]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Use partial view in mmap fault handler
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static void
47 i915_gem_object_retire(struct drm_i915_gem_object *obj);
48
49 static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55 static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57 {
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59 }
60
61 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62 {
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67 }
68
69 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70 {
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79 }
80
81 /* some bookkeeping */
82 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89 }
90
91 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93 {
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98 }
99
100 static int
101 i915_gem_wait_for_error(struct i915_gpu_error *error)
102 {
103 int ret;
104
105 #define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124 #undef EXIT_COND
125
126 return 0;
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149 {
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166 }
167
168 static int
169 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170 {
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218 }
219
220 static void
221 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222 {
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304 {
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340 {
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373 out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395 {
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423 {
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429 }
430
431 /**
432 * Creates a new mm object and returns a handle to it.
433 */
434 int
435 i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437 {
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442 }
443
444 static inline int
445 __copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448 {
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468 }
469
470 static inline int
471 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474 {
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494 }
495
496 /*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503 {
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521
522 i915_gem_object_retire(obj);
523 }
524
525 ret = i915_gem_object_get_pages(obj);
526 if (ret)
527 return ret;
528
529 i915_gem_object_pin_pages(obj);
530
531 return ret;
532 }
533
534 /* Per-page copy function for the shmem pread fastpath.
535 * Flushes invalid cachelines before reading the target if
536 * needs_clflush is set. */
537 static int
538 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
539 char __user *user_data,
540 bool page_do_bit17_swizzling, bool needs_clflush)
541 {
542 char *vaddr;
543 int ret;
544
545 if (unlikely(page_do_bit17_swizzling))
546 return -EINVAL;
547
548 vaddr = kmap_atomic(page);
549 if (needs_clflush)
550 drm_clflush_virt_range(vaddr + shmem_page_offset,
551 page_length);
552 ret = __copy_to_user_inatomic(user_data,
553 vaddr + shmem_page_offset,
554 page_length);
555 kunmap_atomic(vaddr);
556
557 return ret ? -EFAULT : 0;
558 }
559
560 static void
561 shmem_clflush_swizzled_range(char *addr, unsigned long length,
562 bool swizzled)
563 {
564 if (unlikely(swizzled)) {
565 unsigned long start = (unsigned long) addr;
566 unsigned long end = (unsigned long) addr + length;
567
568 /* For swizzling simply ensure that we always flush both
569 * channels. Lame, but simple and it works. Swizzled
570 * pwrite/pread is far from a hotpath - current userspace
571 * doesn't use it at all. */
572 start = round_down(start, 128);
573 end = round_up(end, 128);
574
575 drm_clflush_virt_range((void *)start, end - start);
576 } else {
577 drm_clflush_virt_range(addr, length);
578 }
579
580 }
581
582 /* Only difference to the fast-path function is that this can handle bit17
583 * and uses non-atomic copy and kmap functions. */
584 static int
585 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
586 char __user *user_data,
587 bool page_do_bit17_swizzling, bool needs_clflush)
588 {
589 char *vaddr;
590 int ret;
591
592 vaddr = kmap(page);
593 if (needs_clflush)
594 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
595 page_length,
596 page_do_bit17_swizzling);
597
598 if (page_do_bit17_swizzling)
599 ret = __copy_to_user_swizzled(user_data,
600 vaddr, shmem_page_offset,
601 page_length);
602 else
603 ret = __copy_to_user(user_data,
604 vaddr + shmem_page_offset,
605 page_length);
606 kunmap(page);
607
608 return ret ? - EFAULT : 0;
609 }
610
611 static int
612 i915_gem_shmem_pread(struct drm_device *dev,
613 struct drm_i915_gem_object *obj,
614 struct drm_i915_gem_pread *args,
615 struct drm_file *file)
616 {
617 char __user *user_data;
618 ssize_t remain;
619 loff_t offset;
620 int shmem_page_offset, page_length, ret = 0;
621 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622 int prefaulted = 0;
623 int needs_clflush = 0;
624 struct sg_page_iter sg_iter;
625
626 user_data = to_user_ptr(args->data_ptr);
627 remain = args->size;
628
629 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630
631 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 if (ret)
633 return ret;
634
635 offset = args->offset;
636
637 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
638 offset >> PAGE_SHIFT) {
639 struct page *page = sg_page_iter_page(&sg_iter);
640
641 if (remain <= 0)
642 break;
643
644 /* Operation in this page
645 *
646 * shmem_page_offset = offset within page in shmem file
647 * page_length = bytes to copy for this page
648 */
649 shmem_page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((shmem_page_offset + page_length) > PAGE_SIZE)
652 page_length = PAGE_SIZE - shmem_page_offset;
653
654 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
655 (page_to_phys(page) & (1 << 17)) != 0;
656
657 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660 if (ret == 0)
661 goto next_page;
662
663 mutex_unlock(&dev->struct_mutex);
664
665 if (likely(!i915.prefault_disable) && !prefaulted) {
666 ret = fault_in_multipages_writeable(user_data, remain);
667 /* Userspace is tricking us, but we've already clobbered
668 * its pages with the prefault and promised to write the
669 * data up to the first fault. Hence ignore any errors
670 * and just continue. */
671 (void)ret;
672 prefaulted = 1;
673 }
674
675 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
676 user_data, page_do_bit17_swizzling,
677 needs_clflush);
678
679 mutex_lock(&dev->struct_mutex);
680
681 if (ret)
682 goto out;
683
684 next_page:
685 remain -= page_length;
686 user_data += page_length;
687 offset += page_length;
688 }
689
690 out:
691 i915_gem_object_unpin_pages(obj);
692
693 return ret;
694 }
695
696 /**
697 * Reads data from the object referenced by handle.
698 *
699 * On error, the contents of *data are undefined.
700 */
701 int
702 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703 struct drm_file *file)
704 {
705 struct drm_i915_gem_pread *args = data;
706 struct drm_i915_gem_object *obj;
707 int ret = 0;
708
709 if (args->size == 0)
710 return 0;
711
712 if (!access_ok(VERIFY_WRITE,
713 to_user_ptr(args->data_ptr),
714 args->size))
715 return -EFAULT;
716
717 ret = i915_mutex_lock_interruptible(dev);
718 if (ret)
719 return ret;
720
721 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722 if (&obj->base == NULL) {
723 ret = -ENOENT;
724 goto unlock;
725 }
726
727 /* Bounds check source. */
728 if (args->offset > obj->base.size ||
729 args->size > obj->base.size - args->offset) {
730 ret = -EINVAL;
731 goto out;
732 }
733
734 /* prime objects have no backing filp to GEM pread/pwrite
735 * pages from.
736 */
737 if (!obj->base.filp) {
738 ret = -EINVAL;
739 goto out;
740 }
741
742 trace_i915_gem_object_pread(obj, args->offset, args->size);
743
744 ret = i915_gem_shmem_pread(dev, obj, args, file);
745
746 out:
747 drm_gem_object_unreference(&obj->base);
748 unlock:
749 mutex_unlock(&dev->struct_mutex);
750 return ret;
751 }
752
753 /* This is the fast write path which cannot handle
754 * page faults in the source data
755 */
756
757 static inline int
758 fast_user_write(struct io_mapping *mapping,
759 loff_t page_base, int page_offset,
760 char __user *user_data,
761 int length)
762 {
763 void __iomem *vaddr_atomic;
764 void *vaddr;
765 unsigned long unwritten;
766
767 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 /* We can use the cpu mem copy function because this is X86. */
769 vaddr = (void __force*)vaddr_atomic + page_offset;
770 unwritten = __copy_from_user_inatomic_nocache(vaddr,
771 user_data, length);
772 io_mapping_unmap_atomic(vaddr_atomic);
773 return unwritten;
774 }
775
776 /**
777 * This is the fast pwrite path, where we copy the data directly from the
778 * user into the GTT, uncached.
779 */
780 static int
781 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
782 struct drm_i915_gem_object *obj,
783 struct drm_i915_gem_pwrite *args,
784 struct drm_file *file)
785 {
786 struct drm_i915_private *dev_priv = dev->dev_private;
787 ssize_t remain;
788 loff_t offset, page_base;
789 char __user *user_data;
790 int page_offset, page_length, ret;
791
792 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
793 if (ret)
794 goto out;
795
796 ret = i915_gem_object_set_to_gtt_domain(obj, true);
797 if (ret)
798 goto out_unpin;
799
800 ret = i915_gem_object_put_fence(obj);
801 if (ret)
802 goto out_unpin;
803
804 user_data = to_user_ptr(args->data_ptr);
805 remain = args->size;
806
807 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808
809 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
810
811 while (remain > 0) {
812 /* Operation in this page
813 *
814 * page_base = page offset within aperture
815 * page_offset = offset within page
816 * page_length = bytes to copy for this page
817 */
818 page_base = offset & PAGE_MASK;
819 page_offset = offset_in_page(offset);
820 page_length = remain;
821 if ((page_offset + remain) > PAGE_SIZE)
822 page_length = PAGE_SIZE - page_offset;
823
824 /* If we get a fault while copying data, then (presumably) our
825 * source page isn't available. Return the error and we'll
826 * retry in the slow path.
827 */
828 if (fast_user_write(dev_priv->gtt.mappable, page_base,
829 page_offset, user_data, page_length)) {
830 ret = -EFAULT;
831 goto out_flush;
832 }
833
834 remain -= page_length;
835 user_data += page_length;
836 offset += page_length;
837 }
838
839 out_flush:
840 intel_fb_obj_flush(obj, false);
841 out_unpin:
842 i915_gem_object_ggtt_unpin(obj);
843 out:
844 return ret;
845 }
846
847 /* Per-page copy function for the shmem pwrite fastpath.
848 * Flushes invalid cachelines before writing to the target if
849 * needs_clflush_before is set and flushes out any written cachelines after
850 * writing if needs_clflush is set. */
851 static int
852 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
853 char __user *user_data,
854 bool page_do_bit17_swizzling,
855 bool needs_clflush_before,
856 bool needs_clflush_after)
857 {
858 char *vaddr;
859 int ret;
860
861 if (unlikely(page_do_bit17_swizzling))
862 return -EINVAL;
863
864 vaddr = kmap_atomic(page);
865 if (needs_clflush_before)
866 drm_clflush_virt_range(vaddr + shmem_page_offset,
867 page_length);
868 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
869 user_data, page_length);
870 if (needs_clflush_after)
871 drm_clflush_virt_range(vaddr + shmem_page_offset,
872 page_length);
873 kunmap_atomic(vaddr);
874
875 return ret ? -EFAULT : 0;
876 }
877
878 /* Only difference to the fast-path function is that this can handle bit17
879 * and uses non-atomic copy and kmap functions. */
880 static int
881 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
882 char __user *user_data,
883 bool page_do_bit17_swizzling,
884 bool needs_clflush_before,
885 bool needs_clflush_after)
886 {
887 char *vaddr;
888 int ret;
889
890 vaddr = kmap(page);
891 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
893 page_length,
894 page_do_bit17_swizzling);
895 if (page_do_bit17_swizzling)
896 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 user_data,
898 page_length);
899 else
900 ret = __copy_from_user(vaddr + shmem_page_offset,
901 user_data,
902 page_length);
903 if (needs_clflush_after)
904 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
905 page_length,
906 page_do_bit17_swizzling);
907 kunmap(page);
908
909 return ret ? -EFAULT : 0;
910 }
911
912 static int
913 i915_gem_shmem_pwrite(struct drm_device *dev,
914 struct drm_i915_gem_object *obj,
915 struct drm_i915_gem_pwrite *args,
916 struct drm_file *file)
917 {
918 ssize_t remain;
919 loff_t offset;
920 char __user *user_data;
921 int shmem_page_offset, page_length, ret = 0;
922 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923 int hit_slowpath = 0;
924 int needs_clflush_after = 0;
925 int needs_clflush_before = 0;
926 struct sg_page_iter sg_iter;
927
928 user_data = to_user_ptr(args->data_ptr);
929 remain = args->size;
930
931 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932
933 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
934 /* If we're not in the cpu write domain, set ourself into the gtt
935 * write domain and manually flush cachelines (if required). This
936 * optimizes for the case when the gpu will use the data
937 * right away and we therefore have to clflush anyway. */
938 needs_clflush_after = cpu_write_needs_clflush(obj);
939 ret = i915_gem_object_wait_rendering(obj, false);
940 if (ret)
941 return ret;
942
943 i915_gem_object_retire(obj);
944 }
945 /* Same trick applies to invalidate partially written cachelines read
946 * before writing. */
947 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
948 needs_clflush_before =
949 !cpu_cache_is_coherent(dev, obj->cache_level);
950
951 ret = i915_gem_object_get_pages(obj);
952 if (ret)
953 return ret;
954
955 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
956
957 i915_gem_object_pin_pages(obj);
958
959 offset = args->offset;
960 obj->dirty = 1;
961
962 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
963 offset >> PAGE_SHIFT) {
964 struct page *page = sg_page_iter_page(&sg_iter);
965 int partial_cacheline_write;
966
967 if (remain <= 0)
968 break;
969
970 /* Operation in this page
971 *
972 * shmem_page_offset = offset within page in shmem file
973 * page_length = bytes to copy for this page
974 */
975 shmem_page_offset = offset_in_page(offset);
976
977 page_length = remain;
978 if ((shmem_page_offset + page_length) > PAGE_SIZE)
979 page_length = PAGE_SIZE - shmem_page_offset;
980
981 /* If we don't overwrite a cacheline completely we need to be
982 * careful to have up-to-date data by first clflushing. Don't
983 * overcomplicate things and flush the entire patch. */
984 partial_cacheline_write = needs_clflush_before &&
985 ((shmem_page_offset | page_length)
986 & (boot_cpu_data.x86_clflush_size - 1));
987
988 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
989 (page_to_phys(page) & (1 << 17)) != 0;
990
991 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
992 user_data, page_do_bit17_swizzling,
993 partial_cacheline_write,
994 needs_clflush_after);
995 if (ret == 0)
996 goto next_page;
997
998 hit_slowpath = 1;
999 mutex_unlock(&dev->struct_mutex);
1000 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1001 user_data, page_do_bit17_swizzling,
1002 partial_cacheline_write,
1003 needs_clflush_after);
1004
1005 mutex_lock(&dev->struct_mutex);
1006
1007 if (ret)
1008 goto out;
1009
1010 next_page:
1011 remain -= page_length;
1012 user_data += page_length;
1013 offset += page_length;
1014 }
1015
1016 out:
1017 i915_gem_object_unpin_pages(obj);
1018
1019 if (hit_slowpath) {
1020 /*
1021 * Fixup: Flush cpu caches in case we didn't flush the dirty
1022 * cachelines in-line while writing and the object moved
1023 * out of the cpu write domain while we've dropped the lock.
1024 */
1025 if (!needs_clflush_after &&
1026 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 if (i915_gem_clflush_object(obj, obj->pin_display))
1028 i915_gem_chipset_flush(dev);
1029 }
1030 }
1031
1032 if (needs_clflush_after)
1033 i915_gem_chipset_flush(dev);
1034
1035 intel_fb_obj_flush(obj, false);
1036 return ret;
1037 }
1038
1039 /**
1040 * Writes data to the object referenced by handle.
1041 *
1042 * On error, the contents of the buffer that were to be modified are undefined.
