 int
4159 i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
4160 struct i915_address_space *vm,
4161 uint32_t alignment,
4162 uint64_t flags,
4163 const struct i915_ggtt_view *view)
4164 {
4165 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4166 struct i915_vma *vma;
4167 unsigned bound;
4168 int ret;
4169
4170 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4171 return -ENODEV;
4172
4173 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4174 return -EINVAL;
4175
4176 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4177 return -EINVAL;
4178
4179 vma = i915_gem_obj_to_vma_view(obj, vm, view);
4180 if (vma) {
4181 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4182 return -EBUSY;
4183
4184 if (i915_vma_misplaced(vma, alignment, flags)) {
4185 WARN(vma->pin_count,
4186 "bo is already pinned with incorrect alignment:"
4187 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4188 " obj->map_and_fenceable=%d\n",
4189 i915_gem_obj_offset_view(obj, vm, view->type),
4190 alignment,
4191 !!(flags & PIN_MAPPABLE),
4192 obj->map_and_fenceable);
4193 ret = i915_vma_unbind(vma);
4194 if (ret)
4195 return ret;
4196
4197 vma = NULL;
4198 }
4199 }
4200
4201 bound = vma ? vma->bound : 0;
4202 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4203 vma = i915_gem_object_bind_to_vm(obj, vm, alignment,
4204 flags, view);
4205 if (IS_ERR(vma))
4206 return PTR_ERR(vma);
4207 }
4208
4209 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND)) {
4210 ret = i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND);
4211 if (ret)
4212 return ret;
4213 }
4214
4215 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4216 bool mappable, fenceable;
4217 u32 fence_size, fence_alignment;
4218
4219 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4220 obj->base.size,
4221 obj->tiling_mode);
4222 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4223 obj->base.size,
4224 obj->tiling_mode,
4225 true);
4226
4227 fenceable = (vma->node.size == fence_size &&
4228 (vma->node.start & (fence_alignment - 1)) == 0);
4229
4230 mappable = (vma->node.start + obj->base.size <=
4231 dev_priv->gtt.mappable_end);
4232
4233 obj->map_and_fenceable = mappable && fenceable;
4234 }
4235
4236 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4237
4238 vma->pin_count++;
4239 if (flags & PIN_MAPPABLE)
4240 obj->pin_mappable |= true;
4241
4242 return 0;
4243 }
4244
4245 void
4246 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4247 {
4248 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4249
4250 BUG_ON(!vma);
4251 BUG_ON(vma->pin_count == 0);
4252 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4253
4254 if (--vma->pin_count == 0)
4255 obj->pin_mappable = false;
4256 }
4257
4258 bool
4259 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4260 {
4261 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4262 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4263 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4264
4265 WARN_ON(!ggtt_vma ||
4266 dev_priv->fence_regs[obj->fence_reg].pin_count >
4267 ggtt_vma->pin_count);
4268 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4269 return true;
4270 } else
4271 return false;
4272 }
4273
4274 void
4275 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4276 {
4277 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4278 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4279 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4280 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4281 }
4282 }
4283
4284 int
4285 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4286 struct drm_file *file)
4287 {
4288 struct drm_i915_gem_busy *args = data;
4289 struct drm_i915_gem_object *obj;
4290 int ret;
4291
4292 ret = i915_mutex_lock_interruptible(dev);
4293 if (ret)
4294 return ret;
4295
4296 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4297 if (&obj->base == NULL) {
4298 ret = -ENOENT;
4299 goto unlock;
4300 }
4301
4302 /* Count all active objects as busy, even if they are currently not used
4303 * by the gpu. Users of this interface expect objects to eventually
4304 * become non-busy without any further actions, therefore emit any
4305 * necessary flushes here.
