]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Rename fence.lru_list to link
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49 enum i915_cache_level level)
50 {
51 return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57 return false;
58
59 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60 return true;
61
62 return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67 struct drm_mm_node *node, u32 size)
68 {
69 memset(node, 0, sizeof(*node));
70 return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71 size, 0, 0, 0,
72 i915->ggtt.mappable_end,
73 DRM_MM_SEARCH_DEFAULT,
74 DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80 drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85 size_t size)
86 {
87 spin_lock(&dev_priv->mm.object_stat_lock);
88 dev_priv->mm.object_count++;
89 dev_priv->mm.object_memory += size;
90 spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count--;
98 dev_priv->mm.object_memory -= size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105 int ret;
106
107 if (!i915_reset_in_progress(error))
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 !i915_reset_in_progress(error),
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 } else {
124 return 0;
125 }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130 struct drm_i915_private *dev_priv = to_i915(dev);
131 int ret;
132
133 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 if (ret)
135 return ret;
136
137 ret = mutex_lock_interruptible(&dev->struct_mutex);
138 if (ret)
139 return ret;
140
141 return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146 struct drm_file *file)
147 {
148 struct drm_i915_private *dev_priv = to_i915(dev);
149 struct i915_ggtt *ggtt = &dev_priv->ggtt;
150 struct drm_i915_gem_get_aperture *args = data;
151 struct i915_vma *vma;
152 size_t pinned;
153
154 pinned = 0;
155 mutex_lock(&dev->struct_mutex);
156 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157 if (i915_vma_is_pinned(vma))
158 pinned += vma->node.size;
159 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 mutex_unlock(&dev->struct_mutex);
163
164 args->aper_size = ggtt->base.total;
165 args->aper_available_size = args->aper_size - pinned;
166
167 return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173 struct address_space *mapping = obj->base.filp->f_mapping;
174 char *vaddr = obj->phys_handle->vaddr;
175 struct sg_table *st;
176 struct scatterlist *sg;
177 int i;
178
179 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180 return -EINVAL;
181
182 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183 struct page *page;
184 char *src;
185
186 page = shmem_read_mapping_page(mapping, i);
187 if (IS_ERR(page))
188 return PTR_ERR(page);
189
190 src = kmap_atomic(page);
191 memcpy(vaddr, src, PAGE_SIZE);
192 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193 kunmap_atomic(src);
194
195 put_page(page);
196 vaddr += PAGE_SIZE;
197 }
198
199 i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201 st = kmalloc(sizeof(*st), GFP_KERNEL);
202 if (st == NULL)
203 return -ENOMEM;
204
205 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206 kfree(st);
207 return -ENOMEM;
208 }
209
210 sg = st->sgl;
211 sg->offset = 0;
212 sg->length = obj->base.size;
213
214 sg_dma_address(sg) = obj->phys_handle->busaddr;
215 sg_dma_len(sg) = obj->base.size;
216
217 obj->pages = st;
218 return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224 int ret;
225
226 BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228 ret = i915_gem_object_set_to_cpu_domain(obj, true);
229 if (WARN_ON(ret)) {
230 /* In the event of a disaster, abandon all caches and
231 * hope for the best.
232 */
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = obj->base.filp->f_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 put_page(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273 drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277 .get_pages = i915_gem_object_get_pages_phys,
278 .put_pages = i915_gem_object_put_pages_phys,
279 .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284 struct i915_vma *vma;
285 LIST_HEAD(still_in_list);
286 int ret;
287
288 lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290 /* Closed vma are removed from the obj->vma_list - but they may
291 * still have an active binding on the object. To remove those we
292 * must wait for all rendering to complete to the object (as unbinding
293 * must anyway), and retire the requests.
294 */
295 ret = i915_gem_object_wait_rendering(obj, false);
296 if (ret)
297 return ret;
298
299 i915_gem_retire_requests(to_i915(obj->base.dev));
300
301 while ((vma = list_first_entry_or_null(&obj->vma_list,
302 struct i915_vma,
303 obj_link))) {
304 list_move_tail(&vma->obj_link, &still_in_list);
305 ret = i915_vma_unbind(vma);
306 if (ret)
307 break;
308 }
309 list_splice(&still_in_list, &obj->vma_list);
310
311 return ret;
312 }
313
314 /**
315 * Ensures that all rendering to the object has completed and the object is
316 * safe to unbind from the GTT or access from the CPU.
317 * @obj: i915 gem object
318 * @readonly: waiting for just read access or read-write access
319 */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322 bool readonly)
323 {
324 struct reservation_object *resv;
325 struct i915_gem_active *active;
326 unsigned long active_mask;
327 int idx;
328
329 lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331 if (!readonly) {
332 active = obj->last_read;
333 active_mask = i915_gem_object_get_active(obj);
334 } else {
335 active_mask = 1;
336 active = &obj->last_write;
337 }
338
339 for_each_active(active_mask, idx) {
340 int ret;
341
342 ret = i915_gem_active_wait(&active[idx],
343 &obj->base.dev->struct_mutex);
344 if (ret)
345 return ret;
346 }
347
348 resv = i915_gem_object_get_dmabuf_resv(obj);
349 if (resv) {
350 long err;
351
352 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353 MAX_SCHEDULE_TIMEOUT);
354 if (err < 0)
355 return err;
356 }
357
358 return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362 * acquiring the mutex for the object, as the object state may change
363 * during this call. A reference must be held by the caller for the object.
364 */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367 struct intel_rps_client *rps,
368 bool readonly)
369 {
370 struct i915_gem_active *active;
371 unsigned long active_mask;
372 int idx;
373
374 active_mask = __I915_BO_ACTIVE(obj);
375 if (!active_mask)
376 return 0;
377
378 if (!readonly) {
379 active = obj->last_read;
380 } else {
381 active_mask = 1;
382 active = &obj->last_write;
383 }
384
385 for_each_active(active_mask, idx) {
386 int ret;
387
388 ret = i915_gem_active_wait_unlocked(&active[idx],
389 true, NULL, rps);
390 if (ret)
391 return ret;
392 }
393
394 return 0;
395 }
396
397 static struct intel_rps_client *to_rps_client(struct drm_file *file)
398 {
399 struct drm_i915_file_private *fpriv = file->driver_priv;
400
401 return &fpriv->rps;
402 }
403
404 int
405 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
406 int align)
407 {
408 drm_dma_handle_t *phys;
409 int ret;
410
411 if (obj->phys_handle) {
412 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
413 return -EBUSY;
414
415 return 0;
416 }
417
418 if (obj->madv != I915_MADV_WILLNEED)
419 return -EFAULT;
420
421 if (obj->base.filp == NULL)
422 return -EINVAL;
423
424 ret = i915_gem_object_unbind(obj);
425 if (ret)
426 return ret;
427
428 ret = i915_gem_object_put_pages(obj);
429 if (ret)
430 return ret;
431
432 /* create a new object */
433 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
434 if (!phys)
435 return -ENOMEM;
436
437 obj->phys_handle = phys;
438 obj->ops = &i915_gem_phys_ops;
439
440 return i915_gem_object_get_pages(obj);
441 }
442
443 static int
444 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
445 struct drm_i915_gem_pwrite *args,
446 struct drm_file *file_priv)
447 {
448 struct drm_device *dev = obj->base.dev;
449 void *vaddr = obj->phys_handle->vaddr + args->offset;
450 char __user *user_data = u64_to_user_ptr(args->data_ptr);
451 int ret = 0;
452
453 /* We manually control the domain here and pretend that it
454 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
455 */
456 ret = i915_gem_object_wait_rendering(obj, false);
457 if (ret)
458 return ret;
459
460 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
461 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
462 unsigned long unwritten;
463
464 /* The physical object once assigned is fixed for the lifetime
465 * of the obj, so we can safely drop the lock and continue
466 * to access vaddr.
467 */
468 mutex_unlock(&dev->struct_mutex);
469 unwritten = copy_from_user(vaddr, user_data, args->size);
470 mutex_lock(&dev->struct_mutex);
471 if (unwritten) {
472 ret = -EFAULT;
473 goto out;
474 }
475 }
476
477 drm_clflush_virt_range(vaddr, args->size);
478 i915_gem_chipset_flush(to_i915(dev));
479
480 out:
481 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
482 return ret;
483 }
484
485 void *i915_gem_object_alloc(struct drm_device *dev)
486 {
487 struct drm_i915_private *dev_priv = to_i915(dev);
488 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
489 }
490
491 void i915_gem_object_free(struct drm_i915_gem_object *obj)
492 {
493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
494 kmem_cache_free(dev_priv->objects, obj);
495 }
496
497 static int
498 i915_gem_create(struct drm_file *file,
499 struct drm_device *dev,
500 uint64_t size,
501 uint32_t *handle_p)
502 {
503 struct drm_i915_gem_object *obj;
504 int ret;
505 u32 handle;
506
507 size = roundup(size, PAGE_SIZE);
508 if (size == 0)
509 return -EINVAL;
510
511 /* Allocate the new object */
512 obj = i915_gem_object_create(dev, size);
513 if (IS_ERR(obj))
514 return PTR_ERR(obj);
515
516 ret = drm_gem_handle_create(file, &obj->base, &handle);
517 /* drop reference from allocate - handle holds it now */
518 i915_gem_object_put_unlocked(obj);
519 if (ret)
520 return ret;
521
522 *handle_p = handle;
523 return 0;
524 }
525
526 int
527 i915_gem_dumb_create(struct drm_file *file,
528 struct drm_device *dev,
529 struct drm_mode_create_dumb *args)
530 {
531 /* have to work out size/pitch and return them */
532 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
533 args->size = args->pitch * args->height;
534 return i915_gem_create(file, dev,
535 args->size, &args->handle);
536 }
537
538 /**
539 * Creates a new mm object and returns a handle to it.
540 * @dev: drm device pointer
541 * @data: ioctl data blob
542 * @file: drm file pointer
543 */
544 int
545 i915_gem_create_ioctl(struct drm_device *dev, void *data,
546 struct drm_file *file)
547 {
548 struct drm_i915_gem_create *args = data;
549
550 return i915_gem_create(file, dev,
551 args->size, &args->handle);
552 }
553
554 static inline int
555 __copy_to_user_swizzled(char __user *cpu_vaddr,
556 const char *gpu_vaddr, int gpu_offset,
557 int length)
558 {
559 int ret, cpu_offset = 0;
560
561 while (length > 0) {
562 int cacheline_end = ALIGN(gpu_offset + 1, 64);
563 int this_length = min(cacheline_end - gpu_offset, length);
564 int swizzled_gpu_offset = gpu_offset ^ 64;
565
566 ret = __copy_to_user(cpu_vaddr + cpu_offset,
567 gpu_vaddr + swizzled_gpu_offset,
568 this_length);
569 if (ret)
570 return ret + length;
571
572 cpu_offset += this_length;
573 gpu_offset += this_length;
574 length -= this_length;
575 }
576
577 return 0;
578 }
579
580 static inline int
581 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
582 const char __user *cpu_vaddr,
583 int length)
584 {
585 int ret, cpu_offset = 0;
586
587 while (length > 0) {
588 int cacheline_end = ALIGN(gpu_offset + 1, 64);
589 int this_length = min(cacheline_end - gpu_offset, length);
590 int swizzled_gpu_offset = gpu_offset ^ 64;
591
592 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
593 cpu_vaddr + cpu_offset,
594 this_length);
595 if (ret)
596 return ret + length;
597
598 cpu_offset += this_length;
599 gpu_offset += this_length;
600 length -= this_length;
601 }
602
603 return 0;
604 }
605
606 /*
607 * Pins the specified object's pages and synchronizes the object with
608 * GPU accesses. Sets needs_clflush to non-zero if the caller should
609 * flush the object from the CPU cache.
610 */
611 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
612 unsigned int *needs_clflush)
613 {
614 int ret;
615
616 *needs_clflush = 0;
617
618 if (!i915_gem_object_has_struct_page(obj))
619 return -ENODEV;
620
621 ret = i915_gem_object_wait_rendering(obj, true);
622 if (ret)
623 return ret;
624
625 ret = i915_gem_object_get_pages(obj);
626 if (ret)
627 return ret;
628
629 i915_gem_object_pin_pages(obj);
630
631 i915_gem_object_flush_gtt_write_domain(obj);
632
633 /* If we're not in the cpu read domain, set ourself into the gtt
634 * read domain and manually flush cachelines (if required). This
635 * optimizes for the case when the gpu will dirty the data
636 * anyway again before the next pread happens.
637 */
638 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
639 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
640 obj->cache_level);
641
642 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
643 ret = i915_gem_object_set_to_cpu_domain(obj, false);
644 if (ret)
645 goto err_unpin;
646
647 *needs_clflush = 0;
648 }
649
650 /* return with the pages pinned */
651 return 0;
652
653 err_unpin:
654 i915_gem_object_unpin_pages(obj);
655 return ret;
656 }
657
658 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
659 unsigned int *needs_clflush)
660 {
661 int ret;
662
663 *needs_clflush = 0;
664 if (!i915_gem_object_has_struct_page(obj))
665 return -ENODEV;
666
667 ret = i915_gem_object_wait_rendering(obj, false);
668 if (ret)
669 return ret;
670
671 ret = i915_gem_object_get_pages(obj);
672 if (ret)
673 return ret;
674
675 i915_gem_object_pin_pages(obj);
676
677 i915_gem_object_flush_gtt_write_domain(obj);
678
679 /* If we're not in the cpu write domain, set ourself into the
680 * gtt write domain and manually flush cachelines (as required).
681 * This optimizes for the case when the gpu will use the data
682 * right away and we therefore have to clflush anyway.
683 */
684 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
685 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
686
687 /* Same trick applies to invalidate partially written cachelines read
688 * before writing.
689 */
690 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
691 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
692 obj->cache_level);
693
694 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
695 ret = i915_gem_object_set_to_cpu_domain(obj, true);
696 if (ret)
697 goto err_unpin;
698
699 *needs_clflush = 0;
700 }
701
702 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
703 obj->cache_dirty = true;
704
705 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
706 obj->dirty = 1;
707 /* return with the pages pinned */
708 return 0;
709
710 err_unpin:
711 i915_gem_object_unpin_pages(obj);
712 return ret;
713 }
714
715 /* Per-page copy function for the shmem pread fastpath.
716 * Flushes invalid cachelines before reading the target if
717 * needs_clflush is set. */
718 static int
719 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
720 char __user *user_data,
721 bool page_do_bit17_swizzling, bool needs_clflush)
722 {
723 char *vaddr;
724 int ret;
725
726 if (unlikely(page_do_bit17_swizzling))
727 return -EINVAL;
728
729 vaddr = kmap_atomic(page);
730 if (needs_clflush)
731 drm_clflush_virt_range(vaddr + shmem_page_offset,
732 page_length);
733 ret = __copy_to_user_inatomic(user_data,
734 vaddr + shmem_page_offset,
735 page_length);
736 kunmap_atomic(vaddr);
737
738 return ret ? -EFAULT : 0;
739 }
740
741 static void
742 shmem_clflush_swizzled_range(char *addr, unsigned long length,
743 bool swizzled)
744 {
745 if (unlikely(swizzled)) {
746 unsigned long start = (unsigned long) addr;
747 unsigned long end = (unsigned long) addr + length;
748
749 /* For swizzling simply ensure that we always flush both
750 * channels. Lame, but simple and it works. Swizzled
751 * pwrite/pread is far from a hotpath - current userspace
752 * doesn't use it at all. */
753 start = round_down(start, 128);
754 end = round_up(end, 128);
755
756 drm_clflush_virt_range((void *)start, end - start);
757 } else {
758 drm_clflush_virt_range(addr, length);
759 }
760
761 }
762
763 /* Only difference to the fast-path function is that this can handle bit17
764 * and uses non-atomic copy and kmap functions. */
765 static int
766 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
767 char __user *user_data,
768 bool page_do_bit17_swizzling, bool needs_clflush)
769 {
770 char *vaddr;
771 int ret;
772
773 vaddr = kmap(page);
774 if (needs_clflush)
775 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
776 page_length,
777 page_do_bit17_swizzling);
778
779 if (page_do_bit17_swizzling)
780 ret = __copy_to_user_swizzled(user_data,
781 vaddr, shmem_page_offset,
782 page_length);
783 else
784 ret = __copy_to_user(user_data,
785 vaddr + shmem_page_offset,
786 page_length);
787 kunmap(page);
788
789 return ret ? - EFAULT : 0;
790 }
791
792 static inline unsigned long
793 slow_user_access(struct io_mapping *mapping,
794 uint64_t page_base, int page_offset,
795 char __user *user_data,
796 unsigned long length, bool pwrite)
797 {
798 void __iomem *ioaddr;
799 void *vaddr;
800 uint64_t unwritten;
801
802 ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
803 /* We can use the cpu mem copy function because this is X86. */
804 vaddr = (void __force *)ioaddr + page_offset;
805 if (pwrite)
806 unwritten = __copy_from_user(vaddr, user_data, length);
807 else
808 unwritten = __copy_to_user(user_data, vaddr, length);
809
810 io_mapping_unmap(ioaddr);
811 return unwritten;
812 }
813
814 static int
815 i915_gem_gtt_pread(struct drm_device *dev,
816 struct drm_i915_gem_object *obj, uint64_t size,
817 uint64_t data_offset, uint64_t data_ptr)
818 {
819 struct drm_i915_private *dev_priv = to_i915(dev);
820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
821 struct i915_vma *vma;
822 struct drm_mm_node node;
823 char __user *user_data;
824 uint64_t remain;
825 uint64_t offset;
826 int ret;
827
828 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
829 if (!IS_ERR(vma)) {
830 node.start = i915_ggtt_offset(vma);
831 node.allocated = false;
832 ret = i915_gem_object_put_fence(obj);
833 if (ret) {
834 i915_vma_unpin(vma);
835 vma = ERR_PTR(ret);
836 }
837 }
838 if (IS_ERR(vma)) {
839 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
840 if (ret)
841 goto out;
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret) {
845 remove_mappable_node(&node);
846 goto out;
847 }
848
849 i915_gem_object_pin_pages(obj);
850 }
851
852 ret = i915_gem_object_set_to_gtt_domain(obj, false);
853 if (ret)
854 goto out_unpin;
855
856 user_data = u64_to_user_ptr(data_ptr);
857 remain = size;
858 offset = data_offset;
859
860 mutex_unlock(&dev->struct_mutex);
861 if (likely(!i915.prefault_disable)) {
862 ret = fault_in_multipages_writeable(user_data, remain);
863 if (ret) {
864 mutex_lock(&dev->struct_mutex);
865 goto out_unpin;
866 }
867 }
868
869 while (remain > 0) {
870 /* Operation in this page
871 *
872 * page_base = page offset within aperture
873 * page_offset = offset within page
874 * page_length = bytes to copy for this page
875 */
876 u32 page_base = node.start;
877 unsigned page_offset = offset_in_page(offset);
878 unsigned page_length = PAGE_SIZE - page_offset;
879 page_length = remain < page_length ? remain : page_length;
880 if (node.allocated) {
881 wmb();
882 ggtt->base.insert_page(&ggtt->base,
883 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
884 node.start,
885 I915_CACHE_NONE, 0);
886 wmb();
887 } else {
888 page_base += offset & PAGE_MASK;
889 }
890 /* This is a slow read/write as it tries to read from
891 * and write to user memory which may result into page
892 * faults, and so we cannot perform this under struct_mutex.