1043 */
1044 int
1045 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file)
1047 {
1048 struct drm_i915_private *dev_priv = dev->dev_private;
1049 struct drm_i915_gem_pwrite *args = data;
1050 struct drm_i915_gem_object *obj;
1051 int ret;
1052
1053 if (args->size == 0)
1054 return 0;
1055
1056 if (!access_ok(VERIFY_READ,
1057 to_user_ptr(args->data_ptr),
1058 args->size))
1059 return -EFAULT;
1060
1061 if (likely(!i915.prefault_disable)) {
1062 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1063 args->size);
1064 if (ret)
1065 return -EFAULT;
1066 }
1067
1068 intel_runtime_pm_get(dev_priv);
1069
1070 ret = i915_mutex_lock_interruptible(dev);
1071 if (ret)
1072 goto put_rpm;
1073
1074 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075 if (&obj->base == NULL) {
1076 ret = -ENOENT;
1077 goto unlock;
1078 }
1079
1080 /* Bounds check destination. */
1081 if (args->offset > obj->base.size ||
1082 args->size > obj->base.size - args->offset) {
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086
1087 /* prime objects have no backing filp to GEM pread/pwrite
1088 * pages from.
1089 */
1090 if (!obj->base.filp) {
1091 ret = -EINVAL;
1092 goto out;
1093 }
1094
1095 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1096
1097 ret = -EFAULT;
1098 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1099 * it would end up going through the fenced access, and we'll get
1100 * different detiling behavior between reading and writing.
1101 * pread/pwrite currently are reading and writing from the CPU
1102 * perspective, requiring manual detiling by the client.
1103 */
1104 if (obj->tiling_mode == I915_TILING_NONE &&
1105 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1106 cpu_write_needs_clflush(obj)) {
1107 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1108 /* Note that the gtt paths might fail with non-page-backed user
1109 * pointers (e.g. gtt mappings when moving data between
1110 * textures). Fallback to the shmem path in that case. */
1111 }
1112
1113 if (ret == -EFAULT || ret == -ENOSPC) {
1114 if (obj->phys_handle)
1115 ret = i915_gem_phys_pwrite(obj, args, file);
1116 else
1117 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1118 }
1119
1120 out:
1121 drm_gem_object_unreference(&obj->base);
1122 unlock:
1123 mutex_unlock(&dev->struct_mutex);
1124 put_rpm:
1125 intel_runtime_pm_put(dev_priv);
1126
1127 return ret;
1128 }
1129
1130 int
1131 i915_gem_check_wedge(struct i915_gpu_error *error,
1132 bool interruptible)
1133 {
1134 if (i915_reset_in_progress(error)) {
1135 /* Non-interruptible callers can't handle -EAGAIN, hence return
1136 * -EIO unconditionally for these. */
1137 if (!interruptible)
1138 return -EIO;
1139
1140 /* Recovery complete, but the reset failed ... */
1141 if (i915_terminally_wedged(error))
1142 return -EIO;
1143
1144 /*
1145 * Check if GPU Reset is in progress - we need intel_ring_begin
1146 * to work properly to reinit the hw state while the gpu is
1147 * still marked as reset-in-progress. Handle this with a flag.
1148 */
1149 if (!error->reload_in_reset)
1150 return -EAGAIN;
1151 }
1152
1153 return 0;
1154 }
1155
1156 /*
1157 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158 */
1159 int
1160 i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 {
1162 int ret;
1163
1164 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165
1166 ret = 0;
1167 if (req == req->ring->outstanding_lazy_request)
1168 ret = i915_add_request(req->ring);
1169
1170 return ret;
1171 }
1172
1173 static void fake_irq(unsigned long data)
1174 {
1175 wake_up_process((struct task_struct *)data);
1176 }
1177
1178 static bool missed_irq(struct drm_i915_private *dev_priv,
1179 struct intel_engine_cs *ring)
1180 {
1181 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1182 }
1183
1184 static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185 {
1186 unsigned long timeout;
1187
1188 if (i915_gem_request_get_ring(rq)->irq_refcount)
1189 return -EBUSY;
1190
1191 timeout = jiffies + 1;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(rq, true))
1194 return 0;
1195
1196 if (time_after_eq(jiffies, timeout))
1197 break;
1198
1199 cpu_relax_lowlatency();
1200 }
1201 if (i915_gem_request_completed(rq, false))
1202 return 0;
1203
1204 return -EAGAIN;
1205 }
1206
1207 /**
1208 * __i915_wait_request - wait until execution of request has finished
1209 * @req: duh!
1210 * @reset_counter: reset sequence associated with the given request
1211 * @interruptible: do an interruptible wait (normally yes)
1212 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1213 *
1214 * Note: It is of utmost importance that the passed in seqno and reset_counter
1215 * values have been read by the caller in an smp safe manner. Where read-side
1216 * locks are involved, it is sufficient to read the reset_counter before
1217 * unlocking the lock that protects the seqno. For lockless tricks, the
1218 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1219 * inserted.
1220 *
1221 * Returns 0 if the request was found within the alloted time. Else returns the
1222 * errno with remaining time filled in timeout argument.
1223 */
1224 int __i915_wait_request(struct drm_i915_gem_request *req,
1225 unsigned reset_counter,
1226 bool interruptible,
1227 s64 *timeout,
1228 struct drm_i915_file_private *file_priv)
1229 {
1230 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231 struct drm_device *dev = ring->dev;
1232 struct drm_i915_private *dev_priv = dev->dev_private;
1233 const bool irq_test_in_progress =
1234 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235 DEFINE_WAIT(wait);
1236 unsigned long timeout_expire;
1237 s64 before, now;
1238 int ret;
1239
1240 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241
1242 if (i915_gem_request_completed(req, true))
1243 return 0;
1244
1245 timeout_expire = timeout ?
1246 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247
1248 if (INTEL_INFO(dev)->gen >= 6)
1249 gen6_rps_boost(dev_priv, file_priv);
1250
1251 /* Record current time in case interrupted by signal, or wedged */
1252 trace_i915_gem_request_wait_begin(req);
1253 before = ktime_get_raw_ns();
1254
1255 /* Optimistic spin for the next jiffie before touching IRQs */
1256 ret = __i915_spin_request(req);
1257 if (ret == 0)
1258 goto out;
1259
1260 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1261 ret = -ENODEV;
1262 goto out;
1263 }
1264
1265 for (;;) {
1266 struct timer_list timer;
1267
1268 prepare_to_wait(&ring->irq_queue, &wait,
1269 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270
1271 /* We need to check whether any gpu reset happened in between
1272 * the caller grabbing the seqno and now ... */
1273 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1274 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1275 * is truely gone. */
1276 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1277 if (ret == 0)
1278 ret = -EAGAIN;
1279 break;
1280 }
1281
1282 if (i915_gem_request_completed(req, false)) {
1283 ret = 0;
1284 break;
1285 }
1286
1287 if (interruptible && signal_pending(current)) {
1288 ret = -ERESTARTSYS;
1289 break;
1290 }
1291
1292 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 ret = -ETIME;
1294 break;
1295 }
1296
1297 timer.function = NULL;
1298 if (timeout || missed_irq(dev_priv, ring)) {
1299 unsigned long expire;
1300
1301 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 mod_timer(&timer, expire);
1304 }
1305
1306 io_schedule();
1307
1308 if (timer.function) {
1309 del_singleshot_timer_sync(&timer);
1310 destroy_timer_on_stack(&timer);
1311 }
1312 }
1313 if (!irq_test_in_progress)
1314 ring->irq_put(ring);
1315
1316 finish_wait(&ring->irq_queue, &wait);
1317
1318 out:
1319 now = ktime_get_raw_ns();
1320 trace_i915_gem_request_wait_end(req);
1321
1322 if (timeout) {
1323 s64 tres = *timeout - (now - before);
1324
1325 *timeout = tres < 0 ? 0 : tres;
1326
1327 /*
1328 * Apparently ktime isn't accurate enough and occasionally has a
1329 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1330 * things up to make the test happy. We allow up to 1 jiffy.
1331 *
1332 * This is a regrssion from the timespec->ktime conversion.
1333 */
1334 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1335 *timeout = 0;
1336 }
1337
1338 return ret;
1339 }
1340
1341 /**
1342 * Waits for a request to be signaled, and cleans up the
1343 * request and object lists appropriately for that event.
1344 */
1345 int
1346 i915_wait_request(struct drm_i915_gem_request *req)
1347 {
1348 struct drm_device *dev;
1349 struct drm_i915_private *dev_priv;
1350 bool interruptible;
1351 unsigned reset_counter;
1352 int ret;
1353
1354 BUG_ON(req == NULL);
1355
1356 dev = req->ring->dev;
1357 dev_priv = dev->dev_private;
1358 interruptible = dev_priv->mm.interruptible;
1359
1360 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1361
1362 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 if (ret)
1364 return ret;
1365
1366 ret = i915_gem_check_olr(req);
1367 if (ret)
1368 return ret;
1369
1370 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371 i915_gem_request_reference(req);
1372 ret = __i915_wait_request(req, reset_counter,
1373 interruptible, NULL, NULL);
1374 i915_gem_request_unreference(req);
1375 return ret;
1376 }
1377
1378 static int
1379 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380 {
1381 if (!obj->active)
1382 return 0;
1383
1384 /* Manually manage the write flush as we may have not yet
1385 * retired the buffer.
1386 *
1387 * Note that the last_write_req is always the earlier of
1388 * the two (read/write) requests, so if we haved successfully waited,
1389 * we know we have passed the last write.
1390 */
1391 i915_gem_request_assign(&obj->last_write_req, NULL);
1392
1393 return 0;
1394 }
1395
1396 /**
1397 * Ensures that all rendering to the object has completed and the object is
1398 * safe to unbind from the GTT or access from the CPU.
1399 */
1400 static __must_check int
1401 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1402 bool readonly)
1403 {
1404 struct drm_i915_gem_request *req;
1405 int ret;
1406
1407 req = readonly ? obj->last_write_req : obj->last_read_req;
1408 if (!req)
1409 return 0;
1410
1411 ret = i915_wait_request(req);
1412 if (ret)
1413 return ret;
1414
1415 return i915_gem_object_wait_rendering__tail(obj);
1416 }
1417
1418 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1419 * as the object state may change during this call.
1420 */
1421 static __must_check int
1422 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423 struct drm_i915_file_private *file_priv,
1424 bool readonly)
1425 {
1426 struct drm_i915_gem_request *req;
1427 struct drm_device *dev = obj->base.dev;
1428 struct drm_i915_private *dev_priv = dev->dev_private;
1429 unsigned reset_counter;
1430 int ret;
1431
1432 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1433 BUG_ON(!dev_priv->mm.interruptible);
1434
1435 req = readonly ? obj->last_write_req : obj->last_read_req;
1436 if (!req)
1437 return 0;
1438
1439 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 if (ret)
1441 return ret;
1442
1443 ret = i915_gem_check_olr(req);
1444 if (ret)
1445 return ret;
1446
1447 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448 i915_gem_request_reference(req);
1449 mutex_unlock(&dev->struct_mutex);
1450 ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451 mutex_lock(&dev->struct_mutex);
1452 i915_gem_request_unreference(req);
1453 if (ret)
1454 return ret;
1455
1456 return i915_gem_object_wait_rendering__tail(obj);
1457 }
1458
1459 /**
1460 * Called when user space prepares to use an object with the CPU, either
1461 * through the mmap ioctl's mapping or a GTT mapping.
1462 */
1463 int
1464 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465 struct drm_file *file)
1466 {
1467 struct drm_i915_gem_set_domain *args = data;
1468 struct drm_i915_gem_object *obj;
1469 uint32_t read_domains = args->read_domains;
1470 uint32_t write_domain = args->write_domain;
1471 int ret;
1472
1473 /* Only handle setting domains to types used by the CPU. */
1474 if (write_domain & I915_GEM_GPU_DOMAINS)
1475 return -EINVAL;
1476
1477 if (read_domains & I915_GEM_GPU_DOMAINS)
1478 return -EINVAL;
1479
1480 /* Having something in the write domain implies it's in the read
1481 * domain, and only that read domain. Enforce that in the request.
1482 */
1483 if (write_domain != 0 && read_domains != write_domain)
1484 return -EINVAL;
1485
1486 ret = i915_mutex_lock_interruptible(dev);
1487 if (ret)
1488 return ret;
1489
1490 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491 if (&obj->base == NULL) {
1492 ret = -ENOENT;
1493 goto unlock;
1494 }
1495
1496 /* Try to flush the object off the GPU without holding the lock.
1497 * We will repeat the flush holding the lock in the normal manner
1498 * to catch cases where we are gazumped.
1499 */
1500 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1501 file->driver_priv,
1502 !write_domain);
1503 if (ret)
1504 goto unref;
1505
1506 if (read_domains & I915_GEM_DOMAIN_GTT)
1507 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508 else
1509 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510
1511 unref:
1512 drm_gem_object_unreference(&obj->base);
1513 unlock:
1514 mutex_unlock(&dev->struct_mutex);
1515 return ret;
1516 }
1517
1518 /**
1519 * Called when user space has done writes to this buffer
1520 */
1521 int
1522 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523 struct drm_file *file)
1524 {
1525 struct drm_i915_gem_sw_finish *args = data;
1526 struct drm_i915_gem_object *obj;
1527 int ret = 0;
1528
1529 ret = i915_mutex_lock_interruptible(dev);
1530 if (ret)
1531 return ret;
1532
1533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534 if (&obj->base == NULL) {
1535 ret = -ENOENT;
1536 goto unlock;
1537 }
1538
1539 /* Pinned buffers may be scanout, so flush the cache */
1540 if (obj->pin_display)
1541 i915_gem_object_flush_cpu_write_domain(obj);
1542
1543 drm_gem_object_unreference(&obj->base);
1544 unlock:
1545 mutex_unlock(&dev->struct_mutex);
1546 return ret;
1547 }
1548
1549 /**
1550 * Maps the contents of an object, returning the address it is mapped
1551 * into.
1552 *
1553 * While the mapping holds a reference on the contents of the object, it doesn't
1554 * imply a ref on the object itself.
1555 *
1556 * IMPORTANT:
1557 *
1558 * DRM driver writers who look a this function as an example for how to do GEM
1559 * mmap support, please don't implement mmap support like here. The modern way
1560 * to implement DRM mmap support is with an mmap offset ioctl (like
1561 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1562 * That way debug tooling like valgrind will understand what's going on, hiding
1563 * the mmap call in a driver private ioctl will break that. The i915 driver only
1564 * does cpu mmaps this way because we didn't know better.
1565 */
1566 int
1567 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568 struct drm_file *file)
1569 {
1570 struct drm_i915_gem_mmap *args = data;
1571 struct drm_gem_object *obj;
1572 unsigned long addr;
1573
1574 if (args->flags & ~(I915_MMAP_WC))
1575 return -EINVAL;
1576
1577 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1578 return -ENODEV;
1579
1580 obj = drm_gem_object_lookup(dev, file, args->handle);
1581 if (obj == NULL)
1582 return -ENOENT;
1583
1584 /* prime objects have no backing filp to GEM mmap
1585 * pages from.