4306 */
4307 ret = i915_gem_object_flush_active(obj);
4308
4309 args->busy = obj->active;
4310 if (obj->last_read_req) {
4311 struct intel_engine_cs *ring;
4312 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4313 ring = i915_gem_request_get_ring(obj->last_read_req);
4314 args->busy |= intel_ring_flag(ring) << 16;
4315 }
4316
4317 drm_gem_object_unreference(&obj->base);
4318 unlock:
4319 mutex_unlock(&dev->struct_mutex);
4320 return ret;
4321 }
4322
4323 int
4324 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4325 struct drm_file *file_priv)
4326 {
4327 return i915_gem_ring_throttle(dev, file_priv);
4328 }
4329
4330 int
4331 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4332 struct drm_file *file_priv)
4333 {
4334 struct drm_i915_private *dev_priv = dev->dev_private;
4335 struct drm_i915_gem_madvise *args = data;
4336 struct drm_i915_gem_object *obj;
4337 int ret;
4338
4339 switch (args->madv) {
4340 case I915_MADV_DONTNEED:
4341 case I915_MADV_WILLNEED:
4342 break;
4343 default:
4344 return -EINVAL;
4345 }
4346
4347 ret = i915_mutex_lock_interruptible(dev);
4348 if (ret)
4349 return ret;
4350
4351 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4352 if (&obj->base == NULL) {
4353 ret = -ENOENT;
4354 goto unlock;
4355 }
4356
4357 if (i915_gem_obj_is_pinned(obj)) {
4358 ret = -EINVAL;
4359 goto out;
4360 }
4361
4362 if (obj->pages &&
4363 obj->tiling_mode != I915_TILING_NONE &&
4364 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4365 if (obj->madv == I915_MADV_WILLNEED)
4366 i915_gem_object_unpin_pages(obj);
4367 if (args->madv == I915_MADV_WILLNEED)
4368 i915_gem_object_pin_pages(obj);
4369 }
4370
4371 if (obj->madv != __I915_MADV_PURGED)
4372 obj->madv = args->madv;
4373
4374 /* if the object is no longer attached, discard its backing storage */
4375 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4376 i915_gem_object_truncate(obj);
4377
4378 args->retained = obj->madv != __I915_MADV_PURGED;
4379
4380 out:
4381 drm_gem_object_unreference(&obj->base);
4382 unlock:
4383 mutex_unlock(&dev->struct_mutex);
4384 return ret;
4385 }
4386
4387 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4388 const struct drm_i915_gem_object_ops *ops)
4389 {
4390 INIT_LIST_HEAD(&obj->global_list);
4391 INIT_LIST_HEAD(&obj->ring_list);
4392 INIT_LIST_HEAD(&obj->obj_exec_link);
4393 INIT_LIST_HEAD(&obj->vma_list);
4394 INIT_LIST_HEAD(&obj->batch_pool_list);
4395
4396 obj->ops = ops;
4397
4398 obj->fence_reg = I915_FENCE_REG_NONE;
4399 obj->madv = I915_MADV_WILLNEED;
4400
4401 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4402 }
4403
4404 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4405 .get_pages = i915_gem_object_get_pages_gtt,
4406 .put_pages = i915_gem_object_put_pages_gtt,
4407 };
4408
4409 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4410 size_t size)
4411 {
4412 struct drm_i915_gem_object *obj;
4413 struct address_space *mapping;
4414 gfp_t mask;
4415
4416 obj = i915_gem_object_alloc(dev);
4417 if (obj == NULL)
4418 return NULL;
4419
4420 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4421 i915_gem_object_free(obj);
4422 return NULL;
4423 }
4424
4425 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4426 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4427 /* 965gm cannot relocate objects above 4GiB. */
4428 mask &= ~__GFP_HIGHMEM;
4429 mask |= __GFP_DMA32;
4430 }
4431
4432 mapping = file_inode(obj->base.filp)->i_mapping;
4433 mapping_set_gfp_mask(mapping, mask);
4434
4435 i915_gem_object_init(obj, &i915_gem_object_ops);
4436
4437 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4438 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4439
4440 if (HAS_LLC(dev)) {
4441 /* On some devices, we can have the GPU use the LLC (the CPU
4442 * cache) for about a 10% performance improvement
4443 * compared to uncached. Graphics requests other than
4444 * display scanout are coherent with the CPU in
4445 * accessing this cache. This means in this mode we
4446 * don't need to clflush on the CPU side, and on the
4447 * GPU side we only need to flush internal caches to
4448 * get data visible to the CPU.
4449 *
4450 * However, we maintain the display planes as UC, and so
4451 * need to rebind when first used as such.
4452 */
4453 obj->cache_level = I915_CACHE_LLC;
4454 } else
4455 obj->cache_level = I915_CACHE_NONE;
4456
4457 trace_i915_gem_object_create(obj);
4458
4459 return obj;
4460 }
4461
4462 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4463 {
4464 /* If we are the last user of the backing storage (be it shmemfs
4465 * pages or stolen etc), we know that the pages are going to be
4466 * immediately released. In this case, we can then skip copying
4467 * back the contents from the GPU.