893 */
894 if (slow_user_access(ggtt->mappable, page_base,
895 page_offset, user_data,
896 page_length, false)) {
897 ret = -EFAULT;
898 break;
899 }
900
901 remain -= page_length;
902 user_data += page_length;
903 offset += page_length;
904 }
905
906 mutex_lock(&dev->struct_mutex);
907 if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
908 /* The user has modified the object whilst we tried
909 * reading from it, and we now have no idea what domain
910 * the pages should be in. As we have just been touching
911 * them directly, flush everything back to the GTT
912 * domain.
913 */
914 ret = i915_gem_object_set_to_gtt_domain(obj, false);
915 }
916
917 out_unpin:
918 if (node.allocated) {
919 wmb();
920 ggtt->base.clear_range(&ggtt->base,
921 node.start, node.size,
922 true);
923 i915_gem_object_unpin_pages(obj);
924 remove_mappable_node(&node);
925 } else {
926 i915_vma_unpin(vma);
927 }
928 out:
929 return ret;
930 }
931
932 static int
933 i915_gem_shmem_pread(struct drm_device *dev,
934 struct drm_i915_gem_object *obj,
935 struct drm_i915_gem_pread *args,
936 struct drm_file *file)
937 {
938 char __user *user_data;
939 ssize_t remain;
940 loff_t offset;
941 int shmem_page_offset, page_length, ret = 0;
942 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
943 int prefaulted = 0;
944 int needs_clflush = 0;
945 struct sg_page_iter sg_iter;
946
947 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
948 if (ret)
949 return ret;
950
951 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
952 user_data = u64_to_user_ptr(args->data_ptr);
953 offset = args->offset;
954 remain = args->size;
955
956 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
957 offset >> PAGE_SHIFT) {
958 struct page *page = sg_page_iter_page(&sg_iter);
959
960 if (remain <= 0)
961 break;
962
963 /* Operation in this page
964 *
965 * shmem_page_offset = offset within page in shmem file
966 * page_length = bytes to copy for this page
967 */
968 shmem_page_offset = offset_in_page(offset);
969 page_length = remain;
970 if ((shmem_page_offset + page_length) > PAGE_SIZE)
971 page_length = PAGE_SIZE - shmem_page_offset;
972
973 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
974 (page_to_phys(page) & (1 << 17)) != 0;
975
976 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 needs_clflush);
979 if (ret == 0)
980 goto next_page;
981
982 mutex_unlock(&dev->struct_mutex);
983
984 if (likely(!i915.prefault_disable) && !prefaulted) {
985 ret = fault_in_multipages_writeable(user_data, remain);
986 /* Userspace is tricking us, but we've already clobbered
987 * its pages with the prefault and promised to write the
988 * data up to the first fault. Hence ignore any errors
989 * and just continue. */
990 (void)ret;
991 prefaulted = 1;
992 }
993
994 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
995 user_data, page_do_bit17_swizzling,
996 needs_clflush);
997
998 mutex_lock(&dev->struct_mutex);
999
1000 if (ret)
1001 goto out;
1002
1003 next_page:
1004 remain -= page_length;
1005 user_data += page_length;
1006 offset += page_length;
1007 }
1008
1009 out:
1010 i915_gem_obj_finish_shmem_access(obj);
1011
1012 return ret;
1013 }
1014
1015 /**
1016 * Reads data from the object referenced by handle.
1017 * @dev: drm device pointer
1018 * @data: ioctl data blob
1019 * @file: drm file pointer
1020 *
1021 * On error, the contents of *data are undefined.
1022 */
1023 int
1024 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1025 struct drm_file *file)
1026 {
1027 struct drm_i915_gem_pread *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret = 0;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_WRITE,
1035 u64_to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 obj = i915_gem_object_lookup(file, args->handle);
1040 if (!obj)
1041 return -ENOENT;
1042
1043 /* Bounds check source. */
1044 if (args->offset > obj->base.size ||
1045 args->size > obj->base.size - args->offset) {
1046 ret = -EINVAL;
1047 goto err;
1048 }
1049
1050 trace_i915_gem_object_pread(obj, args->offset, args->size);
1051
1052 ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1053 if (ret)
1054 goto err;
1055
1056 ret = i915_mutex_lock_interruptible(dev);
1057 if (ret)
1058 goto err;
1059
1060 ret = i915_gem_shmem_pread(dev, obj, args, file);
1061
1062 /* pread for non shmem backed objects */
1063 if (ret == -EFAULT || ret == -ENODEV) {
1064 intel_runtime_pm_get(to_i915(dev));
1065 ret = i915_gem_gtt_pread(dev, obj, args->size,
1066 args->offset, args->data_ptr);
1067 intel_runtime_pm_put(to_i915(dev));
1068 }
1069
1070 i915_gem_object_put(obj);
1071 mutex_unlock(&dev->struct_mutex);
1072
1073 return ret;
1074
1075 err:
1076 i915_gem_object_put_unlocked(obj);
1077 return ret;
1078 }
1079
1080 /* This is the fast write path which cannot handle
1081 * page faults in the source data
1082 */
1083
1084 static inline int
1085 fast_user_write(struct io_mapping *mapping,
1086 loff_t page_base, int page_offset,
1087 char __user *user_data,
1088 int length)
1089 {
1090 void __iomem *vaddr_atomic;
1091 void *vaddr;
1092 unsigned long unwritten;
1093
1094 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1095 /* We can use the cpu mem copy function because this is X86. */
1096 vaddr = (void __force*)vaddr_atomic + page_offset;
1097 unwritten = __copy_from_user_inatomic_nocache(vaddr,
1098 user_data, length);
1099 io_mapping_unmap_atomic(vaddr_atomic);
1100 return unwritten;
1101 }
1102
1103 /**
1104 * This is the fast pwrite path, where we copy the data directly from the
1105 * user into the GTT, uncached.
1106 * @i915: i915 device private data
1107 * @obj: i915 gem object
1108 * @args: pwrite arguments structure
1109 * @file: drm file pointer
1110 */
1111 static int
1112 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1113 struct drm_i915_gem_object *obj,
1114 struct drm_i915_gem_pwrite *args,
1115 struct drm_file *file)
1116 {
1117 struct i915_ggtt *ggtt = &i915->ggtt;
1118 struct drm_device *dev = obj->base.dev;
1119 struct i915_vma *vma;
1120 struct drm_mm_node node;
1121 uint64_t remain, offset;
1122 char __user *user_data;
1123 int ret;
1124 bool hit_slow_path = false;
1125
1126 if (i915_gem_object_is_tiled(obj))
1127 return -EFAULT;
1128
1129 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1130 PIN_MAPPABLE | PIN_NONBLOCK);
1131 if (!IS_ERR(vma)) {
1132 node.start = i915_ggtt_offset(vma);
1133 node.allocated = false;
1134 ret = i915_gem_object_put_fence(obj);
1135 if (ret) {
1136 i915_vma_unpin(vma);
1137 vma = ERR_PTR(ret);
1138 }
1139 }
1140 if (IS_ERR(vma)) {
1141 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1142 if (ret)
1143 goto out;
1144
1145 ret = i915_gem_object_get_pages(obj);
1146 if (ret) {
1147 remove_mappable_node(&node);
1148 goto out;
1149 }
1150
1151 i915_gem_object_pin_pages(obj);
1152 }
1153
1154 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1155 if (ret)
1156 goto out_unpin;
1157
1158 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159 obj->dirty = true;
1160
1161 user_data = u64_to_user_ptr(args->data_ptr);
1162 offset = args->offset;
1163 remain = args->size;
1164 while (remain) {
1165 /* Operation in this page
1166 *
1167 * page_base = page offset within aperture
1168 * page_offset = offset within page
1169 * page_length = bytes to copy for this page
1170 */
1171 u32 page_base = node.start;
1172 unsigned page_offset = offset_in_page(offset);
1173 unsigned page_length = PAGE_SIZE - page_offset;
1174 page_length = remain < page_length ? remain : page_length;
1175 if (node.allocated) {
1176 wmb(); /* flush the write before we modify the GGTT */
1177 ggtt->base.insert_page(&ggtt->base,
1178 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1179 node.start, I915_CACHE_NONE, 0);
1180 wmb(); /* flush modifications to the GGTT (insert_page) */
1181 } else {
1182 page_base += offset & PAGE_MASK;
1183 }
1184 /* If we get a fault while copying data, then (presumably) our
1185 * source page isn't available. Return the error and we'll
1186 * retry in the slow path.
1187 * If the object is non-shmem backed, we retry again with the
1188 * path that handles page fault.
1189 */
1190 if (fast_user_write(ggtt->mappable, page_base,
1191 page_offset, user_data, page_length)) {
1192 hit_slow_path = true;
1193 mutex_unlock(&dev->struct_mutex);
1194 if (slow_user_access(ggtt->mappable,
1195 page_base,
1196 page_offset, user_data,
1197 page_length, true)) {
1198 ret = -EFAULT;
1199 mutex_lock(&dev->struct_mutex);
1200 goto out_flush;
1201 }
1202
1203 mutex_lock(&dev->struct_mutex);
1204 }
1205
1206 remain -= page_length;
1207 user_data += page_length;
1208 offset += page_length;
1209 }
1210
1211 out_flush:
1212 if (hit_slow_path) {
1213 if (ret == 0 &&
1214 (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1215 /* The user has modified the object whilst we tried
1216 * reading from it, and we now have no idea what domain
1217 * the pages should be in. As we have just been touching
1218 * them directly, flush everything back to the GTT
1219 * domain.
1220 */
1221 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1222 }
1223 }
1224
1225 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1226 out_unpin:
1227 if (node.allocated) {
1228 wmb();
1229 ggtt->base.clear_range(&ggtt->base,
1230 node.start, node.size,
1231 true);
1232 i915_gem_object_unpin_pages(obj);
1233 remove_mappable_node(&node);
1234 } else {
1235 i915_vma_unpin(vma);
1236 }
1237 out:
1238 return ret;
1239 }
1240
1241 /* Per-page copy function for the shmem pwrite fastpath.
1242 * Flushes invalid cachelines before writing to the target if
1243 * needs_clflush_before is set and flushes out any written cachelines after
1244 * writing if needs_clflush is set. */
1245 static int
1246 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1247 char __user *user_data,
1248 bool page_do_bit17_swizzling,
1249 bool needs_clflush_before,
1250 bool needs_clflush_after)
1251 {
1252 char *vaddr;
1253 int ret;
1254
1255 if (unlikely(page_do_bit17_swizzling))
1256 return -EINVAL;
1257
1258 vaddr = kmap_atomic(page);
1259 if (needs_clflush_before)
1260 drm_clflush_virt_range(vaddr + shmem_page_offset,
1261 page_length);
1262 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1263 user_data, page_length);
1264 if (needs_clflush_after)
1265 drm_clflush_virt_range(vaddr + shmem_page_offset,
1266 page_length);
1267 kunmap_atomic(vaddr);
1268
1269 return ret ? -EFAULT : 0;
1270 }
1271
1272 /* Only difference to the fast-path function is that this can handle bit17
1273 * and uses non-atomic copy and kmap functions. */
1274 static int
1275 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1276 char __user *user_data,
1277 bool page_do_bit17_swizzling,
1278 bool needs_clflush_before,
1279 bool needs_clflush_after)
1280 {
1281 char *vaddr;
1282 int ret;
1283
1284 vaddr = kmap(page);
1285 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1286 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1287 page_length,
1288 page_do_bit17_swizzling);
1289 if (page_do_bit17_swizzling)
1290 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1291 user_data,
1292 page_length);
1293 else
1294 ret = __copy_from_user(vaddr + shmem_page_offset,
1295 user_data,
1296 page_length);
1297 if (needs_clflush_after)
1298 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1299 page_length,
1300 page_do_bit17_swizzling);
1301 kunmap(page);
1302
1303 return ret ? -EFAULT : 0;
1304 }
1305
1306 static int
1307 i915_gem_shmem_pwrite(struct drm_device *dev,
1308 struct drm_i915_gem_object *obj,
1309 struct drm_i915_gem_pwrite *args,
1310 struct drm_file *file)
1311 {
1312 ssize_t remain;
1313 loff_t offset;
1314 char __user *user_data;
1315 int shmem_page_offset, page_length, ret = 0;
1316 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1317 int hit_slowpath = 0;
1318 unsigned int needs_clflush;
1319 struct sg_page_iter sg_iter;
1320
1321 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1322 if (ret)
1323 return ret;
1324
1325 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1326 user_data = u64_to_user_ptr(args->data_ptr);
1327 offset = args->offset;
1328 remain = args->size;
1329
1330 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1331 offset >> PAGE_SHIFT) {
1332 struct page *page = sg_page_iter_page(&sg_iter);
1333 int partial_cacheline_write;
1334
1335 if (remain <= 0)
1336 break;
1337
1338 /* Operation in this page
1339 *
1340 * shmem_page_offset = offset within page in shmem file
1341 * page_length = bytes to copy for this page
1342 */
1343 shmem_page_offset = offset_in_page(offset);
1344
1345 page_length = remain;
1346 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1347 page_length = PAGE_SIZE - shmem_page_offset;
1348
1349 /* If we don't overwrite a cacheline completely we need to be
1350 * careful to have up-to-date data by first clflushing. Don't
1351 * overcomplicate things and flush the entire patch. */
1352 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1353 ((shmem_page_offset | page_length)
1354 & (boot_cpu_data.x86_clflush_size - 1));
1355
1356 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1357 (page_to_phys(page) & (1 << 17)) != 0;
1358
1359 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1360 user_data, page_do_bit17_swizzling,
1361 partial_cacheline_write,
1362 needs_clflush & CLFLUSH_AFTER);
1363 if (ret == 0)
1364 goto next_page;
1365
1366 hit_slowpath = 1;
1367 mutex_unlock(&dev->struct_mutex);
1368 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1369 user_data, page_do_bit17_swizzling,
1370 partial_cacheline_write,
1371 needs_clflush & CLFLUSH_AFTER);
1372
1373 mutex_lock(&dev->struct_mutex);
1374
1375 if (ret)
1376 goto out;
1377
1378 next_page:
1379 remain -= page_length;
1380 user_data += page_length;
1381 offset += page_length;
1382 }
1383
1384 out:
1385 i915_gem_obj_finish_shmem_access(obj);
1386
1387 if (hit_slowpath) {
1388 /*
1389 * Fixup: Flush cpu caches in case we didn't flush the dirty
1390 * cachelines in-line while writing and the object moved
1391 * out of the cpu write domain while we've dropped the lock.