1586 */
1587 if (!obj->filp) {
1588 drm_gem_object_unreference_unlocked(obj);
1589 return -EINVAL;
1590 }
1591
1592 addr = vm_mmap(obj->filp, 0, args->size,
1593 PROT_READ | PROT_WRITE, MAP_SHARED,
1594 args->offset);
1595 if (args->flags & I915_MMAP_WC) {
1596 struct mm_struct *mm = current->mm;
1597 struct vm_area_struct *vma;
1598
1599 down_write(&mm->mmap_sem);
1600 vma = find_vma(mm, addr);
1601 if (vma)
1602 vma->vm_page_prot =
1603 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1604 else
1605 addr = -ENOMEM;
1606 up_write(&mm->mmap_sem);
1607 }
1608 drm_gem_object_unreference_unlocked(obj);
1609 if (IS_ERR((void *)addr))
1610 return addr;
1611
1612 args->addr_ptr = (uint64_t) addr;
1613
1614 return 0;
1615 }
1616
1617 /**
1618 * i915_gem_fault - fault a page into the GTT
1619 * vma: VMA in question
1620 * vmf: fault info
1621 *
1622 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1623 * from userspace. The fault handler takes care of binding the object to
1624 * the GTT (if needed), allocating and programming a fence register (again,
1625 * only if needed based on whether the old reg is still valid or the object
1626 * is tiled) and inserting a new PTE into the faulting process.
1627 *
1628 * Note that the faulting process may involve evicting existing objects
1629 * from the GTT and/or fence registers to make room. So performance may
1630 * suffer if the GTT working set is large or there are few fence registers
1631 * left.
1632 */
1633 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1634 {
1635 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1636 struct drm_device *dev = obj->base.dev;
1637 struct drm_i915_private *dev_priv = dev->dev_private;
1638 struct i915_ggtt_view view = i915_ggtt_view_normal;
1639 pgoff_t page_offset;
1640 unsigned long pfn;
1641 int ret = 0;
1642 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1643
1644 intel_runtime_pm_get(dev_priv);
1645
1646 /* We don't use vmf->pgoff since that has the fake offset */
1647 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1648 PAGE_SHIFT;
1649
1650 ret = i915_mutex_lock_interruptible(dev);
1651 if (ret)
1652 goto out;
1653
1654 trace_i915_gem_object_fault(obj, page_offset, true, write);
1655
1656 /* Try to flush the object off the GPU first without holding the lock.
1657 * Upon reacquiring the lock, we will perform our sanity checks and then
1658 * repeat the flush holding the lock in the normal manner to catch cases
1659 * where we are gazumped.
1660 */
1661 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1662 if (ret)
1663 goto unlock;
1664
1665 /* Access to snoopable pages through the GTT is incoherent. */
1666 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1667 ret = -EFAULT;
1668 goto unlock;
1669 }
1670
1671 /* Use a partial view if the object is bigger than the aperture. */
1672 if (obj->base.size >= dev_priv->gtt.mappable_end) {
1673 static const unsigned int chunk_size = 256; // 1 MiB
1674 memset(&view, 0, sizeof(view));
1675 view.type = I915_GGTT_VIEW_PARTIAL;
1676 view.params.partial.offset = rounddown(page_offset, chunk_size);
1677 view.params.partial.size =
1678 min_t(unsigned int,
1679 chunk_size,
1680 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1681 view.params.partial.offset);
1682 }
1683
1684 /* Now pin it into the GTT if needed */
1685 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1686 if (ret)
1687 goto unlock;
1688
1689 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1690 if (ret)
1691 goto unpin;
1692
1693 ret = i915_gem_object_get_fence(obj);
1694 if (ret)
1695 goto unpin;
1696
1697 /* Finally, remap it using the new GTT offset */
1698 pfn = dev_priv->gtt.mappable_base +
1699 i915_gem_obj_ggtt_offset_view(obj, &view);
1700 pfn >>= PAGE_SHIFT;
1701
1702 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1703 /* Overriding existing pages in partial view does not cause
1704 * us any trouble as TLBs are still valid because the fault
1705 * is due to userspace losing part of the mapping or never
1706 * having accessed it before (at this partials' range).
1707 */
1708 unsigned long base = vma->vm_start +
1709 (view.params.partial.offset << PAGE_SHIFT);
1710 unsigned int i;
1711
1712 for (i = 0; i < view.params.partial.size; i++) {
1713 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1714 if (ret)
1715 break;
1716 }
1717
1718 obj->fault_mappable = true;
1719 } else {
1720 if (!obj->fault_mappable) {
1721 unsigned long size = min_t(unsigned long,
1722 vma->vm_end - vma->vm_start,
1723 obj->base.size);
1724 int i;
1725
1726 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1727 ret = vm_insert_pfn(vma,
1728 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1729 pfn + i);
1730 if (ret)
1731 break;
1732 }
1733
1734 obj->fault_mappable = true;
1735 } else
1736 ret = vm_insert_pfn(vma,
1737 (unsigned long)vmf->virtual_address,
1738 pfn + page_offset);
1739 }
1740 unpin:
1741 i915_gem_object_ggtt_unpin_view(obj, &view);
1742 unlock:
1743 mutex_unlock(&dev->struct_mutex);
1744 out:
1745 switch (ret) {
1746 case -EIO:
1747 /*
1748 * We eat errors when the gpu is terminally wedged to avoid
1749 * userspace unduly crashing (gl has no provisions for mmaps to
1750 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1751 * and so needs to be reported.
1752 */
1753 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1754 ret = VM_FAULT_SIGBUS;
1755 break;
1756 }
1757 case -EAGAIN:
1758 /*
1759 * EAGAIN means the gpu is hung and we'll wait for the error
1760 * handler to reset everything when re-faulting in
1761 * i915_mutex_lock_interruptible.
1762 */
1763 case 0:
1764 case -ERESTARTSYS:
1765 case -EINTR:
1766 case -EBUSY:
1767 /*
1768 * EBUSY is ok: this just means that another thread
1769 * already did the job.
1770 */
1771 ret = VM_FAULT_NOPAGE;
1772 break;
1773 case -ENOMEM:
1774 ret = VM_FAULT_OOM;
1775 break;
1776 case -ENOSPC:
1777 case -EFAULT:
1778 ret = VM_FAULT_SIGBUS;
1779 break;
1780 default:
1781 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1782 ret = VM_FAULT_SIGBUS;
1783 break;
1784 }
1785
1786 intel_runtime_pm_put(dev_priv);
1787 return ret;
1788 }
1789
1790 /**
1791 * i915_gem_release_mmap - remove physical page mappings
1792 * @obj: obj in question
1793 *
1794 * Preserve the reservation of the mmapping with the DRM core code, but
1795 * relinquish ownership of the pages back to the system.
1796 *
1797 * It is vital that we remove the page mapping if we have mapped a tiled
1798 * object through the GTT and then lose the fence register due to
1799 * resource pressure. Similarly if the object has been moved out of the
1800 * aperture, than pages mapped into userspace must be revoked. Removing the
1801 * mapping will then trigger a page fault on the next user access, allowing
1802 * fixup by i915_gem_fault().
1803 */
1804 void
1805 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1806 {
1807 if (!obj->fault_mappable)
1808 return;
1809
1810 drm_vma_node_unmap(&obj->base.vma_node,
1811 obj->base.dev->anon_inode->i_mapping);
1812 obj->fault_mappable = false;
1813 }
1814
1815 void
1816 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1817 {
1818 struct drm_i915_gem_object *obj;
1819
1820 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1821 i915_gem_release_mmap(obj);
1822 }
1823
1824 uint32_t
1825 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1826 {
1827 uint32_t gtt_size;
1828
1829 if (INTEL_INFO(dev)->gen >= 4 ||
1830 tiling_mode == I915_TILING_NONE)
1831 return size;
1832
1833 /* Previous chips need a power-of-two fence region when tiling */
1834 if (INTEL_INFO(dev)->gen == 3)
1835 gtt_size = 1024*1024;
1836 else
1837 gtt_size = 512*1024;
1838
1839 while (gtt_size < size)
1840 gtt_size <<= 1;
1841
1842 return gtt_size;
1843 }
1844
1845 /**
1846 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1847 * @obj: object to check
1848 *
1849 * Return the required GTT alignment for an object, taking into account
1850 * potential fence register mapping.
1851 */
1852 uint32_t
1853 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1854 int tiling_mode, bool fenced)
1855 {
1856 /*
1857 * Minimum alignment is 4k (GTT page size), but might be greater
1858 * if a fence register is needed for the object.
1859 */
1860 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1861 tiling_mode == I915_TILING_NONE)
1862 return 4096;
1863
1864 /*
1865 * Previous chips need to be aligned to the size of the smallest
1866 * fence register that can contain the object.
1867 */
1868 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1869 }
1870
1871 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1872 {
1873 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1874 int ret;
1875
1876 if (drm_vma_node_has_offset(&obj->base.vma_node))
1877 return 0;
1878
1879 dev_priv->mm.shrinker_no_lock_stealing = true;
1880
1881 ret = drm_gem_create_mmap_offset(&obj->base);
1882 if (ret != -ENOSPC)
1883 goto out;
1884
1885 /* Badly fragmented mmap space? The only way we can recover
1886 * space is by destroying unwanted objects. We can't randomly release
1887 * mmap_offsets as userspace expects them to be persistent for the
1888 * lifetime of the objects. The closest we can is to release the
1889 * offsets on purgeable objects by truncating it and marking it purged,
1890 * which prevents userspace from ever using that object again.
1891 */
1892 i915_gem_shrink(dev_priv,
1893 obj->base.size >> PAGE_SHIFT,
1894 I915_SHRINK_BOUND |
1895 I915_SHRINK_UNBOUND |
1896 I915_SHRINK_PURGEABLE);
1897 ret = drm_gem_create_mmap_offset(&obj->base);
1898 if (ret != -ENOSPC)
1899 goto out;
1900
1901 i915_gem_shrink_all(dev_priv);
1902 ret = drm_gem_create_mmap_offset(&obj->base);
1903 out:
1904 dev_priv->mm.shrinker_no_lock_stealing = false;
1905
1906 return ret;
1907 }
1908
1909 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1910 {
1911 drm_gem_free_mmap_offset(&obj->base);
1912 }
1913
1914 int
1915 i915_gem_mmap_gtt(struct drm_file *file,
1916 struct drm_device *dev,
1917 uint32_t handle,
1918 uint64_t *offset)
1919 {
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921 struct drm_i915_gem_object *obj;
1922 int ret;
1923
1924 ret = i915_mutex_lock_interruptible(dev);
1925 if (ret)
1926 return ret;
1927
1928 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1929 if (&obj->base == NULL) {
1930 ret = -ENOENT;
1931 goto unlock;
1932 }
1933
1934 if (obj->madv != I915_MADV_WILLNEED) {
1935 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1936 ret = -EFAULT;
1937 goto out;
1938 }
1939
1940 ret = i915_gem_object_create_mmap_offset(obj);
1941 if (ret)
1942 goto out;
1943
1944 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1945
1946 out:
1947 drm_gem_object_unreference(&obj->base);
1948 unlock:
1949 mutex_unlock(&dev->struct_mutex);
1950 return ret;
1951 }
1952
1953 /**
1954 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1955 * @dev: DRM device
1956 * @data: GTT mapping ioctl data
1957 * @file: GEM object info
1958 *
1959 * Simply returns the fake offset to userspace so it can mmap it.
1960 * The mmap call will end up in drm_gem_mmap(), which will set things
1961 * up so we can get faults in the handler above.
1962 *
1963 * The fault handler will take care of binding the object into the GTT
1964 * (since it may have been evicted to make room for something), allocating
1965 * a fence register, and mapping the appropriate aperture address into
1966 * userspace.
1967 */
1968 int
1969 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1970 struct drm_file *file)
1971 {
1972 struct drm_i915_gem_mmap_gtt *args = data;
1973
1974 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1975 }
1976
1977 /* Immediately discard the backing storage */
1978 static void
1979 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1980 {
1981 i915_gem_object_free_mmap_offset(obj);
1982
1983 if (obj->base.filp == NULL)
1984 return;
1985
1986 /* Our goal here is to return as much of the memory as
1987 * is possible back to the system as we are called from OOM.
1988 * To do this we must instruct the shmfs to drop all of its
1989 * backing pages, *now*.
1990 */
1991 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1992 obj->madv = __I915_MADV_PURGED;
1993 }
1994
1995 /* Try to discard unwanted pages */
1996 static void
1997 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1998 {
1999 struct address_space *mapping;
2000
2001 switch (obj->madv) {
2002 case I915_MADV_DONTNEED:
2003 i915_gem_object_truncate(obj);
2004 case __I915_MADV_PURGED:
2005 return;
2006 }
2007
2008 if (obj->base.filp == NULL)
2009 return;
2010
2011 mapping = file_inode(obj->base.filp)->i_mapping,
2012 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2013 }
2014
2015 static void
2016 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2017 {
2018 struct sg_page_iter sg_iter;
2019 int ret;
2020
2021 BUG_ON(obj->madv == __I915_MADV_PURGED);
2022
2023 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2024 if (ret) {
2025 /* In the event of a disaster, abandon all caches and
2026 * hope for the best.
2027 */
2028 WARN_ON(ret != -EIO);
2029 i915_gem_clflush_object(obj, true);
2030 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2031 }
2032
2033 if (i915_gem_object_needs_bit17_swizzle(obj))
2034 i915_gem_object_save_bit_17_swizzle(obj);
2035
2036 if (obj->madv == I915_MADV_DONTNEED)
2037 obj->dirty = 0;
2038
2039 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2040 struct page *page = sg_page_iter_page(&sg_iter);
2041
2042 if (obj->dirty)
2043 set_page_dirty(page);
2044
2045 if (obj->madv == I915_MADV_WILLNEED)
2046 mark_page_accessed(page);
2047
2048 page_cache_release(page);
2049 }
2050 obj->dirty = 0;
2051
2052 sg_free_table(obj->pages);
2053 kfree(obj->pages);
2054 }
2055
2056 int
2057 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2058 {
2059 const struct drm_i915_gem_object_ops *ops = obj->ops;
2060
2061 if (obj->pages == NULL)
2062 return 0;
2063
2064 if (obj->pages_pin_count)
2065 return -EBUSY;
2066
2067 BUG_ON(i915_gem_obj_bound_any(obj));
2068
2069 /* ->put_pages might need to allocate memory for the bit17 swizzle
2070 * array, hence protect them from being reaped by removing them from gtt
2071 * lists early. */
2072 list_del(&obj->global_list);
2073
2074 ops->put_pages(obj);
2075 obj->pages = NULL;
2076
2077 i915_gem_object_invalidate(obj);
2078
2079 return 0;
2080 }
2081
2082 static int
2083 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2084 {
2085 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2086 int page_count, i;
2087 struct address_space *mapping;
2088 struct sg_table *st;
2089 struct scatterlist *sg;
2090 struct sg_page_iter sg_iter;
2091 struct page *page;
2092 unsigned long last_pfn = 0; /* suppress gcc warning */
2093 gfp_t gfp;
2094
2095 /* Assert that the object is not currently in any GPU domain. As it
2096 * wasn't in the GTT, there shouldn't be any way it could have been in
2097 * a GPU cache
2098 */
2099 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2100 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2101
2102 st = kmalloc(sizeof(*st), GFP_KERNEL);
2103 if (st == NULL)
2104 return -ENOMEM;
2105
2106 page_count = obj->base.size / PAGE_SIZE;
2107 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2108 kfree(st);
2109 return -ENOMEM;
2110 }
2111
2112 /* Get the list of pages out of our struct file. They'll be pinned
2113 * at this point until we release them.