4468 */
4469
4470 if (obj->madv != I915_MADV_WILLNEED)
4471 return false;
4472
4473 if (obj->base.filp == NULL)
4474 return true;
4475
4476 /* At first glance, this looks racy, but then again so would be
4477 * userspace racing mmap against close. However, the first external
4478 * reference to the filp can only be obtained through the
4479 * i915_gem_mmap_ioctl() which safeguards us against the user
4480 * acquiring such a reference whilst we are in the middle of
4481 * freeing the object.
4482 */
4483 return atomic_long_read(&obj->base.filp->f_count) == 1;
4484 }
4485
4486 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4487 {
4488 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4489 struct drm_device *dev = obj->base.dev;
4490 struct drm_i915_private *dev_priv = dev->dev_private;
4491 struct i915_vma *vma, *next;
4492
4493 intel_runtime_pm_get(dev_priv);
4494
4495 trace_i915_gem_object_destroy(obj);
4496
4497 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4498 int ret;
4499
4500 vma->pin_count = 0;
4501 ret = i915_vma_unbind(vma);
4502 if (WARN_ON(ret == -ERESTARTSYS)) {
4503 bool was_interruptible;
4504
4505 was_interruptible = dev_priv->mm.interruptible;
4506 dev_priv->mm.interruptible = false;
4507
4508 WARN_ON(i915_vma_unbind(vma));
4509
4510 dev_priv->mm.interruptible = was_interruptible;
4511 }
4512 }
4513
4514 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4515 * before progressing. */
4516 if (obj->stolen)
4517 i915_gem_object_unpin_pages(obj);
4518
4519 WARN_ON(obj->frontbuffer_bits);
4520
4521 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4522 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4523 obj->tiling_mode != I915_TILING_NONE)
4524 i915_gem_object_unpin_pages(obj);
4525
4526 if (WARN_ON(obj->pages_pin_count))
4527 obj->pages_pin_count = 0;
4528 if (discard_backing_storage(obj))
4529 obj->madv = I915_MADV_DONTNEED;
4530 i915_gem_object_put_pages(obj);
4531 i915_gem_object_free_mmap_offset(obj);
4532
4533 BUG_ON(obj->pages);
4534
4535 if (obj->base.import_attach)
4536 drm_prime_gem_destroy(&obj->base, NULL);
4537
4538 if (obj->ops->release)
4539 obj->ops->release(obj);
4540
4541 drm_gem_object_release(&obj->base);
4542 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4543
4544 kfree(obj->bit_17);
4545 i915_gem_object_free(obj);
4546
4547 intel_runtime_pm_put(dev_priv);
4548 }
4549
4550 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
4551 struct i915_address_space *vm,
4552 const struct i915_ggtt_view *view)
4553 {
4554 struct i915_vma *vma;
4555 list_for_each_entry(vma, &obj->vma_list, vma_link)
4556 if (vma->vm == vm && vma->ggtt_view.type == view->type)
4557 return vma;
4558
4559 return NULL;
4560 }
4561
4562 void i915_gem_vma_destroy(struct i915_vma *vma)
4563 {
4564 struct i915_address_space *vm = NULL;
4565 WARN_ON(vma->node.allocated);
4566
4567 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4568 if (!list_empty(&vma->exec_list))
4569 return;
4570
4571 vm = vma->vm;
4572
4573 if (!i915_is_ggtt(vm))
4574 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4575
4576 list_del(&vma->vma_link);
4577
4578 kfree(vma);
4579 }
4580
4581 static void
4582 i915_gem_stop_ringbuffers(struct drm_device *dev)
4583 {
4584 struct drm_i915_private *dev_priv = dev->dev_private;
4585 struct intel_engine_cs *ring;
4586 int i;
4587
4588 for_each_ring(ring, dev_priv, i)
4589 dev_priv->gt.stop_ring(ring);
4590 }
4591
4592 int
4593 i915_gem_suspend(struct drm_device *dev)
4594 {
4595 struct drm_i915_private *dev_priv = dev->dev_private;
4596 int ret = 0;
4597
4598 mutex_lock(&dev->struct_mutex);
4599 ret = i915_gpu_idle(dev);
4600 if (ret)
4601 goto err;
4602
4603 i915_gem_retire_requests(dev);
4604
4605 /* Under UMS, be paranoid and evict. */
4606 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4607 i915_gem_evict_everything(dev);
4608
4609 i915_gem_stop_ringbuffers(dev);
4610 mutex_unlock(&dev->struct_mutex);
4611
4612 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4613 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4614 flush_delayed_work(&dev_priv->mm.idle_work);
4615
4616 /* Assert that we sucessfully flushed all the work and
4617 * reset the GPU back to its idle, low power state.
