]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56
57 #include "intel_pm.h"
58
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62 int err;
63
64 err = mutex_lock_interruptible(&ggtt->vm.mutex);
65 if (err)
66 return err;
67
68 memset(node, 0, sizeof(*node));
69 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
72 DRM_MM_INSERT_LOW);
73
74 mutex_unlock(&ggtt->vm.mutex);
75
76 return err;
77 }
78
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82 mutex_lock(&ggtt->vm.mutex);
83 drm_mm_remove_node(node);
84 mutex_unlock(&ggtt->vm.mutex);
85 }
86
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89 struct drm_file *file)
90 {
91 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92 struct drm_i915_gem_get_aperture *args = data;
93 struct i915_vma *vma;
94 u64 pinned;
95
96 if (mutex_lock_interruptible(&ggtt->vm.mutex))
97 return -EINTR;
98
99 pinned = ggtt->vm.reserved;
100 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101 if (i915_vma_is_pinned(vma))
102 pinned += vma->node.size;
103
104 mutex_unlock(&ggtt->vm.mutex);
105
106 args->aper_size = ggtt->vm.total;
107 args->aper_available_size = args->aper_size - pinned;
108
109 return 0;
110 }
111
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113 unsigned long flags)
114 {
115 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116 LIST_HEAD(still_in_list);
117 intel_wakeref_t wakeref;
118 struct i915_vma *vma;
119 int ret;
120
121 if (list_empty(&obj->vma.list))
122 return 0;
123
124 /*
125 * As some machines use ACPI to handle runtime-resume callbacks, and
126 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127 * as they are required by the shrinker. Ergo, we wake the device up
128 * first just in case.
129 */
130 wakeref = intel_runtime_pm_get(rpm);
131
132 try_again:
133 ret = 0;
134 spin_lock(&obj->vma.lock);
135 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136 struct i915_vma,
137 obj_link))) {
138 struct i915_address_space *vm = vma->vm;
139
140 list_move_tail(&vma->obj_link, &still_in_list);
141 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142 continue;
143
144 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145 ret = -EBUSY;
146 break;
147 }
148
149 ret = -EAGAIN;
150 if (!i915_vm_tryopen(vm))
151 break;
152
153 /* Prevent vma being freed by i915_vma_parked as we unbind */
154 vma = __i915_vma_get(vma);
155 spin_unlock(&obj->vma.lock);
156
157 if (vma) {
158 ret = -EBUSY;
159 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160 !i915_vma_is_active(vma))
161 ret = i915_vma_unbind(vma);
162
163 __i915_vma_put(vma);
164 }
165
166 i915_vm_close(vm);
167 spin_lock(&obj->vma.lock);
168 }
169 list_splice_init(&still_in_list, &obj->vma.list);
170 spin_unlock(&obj->vma.lock);
171
172 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
173 rcu_barrier(); /* flush the i915_vm_release() */
174 goto try_again;
175 }
176
177 intel_runtime_pm_put(rpm, wakeref);
178
179 return ret;
180 }
181
182 static int
183 i915_gem_create(struct drm_file *file,
184 struct intel_memory_region *mr,
185 u64 *size_p,
186 u32 *handle_p)
187 {
188 struct drm_i915_gem_object *obj;
189 u32 handle;
190 u64 size;
191 int ret;
192
193 GEM_BUG_ON(!is_power_of_2(mr->min_page_size));
194 size = round_up(*size_p, mr->min_page_size);
195 if (size == 0)
196 return -EINVAL;
197
198 /* For most of the ABI (e.g. mmap) we think in system pages */
199 GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
200
201 /* Allocate the new object */
202 obj = i915_gem_object_create_region(mr, size, 0);
203 if (IS_ERR(obj))
204 return PTR_ERR(obj);
205
206 ret = drm_gem_handle_create(file, &obj->base, &handle);
207 /* drop reference from allocate - handle holds it now */
208 i915_gem_object_put(obj);
209 if (ret)
210 return ret;
211
212 *handle_p = handle;
213 *size_p = size;
214 return 0;
215 }
216
217 int
218 i915_gem_dumb_create(struct drm_file *file,
219 struct drm_device *dev,
220 struct drm_mode_create_dumb *args)
221 {
222 enum intel_memory_type mem_type;
223 int cpp = DIV_ROUND_UP(args->bpp, 8);
224 u32 format;
225
226 switch (cpp) {
227 case 1:
228 format = DRM_FORMAT_C8;
229 break;
230 case 2:
231 format = DRM_FORMAT_RGB565;
232 break;
233 case 4:
234 format = DRM_FORMAT_XRGB8888;
235 break;
236 default:
237 return -EINVAL;
238 }
239
240 /* have to work out size/pitch and return them */
241 args->pitch = ALIGN(args->width * cpp, 64);
242
243 /* align stride to page size so that we can remap */
244 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
245 DRM_FORMAT_MOD_LINEAR))
246 args->pitch = ALIGN(args->pitch, 4096);
247
248 if (args->pitch < args->width)
249 return -EINVAL;
250
251 args->size = mul_u32_u32(args->pitch, args->height);
252
253 mem_type = INTEL_MEMORY_SYSTEM;
254 if (HAS_LMEM(to_i915(dev)))
255 mem_type = INTEL_MEMORY_LOCAL;
256
257 return i915_gem_create(file,
258 intel_memory_region_by_type(to_i915(dev),
259 mem_type),
260 &args->size, &args->handle);
261 }
262
263 /**
264 * Creates a new mm object and returns a handle to it.