1392 */
1393 if (!(needs_clflush & CLFLUSH_AFTER) &&
1394 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1395 if (i915_gem_clflush_object(obj, obj->pin_display))
1396 needs_clflush |= CLFLUSH_AFTER;
1397 }
1398 }
1399
1400 if (needs_clflush & CLFLUSH_AFTER)
1401 i915_gem_chipset_flush(to_i915(dev));
1402
1403 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1404 return ret;
1405 }
1406
1407 /**
1408 * Writes data to the object referenced by handle.
1409 * @dev: drm device
1410 * @data: ioctl data blob
1411 * @file: drm file
1412 *
1413 * On error, the contents of the buffer that were to be modified are undefined.
1414 */
1415 int
1416 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1417 struct drm_file *file)
1418 {
1419 struct drm_i915_private *dev_priv = to_i915(dev);
1420 struct drm_i915_gem_pwrite *args = data;
1421 struct drm_i915_gem_object *obj;
1422 int ret;
1423
1424 if (args->size == 0)
1425 return 0;
1426
1427 if (!access_ok(VERIFY_READ,
1428 u64_to_user_ptr(args->data_ptr),
1429 args->size))
1430 return -EFAULT;
1431
1432 if (likely(!i915.prefault_disable)) {
1433 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1434 args->size);
1435 if (ret)
1436 return -EFAULT;
1437 }
1438
1439 obj = i915_gem_object_lookup(file, args->handle);
1440 if (!obj)
1441 return -ENOENT;
1442
1443 /* Bounds check destination. */
1444 if (args->offset > obj->base.size ||
1445 args->size > obj->base.size - args->offset) {
1446 ret = -EINVAL;
1447 goto err;
1448 }
1449
1450 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1451
1452 ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1453 if (ret)
1454 goto err;
1455
1456 intel_runtime_pm_get(dev_priv);
1457
1458 ret = i915_mutex_lock_interruptible(dev);
1459 if (ret)
1460 goto err_rpm;
1461
1462 ret = -EFAULT;
1463 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1464 * it would end up going through the fenced access, and we'll get
1465 * different detiling behavior between reading and writing.
1466 * pread/pwrite currently are reading and writing from the CPU
1467 * perspective, requiring manual detiling by the client.
1468 */
1469 if (!i915_gem_object_has_struct_page(obj) ||
1470 cpu_write_needs_clflush(obj)) {
1471 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1472 /* Note that the gtt paths might fail with non-page-backed user
1473 * pointers (e.g. gtt mappings when moving data between
1474 * textures). Fallback to the shmem path in that case. */
1475 }
1476
1477 if (ret == -EFAULT || ret == -ENOSPC) {
1478 if (obj->phys_handle)
1479 ret = i915_gem_phys_pwrite(obj, args, file);
1480 else
1481 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1482 }
1483
1484 i915_gem_object_put(obj);
1485 mutex_unlock(&dev->struct_mutex);
1486 intel_runtime_pm_put(dev_priv);
1487
1488 return ret;
1489
1490 err_rpm:
1491 intel_runtime_pm_put(dev_priv);
1492 err:
1493 i915_gem_object_put_unlocked(obj);
1494 return ret;
1495 }
1496
1497 static inline enum fb_op_origin
1498 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1499 {
1500 return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1501 ORIGIN_GTT : ORIGIN_CPU;
1502 }
1503
1504 /**
1505 * Called when user space prepares to use an object with the CPU, either
1506 * through the mmap ioctl's mapping or a GTT mapping.
1507 * @dev: drm device
1508 * @data: ioctl data blob
1509 * @file: drm file
1510 */
1511 int
1512 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1513 struct drm_file *file)
1514 {
1515 struct drm_i915_gem_set_domain *args = data;
1516 struct drm_i915_gem_object *obj;
1517 uint32_t read_domains = args->read_domains;
1518 uint32_t write_domain = args->write_domain;
1519 int ret;
1520
1521 /* Only handle setting domains to types used by the CPU. */
1522 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1523 return -EINVAL;
1524
1525 /* Having something in the write domain implies it's in the read
1526 * domain, and only that read domain. Enforce that in the request.
1527 */
1528 if (write_domain != 0 && read_domains != write_domain)
1529 return -EINVAL;
1530
1531 obj = i915_gem_object_lookup(file, args->handle);
1532 if (!obj)
1533 return -ENOENT;
1534
1535 /* Try to flush the object off the GPU without holding the lock.
1536 * We will repeat the flush holding the lock in the normal manner
1537 * to catch cases where we are gazumped.
1538 */
1539 ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1540 if (ret)
1541 goto err;
1542
1543 ret = i915_mutex_lock_interruptible(dev);
1544 if (ret)
1545 goto err;
1546
1547 if (read_domains & I915_GEM_DOMAIN_GTT)
1548 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1549 else
1550 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1551
1552 if (write_domain != 0)
1553 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1554
1555 i915_gem_object_put(obj);
1556 mutex_unlock(&dev->struct_mutex);
1557 return ret;
1558
1559 err:
1560 i915_gem_object_put_unlocked(obj);
1561 return ret;
1562 }
1563
1564 /**
1565 * Called when user space has done writes to this buffer
1566 * @dev: drm device
1567 * @data: ioctl data blob
1568 * @file: drm file
1569 */
1570 int
1571 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1572 struct drm_file *file)
1573 {
1574 struct drm_i915_gem_sw_finish *args = data;
1575 struct drm_i915_gem_object *obj;
1576 int err = 0;
1577
1578 obj = i915_gem_object_lookup(file, args->handle);
1579 if (!obj)
1580 return -ENOENT;
1581
1582 /* Pinned buffers may be scanout, so flush the cache */
1583 if (READ_ONCE(obj->pin_display)) {
1584 err = i915_mutex_lock_interruptible(dev);
1585 if (!err) {
1586 i915_gem_object_flush_cpu_write_domain(obj);
1587 mutex_unlock(&dev->struct_mutex);
1588 }
1589 }
1590
1591 i915_gem_object_put_unlocked(obj);
1592 return err;
1593 }
1594
1595 /**
1596 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1597 * it is mapped to.
1598 * @dev: drm device
1599 * @data: ioctl data blob
1600 * @file: drm file
1601 *
1602 * While the mapping holds a reference on the contents of the object, it doesn't
1603 * imply a ref on the object itself.
1604 *
1605 * IMPORTANT:
1606 *
1607 * DRM driver writers who look a this function as an example for how to do GEM
1608 * mmap support, please don't implement mmap support like here. The modern way
1609 * to implement DRM mmap support is with an mmap offset ioctl (like
1610 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1611 * That way debug tooling like valgrind will understand what's going on, hiding
1612 * the mmap call in a driver private ioctl will break that. The i915 driver only
1613 * does cpu mmaps this way because we didn't know better.
1614 */
1615 int
1616 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1617 struct drm_file *file)
1618 {
1619 struct drm_i915_gem_mmap *args = data;
1620 struct drm_i915_gem_object *obj;
1621 unsigned long addr;
1622
1623 if (args->flags & ~(I915_MMAP_WC))
1624 return -EINVAL;
1625
1626 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1627 return -ENODEV;
1628
1629 obj = i915_gem_object_lookup(file, args->handle);
1630 if (!obj)
1631 return -ENOENT;
1632
1633 /* prime objects have no backing filp to GEM mmap
1634 * pages from.
1635 */
1636 if (!obj->base.filp) {
1637 i915_gem_object_put_unlocked(obj);
1638 return -EINVAL;
1639 }
1640
1641 addr = vm_mmap(obj->base.filp, 0, args->size,
1642 PROT_READ | PROT_WRITE, MAP_SHARED,
1643 args->offset);
1644 if (args->flags & I915_MMAP_WC) {
1645 struct mm_struct *mm = current->mm;
1646 struct vm_area_struct *vma;
1647
1648 if (down_write_killable(&mm->mmap_sem)) {
1649 i915_gem_object_put_unlocked(obj);
1650 return -EINTR;
1651 }
1652 vma = find_vma(mm, addr);
1653 if (vma)
1654 vma->vm_page_prot =
1655 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1656 else
1657 addr = -ENOMEM;
1658 up_write(&mm->mmap_sem);
1659
1660 /* This may race, but that's ok, it only gets set */
1661 WRITE_ONCE(obj->has_wc_mmap, true);
1662 }
1663 i915_gem_object_put_unlocked(obj);
1664 if (IS_ERR((void *)addr))
1665 return addr;
1666
1667 args->addr_ptr = (uint64_t) addr;
1668
1669 return 0;
1670 }
1671
1672 /**
1673 * i915_gem_fault - fault a page into the GTT
1674 * @area: CPU VMA in question
1675 * @vmf: fault info
1676 *
1677 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1678 * from userspace. The fault handler takes care of binding the object to
1679 * the GTT (if needed), allocating and programming a fence register (again,
1680 * only if needed based on whether the old reg is still valid or the object
1681 * is tiled) and inserting a new PTE into the faulting process.
1682 *
1683 * Note that the faulting process may involve evicting existing objects
1684 * from the GTT and/or fence registers to make room. So performance may
1685 * suffer if the GTT working set is large or there are few fence registers
1686 * left.
1687 */
1688 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1689 {
1690 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1691 struct drm_device *dev = obj->base.dev;
1692 struct drm_i915_private *dev_priv = to_i915(dev);
1693 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1694 struct i915_ggtt_view view = i915_ggtt_view_normal;
1695 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1696 struct i915_vma *vma;
1697 pgoff_t page_offset;
1698 unsigned long pfn;
1699 int ret;
1700
1701 /* We don't use vmf->pgoff since that has the fake offset */
1702 page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1703 PAGE_SHIFT;
1704
1705 trace_i915_gem_object_fault(obj, page_offset, true, write);
1706
1707 /* Try to flush the object off the GPU first without holding the lock.
1708 * Upon acquiring the lock, we will perform our sanity checks and then
1709 * repeat the flush holding the lock in the normal manner to catch cases
1710 * where we are gazumped.
1711 */
1712 ret = __unsafe_wait_rendering(obj, NULL, !write);
1713 if (ret)
1714 goto err;
1715
1716 intel_runtime_pm_get(dev_priv);
1717
1718 ret = i915_mutex_lock_interruptible(dev);
1719 if (ret)
1720 goto err_rpm;
1721
1722 /* Access to snoopable pages through the GTT is incoherent. */
1723 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1724 ret = -EFAULT;
1725 goto err_unlock;
1726 }
1727
1728 /* Use a partial view if the object is bigger than the aperture. */
1729 if (obj->base.size >= ggtt->mappable_end &&
1730 !i915_gem_object_is_tiled(obj)) {
1731 static const unsigned int chunk_size = 256; // 1 MiB
1732
1733 memset(&view, 0, sizeof(view));
1734 view.type = I915_GGTT_VIEW_PARTIAL;
1735 view.params.partial.offset = rounddown(page_offset, chunk_size);
1736 view.params.partial.size =
1737 min_t(unsigned int,
1738 chunk_size,
1739 (area->vm_end - area->vm_start) / PAGE_SIZE -
1740 view.params.partial.offset);
1741 }
1742
1743 /* Now pin it into the GTT if needed */
1744 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1745 if (IS_ERR(vma)) {
1746 ret = PTR_ERR(vma);
1747 goto err_unlock;
1748 }
1749
1750 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1751 if (ret)
1752 goto err_unpin;
1753
1754 ret = i915_gem_object_get_fence(obj);
1755 if (ret)
1756 goto err_unpin;
1757
1758 /* Finally, remap it using the new GTT offset */
1759 pfn = ggtt->mappable_base + i915_ggtt_offset(vma);
1760 pfn >>= PAGE_SHIFT;
1761
1762 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1763 /* Overriding existing pages in partial view does not cause
1764 * us any trouble as TLBs are still valid because the fault
1765 * is due to userspace losing part of the mapping or never
1766 * having accessed it before (at this partials' range).
1767 */
1768 unsigned long base = area->vm_start +
1769 (view.params.partial.offset << PAGE_SHIFT);
1770 unsigned int i;
1771
1772 for (i = 0; i < view.params.partial.size; i++) {
1773 ret = vm_insert_pfn(area,
1774 base + i * PAGE_SIZE,
1775 pfn + i);
1776 if (ret)
1777 break;
1778 }
1779
1780 obj->fault_mappable = true;
1781 } else {
1782 if (!obj->fault_mappable) {
1783 unsigned long size =
1784 min_t(unsigned long,
1785 area->vm_end - area->vm_start,
1786 obj->base.size) >> PAGE_SHIFT;
1787 unsigned long base = area->vm_start;
1788 int i;
1789
1790 for (i = 0; i < size; i++) {
1791 ret = vm_insert_pfn(area,
1792 base + i * PAGE_SIZE,
1793 pfn + i);
1794 if (ret)
1795 break;
1796 }
1797
1798 obj->fault_mappable = true;
1799 } else
1800 ret = vm_insert_pfn(area,
1801 (unsigned long)vmf->virtual_address,
1802 pfn + page_offset);
1803 }
1804 err_unpin:
1805 __i915_vma_unpin(vma);
1806 err_unlock:
1807 mutex_unlock(&dev->struct_mutex);
1808 err_rpm:
1809 intel_runtime_pm_put(dev_priv);
1810 err:
1811 switch (ret) {
1812 case -EIO:
1813 /*
1814 * We eat errors when the gpu is terminally wedged to avoid
1815 * userspace unduly crashing (gl has no provisions for mmaps to
1816 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1817 * and so needs to be reported.
1818 */
1819 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1820 ret = VM_FAULT_SIGBUS;
1821 break;
1822 }
1823 case -EAGAIN:
1824 /*
1825 * EAGAIN means the gpu is hung and we'll wait for the error
1826 * handler to reset everything when re-faulting in
1827 * i915_mutex_lock_interruptible.
1828 */
1829 case 0:
1830 case -ERESTARTSYS:
1831 case -EINTR:
1832 case -EBUSY:
1833 /*
1834 * EBUSY is ok: this just means that another thread
1835 * already did the job.
1836 */
1837 ret = VM_FAULT_NOPAGE;
1838 break;
1839 case -ENOMEM:
1840 ret = VM_FAULT_OOM;
1841 break;
1842 case -ENOSPC:
1843 case -EFAULT:
1844 ret = VM_FAULT_SIGBUS;
1845 break;
1846 default:
1847 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1848 ret = VM_FAULT_SIGBUS;
1849 break;
1850 }
1851 return ret;
1852 }
1853
1854 /**
1855 * i915_gem_release_mmap - remove physical page mappings
1856 * @obj: obj in question
1857 *
1858 * Preserve the reservation of the mmapping with the DRM core code, but
1859 * relinquish ownership of the pages back to the system.
1860 *
1861 * It is vital that we remove the page mapping if we have mapped a tiled
1862 * object through the GTT and then lose the fence register due to
1863 * resource pressure. Similarly if the object has been moved out of the
1864 * aperture, than pages mapped into userspace must be revoked. Removing the
1865 * mapping will then trigger a page fault on the next user access, allowing
1866 * fixup by i915_gem_fault().
1867 */
1868 void
1869 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1870 {
1871 /* Serialisation between user GTT access and our code depends upon
1872 * revoking the CPU's PTE whilst the mutex is held. The next user
1873 * pagefault then has to wait until we release the mutex.
1874 */
1875 lockdep_assert_held(&obj->base.dev->struct_mutex);
1876
1877 if (!obj->fault_mappable)
1878 return;
1879
1880 drm_vma_node_unmap(&obj->base.vma_node,
1881 obj->base.dev->anon_inode->i_mapping);
1882
1883 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1884 * memory transactions from userspace before we return. The TLB
1885 * flushing implied above by changing the PTE above *should* be
1886 * sufficient, an extra barrier here just provides us with a bit
1887 * of paranoid documentation about our requirement to serialise
1888 * memory writes before touching registers / GSM.
1889 */
1890 wmb();
1891
1892 obj->fault_mappable = false;
1893 }
1894
1895 void
1896 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1897 {
1898 struct drm_i915_gem_object *obj;
1899
1900 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1901 i915_gem_release_mmap(obj);
1902 }
1903
1904 /**
1905 * i915_gem_get_ggtt_size - return required global GTT size for an object
1906 * @dev_priv: i915 device
1907 * @size: object size
1908 * @tiling_mode: tiling mode
1909 *
1910 * Return the required global GTT size for an object, taking into account
1911 * potential fence register mapping.
1912 */
1913 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1914 u64 size, int tiling_mode)
1915 {
1916 u64 ggtt_size;
1917
1918 GEM_BUG_ON(size == 0);
1919
1920 if (INTEL_GEN(dev_priv) >= 4 ||
1921 tiling_mode == I915_TILING_NONE)
1922 return size;
1923
1924 /* Previous chips need a power-of-two fence region when tiling */
1925 if (IS_GEN3(dev_priv))
1926 ggtt_size = 1024*1024;
1927 else
1928 ggtt_size = 512*1024;
1929
1930 while (ggtt_size < size)
1931 ggtt_size <<= 1;
1932
1933 return ggtt_size;
1934 }
1935
1936 /**
1937 * i915_gem_get_ggtt_alignment - return required global GTT alignment
1938 * @dev_priv: i915 device
1939 * @size: object size
1940 * @tiling_mode: tiling mode
1941 * @fenced: is fenced alignment required or not
1942 *
1943 * Return the required global GTT alignment for an object, taking into account
1944 * potential fence register mapping.