4618 */
4619 WARN_ON(dev_priv->mm.busy);
4620
4621 return 0;
4622
4623 err:
4624 mutex_unlock(&dev->struct_mutex);
4625 return ret;
4626 }
4627
4628 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4629 {
4630 struct drm_device *dev = ring->dev;
4631 struct drm_i915_private *dev_priv = dev->dev_private;
4632 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4633 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4634 int i, ret;
4635
4636 if (!HAS_L3_DPF(dev) || !remap_info)
4637 return 0;
4638
4639 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4640 if (ret)
4641 return ret;
4642
4643 /*
4644 * Note: We do not worry about the concurrent register cacheline hang
4645 * here because no other code should access these registers other than
4646 * at initialization time.
4647 */
4648 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4649 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4650 intel_ring_emit(ring, reg_base + i);
4651 intel_ring_emit(ring, remap_info[i/4]);
4652 }
4653
4654 intel_ring_advance(ring);
4655
4656 return ret;
4657 }
4658
4659 void i915_gem_init_swizzling(struct drm_device *dev)
4660 {
4661 struct drm_i915_private *dev_priv = dev->dev_private;
4662
4663 if (INTEL_INFO(dev)->gen < 5 ||
4664 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4665 return;
4666
4667 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4668 DISP_TILE_SURFACE_SWIZZLING);
4669
4670 if (IS_GEN5(dev))
4671 return;
4672
4673 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4674 if (IS_GEN6(dev))
4675 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4676 else if (IS_GEN7(dev))
4677 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4678 else if (IS_GEN8(dev))
4679 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4680 else
4681 BUG();
4682 }
4683
4684 static bool
4685 intel_enable_blt(struct drm_device *dev)
4686 {
4687 if (!HAS_BLT(dev))
4688 return false;
4689
4690 /* The blitter was dysfunctional on early prototypes */
4691 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4692 DRM_INFO("BLT not supported on this pre-production hardware;"
4693 " graphics performance will be degraded.\n");
4694 return false;
4695 }
4696
4697 return true;
4698 }
4699
4700 static void init_unused_ring(struct drm_device *dev, u32 base)
4701 {
4702 struct drm_i915_private *dev_priv = dev->dev_private;
4703
4704 I915_WRITE(RING_CTL(base), 0);
4705 I915_WRITE(RING_HEAD(base), 0);
4706 I915_WRITE(RING_TAIL(base), 0);
4707 I915_WRITE(RING_START(base), 0);
4708 }
4709
4710 static void init_unused_rings(struct drm_device *dev)
4711 {
4712 if (IS_I830(dev)) {
4713 init_unused_ring(dev, PRB1_BASE);
4714 init_unused_ring(dev, SRB0_BASE);
4715 init_unused_ring(dev, SRB1_BASE);
4716 init_unused_ring(dev, SRB2_BASE);
4717 init_unused_ring(dev, SRB3_BASE);
4718 } else if (IS_GEN2(dev)) {
4719 init_unused_ring(dev, SRB0_BASE);
4720 init_unused_ring(dev, SRB1_BASE);
4721 } else if (IS_GEN3(dev)) {
4722 init_unused_ring(dev, PRB1_BASE);
4723 init_unused_ring(dev, PRB2_BASE);
4724 }
4725 }
4726
4727 int i915_gem_init_rings(struct drm_device *dev)
4728 {
4729 struct drm_i915_private *dev_priv = dev->dev_private;
4730 int ret;
4731
4732 ret = intel_init_render_ring_buffer(dev);
4733 if (ret)
4734 return ret;
4735
4736 if (HAS_BSD(dev)) {
4737 ret = intel_init_bsd_ring_buffer(dev);
4738 if (ret)
4739 goto cleanup_render_ring;
4740 }
4741
4742 if (intel_enable_blt(dev)) {
4743 ret = intel_init_blt_ring_buffer(dev);
4744 if (ret)
4745 goto cleanup_bsd_ring;
4746 }
4747
4748 if (HAS_VEBOX(dev)) {
4749 ret = intel_init_vebox_ring_buffer(dev);
4750 if (ret)
4751 goto cleanup_blt_ring;
4752 }
4753
4754 if (HAS_BSD2(dev)) {
4755 ret = intel_init_bsd2_ring_buffer(dev);
4756 if (ret)
4757 goto cleanup_vebox_ring;
4758 }
4759
4760 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4761 if (ret)
4762 goto cleanup_bsd2_ring;
4763
4764 return 0;
4765
4766 cleanup_bsd2_ring:
4767 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4768 cleanup_vebox_ring:
4769 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4770 cleanup_blt_ring:
4771 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4772 cleanup_bsd_ring:
4773 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4774 cleanup_render_ring:
4775 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4776
4777 return ret;
4778 }
4779
4780 int
4781 i915_gem_init_hw(struct drm_device *dev)
4782 {
4783 struct drm_i915_private *dev_priv = dev->dev_private;
4784 struct intel_engine_cs *ring;
4785 int ret, i;
4786
4787 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4788 return -EIO;
4789
4790 if (dev_priv->ellc_size)
4791 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4792
4793 if (IS_HASWELL(dev))
4794 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4795 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4796
4797 if (HAS_PCH_NOP(dev)) {
4798 if (IS_IVYBRIDGE(dev)) {
4799 u32 temp = I915_READ(GEN7_MSG_CTL);
4800 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4801 I915_WRITE(GEN7_MSG_CTL, temp);
4802 } else if (INTEL_INFO(dev)->gen >= 7) {
4803 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4804 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4805 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4806 }
4807 }
4808
4809 i915_gem_init_swizzling(dev);
4810
4811 /*
4812 * At least 830 can leave some of the unused rings
4813 * "active" (ie. head != tail) after resume which
4814 * will prevent c3 entry. Makes sure all unused rings
4815 * are totally idle.
4816 */
4817 init_unused_rings(dev);
4818
4819 for_each_ring(ring, dev_priv, i) {
4820 ret = ring->init_hw(ring);
4821 if (ret)
4822 return ret;
4823 }
4824
4825 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4826 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4827
4828 /*
4829 * XXX: Contexts should only be initialized once. Doing a switch to the
4830 * default context switch however is something we'd like to do after
4831 * reset or thaw (the latter may not actually be necessary for HW, but
4832 * goes with our code better). Context switching requires rings (for
4833 * the do_switch), but before enabling PPGTT. So don't move this.
4834 */
4835 ret = i915_gem_context_enable(dev_priv);
4836 if (ret && ret != -EIO) {
4837 DRM_ERROR("Context enable failed %d\n", ret);
4838 i915_gem_cleanup_ringbuffer(dev);
4839
4840 return ret;
4841 }
4842
4843 ret = i915_ppgtt_init_hw(dev);
4844 if (ret && ret != -EIO) {
4845 DRM_ERROR("PPGTT enable failed %d\n", ret);
4846 i915_gem_cleanup_ringbuffer(dev);
4847 }
4848
4849 return ret;
4850 }
4851
4852 int i915_gem_init(struct drm_device *dev)
4853 {
4854 struct drm_i915_private *dev_priv = dev->dev_private;
4855 int ret;
4856
4857 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4858 i915.enable_execlists);
4859
4860 mutex_lock(&dev->struct_mutex);
4861
4862 if (IS_VALLEYVIEW(dev)) {
4863 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4864 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4865 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4866 VLV_GTLC_ALLOWWAKEACK), 10))
4867 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4868 }
4869
4870 if (!i915.enable_execlists) {
4871 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4872 dev_priv->gt.init_rings = i915_gem_init_rings;
4873 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4874 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4875 } else {
4876 dev_priv->gt.do_execbuf = intel_execlists_submission;
4877 dev_priv->gt.init_rings = intel_logical_rings_init;
4878 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4879 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4880 }
4881
4882 ret = i915_gem_init_userptr(dev);
4883 if (ret)
4884 goto out_unlock;
4885
4886 i915_gem_init_global_gtt(dev);
4887
4888 ret = i915_gem_context_init(dev);
4889 if (ret)
4890 goto out_unlock;
4891
4892 ret = dev_priv->gt.init_rings(dev);
4893 if (ret)
4894 goto out_unlock;
4895
4896 ret = i915_gem_init_hw(dev);
4897 if (ret == -EIO) {
4898 /* Allow ring initialisation to fail by marking the GPU as
4899 * wedged. But we only want to do this where the GPU is angry,
4900 * for all other failure, such as an allocation failure, bail.