265 * @dev: drm device pointer
266 * @data: ioctl data blob
267 * @file: drm file pointer
268 */
269 int
270 i915_gem_create_ioctl(struct drm_device *dev, void *data,
271 struct drm_file *file)
272 {
273 struct drm_i915_private *i915 = to_i915(dev);
274 struct drm_i915_gem_create *args = data;
275
276 i915_gem_flush_free_objects(i915);
277
278 return i915_gem_create(file,
279 intel_memory_region_by_type(i915,
280 INTEL_MEMORY_SYSTEM),
281 &args->size, &args->handle);
282 }
283
284 static int
285 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
286 bool needs_clflush)
287 {
288 char *vaddr;
289 int ret;
290
291 vaddr = kmap(page);
292
293 if (needs_clflush)
294 drm_clflush_virt_range(vaddr + offset, len);
295
296 ret = __copy_to_user(user_data, vaddr + offset, len);
297
298 kunmap(page);
299
300 return ret ? -EFAULT : 0;
301 }
302
303 static int
304 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
305 struct drm_i915_gem_pread *args)
306 {
307 unsigned int needs_clflush;
308 unsigned int idx, offset;
309 struct dma_fence *fence;
310 char __user *user_data;
311 u64 remain;
312 int ret;
313
314 ret = i915_gem_object_lock_interruptible(obj, NULL);
315 if (ret)
316 return ret;
317
318 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
319 if (ret) {
320 i915_gem_object_unlock(obj);
321 return ret;
322 }
323
324 fence = i915_gem_object_lock_fence(obj);
325 i915_gem_object_finish_access(obj);
326 i915_gem_object_unlock(obj);
327
328 if (!fence)
329 return -ENOMEM;
330
331 remain = args->size;
332 user_data = u64_to_user_ptr(args->data_ptr);
333 offset = offset_in_page(args->offset);
334 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
335 struct page *page = i915_gem_object_get_page(obj, idx);
336 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
337
338 ret = shmem_pread(page, offset, length, user_data,
339 needs_clflush);
340 if (ret)
341 break;
342
343 remain -= length;
344 user_data += length;
345 offset = 0;
346 }
347
348 i915_gem_object_unlock_fence(obj, fence);
349 return ret;
350 }
351
352 static inline bool
353 gtt_user_read(struct io_mapping *mapping,
354 loff_t base, int offset,
355 char __user *user_data, int length)
356 {
357 void __iomem *vaddr;
358 unsigned long unwritten;
359
360 /* We can use the cpu mem copy function because this is X86. */
361 vaddr = io_mapping_map_atomic_wc(mapping, base);
362 unwritten = __copy_to_user_inatomic(user_data,
363 (void __force *)vaddr + offset,
364 length);
365 io_mapping_unmap_atomic(vaddr);
366 if (unwritten) {
367 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
368 unwritten = copy_to_user(user_data,
369 (void __force *)vaddr + offset,
370 length);
371 io_mapping_unmap(vaddr);
372 }
373 return unwritten;
374 }
375
376 static int
377 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
378 const struct drm_i915_gem_pread *args)
379 {
380 struct drm_i915_private *i915 = to_i915(obj->base.dev);
381 struct i915_ggtt *ggtt = &i915->ggtt;
382 intel_wakeref_t wakeref;
383 struct drm_mm_node node;
384 struct dma_fence *fence;
385 void __user *user_data;
386 struct i915_vma *vma;
387 u64 remain, offset;
388 int ret;
389
390 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
391 vma = ERR_PTR(-ENODEV);
392 if (!i915_gem_object_is_tiled(obj))
393 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
394 PIN_MAPPABLE |
395 PIN_NONBLOCK /* NOWARN */ |
396 PIN_NOEVICT);
397 if (!IS_ERR(vma)) {
398 node.start = i915_ggtt_offset(vma);
399 node.flags = 0;
400 } else {
401 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
402 if (ret)
403 goto out_rpm;
404 GEM_BUG_ON(!drm_mm_node_allocated(&node));
405 }
406
407 ret = i915_gem_object_lock_interruptible(obj, NULL);
408 if (ret)
409 goto out_unpin;
410
411 ret = i915_gem_object_set_to_gtt_domain(obj, false);
412 if (ret) {
413 i915_gem_object_unlock(obj);
414 goto out_unpin;
415 }
416
417 fence = i915_gem_object_lock_fence(obj);
418 i915_gem_object_unlock(obj);
419 if (!fence) {
420 ret = -ENOMEM;
421 goto out_unpin;
422 }
423
424 user_data = u64_to_user_ptr(args->data_ptr);
425 remain = args->size;
426 offset = args->offset;
427
428 while (remain > 0) {
429 /* Operation in this page
430 *