2114 *
2115 * Fail silently without starting the shrinker
2116 */
2117 mapping = file_inode(obj->base.filp)->i_mapping;
2118 gfp = mapping_gfp_mask(mapping);
2119 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2120 gfp &= ~(__GFP_IO | __GFP_WAIT);
2121 sg = st->sgl;
2122 st->nents = 0;
2123 for (i = 0; i < page_count; i++) {
2124 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2125 if (IS_ERR(page)) {
2126 i915_gem_shrink(dev_priv,
2127 page_count,
2128 I915_SHRINK_BOUND |
2129 I915_SHRINK_UNBOUND |
2130 I915_SHRINK_PURGEABLE);
2131 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2132 }
2133 if (IS_ERR(page)) {
2134 /* We've tried hard to allocate the memory by reaping
2135 * our own buffer, now let the real VM do its job and
2136 * go down in flames if truly OOM.
2137 */
2138 i915_gem_shrink_all(dev_priv);
2139 page = shmem_read_mapping_page(mapping, i);
2140 if (IS_ERR(page))
2141 goto err_pages;
2142 }
2143 #ifdef CONFIG_SWIOTLB
2144 if (swiotlb_nr_tbl()) {
2145 st->nents++;
2146 sg_set_page(sg, page, PAGE_SIZE, 0);
2147 sg = sg_next(sg);
2148 continue;
2149 }
2150 #endif
2151 if (!i || page_to_pfn(page) != last_pfn + 1) {
2152 if (i)
2153 sg = sg_next(sg);
2154 st->nents++;
2155 sg_set_page(sg, page, PAGE_SIZE, 0);
2156 } else {
2157 sg->length += PAGE_SIZE;
2158 }
2159 last_pfn = page_to_pfn(page);
2160
2161 /* Check that the i965g/gm workaround works. */
2162 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2163 }
2164 #ifdef CONFIG_SWIOTLB
2165 if (!swiotlb_nr_tbl())
2166 #endif
2167 sg_mark_end(sg);
2168 obj->pages = st;
2169
2170 if (i915_gem_object_needs_bit17_swizzle(obj))
2171 i915_gem_object_do_bit_17_swizzle(obj);
2172
2173 if (obj->tiling_mode != I915_TILING_NONE &&
2174 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2175 i915_gem_object_pin_pages(obj);
2176
2177 return 0;
2178
2179 err_pages:
2180 sg_mark_end(sg);
2181 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2182 page_cache_release(sg_page_iter_page(&sg_iter));
2183 sg_free_table(st);
2184 kfree(st);
2185
2186 /* shmemfs first checks if there is enough memory to allocate the page
2187 * and reports ENOSPC should there be insufficient, along with the usual
2188 * ENOMEM for a genuine allocation failure.
2189 *
2190 * We use ENOSPC in our driver to mean that we have run out of aperture
2191 * space and so want to translate the error from shmemfs back to our
2192 * usual understanding of ENOMEM.
2193 */
2194 if (PTR_ERR(page) == -ENOSPC)
2195 return -ENOMEM;
2196 else
2197 return PTR_ERR(page);
2198 }
2199
2200 /* Ensure that the associated pages are gathered from the backing storage
2201 * and pinned into our object. i915_gem_object_get_pages() may be called
2202 * multiple times before they are released by a single call to
2203 * i915_gem_object_put_pages() - once the pages are no longer referenced
2204 * either as a result of memory pressure (reaping pages under the shrinker)
2205 * or as the object is itself released.
2206 */
2207 int
2208 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2209 {
2210 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2211 const struct drm_i915_gem_object_ops *ops = obj->ops;
2212 int ret;
2213
2214 if (obj->pages)
2215 return 0;
2216
2217 if (obj->madv != I915_MADV_WILLNEED) {
2218 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2219 return -EFAULT;
2220 }
2221
2222 BUG_ON(obj->pages_pin_count);
2223
2224 ret = ops->get_pages(obj);
2225 if (ret)
2226 return ret;
2227
2228 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2229
2230 obj->get_page.sg = obj->pages->sgl;
2231 obj->get_page.last = 0;
2232
2233 return 0;
2234 }
2235
2236 static void
2237 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2238 struct intel_engine_cs *ring)
2239 {
2240 struct drm_i915_gem_request *req;
2241 struct intel_engine_cs *old_ring;
2242
2243 BUG_ON(ring == NULL);
2244
2245 req = intel_ring_get_request(ring);
2246 old_ring = i915_gem_request_get_ring(obj->last_read_req);
2247
2248 if (old_ring != ring && obj->last_write_req) {
2249 /* Keep the request relative to the current ring */
2250 i915_gem_request_assign(&obj->last_write_req, req);
2251 }
2252
2253 /* Add a reference if we're newly entering the active list. */
2254 if (!obj->active) {
2255 drm_gem_object_reference(&obj->base);
2256 obj->active = 1;
2257 }
2258
2259 list_move_tail(&obj->ring_list, &ring->active_list);
2260
2261 i915_gem_request_assign(&obj->last_read_req, req);
2262 }
2263
2264 void i915_vma_move_to_active(struct i915_vma *vma,
2265 struct intel_engine_cs *ring)
2266 {
2267 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2268 return i915_gem_object_move_to_active(vma->obj, ring);
2269 }
2270
2271 static void
2272 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2273 {
2274 struct i915_vma *vma;
2275
2276 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2277 BUG_ON(!obj->active);
2278
2279 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2280 if (!list_empty(&vma->mm_list))
2281 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2282 }
2283
2284 intel_fb_obj_flush(obj, true);
2285
2286 list_del_init(&obj->ring_list);
2287
2288 i915_gem_request_assign(&obj->last_read_req, NULL);
2289 i915_gem_request_assign(&obj->last_write_req, NULL);
2290 obj->base.write_domain = 0;
2291
2292 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2293
2294 obj->active = 0;
2295 drm_gem_object_unreference(&obj->base);
2296
2297 WARN_ON(i915_verify_lists(dev));
2298 }
2299
2300 static void
2301 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2302 {
2303 if (obj->last_read_req == NULL)
2304 return;
2305
2306 if (i915_gem_request_completed(obj->last_read_req, true))
2307 i915_gem_object_move_to_inactive(obj);
2308 }
2309
2310 static int
2311 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2312 {
2313 struct drm_i915_private *dev_priv = dev->dev_private;
2314 struct intel_engine_cs *ring;
2315 int ret, i, j;
2316
2317 /* Carefully retire all requests without writing to the rings */
2318 for_each_ring(ring, dev_priv, i) {
2319 ret = intel_ring_idle(ring);
2320 if (ret)
2321 return ret;
2322 }
2323 i915_gem_retire_requests(dev);
2324
2325 /* Finally reset hw state */
2326 for_each_ring(ring, dev_priv, i) {
2327 intel_ring_init_seqno(ring, seqno);
2328
2329 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2330 ring->semaphore.sync_seqno[j] = 0;
2331 }
2332
2333 return 0;
2334 }
2335
2336 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2337 {
2338 struct drm_i915_private *dev_priv = dev->dev_private;
2339 int ret;
2340
2341 if (seqno == 0)
2342 return -EINVAL;
2343
2344 /* HWS page needs to be set less than what we
2345 * will inject to ring
2346 */
2347 ret = i915_gem_init_seqno(dev, seqno - 1);
2348 if (ret)
2349 return ret;
2350
2351 /* Carefully set the last_seqno value so that wrap
2352 * detection still works
2353 */
2354 dev_priv->next_seqno = seqno;
2355 dev_priv->last_seqno = seqno - 1;
2356 if (dev_priv->last_seqno == 0)
2357 dev_priv->last_seqno--;
2358
2359 return 0;
2360 }
2361
2362 int
2363 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2364 {
2365 struct drm_i915_private *dev_priv = dev->dev_private;
2366
2367 /* reserve 0 for non-seqno */
2368 if (dev_priv->next_seqno == 0) {
2369 int ret = i915_gem_init_seqno(dev, 0);
2370 if (ret)
2371 return ret;
2372
2373 dev_priv->next_seqno = 1;
2374 }
2375
2376 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2377 return 0;
2378 }
2379
2380 int __i915_add_request(struct intel_engine_cs *ring,
2381 struct drm_file *file,
2382 struct drm_i915_gem_object *obj)
2383 {
2384 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2385 struct drm_i915_gem_request *request;
2386 struct intel_ringbuffer *ringbuf;
2387 u32 request_start;
2388 int ret;
2389
2390 request = ring->outstanding_lazy_request;
2391 if (WARN_ON(request == NULL))
2392 return -ENOMEM;
2393
2394 if (i915.enable_execlists) {
2395 ringbuf = request->ctx->engine[ring->id].ringbuf;
2396 } else
2397 ringbuf = ring->buffer;
2398
2399 request_start = intel_ring_get_tail(ringbuf);
2400 /*
2401 * Emit any outstanding flushes - execbuf can fail to emit the flush
2402 * after having emitted the batchbuffer command. Hence we need to fix
2403 * things up similar to emitting the lazy request. The difference here
2404 * is that the flush _must_ happen before the next request, no matter
2405 * what.
2406 */
2407 if (i915.enable_execlists) {
2408 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2409 if (ret)
2410 return ret;
2411 } else {
2412 ret = intel_ring_flush_all_caches(ring);
2413 if (ret)
2414 return ret;
2415 }
2416
2417 /* Record the position of the start of the request so that
2418 * should we detect the updated seqno part-way through the
2419 * GPU processing the request, we never over-estimate the
2420 * position of the head.
2421 */
2422 request->postfix = intel_ring_get_tail(ringbuf);
2423
2424 if (i915.enable_execlists) {
2425 ret = ring->emit_request(ringbuf, request);
2426 if (ret)
2427 return ret;
2428 } else {
2429 ret = ring->add_request(ring);
2430 if (ret)
2431 return ret;
2432
2433 request->tail = intel_ring_get_tail(ringbuf);
2434 }
2435
2436 request->head = request_start;
2437
2438 /* Whilst this request exists, batch_obj will be on the
2439 * active_list, and so will hold the active reference. Only when this
2440 * request is retired will the the batch_obj be moved onto the
2441 * inactive_list and lose its active reference. Hence we do not need
2442 * to explicitly hold another reference here.
2443 */
2444 request->batch_obj = obj;
2445
2446 if (!i915.enable_execlists) {
2447 /* Hold a reference to the current context so that we can inspect
2448 * it later in case a hangcheck error event fires.
2449 */
2450 request->ctx = ring->last_context;
2451 if (request->ctx)
2452 i915_gem_context_reference(request->ctx);
2453 }
2454
2455 request->emitted_jiffies = jiffies;
2456 list_add_tail(&request->list, &ring->request_list);
2457 request->file_priv = NULL;
2458
2459 if (file) {
2460 struct drm_i915_file_private *file_priv = file->driver_priv;
2461
2462 spin_lock(&file_priv->mm.lock);
2463 request->file_priv = file_priv;
2464 list_add_tail(&request->client_list,
2465 &file_priv->mm.request_list);
2466 spin_unlock(&file_priv->mm.lock);
2467
2468 request->pid = get_pid(task_pid(current));
2469 }
2470
2471 trace_i915_gem_request_add(request);
2472 ring->outstanding_lazy_request = NULL;
2473
2474 i915_queue_hangcheck(ring->dev);
2475
2476 queue_delayed_work(dev_priv->wq,
2477 &dev_priv->mm.retire_work,
2478 round_jiffies_up_relative(HZ));
2479 intel_mark_busy(dev_priv->dev);
2480
2481 return 0;
2482 }
2483
2484 static inline void
2485 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2486 {
2487 struct drm_i915_file_private *file_priv = request->file_priv;
2488
2489 if (!file_priv)
2490 return;
2491
2492 spin_lock(&file_priv->mm.lock);
2493 list_del(&request->client_list);
2494 request->file_priv = NULL;
2495 spin_unlock(&file_priv->mm.lock);
2496 }
2497
2498 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2499 const struct intel_context *ctx)
2500 {
2501 unsigned long elapsed;
2502
2503 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2504
2505 if (ctx->hang_stats.banned)
2506 return true;
2507
2508 if (ctx->hang_stats.ban_period_seconds &&
2509 elapsed <= ctx->hang_stats.ban_period_seconds) {
2510 if (!i915_gem_context_is_default(ctx)) {
2511 DRM_DEBUG("context hanging too fast, banning!\n");
2512 return true;
2513 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2514 if (i915_stop_ring_allow_warn(dev_priv))
2515 DRM_ERROR("gpu hanging too fast, banning!\n");
2516 return true;
2517 }
2518 }
2519
2520 return false;
2521 }
2522
2523 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2524 struct intel_context *ctx,
2525 const bool guilty)
2526 {
2527 struct i915_ctx_hang_stats *hs;
2528
2529 if (WARN_ON(!ctx))
2530 return;
2531
2532 hs = &ctx->hang_stats;
2533
2534 if (guilty) {
2535 hs->banned = i915_context_is_banned(dev_priv, ctx);
2536 hs->batch_active++;
2537 hs->guilty_ts = get_seconds();
2538 } else {
2539 hs->batch_pending++;
2540 }
2541 }
2542
2543 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2544 {
2545 list_del(&request->list);
2546 i915_gem_request_remove_from_client(request);
2547
2548 put_pid(request->pid);
2549
2550 i915_gem_request_unreference(request);
2551 }
2552
2553 void i915_gem_request_free(struct kref *req_ref)
2554 {
2555 struct drm_i915_gem_request *req = container_of(req_ref,
2556 typeof(*req), ref);
2557 struct intel_context *ctx = req->ctx;
2558
2559 if (ctx) {
2560 if (i915.enable_execlists) {
2561 struct intel_engine_cs *ring = req->ring;
2562
2563 if (ctx != ring->default_context)
2564 intel_lr_context_unpin(ring, ctx);
2565 }
2566
2567 i915_gem_context_unreference(ctx);
2568 }
2569
2570 kmem_cache_free(req->i915->requests, req);
2571 }
2572
2573 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2574 struct intel_context *ctx)
2575 {
2576 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2577 struct drm_i915_gem_request *rq;
2578 int ret;
2579
2580 if (ring->outstanding_lazy_request)
2581 return 0;
2582
2583 rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2584 if (rq == NULL)
2585 return -ENOMEM;
2586
2587 kref_init(&rq->ref);
2588 rq->i915 = dev_priv;
2589
2590 ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2591 if (ret) {
2592 kfree(rq);
2593 return ret;
2594 }
2595
2596 rq->ring = ring;
2597
2598 if (i915.enable_execlists)
2599 ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2600 else
2601 ret = intel_ring_alloc_request_extras(rq);
2602 if (ret) {
2603 kfree(rq);
2604 return ret;
2605 }
2606
2607 ring->outstanding_lazy_request = rq;
2608 return 0;
2609 }
2610
2611 struct drm_i915_gem_request *
2612 i915_gem_find_active_request(struct intel_engine_cs *ring)
2613 {
2614 struct drm_i915_gem_request *request;
2615
2616 list_for_each_entry(request, &ring->request_list, list) {
2617 if (i915_gem_request_completed(request, false))
2618 continue;
2619
2620 return request;
2621 }
2622
2623 return NULL;
2624 }
2625
2626 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2627 struct intel_engine_cs *ring)
2628 {
2629 struct drm_i915_gem_request *request;
2630 bool ring_hung;
2631
2632 request = i915_gem_find_active_request(ring);
2633
2634 if (request == NULL)
2635 return;
2636
2637 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2638
2639 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2640
2641 list_for_each_entry_continue(request, &ring->request_list, list)
2642 i915_set_reset_status(dev_priv, request->ctx, false);
2643 }
2644
2645 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2646 struct intel_engine_cs *ring)
2647 {
2648 while (!list_empty(&ring->active_list)) {
2649 struct drm_i915_gem_object *obj;
2650
2651 obj = list_first_entry(&ring->active_list,
2652 struct drm_i915_gem_object,
2653 ring_list);
2654
2655 i915_gem_object_move_to_inactive(obj);
2656 }
2657
2658 /*
2659 * Clear the execlists queue up before freeing the requests, as those
2660 * are the ones that keep the context and ringbuffer backing objects
2661 * pinned in place.
