]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'drm-tda998x-devel' of git://ftp.arm.linux.org.uk/~rmk/linux-arm into...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185 {
1186 unsigned long timeout;
1187
1188 if (i915_gem_request_get_ring(rq)->irq_refcount)
1189 return -EBUSY;
1190
1191 timeout = jiffies + 1;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(rq, true))
1194 return 0;
1195
1196 if (time_after_eq(jiffies, timeout))
1197 break;
1198
1199 cpu_relax_lowlatency();
1200 }
1201 if (i915_gem_request_completed(rq, false))
1202 return 0;
1203
1204 return -EAGAIN;
1205 }
1206
1207 /**
1208 * __i915_wait_request - wait until execution of request has finished
1209 * @req: duh!
1210 * @reset_counter: reset sequence associated with the given request
1211 * @interruptible: do an interruptible wait (normally yes)
1212 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1213 *
1214 * Note: It is of utmost importance that the passed in seqno and reset_counter
1215 * values have been read by the caller in an smp safe manner. Where read-side
1216 * locks are involved, it is sufficient to read the reset_counter before
1217 * unlocking the lock that protects the seqno. For lockless tricks, the
1218 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1219 * inserted.
1220 *
1221 * Returns 0 if the request was found within the alloted time. Else returns the
1222 * errno with remaining time filled in timeout argument.
1223 */
1224 int __i915_wait_request(struct drm_i915_gem_request *req,
1225 unsigned reset_counter,
1226 bool interruptible,
1227 s64 *timeout,
1228 struct drm_i915_file_private *file_priv)
1229 {
1230 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231 struct drm_device *dev = ring->dev;
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 const bool irq_test_in_progress =
1234 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235 DEFINE_WAIT(wait);
1236 unsigned long timeout_expire;
1237 s64 before, now;
1238 int ret;
1239
1240 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241
1242 if (i915_gem_request_completed(req, true))
1243 return 0;
1244
1245 timeout_expire = timeout ?
1246 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247
1248 if (INTEL_INFO(dev)->gen >= 6)
1249 gen6_rps_boost(dev_priv, file_priv);
1250
1251 /* Record current time in case interrupted by signal, or wedged */
1252 trace_i915_gem_request_wait_begin(req);
1253 before = ktime_get_raw_ns();
1254
1255 /* Optimistic spin for the next jiffie before touching IRQs */
1256 ret = __i915_spin_request(req);
1257 if (ret == 0)
1258 goto out;
1259
1260 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1261 ret = -ENODEV;
1262 goto out;
1263 }
1264
1265 for (;;) {
1266 struct timer_list timer;
1267
1268 prepare_to_wait(&ring->irq_queue, &wait,
1269 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270
1271 /* We need to check whether any gpu reset happened in between
1272 * the caller grabbing the seqno and now ... */
1273 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1274 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1275 * is truely gone. */
1276 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1277 if (ret == 0)
1278 ret = -EAGAIN;
1279 break;
1280 }
1281
1282 if (i915_gem_request_completed(req, false)) {
1283 ret = 0;
1284 break;
1285 }
1286
1287 if (interruptible && signal_pending(current)) {
1288 ret = -ERESTARTSYS;
1289 break;
1290 }
1291
1292 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 ret = -ETIME;
1294 break;
1295 }
1296
1297 timer.function = NULL;
1298 if (timeout || missed_irq(dev_priv, ring)) {
1299 unsigned long expire;
1300
1301 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 mod_timer(&timer, expire);
1304 }
1305
1306 io_schedule();
1307
1308 if (timer.function) {
1309 del_singleshot_timer_sync(&timer);
1310 destroy_timer_on_stack(&timer);
1311 }
1312 }
1313 if (!irq_test_in_progress)
1314 ring->irq_put(ring);
1315
1316 finish_wait(&ring->irq_queue, &wait);
1317
1318 out:
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(req);
1321
1322 if (timeout) {
1323 s64 tres = *timeout - (now - before);
1324
1325 *timeout = tres < 0 ? 0 : tres;
1326
1327 /*
1328 * Apparently ktime isn't accurate enough and occasionally has a
1329 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1330 * things up to make the test happy. We allow up to 1 jiffy.
1331 *
1332 * This is a regrssion from the timespec->ktime conversion.
1333 */
1334 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1335 *timeout = 0;
1336 }
1337
1338 return ret;
1339 }
1340
1341 /**
1342 * Waits for a request to be signaled, and cleans up the
1343 * request and object lists appropriately for that event.
1344 */
1345 int
1346 i915_wait_request(struct drm_i915_gem_request *req)
1347 {
1348 struct drm_device *dev;
1349 struct drm_i915_private *dev_priv;
1350 bool interruptible;
1351 unsigned reset_counter;
1352 int ret;
1353
1354 BUG_ON(req == NULL);
1355
1356 dev = req->ring->dev;
1357 dev_priv = dev->dev_private;
1358 interruptible = dev_priv->mm.interruptible;
1359
1360 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1361
1362 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 if (ret)
1364 return ret;
1365
1366 ret = i915_gem_check_olr(req);
1367 if (ret)
1368 return ret;
1369
1370 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371 i915_gem_request_reference(req);
1372 ret = __i915_wait_request(req, reset_counter,
1373 interruptible, NULL, NULL);
1374 i915_gem_request_unreference(req);
1375 return ret;
1376 }
1377
1378 static int
1379 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380 {
1381 if (!obj->active)
1382 return 0;
1383
1384 /* Manually manage the write flush as we may have not yet
1385 * retired the buffer.
1386 *
1387 * Note that the last_write_req is always the earlier of
1388 * the two (read/write) requests, so if we haved successfully waited,
1389 * we know we have passed the last write.
1390 */
1391 i915_gem_request_assign(&obj->last_write_req, NULL);
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * Ensures that all rendering to the object has completed and the object is
1398 * safe to unbind from the GTT or access from the CPU.
1399 */
1400 static __must_check int
1401 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1402 bool readonly)
1403 {
1404 struct drm_i915_gem_request *req;
1405 int ret;
1406
1407 req = readonly ? obj->last_write_req : obj->last_read_req;
1408 if (!req)
1409 return 0;
1410
1411 ret = i915_wait_request(req);
1412 if (ret)
1413 return ret;
1414
1415 return i915_gem_object_wait_rendering__tail(obj);
1416 }
1417
1418 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1419 * as the object state may change during this call.
1420 */
1421 static __must_check int
1422 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423 struct drm_i915_file_private *file_priv,
1424 bool readonly)
1425 {
1426 struct drm_i915_gem_request *req;
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 unsigned reset_counter;
1430 int ret;
1431
1432 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1433 BUG_ON(!dev_priv->mm.interruptible);
1434
1435 req = readonly ? obj->last_write_req : obj->last_read_req;
1436 if (!req)
1437 return 0;
1438
1439 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 if (ret)
1441 return ret;
1442
1443 ret = i915_gem_check_olr(req);
1444 if (ret)
1445 return ret;
1446
1447 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448 i915_gem_request_reference(req);
1449 mutex_unlock(&dev->struct_mutex);
1450 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451 mutex_lock(&dev->struct_mutex);
1452 i915_gem_request_unreference(req);
1453 if (ret)
1454 return ret;
1455
1456 return i915_gem_object_wait_rendering__tail(obj);
1457 }
1458
1459 /**
1460 * Called when user space prepares to use an object with the CPU, either
1461 * through the mmap ioctl's mapping or a GTT mapping.
1462 */
1463 int
1464 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465 struct drm_file *file)
1466 {
1467 struct drm_i915_gem_set_domain *args = data;
1468 struct drm_i915_gem_object *obj;
1469 uint32_t read_domains = args->read_domains;
1470 uint32_t write_domain = args->write_domain;
1471 int ret;
1472
1473 /* Only handle setting domains to types used by the CPU. */
1474 if (write_domain & I915_GEM_GPU_DOMAINS)
1475 return -EINVAL;
1476
1477 if (read_domains & I915_GEM_GPU_DOMAINS)
1478 return -EINVAL;
1479
1480 /* Having something in the write domain implies it's in the read
1481 * domain, and only that read domain. Enforce that in the request.
1482 */
1483 if (write_domain != 0 && read_domains != write_domain)
1484 return -EINVAL;
1485
1486 ret = i915_mutex_lock_interruptible(dev);
1487 if (ret)
1488 return ret;
1489
1490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491 if (&obj->base == NULL) {
1492 ret = -ENOENT;
1493 goto unlock;
1494 }
1495
1496 /* Try to flush the object off the GPU without holding the lock.
1497 * We will repeat the flush holding the lock in the normal manner
1498 * to catch cases where we are gazumped.
1499 */
1500 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1501 file->driver_priv,
1502 !write_domain);
1503 if (ret)
1504 goto unref;
1505
1506 if (read_domains & I915_GEM_DOMAIN_GTT)
1507 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508 else
1509 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510
1511 unref:
1512 drm_gem_object_unreference(&obj->base);
1513 unlock:
1514 mutex_unlock(&dev->struct_mutex);
1515 return ret;
1516 }
1517
1518 /**
1519 * Called when user space has done writes to this buffer
1520 */
1521 int
1522 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523 struct drm_file *file)
1524 {
1525 struct drm_i915_gem_sw_finish *args = data;
1526 struct drm_i915_gem_object *obj;
1527 int ret = 0;
1528
1529 ret = i915_mutex_lock_interruptible(dev);
1530 if (ret)
1531 return ret;
1532
1533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534 if (&obj->base == NULL) {
1535 ret = -ENOENT;
1536 goto unlock;
1537 }
1538
1539 /* Pinned buffers may be scanout, so flush the cache */
1540 if (obj->pin_display)
1541 i915_gem_object_flush_cpu_write_domain(obj);
1542
1543 drm_gem_object_unreference(&obj->base);
1544 unlock:
1545 mutex_unlock(&dev->struct_mutex);
1546 return ret;
1547 }
1548
1549 /**
1550 * Maps the contents of an object, returning the address it is mapped
1551 * into.
1552 *
1553 * While the mapping holds a reference on the contents of the object, it doesn't
1554 * imply a ref on the object itself.
1555 *
1556 * IMPORTANT:
1557 *
1558 * DRM driver writers who look a this function as an example for how to do GEM
1559 * mmap support, please don't implement mmap support like here. The modern way
1560 * to implement DRM mmap support is with an mmap offset ioctl (like
1561 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1562 * That way debug tooling like valgrind will understand what's going on, hiding
1563 * the mmap call in a driver private ioctl will break that. The i915 driver only
1564 * does cpu mmaps this way because we didn't know better.
1565 */
1566 int
1567 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568 struct drm_file *file)
1569 {
1570 struct drm_i915_gem_mmap *args = data;
1571 struct drm_gem_object *obj;
1572 unsigned long addr;
1573
1574 if (args->flags & ~(I915_MMAP_WC))
1575 return -EINVAL;
1576
1577 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1578 return -ENODEV;
1579
1580 obj = drm_gem_object_lookup(dev, file, args->handle);
1581 if (obj == NULL)
1582 return -ENOENT;
1583
1584 /* prime objects have no backing filp to GEM mmap
1585 * pages from.
1586 */
1587 if (!obj->filp) {
1588 drm_gem_object_unreference_unlocked(obj);
1589 return -EINVAL;
1590 }
1591
1592 addr = vm_mmap(obj->filp, 0, args->size,
1593 PROT_READ | PROT_WRITE, MAP_SHARED,
1594 args->offset);
1595 if (args->flags & I915_MMAP_WC) {
1596 struct mm_struct *mm = current->mm;
1597 struct vm_area_struct *vma;
1598
1599 down_write(&mm->mmap_sem);
1600 vma = find_vma(mm, addr);
1601 if (vma)
1602 vma->vm_page_prot =
1603 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1604 else
1605 addr = -ENOMEM;
1606 up_write(&mm->mmap_sem);
1607 }
1608 drm_gem_object_unreference_unlocked(obj);
1609 if (IS_ERR((void *)addr))
1610 return addr;
1611
1612 args->addr_ptr = (uint64_t) addr;
1613
1614 return 0;
1615 }
1616
1617 /**
1618 * i915_gem_fault - fault a page into the GTT
1619 * vma: VMA in question
1620 * vmf: fault info
1621 *
1622 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1623 * from userspace. The fault handler takes care of binding the object to
1624 * the GTT (if needed), allocating and programming a fence register (again,
1625 * only if needed based on whether the old reg is still valid or the object
1626 * is tiled) and inserting a new PTE into the faulting process.
1627 *
1628 * Note that the faulting process may involve evicting existing objects
1629 * from the GTT and/or fence registers to make room. So performance may
1630 * suffer if the GTT working set is large or there are few fence registers
1631 * left.
1632 */
1633 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634 {
1635 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1636 struct drm_device *dev = obj->base.dev;
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 pgoff_t page_offset;
1639 unsigned long pfn;
1640 int ret = 0;
1641 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1642
1643 intel_runtime_pm_get(dev_priv);
1644
1645 /* We don't use vmf->pgoff since that has the fake offset */
1646 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1647 PAGE_SHIFT;
1648
1649 ret = i915_mutex_lock_interruptible(dev);
1650 if (ret)
1651 goto out;
1652
1653 trace_i915_gem_object_fault(obj, page_offset, true, write);
1654
1655 /* Try to flush the object off the GPU first without holding the lock.
1656 * Upon reacquiring the lock, we will perform our sanity checks and then
1657 * repeat the flush holding the lock in the normal manner to catch cases
1658 * where we are gazumped.
1659 */
1660 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1661 if (ret)
1662 goto unlock;
1663
1664 /* Access to snoopable pages through the GTT is incoherent. */
1665 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1666 ret = -EFAULT;
1667 goto unlock;
1668 }
1669
1670 /* Now bind it into the GTT if needed */
1671 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1672 if (ret)
1673 goto unlock;
1674
1675 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1676 if (ret)
1677 goto unpin;
1678
1679 ret = i915_gem_object_get_fence(obj);
1680 if (ret)
1681 goto unpin;
1682
1683 /* Finally, remap it using the new GTT offset */
1684 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1685 pfn >>= PAGE_SHIFT;
1686
1687 if (!obj->fault_mappable) {
1688 unsigned long size = min_t(unsigned long,
1689 vma->vm_end - vma->vm_start,
1690 obj->base.size);
1691 int i;
1692
1693 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1694 ret = vm_insert_pfn(vma,
1695 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1696 pfn + i);
1697 if (ret)
1698 break;
1699 }
1700
1701 obj->fault_mappable = true;
1702 } else
1703 ret = vm_insert_pfn(vma,
1704 (unsigned long)vmf->virtual_address,
1705 pfn + page_offset);
1706 unpin:
1707 i915_gem_object_ggtt_unpin(obj);
1708 unlock:
1709 mutex_unlock(&dev->struct_mutex);
1710 out:
1711 switch (ret) {
1712 case -EIO:
1713 /*
1714 * We eat errors when the gpu is terminally wedged to avoid
1715 * userspace unduly crashing (gl has no provisions for mmaps to
1716 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1717 * and so needs to be reported.