431 * page_base = page offset within aperture
432 * page_offset = offset within page
433 * page_length = bytes to copy for this page
434 */
435 u32 page_base = node.start;
436 unsigned page_offset = offset_in_page(offset);
437 unsigned page_length = PAGE_SIZE - page_offset;
438 page_length = remain < page_length ? remain : page_length;
439 if (drm_mm_node_allocated(&node)) {
440 ggtt->vm.insert_page(&ggtt->vm,
441 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
442 node.start, I915_CACHE_NONE, 0);
443 } else {
444 page_base += offset & PAGE_MASK;
445 }
446
447 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
448 user_data, page_length)) {
449 ret = -EFAULT;
450 break;
451 }
452
453 remain -= page_length;
454 user_data += page_length;
455 offset += page_length;
456 }
457
458 i915_gem_object_unlock_fence(obj, fence);
459 out_unpin:
460 if (drm_mm_node_allocated(&node)) {
461 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
462 remove_mappable_node(ggtt, &node);
463 } else {
464 i915_vma_unpin(vma);
465 }
466 out_rpm:
467 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
468 return ret;
469 }
470
471 /**
472 * Reads data from the object referenced by handle.
473 * @dev: drm device pointer
474 * @data: ioctl data blob
475 * @file: drm file pointer
476 *
477 * On error, the contents of *data are undefined.
478 */
479 int
480 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
481 struct drm_file *file)
482 {
483 struct drm_i915_gem_pread *args = data;
484 struct drm_i915_gem_object *obj;
485 int ret;
486
487 if (args->size == 0)
488 return 0;
489
490 if (!access_ok(u64_to_user_ptr(args->data_ptr),
491 args->size))
492 return -EFAULT;
493
494 obj = i915_gem_object_lookup(file, args->handle);
495 if (!obj)
496 return -ENOENT;
497
498 /* Bounds check source. */
499 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
500 ret = -EINVAL;
501 goto out;
502 }
503
504 trace_i915_gem_object_pread(obj, args->offset, args->size);
505
506 ret = -ENODEV;
507 if (obj->ops->pread)
508 ret = obj->ops->pread(obj, args);
509 if (ret != -ENODEV)
510 goto out;
511
512 ret = i915_gem_object_wait(obj,
513 I915_WAIT_INTERRUPTIBLE,
514 MAX_SCHEDULE_TIMEOUT);
515 if (ret)
516 goto out;
517
518 ret = i915_gem_object_pin_pages(obj);
519 if (ret)
520 goto out;
521
522 ret = i915_gem_shmem_pread(obj, args);
523 if (ret == -EFAULT || ret == -ENODEV)
524 ret = i915_gem_gtt_pread(obj, args);
525
526 i915_gem_object_unpin_pages(obj);
527 out:
528 i915_gem_object_put(obj);
529 return ret;
530 }
531
532 /* This is the fast write path which cannot handle
533 * page faults in the source data
534 */
535
536 static inline bool
537 ggtt_write(struct io_mapping *mapping,
538 loff_t base, int offset,
539 char __user *user_data, int length)
540 {
541 void __iomem *vaddr;
542 unsigned long unwritten;
543
544 /* We can use the cpu mem copy function because this is X86. */
545 vaddr = io_mapping_map_atomic_wc(mapping, base);
546 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
547 user_data, length);
548 io_mapping_unmap_atomic(vaddr);
549 if (unwritten) {
550 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
551 unwritten = copy_from_user((void __force *)vaddr + offset,
552 user_data, length);
553 io_mapping_unmap(vaddr);
554 }
555
556 return unwritten;
557 }
558
559 /**
560 * This is the fast pwrite path, where we copy the data directly from the
561 * user into the GTT, uncached.
562 * @obj: i915 GEM object
563 * @args: pwrite arguments structure
564 */
565 static int
566 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
567 const struct drm_i915_gem_pwrite *args)
568 {
569 struct drm_i915_private *i915 = to_i915(obj->base.dev);
570 struct i915_ggtt *ggtt = &i915->ggtt;
571 struct intel_runtime_pm *rpm = &i915->runtime_pm;
572 intel_wakeref_t wakeref;
573 struct drm_mm_node node;
574 struct dma_fence *fence;
575 struct i915_vma *vma;
576 u64 remain, offset;
577 void __user *user_data;
578 int ret;
579
580 if (i915_gem_object_has_struct_page(obj)) {
581 /*
582 * Avoid waking the device up if we can fallback, as
583 * waking/resuming is very slow (worst-case 10-100 ms
584 * depending on PCI sleeps and our own resume time).