2662 */
2663 while (!list_empty(&ring->execlist_queue)) {
2664 struct drm_i915_gem_request *submit_req;
2665
2666 submit_req = list_first_entry(&ring->execlist_queue,
2667 struct drm_i915_gem_request,
2668 execlist_link);
2669 list_del(&submit_req->execlist_link);
2670
2671 if (submit_req->ctx != ring->default_context)
2672 intel_lr_context_unpin(ring, submit_req->ctx);
2673
2674 i915_gem_request_unreference(submit_req);
2675 }
2676
2677 /*
2678 * We must free the requests after all the corresponding objects have
2679 * been moved off active lists. Which is the same order as the normal
2680 * retire_requests function does. This is important if object hold
2681 * implicit references on things like e.g. ppgtt address spaces through
2682 * the request.
2683 */
2684 while (!list_empty(&ring->request_list)) {
2685 struct drm_i915_gem_request *request;
2686
2687 request = list_first_entry(&ring->request_list,
2688 struct drm_i915_gem_request,
2689 list);
2690
2691 i915_gem_free_request(request);
2692 }
2693
2694 /* This may not have been flushed before the reset, so clean it now */
2695 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2696 }
2697
2698 void i915_gem_restore_fences(struct drm_device *dev)
2699 {
2700 struct drm_i915_private *dev_priv = dev->dev_private;
2701 int i;
2702
2703 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2704 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2705
2706 /*
2707 * Commit delayed tiling changes if we have an object still
2708 * attached to the fence, otherwise just clear the fence.
2709 */
2710 if (reg->obj) {
2711 i915_gem_object_update_fence(reg->obj, reg,
2712 reg->obj->tiling_mode);
2713 } else {
2714 i915_gem_write_fence(dev, i, NULL);
2715 }
2716 }
2717 }
2718
2719 void i915_gem_reset(struct drm_device *dev)
2720 {
2721 struct drm_i915_private *dev_priv = dev->dev_private;
2722 struct intel_engine_cs *ring;
2723 int i;
2724
2725 /*
2726 * Before we free the objects from the requests, we need to inspect
2727 * them for finding the guilty party. As the requests only borrow
2728 * their reference to the objects, the inspection must be done first.
2729 */
2730 for_each_ring(ring, dev_priv, i)
2731 i915_gem_reset_ring_status(dev_priv, ring);
2732
2733 for_each_ring(ring, dev_priv, i)
2734 i915_gem_reset_ring_cleanup(dev_priv, ring);
2735
2736 i915_gem_context_reset(dev);
2737
2738 i915_gem_restore_fences(dev);
2739 }
2740
2741 /**
2742 * This function clears the request list as sequence numbers are passed.
2743 */
2744 void
2745 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2746 {
2747 if (list_empty(&ring->request_list))
2748 return;
2749
2750 WARN_ON(i915_verify_lists(ring->dev));
2751
2752 /* Retire requests first as we use it above for the early return.
2753 * If we retire requests last, we may use a later seqno and so clear
2754 * the requests lists without clearing the active list, leading to
2755 * confusion.
2756 */
2757 while (!list_empty(&ring->request_list)) {
2758 struct drm_i915_gem_request *request;
2759
2760 request = list_first_entry(&ring->request_list,
2761 struct drm_i915_gem_request,
2762 list);
2763
2764 if (!i915_gem_request_completed(request, true))
2765 break;
2766
2767 trace_i915_gem_request_retire(request);
2768
2769 /* We know the GPU must have read the request to have
2770 * sent us the seqno + interrupt, so use the position
2771 * of tail of the request to update the last known position
2772 * of the GPU head.
2773 */
2774 request->ringbuf->last_retired_head = request->postfix;
2775
2776 i915_gem_free_request(request);
2777 }
2778
2779 /* Move any buffers on the active list that are no longer referenced
2780 * by the ringbuffer to the flushing/inactive lists as appropriate,
2781 * before we free the context associated with the requests.
2782 */
2783 while (!list_empty(&ring->active_list)) {
2784 struct drm_i915_gem_object *obj;
2785
2786 obj = list_first_entry(&ring->active_list,
2787 struct drm_i915_gem_object,
2788 ring_list);
2789
2790 if (!i915_gem_request_completed(obj->last_read_req, true))
2791 break;
2792
2793 i915_gem_object_move_to_inactive(obj);
2794 }
2795
2796 if (unlikely(ring->trace_irq_req &&
2797 i915_gem_request_completed(ring->trace_irq_req, true))) {
2798 ring->irq_put(ring);
2799 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2800 }
2801
2802 WARN_ON(i915_verify_lists(ring->dev));
2803 }
2804
2805 bool
2806 i915_gem_retire_requests(struct drm_device *dev)
2807 {
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 struct intel_engine_cs *ring;
2810 bool idle = true;
2811 int i;
2812
2813 for_each_ring(ring, dev_priv, i) {
2814 i915_gem_retire_requests_ring(ring);
2815 idle &= list_empty(&ring->request_list);
2816 if (i915.enable_execlists) {
2817 unsigned long flags;
2818
2819 spin_lock_irqsave(&ring->execlist_lock, flags);
2820 idle &= list_empty(&ring->execlist_queue);
2821 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2822
2823 intel_execlists_retire_requests(ring);
2824 }
2825 }
2826
2827 if (idle)
2828 mod_delayed_work(dev_priv->wq,
2829 &dev_priv->mm.idle_work,
2830 msecs_to_jiffies(100));
2831
2832 return idle;
2833 }
2834
2835 static void
2836 i915_gem_retire_work_handler(struct work_struct *work)
2837 {
2838 struct drm_i915_private *dev_priv =
2839 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2840 struct drm_device *dev = dev_priv->dev;
2841 bool idle;
2842
2843 /* Come back later if the device is busy... */
2844 idle = false;
2845 if (mutex_trylock(&dev->struct_mutex)) {
2846 idle = i915_gem_retire_requests(dev);
2847 mutex_unlock(&dev->struct_mutex);
2848 }
2849 if (!idle)
2850 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2851 round_jiffies_up_relative(HZ));
2852 }
2853
2854 static void
2855 i915_gem_idle_work_handler(struct work_struct *work)
2856 {
2857 struct drm_i915_private *dev_priv =
2858 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2859 struct drm_device *dev = dev_priv->dev;
2860 struct intel_engine_cs *ring;
2861 int i;
2862
2863 for_each_ring(ring, dev_priv, i)
2864 if (!list_empty(&ring->request_list))
2865 return;
2866
2867 intel_mark_idle(dev);
2868
2869 if (mutex_trylock(&dev->struct_mutex)) {
2870 struct intel_engine_cs *ring;
2871 int i;
2872
2873 for_each_ring(ring, dev_priv, i)
2874 i915_gem_batch_pool_fini(&ring->batch_pool);
2875
2876 mutex_unlock(&dev->struct_mutex);
2877 }
2878 }
2879
2880 /**
2881 * Ensures that an object will eventually get non-busy by flushing any required
2882 * write domains, emitting any outstanding lazy request and retiring and
2883 * completed requests.
2884 */
2885 static int
2886 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2887 {
2888 struct intel_engine_cs *ring;
2889 int ret;
2890
2891 if (obj->active) {
2892 ring = i915_gem_request_get_ring(obj->last_read_req);
2893
2894 ret = i915_gem_check_olr(obj->last_read_req);
2895 if (ret)
2896 return ret;
2897
2898 i915_gem_retire_requests_ring(ring);
2899 }
2900
2901 return 0;
2902 }
2903
2904 /**
2905 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2906 * @DRM_IOCTL_ARGS: standard ioctl arguments
2907 *
2908 * Returns 0 if successful, else an error is returned with the remaining time in
2909 * the timeout parameter.
2910 * -ETIME: object is still busy after timeout
2911 * -ERESTARTSYS: signal interrupted the wait
2912 * -ENONENT: object doesn't exist
2913 * Also possible, but rare:
2914 * -EAGAIN: GPU wedged
2915 * -ENOMEM: damn
2916 * -ENODEV: Internal IRQ fail
2917 * -E?: The add request failed
2918 *
2919 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2920 * non-zero timeout parameter the wait ioctl will wait for the given number of
2921 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2922 * without holding struct_mutex the object may become re-busied before this
2923 * function completes. A similar but shorter * race condition exists in the busy
2924 * ioctl
2925 */
2926 int
2927 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2928 {
2929 struct drm_i915_private *dev_priv = dev->dev_private;
2930 struct drm_i915_gem_wait *args = data;
2931 struct drm_i915_gem_object *obj;
2932 struct drm_i915_gem_request *req;
2933 unsigned reset_counter;
2934 int ret = 0;
2935
2936 if (args->flags != 0)
2937 return -EINVAL;
2938
2939 ret = i915_mutex_lock_interruptible(dev);
2940 if (ret)
2941 return ret;
2942
2943 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2944 if (&obj->base == NULL) {
2945 mutex_unlock(&dev->struct_mutex);
2946 return -ENOENT;
2947 }
2948
2949 /* Need to make sure the object gets inactive eventually. */
2950 ret = i915_gem_object_flush_active(obj);
2951 if (ret)
2952 goto out;
2953
2954 if (!obj->active || !obj->last_read_req)
2955 goto out;
2956
2957 req = obj->last_read_req;
2958
2959 /* Do this after OLR check to make sure we make forward progress polling
2960 * on this IOCTL with a timeout == 0 (like busy ioctl)
2961 */
2962 if (args->timeout_ns == 0) {
2963 ret = -ETIME;
2964 goto out;
2965 }
2966
2967 drm_gem_object_unreference(&obj->base);
2968 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2969 i915_gem_request_reference(req);
2970 mutex_unlock(&dev->struct_mutex);
2971
2972 ret = __i915_wait_request(req, reset_counter, true,
2973 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2974 file->driver_priv);
2975 i915_gem_request_unreference__unlocked(req);
2976 return ret;
2977
2978 out:
2979 drm_gem_object_unreference(&obj->base);
2980 mutex_unlock(&dev->struct_mutex);
2981 return ret;
2982 }
2983
2984 /**
2985 * i915_gem_object_sync - sync an object to a ring.
2986 *
2987 * @obj: object which may be in use on another ring.
2988 * @to: ring we wish to use the object on. May be NULL.
2989 *
2990 * This code is meant to abstract object synchronization with the GPU.
2991 * Calling with NULL implies synchronizing the object with the CPU
2992 * rather than a particular GPU ring.
2993 *
2994 * Returns 0 if successful, else propagates up the lower layer error.
2995 */
2996 int
2997 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2998 struct intel_engine_cs *to)
2999 {
3000 struct intel_engine_cs *from;
3001 u32 seqno;
3002 int ret, idx;
3003
3004 from = i915_gem_request_get_ring(obj->last_read_req);
3005
3006 if (from == NULL || to == from)
3007 return 0;
3008
3009 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3010 return i915_gem_object_wait_rendering(obj, false);
3011
3012 idx = intel_ring_sync_index(from, to);
3013
3014 seqno = i915_gem_request_get_seqno(obj->last_read_req);
3015 /* Optimization: Avoid semaphore sync when we are sure we already
3016 * waited for an object with higher seqno */
3017 if (seqno <= from->semaphore.sync_seqno[idx])
3018 return 0;
3019
3020 ret = i915_gem_check_olr(obj->last_read_req);
3021 if (ret)
3022 return ret;
3023
3024 trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3025 ret = to->semaphore.sync_to(to, from, seqno);
3026 if (!ret)
3027 /* We use last_read_req because sync_to()
3028 * might have just caused seqno wrap under
3029 * the radar.
3030 */
3031 from->semaphore.sync_seqno[idx] =
3032 i915_gem_request_get_seqno(obj->last_read_req);
3033
3034 return ret;
3035 }
3036
3037 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3038 {
3039 u32 old_write_domain, old_read_domains;
3040
3041 /* Force a pagefault for domain tracking on next user access */
3042 i915_gem_release_mmap(obj);
3043
3044 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3045 return;
3046
3047 /* Wait for any direct GTT access to complete */
3048 mb();
3049
3050 old_read_domains = obj->base.read_domains;
3051 old_write_domain = obj->base.write_domain;
3052
3053 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3054 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3055
3056 trace_i915_gem_object_change_domain(obj,
3057 old_read_domains,
3058 old_write_domain);
3059 }
3060
3061 int i915_vma_unbind(struct i915_vma *vma)
3062 {
3063 struct drm_i915_gem_object *obj = vma->obj;
3064 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3065 int ret;
3066
3067 if (list_empty(&vma->vma_link))
3068 return 0;
3069
3070 if (!drm_mm_node_allocated(&vma->node)) {
3071 i915_gem_vma_destroy(vma);
3072 return 0;
3073 }
3074
3075 if (vma->pin_count)
3076 return -EBUSY;
3077
3078 BUG_ON(obj->pages == NULL);
3079
3080 ret = i915_gem_object_finish_gpu(obj);
3081 if (ret)
3082 return ret;
3083 /* Continue on if we fail due to EIO, the GPU is hung so we
3084 * should be safe and we need to cleanup or else we might
3085 * cause memory corruption through use-after-free.
3086 */
3087
3088 if (i915_is_ggtt(vma->vm) &&
3089 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3090 i915_gem_object_finish_gtt(obj);
3091
3092 /* release the fence reg _after_ flushing */
3093 ret = i915_gem_object_put_fence(obj);
3094 if (ret)
3095 return ret;
3096 }
3097
3098 trace_i915_vma_unbind(vma);
3099
3100 vma->vm->unbind_vma(vma);
3101 vma->bound = 0;
3102
3103 list_del_init(&vma->mm_list);
3104 if (i915_is_ggtt(vma->vm)) {
3105 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3106 obj->map_and_fenceable = false;
3107 } else if (vma->ggtt_view.pages) {
3108 sg_free_table(vma->ggtt_view.pages);
3109 kfree(vma->ggtt_view.pages);
3110 vma->ggtt_view.pages = NULL;
3111 }
3112 }
3113
3114 drm_mm_remove_node(&vma->node);
3115 i915_gem_vma_destroy(vma);
3116
3117 /* Since the unbound list is global, only move to that list if
3118 * no more VMAs exist. */
3119 if (list_empty(&obj->vma_list)) {
3120 /* Throw away the active reference before
3121 * moving to the unbound list. */
3122 i915_gem_object_retire(obj);
3123
3124 i915_gem_gtt_finish_object(obj);
3125 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3126 }
3127
3128 /* And finally now the object is completely decoupled from this vma,
3129 * we can drop its hold on the backing storage and allow it to be
3130 * reaped by the shrinker.