1718 */
1719 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1720 ret = VM_FAULT_SIGBUS;
1721 break;
1722 }
1723 case -EAGAIN:
1724 /*
1725 * EAGAIN means the gpu is hung and we'll wait for the error
1726 * handler to reset everything when re-faulting in
1727 * i915_mutex_lock_interruptible.
1728 */
1729 case 0:
1730 case -ERESTARTSYS:
1731 case -EINTR:
1732 case -EBUSY:
1733 /*
1734 * EBUSY is ok: this just means that another thread
1735 * already did the job.
1736 */
1737 ret = VM_FAULT_NOPAGE;
1738 break;
1739 case -ENOMEM:
1740 ret = VM_FAULT_OOM;
1741 break;
1742 case -ENOSPC:
1743 case -EFAULT:
1744 ret = VM_FAULT_SIGBUS;
1745 break;
1746 default:
1747 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1748 ret = VM_FAULT_SIGBUS;
1749 break;
1750 }
1751
1752 intel_runtime_pm_put(dev_priv);
1753 return ret;
1754 }
1755
1756 /**
1757 * i915_gem_release_mmap - remove physical page mappings
1758 * @obj: obj in question
1759 *
1760 * Preserve the reservation of the mmapping with the DRM core code, but
1761 * relinquish ownership of the pages back to the system.
1762 *
1763 * It is vital that we remove the page mapping if we have mapped a tiled
1764 * object through the GTT and then lose the fence register due to
1765 * resource pressure. Similarly if the object has been moved out of the
1766 * aperture, than pages mapped into userspace must be revoked. Removing the
1767 * mapping will then trigger a page fault on the next user access, allowing
1768 * fixup by i915_gem_fault().
1769 */
1770 void
1771 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1772 {
1773 if (!obj->fault_mappable)
1774 return;
1775
1776 drm_vma_node_unmap(&obj->base.vma_node,
1777 obj->base.dev->anon_inode->i_mapping);
1778 obj->fault_mappable = false;
1779 }
1780
1781 void
1782 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1783 {
1784 struct drm_i915_gem_object *obj;
1785
1786 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1787 i915_gem_release_mmap(obj);
1788 }
1789
1790 uint32_t
1791 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1792 {
1793 uint32_t gtt_size;
1794
1795 if (INTEL_INFO(dev)->gen >= 4 ||
1796 tiling_mode == I915_TILING_NONE)
1797 return size;
1798
1799 /* Previous chips need a power-of-two fence region when tiling */
1800 if (INTEL_INFO(dev)->gen == 3)
1801 gtt_size = 1024*1024;
1802 else
1803 gtt_size = 512*1024;
1804
1805 while (gtt_size < size)
1806 gtt_size <<= 1;
1807
1808 return gtt_size;
1809 }
1810
1811 /**
1812 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1813 * @obj: object to check
1814 *
1815 * Return the required GTT alignment for an object, taking into account
1816 * potential fence register mapping.
1817 */
1818 uint32_t
1819 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1820 int tiling_mode, bool fenced)
1821 {
1822 /*
1823 * Minimum alignment is 4k (GTT page size), but might be greater
1824 * if a fence register is needed for the object.
1825 */
1826 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1827 tiling_mode == I915_TILING_NONE)
1828 return 4096;
1829
1830 /*
1831 * Previous chips need to be aligned to the size of the smallest
1832 * fence register that can contain the object.
1833 */
1834 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1835 }
1836
1837 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1838 {
1839 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1840 int ret;
1841
1842 if (drm_vma_node_has_offset(&obj->base.vma_node))
1843 return 0;
1844
1845 dev_priv->mm.shrinker_no_lock_stealing = true;
1846
1847 ret = drm_gem_create_mmap_offset(&obj->base);
1848 if (ret != -ENOSPC)
1849 goto out;
1850
1851 /* Badly fragmented mmap space? The only way we can recover
1852 * space is by destroying unwanted objects. We can't randomly release
1853 * mmap_offsets as userspace expects them to be persistent for the
1854 * lifetime of the objects. The closest we can is to release the
1855 * offsets on purgeable objects by truncating it and marking it purged,
1856 * which prevents userspace from ever using that object again.
1857 */
1858 i915_gem_shrink(dev_priv,
1859 obj->base.size >> PAGE_SHIFT,
1860 I915_SHRINK_BOUND |
1861 I915_SHRINK_UNBOUND |
1862 I915_SHRINK_PURGEABLE);
1863 ret = drm_gem_create_mmap_offset(&obj->base);
1864 if (ret != -ENOSPC)
1865 goto out;
1866
1867 i915_gem_shrink_all(dev_priv);
1868 ret = drm_gem_create_mmap_offset(&obj->base);
1869 out:
1870 dev_priv->mm.shrinker_no_lock_stealing = false;
1871
1872 return ret;
1873 }
1874
1875 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1876 {
1877 drm_gem_free_mmap_offset(&obj->base);
1878 }
1879
1880 int
1881 i915_gem_mmap_gtt(struct drm_file *file,
1882 struct drm_device *dev,
1883 uint32_t handle,
1884 uint64_t *offset)
1885 {
1886 struct drm_i915_private *dev_priv = dev->dev_private;
1887 struct drm_i915_gem_object *obj;
1888 int ret;
1889
1890 ret = i915_mutex_lock_interruptible(dev);
1891 if (ret)
1892 return ret;
1893
1894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1895 if (&obj->base == NULL) {
1896 ret = -ENOENT;
1897 goto unlock;
1898 }
1899
1900 if (obj->base.size > dev_priv->gtt.mappable_end) {
1901 ret = -E2BIG;
1902 goto out;
1903 }
1904
1905 if (obj->madv != I915_MADV_WILLNEED) {
1906 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1907 ret = -EFAULT;
1908 goto out;
1909 }
1910
1911 ret = i915_gem_object_create_mmap_offset(obj);
1912 if (ret)
1913 goto out;
1914
1915 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1916
1917 out:
1918 drm_gem_object_unreference(&obj->base);
1919 unlock:
1920 mutex_unlock(&dev->struct_mutex);
1921 return ret;
1922 }
1923
1924 /**
1925 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1926 * @dev: DRM device
1927 * @data: GTT mapping ioctl data
1928 * @file: GEM object info
1929 *
1930 * Simply returns the fake offset to userspace so it can mmap it.
1931 * The mmap call will end up in drm_gem_mmap(), which will set things
1932 * up so we can get faults in the handler above.
1933 *
1934 * The fault handler will take care of binding the object into the GTT
1935 * (since it may have been evicted to make room for something), allocating
1936 * a fence register, and mapping the appropriate aperture address into
1937 * userspace.
1938 */
1939 int
1940 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1941 struct drm_file *file)
1942 {
1943 struct drm_i915_gem_mmap_gtt *args = data;
1944
1945 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1946 }
1947
1948 /* Immediately discard the backing storage */
1949 static void
1950 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1951 {
1952 i915_gem_object_free_mmap_offset(obj);
1953
1954 if (obj->base.filp == NULL)
1955 return;
1956
1957 /* Our goal here is to return as much of the memory as
1958 * is possible back to the system as we are called from OOM.
1959 * To do this we must instruct the shmfs to drop all of its
1960 * backing pages, *now*.
1961 */
1962 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1963 obj->madv = __I915_MADV_PURGED;
1964 }
1965
1966 /* Try to discard unwanted pages */
1967 static void
1968 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1969 {
1970 struct address_space *mapping;
1971
1972 switch (obj->madv) {
1973 case I915_MADV_DONTNEED:
1974 i915_gem_object_truncate(obj);
1975 case __I915_MADV_PURGED:
1976 return;
1977 }
1978
1979 if (obj->base.filp == NULL)
1980 return;
1981
1982 mapping = file_inode(obj->base.filp)->i_mapping,
1983 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1984 }
1985
1986 static void
1987 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1988 {
1989 struct sg_page_iter sg_iter;
1990 int ret;
1991
1992 BUG_ON(obj->madv == __I915_MADV_PURGED);
1993
1994 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1995 if (ret) {
1996 /* In the event of a disaster, abandon all caches and
1997 * hope for the best.
1998 */
1999 WARN_ON(ret != -EIO);
2000 i915_gem_clflush_object(obj, true);
2001 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2002 }
2003
2004 if (i915_gem_object_needs_bit17_swizzle(obj))
2005 i915_gem_object_save_bit_17_swizzle(obj);
2006
2007 if (obj->madv == I915_MADV_DONTNEED)
2008 obj->dirty = 0;
2009
2010 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2011 struct page *page = sg_page_iter_page(&sg_iter);
2012
2013 if (obj->dirty)
2014 set_page_dirty(page);
2015
2016 if (obj->madv == I915_MADV_WILLNEED)
2017 mark_page_accessed(page);
2018
2019 page_cache_release(page);
2020 }
2021 obj->dirty = 0;
2022
2023 sg_free_table(obj->pages);
2024 kfree(obj->pages);
2025 }
2026
2027 int
2028 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2029 {
2030 const struct drm_i915_gem_object_ops *ops = obj->ops;
2031
2032 if (obj->pages == NULL)
2033 return 0;
2034
2035 if (obj->pages_pin_count)
2036 return -EBUSY;
2037
2038 BUG_ON(i915_gem_obj_bound_any(obj));
2039
2040 /* ->put_pages might need to allocate memory for the bit17 swizzle
2041 * array, hence protect them from being reaped by removing them from gtt
2042 * lists early. */
2043 list_del(&obj->global_list);
2044
2045 ops->put_pages(obj);
2046 obj->pages = NULL;
2047
2048 i915_gem_object_invalidate(obj);
2049
2050 return 0;
2051 }
2052
2053 static int
2054 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2055 {
2056 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2057 int page_count, i;
2058 struct address_space *mapping;
2059 struct sg_table *st;
2060 struct scatterlist *sg;
2061 struct sg_page_iter sg_iter;
2062 struct page *page;
2063 unsigned long last_pfn = 0; /* suppress gcc warning */
2064 gfp_t gfp;
2065
2066 /* Assert that the object is not currently in any GPU domain. As it
2067 * wasn't in the GTT, there shouldn't be any way it could have been in
2068 * a GPU cache
2069 */
2070 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2071 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2072
2073 st = kmalloc(sizeof(*st), GFP_KERNEL);
2074 if (st == NULL)
2075 return -ENOMEM;
2076
2077 page_count = obj->base.size / PAGE_SIZE;
2078 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2079 kfree(st);
2080 return -ENOMEM;
2081 }
2082
2083 /* Get the list of pages out of our struct file. They'll be pinned
2084 * at this point until we release them.
2085 *
2086 * Fail silently without starting the shrinker
2087 */
2088 mapping = file_inode(obj->base.filp)->i_mapping;
2089 gfp = mapping_gfp_mask(mapping);
2090 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2091 gfp &= ~(__GFP_IO | __GFP_WAIT);
2092 sg = st->sgl;
2093 st->nents = 0;
2094 for (i = 0; i < page_count; i++) {
2095 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2096 if (IS_ERR(page)) {
2097 i915_gem_shrink(dev_priv,
2098 page_count,
2099 I915_SHRINK_BOUND |
2100 I915_SHRINK_UNBOUND |
2101 I915_SHRINK_PURGEABLE);
2102 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2103 }
2104 if (IS_ERR(page)) {
2105 /* We've tried hard to allocate the memory by reaping
2106 * our own buffer, now let the real VM do its job and
2107 * go down in flames if truly OOM.
2108 */
2109 i915_gem_shrink_all(dev_priv);
2110 page = shmem_read_mapping_page(mapping, i);
2111 if (IS_ERR(page))
2112 goto err_pages;
2113 }
2114 #ifdef CONFIG_SWIOTLB
2115 if (swiotlb_nr_tbl()) {
2116 st->nents++;
2117 sg_set_page(sg, page, PAGE_SIZE, 0);
2118 sg = sg_next(sg);
2119 continue;
2120 }
2121 #endif
2122 if (!i || page_to_pfn(page) != last_pfn + 1) {
2123 if (i)
2124 sg = sg_next(sg);
2125 st->nents++;
2126 sg_set_page(sg, page, PAGE_SIZE, 0);
2127 } else {
2128 sg->length += PAGE_SIZE;
2129 }
2130 last_pfn = page_to_pfn(page);
2131
2132 /* Check that the i965g/gm workaround works. */
2133 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2134 }
2135 #ifdef CONFIG_SWIOTLB
2136 if (!swiotlb_nr_tbl())
2137 #endif
2138 sg_mark_end(sg);
2139 obj->pages = st;
2140
2141 if (i915_gem_object_needs_bit17_swizzle(obj))
2142 i915_gem_object_do_bit_17_swizzle(obj);
2143
2144 if (obj->tiling_mode != I915_TILING_NONE &&
2145 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2146 i915_gem_object_pin_pages(obj);
2147
2148 return 0;
2149
2150 err_pages:
2151 sg_mark_end(sg);
2152 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2153 page_cache_release(sg_page_iter_page(&sg_iter));
2154 sg_free_table(st);
2155 kfree(st);
2156
2157 /* shmemfs first checks if there is enough memory to allocate the page
2158 * and reports ENOSPC should there be insufficient, along with the usual
2159 * ENOMEM for a genuine allocation failure.
2160 *
2161 * We use ENOSPC in our driver to mean that we have run out of aperture
2162 * space and so want to translate the error from shmemfs back to our
2163 * usual understanding of ENOMEM.
2164 */
2165 if (PTR_ERR(page) == -ENOSPC)
2166 return -ENOMEM;
2167 else
2168 return PTR_ERR(page);
2169 }
2170
2171 /* Ensure that the associated pages are gathered from the backing storage
2172 * and pinned into our object. i915_gem_object_get_pages() may be called
2173 * multiple times before they are released by a single call to
2174 * i915_gem_object_put_pages() - once the pages are no longer referenced
2175 * either as a result of memory pressure (reaping pages under the shrinker)
2176 * or as the object is itself released.