4901 */
4902 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4903 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4904 ret = 0;
4905 }
4906
4907 out_unlock:
4908 mutex_unlock(&dev->struct_mutex);
4909
4910 return ret;
4911 }
4912
4913 void
4914 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4915 {
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4917 struct intel_engine_cs *ring;
4918 int i;
4919
4920 for_each_ring(ring, dev_priv, i)
4921 dev_priv->gt.cleanup_ring(ring);
4922 }
4923
4924 static void
4925 init_ring_lists(struct intel_engine_cs *ring)
4926 {
4927 INIT_LIST_HEAD(&ring->active_list);
4928 INIT_LIST_HEAD(&ring->request_list);
4929 }
4930
4931 void i915_init_vm(struct drm_i915_private *dev_priv,
4932 struct i915_address_space *vm)
4933 {
4934 if (!i915_is_ggtt(vm))
4935 drm_mm_init(&vm->mm, vm->start, vm->total);
4936 vm->dev = dev_priv->dev;
4937 INIT_LIST_HEAD(&vm->active_list);
4938 INIT_LIST_HEAD(&vm->inactive_list);
4939 INIT_LIST_HEAD(&vm->global_link);
4940 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4941 }
4942
4943 void
4944 i915_gem_load(struct drm_device *dev)
4945 {
4946 struct drm_i915_private *dev_priv = dev->dev_private;
4947 int i;
4948
4949 dev_priv->slab =
4950 kmem_cache_create("i915_gem_object",
4951 sizeof(struct drm_i915_gem_object), 0,
4952 SLAB_HWCACHE_ALIGN,
4953 NULL);
4954
4955 INIT_LIST_HEAD(&dev_priv->vm_list);
4956 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4957
4958 INIT_LIST_HEAD(&dev_priv->context_list);
4959 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4960 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4961 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4962 for (i = 0; i < I915_NUM_RINGS; i++)
4963 init_ring_lists(&dev_priv->ring[i]);
4964 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4965 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4966 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4967 i915_gem_retire_work_handler);
4968 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4969 i915_gem_idle_work_handler);
4970 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4971
4972 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4973 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4974 I915_WRITE(MI_ARB_STATE,
4975 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4976 }
4977
4978 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4979
4980 /* Old X drivers will take 0-2 for front, back, depth buffers */
4981 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4982 dev_priv->fence_reg_start = 3;
4983
4984 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4985 dev_priv->num_fence_regs = 32;
4986 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4987 dev_priv->num_fence_regs = 16;
4988 else
4989 dev_priv->num_fence_regs = 8;
4990
4991 if (intel_vgpu_active(dev))
4992 dev_priv->num_fence_regs =
4993 I915_READ(vgtif_reg(avail_rs.fence_num));
4994
4995 /* Initialize fence registers to zero */
4996 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4997 i915_gem_restore_fences(dev);
4998
4999 i915_gem_detect_bit_6_swizzle(dev);
5000 init_waitqueue_head(&dev_priv->pending_flip_queue);
5001
5002 dev_priv->mm.interruptible = true;
5003
5004 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5005 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5006 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5007 register_shrinker(&dev_priv->mm.shrinker);
5008
5009 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5010 register_oom_notifier(&dev_priv->mm.oom_notifier);
5011
5012 i915_gem_batch_pool_init(dev, &dev_priv->mm.batch_pool);
5013
5014 mutex_init(&dev_priv->fb_tracking.lock);
5015 }
5016
5017 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5018 {
5019 struct drm_i915_file_private *file_priv = file->driver_priv;
5020
5021 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5022
5023 /* Clean up our request list when the client is going away, so that
5024 * later retire_requests won't dereference our soon-to-be-gone
5025 * file_priv.