3131 */
3132 i915_gem_object_unpin_pages(obj);
3133
3134 return 0;
3135 }
3136
3137 int i915_gpu_idle(struct drm_device *dev)
3138 {
3139 struct drm_i915_private *dev_priv = dev->dev_private;
3140 struct intel_engine_cs *ring;
3141 int ret, i;
3142
3143 /* Flush everything onto the inactive list. */
3144 for_each_ring(ring, dev_priv, i) {
3145 if (!i915.enable_execlists) {
3146 ret = i915_switch_context(ring, ring->default_context);
3147 if (ret)
3148 return ret;
3149 }
3150
3151 ret = intel_ring_idle(ring);
3152 if (ret)
3153 return ret;
3154 }
3155
3156 return 0;
3157 }
3158
3159 static void i965_write_fence_reg(struct drm_device *dev, int reg,
3160 struct drm_i915_gem_object *obj)
3161 {
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 int fence_reg;
3164 int fence_pitch_shift;
3165
3166 if (INTEL_INFO(dev)->gen >= 6) {
3167 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3168 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3169 } else {
3170 fence_reg = FENCE_REG_965_0;
3171 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3172 }
3173
3174 fence_reg += reg * 8;
3175
3176 /* To w/a incoherency with non-atomic 64-bit register updates,
3177 * we split the 64-bit update into two 32-bit writes. In order
3178 * for a partial fence not to be evaluated between writes, we
3179 * precede the update with write to turn off the fence register,
3180 * and only enable the fence as the last step.
3181 *
3182 * For extra levels of paranoia, we make sure each step lands
3183 * before applying the next step.
3184 */
3185 I915_WRITE(fence_reg, 0);
3186 POSTING_READ(fence_reg);
3187
3188 if (obj) {
3189 u32 size = i915_gem_obj_ggtt_size(obj);
3190 uint64_t val;
3191
3192 /* Adjust fence size to match tiled area */
3193 if (obj->tiling_mode != I915_TILING_NONE) {
3194 uint32_t row_size = obj->stride *
3195 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3196 size = (size / row_size) * row_size;
3197 }
3198
3199 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3200 0xfffff000) << 32;
3201 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3202 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3203 if (obj->tiling_mode == I915_TILING_Y)
3204 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3205 val |= I965_FENCE_REG_VALID;
3206
3207 I915_WRITE(fence_reg + 4, val >> 32);
3208 POSTING_READ(fence_reg + 4);
3209
3210 I915_WRITE(fence_reg + 0, val);
3211 POSTING_READ(fence_reg);
3212 } else {
3213 I915_WRITE(fence_reg + 4, 0);
3214 POSTING_READ(fence_reg + 4);
3215 }
3216 }
3217
3218 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3219 struct drm_i915_gem_object *obj)
3220 {
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222 u32 val;
3223
3224 if (obj) {
3225 u32 size = i915_gem_obj_ggtt_size(obj);
3226 int pitch_val;
3227 int tile_width;
3228
3229 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3230 (size & -size) != size ||
3231 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3232 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3233 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3234
3235 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3236 tile_width = 128;
3237 else
3238 tile_width = 512;
3239
3240 /* Note: pitch better be a power of two tile widths */
3241 pitch_val = obj->stride / tile_width;
3242 pitch_val = ffs(pitch_val) - 1;
3243
3244 val = i915_gem_obj_ggtt_offset(obj);
3245 if (obj->tiling_mode == I915_TILING_Y)
3246 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3247 val |= I915_FENCE_SIZE_BITS(size);
3248 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3249 val |= I830_FENCE_REG_VALID;
3250 } else
3251 val = 0;
3252
3253 if (reg < 8)
3254 reg = FENCE_REG_830_0 + reg * 4;
3255 else
3256 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3257
3258 I915_WRITE(reg, val);
3259 POSTING_READ(reg);
3260 }
3261
3262 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3263 struct drm_i915_gem_object *obj)
3264 {
3265 struct drm_i915_private *dev_priv = dev->dev_private;
3266 uint32_t val;
3267
3268 if (obj) {
3269 u32 size = i915_gem_obj_ggtt_size(obj);
3270 uint32_t pitch_val;
3271
3272 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3273 (size & -size) != size ||
3274 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3275 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3276 i915_gem_obj_ggtt_offset(obj), size);
3277
3278 pitch_val = obj->stride / 128;
3279 pitch_val = ffs(pitch_val) - 1;
3280
3281 val = i915_gem_obj_ggtt_offset(obj);
3282 if (obj->tiling_mode == I915_TILING_Y)
3283 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3284 val |= I830_FENCE_SIZE_BITS(size);
3285 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3286 val |= I830_FENCE_REG_VALID;
3287 } else
3288 val = 0;
3289
3290 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3291 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3292 }
3293
3294 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3295 {
3296 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3297 }
3298
3299 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3300 struct drm_i915_gem_object *obj)
3301 {
3302 struct drm_i915_private *dev_priv = dev->dev_private;
3303
3304 /* Ensure that all CPU reads are completed before installing a fence
3305 * and all writes before removing the fence.
3306 */
3307 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3308 mb();
3309
3310 WARN(obj && (!obj->stride || !obj->tiling_mode),
3311 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3312 obj->stride, obj->tiling_mode);
3313
3314 if (IS_GEN2(dev))
3315 i830_write_fence_reg(dev, reg, obj);
3316 else if (IS_GEN3(dev))
3317 i915_write_fence_reg(dev, reg, obj);
3318 else if (INTEL_INFO(dev)->gen >= 4)
3319 i965_write_fence_reg(dev, reg, obj);
3320
3321 /* And similarly be paranoid that no direct access to this region
3322 * is reordered to before the fence is installed.
3323 */
3324 if (i915_gem_object_needs_mb(obj))
3325 mb();
3326 }
3327
3328 static inline int fence_number(struct drm_i915_private *dev_priv,
3329 struct drm_i915_fence_reg *fence)
3330 {
3331 return fence - dev_priv->fence_regs;
3332 }
3333
3334 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3335 struct drm_i915_fence_reg *fence,
3336 bool enable)
3337 {
3338 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3339 int reg = fence_number(dev_priv, fence);
3340
3341 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3342
3343 if (enable) {
3344 obj->fence_reg = reg;
3345 fence->obj = obj;
3346 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3347 } else {
3348 obj->fence_reg = I915_FENCE_REG_NONE;
3349 fence->obj = NULL;
3350 list_del_init(&fence->lru_list);
3351 }
3352 obj->fence_dirty = false;
3353 }
3354
3355 static int
3356 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3357 {
3358 if (obj->last_fenced_req) {
3359 int ret = i915_wait_request(obj->last_fenced_req);
3360 if (ret)
3361 return ret;
3362
3363 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3364 }
3365
3366 return 0;
3367 }
3368
3369 int
3370 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3371 {
3372 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3373 struct drm_i915_fence_reg *fence;
3374 int ret;
3375
3376 ret = i915_gem_object_wait_fence(obj);
3377 if (ret)
3378 return ret;
3379
3380 if (obj->fence_reg == I915_FENCE_REG_NONE)
3381 return 0;
3382
3383 fence = &dev_priv->fence_regs[obj->fence_reg];
3384
3385 if (WARN_ON(fence->pin_count))
3386 return -EBUSY;
3387
3388 i915_gem_object_fence_lost(obj);
3389 i915_gem_object_update_fence(obj, fence, false);
3390
3391 return 0;
3392 }
3393
3394 static struct drm_i915_fence_reg *
3395 i915_find_fence_reg(struct drm_device *dev)
3396 {
3397 struct drm_i915_private *dev_priv = dev->dev_private;
3398 struct drm_i915_fence_reg *reg, *avail;
3399 int i;
3400
3401 /* First try to find a free reg */
3402 avail = NULL;
3403 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3404 reg = &dev_priv->fence_regs[i];
3405 if (!reg->obj)
3406 return reg;
3407
3408 if (!reg->pin_count)
3409 avail = reg;
3410 }
3411
3412 if (avail == NULL)
3413 goto deadlock;
3414
3415 /* None available, try to steal one or wait for a user to finish */
3416 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3417 if (reg->pin_count)
3418 continue;
3419
3420 return reg;
3421 }
3422
3423 deadlock:
3424 /* Wait for completion of pending flips which consume fences */
3425 if (intel_has_pending_fb_unpin(dev))
3426 return ERR_PTR(-EAGAIN);
3427
3428 return ERR_PTR(-EDEADLK);
3429 }
3430
3431 /**
3432 * i915_gem_object_get_fence - set up fencing for an object
3433 * @obj: object to map through a fence reg
3434 *
3435 * When mapping objects through the GTT, userspace wants to be able to write
3436 * to them without having to worry about swizzling if the object is tiled.
3437 * This function walks the fence regs looking for a free one for @obj,
3438 * stealing one if it can't find any.
3439 *
3440 * It then sets up the reg based on the object's properties: address, pitch
3441 * and tiling format.
3442 *
3443 * For an untiled surface, this removes any existing fence.
3444 */
3445 int
3446 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3447 {
3448 struct drm_device *dev = obj->base.dev;
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 bool enable = obj->tiling_mode != I915_TILING_NONE;
3451 struct drm_i915_fence_reg *reg;
3452 int ret;
3453
3454 /* Have we updated the tiling parameters upon the object and so
3455 * will need to serialise the write to the associated fence register?
3456 */
3457 if (obj->fence_dirty) {
3458 ret = i915_gem_object_wait_fence(obj);
3459 if (ret)
3460 return ret;
3461 }
3462
3463 /* Just update our place in the LRU if our fence is getting reused. */
3464 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3465 reg = &dev_priv->fence_regs[obj->fence_reg];
3466 if (!obj->fence_dirty) {
3467 list_move_tail(&reg->lru_list,
3468 &dev_priv->mm.fence_list);
3469 return 0;
3470 }
3471 } else if (enable) {
3472 if (WARN_ON(!obj->map_and_fenceable))
3473 return -EINVAL;
3474
3475 reg = i915_find_fence_reg(dev);
3476 if (IS_ERR(reg))
3477 return PTR_ERR(reg);
3478
3479 if (reg->obj) {
3480 struct drm_i915_gem_object *old = reg->obj;
3481
3482 ret = i915_gem_object_wait_fence(old);
3483 if (ret)
3484 return ret;
3485
3486 i915_gem_object_fence_lost(old);
3487 }
3488 } else
3489 return 0;
3490
3491 i915_gem_object_update_fence(obj, reg, enable);
3492
3493 return 0;
3494 }
3495
3496 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3497 unsigned long cache_level)
3498 {
3499 struct drm_mm_node *gtt_space = &vma->node;
3500 struct drm_mm_node *other;
3501
3502 /*
3503 * On some machines we have to be careful when putting differing types
3504 * of snoopable memory together to avoid the prefetcher crossing memory
3505 * domains and dying. During vm initialisation, we decide whether or not
3506 * these constraints apply and set the drm_mm.color_adjust
3507 * appropriately.
3508 */
3509 if (vma->vm->mm.color_adjust == NULL)
3510 return true;
3511
3512 if (!drm_mm_node_allocated(gtt_space))
3513 return true;
3514
3515 if (list_empty(&gtt_space->node_list))
3516 return true;
3517
3518 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3519 if (other->allocated && !other->hole_follows && other->color != cache_level)
3520 return false;
3521
3522 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3523 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3524 return false;
3525
3526 return true;
3527 }
3528
3529 /**
3530 * Finds free space in the GTT aperture and binds the object or a view of it
3531 * there.
3532 */
3533 static struct i915_vma *
3534 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3535 struct i915_address_space *vm,
3536 const struct i915_ggtt_view *ggtt_view,
3537 unsigned alignment,
3538 uint64_t flags)
3539 {
3540 struct drm_device *dev = obj->base.dev;
3541 struct drm_i915_private *dev_priv = dev->dev_private;
3542 u32 size, fence_size, fence_alignment, unfenced_alignment;
3543 unsigned long start =
3544 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3545 unsigned long end =
3546 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3547 struct i915_vma *vma;
3548 int ret;
3549
3550 if (i915_is_ggtt(vm)) {
3551 u32 view_size;
3552
3553 if (WARN_ON(!ggtt_view))
3554 return ERR_PTR(-EINVAL);
3555
3556 view_size = i915_ggtt_view_size(obj, ggtt_view);
3557
3558 fence_size = i915_gem_get_gtt_size(dev,
3559 view_size,
3560 obj->tiling_mode);
3561 fence_alignment = i915_gem_get_gtt_alignment(dev,
3562 view_size,
3563 obj->tiling_mode,
3564 true);
3565 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3566 view_size,
3567 obj->tiling_mode,
3568 false);
3569 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3570 } else {
3571 fence_size = i915_gem_get_gtt_size(dev,
3572 obj->base.size,
3573 obj->tiling_mode);
3574 fence_alignment = i915_gem_get_gtt_alignment(dev,
3575 obj->base.size,
3576 obj->tiling_mode,
3577 true);
3578 unfenced_alignment =
3579 i915_gem_get_gtt_alignment(dev,
3580 obj->base.size,
3581 obj->tiling_mode,
3582 false);
3583 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3584 }
3585
3586 if (alignment == 0)
3587 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3588 unfenced_alignment;
3589 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3590 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3591 ggtt_view ? ggtt_view->type : 0,
3592 alignment);
3593 return ERR_PTR(-EINVAL);
3594 }
3595
3596 /* If binding the object/GGTT view requires more space than the entire
3597 * aperture has, reject it early before evicting everything in a vain
3598 * attempt to find space.
3599 */
3600 if (size > end) {
3601 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3602 ggtt_view ? ggtt_view->type : 0,
3603 size,
3604 flags & PIN_MAPPABLE ? "mappable" : "total",
3605 end);
3606 return ERR_PTR(-E2BIG);
3607 }
3608
3609 ret = i915_gem_object_get_pages(obj);
3610 if (ret)
3611 return ERR_PTR(ret);
3612
3613 i915_gem_object_pin_pages(obj);
3614
3615 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3616 i915_gem_obj_lookup_or_create_vma(obj, vm);
3617
3618 if (IS_ERR(vma))
3619 goto err_unpin;
3620
3621 search_free:
3622 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3623 size, alignment,
3624 obj->cache_level,
3625 start, end,
3626 DRM_MM_SEARCH_DEFAULT,
3627 DRM_MM_CREATE_DEFAULT);
3628 if (ret) {
3629 ret = i915_gem_evict_something(dev, vm, size, alignment,
3630 obj->cache_level,
3631 start, end,
3632 flags);
3633 if (ret == 0)
3634 goto search_free;
3635
3636 goto err_free_vma;
3637 }
3638 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3639 ret = -EINVAL;
3640 goto err_remove_node;
3641 }
3642
3643 ret = i915_gem_gtt_prepare_object(obj);
3644 if (ret)
3645 goto err_remove_node;
3646
3647 trace_i915_vma_bind(vma, flags);
3648 ret = i915_vma_bind(vma, obj->cache_level, flags);
3649 if (ret)
3650 goto err_finish_gtt;
3651
3652 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3653 list_add_tail(&vma->mm_list, &vm->inactive_list);
3654
3655 return vma;
3656
3657 err_finish_gtt:
3658 i915_gem_gtt_finish_object(obj);
3659 err_remove_node:
3660 drm_mm_remove_node(&vma->node);
3661 err_free_vma:
3662 i915_gem_vma_destroy(vma);
3663 vma = ERR_PTR(ret);
3664 err_unpin:
3665 i915_gem_object_unpin_pages(obj);
3666 return vma;
3667 }
3668
3669 bool
3670 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3671 bool force)
3672 {
3673 /* If we don't have a page list set up, then we're not pinned
3674 * to GPU, and we can ignore the cache flush because it'll happen
3675 * again at bind time.