2177 */
2178 int
2179 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2180 {
2181 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2182 const struct drm_i915_gem_object_ops *ops = obj->ops;
2183 int ret;
2184
2185 if (obj->pages)
2186 return 0;
2187
2188 if (obj->madv != I915_MADV_WILLNEED) {
2189 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2190 return -EFAULT;
2191 }
2192
2193 BUG_ON(obj->pages_pin_count);
2194
2195 ret = ops->get_pages(obj);
2196 if (ret)
2197 return ret;
2198
2199 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2200
2201 obj->get_page.sg = obj->pages->sgl;
2202 obj->get_page.last = 0;
2203
2204 return 0;
2205 }
2206
2207 static void
2208 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2209 struct intel_engine_cs *ring)
2210 {
2211 struct drm_i915_gem_request *req;
2212 struct intel_engine_cs *old_ring;
2213
2214 BUG_ON(ring == NULL);
2215
2216 req = intel_ring_get_request(ring);
2217 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2218
2219 if (old_ring != ring && obj->last_write_req) {
2220 /* Keep the request relative to the current ring */
2221 i915_gem_request_assign(&obj->last_write_req, req);
2222 }
2223
2224 /* Add a reference if we're newly entering the active list. */
2225 if (!obj->active) {
2226 drm_gem_object_reference(&obj->base);
2227 obj->active = 1;
2228 }
2229
2230 list_move_tail(&obj->ring_list, &ring->active_list);
2231
2232 i915_gem_request_assign(&obj->last_read_req, req);
2233 }
2234
2235 void i915_vma_move_to_active(struct i915_vma *vma,
2236 struct intel_engine_cs *ring)
2237 {
2238 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2239 return i915_gem_object_move_to_active(vma->obj, ring);
2240 }
2241
2242 static void
2243 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2244 {
2245 struct i915_vma *vma;
2246
2247 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2248 BUG_ON(!obj->active);
2249
2250 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2251 if (!list_empty(&vma->mm_list))
2252 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2253 }
2254
2255 intel_fb_obj_flush(obj, true);
2256
2257 list_del_init(&obj->ring_list);
2258
2259 i915_gem_request_assign(&obj->last_read_req, NULL);
2260 i915_gem_request_assign(&obj->last_write_req, NULL);
2261 obj->base.write_domain = 0;
2262
2263 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2264
2265 obj->active = 0;
2266 drm_gem_object_unreference(&obj->base);
2267
2268 WARN_ON(i915_verify_lists(dev));
2269 }
2270
2271 static void
2272 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2273 {
2274 if (obj->last_read_req == NULL)
2275 return;
2276
2277 if (i915_gem_request_completed(obj->last_read_req, true))
2278 i915_gem_object_move_to_inactive(obj);
2279 }
2280
2281 static int
2282 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2283 {
2284 struct drm_i915_private *dev_priv = dev->dev_private;
2285 struct intel_engine_cs *ring;
2286 int ret, i, j;
2287
2288 /* Carefully retire all requests without writing to the rings */
2289 for_each_ring(ring, dev_priv, i) {
2290 ret = intel_ring_idle(ring);
2291 if (ret)
2292 return ret;
2293 }
2294 i915_gem_retire_requests(dev);
2295
2296 /* Finally reset hw state */
2297 for_each_ring(ring, dev_priv, i) {
2298 intel_ring_init_seqno(ring, seqno);
2299
2300 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2301 ring->semaphore.sync_seqno[j] = 0;
2302 }
2303
2304 return 0;
2305 }
2306
2307 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2308 {
2309 struct drm_i915_private *dev_priv = dev->dev_private;
2310 int ret;
2311
2312 if (seqno == 0)
2313 return -EINVAL;
2314
2315 /* HWS page needs to be set less than what we
2316 * will inject to ring
2317 */
2318 ret = i915_gem_init_seqno(dev, seqno - 1);
2319 if (ret)
2320 return ret;
2321
2322 /* Carefully set the last_seqno value so that wrap
2323 * detection still works
2324 */
2325 dev_priv->next_seqno = seqno;
2326 dev_priv->last_seqno = seqno - 1;
2327 if (dev_priv->last_seqno == 0)
2328 dev_priv->last_seqno--;
2329
2330 return 0;
2331 }
2332
2333 int
2334 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2335 {
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337
2338 /* reserve 0 for non-seqno */
2339 if (dev_priv->next_seqno == 0) {
2340 int ret = i915_gem_init_seqno(dev, 0);
2341 if (ret)
2342 return ret;
2343
2344 dev_priv->next_seqno = 1;
2345 }
2346
2347 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2348 return 0;
2349 }
2350
2351 int __i915_add_request(struct intel_engine_cs *ring,
2352 struct drm_file *file,
2353 struct drm_i915_gem_object *obj)
2354 {
2355 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2356 struct drm_i915_gem_request *request;
2357 struct intel_ringbuffer *ringbuf;
2358 u32 request_start;
2359 int ret;
2360
2361 request = ring->outstanding_lazy_request;
2362 if (WARN_ON(request == NULL))
2363 return -ENOMEM;
2364
2365 if (i915.enable_execlists) {
2366 ringbuf = request->ctx->engine[ring->id].ringbuf;
2367 } else
2368 ringbuf = ring->buffer;
2369
2370 request_start = intel_ring_get_tail(ringbuf);
2371 /*
2372 * Emit any outstanding flushes - execbuf can fail to emit the flush
2373 * after having emitted the batchbuffer command. Hence we need to fix
2374 * things up similar to emitting the lazy request. The difference here
2375 * is that the flush _must_ happen before the next request, no matter
2376 * what.
2377 */
2378 if (i915.enable_execlists) {
2379 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2380 if (ret)
2381 return ret;
2382 } else {
2383 ret = intel_ring_flush_all_caches(ring);
2384 if (ret)
2385 return ret;
2386 }
2387
2388 /* Record the position of the start of the request so that
2389 * should we detect the updated seqno part-way through the
2390 * GPU processing the request, we never over-estimate the
2391 * position of the head.
2392 */
2393 request->postfix = intel_ring_get_tail(ringbuf);
2394
2395 if (i915.enable_execlists) {
2396 ret = ring->emit_request(ringbuf, request);
2397 if (ret)
2398 return ret;
2399 } else {
2400 ret = ring->add_request(ring);
2401 if (ret)
2402 return ret;
2403
2404 request->tail = intel_ring_get_tail(ringbuf);
2405 }
2406
2407 request->head = request_start;
2408
2409 /* Whilst this request exists, batch_obj will be on the
2410 * active_list, and so will hold the active reference. Only when this
2411 * request is retired will the the batch_obj be moved onto the
2412 * inactive_list and lose its active reference. Hence we do not need
2413 * to explicitly hold another reference here.
2414 */
2415 request->batch_obj = obj;
2416
2417 if (!i915.enable_execlists) {
2418 /* Hold a reference to the current context so that we can inspect
2419 * it later in case a hangcheck error event fires.
2420 */
2421 request->ctx = ring->last_context;
2422 if (request->ctx)
2423 i915_gem_context_reference(request->ctx);
2424 }
2425
2426 request->emitted_jiffies = jiffies;
2427 list_add_tail(&request->list, &ring->request_list);
2428 request->file_priv = NULL;
2429
2430 if (file) {
2431 struct drm_i915_file_private *file_priv = file->driver_priv;
2432
2433 spin_lock(&file_priv->mm.lock);
2434 request->file_priv = file_priv;
2435 list_add_tail(&request->client_list,
2436 &file_priv->mm.request_list);
2437 spin_unlock(&file_priv->mm.lock);
2438
2439 request->pid = get_pid(task_pid(current));
2440 }
2441
2442 trace_i915_gem_request_add(request);
2443 ring->outstanding_lazy_request = NULL;
2444
2445 i915_queue_hangcheck(ring->dev);
2446
2447 queue_delayed_work(dev_priv->wq,
2448 &dev_priv->mm.retire_work,
2449 round_jiffies_up_relative(HZ));
2450 intel_mark_busy(dev_priv->dev);
2451
2452 return 0;
2453 }
2454
2455 static inline void
2456 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2457 {
2458 struct drm_i915_file_private *file_priv = request->file_priv;
2459
2460 if (!file_priv)
2461 return;
2462
2463 spin_lock(&file_priv->mm.lock);
2464 list_del(&request->client_list);
2465 request->file_priv = NULL;
2466 spin_unlock(&file_priv->mm.lock);
2467 }
2468
2469 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2470 const struct intel_context *ctx)
2471 {
2472 unsigned long elapsed;
2473
2474 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2475
2476 if (ctx->hang_stats.banned)
2477 return true;
2478
2479 if (ctx->hang_stats.ban_period_seconds &&
2480 elapsed <= ctx->hang_stats.ban_period_seconds) {
2481 if (!i915_gem_context_is_default(ctx)) {
2482 DRM_DEBUG("context hanging too fast, banning!\n");
2483 return true;
2484 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2485 if (i915_stop_ring_allow_warn(dev_priv))
2486 DRM_ERROR("gpu hanging too fast, banning!\n");
2487 return true;
2488 }
2489 }
2490
2491 return false;
2492 }
2493
2494 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2495 struct intel_context *ctx,
2496 const bool guilty)
2497 {
2498 struct i915_ctx_hang_stats *hs;
2499
2500 if (WARN_ON(!ctx))
2501 return;
2502
2503 hs = &ctx->hang_stats;
2504
2505 if (guilty) {
2506 hs->banned = i915_context_is_banned(dev_priv, ctx);
2507 hs->batch_active++;
2508 hs->guilty_ts = get_seconds();
2509 } else {
2510 hs->batch_pending++;
2511 }
2512 }
2513
2514 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2515 {
2516 list_del(&request->list);
2517 i915_gem_request_remove_from_client(request);
2518
2519 put_pid(request->pid);
2520
2521 i915_gem_request_unreference(request);
2522 }
2523
2524 void i915_gem_request_free(struct kref *req_ref)
2525 {
2526 struct drm_i915_gem_request *req = container_of(req_ref,
2527 typeof(*req), ref);
2528 struct intel_context *ctx = req->ctx;
2529
2530 if (ctx) {
2531 if (i915.enable_execlists) {
2532 struct intel_engine_cs *ring = req->ring;
2533
2534 if (ctx != ring->default_context)
2535 intel_lr_context_unpin(ring, ctx);
2536 }
2537
2538 i915_gem_context_unreference(ctx);
2539 }
2540
2541 kmem_cache_free(req->i915->requests, req);
2542 }
2543
2544 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2545 struct intel_context *ctx)
2546 {
2547 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2548 struct drm_i915_gem_request *rq;
2549 int ret;
2550
2551 if (ring->outstanding_lazy_request)
2552 return 0;
2553
2554 rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2555 if (rq == NULL)
2556 return -ENOMEM;
2557
2558 kref_init(&rq->ref);
2559 rq->i915 = dev_priv;
2560
2561 ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2562 if (ret) {
2563 kfree(rq);
2564 return ret;
2565 }
2566
2567 rq->ring = ring;
2568
2569 if (i915.enable_execlists)
2570 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2571 else
2572 ret = intel_ring_alloc_request_extras(rq);
2573 if (ret) {
2574 kfree(rq);
2575 return ret;
2576 }
2577
2578 ring->outstanding_lazy_request = rq;
2579 return 0;
2580 }
2581
2582 struct drm_i915_gem_request *
2583 i915_gem_find_active_request(struct intel_engine_cs *ring)
2584 {
2585 struct drm_i915_gem_request *request;
2586
2587 list_for_each_entry(request, &ring->request_list, list) {
2588 if (i915_gem_request_completed(request, false))
2589 continue;
2590
2591 return request;
2592 }
2593
2594 return NULL;
2595 }
2596
2597 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2598 struct intel_engine_cs *ring)
2599 {
2600 struct drm_i915_gem_request *request;
2601 bool ring_hung;
2602
2603 request = i915_gem_find_active_request(ring);
2604
2605 if (request == NULL)
2606 return;
2607
2608 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2609
2610 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2611
2612 list_for_each_entry_continue(request, &ring->request_list, list)
2613 i915_set_reset_status(dev_priv, request->ctx, false);
2614 }
2615
2616 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2617 struct intel_engine_cs *ring)
2618 {
2619 while (!list_empty(&ring->active_list)) {
2620 struct drm_i915_gem_object *obj;
2621
2622 obj = list_first_entry(&ring->active_list,
2623 struct drm_i915_gem_object,
2624 ring_list);
2625
2626 i915_gem_object_move_to_inactive(obj);
2627 }
2628
2629 /*
2630 * Clear the execlists queue up before freeing the requests, as those
2631 * are the ones that keep the context and ringbuffer backing objects
2632 * pinned in place.
2633 */
2634 while (!list_empty(&ring->execlist_queue)) {
2635 struct drm_i915_gem_request *submit_req;
2636
2637 submit_req = list_first_entry(&ring->execlist_queue,
2638 struct drm_i915_gem_request,
2639 execlist_link);
2640 list_del(&submit_req->execlist_link);
2641
2642 if (submit_req->ctx != ring->default_context)
2643 intel_lr_context_unpin(ring, submit_req->ctx);
2644
2645 i915_gem_request_unreference(submit_req);
2646 }
2647
2648 /*
2649 * We must free the requests after all the corresponding objects have
2650 * been moved off active lists. Which is the same order as the normal
2651 * retire_requests function does. This is important if object hold
2652 * implicit references on things like e.g. ppgtt address spaces through
2653 * the request.
2654 */
2655 while (!list_empty(&ring->request_list)) {
2656 struct drm_i915_gem_request *request;
2657
2658 request = list_first_entry(&ring->request_list,
2659 struct drm_i915_gem_request,
2660 list);
2661
2662 i915_gem_free_request(request);
2663 }
2664
2665 /* This may not have been flushed before the reset, so clean it now */
2666 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2667 }
2668
2669 void i915_gem_restore_fences(struct drm_device *dev)
2670 {
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 int i;
2673
2674 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2675 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2676
2677 /*
2678 * Commit delayed tiling changes if we have an object still
2679 * attached to the fence, otherwise just clear the fence.
2680 */
2681 if (reg->obj) {
2682 i915_gem_object_update_fence(reg->obj, reg,
2683 reg->obj->tiling_mode);
2684 } else {
2685 i915_gem_write_fence(dev, i, NULL);
2686 }
2687 }
2688 }
2689
2690 void i915_gem_reset(struct drm_device *dev)
2691 {
2692 struct drm_i915_private *dev_priv = dev->dev_private;
2693 struct intel_engine_cs *ring;
2694 int i;
2695
2696 /*
2697 * Before we free the objects from the requests, we need to inspect
2698 * them for finding the guilty party. As the requests only borrow
2699 * their reference to the objects, the inspection must be done first.