585 * This easily dwarfs any performance advantage from
586 * using the cache bypass of indirect GGTT access.
587 */
588 wakeref = intel_runtime_pm_get_if_in_use(rpm);
589 if (!wakeref)
590 return -EFAULT;
591 } else {
592 /* No backing pages, no fallback, we must force GGTT access */
593 wakeref = intel_runtime_pm_get(rpm);
594 }
595
596 vma = ERR_PTR(-ENODEV);
597 if (!i915_gem_object_is_tiled(obj))
598 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
599 PIN_MAPPABLE |
600 PIN_NONBLOCK /* NOWARN */ |
601 PIN_NOEVICT);
602 if (!IS_ERR(vma)) {
603 node.start = i915_ggtt_offset(vma);
604 node.flags = 0;
605 } else {
606 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
607 if (ret)
608 goto out_rpm;
609 GEM_BUG_ON(!drm_mm_node_allocated(&node));
610 }
611
612 ret = i915_gem_object_lock_interruptible(obj, NULL);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_set_to_gtt_domain(obj, true);
617 if (ret) {
618 i915_gem_object_unlock(obj);
619 goto out_unpin;
620 }
621
622 fence = i915_gem_object_lock_fence(obj);
623 i915_gem_object_unlock(obj);
624 if (!fence) {
625 ret = -ENOMEM;
626 goto out_unpin;
627 }
628
629 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
630
631 user_data = u64_to_user_ptr(args->data_ptr);
632 offset = args->offset;
633 remain = args->size;
634 while (remain) {
635 /* Operation in this page
636 *
637 * page_base = page offset within aperture
638 * page_offset = offset within page
639 * page_length = bytes to copy for this page
640 */
641 u32 page_base = node.start;
642 unsigned int page_offset = offset_in_page(offset);
643 unsigned int page_length = PAGE_SIZE - page_offset;
644 page_length = remain < page_length ? remain : page_length;
645 if (drm_mm_node_allocated(&node)) {
646 /* flush the write before we modify the GGTT */
647 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
648 ggtt->vm.insert_page(&ggtt->vm,
649 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
650 node.start, I915_CACHE_NONE, 0);
651 wmb(); /* flush modifications to the GGTT (insert_page) */
652 } else {
653 page_base += offset & PAGE_MASK;
654 }
655 /* If we get a fault while copying data, then (presumably) our
656 * source page isn't available. Return the error and we'll
657 * retry in the slow path.
658 * If the object is non-shmem backed, we retry again with the
659 * path that handles page fault.
660 */
661 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
662 user_data, page_length)) {
663 ret = -EFAULT;
664 break;
665 }
666
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
673 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
674
675 i915_gem_object_unlock_fence(obj, fence);
676 out_unpin:
677 if (drm_mm_node_allocated(&node)) {
678 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
679 remove_mappable_node(ggtt, &node);
680 } else {
681 i915_vma_unpin(vma);
682 }
683 out_rpm:
684 intel_runtime_pm_put(rpm, wakeref);
685 return ret;
686 }
687
688 /* Per-page copy function for the shmem pwrite fastpath.
689 * Flushes invalid cachelines before writing to the target if
690 * needs_clflush_before is set and flushes out any written cachelines after
691 * writing if needs_clflush is set.
692 */
693 static int
694 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
697 {
698 char *vaddr;
699 int ret;
700
701 vaddr = kmap(page);
702
703 if (needs_clflush_before)
704 drm_clflush_virt_range(vaddr + offset, len);
705
706 ret = __copy_from_user(vaddr + offset, user_data, len);
707 if (!ret && needs_clflush_after)
708 drm_clflush_virt_range(vaddr + offset, len);
709
710 kunmap(page);
711
712 return ret ? -EFAULT : 0;
713 }
714
715 static int
716 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
717 const struct drm_i915_gem_pwrite *args)
718 {
719 unsigned int partial_cacheline_write;
720 unsigned int needs_clflush;
721 unsigned int offset, idx;
722 struct dma_fence *fence;
723 void __user *user_data;
724 u64 remain;
725 int ret;
726
727 ret = i915_gem_object_lock_interruptible(obj, NULL);
728 if (ret)
729 return ret;
730
731 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
732 if (ret) {
733 i915_gem_object_unlock(obj);
734 return ret;
735 }
736
737 fence = i915_gem_object_lock_fence(obj);
738 i915_gem_object_finish_access(obj);
739 i915_gem_object_unlock(obj);
740
741 if (!fence)
742 return -ENOMEM;
743
744 /* If we don't overwrite a cacheline completely we need to be
745 * careful to have up-to-date data by first clflushing. Don't
746 * overcomplicate things and flush the entire patch.