5026 */
5027 spin_lock(&file_priv->mm.lock);
5028 while (!list_empty(&file_priv->mm.request_list)) {
5029 struct drm_i915_gem_request *request;
5030
5031 request = list_first_entry(&file_priv->mm.request_list,
5032 struct drm_i915_gem_request,
5033 client_list);
5034 list_del(&request->client_list);
5035 request->file_priv = NULL;
5036 }
5037 spin_unlock(&file_priv->mm.lock);
5038 }
5039
5040 static void
5041 i915_gem_file_idle_work_handler(struct work_struct *work)
5042 {
5043 struct drm_i915_file_private *file_priv =
5044 container_of(work, typeof(*file_priv), mm.idle_work.work);
5045
5046 atomic_set(&file_priv->rps_wait_boost, false);
5047 }
5048
5049 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5050 {
5051 struct drm_i915_file_private *file_priv;
5052 int ret;
5053
5054 DRM_DEBUG_DRIVER("\n");
5055
5056 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5057 if (!file_priv)
5058 return -ENOMEM;
5059
5060 file->driver_priv = file_priv;
5061 file_priv->dev_priv = dev->dev_private;
5062 file_priv->file = file;
5063
5064 spin_lock_init(&file_priv->mm.lock);
5065 INIT_LIST_HEAD(&file_priv->mm.request_list);
5066 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5067 i915_gem_file_idle_work_handler);
5068
5069 ret = i915_gem_context_open(dev, file);
5070 if (ret)
5071 kfree(file_priv);
5072
5073 return ret;
5074 }
5075
5076 /**
5077 * i915_gem_track_fb - update frontbuffer tracking
5078 * old: current GEM buffer for the frontbuffer slots
5079 * new: new GEM buffer for the frontbuffer slots
5080 * frontbuffer_bits: bitmask of frontbuffer slots
5081 *
5082 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5083 * from @old and setting them in @new. Both @old and @new can be NULL.
5084 */
5085 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5086 struct drm_i915_gem_object *new,
5087 unsigned frontbuffer_bits)
5088 {
5089 if (old) {
5090 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5091 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5092 old->frontbuffer_bits &= ~frontbuffer_bits;
5093 }
5094
5095 if (new) {
5096 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5097 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5098 new->frontbuffer_bits |= frontbuffer_bits;
5099 }
5100 }
5101
5102 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5103 {
5104 if (!mutex_is_locked(mutex))
5105 return false;
5106
5107 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5108 return mutex->owner == task;
5109 #else
5110 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5111 return false;
5112 #endif
5113 }
5114
5115 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5116 {
5117 if (!mutex_trylock(&dev->struct_mutex)) {
5118 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5119 return false;
5120
5121 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5122 return false;
5123
5124 *unlock = false;
5125 } else
5126 *unlock = true;
5127
5128 return true;
5129 }
5130
5131 static int num_vma_bound(struct drm_i915_gem_object *obj)
5132 {
5133 struct i915_vma *vma;
5134 int count = 0;
5135
5136 list_for_each_entry(vma, &obj->vma_list, vma_link)
5137 if (drm_mm_node_allocated(&vma->node))
5138 count++;
5139
5140 return count;
5141 }
5142
5143 static unsigned long
5144 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5145 {
5146 struct drm_i915_private *dev_priv =
5147 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5148 struct drm_device *dev = dev_priv->dev;
5149 struct drm_i915_gem_object *obj;
5150 unsigned long count;
5151 bool unlock;
5152
5153 if (!i915_gem_shrinker_lock(dev, &unlock))
5154 return 0;
5155
5156 count = 0;
5157 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5158 if (obj->pages_pin_count == 0)
5159 count += obj->base.size >> PAGE_SHIFT;
5160
5161 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5162 if (!i915_gem_obj_is_pinned(obj) &&
5163 obj->pages_pin_count == num_vma_bound(obj))
5164 count += obj->base.size >> PAGE_SHIFT;
5165 }
5166
5167 if (unlock)
5168 mutex_unlock(&dev->struct_mutex);
5169
5170 return count;
5171 }
5172
5173 /* All the new VM stuff */
5174 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
5175 struct i915_address_space *vm,
5176 enum i915_ggtt_view_type view)
5177 {
5178 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5179 struct i915_vma *vma;
5180
5181 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5182
5183 list_for_each_entry(vma, &o->vma_list, vma_link) {