2700 */
2701 for_each_ring(ring, dev_priv, i)
2702 i915_gem_reset_ring_status(dev_priv, ring);
2703
2704 for_each_ring(ring, dev_priv, i)
2705 i915_gem_reset_ring_cleanup(dev_priv, ring);
2706
2707 i915_gem_context_reset(dev);
2708
2709 i915_gem_restore_fences(dev);
2710 }
2711
2712 /**
2713 * This function clears the request list as sequence numbers are passed.
2714 */
2715 void
2716 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2717 {
2718 if (list_empty(&ring->request_list))
2719 return;
2720
2721 WARN_ON(i915_verify_lists(ring->dev));
2722
2723 /* Retire requests first as we use it above for the early return.
2724 * If we retire requests last, we may use a later seqno and so clear
2725 * the requests lists without clearing the active list, leading to
2726 * confusion.
2727 */
2728 while (!list_empty(&ring->request_list)) {
2729 struct drm_i915_gem_request *request;
2730
2731 request = list_first_entry(&ring->request_list,
2732 struct drm_i915_gem_request,
2733 list);
2734
2735 if (!i915_gem_request_completed(request, true))
2736 break;
2737
2738 trace_i915_gem_request_retire(request);
2739
2740 /* We know the GPU must have read the request to have
2741 * sent us the seqno + interrupt, so use the position
2742 * of tail of the request to update the last known position
2743 * of the GPU head.
2744 */
2745 request->ringbuf->last_retired_head = request->postfix;
2746
2747 i915_gem_free_request(request);
2748 }
2749
2750 /* Move any buffers on the active list that are no longer referenced
2751 * by the ringbuffer to the flushing/inactive lists as appropriate,
2752 * before we free the context associated with the requests.
2753 */
2754 while (!list_empty(&ring->active_list)) {
2755 struct drm_i915_gem_object *obj;
2756
2757 obj = list_first_entry(&ring->active_list,
2758 struct drm_i915_gem_object,
2759 ring_list);
2760
2761 if (!i915_gem_request_completed(obj->last_read_req, true))
2762 break;
2763
2764 i915_gem_object_move_to_inactive(obj);
2765 }
2766
2767 if (unlikely(ring->trace_irq_req &&
2768 i915_gem_request_completed(ring->trace_irq_req, true))) {
2769 ring->irq_put(ring);
2770 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2771 }
2772
2773 WARN_ON(i915_verify_lists(ring->dev));
2774 }
2775
2776 bool
2777 i915_gem_retire_requests(struct drm_device *dev)
2778 {
2779 struct drm_i915_private *dev_priv = dev->dev_private;
2780 struct intel_engine_cs *ring;
2781 bool idle = true;
2782 int i;
2783
2784 for_each_ring(ring, dev_priv, i) {
2785 i915_gem_retire_requests_ring(ring);
2786 idle &= list_empty(&ring->request_list);
2787 if (i915.enable_execlists) {
2788 unsigned long flags;
2789
2790 spin_lock_irqsave(&ring->execlist_lock, flags);
2791 idle &= list_empty(&ring->execlist_queue);
2792 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2793
2794 intel_execlists_retire_requests(ring);
2795 }
2796 }
2797
2798 if (idle)
2799 mod_delayed_work(dev_priv->wq,
2800 &dev_priv->mm.idle_work,
2801 msecs_to_jiffies(100));
2802
2803 return idle;
2804 }
2805
2806 static void
2807 i915_gem_retire_work_handler(struct work_struct *work)
2808 {
2809 struct drm_i915_private *dev_priv =
2810 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2811 struct drm_device *dev = dev_priv->dev;
2812 bool idle;
2813
2814 /* Come back later if the device is busy... */
2815 idle = false;
2816 if (mutex_trylock(&dev->struct_mutex)) {
2817 idle = i915_gem_retire_requests(dev);
2818 mutex_unlock(&dev->struct_mutex);
2819 }
2820 if (!idle)
2821 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2822 round_jiffies_up_relative(HZ));
2823 }
2824
2825 static void
2826 i915_gem_idle_work_handler(struct work_struct *work)
2827 {
2828 struct drm_i915_private *dev_priv =
2829 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2830 struct drm_device *dev = dev_priv->dev;
2831 struct intel_engine_cs *ring;
2832 int i;
2833
2834 for_each_ring(ring, dev_priv, i)
2835 if (!list_empty(&ring->request_list))
2836 return;
2837
2838 intel_mark_idle(dev);
2839
2840 if (mutex_trylock(&dev->struct_mutex)) {
2841 struct intel_engine_cs *ring;
2842 int i;
2843
2844 for_each_ring(ring, dev_priv, i)
2845 i915_gem_batch_pool_fini(&ring->batch_pool);
2846
2847 mutex_unlock(&dev->struct_mutex);
2848 }
2849 }
2850
2851 /**
2852 * Ensures that an object will eventually get non-busy by flushing any required
2853 * write domains, emitting any outstanding lazy request and retiring and
2854 * completed requests.
2855 */
2856 static int
2857 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2858 {
2859 struct intel_engine_cs *ring;
2860 int ret;
2861
2862 if (obj->active) {
2863 ring = i915_gem_request_get_ring(obj->last_read_req);
2864
2865 ret = i915_gem_check_olr(obj->last_read_req);
2866 if (ret)
2867 return ret;
2868
2869 i915_gem_retire_requests_ring(ring);
2870 }
2871
2872 return 0;
2873 }
2874
2875 /**
2876 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2877 * @DRM_IOCTL_ARGS: standard ioctl arguments
2878 *
2879 * Returns 0 if successful, else an error is returned with the remaining time in
2880 * the timeout parameter.
2881 * -ETIME: object is still busy after timeout
2882 * -ERESTARTSYS: signal interrupted the wait
2883 * -ENONENT: object doesn't exist
2884 * Also possible, but rare:
2885 * -EAGAIN: GPU wedged
2886 * -ENOMEM: damn
2887 * -ENODEV: Internal IRQ fail
2888 * -E?: The add request failed
2889 *
2890 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2891 * non-zero timeout parameter the wait ioctl will wait for the given number of
2892 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2893 * without holding struct_mutex the object may become re-busied before this
2894 * function completes. A similar but shorter * race condition exists in the busy
2895 * ioctl
2896 */
2897 int
2898 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2899 {
2900 struct drm_i915_private *dev_priv = dev->dev_private;
2901 struct drm_i915_gem_wait *args = data;
2902 struct drm_i915_gem_object *obj;
2903 struct drm_i915_gem_request *req;
2904 unsigned reset_counter;
2905 int ret = 0;
2906
2907 if (args->flags != 0)
2908 return -EINVAL;
2909
2910 ret = i915_mutex_lock_interruptible(dev);
2911 if (ret)
2912 return ret;
2913
2914 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2915 if (&obj->base == NULL) {
2916 mutex_unlock(&dev->struct_mutex);
2917 return -ENOENT;
2918 }
2919
2920 /* Need to make sure the object gets inactive eventually. */
2921 ret = i915_gem_object_flush_active(obj);
2922 if (ret)
2923 goto out;
2924
2925 if (!obj->active || !obj->last_read_req)
2926 goto out;
2927
2928 req = obj->last_read_req;
2929
2930 /* Do this after OLR check to make sure we make forward progress polling
2931 * on this IOCTL with a timeout == 0 (like busy ioctl)
2932 */
2933 if (args->timeout_ns == 0) {
2934 ret = -ETIME;
2935 goto out;
2936 }
2937
2938 drm_gem_object_unreference(&obj->base);
2939 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2940 i915_gem_request_reference(req);
2941 mutex_unlock(&dev->struct_mutex);
2942
2943 ret = __i915_wait_request(req, reset_counter, true,
2944 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2945 file->driver_priv);
2946 i915_gem_request_unreference__unlocked(req);
2947 return ret;
2948
2949 out:
2950 drm_gem_object_unreference(&obj->base);
2951 mutex_unlock(&dev->struct_mutex);
2952 return ret;
2953 }
2954
2955 /**
2956 * i915_gem_object_sync - sync an object to a ring.
2957 *
2958 * @obj: object which may be in use on another ring.
2959 * @to: ring we wish to use the object on. May be NULL.
2960 *
2961 * This code is meant to abstract object synchronization with the GPU.
2962 * Calling with NULL implies synchronizing the object with the CPU
2963 * rather than a particular GPU ring.
2964 *
2965 * Returns 0 if successful, else propagates up the lower layer error.
2966 */
2967 int
2968 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2969 struct intel_engine_cs *to)
2970 {
2971 struct intel_engine_cs *from;
2972 u32 seqno;
2973 int ret, idx;
2974
2975 from = i915_gem_request_get_ring(obj->last_read_req);
2976
2977 if (from == NULL || to == from)
2978 return 0;
2979
2980 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2981 return i915_gem_object_wait_rendering(obj, false);
2982
2983 idx = intel_ring_sync_index(from, to);
2984
2985 seqno = i915_gem_request_get_seqno(obj->last_read_req);
2986 /* Optimization: Avoid semaphore sync when we are sure we already
2987 * waited for an object with higher seqno */
2988 if (seqno <= from->semaphore.sync_seqno[idx])
2989 return 0;
2990
2991 ret = i915_gem_check_olr(obj->last_read_req);
2992 if (ret)
2993 return ret;
2994
2995 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
2996 ret = to->semaphore.sync_to(to, from, seqno);
2997 if (!ret)
2998 /* We use last_read_req because sync_to()
2999 * might have just caused seqno wrap under
3000 * the radar.
3001 */
3002 from->semaphore.sync_seqno[idx] =
3003 i915_gem_request_get_seqno(obj->last_read_req);
3004
3005 return ret;
3006 }
3007
3008 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3009 {
3010 u32 old_write_domain, old_read_domains;
3011
3012 /* Force a pagefault for domain tracking on next user access */
3013 i915_gem_release_mmap(obj);
3014
3015 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3016 return;
3017
3018 /* Wait for any direct GTT access to complete */
3019 mb();
3020
3021 old_read_domains = obj->base.read_domains;
3022 old_write_domain = obj->base.write_domain;
3023
3024 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3025 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3026
3027 trace_i915_gem_object_change_domain(obj,
3028 old_read_domains,
3029 old_write_domain);
3030 }
3031
3032 int i915_vma_unbind(struct i915_vma *vma)
3033 {
3034 struct drm_i915_gem_object *obj = vma->obj;
3035 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3036 int ret;
3037
3038 if (list_empty(&vma->vma_link))
3039 return 0;
3040
3041 if (!drm_mm_node_allocated(&vma->node)) {
3042 i915_gem_vma_destroy(vma);
3043 return 0;
3044 }
3045
3046 if (vma->pin_count)
3047 return -EBUSY;
3048
3049 BUG_ON(obj->pages == NULL);
3050
3051 ret = i915_gem_object_finish_gpu(obj);
3052 if (ret)
3053 return ret;
3054 /* Continue on if we fail due to EIO, the GPU is hung so we
3055 * should be safe and we need to cleanup or else we might
3056 * cause memory corruption through use-after-free.
3057 */
3058
3059 if (i915_is_ggtt(vma->vm) &&
3060 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3061 i915_gem_object_finish_gtt(obj);
3062
3063 /* release the fence reg _after_ flushing */
3064 ret = i915_gem_object_put_fence(obj);
3065 if (ret)
3066 return ret;
3067 }
3068
3069 trace_i915_vma_unbind(vma);
3070
3071 vma->vm->unbind_vma(vma);
3072
3073 list_del_init(&vma->mm_list);
3074 if (i915_is_ggtt(vma->vm)) {
3075 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3076 obj->map_and_fenceable = false;
3077 } else if (vma->ggtt_view.pages) {
3078 sg_free_table(vma->ggtt_view.pages);
3079 kfree(vma->ggtt_view.pages);
3080 vma->ggtt_view.pages = NULL;
3081 }
3082 }
3083
3084 drm_mm_remove_node(&vma->node);
3085 i915_gem_vma_destroy(vma);
3086
3087 /* Since the unbound list is global, only move to that list if
3088 * no more VMAs exist. */
3089 if (list_empty(&obj->vma_list)) {
3090 /* Throw away the active reference before
3091 * moving to the unbound list. */
3092 i915_gem_object_retire(obj);
3093
3094 i915_gem_gtt_finish_object(obj);
3095 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3096 }
3097
3098 /* And finally now the object is completely decoupled from this vma,
3099 * we can drop its hold on the backing storage and allow it to be
3100 * reaped by the shrinker.
3101 */
3102 i915_gem_object_unpin_pages(obj);
3103
3104 return 0;
3105 }
3106
3107 int i915_gpu_idle(struct drm_device *dev)
3108 {
3109 struct drm_i915_private *dev_priv = dev->dev_private;
3110 struct intel_engine_cs *ring;
3111 int ret, i;
3112
3113 /* Flush everything onto the inactive list. */
3114 for_each_ring(ring, dev_priv, i) {
3115 if (!i915.enable_execlists) {
3116 ret = i915_switch_context(ring, ring->default_context);
3117 if (ret)
3118 return ret;
3119 }
3120
3121 ret = intel_ring_idle(ring);
3122 if (ret)
3123 return ret;
3124 }
3125
3126 return 0;
3127 }
3128
3129 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3130 struct drm_i915_gem_object *obj)
3131 {
3132 struct drm_i915_private *dev_priv = dev->dev_private;
3133 int fence_reg;
3134 int fence_pitch_shift;
3135
3136 if (INTEL_INFO(dev)->gen >= 6) {
3137 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3138 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3139 } else {
3140 fence_reg = FENCE_REG_965_0;
3141 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3142 }
3143
3144 fence_reg += reg * 8;
3145
3146 /* To w/a incoherency with non-atomic 64-bit register updates,
3147 * we split the 64-bit update into two 32-bit writes. In order
3148 * for a partial fence not to be evaluated between writes, we
3149 * precede the update with write to turn off the fence register,
3150 * and only enable the fence as the last step.
3151 *
3152 * For extra levels of paranoia, we make sure each step lands
3153 * before applying the next step.