747 */
748 partial_cacheline_write = 0;
749 if (needs_clflush & CLFLUSH_BEFORE)
750 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
751
752 user_data = u64_to_user_ptr(args->data_ptr);
753 remain = args->size;
754 offset = offset_in_page(args->offset);
755 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
756 struct page *page = i915_gem_object_get_page(obj, idx);
757 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
758
759 ret = shmem_pwrite(page, offset, length, user_data,
760 (offset | length) & partial_cacheline_write,
761 needs_clflush & CLFLUSH_AFTER);
762 if (ret)
763 break;
764
765 remain -= length;
766 user_data += length;
767 offset = 0;
768 }
769
770 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
771 i915_gem_object_unlock_fence(obj, fence);
772
773 return ret;
774 }
775
776 /**
777 * Writes data to the object referenced by handle.
778 * @dev: drm device
779 * @data: ioctl data blob
780 * @file: drm file
781 *
782 * On error, the contents of the buffer that were to be modified are undefined.
783 */
784 int
785 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
786 struct drm_file *file)
787 {
788 struct drm_i915_gem_pwrite *args = data;
789 struct drm_i915_gem_object *obj;
790 int ret;
791
792 if (args->size == 0)
793 return 0;
794
795 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
796 return -EFAULT;
797
798 obj = i915_gem_object_lookup(file, args->handle);
799 if (!obj)
800 return -ENOENT;
801
802 /* Bounds check destination. */
803 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
804 ret = -EINVAL;
805 goto err;
806 }
807
808 /* Writes not allowed into this read-only object */
809 if (i915_gem_object_is_readonly(obj)) {
810 ret = -EINVAL;
811 goto err;
812 }
813
814 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
815
816 ret = -ENODEV;
817 if (obj->ops->pwrite)
818 ret = obj->ops->pwrite(obj, args);
819 if (ret != -ENODEV)
820 goto err;
821
822 ret = i915_gem_object_wait(obj,
823 I915_WAIT_INTERRUPTIBLE |
824 I915_WAIT_ALL,
825 MAX_SCHEDULE_TIMEOUT);
826 if (ret)
827 goto err;
828
829 ret = i915_gem_object_pin_pages(obj);
830 if (ret)
831 goto err;
832
833 ret = -EFAULT;
834 /* We can only do the GTT pwrite on untiled buffers, as otherwise
835 * it would end up going through the fenced access, and we'll get
836 * different detiling behavior between reading and writing.
837 * pread/pwrite currently are reading and writing from the CPU
838 * perspective, requiring manual detiling by the client.
839 */
840 if (!i915_gem_object_has_struct_page(obj) ||
841 cpu_write_needs_clflush(obj))
842 /* Note that the gtt paths might fail with non-page-backed user
843 * pointers (e.g. gtt mappings when moving data between
844 * textures). Fallback to the shmem path in that case.
845 */
846 ret = i915_gem_gtt_pwrite_fast(obj, args);
847
848 if (ret == -EFAULT || ret == -ENOSPC) {
849 if (i915_gem_object_has_struct_page(obj))
850 ret = i915_gem_shmem_pwrite(obj, args);
851 }
852
853 i915_gem_object_unpin_pages(obj);
854 err:
855 i915_gem_object_put(obj);
856 return ret;
857 }
858
859 /**
860 * Called when user space has done writes to this buffer
861 * @dev: drm device
862 * @data: ioctl data blob
863 * @file: drm file
864 */
865 int
866 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
867 struct drm_file *file)
868 {
869 struct drm_i915_gem_sw_finish *args = data;
870 struct drm_i915_gem_object *obj;
871
872 obj = i915_gem_object_lookup(file, args->handle);
873 if (!obj)
874 return -ENOENT;
875
876 /*
877 * Proxy objects are barred from CPU access, so there is no
878 * need to ban sw_finish as it is a nop.
879 */
880
881 /* Pinned buffers may be scanout, so flush the cache */
882 i915_gem_object_flush_if_display(obj);
883 i915_gem_object_put(obj);
884
885 return 0;
886 }
887
888 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
889 {
890 struct drm_i915_gem_object *obj, *on;
891 int i;
892
893 /*
894 * Only called during RPM suspend. All users of the userfault_list
895 * must be holding an RPM wakeref to ensure that this can not
896 * run concurrently with themselves (and use the struct_mutex for
897 * protection between themselves).
898 */
899
900 list_for_each_entry_safe(obj, on,
901 &i915->ggtt.userfault_list, userfault_link)
902 __i915_gem_object_release_mmap_gtt(obj);
903
904 /*
905 * The fence will be lost when the device powers down. If any were
906 * in use by hardware (i.e. they are pinned), we should not be powering
907 * down! All other fences will be reacquired by the user upon waking.