1945 */
1946 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1947 int tiling_mode, bool fenced)
1948 {
1949 GEM_BUG_ON(size == 0);
1950
1951 /*
1952 * Minimum alignment is 4k (GTT page size), but might be greater
1953 * if a fence register is needed for the object.
1954 */
1955 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
1956 tiling_mode == I915_TILING_NONE)
1957 return 4096;
1958
1959 /*
1960 * Previous chips need to be aligned to the size of the smallest
1961 * fence register that can contain the object.
1962 */
1963 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
1964 }
1965
1966 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1967 {
1968 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
1969 int err;
1970
1971 err = drm_gem_create_mmap_offset(&obj->base);
1972 if (!err)
1973 return 0;
1974
1975 /* We can idle the GPU locklessly to flush stale objects, but in order
1976 * to claim that space for ourselves, we need to take the big
1977 * struct_mutex to free the requests+objects and allocate our slot.
1978 */
1979 err = i915_gem_wait_for_idle(dev_priv, true);
1980 if (err)
1981 return err;
1982
1983 err = i915_mutex_lock_interruptible(&dev_priv->drm);
1984 if (!err) {
1985 i915_gem_retire_requests(dev_priv);
1986 err = drm_gem_create_mmap_offset(&obj->base);
1987 mutex_unlock(&dev_priv->drm.struct_mutex);
1988 }
1989
1990 return err;
1991 }
1992
1993 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1994 {
1995 drm_gem_free_mmap_offset(&obj->base);
1996 }
1997
1998 int
1999 i915_gem_mmap_gtt(struct drm_file *file,
2000 struct drm_device *dev,
2001 uint32_t handle,
2002 uint64_t *offset)
2003 {
2004 struct drm_i915_gem_object *obj;
2005 int ret;
2006
2007 obj = i915_gem_object_lookup(file, handle);
2008 if (!obj)
2009 return -ENOENT;
2010
2011 ret = i915_gem_object_create_mmap_offset(obj);
2012 if (ret == 0)
2013 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2014
2015 i915_gem_object_put_unlocked(obj);
2016 return ret;
2017 }
2018
2019 /**
2020 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2021 * @dev: DRM device
2022 * @data: GTT mapping ioctl data
2023 * @file: GEM object info
2024 *
2025 * Simply returns the fake offset to userspace so it can mmap it.
2026 * The mmap call will end up in drm_gem_mmap(), which will set things
2027 * up so we can get faults in the handler above.
2028 *
2029 * The fault handler will take care of binding the object into the GTT
2030 * (since it may have been evicted to make room for something), allocating
2031 * a fence register, and mapping the appropriate aperture address into
2032 * userspace.
2033 */
2034 int
2035 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2036 struct drm_file *file)
2037 {
2038 struct drm_i915_gem_mmap_gtt *args = data;
2039
2040 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2041 }
2042
2043 /* Immediately discard the backing storage */
2044 static void
2045 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2046 {
2047 i915_gem_object_free_mmap_offset(obj);
2048
2049 if (obj->base.filp == NULL)
2050 return;
2051
2052 /* Our goal here is to return as much of the memory as
2053 * is possible back to the system as we are called from OOM.
2054 * To do this we must instruct the shmfs to drop all of its
2055 * backing pages, *now*.
2056 */
2057 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2058 obj->madv = __I915_MADV_PURGED;
2059 }
2060
2061 /* Try to discard unwanted pages */
2062 static void
2063 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2064 {
2065 struct address_space *mapping;
2066
2067 switch (obj->madv) {
2068 case I915_MADV_DONTNEED:
2069 i915_gem_object_truncate(obj);
2070 case __I915_MADV_PURGED:
2071 return;
2072 }
2073
2074 if (obj->base.filp == NULL)
2075 return;
2076
2077 mapping = obj->base.filp->f_mapping,
2078 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2079 }
2080
2081 static void
2082 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2083 {
2084 struct sgt_iter sgt_iter;
2085 struct page *page;
2086 int ret;
2087
2088 BUG_ON(obj->madv == __I915_MADV_PURGED);
2089
2090 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2091 if (WARN_ON(ret)) {
2092 /* In the event of a disaster, abandon all caches and
2093 * hope for the best.
2094 */
2095 i915_gem_clflush_object(obj, true);
2096 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2097 }
2098
2099 i915_gem_gtt_finish_object(obj);
2100
2101 if (i915_gem_object_needs_bit17_swizzle(obj))
2102 i915_gem_object_save_bit_17_swizzle(obj);
2103
2104 if (obj->madv == I915_MADV_DONTNEED)
2105 obj->dirty = 0;
2106
2107 for_each_sgt_page(page, sgt_iter, obj->pages) {
2108 if (obj->dirty)
2109 set_page_dirty(page);
2110
2111 if (obj->madv == I915_MADV_WILLNEED)
2112 mark_page_accessed(page);
2113
2114 put_page(page);
2115 }
2116 obj->dirty = 0;
2117
2118 sg_free_table(obj->pages);
2119 kfree(obj->pages);
2120 }
2121
2122 int
2123 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2124 {
2125 const struct drm_i915_gem_object_ops *ops = obj->ops;
2126
2127 if (obj->pages == NULL)
2128 return 0;
2129
2130 if (obj->pages_pin_count)
2131 return -EBUSY;
2132
2133 GEM_BUG_ON(obj->bind_count);
2134
2135 /* ->put_pages might need to allocate memory for the bit17 swizzle
2136 * array, hence protect them from being reaped by removing them from gtt
2137 * lists early. */
2138 list_del(&obj->global_list);
2139
2140 if (obj->mapping) {
2141 void *ptr;
2142
2143 ptr = ptr_mask_bits(obj->mapping);
2144 if (is_vmalloc_addr(ptr))
2145 vunmap(ptr);
2146 else
2147 kunmap(kmap_to_page(ptr));
2148
2149 obj->mapping = NULL;
2150 }
2151
2152 ops->put_pages(obj);
2153 obj->pages = NULL;
2154
2155 i915_gem_object_invalidate(obj);
2156
2157 return 0;
2158 }
2159
2160 static int
2161 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2162 {
2163 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2164 int page_count, i;
2165 struct address_space *mapping;
2166 struct sg_table *st;
2167 struct scatterlist *sg;
2168 struct sgt_iter sgt_iter;
2169 struct page *page;
2170 unsigned long last_pfn = 0; /* suppress gcc warning */
2171 int ret;
2172 gfp_t gfp;
2173
2174 /* Assert that the object is not currently in any GPU domain. As it
2175 * wasn't in the GTT, there shouldn't be any way it could have been in
2176 * a GPU cache
2177 */
2178 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2179 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2180
2181 st = kmalloc(sizeof(*st), GFP_KERNEL);
2182 if (st == NULL)
2183 return -ENOMEM;
2184
2185 page_count = obj->base.size / PAGE_SIZE;
2186 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2187 kfree(st);
2188 return -ENOMEM;
2189 }
2190
2191 /* Get the list of pages out of our struct file. They'll be pinned
2192 * at this point until we release them.
2193 *
2194 * Fail silently without starting the shrinker
2195 */
2196 mapping = obj->base.filp->f_mapping;
2197 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2198 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2199 sg = st->sgl;
2200 st->nents = 0;
2201 for (i = 0; i < page_count; i++) {
2202 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2203 if (IS_ERR(page)) {
2204 i915_gem_shrink(dev_priv,
2205 page_count,
2206 I915_SHRINK_BOUND |
2207 I915_SHRINK_UNBOUND |
2208 I915_SHRINK_PURGEABLE);
2209 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2210 }
2211 if (IS_ERR(page)) {
2212 /* We've tried hard to allocate the memory by reaping
2213 * our own buffer, now let the real VM do its job and
2214 * go down in flames if truly OOM.
2215 */
2216 i915_gem_shrink_all(dev_priv);
2217 page = shmem_read_mapping_page(mapping, i);
2218 if (IS_ERR(page)) {
2219 ret = PTR_ERR(page);
2220 goto err_pages;
2221 }
2222 }
2223 #ifdef CONFIG_SWIOTLB
2224 if (swiotlb_nr_tbl()) {
2225 st->nents++;
2226 sg_set_page(sg, page, PAGE_SIZE, 0);
2227 sg = sg_next(sg);
2228 continue;
2229 }
2230 #endif
2231 if (!i || page_to_pfn(page) != last_pfn + 1) {
2232 if (i)
2233 sg = sg_next(sg);
2234 st->nents++;
2235 sg_set_page(sg, page, PAGE_SIZE, 0);
2236 } else {
2237 sg->length += PAGE_SIZE;
2238 }
2239 last_pfn = page_to_pfn(page);
2240
2241 /* Check that the i965g/gm workaround works. */
2242 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2243 }
2244 #ifdef CONFIG_SWIOTLB
2245 if (!swiotlb_nr_tbl())
2246 #endif
2247 sg_mark_end(sg);
2248 obj->pages = st;
2249
2250 ret = i915_gem_gtt_prepare_object(obj);
2251 if (ret)
2252 goto err_pages;
2253
2254 if (i915_gem_object_needs_bit17_swizzle(obj))
2255 i915_gem_object_do_bit_17_swizzle(obj);
2256
2257 if (i915_gem_object_is_tiled(obj) &&
2258 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2259 i915_gem_object_pin_pages(obj);
2260
2261 return 0;
2262
2263 err_pages:
2264 sg_mark_end(sg);
2265 for_each_sgt_page(page, sgt_iter, st)
2266 put_page(page);
2267 sg_free_table(st);
2268 kfree(st);
2269
2270 /* shmemfs first checks if there is enough memory to allocate the page
2271 * and reports ENOSPC should there be insufficient, along with the usual
2272 * ENOMEM for a genuine allocation failure.
2273 *
2274 * We use ENOSPC in our driver to mean that we have run out of aperture
2275 * space and so want to translate the error from shmemfs back to our
2276 * usual understanding of ENOMEM.
2277 */
2278 if (ret == -ENOSPC)
2279 ret = -ENOMEM;
2280
2281 return ret;
2282 }
2283
2284 /* Ensure that the associated pages are gathered from the backing storage
2285 * and pinned into our object. i915_gem_object_get_pages() may be called
2286 * multiple times before they are released by a single call to
2287 * i915_gem_object_put_pages() - once the pages are no longer referenced
2288 * either as a result of memory pressure (reaping pages under the shrinker)
2289 * or as the object is itself released.
2290 */
2291 int
2292 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2293 {
2294 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 const struct drm_i915_gem_object_ops *ops = obj->ops;
2296 int ret;
2297
2298 if (obj->pages)
2299 return 0;
2300
2301 if (obj->madv != I915_MADV_WILLNEED) {
2302 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2303 return -EFAULT;
2304 }
2305
2306 BUG_ON(obj->pages_pin_count);
2307
2308 ret = ops->get_pages(obj);
2309 if (ret)
2310 return ret;
2311
2312 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2313
2314 obj->get_page.sg = obj->pages->sgl;
2315 obj->get_page.last = 0;
2316
2317 return 0;
2318 }
2319
2320 /* The 'mapping' part of i915_gem_object_pin_map() below */
2321 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2322 enum i915_map_type type)
2323 {
2324 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2325 struct sg_table *sgt = obj->pages;
2326 struct sgt_iter sgt_iter;
2327 struct page *page;
2328 struct page *stack_pages[32];
2329 struct page **pages = stack_pages;
2330 unsigned long i = 0;
2331 pgprot_t pgprot;
2332 void *addr;
2333
2334 /* A single page can always be kmapped */
2335 if (n_pages == 1 && type == I915_MAP_WB)
2336 return kmap(sg_page(sgt->sgl));
2337
2338 if (n_pages > ARRAY_SIZE(stack_pages)) {
2339 /* Too big for stack -- allocate temporary array instead */
2340 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2341 if (!pages)
2342 return NULL;
2343 }
2344
2345 for_each_sgt_page(page, sgt_iter, sgt)
2346 pages[i++] = page;
2347
2348 /* Check that we have the expected number of pages */
2349 GEM_BUG_ON(i != n_pages);
2350
2351 switch (type) {
2352 case I915_MAP_WB:
2353 pgprot = PAGE_KERNEL;
2354 break;
2355 case I915_MAP_WC:
2356 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2357 break;
2358 }
2359 addr = vmap(pages, n_pages, 0, pgprot);
2360
2361 if (pages != stack_pages)
2362 drm_free_large(pages);
2363
2364 return addr;
2365 }
2366
2367 /* get, pin, and map the pages of the object into kernel space */
2368 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2369 enum i915_map_type type)
2370 {
2371 enum i915_map_type has_type;
2372 bool pinned;
2373 void *ptr;
2374 int ret;
2375
2376 lockdep_assert_held(&obj->base.dev->struct_mutex);
2377 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2378
2379 ret = i915_gem_object_get_pages(obj);
2380 if (ret)
2381 return ERR_PTR(ret);
2382
2383 i915_gem_object_pin_pages(obj);
2384 pinned = obj->pages_pin_count > 1;
2385
2386 ptr = ptr_unpack_bits(obj->mapping, has_type);
2387 if (ptr && has_type != type) {
2388 if (pinned) {
2389 ret = -EBUSY;
2390 goto err;
2391 }
2392
2393 if (is_vmalloc_addr(ptr))
2394 vunmap(ptr);
2395 else
2396 kunmap(kmap_to_page(ptr));
2397
2398 ptr = obj->mapping = NULL;
2399 }
2400
2401 if (!ptr) {
2402 ptr = i915_gem_object_map(obj, type);
2403 if (!ptr) {
2404 ret = -ENOMEM;
2405 goto err;
2406 }
2407
2408 obj->mapping = ptr_pack_bits(ptr, type);
2409 }
2410
2411 return ptr;
2412
2413 err:
2414 i915_gem_object_unpin_pages(obj);
2415 return ERR_PTR(ret);
2416 }
2417
2418 static void
2419 i915_gem_object_retire__write(struct i915_gem_active *active,
2420 struct drm_i915_gem_request *request)
2421 {
2422 struct drm_i915_gem_object *obj =
2423 container_of(active, struct drm_i915_gem_object, last_write);
2424
2425 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2426 }
2427
2428 static void
2429 i915_gem_object_retire__read(struct i915_gem_active *active,
2430 struct drm_i915_gem_request *request)
2431 {
2432 int idx = request->engine->id;
2433 struct drm_i915_gem_object *obj =
2434 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2435
2436 GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2437
2438 i915_gem_object_clear_active(obj, idx);
2439 if (i915_gem_object_is_active(obj))
2440 return;
2441
2442 /* Bump our place on the bound list to keep it roughly in LRU order
2443 * so that we don't steal from recently used but inactive objects
2444 * (unless we are forced to ofc!)
2445 */
2446 if (obj->bind_count)
2447 list_move_tail(&obj->global_list,
2448 &request->i915->mm.bound_list);
2449
2450 i915_gem_object_put(obj);
2451 }
2452
2453 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2454 {
2455 unsigned long elapsed;
2456
2457 if (ctx->hang_stats.banned)
2458 return true;
2459
2460 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2461 if (ctx->hang_stats.ban_period_seconds &&
2462 elapsed <= ctx->hang_stats.ban_period_seconds) {
2463 DRM_DEBUG("context hanging too fast, banning!\n");
2464 return true;
2465 }
2466
2467 return false;
2468 }
2469
2470 static void i915_set_reset_status(struct i915_gem_context *ctx,
2471 const bool guilty)
2472 {
2473 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2474
2475 if (guilty) {
2476 hs->banned = i915_context_is_banned(ctx);
2477 hs->batch_active++;
2478 hs->guilty_ts = get_seconds();
2479 } else {
2480 hs->batch_pending++;
2481 }
2482 }
2483
2484 struct drm_i915_gem_request *
2485 i915_gem_find_active_request(struct intel_engine_cs *engine)
2486 {
2487 struct drm_i915_gem_request *request;
2488
2489 /* We are called by the error capture and reset at a random
2490 * point in time. In particular, note that neither is crucially
2491 * ordered with an interrupt. After a hang, the GPU is dead and we
2492 * assume that no more writes can happen (we waited long enough for
2493 * all writes that were in transaction to be flushed) - adding an
2494 * extra delay for a recent interrupt is pointless. Hence, we do
2495 * not need an engine->irq_seqno_barrier() before the seqno reads.
2496 */
2497 list_for_each_entry(request, &engine->request_list, link) {
2498 if (i915_gem_request_completed(request))
2499 continue;
2500
2501 return request;
2502 }
2503
2504 return NULL;
2505 }
2506
2507 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
2508 {
2509 struct drm_i915_gem_request *request;
2510 bool ring_hung;
2511
2512 request = i915_gem_find_active_request(engine);
2513 if (request == NULL)
2514 return;
2515
2516 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2517
2518 i915_set_reset_status(request->ctx, ring_hung);
2519 list_for_each_entry_continue(request, &engine->request_list, link)
2520 i915_set_reset_status(request->ctx, false);
2521 }
2522
2523 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
2524 {
2525 struct drm_i915_gem_request *request;
2526 struct intel_ring *ring;
2527
2528 /* Mark all pending requests as complete so that any concurrent
2529 * (lockless) lookup doesn't try and wait upon the request as we
2530 * reset it.