3154 */
3155 I915_WRITE(fence_reg, 0);
3156 POSTING_READ(fence_reg);
3157
3158 if (obj) {
3159 u32 size = i915_gem_obj_ggtt_size(obj);
3160 uint64_t val;
3161
3162 /* Adjust fence size to match tiled area */
3163 if (obj->tiling_mode != I915_TILING_NONE) {
3164 uint32_t row_size = obj->stride *
3165 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3166 size = (size / row_size) * row_size;
3167 }
3168
3169 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3170 0xfffff000) << 32;
3171 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3172 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3173 if (obj->tiling_mode == I915_TILING_Y)
3174 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3175 val |= I965_FENCE_REG_VALID;
3176
3177 I915_WRITE(fence_reg + 4, val >> 32);
3178 POSTING_READ(fence_reg + 4);
3179
3180 I915_WRITE(fence_reg + 0, val);
3181 POSTING_READ(fence_reg);
3182 } else {
3183 I915_WRITE(fence_reg + 4, 0);
3184 POSTING_READ(fence_reg + 4);
3185 }
3186 }
3187
3188 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3189 struct drm_i915_gem_object *obj)
3190 {
3191 struct drm_i915_private *dev_priv = dev->dev_private;
3192 u32 val;
3193
3194 if (obj) {
3195 u32 size = i915_gem_obj_ggtt_size(obj);
3196 int pitch_val;
3197 int tile_width;
3198
3199 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3200 (size & -size) != size ||
3201 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3202 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3203 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3204
3205 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3206 tile_width = 128;
3207 else
3208 tile_width = 512;
3209
3210 /* Note: pitch better be a power of two tile widths */
3211 pitch_val = obj->stride / tile_width;
3212 pitch_val = ffs(pitch_val) - 1;
3213
3214 val = i915_gem_obj_ggtt_offset(obj);
3215 if (obj->tiling_mode == I915_TILING_Y)
3216 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3217 val |= I915_FENCE_SIZE_BITS(size);
3218 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3219 val |= I830_FENCE_REG_VALID;
3220 } else
3221 val = 0;
3222
3223 if (reg < 8)
3224 reg = FENCE_REG_830_0 + reg * 4;
3225 else
3226 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3227
3228 I915_WRITE(reg, val);
3229 POSTING_READ(reg);
3230 }
3231
3232 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3233 struct drm_i915_gem_object *obj)
3234 {
3235 struct drm_i915_private *dev_priv = dev->dev_private;
3236 uint32_t val;
3237
3238 if (obj) {
3239 u32 size = i915_gem_obj_ggtt_size(obj);
3240 uint32_t pitch_val;
3241
3242 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3243 (size & -size) != size ||
3244 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3245 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3246 i915_gem_obj_ggtt_offset(obj), size);
3247
3248 pitch_val = obj->stride / 128;
3249 pitch_val = ffs(pitch_val) - 1;
3250
3251 val = i915_gem_obj_ggtt_offset(obj);
3252 if (obj->tiling_mode == I915_TILING_Y)
3253 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3254 val |= I830_FENCE_SIZE_BITS(size);
3255 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3256 val |= I830_FENCE_REG_VALID;
3257 } else
3258 val = 0;
3259
3260 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3261 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3262 }
3263
3264 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3265 {
3266 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3267 }
3268
3269 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3270 struct drm_i915_gem_object *obj)
3271 {
3272 struct drm_i915_private *dev_priv = dev->dev_private;
3273
3274 /* Ensure that all CPU reads are completed before installing a fence
3275 * and all writes before removing the fence.
3276 */
3277 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3278 mb();
3279
3280 WARN(obj && (!obj->stride || !obj->tiling_mode),
3281 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3282 obj->stride, obj->tiling_mode);
3283
3284 if (IS_GEN2(dev))
3285 i830_write_fence_reg(dev, reg, obj);
3286 else if (IS_GEN3(dev))
3287 i915_write_fence_reg(dev, reg, obj);
3288 else if (INTEL_INFO(dev)->gen >= 4)
3289 i965_write_fence_reg(dev, reg, obj);
3290
3291 /* And similarly be paranoid that no direct access to this region
3292 * is reordered to before the fence is installed.
3293 */
3294 if (i915_gem_object_needs_mb(obj))
3295 mb();
3296 }
3297
3298 static inline int fence_number(struct drm_i915_private *dev_priv,
3299 struct drm_i915_fence_reg *fence)
3300 {
3301 return fence - dev_priv->fence_regs;
3302 }
3303
3304 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3305 struct drm_i915_fence_reg *fence,
3306 bool enable)
3307 {
3308 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3309 int reg = fence_number(dev_priv, fence);
3310
3311 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3312
3313 if (enable) {
3314 obj->fence_reg = reg;
3315 fence->obj = obj;
3316 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3317 } else {
3318 obj->fence_reg = I915_FENCE_REG_NONE;
3319 fence->obj = NULL;
3320 list_del_init(&fence->lru_list);
3321 }
3322 obj->fence_dirty = false;
3323 }
3324
3325 static int
3326 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3327 {
3328 if (obj->last_fenced_req) {
3329 int ret = i915_wait_request(obj->last_fenced_req);
3330 if (ret)
3331 return ret;
3332
3333 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3334 }
3335
3336 return 0;
3337 }
3338
3339 int
3340 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3341 {
3342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3343 struct drm_i915_fence_reg *fence;
3344 int ret;
3345
3346 ret = i915_gem_object_wait_fence(obj);
3347 if (ret)
3348 return ret;
3349
3350 if (obj->fence_reg == I915_FENCE_REG_NONE)
3351 return 0;
3352
3353 fence = &dev_priv->fence_regs[obj->fence_reg];
3354
3355 if (WARN_ON(fence->pin_count))
3356 return -EBUSY;
3357
3358 i915_gem_object_fence_lost(obj);
3359 i915_gem_object_update_fence(obj, fence, false);
3360
3361 return 0;
3362 }
3363
3364 static struct drm_i915_fence_reg *
3365 i915_find_fence_reg(struct drm_device *dev)
3366 {
3367 struct drm_i915_private *dev_priv = dev->dev_private;
3368 struct drm_i915_fence_reg *reg, *avail;
3369 int i;
3370
3371 /* First try to find a free reg */
3372 avail = NULL;
3373 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3374 reg = &dev_priv->fence_regs[i];
3375 if (!reg->obj)
3376 return reg;
3377
3378 if (!reg->pin_count)
3379 avail = reg;
3380 }
3381
3382 if (avail == NULL)
3383 goto deadlock;
3384
3385 /* None available, try to steal one or wait for a user to finish */
3386 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3387 if (reg->pin_count)
3388 continue;
3389
3390 return reg;
3391 }
3392
3393 deadlock:
3394 /* Wait for completion of pending flips which consume fences */
3395 if (intel_has_pending_fb_unpin(dev))
3396 return ERR_PTR(-EAGAIN);
3397
3398 return ERR_PTR(-EDEADLK);
3399 }
3400
3401 /**
3402 * i915_gem_object_get_fence - set up fencing for an object
3403 * @obj: object to map through a fence reg
3404 *
3405 * When mapping objects through the GTT, userspace wants to be able to write
3406 * to them without having to worry about swizzling if the object is tiled.
3407 * This function walks the fence regs looking for a free one for @obj,
3408 * stealing one if it can't find any.
3409 *
3410 * It then sets up the reg based on the object's properties: address, pitch
3411 * and tiling format.
3412 *
3413 * For an untiled surface, this removes any existing fence.
3414 */
3415 int
3416 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3417 {
3418 struct drm_device *dev = obj->base.dev;
3419 struct drm_i915_private *dev_priv = dev->dev_private;
3420 bool enable = obj->tiling_mode != I915_TILING_NONE;
3421 struct drm_i915_fence_reg *reg;
3422 int ret;
3423
3424 /* Have we updated the tiling parameters upon the object and so
3425 * will need to serialise the write to the associated fence register?
3426 */
3427 if (obj->fence_dirty) {
3428 ret = i915_gem_object_wait_fence(obj);
3429 if (ret)
3430 return ret;
3431 }
3432
3433 /* Just update our place in the LRU if our fence is getting reused. */
3434 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3435 reg = &dev_priv->fence_regs[obj->fence_reg];
3436 if (!obj->fence_dirty) {
3437 list_move_tail(&reg->lru_list,
3438 &dev_priv->mm.fence_list);
3439 return 0;
3440 }
3441 } else if (enable) {
3442 if (WARN_ON(!obj->map_and_fenceable))
3443 return -EINVAL;
3444
3445 reg = i915_find_fence_reg(dev);
3446 if (IS_ERR(reg))
3447 return PTR_ERR(reg);
3448
3449 if (reg->obj) {
3450 struct drm_i915_gem_object *old = reg->obj;
3451
3452 ret = i915_gem_object_wait_fence(old);
3453 if (ret)
3454 return ret;
3455
3456 i915_gem_object_fence_lost(old);
3457 }
3458 } else
3459 return 0;
3460
3461 i915_gem_object_update_fence(obj, reg, enable);
3462
3463 return 0;
3464 }
3465
3466 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3467 unsigned long cache_level)
3468 {
3469 struct drm_mm_node *gtt_space = &vma->node;
3470 struct drm_mm_node *other;
3471
3472 /*
3473 * On some machines we have to be careful when putting differing types
3474 * of snoopable memory together to avoid the prefetcher crossing memory
3475 * domains and dying. During vm initialisation, we decide whether or not
3476 * these constraints apply and set the drm_mm.color_adjust
3477 * appropriately.
3478 */
3479 if (vma->vm->mm.color_adjust == NULL)
3480 return true;
3481
3482 if (!drm_mm_node_allocated(gtt_space))
3483 return true;
3484
3485 if (list_empty(&gtt_space->node_list))
3486 return true;
3487
3488 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3489 if (other->allocated && !other->hole_follows && other->color != cache_level)
3490 return false;
3491
3492 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3493 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3494 return false;
3495
3496 return true;
3497 }
3498
3499 /**
3500 * Finds free space in the GTT aperture and binds the object there.
3501 */
3502 static struct i915_vma *
3503 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3504 struct i915_address_space *vm,
3505 const struct i915_ggtt_view *ggtt_view,
3506 unsigned alignment,
3507 uint64_t flags)
3508 {
3509 struct drm_device *dev = obj->base.dev;
3510 struct drm_i915_private *dev_priv = dev->dev_private;
3511 u32 size, fence_size, fence_alignment, unfenced_alignment;
3512 unsigned long start =
3513 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3514 unsigned long end =
3515 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3516 struct i915_vma *vma;
3517 int ret;
3518
3519 if(WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3520 return ERR_PTR(-EINVAL);
3521
3522 fence_size = i915_gem_get_gtt_size(dev,
3523 obj->base.size,
3524 obj->tiling_mode);
3525 fence_alignment = i915_gem_get_gtt_alignment(dev,
3526 obj->base.size,
3527 obj->tiling_mode, true);
3528 unfenced_alignment =
3529 i915_gem_get_gtt_alignment(dev,
3530 obj->base.size,
3531 obj->tiling_mode, false);
3532
3533 if (alignment == 0)
3534 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3535 unfenced_alignment;
3536 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3537 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3538 return ERR_PTR(-EINVAL);
3539 }
3540
3541 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3542
3543 /* If the object is bigger than the entire aperture, reject it early
3544 * before evicting everything in a vain attempt to find space.
3545 */
3546 if (obj->base.size > end) {
3547 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3548 obj->base.size,
3549 flags & PIN_MAPPABLE ? "mappable" : "total",
3550 end);
3551 return ERR_PTR(-E2BIG);
3552 }
3553
3554 ret = i915_gem_object_get_pages(obj);
3555 if (ret)
3556 return ERR_PTR(ret);
3557
3558 i915_gem_object_pin_pages(obj);
3559
3560 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3561 i915_gem_obj_lookup_or_create_vma(obj, vm);
3562
3563 if (IS_ERR(vma))
3564 goto err_unpin;
3565
3566 search_free:
3567 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3568 size, alignment,
3569 obj->cache_level,
3570 start, end,
3571 DRM_MM_SEARCH_DEFAULT,
3572 DRM_MM_CREATE_DEFAULT);
3573 if (ret) {
3574 ret = i915_gem_evict_something(dev, vm, size, alignment,
3575 obj->cache_level,
3576 start, end,
3577 flags);
3578 if (ret == 0)
3579 goto search_free;
3580
3581 goto err_free_vma;
3582 }
3583 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3584 ret = -EINVAL;
3585 goto err_remove_node;
3586 }
3587
3588 ret = i915_gem_gtt_prepare_object(obj);
3589 if (ret)
3590 goto err_remove_node;
3591
3592 trace_i915_vma_bind(vma, flags);
3593 ret = i915_vma_bind(vma, obj->cache_level, flags);
3594 if (ret)
3595 goto err_finish_gtt;
3596
3597 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3598 list_add_tail(&vma->mm_list, &vm->inactive_list);
3599
3600 return vma;
3601
3602 err_finish_gtt:
3603 i915_gem_gtt_finish_object(obj);
3604 err_remove_node:
3605 drm_mm_remove_node(&vma->node);
3606 err_free_vma:
3607 i915_gem_vma_destroy(vma);
3608 vma = ERR_PTR(ret);
3609 err_unpin:
3610 i915_gem_object_unpin_pages(obj);
3611 return vma;
3612 }
3613
3614 bool
3615 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3616 bool force)
3617 {
3618 /* If we don't have a page list set up, then we're not pinned
3619 * to GPU, and we can ignore the cache flush because it'll happen
3620 * again at bind time.
3621 */
3622 if (obj->pages == NULL)
3623 return false;
3624
3625 /*
3626 * Stolen memory is always coherent with the GPU as it is explicitly
3627 * marked as wc by the system, or the system is cache-coherent.
3628 */
3629 if (obj->stolen || obj->phys_handle)
3630 return false;
3631
3632 /* If the GPU is snooping the contents of the CPU cache,
3633 * we do not need to manually clear the CPU cache lines. However,
3634 * the caches are only snooped when the render cache is
3635 * flushed/invalidated. As we always have to emit invalidations
3636 * and flushes when moving into and out of the RENDER domain, correct
3637 * snooping behaviour occurs naturally as the result of our domain
3638 * tracking.
3639 */
3640 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3641 obj->cache_dirty = true;
3642 return false;
3643 }
3644
3645 trace_i915_gem_object_clflush(obj);
3646 drm_clflush_sg(obj->pages);
3647 obj->cache_dirty = false;
3648
3649 return true;
3650 }
3651
3652 /** Flushes the GTT write domain for the object if it's dirty. */
3653 static void
3654 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3655 {
3656 uint32_t old_write_domain;
3657
3658 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3659 return;
3660
3661 /* No actual flushing is required for the GTT write domain. Writes
3662 * to it immediately go to main memory as far as we know, so there's
3663 * no chipset flush. It also doesn't land in render cache.
3664 *
3665 * However, we do have to enforce the order so that all writes through
3666 * the GTT land before any writes to the device, such as updates to
3667 * the GATT itself.