908 */
909 for (i = 0; i < i915->ggtt.num_fences; i++) {
910 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
911
912 /*
913 * Ideally we want to assert that the fence register is not
914 * live at this point (i.e. that no piece of code will be
915 * trying to write through fence + GTT, as that both violates
916 * our tracking of activity and associated locking/barriers,
917 * but also is illegal given that the hw is powered down).
918 *
919 * Previously we used reg->pin_count as a "liveness" indicator.
920 * That is not sufficient, and we need a more fine-grained
921 * tool if we want to have a sanity check here.
922 */
923
924 if (!reg->vma)
925 continue;
926
927 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
928 reg->dirty = true;
929 }
930 }
931
932 static void discard_ggtt_vma(struct i915_vma *vma)
933 {
934 struct drm_i915_gem_object *obj = vma->obj;
935
936 spin_lock(&obj->vma.lock);
937 if (!RB_EMPTY_NODE(&vma->obj_node)) {
938 rb_erase(&vma->obj_node, &obj->vma.tree);
939 RB_CLEAR_NODE(&vma->obj_node);
940 }
941 spin_unlock(&obj->vma.lock);
942 }
943
944 struct i915_vma *
945 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
946 struct i915_gem_ww_ctx *ww,
947 const struct i915_ggtt_view *view,
948 u64 size, u64 alignment, u64 flags)
949 {
950 struct drm_i915_private *i915 = to_i915(obj->base.dev);
951 struct i915_ggtt *ggtt = &i915->ggtt;
952 struct i915_vma *vma;
953 int ret;
954
955 if (flags & PIN_MAPPABLE &&
956 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
957 /*
958 * If the required space is larger than the available
959 * aperture, we will not able to find a slot for the
960 * object and unbinding the object now will be in
961 * vain. Worse, doing so may cause us to ping-pong
962 * the object in and out of the Global GTT and
963 * waste a lot of cycles under the mutex.
964 */
965 if (obj->base.size > ggtt->mappable_end)
966 return ERR_PTR(-E2BIG);
967
968 /*
969 * If NONBLOCK is set the caller is optimistically
970 * trying to cache the full object within the mappable
971 * aperture, and *must* have a fallback in place for
972 * situations where we cannot bind the object. We
973 * can be a little more lax here and use the fallback
974 * more often to avoid costly migrations of ourselves
975 * and other objects within the aperture.
976 *
977 * Half-the-aperture is used as a simple heuristic.
978 * More interesting would to do search for a free
979 * block prior to making the commitment to unbind.
980 * That caters for the self-harm case, and with a
981 * little more heuristics (e.g. NOFAULT, NOEVICT)
982 * we could try to minimise harm to others.
983 */
984 if (flags & PIN_NONBLOCK &&
985 obj->base.size > ggtt->mappable_end / 2)
986 return ERR_PTR(-ENOSPC);
987 }
988
989 new_vma:
990 vma = i915_vma_instance(obj, &ggtt->vm, view);
991 if (IS_ERR(vma))
992 return vma;
993
994 if (i915_vma_misplaced(vma, size, alignment, flags)) {
995 if (flags & PIN_NONBLOCK) {
996 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
997 return ERR_PTR(-ENOSPC);
998
999 if (flags & PIN_MAPPABLE &&
1000 vma->fence_size > ggtt->mappable_end / 2)
1001 return ERR_PTR(-ENOSPC);
1002 }
1003
1004 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
1005 discard_ggtt_vma(vma);
1006 goto new_vma;
1007 }
1008
1009 ret = i915_vma_unbind(vma);
1010 if (ret)
1011 return ERR_PTR(ret);
1012 }
1013
1014 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
1015 if (ret)
1016 return ERR_PTR(ret);
1017
1018 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1019 mutex_lock(&ggtt->vm.mutex);
1020 i915_vma_revoke_fence(vma);
1021 mutex_unlock(&ggtt->vm.mutex);
1022 }
1023
1024 ret = i915_vma_wait_for_bind(vma);
1025 if (ret) {
1026 i915_vma_unpin(vma);
1027 return ERR_PTR(ret);
1028 }
1029
1030 return vma;
1031 }
1032
1033 int