2531 */
2532 intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2533
2534 /*
2535 * Clear the execlists queue up before freeing the requests, as those
2536 * are the ones that keep the context and ringbuffer backing objects
2537 * pinned in place.
2538 */
2539
2540 if (i915.enable_execlists) {
2541 /* Ensure irq handler finishes or is cancelled. */
2542 tasklet_kill(&engine->irq_tasklet);
2543
2544 intel_execlists_cancel_requests(engine);
2545 }
2546
2547 /*
2548 * We must free the requests after all the corresponding objects have
2549 * been moved off active lists. Which is the same order as the normal
2550 * retire_requests function does. This is important if object hold
2551 * implicit references on things like e.g. ppgtt address spaces through
2552 * the request.
2553 */
2554 request = i915_gem_active_raw(&engine->last_request,
2555 &engine->i915->drm.struct_mutex);
2556 if (request)
2557 i915_gem_request_retire_upto(request);
2558 GEM_BUG_ON(intel_engine_is_active(engine));
2559
2560 /* Having flushed all requests from all queues, we know that all
2561 * ringbuffers must now be empty. However, since we do not reclaim
2562 * all space when retiring the request (to prevent HEADs colliding
2563 * with rapid ringbuffer wraparound) the amount of available space
2564 * upon reset is less than when we start. Do one more pass over
2565 * all the ringbuffers to reset last_retired_head.
2566 */
2567 list_for_each_entry(ring, &engine->buffers, link) {
2568 ring->last_retired_head = ring->tail;
2569 intel_ring_update_space(ring);
2570 }
2571
2572 engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2573 }
2574
2575 void i915_gem_reset(struct drm_device *dev)
2576 {
2577 struct drm_i915_private *dev_priv = to_i915(dev);
2578 struct intel_engine_cs *engine;
2579
2580 /*
2581 * Before we free the objects from the requests, we need to inspect
2582 * them for finding the guilty party. As the requests only borrow
2583 * their reference to the objects, the inspection must be done first.
2584 */
2585 for_each_engine(engine, dev_priv)
2586 i915_gem_reset_engine_status(engine);
2587
2588 for_each_engine(engine, dev_priv)
2589 i915_gem_reset_engine_cleanup(engine);
2590 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2591
2592 i915_gem_context_reset(dev);
2593
2594 i915_gem_restore_fences(dev);
2595 }
2596
2597 static void
2598 i915_gem_retire_work_handler(struct work_struct *work)
2599 {
2600 struct drm_i915_private *dev_priv =
2601 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2602 struct drm_device *dev = &dev_priv->drm;
2603
2604 /* Come back later if the device is busy... */
2605 if (mutex_trylock(&dev->struct_mutex)) {
2606 i915_gem_retire_requests(dev_priv);
2607 mutex_unlock(&dev->struct_mutex);
2608 }
2609
2610 /* Keep the retire handler running until we are finally idle.
2611 * We do not need to do this test under locking as in the worst-case
2612 * we queue the retire worker once too often.
2613 */
2614 if (READ_ONCE(dev_priv->gt.awake)) {
2615 i915_queue_hangcheck(dev_priv);
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->gt.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 }
2620 }
2621
2622 static void
2623 i915_gem_idle_work_handler(struct work_struct *work)
2624 {
2625 struct drm_i915_private *dev_priv =
2626 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2627 struct drm_device *dev = &dev_priv->drm;
2628 struct intel_engine_cs *engine;
2629 bool rearm_hangcheck;
2630
2631 if (!READ_ONCE(dev_priv->gt.awake))
2632 return;
2633
2634 if (READ_ONCE(dev_priv->gt.active_engines))
2635 return;
2636
2637 rearm_hangcheck =
2638 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2639
2640 if (!mutex_trylock(&dev->struct_mutex)) {
2641 /* Currently busy, come back later */
2642 mod_delayed_work(dev_priv->wq,
2643 &dev_priv->gt.idle_work,
2644 msecs_to_jiffies(50));
2645 goto out_rearm;
2646 }
2647
2648 if (dev_priv->gt.active_engines)
2649 goto out_unlock;
2650
2651 for_each_engine(engine, dev_priv)
2652 i915_gem_batch_pool_fini(&engine->batch_pool);
2653
2654 GEM_BUG_ON(!dev_priv->gt.awake);
2655 dev_priv->gt.awake = false;
2656 rearm_hangcheck = false;
2657
2658 if (INTEL_GEN(dev_priv) >= 6)
2659 gen6_rps_idle(dev_priv);
2660 intel_runtime_pm_put(dev_priv);
2661 out_unlock:
2662 mutex_unlock(&dev->struct_mutex);
2663
2664 out_rearm:
2665 if (rearm_hangcheck) {
2666 GEM_BUG_ON(!dev_priv->gt.awake);
2667 i915_queue_hangcheck(dev_priv);
2668 }
2669 }
2670
2671 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2672 {
2673 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2674 struct drm_i915_file_private *fpriv = file->driver_priv;
2675 struct i915_vma *vma, *vn;
2676
2677 mutex_lock(&obj->base.dev->struct_mutex);
2678 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2679 if (vma->vm->file == fpriv)
2680 i915_vma_close(vma);
2681 mutex_unlock(&obj->base.dev->struct_mutex);
2682 }
2683
2684 /**
2685 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2686 * @dev: drm device pointer
2687 * @data: ioctl data blob
2688 * @file: drm file pointer
2689 *
2690 * Returns 0 if successful, else an error is returned with the remaining time in
2691 * the timeout parameter.
2692 * -ETIME: object is still busy after timeout
2693 * -ERESTARTSYS: signal interrupted the wait
2694 * -ENONENT: object doesn't exist
2695 * Also possible, but rare:
2696 * -EAGAIN: GPU wedged
2697 * -ENOMEM: damn
2698 * -ENODEV: Internal IRQ fail
2699 * -E?: The add request failed
2700 *
2701 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2702 * non-zero timeout parameter the wait ioctl will wait for the given number of
2703 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2704 * without holding struct_mutex the object may become re-busied before this
2705 * function completes. A similar but shorter * race condition exists in the busy
2706 * ioctl
2707 */
2708 int
2709 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2710 {
2711 struct drm_i915_gem_wait *args = data;
2712 struct intel_rps_client *rps = to_rps_client(file);
2713 struct drm_i915_gem_object *obj;
2714 unsigned long active;
2715 int idx, ret = 0;
2716
2717 if (args->flags != 0)
2718 return -EINVAL;
2719
2720 obj = i915_gem_object_lookup(file, args->bo_handle);
2721 if (!obj)
2722 return -ENOENT;
2723
2724 active = __I915_BO_ACTIVE(obj);
2725 for_each_active(active, idx) {
2726 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2727 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx], true,
2728 timeout, rps);
2729 if (ret)
2730 break;
2731 }
2732
2733 i915_gem_object_put_unlocked(obj);
2734 return ret;
2735 }
2736
2737 static int
2738 __i915_gem_object_sync(struct drm_i915_gem_request *to,
2739 struct drm_i915_gem_request *from)
2740 {
2741 int ret;
2742
2743 if (to->engine == from->engine)
2744 return 0;
2745
2746 if (!i915.semaphores) {
2747 ret = i915_wait_request(from,
2748 from->i915->mm.interruptible,
2749 NULL,
2750 NO_WAITBOOST);
2751 if (ret)
2752 return ret;
2753 } else {
2754 int idx = intel_engine_sync_index(from->engine, to->engine);
2755 if (from->fence.seqno <= from->engine->semaphore.sync_seqno[idx])
2756 return 0;
2757
2758 trace_i915_gem_ring_sync_to(to, from);
2759 ret = to->engine->semaphore.sync_to(to, from);
2760 if (ret)
2761 return ret;
2762
2763 from->engine->semaphore.sync_seqno[idx] = from->fence.seqno;
2764 }
2765
2766 return 0;
2767 }
2768
2769 /**
2770 * i915_gem_object_sync - sync an object to a ring.
2771 *
2772 * @obj: object which may be in use on another ring.
2773 * @to: request we are wishing to use
2774 *
2775 * This code is meant to abstract object synchronization with the GPU.
2776 * Conceptually we serialise writes between engines inside the GPU.
2777 * We only allow one engine to write into a buffer at any time, but
2778 * multiple readers. To ensure each has a coherent view of memory, we must:
2779 *
2780 * - If there is an outstanding write request to the object, the new
2781 * request must wait for it to complete (either CPU or in hw, requests
2782 * on the same ring will be naturally ordered).
2783 *
2784 * - If we are a write request (pending_write_domain is set), the new
2785 * request must wait for outstanding read requests to complete.
2786 *
2787 * Returns 0 if successful, else propagates up the lower layer error.
2788 */
2789 int
2790 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2791 struct drm_i915_gem_request *to)
2792 {
2793 struct i915_gem_active *active;
2794 unsigned long active_mask;
2795 int idx;
2796
2797 lockdep_assert_held(&obj->base.dev->struct_mutex);
2798
2799 active_mask = i915_gem_object_get_active(obj);
2800 if (!active_mask)
2801 return 0;
2802
2803 if (obj->base.pending_write_domain) {
2804 active = obj->last_read;
2805 } else {
2806 active_mask = 1;
2807 active = &obj->last_write;
2808 }
2809
2810 for_each_active(active_mask, idx) {
2811 struct drm_i915_gem_request *request;
2812 int ret;
2813
2814 request = i915_gem_active_peek(&active[idx],
2815 &obj->base.dev->struct_mutex);
2816 if (!request)
2817 continue;
2818
2819 ret = __i915_gem_object_sync(to, request);
2820 if (ret)
2821 return ret;
2822 }
2823
2824 return 0;
2825 }
2826
2827 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2828 {
2829 u32 old_write_domain, old_read_domains;
2830
2831 /* Force a pagefault for domain tracking on next user access */
2832 i915_gem_release_mmap(obj);
2833
2834 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2835 return;
2836
2837 old_read_domains = obj->base.read_domains;
2838 old_write_domain = obj->base.write_domain;
2839
2840 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2841 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2842
2843 trace_i915_gem_object_change_domain(obj,
2844 old_read_domains,
2845 old_write_domain);
2846 }
2847
2848 static void __i915_vma_iounmap(struct i915_vma *vma)
2849 {
2850 GEM_BUG_ON(i915_vma_is_pinned(vma));
2851
2852 if (vma->iomap == NULL)
2853 return;
2854
2855 io_mapping_unmap(vma->iomap);
2856 vma->iomap = NULL;
2857 }
2858
2859 int i915_vma_unbind(struct i915_vma *vma)
2860 {
2861 struct drm_i915_gem_object *obj = vma->obj;
2862 unsigned long active;
2863 int ret;
2864
2865 /* First wait upon any activity as retiring the request may
2866 * have side-effects such as unpinning or even unbinding this vma.
2867 */
2868 active = i915_vma_get_active(vma);
2869 if (active) {
2870 int idx;
2871
2872 /* When a closed VMA is retired, it is unbound - eek.
2873 * In order to prevent it from being recursively closed,
2874 * take a pin on the vma so that the second unbind is
2875 * aborted.
2876 */
2877 __i915_vma_pin(vma);
2878
2879 for_each_active(active, idx) {
2880 ret = i915_gem_active_retire(&vma->last_read[idx],
2881 &vma->vm->dev->struct_mutex);
2882 if (ret)
2883 break;
2884 }
2885
2886 __i915_vma_unpin(vma);
2887 if (ret)
2888 return ret;
2889
2890 GEM_BUG_ON(i915_vma_is_active(vma));
2891 }
2892
2893 if (i915_vma_is_pinned(vma))
2894 return -EBUSY;
2895
2896 if (!drm_mm_node_allocated(&vma->node))
2897 goto destroy;
2898
2899 GEM_BUG_ON(obj->bind_count == 0);
2900 GEM_BUG_ON(!obj->pages);
2901
2902 if (i915_vma_is_map_and_fenceable(vma)) {
2903 i915_gem_object_finish_gtt(obj);
2904
2905 /* release the fence reg _after_ flushing */
2906 ret = i915_gem_object_put_fence(obj);
2907 if (ret)
2908 return ret;
2909
2910 __i915_vma_iounmap(vma);
2911 vma->flags &= ~I915_VMA_CAN_FENCE;
2912 }
2913
2914 if (likely(!vma->vm->closed)) {
2915 trace_i915_vma_unbind(vma);
2916 vma->vm->unbind_vma(vma);
2917 }
2918 vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2919
2920 drm_mm_remove_node(&vma->node);
2921 list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2922
2923 if (vma->pages != obj->pages) {
2924 GEM_BUG_ON(!vma->pages);
2925 sg_free_table(vma->pages);
2926 kfree(vma->pages);
2927 }
2928 vma->pages = NULL;
2929
2930 /* Since the unbound list is global, only move to that list if
2931 * no more VMAs exist. */
2932 if (--obj->bind_count == 0)
2933 list_move_tail(&obj->global_list,
2934 &to_i915(obj->base.dev)->mm.unbound_list);
2935
2936 /* And finally now the object is completely decoupled from this vma,
2937 * we can drop its hold on the backing storage and allow it to be
2938 * reaped by the shrinker.
2939 */
2940 i915_gem_object_unpin_pages(obj);
2941
2942 destroy:
2943 if (unlikely(i915_vma_is_closed(vma)))
2944 i915_vma_destroy(vma);
2945
2946 return 0;
2947 }
2948
2949 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2950 bool interruptible)
2951 {
2952 struct intel_engine_cs *engine;
2953 int ret;
2954
2955 for_each_engine(engine, dev_priv) {
2956 if (engine->last_context == NULL)
2957 continue;
2958
2959 ret = intel_engine_idle(engine, interruptible);
2960 if (ret)
2961 return ret;
2962 }
2963
2964 return 0;
2965 }
2966
2967 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2968 unsigned long cache_level)
2969 {
2970 struct drm_mm_node *gtt_space = &vma->node;
2971 struct drm_mm_node *other;
2972
2973 /*
2974 * On some machines we have to be careful when putting differing types
2975 * of snoopable memory together to avoid the prefetcher crossing memory
2976 * domains and dying. During vm initialisation, we decide whether or not
2977 * these constraints apply and set the drm_mm.color_adjust
2978 * appropriately.
2979 */
2980 if (vma->vm->mm.color_adjust == NULL)
2981 return true;
2982
2983 if (!drm_mm_node_allocated(gtt_space))
2984 return true;
2985
2986 if (list_empty(&gtt_space->node_list))
2987 return true;
2988
2989 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2990 if (other->allocated && !other->hole_follows && other->color != cache_level)
2991 return false;
2992
2993 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2994 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2995 return false;
2996
2997 return true;
2998 }
2999
3000 /**
3001 * i915_vma_insert - finds a slot for the vma in its address space
3002 * @vma: the vma
3003 * @size: requested size in bytes (can be larger than the VMA)
3004 * @alignment: required alignment
3005 * @flags: mask of PIN_* flags to use
3006 *
3007 * First we try to allocate some free space that meets the requirements for
3008 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
3009 * preferrably the oldest idle entry to make room for the new VMA.
3010 *
3011 * Returns:
3012 * 0 on success, negative error code otherwise.
3013 */
3014 static int
3015 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3016 {
3017 struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
3018 struct drm_i915_gem_object *obj = vma->obj;
3019 u64 start, end;
3020 u64 min_alignment;
3021 int ret;
3022
3023 GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3024 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3025
3026 size = max(size, vma->size);
3027 if (flags & PIN_MAPPABLE)
3028 size = i915_gem_get_ggtt_size(dev_priv, size,
3029 i915_gem_object_get_tiling(obj));
3030
3031 min_alignment =
3032 i915_gem_get_ggtt_alignment(dev_priv, size,
3033 i915_gem_object_get_tiling(obj),
3034 flags & PIN_MAPPABLE);
3035 if (alignment == 0)
3036 alignment = min_alignment;
3037 if (alignment & (min_alignment - 1)) {
3038 DRM_DEBUG("Invalid object alignment requested %llu, minimum %llu\n",
3039 alignment, min_alignment);
3040 return -EINVAL;
3041 }
3042
3043 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3044
3045 end = vma->vm->total;
3046 if (flags & PIN_MAPPABLE)
3047 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3048 if (flags & PIN_ZONE_4G)
3049 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3050
3051 /* If binding the object/GGTT view requires more space than the entire
3052 * aperture has, reject it early before evicting everything in a vain
3053 * attempt to find space.