3668 */
3669 wmb();
3670
3671 old_write_domain = obj->base.write_domain;
3672 obj->base.write_domain = 0;
3673
3674 intel_fb_obj_flush(obj, false);
3675
3676 trace_i915_gem_object_change_domain(obj,
3677 obj->base.read_domains,
3678 old_write_domain);
3679 }
3680
3681 /** Flushes the CPU write domain for the object if it's dirty. */
3682 static void
3683 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3684 {
3685 uint32_t old_write_domain;
3686
3687 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3688 return;
3689
3690 if (i915_gem_clflush_object(obj, obj->pin_display))
3691 i915_gem_chipset_flush(obj->base.dev);
3692
3693 old_write_domain = obj->base.write_domain;
3694 obj->base.write_domain = 0;
3695
3696 intel_fb_obj_flush(obj, false);
3697
3698 trace_i915_gem_object_change_domain(obj,
3699 obj->base.read_domains,
3700 old_write_domain);
3701 }
3702
3703 /**
3704 * Moves a single object to the GTT read, and possibly write domain.
3705 *
3706 * This function returns when the move is complete, including waiting on
3707 * flushes to occur.
3708 */
3709 int
3710 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3711 {
3712 uint32_t old_write_domain, old_read_domains;
3713 struct i915_vma *vma;
3714 int ret;
3715
3716 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3717 return 0;
3718
3719 ret = i915_gem_object_wait_rendering(obj, !write);
3720 if (ret)
3721 return ret;
3722
3723 i915_gem_object_retire(obj);
3724
3725 /* Flush and acquire obj->pages so that we are coherent through
3726 * direct access in memory with previous cached writes through
3727 * shmemfs and that our cache domain tracking remains valid.
3728 * For example, if the obj->filp was moved to swap without us
3729 * being notified and releasing the pages, we would mistakenly
3730 * continue to assume that the obj remained out of the CPU cached
3731 * domain.
3732 */
3733 ret = i915_gem_object_get_pages(obj);
3734 if (ret)
3735 return ret;
3736
3737 i915_gem_object_flush_cpu_write_domain(obj);
3738
3739 /* Serialise direct access to this object with the barriers for
3740 * coherent writes from the GPU, by effectively invalidating the
3741 * GTT domain upon first access.
3742 */
3743 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3744 mb();
3745
3746 old_write_domain = obj->base.write_domain;
3747 old_read_domains = obj->base.read_domains;
3748
3749 /* It should now be out of any other write domains, and we can update
3750 * the domain values for our changes.
3751 */
3752 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3753 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3754 if (write) {
3755 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3756 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3757 obj->dirty = 1;
3758 }
3759
3760 if (write)
3761 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3762
3763 trace_i915_gem_object_change_domain(obj,
3764 old_read_domains,
3765 old_write_domain);
3766
3767 /* And bump the LRU for this access */
3768 vma = i915_gem_obj_to_ggtt(obj);
3769 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3770 list_move_tail(&vma->mm_list,
3771 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3772
3773 return 0;
3774 }
3775
3776 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3777 enum i915_cache_level cache_level)
3778 {
3779 struct drm_device *dev = obj->base.dev;
3780 struct i915_vma *vma, *next;
3781 int ret;
3782
3783 if (obj->cache_level == cache_level)
3784 return 0;
3785
3786 if (i915_gem_obj_is_pinned(obj)) {
3787 DRM_DEBUG("can not change the cache level of pinned objects\n");
3788 return -EBUSY;
3789 }
3790
3791 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3792 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3793 ret = i915_vma_unbind(vma);
3794 if (ret)
3795 return ret;
3796 }
3797 }
3798
3799 if (i915_gem_obj_bound_any(obj)) {
3800 ret = i915_gem_object_finish_gpu(obj);
3801 if (ret)
3802 return ret;
3803
3804 i915_gem_object_finish_gtt(obj);
3805
3806 /* Before SandyBridge, you could not use tiling or fence
3807 * registers with snooped memory, so relinquish any fences
3808 * currently pointing to our region in the aperture.
3809 */
3810 if (INTEL_INFO(dev)->gen < 6) {
3811 ret = i915_gem_object_put_fence(obj);
3812 if (ret)
3813 return ret;
3814 }
3815
3816 list_for_each_entry(vma, &obj->vma_list, vma_link)
3817 if (drm_mm_node_allocated(&vma->node)) {
3818 ret = i915_vma_bind(vma, cache_level,
3819 PIN_UPDATE);
3820 if (ret)
3821 return ret;
3822 }
3823 }
3824
3825 list_for_each_entry(vma, &obj->vma_list, vma_link)
3826 vma->node.color = cache_level;
3827 obj->cache_level = cache_level;
3828
3829 if (obj->cache_dirty &&
3830 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3831 cpu_write_needs_clflush(obj)) {
3832 if (i915_gem_clflush_object(obj, true))
3833 i915_gem_chipset_flush(obj->base.dev);
3834 }
3835
3836 return 0;
3837 }
3838
3839 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3840 struct drm_file *file)
3841 {
3842 struct drm_i915_gem_caching *args = data;
3843 struct drm_i915_gem_object *obj;
3844 int ret;
3845
3846 ret = i915_mutex_lock_interruptible(dev);
3847 if (ret)
3848 return ret;
3849
3850 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3851 if (&obj->base == NULL) {
3852 ret = -ENOENT;
3853 goto unlock;
3854 }
3855
3856 switch (obj->cache_level) {
3857 case I915_CACHE_LLC:
3858 case I915_CACHE_L3_LLC:
3859 args->caching = I915_CACHING_CACHED;
3860 break;
3861
3862 case I915_CACHE_WT:
3863 args->caching = I915_CACHING_DISPLAY;
3864 break;
3865
3866 default:
3867 args->caching = I915_CACHING_NONE;
3868 break;
3869 }
3870
3871 drm_gem_object_unreference(&obj->base);
3872 unlock:
3873 mutex_unlock(&dev->struct_mutex);
3874 return ret;
3875 }
3876
3877 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file)
3879 {
3880 struct drm_i915_gem_caching *args = data;
3881 struct drm_i915_gem_object *obj;
3882 enum i915_cache_level level;
3883 int ret;
3884
3885 switch (args->caching) {
3886 case I915_CACHING_NONE:
3887 level = I915_CACHE_NONE;
3888 break;
3889 case I915_CACHING_CACHED:
3890 level = I915_CACHE_LLC;
3891 break;
3892 case I915_CACHING_DISPLAY:
3893 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3894 break;
3895 default:
3896 return -EINVAL;
3897 }
3898
3899 ret = i915_mutex_lock_interruptible(dev);
3900 if (ret)
3901 return ret;
3902
3903 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3904 if (&obj->base == NULL) {
3905 ret = -ENOENT;
3906 goto unlock;
3907 }
3908
3909 ret = i915_gem_object_set_cache_level(obj, level);
3910
3911 drm_gem_object_unreference(&obj->base);
3912 unlock:
3913 mutex_unlock(&dev->struct_mutex);
3914 return ret;
3915 }
3916
3917 /*
3918 * Prepare buffer for display plane (scanout, cursors, etc).
3919 * Can be called from an uninterruptible phase (modesetting) and allows
3920 * any flushes to be pipelined (for pageflips).
3921 */
3922 int
3923 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3924 u32 alignment,
3925 struct intel_engine_cs *pipelined,
3926 const struct i915_ggtt_view *view)
3927 {
3928 u32 old_read_domains, old_write_domain;
3929 int ret;
3930
3931 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3932 ret = i915_gem_object_sync(obj, pipelined);
3933 if (ret)
3934 return ret;
3935 }
3936
3937 /* Mark the pin_display early so that we account for the
3938 * display coherency whilst setting up the cache domains.
3939 */
3940 obj->pin_display++;
3941
3942 /* The display engine is not coherent with the LLC cache on gen6. As
3943 * a result, we make sure that the pinning that is about to occur is
3944 * done with uncached PTEs. This is lowest common denominator for all
3945 * chipsets.
3946 *
3947 * However for gen6+, we could do better by using the GFDT bit instead
3948 * of uncaching, which would allow us to flush all the LLC-cached data
3949 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3950 */
3951 ret = i915_gem_object_set_cache_level(obj,
3952 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3953 if (ret)
3954 goto err_unpin_display;
3955
3956 /* As the user may map the buffer once pinned in the display plane
3957 * (e.g. libkms for the bootup splash), we have to ensure that we
3958 * always use map_and_fenceable for all scanout buffers.
3959 */
3960 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3961 view->type == I915_GGTT_VIEW_NORMAL ?
3962 PIN_MAPPABLE : 0);
3963 if (ret)
3964 goto err_unpin_display;
3965
3966 i915_gem_object_flush_cpu_write_domain(obj);
3967
3968 old_write_domain = obj->base.write_domain;
3969 old_read_domains = obj->base.read_domains;
3970
3971 /* It should now be out of any other write domains, and we can update
3972 * the domain values for our changes.
3973 */
3974 obj->base.write_domain = 0;
3975 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3976
3977 trace_i915_gem_object_change_domain(obj,
3978 old_read_domains,
3979 old_write_domain);
3980
3981 return 0;
3982
3983 err_unpin_display:
3984 obj->pin_display--;
3985 return ret;
3986 }
3987
3988 void
3989 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3990 const struct i915_ggtt_view *view)
3991 {
3992 if (WARN_ON(obj->pin_display == 0))
3993 return;
3994
3995 i915_gem_object_ggtt_unpin_view(obj, view);
3996
3997 obj->pin_display--;
3998 }
3999
4000 int
4001 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4002 {
4003 int ret;
4004
4005 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4006 return 0;
4007
4008 ret = i915_gem_object_wait_rendering(obj, false);
4009 if (ret)
4010 return ret;
4011
4012 /* Ensure that we invalidate the GPU's caches and TLBs. */
4013 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4014 return 0;
4015 }
4016
4017 /**
4018 * Moves a single object to the CPU read, and possibly write domain.
4019 *
4020 * This function returns when the move is complete, including waiting on
4021 * flushes to occur.
4022 */
4023 int
4024 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4025 {
4026 uint32_t old_write_domain, old_read_domains;
4027 int ret;
4028
4029 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4030 return 0;
4031
4032 ret = i915_gem_object_wait_rendering(obj, !write);
4033 if (ret)
4034 return ret;
4035
4036 i915_gem_object_retire(obj);
4037 i915_gem_object_flush_gtt_write_domain(obj);
4038
4039 old_write_domain = obj->base.write_domain;
4040 old_read_domains = obj->base.read_domains;
4041
4042 /* Flush the CPU cache if it's still invalid. */
4043 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4044 i915_gem_clflush_object(obj, false);
4045
4046 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4047 }
4048
4049 /* It should now be out of any other write domains, and we can update
4050 * the domain values for our changes.
4051 */
4052 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4053
4054 /* If we're writing through the CPU, then the GPU read domains will
4055 * need to be invalidated at next use.
4056 */
4057 if (write) {
4058 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4059 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4060 }
4061
4062 if (write)
4063 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4064
4065 trace_i915_gem_object_change_domain(obj,
4066 old_read_domains,
4067 old_write_domain);
4068
4069 return 0;
4070 }
4071
4072 /* Throttle our rendering by waiting until the ring has completed our requests
4073 * emitted over 20 msec ago.
4074 *
4075 * Note that if we were to use the current jiffies each time around the loop,
4076 * we wouldn't escape the function with any frames outstanding if the time to
4077 * render a frame was over 20ms.
4078 *
4079 * This should get us reasonable parallelism between CPU and GPU but also
4080 * relatively low latency when blocking on a particular request to finish.
4081 */
4082 static int
4083 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4084 {
4085 struct drm_i915_private *dev_priv = dev->dev_private;
4086 struct drm_i915_file_private *file_priv = file->driver_priv;
4087 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4088 struct drm_i915_gem_request *request, *target = NULL;
4089 unsigned reset_counter;
4090 int ret;
4091
4092 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4093 if (ret)
4094 return ret;
4095
4096 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4097 if (ret)
4098 return ret;
4099
4100 spin_lock(&file_priv->mm.lock);
4101 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4102 if (time_after_eq(request->emitted_jiffies, recent_enough))
4103 break;
4104
4105 target = request;
4106 }
4107 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4108 if (target)
4109 i915_gem_request_reference(target);
4110 spin_unlock(&file_priv->mm.lock);
4111
4112 if (target == NULL)
4113 return 0;
4114
4115 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4116 if (ret == 0)
4117 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4118
4119 i915_gem_request_unreference__unlocked(target);
4120
4121 return ret;
4122 }
4123
4124 static bool
4125 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4126 {
4127 struct drm_i915_gem_object *obj = vma->obj;
4128
4129 if (alignment &&
4130 vma->node.start & (alignment - 1))
4131 return true;
4132
4133 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4134 return true;
4135
4136 if (flags & PIN_OFFSET_BIAS &&
4137 vma->node.start < (flags & PIN_OFFSET_MASK))
4138 return true;
4139
4140 return false;
4141 }
4142
4143 static int
4144 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4145 struct i915_address_space *vm,
4146 const struct i915_ggtt_view *ggtt_view,
4147 uint32_t alignment,
4148 uint64_t flags)
4149 {
4150 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4151 struct i915_vma *vma;
4152 unsigned bound;
4153 int ret;
4154
4155 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4156 return -ENODEV;
4157
4158 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4159 return -EINVAL;
4160
4161 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4162 return -EINVAL;
4163
4164 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4165 return -EINVAL;
4166
4167 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4168 i915_gem_obj_to_vma(obj, vm);
4169
4170 if (IS_ERR(vma))
4171 return PTR_ERR(vma);
4172
4173 if (vma) {
4174 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4175 return -EBUSY;
4176
4177 if (i915_vma_misplaced(vma, alignment, flags)) {
4178 unsigned long offset;
4179 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4180 i915_gem_obj_offset(obj, vm);
4181 WARN(vma->pin_count,
4182 "bo is already pinned in %s with incorrect alignment:"
4183 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4184 " obj->map_and_fenceable=%d\n",
4185 ggtt_view ? "ggtt" : "ppgtt",
4186 offset,
4187 alignment,
4188 !!(flags & PIN_MAPPABLE),
4189 obj->map_and_fenceable);
4190 ret = i915_vma_unbind(vma);
4191 if (ret)
4192 return ret;
4193
4194 vma = NULL;
4195 }
4196 }
4197
4198 bound = vma ? vma->bound : 0;
4199 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4200 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4201 flags);
4202 if (IS_ERR(vma))
4203 return PTR_ERR(vma);
4204 } else {
4205 ret = i915_vma_bind(vma, obj->cache_level, flags);
4206 if (ret)
4207 return ret;
4208 }
4209
4210 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4211 bool mappable, fenceable;
4212 u32 fence_size, fence_alignment;
4213
4214 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4215 obj->base.size,
4216 obj->tiling_mode);
4217 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4218 obj->base.size,
4219 obj->tiling_mode,
4220 true);
4221
4222 fenceable = (vma->node.size == fence_size &&
4223 (vma->node.start & (fence_alignment - 1)) == 0);
4224
4225 mappable = (vma->node.start + fence_size <=
4226 dev_priv->gtt.mappable_end);
4227
4228 obj->map_and_fenceable = mappable && fenceable;
4229 }
4230
4231 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4232
4233 vma->pin_count++;
4234 return 0;
4235 }
4236
4237 int
4238 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4239 struct i915_address_space *vm,
4240 uint32_t alignment,
4241 uint64_t flags)
4242 {
4243 return i915_gem_object_do_pin(obj, vm,
4244 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4245 alignment, flags);
4246 }
4247
4248 int
4249 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4250 const struct i915_ggtt_view *view,
4251 uint32_t alignment,
4252 uint64_t flags)
4253 {
4254 if (WARN_ONCE(!view, "no view specified"))
4255 return -EINVAL;
4256
4257 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4258 alignment, flags | PIN_GLOBAL);
4259 }
4260
4261 void
4262 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4263 const struct i915_ggtt_view *view)
4264 {
4265 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4266
4267 BUG_ON(!vma);
4268 WARN_ON(vma->pin_count == 0);
4269 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4270
4271 --vma->pin_count;
4272 }
4273
4274 bool
4275 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4276 {
4277 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4278 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4279 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4280
4281 WARN_ON(!ggtt_vma ||
4282 dev_priv->fence_regs[obj->fence_reg].pin_count >
4283 ggtt_vma->pin_count);
4284 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4285 return true;
4286 } else
4287 return false;
4288 }
4289
4290 void
4291 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4292 {
4293 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4294 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4295 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4296 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4297 }
4298 }
4299
4300 int
4301 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4302 struct drm_file *file)
4303 {
4304 struct drm_i915_gem_busy *args = data;
4305 struct drm_i915_gem_object *obj;
4306 int ret;
4307
4308 ret = i915_mutex_lock_interruptible(dev);
4309 if (ret)
4310 return ret;
4311
4312 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4313 if (&obj->base == NULL) {
4314 ret = -ENOENT;
4315 goto unlock;
4316 }
4317
4318 /* Count all active objects as busy, even if they are currently not used
4319 * by the gpu. Users of this interface expect objects to eventually
4320 * become non-busy without any further actions, therefore emit any
4321 * necessary flushes here.