5184 if (vma->vm == vm && vma->ggtt_view.type == view)
5185 return vma->node.start;
5186
5187 }
5188 WARN(1, "%s vma for this object not found.\n",
5189 i915_is_ggtt(vm) ? "global" : "ppgtt");
5190 return -1;
5191 }
5192
5193 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
5194 struct i915_address_space *vm,
5195 enum i915_ggtt_view_type view)
5196 {
5197 struct i915_vma *vma;
5198
5199 list_for_each_entry(vma, &o->vma_list, vma_link)
5200 if (vma->vm == vm &&
5201 vma->ggtt_view.type == view &&
5202 drm_mm_node_allocated(&vma->node))
5203 return true;
5204
5205 return false;
5206 }
5207
5208 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5209 {
5210 struct i915_vma *vma;
5211
5212 list_for_each_entry(vma, &o->vma_list, vma_link)
5213 if (drm_mm_node_allocated(&vma->node))
5214 return true;
5215
5216 return false;
5217 }
5218
5219 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5220 struct i915_address_space *vm)
5221 {
5222 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5223 struct i915_vma *vma;
5224
5225 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5226
5227 BUG_ON(list_empty(&o->vma_list));
5228
5229 list_for_each_entry(vma, &o->vma_list, vma_link)
5230 if (vma->vm == vm)
5231 return vma->node.size;
5232
5233 return 0;
5234 }
5235
5236 static unsigned long
5237 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5238 {
5239 struct drm_i915_private *dev_priv =
5240 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5241 struct drm_device *dev = dev_priv->dev;
5242 unsigned long freed;
5243 bool unlock;
5244
5245 if (!i915_gem_shrinker_lock(dev, &unlock))
5246 return SHRINK_STOP;
5247
5248 freed = i915_gem_shrink(dev_priv,
5249 sc->nr_to_scan,
5250 I915_SHRINK_BOUND |
5251 I915_SHRINK_UNBOUND |
5252 I915_SHRINK_PURGEABLE);
5253 if (freed < sc->nr_to_scan)
5254 freed += i915_gem_shrink(dev_priv,
5255 sc->nr_to_scan - freed,
5256 I915_SHRINK_BOUND |
5257 I915_SHRINK_UNBOUND);
5258 if (unlock)
5259 mutex_unlock(&dev->struct_mutex);
5260
5261 return freed;
5262 }
5263
5264 static int
5265 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5266 {
5267 struct drm_i915_private *dev_priv =
5268 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5269 struct drm_device *dev = dev_priv->dev;
5270 struct drm_i915_gem_object *obj;
5271 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5272 unsigned long pinned, bound, unbound, freed_pages;
5273 bool was_interruptible;
5274 bool unlock;
5275
5276 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5277 schedule_timeout_killable(1);
5278 if (fatal_signal_pending(current))
5279 return NOTIFY_DONE;
5280 }
5281 if (timeout == 0) {
5282 pr_err("Unable to purge GPU memory due lock contention.\n");
5283 return NOTIFY_DONE;
5284 }
5285
5286 was_interruptible = dev_priv->mm.interruptible;
5287 dev_priv->mm.interruptible = false;
5288
5289 freed_pages = i915_gem_shrink_all(dev_priv);
5290
5291 dev_priv->mm.interruptible = was_interruptible;
5292
5293 /* Because we may be allocating inside our own driver, we cannot
5294 * assert that there are no objects with pinned pages that are not
5295 * being pointed to by hardware.
5296 */
5297 unbound = bound = pinned = 0;
5298 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5299 if (!obj->base.filp) /* not backed by a freeable object */
5300 continue;
5301
5302 if (obj->pages_pin_count)
5303 pinned += obj->base.size;
5304 else
5305 unbound += obj->base.size;
5306 }
5307 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5308 if (!obj->base.filp)
5309 continue;
5310
5311 if (obj->pages_pin_count)
5312 pinned += obj->base.size;
5313 else
5314 bound += obj->base.size;
5315 }
5316
5317 if (unlock)
5318 mutex_unlock(&dev->struct_mutex);
5319
5320 if (freed_pages || unbound || bound)
5321 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5322 freed_pages << PAGE_SHIFT, pinned);
5323 if (unbound || bound)
5324 pr_err("%lu and %lu bytes still available in the "
5325 "bound and unbound GPU page lists.\n",
5326 bound, unbound);
5327
5328 *(unsigned long *)ptr += freed_pages;
5329 return NOTIFY_DONE;
5330 }
5331
5332 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5333 {
5334 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
5335 struct i915_vma *vma;
5336
5337 list_for_each_entry(vma, &obj->vma_list, vma_link)
5338 if (vma->vm == ggtt &&
5339 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5340 return vma;
5341
5342 return NULL;
5343 }