3054 */
3055 if (size > end) {
3056 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3057 size, obj->base.size,
3058 flags & PIN_MAPPABLE ? "mappable" : "total",
3059 end);
3060 return -E2BIG;
3061 }
3062
3063 ret = i915_gem_object_get_pages(obj);
3064 if (ret)
3065 return ret;
3066
3067 i915_gem_object_pin_pages(obj);
3068
3069 if (flags & PIN_OFFSET_FIXED) {
3070 u64 offset = flags & PIN_OFFSET_MASK;
3071 if (offset & (alignment - 1) || offset > end - size) {
3072 ret = -EINVAL;
3073 goto err_unpin;
3074 }
3075
3076 vma->node.start = offset;
3077 vma->node.size = size;
3078 vma->node.color = obj->cache_level;
3079 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3080 if (ret) {
3081 ret = i915_gem_evict_for_vma(vma);
3082 if (ret == 0)
3083 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3084 if (ret)
3085 goto err_unpin;
3086 }
3087 } else {
3088 u32 search_flag, alloc_flag;
3089
3090 if (flags & PIN_HIGH) {
3091 search_flag = DRM_MM_SEARCH_BELOW;
3092 alloc_flag = DRM_MM_CREATE_TOP;
3093 } else {
3094 search_flag = DRM_MM_SEARCH_DEFAULT;
3095 alloc_flag = DRM_MM_CREATE_DEFAULT;
3096 }
3097
3098 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3099 * so we know that we always have a minimum alignment of 4096.
3100 * The drm_mm range manager is optimised to return results
3101 * with zero alignment, so where possible use the optimal
3102 * path.
3103 */
3104 if (alignment <= 4096)
3105 alignment = 0;
3106
3107 search_free:
3108 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3109 &vma->node,
3110 size, alignment,
3111 obj->cache_level,
3112 start, end,
3113 search_flag,
3114 alloc_flag);
3115 if (ret) {
3116 ret = i915_gem_evict_something(vma->vm, size, alignment,
3117 obj->cache_level,
3118 start, end,
3119 flags);
3120 if (ret == 0)
3121 goto search_free;
3122
3123 goto err_unpin;
3124 }
3125 }
3126 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3127
3128 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3129 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3130 obj->bind_count++;
3131
3132 return 0;
3133
3134 err_unpin:
3135 i915_gem_object_unpin_pages(obj);
3136 return ret;
3137 }
3138
3139 bool
3140 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3141 bool force)
3142 {
3143 /* If we don't have a page list set up, then we're not pinned
3144 * to GPU, and we can ignore the cache flush because it'll happen
3145 * again at bind time.
3146 */
3147 if (obj->pages == NULL)
3148 return false;
3149
3150 /*
3151 * Stolen memory is always coherent with the GPU as it is explicitly
3152 * marked as wc by the system, or the system is cache-coherent.
3153 */
3154 if (obj->stolen || obj->phys_handle)
3155 return false;
3156
3157 /* If the GPU is snooping the contents of the CPU cache,
3158 * we do not need to manually clear the CPU cache lines. However,
3159 * the caches are only snooped when the render cache is
3160 * flushed/invalidated. As we always have to emit invalidations
3161 * and flushes when moving into and out of the RENDER domain, correct
3162 * snooping behaviour occurs naturally as the result of our domain
3163 * tracking.
3164 */
3165 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3166 obj->cache_dirty = true;
3167 return false;
3168 }
3169
3170 trace_i915_gem_object_clflush(obj);
3171 drm_clflush_sg(obj->pages);
3172 obj->cache_dirty = false;
3173
3174 return true;
3175 }
3176
3177 /** Flushes the GTT write domain for the object if it's dirty. */
3178 static void
3179 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3180 {
3181 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3182
3183 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3184 return;
3185
3186 /* No actual flushing is required for the GTT write domain. Writes
3187 * to it "immediately" go to main memory as far as we know, so there's
3188 * no chipset flush. It also doesn't land in render cache.
3189 *
3190 * However, we do have to enforce the order so that all writes through
3191 * the GTT land before any writes to the device, such as updates to
3192 * the GATT itself.
3193 *
3194 * We also have to wait a bit for the writes to land from the GTT.
3195 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3196 * timing. This issue has only been observed when switching quickly
3197 * between GTT writes and CPU reads from inside the kernel on recent hw,
3198 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3199 * system agents we cannot reproduce this behaviour).
3200 */
3201 wmb();
3202 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3203 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3204
3205 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3206
3207 obj->base.write_domain = 0;
3208 trace_i915_gem_object_change_domain(obj,
3209 obj->base.read_domains,
3210 I915_GEM_DOMAIN_GTT);
3211 }
3212
3213 /** Flushes the CPU write domain for the object if it's dirty. */
3214 static void
3215 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3216 {
3217 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3218 return;
3219
3220 if (i915_gem_clflush_object(obj, obj->pin_display))
3221 i915_gem_chipset_flush(to_i915(obj->base.dev));
3222
3223 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3224
3225 obj->base.write_domain = 0;
3226 trace_i915_gem_object_change_domain(obj,
3227 obj->base.read_domains,
3228 I915_GEM_DOMAIN_CPU);
3229 }
3230
3231 /**
3232 * Moves a single object to the GTT read, and possibly write domain.
3233 * @obj: object to act on
3234 * @write: ask for write access or read only
3235 *
3236 * This function returns when the move is complete, including waiting on
3237 * flushes to occur.
3238 */
3239 int
3240 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3241 {
3242 uint32_t old_write_domain, old_read_domains;
3243 struct i915_vma *vma;
3244 int ret;
3245
3246 ret = i915_gem_object_wait_rendering(obj, !write);
3247 if (ret)
3248 return ret;
3249
3250 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3251 return 0;
3252
3253 /* Flush and acquire obj->pages so that we are coherent through
3254 * direct access in memory with previous cached writes through
3255 * shmemfs and that our cache domain tracking remains valid.
3256 * For example, if the obj->filp was moved to swap without us
3257 * being notified and releasing the pages, we would mistakenly
3258 * continue to assume that the obj remained out of the CPU cached
3259 * domain.
3260 */
3261 ret = i915_gem_object_get_pages(obj);
3262 if (ret)
3263 return ret;
3264
3265 i915_gem_object_flush_cpu_write_domain(obj);
3266
3267 /* Serialise direct access to this object with the barriers for
3268 * coherent writes from the GPU, by effectively invalidating the
3269 * GTT domain upon first access.
3270 */
3271 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3272 mb();
3273
3274 old_write_domain = obj->base.write_domain;
3275 old_read_domains = obj->base.read_domains;
3276
3277 /* It should now be out of any other write domains, and we can update
3278 * the domain values for our changes.
3279 */
3280 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3281 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3282 if (write) {
3283 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3284 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3285 obj->dirty = 1;
3286 }
3287
3288 trace_i915_gem_object_change_domain(obj,
3289 old_read_domains,
3290 old_write_domain);
3291
3292 /* And bump the LRU for this access */
3293 vma = i915_gem_object_to_ggtt(obj, NULL);
3294 if (vma &&
3295 drm_mm_node_allocated(&vma->node) &&
3296 !i915_vma_is_active(vma))
3297 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3298
3299 return 0;
3300 }
3301
3302 /**
3303 * Changes the cache-level of an object across all VMA.
3304 * @obj: object to act on
3305 * @cache_level: new cache level to set for the object
3306 *
3307 * After this function returns, the object will be in the new cache-level
3308 * across all GTT and the contents of the backing storage will be coherent,
3309 * with respect to the new cache-level. In order to keep the backing storage
3310 * coherent for all users, we only allow a single cache level to be set
3311 * globally on the object and prevent it from being changed whilst the
3312 * hardware is reading from the object. That is if the object is currently
3313 * on the scanout it will be set to uncached (or equivalent display
3314 * cache coherency) and all non-MOCS GPU access will also be uncached so
3315 * that all direct access to the scanout remains coherent.
3316 */
3317 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3318 enum i915_cache_level cache_level)
3319 {
3320 struct i915_vma *vma;
3321 int ret = 0;
3322
3323 if (obj->cache_level == cache_level)
3324 goto out;
3325
3326 /* Inspect the list of currently bound VMA and unbind any that would
3327 * be invalid given the new cache-level. This is principally to
3328 * catch the issue of the CS prefetch crossing page boundaries and
3329 * reading an invalid PTE on older architectures.
3330 */
3331 restart:
3332 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3333 if (!drm_mm_node_allocated(&vma->node))
3334 continue;
3335
3336 if (i915_vma_is_pinned(vma)) {
3337 DRM_DEBUG("can not change the cache level of pinned objects\n");
3338 return -EBUSY;
3339 }
3340
3341 if (i915_gem_valid_gtt_space(vma, cache_level))
3342 continue;
3343
3344 ret = i915_vma_unbind(vma);
3345 if (ret)
3346 return ret;
3347
3348 /* As unbinding may affect other elements in the
3349 * obj->vma_list (due to side-effects from retiring
3350 * an active vma), play safe and restart the iterator.
3351 */
3352 goto restart;
3353 }
3354
3355 /* We can reuse the existing drm_mm nodes but need to change the
3356 * cache-level on the PTE. We could simply unbind them all and
3357 * rebind with the correct cache-level on next use. However since
3358 * we already have a valid slot, dma mapping, pages etc, we may as
3359 * rewrite the PTE in the belief that doing so tramples upon less
3360 * state and so involves less work.
3361 */
3362 if (obj->bind_count) {
3363 /* Before we change the PTE, the GPU must not be accessing it.
3364 * If we wait upon the object, we know that all the bound
3365 * VMA are no longer active.
3366 */
3367 ret = i915_gem_object_wait_rendering(obj, false);
3368 if (ret)
3369 return ret;
3370
3371 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3372 /* Access to snoopable pages through the GTT is
3373 * incoherent and on some machines causes a hard
3374 * lockup. Relinquish the CPU mmaping to force
3375 * userspace to refault in the pages and we can
3376 * then double check if the GTT mapping is still
3377 * valid for that pointer access.
3378 */
3379 i915_gem_release_mmap(obj);
3380
3381 /* As we no longer need a fence for GTT access,
3382 * we can relinquish it now (and so prevent having
3383 * to steal a fence from someone else on the next
3384 * fence request). Note GPU activity would have
3385 * dropped the fence as all snoopable access is
3386 * supposed to be linear.
3387 */
3388 ret = i915_gem_object_put_fence(obj);
3389 if (ret)
3390 return ret;
3391 } else {
3392 /* We either have incoherent backing store and
3393 * so no GTT access or the architecture is fully
3394 * coherent. In such cases, existing GTT mmaps
3395 * ignore the cache bit in the PTE and we can
3396 * rewrite it without confusing the GPU or having
3397 * to force userspace to fault back in its mmaps.
3398 */
3399 }
3400
3401 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3402 if (!drm_mm_node_allocated(&vma->node))
3403 continue;
3404
3405 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3406 if (ret)
3407 return ret;
3408 }
3409 }
3410
3411 list_for_each_entry(vma, &obj->vma_list, obj_link)
3412 vma->node.color = cache_level;
3413 obj->cache_level = cache_level;
3414
3415 out:
3416 /* Flush the dirty CPU caches to the backing storage so that the
3417 * object is now coherent at its new cache level (with respect
3418 * to the access domain).
3419 */
3420 if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3421 if (i915_gem_clflush_object(obj, true))
3422 i915_gem_chipset_flush(to_i915(obj->base.dev));
3423 }
3424
3425 return 0;
3426 }
3427
3428 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3429 struct drm_file *file)
3430 {
3431 struct drm_i915_gem_caching *args = data;
3432 struct drm_i915_gem_object *obj;
3433
3434 obj = i915_gem_object_lookup(file, args->handle);
3435 if (!obj)
3436 return -ENOENT;
3437
3438 switch (obj->cache_level) {
3439 case I915_CACHE_LLC:
3440 case I915_CACHE_L3_LLC:
3441 args->caching = I915_CACHING_CACHED;
3442 break;
3443
3444 case I915_CACHE_WT:
3445 args->caching = I915_CACHING_DISPLAY;
3446 break;
3447
3448 default:
3449 args->caching = I915_CACHING_NONE;
3450 break;
3451 }
3452
3453 i915_gem_object_put_unlocked(obj);
3454 return 0;
3455 }
3456
3457 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3458 struct drm_file *file)
3459 {
3460 struct drm_i915_private *dev_priv = to_i915(dev);
3461 struct drm_i915_gem_caching *args = data;
3462 struct drm_i915_gem_object *obj;
3463 enum i915_cache_level level;
3464 int ret;
3465
3466 switch (args->caching) {
3467 case I915_CACHING_NONE:
3468 level = I915_CACHE_NONE;
3469 break;
3470 case I915_CACHING_CACHED:
3471 /*
3472 * Due to a HW issue on BXT A stepping, GPU stores via a
3473 * snooped mapping may leave stale data in a corresponding CPU
3474 * cacheline, whereas normally such cachelines would get
3475 * invalidated.
3476 */
3477 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3478 return -ENODEV;
3479
3480 level = I915_CACHE_LLC;
3481 break;
3482 case I915_CACHING_DISPLAY:
3483 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3484 break;
3485 default:
3486 return -EINVAL;
3487 }
3488
3489 intel_runtime_pm_get(dev_priv);
3490
3491 ret = i915_mutex_lock_interruptible(dev);
3492 if (ret)
3493 goto rpm_put;
3494
3495 obj = i915_gem_object_lookup(file, args->handle);
3496 if (!obj) {
3497 ret = -ENOENT;
3498 goto unlock;
3499 }
3500
3501 ret = i915_gem_object_set_cache_level(obj, level);
3502
3503 i915_gem_object_put(obj);
3504 unlock:
3505 mutex_unlock(&dev->struct_mutex);
3506 rpm_put:
3507 intel_runtime_pm_put(dev_priv);
3508
3509 return ret;
3510 }
3511
3512 /*
3513 * Prepare buffer for display plane (scanout, cursors, etc).
3514 * Can be called from an uninterruptible phase (modesetting) and allows
3515 * any flushes to be pipelined (for pageflips).
3516 */
3517 struct i915_vma *
3518 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3519 u32 alignment,
3520 const struct i915_ggtt_view *view)
3521 {
3522 struct i915_vma *vma;
3523 u32 old_read_domains, old_write_domain;
3524 int ret;
3525
3526 /* Mark the pin_display early so that we account for the
3527 * display coherency whilst setting up the cache domains.
3528 */
3529 obj->pin_display++;
3530
3531 /* The display engine is not coherent with the LLC cache on gen6. As
3532 * a result, we make sure that the pinning that is about to occur is
3533 * done with uncached PTEs. This is lowest common denominator for all
3534 * chipsets.
3535 *
3536 * However for gen6+, we could do better by using the GFDT bit instead
3537 * of uncaching, which would allow us to flush all the LLC-cached data
3538 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3539 */
3540 ret = i915_gem_object_set_cache_level(obj,
3541 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3542 if (ret) {
3543 vma = ERR_PTR(ret);
3544 goto err_unpin_display;
3545 }
3546
3547 /* As the user may map the buffer once pinned in the display plane
3548 * (e.g. libkms for the bootup splash), we have to ensure that we
3549 * always use map_and_fenceable for all scanout buffers.
3550 */
3551 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3552 view->type == I915_GGTT_VIEW_NORMAL ?
3553 PIN_MAPPABLE : 0);
3554 if (IS_ERR(vma))
3555 goto err_unpin_display;
3556
3557 WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3558
3559 i915_gem_object_flush_cpu_write_domain(obj);
3560
3561 old_write_domain = obj->base.write_domain;
3562 old_read_domains = obj->base.read_domains;
3563
3564 /* It should now be out of any other write domains, and we can update
3565 * the domain values for our changes.
3566 */
3567 obj->base.write_domain = 0;
3568 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3569
3570 trace_i915_gem_object_change_domain(obj,
3571 old_read_domains,
3572 old_write_domain);
3573
3574 return vma;
3575
3576 err_unpin_display:
3577 obj->pin_display--;
3578 return vma;
3579 }
3580
3581 void
3582 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3583 {
3584 if (WARN_ON(vma->obj->pin_display == 0))
3585 return;
3586
3587 vma->obj->pin_display--;
3588
3589 i915_vma_unpin(vma);
3590 WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3591 }
3592
3593 /**
3594 * Moves a single object to the CPU read, and possibly write domain.
3595 * @obj: object to act on
3596 * @write: requesting write or read-only access
3597 *
3598 * This function returns when the move is complete, including waiting on
3599 * flushes to occur.
3600 */
3601 int
3602 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3603 {
3604 uint32_t old_write_domain, old_read_domains;
3605 int ret;
3606
3607 ret = i915_gem_object_wait_rendering(obj, !write);
3608 if (ret)
3609 return ret;
3610
3611 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3612 return 0;
3613
3614 i915_gem_object_flush_gtt_write_domain(obj);
3615
3616 old_write_domain = obj->base.write_domain;
3617 old_read_domains = obj->base.read_domains;
3618
3619 /* Flush the CPU cache if it's still invalid. */
3620 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3621 i915_gem_clflush_object(obj, false);
3622
3623 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3624 }
3625
3626 /* It should now be out of any other write domains, and we can update
3627 * the domain values for our changes.
3628 */
3629 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3630
3631 /* If we're writing through the CPU, then the GPU read domains will
3632 * need to be invalidated at next use.
3633 */
3634 if (write) {
3635 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3636 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3637 }
3638
3639 trace_i915_gem_object_change_domain(obj,
3640 old_read_domains,
3641 old_write_domain);
3642
3643 return 0;
3644 }
3645
3646 /* Throttle our rendering by waiting until the ring has completed our requests
3647 * emitted over 20 msec ago.