1034 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1035 struct drm_file *file_priv)
1036 {
1037 struct drm_i915_private *i915 = to_i915(dev);
1038 struct drm_i915_gem_madvise *args = data;
1039 struct drm_i915_gem_object *obj;
1040 int err;
1041
1042 switch (args->madv) {
1043 case I915_MADV_DONTNEED:
1044 case I915_MADV_WILLNEED:
1045 break;
1046 default:
1047 return -EINVAL;
1048 }
1049
1050 obj = i915_gem_object_lookup(file_priv, args->handle);
1051 if (!obj)
1052 return -ENOENT;
1053
1054 err = mutex_lock_interruptible(&obj->mm.lock);
1055 if (err)
1056 goto out;
1057
1058 if (i915_gem_object_has_pages(obj) &&
1059 i915_gem_object_is_tiled(obj) &&
1060 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1061 if (obj->mm.madv == I915_MADV_WILLNEED) {
1062 GEM_BUG_ON(!obj->mm.quirked);
1063 __i915_gem_object_unpin_pages(obj);
1064 obj->mm.quirked = false;
1065 }
1066 if (args->madv == I915_MADV_WILLNEED) {
1067 GEM_BUG_ON(obj->mm.quirked);
1068 __i915_gem_object_pin_pages(obj);
1069 obj->mm.quirked = true;
1070 }
1071 }
1072
1073 if (obj->mm.madv != __I915_MADV_PURGED)
1074 obj->mm.madv = args->madv;
1075
1076 if (i915_gem_object_has_pages(obj)) {
1077 struct list_head *list;
1078
1079 if (i915_gem_object_is_shrinkable(obj)) {
1080 unsigned long flags;
1081
1082 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1083
1084 if (obj->mm.madv != I915_MADV_WILLNEED)
1085 list = &i915->mm.purge_list;
1086 else
1087 list = &i915->mm.shrink_list;
1088 list_move_tail(&obj->mm.link, list);
1089
1090 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1091 }
1092 }
1093
1094 /* if the object is no longer attached, discard its backing storage */
1095 if (obj->mm.madv == I915_MADV_DONTNEED &&
1096 !i915_gem_object_has_pages(obj))
1097 i915_gem_object_truncate(obj);
1098
1099 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100 mutex_unlock(&obj->mm.lock);
1101
1102 out:
1103 i915_gem_object_put(obj);
1104 return err;
1105 }
1106
1107 int i915_gem_init(struct drm_i915_private *dev_priv)
1108 {
1109 int ret;
1110
1111 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1112 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1113 mkwrite_device_info(dev_priv)->page_sizes =
1114 I915_GTT_PAGE_SIZE_4K;
1115
1116 ret = i915_gem_init_userptr(dev_priv);
1117 if (ret)
1118 return ret;
1119
1120 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1121 intel_wopcm_init(&dev_priv->wopcm);
1122
1123 ret = i915_init_ggtt(dev_priv);
1124 if (ret) {
1125 GEM_BUG_ON(ret == -EIO);
1126 goto err_unlock;
1127 }
1128
1129 /*
1130 * Despite its name intel_init_clock_gating applies both display
1131 * clock gating workarounds; GT mmio workarounds and the occasional
1132 * GT power context workaround. Worse, sometimes it includes a context
1133 * register workaround which we need to apply before we record the
1134 * default HW state for all contexts.
1135 *
1136 * FIXME: break up the workarounds and apply them at the right time!
1137 */
1138 intel_init_clock_gating(dev_priv);
1139
1140 ret = intel_gt_init(&dev_priv->gt);
1141 if (ret)
1142 goto err_unlock;
1143
1144 return 0;
1145
1146 /*
1147 * Unwinding is complicated by that we want to handle -EIO to mean
1148 * disable GPU submission but keep KMS alive. We want to mark the
1149 * HW as irrevisibly wedged, but keep enough state around that the
1150 * driver doesn't explode during runtime.
1151 */
1152 err_unlock:
1153 i915_gem_drain_workqueue(dev_priv);
1154
1155 if (ret != -EIO) {
1156 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1157 i915_gem_cleanup_userptr(dev_priv);
1158 }
1159
1160 if (ret == -EIO) {
1161 /*
1162 * Allow engines or uC initialisation to fail by marking the GPU
1163 * as wedged. But we only want to do this when the GPU is angry,
1164 * for all other failure, such as an allocation failure, bail.