3676 */
3677 if (obj->pages == NULL)
3678 return false;
3679
3680 /*
3681 * Stolen memory is always coherent with the GPU as it is explicitly
3682 * marked as wc by the system, or the system is cache-coherent.
3683 */
3684 if (obj->stolen || obj->phys_handle)
3685 return false;
3686
3687 /* If the GPU is snooping the contents of the CPU cache,
3688 * we do not need to manually clear the CPU cache lines. However,
3689 * the caches are only snooped when the render cache is
3690 * flushed/invalidated. As we always have to emit invalidations
3691 * and flushes when moving into and out of the RENDER domain, correct
3692 * snooping behaviour occurs naturally as the result of our domain
3693 * tracking.
3694 */
3695 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3696 obj->cache_dirty = true;
3697 return false;
3698 }
3699
3700 trace_i915_gem_object_clflush(obj);
3701 drm_clflush_sg(obj->pages);
3702 obj->cache_dirty = false;
3703
3704 return true;
3705 }
3706
3707 /** Flushes the GTT write domain for the object if it's dirty. */
3708 static void
3709 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3710 {
3711 uint32_t old_write_domain;
3712
3713 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3714 return;
3715
3716 /* No actual flushing is required for the GTT write domain. Writes
3717 * to it immediately go to main memory as far as we know, so there's
3718 * no chipset flush. It also doesn't land in render cache.
3719 *
3720 * However, we do have to enforce the order so that all writes through
3721 * the GTT land before any writes to the device, such as updates to
3722 * the GATT itself.
3723 */
3724 wmb();
3725
3726 old_write_domain = obj->base.write_domain;
3727 obj->base.write_domain = 0;
3728
3729 intel_fb_obj_flush(obj, false);
3730
3731 trace_i915_gem_object_change_domain(obj,
3732 obj->base.read_domains,
3733 old_write_domain);
3734 }
3735
3736 /** Flushes the CPU write domain for the object if it's dirty. */
3737 static void
3738 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3739 {
3740 uint32_t old_write_domain;
3741
3742 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3743 return;
3744
3745 if (i915_gem_clflush_object(obj, obj->pin_display))
3746 i915_gem_chipset_flush(obj->base.dev);
3747
3748 old_write_domain = obj->base.write_domain;
3749 obj->base.write_domain = 0;
3750
3751 intel_fb_obj_flush(obj, false);
3752
3753 trace_i915_gem_object_change_domain(obj,
3754 obj->base.read_domains,
3755 old_write_domain);
3756 }
3757
3758 /**
3759 * Moves a single object to the GTT read, and possibly write domain.
3760 *
3761 * This function returns when the move is complete, including waiting on
3762 * flushes to occur.
3763 */
3764 int
3765 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3766 {
3767 uint32_t old_write_domain, old_read_domains;
3768 struct i915_vma *vma;
3769 int ret;
3770
3771 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3772 return 0;
3773
3774 ret = i915_gem_object_wait_rendering(obj, !write);
3775 if (ret)
3776 return ret;
3777
3778 i915_gem_object_retire(obj);
3779
3780 /* Flush and acquire obj->pages so that we are coherent through
3781 * direct access in memory with previous cached writes through
3782 * shmemfs and that our cache domain tracking remains valid.
3783 * For example, if the obj->filp was moved to swap without us
3784 * being notified and releasing the pages, we would mistakenly
3785 * continue to assume that the obj remained out of the CPU cached
3786 * domain.
3787 */
3788 ret = i915_gem_object_get_pages(obj);
3789 if (ret)
3790 return ret;
3791
3792 i915_gem_object_flush_cpu_write_domain(obj);
3793
3794 /* Serialise direct access to this object with the barriers for
3795 * coherent writes from the GPU, by effectively invalidating the
3796 * GTT domain upon first access.
3797 */
3798 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3799 mb();
3800
3801 old_write_domain = obj->base.write_domain;
3802 old_read_domains = obj->base.read_domains;
3803
3804 /* It should now be out of any other write domains, and we can update
3805 * the domain values for our changes.
3806 */
3807 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3808 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3809 if (write) {
3810 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3811 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3812 obj->dirty = 1;
3813 }
3814
3815 if (write)
3816 intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3817
3818 trace_i915_gem_object_change_domain(obj,
3819 old_read_domains,
3820 old_write_domain);
3821
3822 /* And bump the LRU for this access */
3823 vma = i915_gem_obj_to_ggtt(obj);
3824 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3825 list_move_tail(&vma->mm_list,
3826 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3827
3828 return 0;
3829 }
3830
3831 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3832 enum i915_cache_level cache_level)
3833 {
3834 struct drm_device *dev = obj->base.dev;
3835 struct i915_vma *vma, *next;
3836 int ret;
3837
3838 if (obj->cache_level == cache_level)
3839 return 0;
3840
3841 if (i915_gem_obj_is_pinned(obj)) {
3842 DRM_DEBUG("can not change the cache level of pinned objects\n");
3843 return -EBUSY;
3844 }
3845
3846 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3847 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3848 ret = i915_vma_unbind(vma);
3849 if (ret)
3850 return ret;
3851 }
3852 }
3853
3854 if (i915_gem_obj_bound_any(obj)) {
3855 ret = i915_gem_object_finish_gpu(obj);
3856 if (ret)
3857 return ret;
3858
3859 i915_gem_object_finish_gtt(obj);
3860
3861 /* Before SandyBridge, you could not use tiling or fence
3862 * registers with snooped memory, so relinquish any fences
3863 * currently pointing to our region in the aperture.
3864 */
3865 if (INTEL_INFO(dev)->gen < 6) {
3866 ret = i915_gem_object_put_fence(obj);
3867 if (ret)
3868 return ret;
3869 }
3870
3871 list_for_each_entry(vma, &obj->vma_list, vma_link)
3872 if (drm_mm_node_allocated(&vma->node)) {
3873 ret = i915_vma_bind(vma, cache_level,
3874 PIN_UPDATE);
3875 if (ret)
3876 return ret;
3877 }
3878 }
3879
3880 list_for_each_entry(vma, &obj->vma_list, vma_link)
3881 vma->node.color = cache_level;
3882 obj->cache_level = cache_level;
3883
3884 if (obj->cache_dirty &&
3885 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3886 cpu_write_needs_clflush(obj)) {
3887 if (i915_gem_clflush_object(obj, true))
3888 i915_gem_chipset_flush(obj->base.dev);
3889 }
3890
3891 return 0;
3892 }
3893
3894 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3895 struct drm_file *file)
3896 {
3897 struct drm_i915_gem_caching *args = data;
3898 struct drm_i915_gem_object *obj;
3899
3900 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3901 if (&obj->base == NULL)
3902 return -ENOENT;
3903
3904 switch (obj->cache_level) {
3905 case I915_CACHE_LLC:
3906 case I915_CACHE_L3_LLC:
3907 args->caching = I915_CACHING_CACHED;
3908 break;
3909
3910 case I915_CACHE_WT:
3911 args->caching = I915_CACHING_DISPLAY;
3912 break;
3913
3914 default:
3915 args->caching = I915_CACHING_NONE;
3916 break;
3917 }
3918
3919 drm_gem_object_unreference_unlocked(&obj->base);
3920 return 0;
3921 }
3922
3923 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3924 struct drm_file *file)
3925 {
3926 struct drm_i915_gem_caching *args = data;
3927 struct drm_i915_gem_object *obj;
3928 enum i915_cache_level level;
3929 int ret;
3930
3931 switch (args->caching) {
3932 case I915_CACHING_NONE:
3933 level = I915_CACHE_NONE;
3934 break;
3935 case I915_CACHING_CACHED:
3936 level = I915_CACHE_LLC;
3937 break;
3938 case I915_CACHING_DISPLAY:
3939 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3940 break;
3941 default:
3942 return -EINVAL;
3943 }
3944
3945 ret = i915_mutex_lock_interruptible(dev);
3946 if (ret)
3947 return ret;
3948
3949 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3950 if (&obj->base == NULL) {
3951 ret = -ENOENT;
3952 goto unlock;
3953 }
3954
3955 ret = i915_gem_object_set_cache_level(obj, level);
3956
3957 drm_gem_object_unreference(&obj->base);
3958 unlock:
3959 mutex_unlock(&dev->struct_mutex);
3960 return ret;
3961 }
3962
3963 /*
3964 * Prepare buffer for display plane (scanout, cursors, etc).
3965 * Can be called from an uninterruptible phase (modesetting) and allows
3966 * any flushes to be pipelined (for pageflips).
3967 */
3968 int
3969 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3970 u32 alignment,
3971 struct intel_engine_cs *pipelined,
3972 const struct i915_ggtt_view *view)
3973 {
3974 u32 old_read_domains, old_write_domain;
3975 int ret;
3976
3977 if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3978 ret = i915_gem_object_sync(obj, pipelined);
3979 if (ret)
3980 return ret;
3981 }
3982
3983 /* Mark the pin_display early so that we account for the
3984 * display coherency whilst setting up the cache domains.
3985 */
3986 obj->pin_display++;
3987
3988 /* The display engine is not coherent with the LLC cache on gen6. As
3989 * a result, we make sure that the pinning that is about to occur is
3990 * done with uncached PTEs. This is lowest common denominator for all
3991 * chipsets.
3992 *
3993 * However for gen6+, we could do better by using the GFDT bit instead
3994 * of uncaching, which would allow us to flush all the LLC-cached data
3995 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3996 */
3997 ret = i915_gem_object_set_cache_level(obj,
3998 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3999 if (ret)
4000 goto err_unpin_display;
4001
4002 /* As the user may map the buffer once pinned in the display plane
4003 * (e.g. libkms for the bootup splash), we have to ensure that we
4004 * always use map_and_fenceable for all scanout buffers.
4005 */
4006 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4007 view->type == I915_GGTT_VIEW_NORMAL ?
4008 PIN_MAPPABLE : 0);
4009 if (ret)
4010 goto err_unpin_display;
4011
4012 i915_gem_object_flush_cpu_write_domain(obj);
4013
4014 old_write_domain = obj->base.write_domain;
4015 old_read_domains = obj->base.read_domains;
4016
4017 /* It should now be out of any other write domains, and we can update
4018 * the domain values for our changes.
4019 */
4020 obj->base.write_domain = 0;
4021 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4022
4023 trace_i915_gem_object_change_domain(obj,
4024 old_read_domains,
4025 old_write_domain);
4026
4027 return 0;
4028
4029 err_unpin_display:
4030 obj->pin_display--;
4031 return ret;
4032 }
4033
4034 void
4035 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4036 const struct i915_ggtt_view *view)
4037 {
4038 if (WARN_ON(obj->pin_display == 0))
4039 return;
4040
4041 i915_gem_object_ggtt_unpin_view(obj, view);
4042
4043 obj->pin_display--;
4044 }
4045
4046 int
4047 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4048 {
4049 int ret;
4050
4051 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4052 return 0;
4053
4054 ret = i915_gem_object_wait_rendering(obj, false);
4055 if (ret)
4056 return ret;
4057
4058 /* Ensure that we invalidate the GPU's caches and TLBs. */
4059 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4060 return 0;
4061 }
4062
4063 /**
4064 * Moves a single object to the CPU read, and possibly write domain.
4065 *
4066 * This function returns when the move is complete, including waiting on
4067 * flushes to occur.
4068 */
4069 int
4070 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4071 {
4072 uint32_t old_write_domain, old_read_domains;
4073 int ret;
4074
4075 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4076 return 0;
4077
4078 ret = i915_gem_object_wait_rendering(obj, !write);
4079 if (ret)
4080 return ret;
4081
4082 i915_gem_object_retire(obj);
4083 i915_gem_object_flush_gtt_write_domain(obj);
4084
4085 old_write_domain = obj->base.write_domain;
4086 old_read_domains = obj->base.read_domains;
4087
4088 /* Flush the CPU cache if it's still invalid. */
4089 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4090 i915_gem_clflush_object(obj, false);
4091
4092 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4093 }
4094
4095 /* It should now be out of any other write domains, and we can update
4096 * the domain values for our changes.
4097 */
4098 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4099
4100 /* If we're writing through the CPU, then the GPU read domains will
4101 * need to be invalidated at next use.
4102 */
4103 if (write) {
4104 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4105 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4106 }
4107
4108 if (write)
4109 intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4110
4111 trace_i915_gem_object_change_domain(obj,
4112 old_read_domains,
4113 old_write_domain);
4114
4115 return 0;
4116 }
4117
4118 /* Throttle our rendering by waiting until the ring has completed our requests
4119 * emitted over 20 msec ago.
4120 *
4121 * Note that if we were to use the current jiffies each time around the loop,
4122 * we wouldn't escape the function with any frames outstanding if the time to
4123 * render a frame was over 20ms.
4124 *
4125 * This should get us reasonable parallelism between CPU and GPU but also
4126 * relatively low latency when blocking on a particular request to finish.