3648 *
3649 * Note that if we were to use the current jiffies each time around the loop,
3650 * we wouldn't escape the function with any frames outstanding if the time to
3651 * render a frame was over 20ms.
3652 *
3653 * This should get us reasonable parallelism between CPU and GPU but also
3654 * relatively low latency when blocking on a particular request to finish.
3655 */
3656 static int
3657 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3658 {
3659 struct drm_i915_private *dev_priv = to_i915(dev);
3660 struct drm_i915_file_private *file_priv = file->driver_priv;
3661 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3662 struct drm_i915_gem_request *request, *target = NULL;
3663 int ret;
3664
3665 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3666 if (ret)
3667 return ret;
3668
3669 /* ABI: return -EIO if already wedged */
3670 if (i915_terminally_wedged(&dev_priv->gpu_error))
3671 return -EIO;
3672
3673 spin_lock(&file_priv->mm.lock);
3674 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3675 if (time_after_eq(request->emitted_jiffies, recent_enough))
3676 break;
3677
3678 /*
3679 * Note that the request might not have been submitted yet.
3680 * In which case emitted_jiffies will be zero.
3681 */
3682 if (!request->emitted_jiffies)
3683 continue;
3684
3685 target = request;
3686 }
3687 if (target)
3688 i915_gem_request_get(target);
3689 spin_unlock(&file_priv->mm.lock);
3690
3691 if (target == NULL)
3692 return 0;
3693
3694 ret = i915_wait_request(target, true, NULL, NULL);
3695 i915_gem_request_put(target);
3696
3697 return ret;
3698 }
3699
3700 static bool
3701 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3702 {
3703 if (!drm_mm_node_allocated(&vma->node))
3704 return false;
3705
3706 if (vma->node.size < size)
3707 return true;
3708
3709 if (alignment && vma->node.start & (alignment - 1))
3710 return true;
3711
3712 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3713 return true;
3714
3715 if (flags & PIN_OFFSET_BIAS &&
3716 vma->node.start < (flags & PIN_OFFSET_MASK))
3717 return true;
3718
3719 if (flags & PIN_OFFSET_FIXED &&
3720 vma->node.start != (flags & PIN_OFFSET_MASK))
3721 return true;
3722
3723 return false;
3724 }
3725
3726 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3727 {
3728 struct drm_i915_gem_object *obj = vma->obj;
3729 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3730 bool mappable, fenceable;
3731 u32 fence_size, fence_alignment;
3732
3733 fence_size = i915_gem_get_ggtt_size(dev_priv,
3734 vma->size,
3735 i915_gem_object_get_tiling(obj));
3736 fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3737 vma->size,
3738 i915_gem_object_get_tiling(obj),
3739 true);
3740
3741 fenceable = (vma->node.size == fence_size &&
3742 (vma->node.start & (fence_alignment - 1)) == 0);
3743
3744 mappable = (vma->node.start + fence_size <=
3745 dev_priv->ggtt.mappable_end);
3746
3747 if (mappable && fenceable)
3748 vma->flags |= I915_VMA_CAN_FENCE;
3749 else
3750 vma->flags &= ~I915_VMA_CAN_FENCE;
3751 }
3752
3753 int __i915_vma_do_pin(struct i915_vma *vma,
3754 u64 size, u64 alignment, u64 flags)
3755 {
3756 unsigned int bound = vma->flags;
3757 int ret;
3758
3759 GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3760 GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3761
3762 if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3763 ret = -EBUSY;
3764 goto err;
3765 }
3766
3767 if ((bound & I915_VMA_BIND_MASK) == 0) {
3768 ret = i915_vma_insert(vma, size, alignment, flags);
3769 if (ret)
3770 goto err;
3771 }
3772
3773 ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3774 if (ret)
3775 goto err;
3776
3777 if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3778 __i915_vma_set_map_and_fenceable(vma);
3779
3780 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3781 return 0;
3782
3783 err:
3784 __i915_vma_unpin(vma);
3785 return ret;
3786 }
3787
3788 struct i915_vma *
3789 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3790 const struct i915_ggtt_view *view,
3791 u64 size,
3792 u64 alignment,
3793 u64 flags)
3794 {
3795 struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3796 struct i915_vma *vma;
3797 int ret;
3798
3799 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3800 if (IS_ERR(vma))
3801 return vma;
3802
3803 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3804 if (flags & PIN_NONBLOCK &&
3805 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3806 return ERR_PTR(-ENOSPC);
3807
3808 WARN(i915_vma_is_pinned(vma),
3809 "bo is already pinned in ggtt with incorrect alignment:"
3810 " offset=%08x, req.alignment=%llx,"
3811 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3812 i915_ggtt_offset(vma), alignment,
3813 !!(flags & PIN_MAPPABLE),
3814 i915_vma_is_map_and_fenceable(vma));
3815 ret = i915_vma_unbind(vma);
3816 if (ret)
3817 return ERR_PTR(ret);
3818 }
3819
3820 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3821 if (ret)
3822 return ERR_PTR(ret);
3823
3824 return vma;
3825 }
3826
3827 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3828 {
3829 /* Note that we could alias engines in the execbuf API, but
3830 * that would be very unwise as it prevents userspace from
3831 * fine control over engine selection. Ahem.
3832 *
3833 * This should be something like EXEC_MAX_ENGINE instead of
3834 * I915_NUM_ENGINES.
3835 */
3836 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3837 return 0x10000 << id;
3838 }
3839
3840 static __always_inline unsigned int __busy_write_id(unsigned int id)
3841 {
3842 /* The uABI guarantees an active writer is also amongst the read
3843 * engines. This would be true if we accessed the activity tracking
3844 * under the lock, but as we perform the lookup of the object and
3845 * its activity locklessly we can not guarantee that the last_write
3846 * being active implies that we have set the same engine flag from
3847 * last_read - hence we always set both read and write busy for
3848 * last_write.
3849 */
3850 return id | __busy_read_flag(id);
3851 }
3852
3853 static __always_inline unsigned int
3854 __busy_set_if_active(const struct i915_gem_active *active,
3855 unsigned int (*flag)(unsigned int id))
3856 {
3857 struct drm_i915_gem_request *request;
3858
3859 request = rcu_dereference(active->request);
3860 if (!request || i915_gem_request_completed(request))
3861 return 0;
3862
3863 /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3864 * discussion of how to handle the race correctly, but for reporting
3865 * the busy state we err on the side of potentially reporting the
3866 * wrong engine as being busy (but we guarantee that the result
3867 * is at least self-consistent).
3868 *
3869 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3870 * whilst we are inspecting it, even under the RCU read lock as we are.
3871 * This means that there is a small window for the engine and/or the
3872 * seqno to have been overwritten. The seqno will always be in the
3873 * future compared to the intended, and so we know that if that
3874 * seqno is idle (on whatever engine) our request is idle and the
3875 * return 0 above is correct.
3876 *
3877 * The issue is that if the engine is switched, it is just as likely
3878 * to report that it is busy (but since the switch happened, we know
3879 * the request should be idle). So there is a small chance that a busy
3880 * result is actually the wrong engine.
3881 *
3882 * So why don't we care?
3883 *
3884 * For starters, the busy ioctl is a heuristic that is by definition
3885 * racy. Even with perfect serialisation in the driver, the hardware
3886 * state is constantly advancing - the state we report to the user
3887 * is stale.
3888 *
3889 * The critical information for the busy-ioctl is whether the object
3890 * is idle as userspace relies on that to detect whether its next
3891 * access will stall, or if it has missed submitting commands to
3892 * the hardware allowing the GPU to stall. We never generate a
3893 * false-positive for idleness, thus busy-ioctl is reliable at the
3894 * most fundamental level, and we maintain the guarantee that a
3895 * busy object left to itself will eventually become idle (and stay
3896 * idle!).
3897 *
3898 * We allow ourselves the leeway of potentially misreporting the busy
3899 * state because that is an optimisation heuristic that is constantly
3900 * in flux. Being quickly able to detect the busy/idle state is much
3901 * more important than accurate logging of exactly which engines were
3902 * busy.
3903 *
3904 * For accuracy in reporting the engine, we could use
3905 *
3906 * result = 0;
3907 * request = __i915_gem_active_get_rcu(active);
3908 * if (request) {
3909 * if (!i915_gem_request_completed(request))
3910 * result = flag(request->engine->exec_id);
3911 * i915_gem_request_put(request);
3912 * }
3913 *
3914 * but that still remains susceptible to both hardware and userspace
3915 * races. So we accept making the result of that race slightly worse,
3916 * given the rarity of the race and its low impact on the result.
3917 */
3918 return flag(READ_ONCE(request->engine->exec_id));
3919 }
3920
3921 static __always_inline unsigned int
3922 busy_check_reader(const struct i915_gem_active *active)
3923 {
3924 return __busy_set_if_active(active, __busy_read_flag);
3925 }
3926
3927 static __always_inline unsigned int
3928 busy_check_writer(const struct i915_gem_active *active)
3929 {
3930 return __busy_set_if_active(active, __busy_write_id);
3931 }
3932
3933 int
3934 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3935 struct drm_file *file)
3936 {
3937 struct drm_i915_gem_busy *args = data;
3938 struct drm_i915_gem_object *obj;
3939 unsigned long active;
3940
3941 obj = i915_gem_object_lookup(file, args->handle);
3942 if (!obj)
3943 return -ENOENT;
3944
3945 args->busy = 0;
3946 active = __I915_BO_ACTIVE(obj);
3947 if (active) {
3948 int idx;
3949
3950 /* Yes, the lookups are intentionally racy.
3951 *
3952 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3953 * to regard the value as stale and as our ABI guarantees
3954 * forward progress, we confirm the status of each active
3955 * request with the hardware.
3956 *
3957 * Even though we guard the pointer lookup by RCU, that only
3958 * guarantees that the pointer and its contents remain
3959 * dereferencable and does *not* mean that the request we
3960 * have is the same as the one being tracked by the object.
3961 *
3962 * Consider that we lookup the request just as it is being
3963 * retired and freed. We take a local copy of the pointer,
3964 * but before we add its engine into the busy set, the other
3965 * thread reallocates it and assigns it to a task on another
3966 * engine with a fresh and incomplete seqno. Guarding against
3967 * that requires careful serialisation and reference counting,
3968 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3969 * instead we expect that if the result is busy, which engines
3970 * are busy is not completely reliable - we only guarantee
3971 * that the object was busy.
3972 */
3973 rcu_read_lock();
3974
3975 for_each_active(active, idx)
3976 args->busy |= busy_check_reader(&obj->last_read[idx]);
3977
3978 /* For ABI sanity, we only care that the write engine is in
3979 * the set of read engines. This should be ensured by the
3980 * ordering of setting last_read/last_write in
3981 * i915_vma_move_to_active(), and then in reverse in retire.
3982 * However, for good measure, we always report the last_write
3983 * request as a busy read as well as being a busy write.
3984 *
3985 * We don't care that the set of active read/write engines
3986 * may change during construction of the result, as it is
3987 * equally liable to change before userspace can inspect
3988 * the result.
3989 */
3990 args->busy |= busy_check_writer(&obj->last_write);
3991
3992 rcu_read_unlock();
3993 }
3994
3995 i915_gem_object_put_unlocked(obj);
3996 return 0;
3997 }
3998
3999 int
4000 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4001 struct drm_file *file_priv)
4002 {
4003 return i915_gem_ring_throttle(dev, file_priv);
4004 }
4005
4006 int
4007 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4008 struct drm_file *file_priv)
4009 {
4010 struct drm_i915_private *dev_priv = to_i915(dev);
4011 struct drm_i915_gem_madvise *args = data;
4012 struct drm_i915_gem_object *obj;
4013 int ret;
4014
4015 switch (args->madv) {
4016 case I915_MADV_DONTNEED:
4017 case I915_MADV_WILLNEED:
4018 break;
4019 default:
4020 return -EINVAL;
4021 }
4022
4023 ret = i915_mutex_lock_interruptible(dev);
4024 if (ret)
4025 return ret;
4026
4027 obj = i915_gem_object_lookup(file_priv, args->handle);
4028 if (!obj) {
4029 ret = -ENOENT;
4030 goto unlock;
4031 }
4032
4033 if (obj->pages &&
4034 i915_gem_object_is_tiled(obj) &&
4035 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4036 if (obj->madv == I915_MADV_WILLNEED)
4037 i915_gem_object_unpin_pages(obj);
4038 if (args->madv == I915_MADV_WILLNEED)
4039 i915_gem_object_pin_pages(obj);
4040 }
4041
4042 if (obj->madv != __I915_MADV_PURGED)
4043 obj->madv = args->madv;
4044
4045 /* if the object is no longer attached, discard its backing storage */
4046 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4047 i915_gem_object_truncate(obj);
4048
4049 args->retained = obj->madv != __I915_MADV_PURGED;
4050
4051 i915_gem_object_put(obj);
4052 unlock:
4053 mutex_unlock(&dev->struct_mutex);
4054 return ret;
4055 }
4056
4057 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4058 const struct drm_i915_gem_object_ops *ops)
4059 {
4060 int i;
4061
4062 INIT_LIST_HEAD(&obj->global_list);
4063 for (i = 0; i < I915_NUM_ENGINES; i++)
4064 init_request_active(&obj->last_read[i],
4065 i915_gem_object_retire__read);
4066 init_request_active(&obj->last_write,
4067 i915_gem_object_retire__write);
4068 init_request_active(&obj->last_fence, NULL);
4069 INIT_LIST_HEAD(&obj->obj_exec_link);
4070 INIT_LIST_HEAD(&obj->vma_list);
4071 INIT_LIST_HEAD(&obj->batch_pool_link);
4072
4073 obj->ops = ops;
4074
4075 obj->fence_reg = I915_FENCE_REG_NONE;
4076 obj->madv = I915_MADV_WILLNEED;
4077
4078 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4079 }
4080
4081 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4082 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4083 .get_pages = i915_gem_object_get_pages_gtt,
4084 .put_pages = i915_gem_object_put_pages_gtt,
4085 };
4086
4087 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4088 size_t size)
4089 {
4090 struct drm_i915_gem_object *obj;
4091 struct address_space *mapping;
4092 gfp_t mask;
4093 int ret;
4094
4095 obj = i915_gem_object_alloc(dev);
4096 if (obj == NULL)
4097 return ERR_PTR(-ENOMEM);
4098
4099 ret = drm_gem_object_init(dev, &obj->base, size);
4100 if (ret)
4101 goto fail;
4102
4103 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4104 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4105 /* 965gm cannot relocate objects above 4GiB. */
4106 mask &= ~__GFP_HIGHMEM;
4107 mask |= __GFP_DMA32;
4108 }
4109
4110 mapping = obj->base.filp->f_mapping;
4111 mapping_set_gfp_mask(mapping, mask);
4112
4113 i915_gem_object_init(obj, &i915_gem_object_ops);
4114
4115 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4116 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4117
4118 if (HAS_LLC(dev)) {
4119 /* On some devices, we can have the GPU use the LLC (the CPU
4120 * cache) for about a 10% performance improvement
4121 * compared to uncached. Graphics requests other than
4122 * display scanout are coherent with the CPU in
4123 * accessing this cache. This means in this mode we
4124 * don't need to clflush on the CPU side, and on the
4125 * GPU side we only need to flush internal caches to
4126 * get data visible to the CPU.
4127 *
4128 * However, we maintain the display planes as UC, and so
4129 * need to rebind when first used as such.
4130 */
4131 obj->cache_level = I915_CACHE_LLC;
4132 } else
4133 obj->cache_level = I915_CACHE_NONE;
4134
4135 trace_i915_gem_object_create(obj);
4136
4137 return obj;
4138
4139 fail:
4140 i915_gem_object_free(obj);
4141
4142 return ERR_PTR(ret);
4143 }
4144
4145 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4146 {
4147 /* If we are the last user of the backing storage (be it shmemfs
4148 * pages or stolen etc), we know that the pages are going to be
4149 * immediately released. In this case, we can then skip copying
4150 * back the contents from the GPU.
4151 */
4152
4153 if (obj->madv != I915_MADV_WILLNEED)
4154 return false;
4155
4156 if (obj->base.filp == NULL)
4157 return true;
4158
4159 /* At first glance, this looks racy, but then again so would be
4160 * userspace racing mmap against close. However, the first external
4161 * reference to the filp can only be obtained through the
4162 * i915_gem_mmap_ioctl() which safeguards us against the user
4163 * acquiring such a reference whilst we are in the middle of
4164 * freeing the object.
4165 */
4166 return atomic_long_read(&obj->base.filp->f_count) == 1;
4167 }
4168
4169 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170 {
4171 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172 struct drm_device *dev = obj->base.dev;
4173 struct drm_i915_private *dev_priv = to_i915(dev);
4174 struct i915_vma *vma, *next;
4175
4176 intel_runtime_pm_get(dev_priv);
4177
4178 trace_i915_gem_object_destroy(obj);
4179
4180 /* All file-owned VMA should have been released by this point through
4181 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4182 * However, the object may also be bound into the global GTT (e.g.