4322 */
4323 ret = i915_gem_object_flush_active(obj);
4324
4325 args->busy = obj->active;
4326 if (obj->last_read_req) {
4327 struct intel_engine_cs *ring;
4328 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4329 ring = i915_gem_request_get_ring(obj->last_read_req);
4330 args->busy |= intel_ring_flag(ring) << 16;
4331 }
4332
4333 drm_gem_object_unreference(&obj->base);
4334 unlock:
4335 mutex_unlock(&dev->struct_mutex);
4336 return ret;
4337 }
4338
4339 int
4340 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4341 struct drm_file *file_priv)
4342 {
4343 return i915_gem_ring_throttle(dev, file_priv);
4344 }
4345
4346 int
4347 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4348 struct drm_file *file_priv)
4349 {
4350 struct drm_i915_private *dev_priv = dev->dev_private;
4351 struct drm_i915_gem_madvise *args = data;
4352 struct drm_i915_gem_object *obj;
4353 int ret;
4354
4355 switch (args->madv) {
4356 case I915_MADV_DONTNEED:
4357 case I915_MADV_WILLNEED:
4358 break;
4359 default:
4360 return -EINVAL;
4361 }
4362
4363 ret = i915_mutex_lock_interruptible(dev);
4364 if (ret)
4365 return ret;
4366
4367 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4368 if (&obj->base == NULL) {
4369 ret = -ENOENT;
4370 goto unlock;
4371 }
4372
4373 if (i915_gem_obj_is_pinned(obj)) {
4374 ret = -EINVAL;
4375 goto out;
4376 }
4377
4378 if (obj->pages &&
4379 obj->tiling_mode != I915_TILING_NONE &&
4380 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4381 if (obj->madv == I915_MADV_WILLNEED)
4382 i915_gem_object_unpin_pages(obj);
4383 if (args->madv == I915_MADV_WILLNEED)
4384 i915_gem_object_pin_pages(obj);
4385 }
4386
4387 if (obj->madv != __I915_MADV_PURGED)
4388 obj->madv = args->madv;
4389
4390 /* if the object is no longer attached, discard its backing storage */
4391 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4392 i915_gem_object_truncate(obj);
4393
4394 args->retained = obj->madv != __I915_MADV_PURGED;
4395
4396 out:
4397 drm_gem_object_unreference(&obj->base);
4398 unlock:
4399 mutex_unlock(&dev->struct_mutex);
4400 return ret;
4401 }
4402
4403 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4404 const struct drm_i915_gem_object_ops *ops)
4405 {
4406 INIT_LIST_HEAD(&obj->global_list);
4407 INIT_LIST_HEAD(&obj->ring_list);
4408 INIT_LIST_HEAD(&obj->obj_exec_link);
4409 INIT_LIST_HEAD(&obj->vma_list);
4410 INIT_LIST_HEAD(&obj->batch_pool_link);
4411
4412 obj->ops = ops;
4413
4414 obj->fence_reg = I915_FENCE_REG_NONE;
4415 obj->madv = I915_MADV_WILLNEED;
4416
4417 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4418 }
4419
4420 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4421 .get_pages = i915_gem_object_get_pages_gtt,
4422 .put_pages = i915_gem_object_put_pages_gtt,
4423 };
4424
4425 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4426 size_t size)
4427 {
4428 struct drm_i915_gem_object *obj;
4429 struct address_space *mapping;
4430 gfp_t mask;
4431
4432 obj = i915_gem_object_alloc(dev);
4433 if (obj == NULL)
4434 return NULL;
4435
4436 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4437 i915_gem_object_free(obj);
4438 return NULL;
4439 }
4440
4441 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4442 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4443 /* 965gm cannot relocate objects above 4GiB. */
4444 mask &= ~__GFP_HIGHMEM;
4445 mask |= __GFP_DMA32;
4446 }
4447
4448 mapping = file_inode(obj->base.filp)->i_mapping;
4449 mapping_set_gfp_mask(mapping, mask);
4450
4451 i915_gem_object_init(obj, &i915_gem_object_ops);
4452
4453 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4454 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4455
4456 if (HAS_LLC(dev)) {
4457 /* On some devices, we can have the GPU use the LLC (the CPU
4458 * cache) for about a 10% performance improvement
4459 * compared to uncached. Graphics requests other than
4460 * display scanout are coherent with the CPU in
4461 * accessing this cache. This means in this mode we
4462 * don't need to clflush on the CPU side, and on the
4463 * GPU side we only need to flush internal caches to
4464 * get data visible to the CPU.
4465 *
4466 * However, we maintain the display planes as UC, and so
4467 * need to rebind when first used as such.
4468 */
4469 obj->cache_level = I915_CACHE_LLC;
4470 } else
4471 obj->cache_level = I915_CACHE_NONE;
4472
4473 trace_i915_gem_object_create(obj);
4474
4475 return obj;
4476 }
4477
4478 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4479 {
4480 /* If we are the last user of the backing storage (be it shmemfs
4481 * pages or stolen etc), we know that the pages are going to be
4482 * immediately released. In this case, we can then skip copying
4483 * back the contents from the GPU.
4484 */
4485
4486 if (obj->madv != I915_MADV_WILLNEED)
4487 return false;
4488
4489 if (obj->base.filp == NULL)
4490 return true;
4491
4492 /* At first glance, this looks racy, but then again so would be
4493 * userspace racing mmap against close. However, the first external
4494 * reference to the filp can only be obtained through the
4495 * i915_gem_mmap_ioctl() which safeguards us against the user
4496 * acquiring such a reference whilst we are in the middle of
4497 * freeing the object.
4498 */
4499 return atomic_long_read(&obj->base.filp->f_count) == 1;
4500 }
4501
4502 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4503 {
4504 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4505 struct drm_device *dev = obj->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 struct i915_vma *vma, *next;
4508
4509 intel_runtime_pm_get(dev_priv);
4510
4511 trace_i915_gem_object_destroy(obj);
4512
4513 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4514 int ret;
4515
4516 vma->pin_count = 0;
4517 ret = i915_vma_unbind(vma);
4518 if (WARN_ON(ret == -ERESTARTSYS)) {
4519 bool was_interruptible;
4520
4521 was_interruptible = dev_priv->mm.interruptible;
4522 dev_priv->mm.interruptible = false;
4523
4524 WARN_ON(i915_vma_unbind(vma));
4525
4526 dev_priv->mm.interruptible = was_interruptible;
4527 }
4528 }
4529
4530 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4531 * before progressing. */
4532 if (obj->stolen)
4533 i915_gem_object_unpin_pages(obj);
4534
4535 WARN_ON(obj->frontbuffer_bits);
4536
4537 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4538 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4539 obj->tiling_mode != I915_TILING_NONE)
4540 i915_gem_object_unpin_pages(obj);
4541
4542 if (WARN_ON(obj->pages_pin_count))
4543 obj->pages_pin_count = 0;
4544 if (discard_backing_storage(obj))
4545 obj->madv = I915_MADV_DONTNEED;
4546 i915_gem_object_put_pages(obj);
4547 i915_gem_object_free_mmap_offset(obj);
4548
4549 BUG_ON(obj->pages);
4550
4551 if (obj->base.import_attach)
4552 drm_prime_gem_destroy(&obj->base, NULL);
4553
4554 if (obj->ops->release)
4555 obj->ops->release(obj);
4556
4557 drm_gem_object_release(&obj->base);
4558 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4559
4560 kfree(obj->bit_17);
4561 i915_gem_object_free(obj);
4562
4563 intel_runtime_pm_put(dev_priv);
4564 }
4565
4566 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4567 struct i915_address_space *vm)
4568 {
4569 struct i915_vma *vma;
4570 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4571 if (i915_is_ggtt(vma->vm) &&
4572 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4573 continue;
4574 if (vma->vm == vm)
4575 return vma;
4576 }
4577 return NULL;
4578 }
4579
4580 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4581 const struct i915_ggtt_view *view)
4582 {
4583 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4584 struct i915_vma *vma;
4585
4586 if (WARN_ONCE(!view, "no view specified"))
4587 return ERR_PTR(-EINVAL);
4588
4589 list_for_each_entry(vma, &obj->vma_list, vma_link)
4590 if (vma->vm == ggtt &&
4591 i915_ggtt_view_equal(&vma->ggtt_view, view))
4592 return vma;
4593 return NULL;
4594 }
4595
4596 void i915_gem_vma_destroy(struct i915_vma *vma)
4597 {
4598 struct i915_address_space *vm = NULL;
4599 WARN_ON(vma->node.allocated);
4600
4601 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4602 if (!list_empty(&vma->exec_list))
4603 return;
4604
4605 vm = vma->vm;
4606
4607 if (!i915_is_ggtt(vm))
4608 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4609
4610 list_del(&vma->vma_link);
4611
4612 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4613 }
4614
4615 static void
4616 i915_gem_stop_ringbuffers(struct drm_device *dev)
4617 {
4618 struct drm_i915_private *dev_priv = dev->dev_private;
4619 struct intel_engine_cs *ring;
4620 int i;
4621
4622 for_each_ring(ring, dev_priv, i)
4623 dev_priv->gt.stop_ring(ring);
4624 }
4625
4626 int
4627 i915_gem_suspend(struct drm_device *dev)
4628 {
4629 struct drm_i915_private *dev_priv = dev->dev_private;
4630 int ret = 0;
4631
4632 mutex_lock(&dev->struct_mutex);
4633 ret = i915_gpu_idle(dev);
4634 if (ret)
4635 goto err;
4636
4637 i915_gem_retire_requests(dev);
4638
4639 i915_gem_stop_ringbuffers(dev);
4640 mutex_unlock(&dev->struct_mutex);
4641
4642 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4643 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4644 flush_delayed_work(&dev_priv->mm.idle_work);
4645
4646 /* Assert that we sucessfully flushed all the work and
4647 * reset the GPU back to its idle, low power state.
4648 */
4649 WARN_ON(dev_priv->mm.busy);
4650
4651 return 0;
4652
4653 err:
4654 mutex_unlock(&dev->struct_mutex);
4655 return ret;
4656 }
4657
4658 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4659 {
4660 struct drm_device *dev = ring->dev;
4661 struct drm_i915_private *dev_priv = dev->dev_private;
4662 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4663 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4664 int i, ret;
4665
4666 if (!HAS_L3_DPF(dev) || !remap_info)
4667 return 0;
4668
4669 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4670 if (ret)
4671 return ret;
4672
4673 /*
4674 * Note: We do not worry about the concurrent register cacheline hang
4675 * here because no other code should access these registers other than
4676 * at initialization time.