1165 */
1166 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1167 i915_probe_error(dev_priv,
1168 "Failed to initialize GPU, declaring it wedged!\n");
1169 intel_gt_set_wedged(&dev_priv->gt);
1170 }
1171
1172 /* Minimal basic recovery for KMS */
1173 ret = i915_ggtt_enable_hw(dev_priv);
1174 i915_ggtt_resume(&dev_priv->ggtt);
1175 intel_init_clock_gating(dev_priv);
1176 }
1177
1178 i915_gem_drain_freed_objects(dev_priv);
1179 return ret;
1180 }
1181
1182 void i915_gem_driver_register(struct drm_i915_private *i915)
1183 {
1184 i915_gem_driver_register__shrinker(i915);
1185
1186 intel_engines_driver_register(i915);
1187 }
1188
1189 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1190 {
1191 i915_gem_driver_unregister__shrinker(i915);
1192 }
1193
1194 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1195 {
1196 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1197
1198 i915_gem_suspend_late(dev_priv);
1199 intel_gt_driver_remove(&dev_priv->gt);
1200 dev_priv->uabi_engines = RB_ROOT;
1201
1202 /* Flush any outstanding unpin_work. */
1203 i915_gem_drain_workqueue(dev_priv);
1204
1205 i915_gem_drain_freed_objects(dev_priv);
1206 }
1207
1208 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1209 {
1210 i915_gem_driver_release__contexts(dev_priv);
1211
1212 intel_gt_driver_release(&dev_priv->gt);
1213
1214 intel_wa_list_free(&dev_priv->gt_wa_list);
1215
1216 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1217 i915_gem_cleanup_userptr(dev_priv);
1218
1219 i915_gem_drain_freed_objects(dev_priv);
1220
1221 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1222 }
1223
1224 static void i915_gem_init__mm(struct drm_i915_private *i915)
1225 {
1226 spin_lock_init(&i915->mm.obj_lock);
1227
1228 init_llist_head(&i915->mm.free_list);
1229
1230 INIT_LIST_HEAD(&i915->mm.purge_list);
1231 INIT_LIST_HEAD(&i915->mm.shrink_list);
1232
1233 i915_gem_init__objects(i915);
1234 }
1235
1236 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1237 {
1238 i915_gem_init__mm(dev_priv);
1239 i915_gem_init__contexts(dev_priv);
1240
1241 spin_lock_init(&dev_priv->fb_tracking.lock);
1242 }
1243
1244 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1245 {
1246 i915_gem_drain_freed_objects(dev_priv);
1247 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1248 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1249 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1250 }
1251
1252 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1253 {
1254 /* Discard all purgeable objects, let userspace recover those as
1255 * required after resuming.
1256 */
1257 i915_gem_shrink_all(dev_priv);
1258
1259 return 0;
1260 }
1261
1262 int i915_gem_freeze_late(struct drm_i915_private *i915)
1263 {
1264 struct drm_i915_gem_object *obj;
1265 intel_wakeref_t wakeref;
1266
1267 /*
1268 * Called just before we write the hibernation image.
1269 *
1270 * We need to update the domain tracking to reflect that the CPU
1271 * will be accessing all the pages to create and restore from the
1272 * hibernation, and so upon restoration those pages will be in the
1273 * CPU domain.
1274 *
1275 * To make sure the hibernation image contains the latest state,
1276 * we update that state just before writing out the image.
1277 *
1278 * To try and reduce the hibernation image, we manually shrink
1279 * the objects as well, see i915_gem_freeze()
1280 */
1281
1282 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1283
1284 i915_gem_shrink(i915, -1UL, NULL, ~0);
1285 i915_gem_drain_freed_objects(i915);
1286
1287 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1288 i915_gem_object_lock(obj, NULL);
1289 drm_WARN_ON(&i915->drm,
1290 i915_gem_object_set_to_cpu_domain(obj, true));
1291 i915_gem_object_unlock(obj);
1292 }
1293
1294 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1295
1296 return 0;
1297 }
1298
1299 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1300 {
1301 struct drm_i915_file_private *file_priv;
1302 int ret;
1303
1304 DRM_DEBUG("\n");
1305
1306 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1307 if (!file_priv)
1308 return -ENOMEM;
1309
1310 file->driver_priv = file_priv;
1311 file_priv->dev_priv = i915;
1312 file_priv->file = file;
1313
1314 file_priv->bsd_engine = -1;
1315 file_priv->hang_timestamp = jiffies;
1316
1317 ret = i915_gem_context_open(i915, file);
1318 if (ret)
1319 kfree(file_priv);
1320
1321 return ret;
1322 }
1323
1324 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1325 {
1326 ww_acquire_init(&ww->ctx, &reservation_ww_class);
1327 INIT_LIST_HEAD(&ww->obj_list);
1328 ww->intr = intr;
1329 ww->contended = NULL;
1330 }
1331
1332 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1333 {
1334 struct drm_i915_gem_object *obj;
1335
1336 while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1337 list_del(&obj->obj_link);
1338 i915_gem_object_unlock(obj);
1339 }
1340 }
1341
1342 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1343 {
1344 list_del(&obj->obj_link);
1345 i915_gem_object_unlock(obj);
1346 }
1347
1348 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1349 {
1350 i915_gem_ww_ctx_unlock_all(ww);
1351 WARN_ON(ww->contended);
1352 ww_acquire_fini(&ww->ctx);
1353 }
1354
1355 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1356 {
1357 int ret = 0;
1358
1359 if (WARN_ON(!ww->contended))
1360 return -EINVAL;
1361
1362 i915_gem_ww_ctx_unlock_all(ww);
1363 if (ww->intr)
1364 ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1365 else
1366 dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1367
1368 if (!ret)
1369 list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1370
1371 ww->contended = NULL;
1372
1373 return ret;
1374 }
1375
1376 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1377 #include "selftests/mock_gem_device.c"
1378 #include "selftests/i915_gem.c"
1379 #endif