4183 * older GPUs without per-process support, or for direct access through
4184 * the GTT either for the user or for scanout). Those VMA still need to
4185 * unbound now.
4186 */
4187 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4188 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4189 GEM_BUG_ON(i915_vma_is_active(vma));
4190 vma->flags &= ~I915_VMA_PIN_MASK;
4191 i915_vma_close(vma);
4192 }
4193 GEM_BUG_ON(obj->bind_count);
4194
4195 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4196 * before progressing. */
4197 if (obj->stolen)
4198 i915_gem_object_unpin_pages(obj);
4199
4200 WARN_ON(atomic_read(&obj->frontbuffer_bits));
4201
4202 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4203 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4204 i915_gem_object_is_tiled(obj))
4205 i915_gem_object_unpin_pages(obj);
4206
4207 if (WARN_ON(obj->pages_pin_count))
4208 obj->pages_pin_count = 0;
4209 if (discard_backing_storage(obj))
4210 obj->madv = I915_MADV_DONTNEED;
4211 i915_gem_object_put_pages(obj);
4212
4213 BUG_ON(obj->pages);
4214
4215 if (obj->base.import_attach)
4216 drm_prime_gem_destroy(&obj->base, NULL);
4217
4218 if (obj->ops->release)
4219 obj->ops->release(obj);
4220
4221 drm_gem_object_release(&obj->base);
4222 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223
4224 kfree(obj->bit_17);
4225 i915_gem_object_free(obj);
4226
4227 intel_runtime_pm_put(dev_priv);
4228 }
4229
4230 int i915_gem_suspend(struct drm_device *dev)
4231 {
4232 struct drm_i915_private *dev_priv = to_i915(dev);
4233 int ret;
4234
4235 intel_suspend_gt_powersave(dev_priv);
4236
4237 mutex_lock(&dev->struct_mutex);
4238
4239 /* We have to flush all the executing contexts to main memory so
4240 * that they can saved in the hibernation image. To ensure the last
4241 * context image is coherent, we have to switch away from it. That
4242 * leaves the dev_priv->kernel_context still active when
4243 * we actually suspend, and its image in memory may not match the GPU
4244 * state. Fortunately, the kernel_context is disposable and we do
4245 * not rely on its state.
4246 */
4247 ret = i915_gem_switch_to_kernel_context(dev_priv);
4248 if (ret)
4249 goto err;
4250
4251 ret = i915_gem_wait_for_idle(dev_priv, true);
4252 if (ret)
4253 goto err;
4254
4255 i915_gem_retire_requests(dev_priv);
4256
4257 i915_gem_context_lost(dev_priv);
4258 mutex_unlock(&dev->struct_mutex);
4259
4260 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4261 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4262 flush_delayed_work(&dev_priv->gt.idle_work);
4263
4264 /* Assert that we sucessfully flushed all the work and
4265 * reset the GPU back to its idle, low power state.
4266 */
4267 WARN_ON(dev_priv->gt.awake);
4268
4269 return 0;
4270
4271 err:
4272 mutex_unlock(&dev->struct_mutex);
4273 return ret;
4274 }
4275
4276 void i915_gem_resume(struct drm_device *dev)
4277 {
4278 struct drm_i915_private *dev_priv = to_i915(dev);
4279
4280 mutex_lock(&dev->struct_mutex);
4281 i915_gem_restore_gtt_mappings(dev);
4282
4283 /* As we didn't flush the kernel context before suspend, we cannot
4284 * guarantee that the context image is complete. So let's just reset
4285 * it and start again.
4286 */
4287 if (i915.enable_execlists)
4288 intel_lr_context_reset(dev_priv, dev_priv->kernel_context);
4289
4290 mutex_unlock(&dev->struct_mutex);
4291 }
4292
4293 void i915_gem_init_swizzling(struct drm_device *dev)
4294 {
4295 struct drm_i915_private *dev_priv = to_i915(dev);
4296
4297 if (INTEL_INFO(dev)->gen < 5 ||
4298 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4299 return;
4300
4301 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4302 DISP_TILE_SURFACE_SWIZZLING);
4303
4304 if (IS_GEN5(dev))
4305 return;
4306
4307 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4308 if (IS_GEN6(dev))
4309 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4310 else if (IS_GEN7(dev))
4311 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4312 else if (IS_GEN8(dev))
4313 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4314 else
4315 BUG();
4316 }
4317
4318 static void init_unused_ring(struct drm_device *dev, u32 base)
4319 {
4320 struct drm_i915_private *dev_priv = to_i915(dev);
4321
4322 I915_WRITE(RING_CTL(base), 0);
4323 I915_WRITE(RING_HEAD(base), 0);
4324 I915_WRITE(RING_TAIL(base), 0);
4325 I915_WRITE(RING_START(base), 0);
4326 }
4327
4328 static void init_unused_rings(struct drm_device *dev)
4329 {
4330 if (IS_I830(dev)) {
4331 init_unused_ring(dev, PRB1_BASE);
4332 init_unused_ring(dev, SRB0_BASE);
4333 init_unused_ring(dev, SRB1_BASE);
4334 init_unused_ring(dev, SRB2_BASE);
4335 init_unused_ring(dev, SRB3_BASE);
4336 } else if (IS_GEN2(dev)) {
4337 init_unused_ring(dev, SRB0_BASE);
4338 init_unused_ring(dev, SRB1_BASE);
4339 } else if (IS_GEN3(dev)) {
4340 init_unused_ring(dev, PRB1_BASE);
4341 init_unused_ring(dev, PRB2_BASE);
4342 }
4343 }
4344
4345 int
4346 i915_gem_init_hw(struct drm_device *dev)
4347 {
4348 struct drm_i915_private *dev_priv = to_i915(dev);
4349 struct intel_engine_cs *engine;
4350 int ret;
4351
4352 /* Double layer security blanket, see i915_gem_init() */
4353 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4354
4355 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4356 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4357
4358 if (IS_HASWELL(dev))
4359 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4360 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4361
4362 if (HAS_PCH_NOP(dev)) {
4363 if (IS_IVYBRIDGE(dev)) {
4364 u32 temp = I915_READ(GEN7_MSG_CTL);
4365 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4366 I915_WRITE(GEN7_MSG_CTL, temp);
4367 } else if (INTEL_INFO(dev)->gen >= 7) {
4368 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4369 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4370 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4371 }
4372 }
4373
4374 i915_gem_init_swizzling(dev);
4375
4376 /*
4377 * At least 830 can leave some of the unused rings
4378 * "active" (ie. head != tail) after resume which
4379 * will prevent c3 entry. Makes sure all unused rings
4380 * are totally idle.
4381 */
4382 init_unused_rings(dev);
4383
4384 BUG_ON(!dev_priv->kernel_context);
4385
4386 ret = i915_ppgtt_init_hw(dev);
4387 if (ret) {
4388 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4389 goto out;
4390 }
4391
4392 /* Need to do basic initialisation of all rings first: */
4393 for_each_engine(engine, dev_priv) {
4394 ret = engine->init_hw(engine);
4395 if (ret)
4396 goto out;
4397 }
4398
4399 intel_mocs_init_l3cc_table(dev);
4400
4401 /* We can't enable contexts until all firmware is loaded */
4402 ret = intel_guc_setup(dev);
4403 if (ret)
4404 goto out;
4405
4406 out:
4407 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4408 return ret;
4409 }
4410
4411 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4412 {
4413 if (INTEL_INFO(dev_priv)->gen < 6)
4414 return false;
4415
4416 /* TODO: make semaphores and Execlists play nicely together */
4417 if (i915.enable_execlists)
4418 return false;
4419
4420 if (value >= 0)
4421 return value;
4422
4423 #ifdef CONFIG_INTEL_IOMMU
4424 /* Enable semaphores on SNB when IO remapping is off */
4425 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4426 return false;
4427 #endif
4428
4429 return true;
4430 }
4431
4432 int i915_gem_init(struct drm_device *dev)
4433 {
4434 struct drm_i915_private *dev_priv = to_i915(dev);
4435 int ret;
4436
4437 mutex_lock(&dev->struct_mutex);
4438
4439 if (!i915.enable_execlists) {
4440 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4441 } else {
4442 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4443 }
4444
4445 /* This is just a security blanket to placate dragons.
4446 * On some systems, we very sporadically observe that the first TLBs
4447 * used by the CS may be stale, despite us poking the TLB reset. If
4448 * we hold the forcewake during initialisation these problems
4449 * just magically go away.
4450 */
4451 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4452
4453 i915_gem_init_userptr(dev_priv);
4454
4455 ret = i915_gem_init_ggtt(dev_priv);
4456 if (ret)
4457 goto out_unlock;
4458
4459 ret = i915_gem_context_init(dev);
4460 if (ret)
4461 goto out_unlock;
4462
4463 ret = intel_engines_init(dev);
4464 if (ret)
4465 goto out_unlock;
4466
4467 ret = i915_gem_init_hw(dev);
4468 if (ret == -EIO) {
4469 /* Allow engine initialisation to fail by marking the GPU as
4470 * wedged. But we only want to do this where the GPU is angry,
4471 * for all other failure, such as an allocation failure, bail.
4472 */
4473 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4474 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4475 ret = 0;
4476 }
4477
4478 out_unlock:
4479 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4480 mutex_unlock(&dev->struct_mutex);
4481
4482 return ret;
4483 }
4484
4485 void
4486 i915_gem_cleanup_engines(struct drm_device *dev)
4487 {
4488 struct drm_i915_private *dev_priv = to_i915(dev);
4489 struct intel_engine_cs *engine;
4490
4491 for_each_engine(engine, dev_priv)
4492 dev_priv->gt.cleanup_engine(engine);
4493 }
4494
4495 static void
4496 init_engine_lists(struct intel_engine_cs *engine)
4497 {
4498 INIT_LIST_HEAD(&engine->request_list);
4499 }
4500
4501 void
4502 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4503 {
4504 struct drm_device *dev = &dev_priv->drm;
4505
4506 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4507 !IS_CHERRYVIEW(dev_priv))
4508 dev_priv->num_fence_regs = 32;
4509 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4510 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4511 dev_priv->num_fence_regs = 16;
4512 else
4513 dev_priv->num_fence_regs = 8;
4514
4515 if (intel_vgpu_active(dev_priv))
4516 dev_priv->num_fence_regs =
4517 I915_READ(vgtif_reg(avail_rs.fence_num));
4518
4519 /* Initialize fence registers to zero */
4520 i915_gem_restore_fences(dev);
4521
4522 i915_gem_detect_bit_6_swizzle(dev);
4523 }
4524
4525 void
4526 i915_gem_load_init(struct drm_device *dev)
4527 {
4528 struct drm_i915_private *dev_priv = to_i915(dev);
4529 int i;
4530
4531 dev_priv->objects =
4532 kmem_cache_create("i915_gem_object",
4533 sizeof(struct drm_i915_gem_object), 0,
4534 SLAB_HWCACHE_ALIGN,
4535 NULL);
4536 dev_priv->vmas =
4537 kmem_cache_create("i915_gem_vma",
4538 sizeof(struct i915_vma), 0,
4539 SLAB_HWCACHE_ALIGN,
4540 NULL);
4541 dev_priv->requests =
4542 kmem_cache_create("i915_gem_request",
4543 sizeof(struct drm_i915_gem_request), 0,
4544 SLAB_HWCACHE_ALIGN |
4545 SLAB_RECLAIM_ACCOUNT |
4546 SLAB_DESTROY_BY_RCU,
4547 NULL);
4548
4549 INIT_LIST_HEAD(&dev_priv->context_list);
4550 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4551 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4552 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4553 for (i = 0; i < I915_NUM_ENGINES; i++)
4554 init_engine_lists(&dev_priv->engine[i]);
4555 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4556 INIT_LIST_HEAD(&dev_priv->fence_regs[i].link);
4557 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4558 i915_gem_retire_work_handler);
4559 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4560 i915_gem_idle_work_handler);
4561 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4562 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4563
4564 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4565
4566 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4567
4568 init_waitqueue_head(&dev_priv->pending_flip_queue);
4569
4570 dev_priv->mm.interruptible = true;
4571
4572 spin_lock_init(&dev_priv->fb_tracking.lock);
4573 }
4574
4575 void i915_gem_load_cleanup(struct drm_device *dev)
4576 {
4577 struct drm_i915_private *dev_priv = to_i915(dev);
4578
4579 kmem_cache_destroy(dev_priv->requests);
4580 kmem_cache_destroy(dev_priv->vmas);
4581 kmem_cache_destroy(dev_priv->objects);
4582
4583 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4584 rcu_barrier();
4585 }
4586
4587 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4588 {
4589 struct drm_i915_gem_object *obj;
4590
4591 /* Called just before we write the hibernation image.
4592 *
4593 * We need to update the domain tracking to reflect that the CPU
4594 * will be accessing all the pages to create and restore from the
4595 * hibernation, and so upon restoration those pages will be in the
4596 * CPU domain.
4597 *
4598 * To make sure the hibernation image contains the latest state,
4599 * we update that state just before writing out the image.
4600 */
4601
4602 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
4603 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4604 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4605 }
4606
4607 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4608 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4609 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4610 }
4611
4612 return 0;
4613 }
4614
4615 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4616 {
4617 struct drm_i915_file_private *file_priv = file->driver_priv;
4618 struct drm_i915_gem_request *request;
4619
4620 /* Clean up our request list when the client is going away, so that
4621 * later retire_requests won't dereference our soon-to-be-gone
4622 * file_priv.
4623 */
4624 spin_lock(&file_priv->mm.lock);
4625 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4626 request->file_priv = NULL;
4627 spin_unlock(&file_priv->mm.lock);
4628
4629 if (!list_empty(&file_priv->rps.link)) {
4630 spin_lock(&to_i915(dev)->rps.client_lock);
4631 list_del(&file_priv->rps.link);
4632 spin_unlock(&to_i915(dev)->rps.client_lock);
4633 }
4634 }
4635
4636 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4637 {
4638 struct drm_i915_file_private *file_priv;
4639 int ret;
4640
4641 DRM_DEBUG_DRIVER("\n");
4642
4643 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4644 if (!file_priv)
4645 return -ENOMEM;
4646
4647 file->driver_priv = file_priv;
4648 file_priv->dev_priv = to_i915(dev);
4649 file_priv->file = file;
4650 INIT_LIST_HEAD(&file_priv->rps.link);
4651
4652 spin_lock_init(&file_priv->mm.lock);
4653 INIT_LIST_HEAD(&file_priv->mm.request_list);
4654
4655 file_priv->bsd_engine = -1;
4656
4657 ret = i915_gem_context_open(dev, file);
4658 if (ret)
4659 kfree(file_priv);
4660
4661 return ret;
4662 }
4663
4664 /**
4665 * i915_gem_track_fb - update frontbuffer tracking
4666 * @old: current GEM buffer for the frontbuffer slots
4667 * @new: new GEM buffer for the frontbuffer slots
4668 * @frontbuffer_bits: bitmask of frontbuffer slots
4669 *
4670 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4671 * from @old and setting them in @new. Both @old and @new can be NULL.
4672 */
4673 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4674 struct drm_i915_gem_object *new,
4675 unsigned frontbuffer_bits)
4676 {
4677 /* Control of individual bits within the mask are guarded by
4678 * the owning plane->mutex, i.e. we can never see concurrent
4679 * manipulation of individual bits. But since the bitfield as a whole
4680 * is updated using RMW, we need to use atomics in order to update
4681 * the bits.
4682 */
4683 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4684 sizeof(atomic_t) * BITS_PER_BYTE);
4685
4686 if (old) {
4687 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4688 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4689 }
4690
4691 if (new) {
4692 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4693 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4694 }
4695 }
4696
4697 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4698 struct page *
4699 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4700 {
4701 struct page *page;
4702
4703 /* Only default objects have per-page dirty tracking */
4704 if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4705 return NULL;
4706
4707 page = i915_gem_object_get_page(obj, n);
4708 set_page_dirty(page);
4709 return page;
4710 }
4711
4712 /* Allocate a new GEM object and fill it with the supplied data */
4713 struct drm_i915_gem_object *
4714 i915_gem_object_create_from_data(struct drm_device *dev,
4715 const void *data, size_t size)
4716 {
4717 struct drm_i915_gem_object *obj;
4718 struct sg_table *sg;
4719 size_t bytes;
4720 int ret;
4721
4722 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4723 if (IS_ERR(obj))
4724 return obj;
4725
4726 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4727 if (ret)
4728 goto fail;
4729
4730 ret = i915_gem_object_get_pages(obj);
4731 if (ret)
4732 goto fail;
4733
4734 i915_gem_object_pin_pages(obj);
4735 sg = obj->pages;
4736 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4737 obj->dirty = 1; /* Backing store is now out of date */
4738 i915_gem_object_unpin_pages(obj);
4739
4740 if (WARN_ON(bytes != size)) {
4741 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4742 ret = -EFAULT;
4743 goto fail;
4744 }
4745
4746 return obj;
4747
4748 fail:
4749 i915_gem_object_put(obj);
4750 return ERR_PTR(ret);
4751 }