4677 */
4678 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4679 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4680 intel_ring_emit(ring, reg_base + i);
4681 intel_ring_emit(ring, remap_info[i/4]);
4682 }
4683
4684 intel_ring_advance(ring);
4685
4686 return ret;
4687 }
4688
4689 void i915_gem_init_swizzling(struct drm_device *dev)
4690 {
4691 struct drm_i915_private *dev_priv = dev->dev_private;
4692
4693 if (INTEL_INFO(dev)->gen < 5 ||
4694 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4695 return;
4696
4697 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4698 DISP_TILE_SURFACE_SWIZZLING);
4699
4700 if (IS_GEN5(dev))
4701 return;
4702
4703 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4704 if (IS_GEN6(dev))
4705 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4706 else if (IS_GEN7(dev))
4707 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4708 else if (IS_GEN8(dev))
4709 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4710 else
4711 BUG();
4712 }
4713
4714 static bool
4715 intel_enable_blt(struct drm_device *dev)
4716 {
4717 if (!HAS_BLT(dev))
4718 return false;
4719
4720 /* The blitter was dysfunctional on early prototypes */
4721 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4722 DRM_INFO("BLT not supported on this pre-production hardware;"
4723 " graphics performance will be degraded.\n");
4724 return false;
4725 }
4726
4727 return true;
4728 }
4729
4730 static void init_unused_ring(struct drm_device *dev, u32 base)
4731 {
4732 struct drm_i915_private *dev_priv = dev->dev_private;
4733
4734 I915_WRITE(RING_CTL(base), 0);
4735 I915_WRITE(RING_HEAD(base), 0);
4736 I915_WRITE(RING_TAIL(base), 0);
4737 I915_WRITE(RING_START(base), 0);
4738 }
4739
4740 static void init_unused_rings(struct drm_device *dev)
4741 {
4742 if (IS_I830(dev)) {
4743 init_unused_ring(dev, PRB1_BASE);
4744 init_unused_ring(dev, SRB0_BASE);
4745 init_unused_ring(dev, SRB1_BASE);
4746 init_unused_ring(dev, SRB2_BASE);
4747 init_unused_ring(dev, SRB3_BASE);
4748 } else if (IS_GEN2(dev)) {
4749 init_unused_ring(dev, SRB0_BASE);
4750 init_unused_ring(dev, SRB1_BASE);
4751 } else if (IS_GEN3(dev)) {
4752 init_unused_ring(dev, PRB1_BASE);
4753 init_unused_ring(dev, PRB2_BASE);
4754 }
4755 }
4756
4757 int i915_gem_init_rings(struct drm_device *dev)
4758 {
4759 struct drm_i915_private *dev_priv = dev->dev_private;
4760 int ret;
4761
4762 ret = intel_init_render_ring_buffer(dev);
4763 if (ret)
4764 return ret;
4765
4766 if (HAS_BSD(dev)) {
4767 ret = intel_init_bsd_ring_buffer(dev);
4768 if (ret)
4769 goto cleanup_render_ring;
4770 }
4771
4772 if (intel_enable_blt(dev)) {
4773 ret = intel_init_blt_ring_buffer(dev);
4774 if (ret)
4775 goto cleanup_bsd_ring;
4776 }
4777
4778 if (HAS_VEBOX(dev)) {
4779 ret = intel_init_vebox_ring_buffer(dev);
4780 if (ret)
4781 goto cleanup_blt_ring;
4782 }
4783
4784 if (HAS_BSD2(dev)) {
4785 ret = intel_init_bsd2_ring_buffer(dev);
4786 if (ret)
4787 goto cleanup_vebox_ring;
4788 }
4789
4790 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4791 if (ret)
4792 goto cleanup_bsd2_ring;
4793
4794 return 0;
4795
4796 cleanup_bsd2_ring:
4797 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4798 cleanup_vebox_ring:
4799 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4800 cleanup_blt_ring:
4801 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4802 cleanup_bsd_ring:
4803 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4804 cleanup_render_ring:
4805 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4806
4807 return ret;
4808 }
4809
4810 int
4811 i915_gem_init_hw(struct drm_device *dev)
4812 {
4813 struct drm_i915_private *dev_priv = dev->dev_private;
4814 struct intel_engine_cs *ring;
4815 int ret, i;
4816
4817 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4818 return -EIO;
4819
4820 /* Double layer security blanket, see i915_gem_init() */
4821 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4822
4823 if (dev_priv->ellc_size)
4824 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4825
4826 if (IS_HASWELL(dev))
4827 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4828 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4829
4830 if (HAS_PCH_NOP(dev)) {
4831 if (IS_IVYBRIDGE(dev)) {
4832 u32 temp = I915_READ(GEN7_MSG_CTL);
4833 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4834 I915_WRITE(GEN7_MSG_CTL, temp);
4835 } else if (INTEL_INFO(dev)->gen >= 7) {
4836 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4837 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4838 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4839 }
4840 }
4841
4842 i915_gem_init_swizzling(dev);
4843
4844 /*
4845 * At least 830 can leave some of the unused rings
4846 * "active" (ie. head != tail) after resume which
4847 * will prevent c3 entry. Makes sure all unused rings
4848 * are totally idle.
4849 */
4850 init_unused_rings(dev);
4851
4852 for_each_ring(ring, dev_priv, i) {
4853 ret = ring->init_hw(ring);
4854 if (ret)
4855 goto out;
4856 }
4857
4858 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4859 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4860
4861 ret = i915_ppgtt_init_hw(dev);
4862 if (ret && ret != -EIO) {
4863 DRM_ERROR("PPGTT enable failed %d\n", ret);
4864 i915_gem_cleanup_ringbuffer(dev);
4865 }
4866
4867 ret = i915_gem_context_enable(dev_priv);
4868 if (ret && ret != -EIO) {
4869 DRM_ERROR("Context enable failed %d\n", ret);
4870 i915_gem_cleanup_ringbuffer(dev);
4871
4872 goto out;
4873 }
4874
4875 out:
4876 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4877 return ret;
4878 }
4879
4880 int i915_gem_init(struct drm_device *dev)
4881 {
4882 struct drm_i915_private *dev_priv = dev->dev_private;
4883 int ret;
4884
4885 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4886 i915.enable_execlists);
4887
4888 mutex_lock(&dev->struct_mutex);
4889
4890 if (IS_VALLEYVIEW(dev)) {
4891 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4892 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4893 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4894 VLV_GTLC_ALLOWWAKEACK), 10))
4895 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4896 }
4897
4898 if (!i915.enable_execlists) {
4899 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4900 dev_priv->gt.init_rings = i915_gem_init_rings;
4901 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4902 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4903 } else {
4904 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4905 dev_priv->gt.init_rings = intel_logical_rings_init;
4906 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4907 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4908 }
4909
4910 /* This is just a security blanket to placate dragons.
4911 * On some systems, we very sporadically observe that the first TLBs
4912 * used by the CS may be stale, despite us poking the TLB reset. If
4913 * we hold the forcewake during initialisation these problems
4914 * just magically go away.
4915 */
4916 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4917
4918 ret = i915_gem_init_userptr(dev);
4919 if (ret)
4920 goto out_unlock;
4921
4922 i915_gem_init_global_gtt(dev);
4923
4924 ret = i915_gem_context_init(dev);
4925 if (ret)
4926 goto out_unlock;
4927
4928 ret = dev_priv->gt.init_rings(dev);
4929 if (ret)
4930 goto out_unlock;
4931
4932 ret = i915_gem_init_hw(dev);
4933 if (ret == -EIO) {
4934 /* Allow ring initialisation to fail by marking the GPU as
4935 * wedged. But we only want to do this where the GPU is angry,
4936 * for all other failure, such as an allocation failure, bail.
4937 */
4938 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4939 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4940 ret = 0;
4941 }
4942
4943 out_unlock:
4944 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945 mutex_unlock(&dev->struct_mutex);
4946
4947 return ret;
4948 }
4949
4950 void
4951 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4952 {
4953 struct drm_i915_private *dev_priv = dev->dev_private;
4954 struct intel_engine_cs *ring;
4955 int i;
4956
4957 for_each_ring(ring, dev_priv, i)
4958 dev_priv->gt.cleanup_ring(ring);
4959 }
4960
4961 static void
4962 init_ring_lists(struct intel_engine_cs *ring)
4963 {
4964 INIT_LIST_HEAD(&ring->active_list);
4965 INIT_LIST_HEAD(&ring->request_list);
4966 }
4967
4968 void i915_init_vm(struct drm_i915_private *dev_priv,
4969 struct i915_address_space *vm)
4970 {
4971 if (!i915_is_ggtt(vm))
4972 drm_mm_init(&vm->mm, vm->start, vm->total);
4973 vm->dev = dev_priv->dev;
4974 INIT_LIST_HEAD(&vm->active_list);
4975 INIT_LIST_HEAD(&vm->inactive_list);
4976 INIT_LIST_HEAD(&vm->global_link);
4977 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4978 }
4979
4980 void
4981 i915_gem_load(struct drm_device *dev)
4982 {
4983 struct drm_i915_private *dev_priv = dev->dev_private;
4984 int i;
4985
4986 dev_priv->objects =
4987 kmem_cache_create("i915_gem_object",
4988 sizeof(struct drm_i915_gem_object), 0,
4989 SLAB_HWCACHE_ALIGN,
4990 NULL);
4991 dev_priv->vmas =
4992 kmem_cache_create("i915_gem_vma",
4993 sizeof(struct i915_vma), 0,
4994 SLAB_HWCACHE_ALIGN,
4995 NULL);
4996 dev_priv->requests =
4997 kmem_cache_create("i915_gem_request",
4998 sizeof(struct drm_i915_gem_request), 0,
4999 SLAB_HWCACHE_ALIGN,
5000 NULL);
5001
5002 INIT_LIST_HEAD(&dev_priv->vm_list);
5003 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5004
5005 INIT_LIST_HEAD(&dev_priv->context_list);
5006 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5007 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5008 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5009 for (i = 0; i < I915_NUM_RINGS; i++)
5010 init_ring_lists(&dev_priv->ring[i]);
5011 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5012 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5013 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5014 i915_gem_retire_work_handler);
5015 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5016 i915_gem_idle_work_handler);
5017 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5018
5019 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5020
5021 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5022 dev_priv->num_fence_regs = 32;
5023 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5024 dev_priv->num_fence_regs = 16;
5025 else
5026 dev_priv->num_fence_regs = 8;
5027
5028 if (intel_vgpu_active(dev))
5029 dev_priv->num_fence_regs =
5030 I915_READ(vgtif_reg(avail_rs.fence_num));
5031
5032 /* Initialize fence registers to zero */
5033 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5034 i915_gem_restore_fences(dev);
5035
5036 i915_gem_detect_bit_6_swizzle(dev);
5037 init_waitqueue_head(&dev_priv->pending_flip_queue);
5038
5039 dev_priv->mm.interruptible = true;
5040
5041 i915_gem_shrinker_init(dev_priv);
5042
5043 mutex_init(&dev_priv->fb_tracking.lock);
5044 }
5045
5046 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5047 {
5048 struct drm_i915_file_private *file_priv = file->driver_priv;
5049
5050 /* Clean up our request list when the client is going away, so that
5051 * later retire_requests won't dereference our soon-to-be-gone
5052 * file_priv.
5053 */
5054 spin_lock(&file_priv->mm.lock);
5055 while (!list_empty(&file_priv->mm.request_list)) {
5056 struct drm_i915_gem_request *request;
5057
5058 request = list_first_entry(&file_priv->mm.request_list,
5059 struct drm_i915_gem_request,
5060 client_list);
5061 list_del(&request->client_list);
5062 request->file_priv = NULL;
5063 }
5064 spin_unlock(&file_priv->mm.lock);
5065
5066 if (!list_empty(&file_priv->rps_boost)) {
5067 mutex_lock(&to_i915(dev)->rps.hw_lock);
5068 list_del(&file_priv->rps_boost);
5069 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5070 }
5071 }
5072
5073 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5074 {
5075 struct drm_i915_file_private *file_priv;
5076 int ret;
5077
5078 DRM_DEBUG_DRIVER("\n");
5079
5080 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5081 if (!file_priv)
5082 return -ENOMEM;
5083
5084 file->driver_priv = file_priv;
5085 file_priv->dev_priv = dev->dev_private;
5086 file_priv->file = file;
5087 INIT_LIST_HEAD(&file_priv->rps_boost);
5088
5089 spin_lock_init(&file_priv->mm.lock);
5090 INIT_LIST_HEAD(&file_priv->mm.request_list);
5091
5092 ret = i915_gem_context_open(dev, file);
5093 if (ret)
5094 kfree(file_priv);
5095
5096 return ret;
5097 }
5098
5099 /**
5100 * i915_gem_track_fb - update frontbuffer tracking
5101 * old: current GEM buffer for the frontbuffer slots
5102 * new: new GEM buffer for the frontbuffer slots
5103 * frontbuffer_bits: bitmask of frontbuffer slots
5104 *
5105 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5106 * from @old and setting them in @new. Both @old and @new can be NULL.
5107 */
5108 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5109 struct drm_i915_gem_object *new,
5110 unsigned frontbuffer_bits)
5111 {
5112 if (old) {
5113 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5114 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5115 old->frontbuffer_bits &= ~frontbuffer_bits;
5116 }
5117
5118 if (new) {
5119 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5120 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5121 new->frontbuffer_bits |= frontbuffer_bits;
5122 }
5123 }
5124
5125 /* All the new VM stuff */
5126 unsigned long
5127 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5128 struct i915_address_space *vm)
5129 {
5130 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5131 struct i915_vma *vma;
5132
5133 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5134
5135 list_for_each_entry(vma, &o->vma_list, vma_link) {
5136 if (i915_is_ggtt(vma->vm) &&
5137 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5138 continue;
5139 if (vma->vm == vm)
5140 return vma->node.start;
5141 }
5142
5143 WARN(1, "%s vma for this object not found.\n",
5144 i915_is_ggtt(vm) ? "global" : "ppgtt");
5145 return -1;
5146 }
5147
5148 unsigned long
5149 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5150 const struct i915_ggtt_view *view)
5151 {
5152 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5153 struct i915_vma *vma;
5154
5155 list_for_each_entry(vma, &o->vma_list, vma_link)
5156 if (vma->vm == ggtt &&
5157 i915_ggtt_view_equal(&vma->ggtt_view, view))
5158 return vma->node.start;
5159
5160 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5161 return -1;
5162 }
5163
5164 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5165 struct i915_address_space *vm)
5166 {
5167 struct i915_vma *vma;
5168
5169 list_for_each_entry(vma, &o->vma_list, vma_link) {
5170 if (i915_is_ggtt(vma->vm) &&
5171 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5172 continue;
5173 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5174 return true;
5175 }
5176
5177 return false;
5178 }
5179
5180 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5181 const struct i915_ggtt_view *view)
5182 {
5183 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5184 struct i915_vma *vma;
5185
5186 list_for_each_entry(vma, &o->vma_list, vma_link)
5187 if (vma->vm == ggtt &&
5188 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5189 drm_mm_node_allocated(&vma->node))
5190 return true;
5191
5192 return false;
5193 }
5194
5195 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5196 {
5197 struct i915_vma *vma;
5198
5199 list_for_each_entry(vma, &o->vma_list, vma_link)
5200 if (drm_mm_node_allocated(&vma->node))
5201 return true;
5202
5203 return false;
5204 }
5205
5206 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5207 struct i915_address_space *vm)
5208 {
5209 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5210 struct i915_vma *vma;
5211
5212 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5213
5214 BUG_ON(list_empty(&o->vma_list));
5215
5216 list_for_each_entry(vma, &o->vma_list, vma_link) {
5217 if (i915_is_ggtt(vma->vm) &&
5218 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5219 continue;
5220 if (vma->vm == vm)
5221 return vma->node.size;
5222 }
5223 return 0;
5224 }
5225
5226 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5227 {
5228 struct i915_vma *vma;
5229 list_for_each_entry(vma, &obj->vma_list, vma_link) {
5230 if (i915_is_ggtt(vma->vm) &&
5231 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5232 continue;
5233 if (vma->pin_count > 0)
5234 return true;
5235 }
5236 return false;
5237 }
5238