4127 */
4128 static int
4129 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4130 {
4131 struct drm_i915_private *dev_priv = dev->dev_private;
4132 struct drm_i915_file_private *file_priv = file->driver_priv;
4133 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4134 struct drm_i915_gem_request *request, *target = NULL;
4135 unsigned reset_counter;
4136 int ret;
4137
4138 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4139 if (ret)
4140 return ret;
4141
4142 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4143 if (ret)
4144 return ret;
4145
4146 spin_lock(&file_priv->mm.lock);
4147 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4148 if (time_after_eq(request->emitted_jiffies, recent_enough))
4149 break;
4150
4151 target = request;
4152 }
4153 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4154 if (target)
4155 i915_gem_request_reference(target);
4156 spin_unlock(&file_priv->mm.lock);
4157
4158 if (target == NULL)
4159 return 0;
4160
4161 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4162 if (ret == 0)
4163 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4164
4165 i915_gem_request_unreference__unlocked(target);
4166
4167 return ret;
4168 }
4169
4170 static bool
4171 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4172 {
4173 struct drm_i915_gem_object *obj = vma->obj;
4174
4175 if (alignment &&
4176 vma->node.start & (alignment - 1))
4177 return true;
4178
4179 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4180 return true;
4181
4182 if (flags & PIN_OFFSET_BIAS &&
4183 vma->node.start < (flags & PIN_OFFSET_MASK))
4184 return true;
4185
4186 return false;
4187 }
4188
4189 static int
4190 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4191 struct i915_address_space *vm,
4192 const struct i915_ggtt_view *ggtt_view,
4193 uint32_t alignment,
4194 uint64_t flags)
4195 {
4196 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4197 struct i915_vma *vma;
4198 unsigned bound;
4199 int ret;
4200
4201 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4202 return -ENODEV;
4203
4204 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4205 return -EINVAL;
4206
4207 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4208 return -EINVAL;
4209
4210 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4211 return -EINVAL;
4212
4213 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4214 i915_gem_obj_to_vma(obj, vm);
4215
4216 if (IS_ERR(vma))
4217 return PTR_ERR(vma);
4218
4219 if (vma) {
4220 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4221 return -EBUSY;
4222
4223 if (i915_vma_misplaced(vma, alignment, flags)) {
4224 unsigned long offset;
4225 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4226 i915_gem_obj_offset(obj, vm);
4227 WARN(vma->pin_count,
4228 "bo is already pinned in %s with incorrect alignment:"
4229 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4230 " obj->map_and_fenceable=%d\n",
4231 ggtt_view ? "ggtt" : "ppgtt",
4232 offset,
4233 alignment,
4234 !!(flags & PIN_MAPPABLE),
4235 obj->map_and_fenceable);
4236 ret = i915_vma_unbind(vma);
4237 if (ret)
4238 return ret;
4239
4240 vma = NULL;
4241 }
4242 }
4243
4244 bound = vma ? vma->bound : 0;
4245 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4246 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4247 flags);
4248 if (IS_ERR(vma))
4249 return PTR_ERR(vma);
4250 } else {
4251 ret = i915_vma_bind(vma, obj->cache_level, flags);
4252 if (ret)
4253 return ret;
4254 }
4255
4256 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4257 (bound ^ vma->bound) & GLOBAL_BIND) {
4258 bool mappable, fenceable;
4259 u32 fence_size, fence_alignment;
4260
4261 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4262 obj->base.size,
4263 obj->tiling_mode);
4264 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4265 obj->base.size,
4266 obj->tiling_mode,
4267 true);
4268
4269 fenceable = (vma->node.size == fence_size &&
4270 (vma->node.start & (fence_alignment - 1)) == 0);
4271
4272 mappable = (vma->node.start + fence_size <=
4273 dev_priv->gtt.mappable_end);
4274
4275 obj->map_and_fenceable = mappable && fenceable;
4276
4277 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4278 }
4279
4280 vma->pin_count++;
4281 return 0;
4282 }
4283
4284 int
4285 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4286 struct i915_address_space *vm,
4287 uint32_t alignment,
4288 uint64_t flags)
4289 {
4290 return i915_gem_object_do_pin(obj, vm,
4291 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4292 alignment, flags);
4293 }
4294
4295 int
4296 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4297 const struct i915_ggtt_view *view,
4298 uint32_t alignment,
4299 uint64_t flags)
4300 {
4301 if (WARN_ONCE(!view, "no view specified"))
4302 return -EINVAL;
4303
4304 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4305 alignment, flags | PIN_GLOBAL);
4306 }
4307
4308 void
4309 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4310 const struct i915_ggtt_view *view)
4311 {
4312 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4313
4314 BUG_ON(!vma);
4315 WARN_ON(vma->pin_count == 0);
4316 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4317
4318 --vma->pin_count;
4319 }
4320
4321 bool
4322 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4323 {
4324 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4325 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4326 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4327
4328 WARN_ON(!ggtt_vma ||
4329 dev_priv->fence_regs[obj->fence_reg].pin_count >
4330 ggtt_vma->pin_count);
4331 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4332 return true;
4333 } else
4334 return false;
4335 }
4336
4337 void
4338 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4339 {
4340 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4341 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4342 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4343 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4344 }
4345 }
4346
4347 int
4348 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4349 struct drm_file *file)
4350 {
4351 struct drm_i915_gem_busy *args = data;
4352 struct drm_i915_gem_object *obj;
4353 int ret;
4354
4355 ret = i915_mutex_lock_interruptible(dev);
4356 if (ret)
4357 return ret;
4358
4359 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4360 if (&obj->base == NULL) {
4361 ret = -ENOENT;
4362 goto unlock;
4363 }
4364
4365 /* Count all active objects as busy, even if they are currently not used
4366 * by the gpu. Users of this interface expect objects to eventually
4367 * become non-busy without any further actions, therefore emit any
4368 * necessary flushes here.
4369 */
4370 ret = i915_gem_object_flush_active(obj);
4371
4372 args->busy = obj->active;
4373 if (obj->last_read_req) {
4374 struct intel_engine_cs *ring;
4375 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4376 ring = i915_gem_request_get_ring(obj->last_read_req);
4377 args->busy |= intel_ring_flag(ring) << 16;
4378 }
4379
4380 drm_gem_object_unreference(&obj->base);
4381 unlock:
4382 mutex_unlock(&dev->struct_mutex);
4383 return ret;
4384 }
4385
4386 int
4387 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4388 struct drm_file *file_priv)
4389 {
4390 return i915_gem_ring_throttle(dev, file_priv);
4391 }
4392
4393 int
4394 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4395 struct drm_file *file_priv)
4396 {
4397 struct drm_i915_private *dev_priv = dev->dev_private;
4398 struct drm_i915_gem_madvise *args = data;
4399 struct drm_i915_gem_object *obj;
4400 int ret;
4401
4402 switch (args->madv) {
4403 case I915_MADV_DONTNEED:
4404 case I915_MADV_WILLNEED:
4405 break;
4406 default:
4407 return -EINVAL;
4408 }
4409
4410 ret = i915_mutex_lock_interruptible(dev);
4411 if (ret)
4412 return ret;
4413
4414 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4415 if (&obj->base == NULL) {
4416 ret = -ENOENT;
4417 goto unlock;
4418 }
4419
4420 if (i915_gem_obj_is_pinned(obj)) {
4421 ret = -EINVAL;
4422 goto out;
4423 }
4424
4425 if (obj->pages &&
4426 obj->tiling_mode != I915_TILING_NONE &&
4427 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4428 if (obj->madv == I915_MADV_WILLNEED)
4429 i915_gem_object_unpin_pages(obj);
4430 if (args->madv == I915_MADV_WILLNEED)
4431 i915_gem_object_pin_pages(obj);
4432 }
4433
4434 if (obj->madv != __I915_MADV_PURGED)
4435 obj->madv = args->madv;
4436
4437 /* if the object is no longer attached, discard its backing storage */
4438 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4439 i915_gem_object_truncate(obj);
4440
4441 args->retained = obj->madv != __I915_MADV_PURGED;
4442
4443 out:
4444 drm_gem_object_unreference(&obj->base);
4445 unlock:
4446 mutex_unlock(&dev->struct_mutex);
4447 return ret;
4448 }
4449
4450 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4451 const struct drm_i915_gem_object_ops *ops)
4452 {
4453 INIT_LIST_HEAD(&obj->global_list);
4454 INIT_LIST_HEAD(&obj->ring_list);
4455 INIT_LIST_HEAD(&obj->obj_exec_link);
4456 INIT_LIST_HEAD(&obj->vma_list);
4457 INIT_LIST_HEAD(&obj->batch_pool_link);
4458
4459 obj->ops = ops;
4460
4461 obj->fence_reg = I915_FENCE_REG_NONE;
4462 obj->madv = I915_MADV_WILLNEED;
4463
4464 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4465 }
4466
4467 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4468 .get_pages = i915_gem_object_get_pages_gtt,
4469 .put_pages = i915_gem_object_put_pages_gtt,
4470 };
4471
4472 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4473 size_t size)
4474 {
4475 struct drm_i915_gem_object *obj;
4476 struct address_space *mapping;
4477 gfp_t mask;
4478
4479 obj = i915_gem_object_alloc(dev);
4480 if (obj == NULL)
4481 return NULL;
4482
4483 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4484 i915_gem_object_free(obj);
4485 return NULL;
4486 }
4487
4488 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4489 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4490 /* 965gm cannot relocate objects above 4GiB. */
4491 mask &= ~__GFP_HIGHMEM;
4492 mask |= __GFP_DMA32;
4493 }
4494
4495 mapping = file_inode(obj->base.filp)->i_mapping;
4496 mapping_set_gfp_mask(mapping, mask);
4497
4498 i915_gem_object_init(obj, &i915_gem_object_ops);
4499
4500 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4501 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4502
4503 if (HAS_LLC(dev)) {
4504 /* On some devices, we can have the GPU use the LLC (the CPU
4505 * cache) for about a 10% performance improvement
4506 * compared to uncached. Graphics requests other than
4507 * display scanout are coherent with the CPU in
4508 * accessing this cache. This means in this mode we
4509 * don't need to clflush on the CPU side, and on the
4510 * GPU side we only need to flush internal caches to
4511 * get data visible to the CPU.
4512 *
4513 * However, we maintain the display planes as UC, and so
4514 * need to rebind when first used as such.
4515 */
4516 obj->cache_level = I915_CACHE_LLC;
4517 } else
4518 obj->cache_level = I915_CACHE_NONE;
4519
4520 trace_i915_gem_object_create(obj);
4521
4522 return obj;
4523 }
4524
4525 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4526 {
4527 /* If we are the last user of the backing storage (be it shmemfs
4528 * pages or stolen etc), we know that the pages are going to be
4529 * immediately released. In this case, we can then skip copying
4530 * back the contents from the GPU.
4531 */
4532
4533 if (obj->madv != I915_MADV_WILLNEED)
4534 return false;
4535
4536 if (obj->base.filp == NULL)
4537 return true;
4538
4539 /* At first glance, this looks racy, but then again so would be
4540 * userspace racing mmap against close. However, the first external
4541 * reference to the filp can only be obtained through the
4542 * i915_gem_mmap_ioctl() which safeguards us against the user
4543 * acquiring such a reference whilst we are in the middle of
4544 * freeing the object.
4545 */
4546 return atomic_long_read(&obj->base.filp->f_count) == 1;
4547 }
4548
4549 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4550 {
4551 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4552 struct drm_device *dev = obj->base.dev;
4553 struct drm_i915_private *dev_priv = dev->dev_private;
4554 struct i915_vma *vma, *next;
4555
4556 intel_runtime_pm_get(dev_priv);
4557
4558 trace_i915_gem_object_destroy(obj);
4559
4560 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4561 int ret;
4562
4563 vma->pin_count = 0;
4564 ret = i915_vma_unbind(vma);
4565 if (WARN_ON(ret == -ERESTARTSYS)) {
4566 bool was_interruptible;
4567
4568 was_interruptible = dev_priv->mm.interruptible;
4569 dev_priv->mm.interruptible = false;
4570
4571 WARN_ON(i915_vma_unbind(vma));
4572
4573 dev_priv->mm.interruptible = was_interruptible;
4574 }
4575 }
4576
4577 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4578 * before progressing. */
4579 if (obj->stolen)
4580 i915_gem_object_unpin_pages(obj);
4581
4582 WARN_ON(obj->frontbuffer_bits);
4583
4584 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4585 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4586 obj->tiling_mode != I915_TILING_NONE)
4587 i915_gem_object_unpin_pages(obj);
4588
4589 if (WARN_ON(obj->pages_pin_count))
4590 obj->pages_pin_count = 0;
4591 if (discard_backing_storage(obj))
4592 obj->madv = I915_MADV_DONTNEED;
4593 i915_gem_object_put_pages(obj);
4594 i915_gem_object_free_mmap_offset(obj);
4595
4596 BUG_ON(obj->pages);
4597
4598 if (obj->base.import_attach)
4599 drm_prime_gem_destroy(&obj->base, NULL);
4600
4601 if (obj->ops->release)
4602 obj->ops->release(obj);
4603
4604 drm_gem_object_release(&obj->base);
4605 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4606
4607 kfree(obj->bit_17);
4608 i915_gem_object_free(obj);
4609
4610 intel_runtime_pm_put(dev_priv);
4611 }
4612
4613 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4614 struct i915_address_space *vm)
4615 {
4616 struct i915_vma *vma;
4617 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4618 if (i915_is_ggtt(vma->vm) &&
4619 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4620 continue;
4621 if (vma->vm == vm)
4622 return vma;
4623 }
4624 return NULL;
4625 }
4626
4627 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4628 const struct i915_ggtt_view *view)
4629 {
4630 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4631 struct i915_vma *vma;
4632
4633 if (WARN_ONCE(!view, "no view specified"))
4634 return ERR_PTR(-EINVAL);
4635
4636 list_for_each_entry(vma, &obj->vma_list, vma_link)
4637 if (vma->vm == ggtt &&
4638 i915_ggtt_view_equal(&vma->ggtt_view, view))
4639 return vma;
4640 return NULL;
4641 }
4642
4643 void i915_gem_vma_destroy(struct i915_vma *vma)
4644 {
4645 struct i915_address_space *vm = NULL;
4646 WARN_ON(vma->node.allocated);
4647
4648 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4649 if (!list_empty(&vma->exec_list))
4650 return;
4651
4652 vm = vma->vm;
4653
4654 if (!i915_is_ggtt(vm))
4655 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4656
4657 list_del(&vma->vma_link);
4658
4659 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4660 }
4661
4662 static void
4663 i915_gem_stop_ringbuffers(struct drm_device *dev)
4664 {
4665 struct drm_i915_private *dev_priv = dev->dev_private;
4666 struct intel_engine_cs *ring;
4667 int i;
4668
4669 for_each_ring(ring, dev_priv, i)
4670 dev_priv->gt.stop_ring(ring);
4671 }
4672
4673 int
4674 i915_gem_suspend(struct drm_device *dev)
4675 {
4676 struct drm_i915_private *dev_priv = dev->dev_private;
4677 int ret = 0;
4678
4679 mutex_lock(&dev->struct_mutex);
4680 ret = i915_gpu_idle(dev);
4681 if (ret)
4682 goto err;
4683
4684 i915_gem_retire_requests(dev);
4685
4686 i915_gem_stop_ringbuffers(dev);
4687 mutex_unlock(&dev->struct_mutex);
4688
4689 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4690 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4691 flush_delayed_work(&dev_priv->mm.idle_work);
4692
4693 /* Assert that we sucessfully flushed all the work and
4694 * reset the GPU back to its idle, low power state.
4695 */
4696 WARN_ON(dev_priv->mm.busy);
4697
4698 return 0;
4699
4700 err:
4701 mutex_unlock(&dev->struct_mutex);
4702 return ret;
4703 }
4704
4705 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4706 {
4707 struct drm_device *dev = ring->dev;
4708 struct drm_i915_private *dev_priv = dev->dev_private;
4709 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4710 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4711 int i, ret;
4712
4713 if (!HAS_L3_DPF(dev) || !remap_info)
4714 return 0;
4715
4716 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4717 if (ret)
4718 return ret;
4719
4720 /*
4721 * Note: We do not worry about the concurrent register cacheline hang
4722 * here because no other code should access these registers other than
4723 * at initialization time.
4724 */
4725 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4726 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4727 intel_ring_emit(ring, reg_base + i);
4728 intel_ring_emit(ring, remap_info[i/4]);
4729 }
4730
4731 intel_ring_advance(ring);
4732
4733 return ret;
4734 }
4735
4736 void i915_gem_init_swizzling(struct drm_device *dev)
4737 {
4738 struct drm_i915_private *dev_priv = dev->dev_private;
4739
4740 if (INTEL_INFO(dev)->gen < 5 ||
4741 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4742 return;
4743
4744 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4745 DISP_TILE_SURFACE_SWIZZLING);
4746
4747 if (IS_GEN5(dev))
4748 return;
4749
4750 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4751 if (IS_GEN6(dev))
4752 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4753 else if (IS_GEN7(dev))
4754 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4755 else if (IS_GEN8(dev))
4756 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4757 else
4758 BUG();
4759 }
4760
4761 static bool
4762 intel_enable_blt(struct drm_device *dev)
4763 {
4764 if (!HAS_BLT(dev))
4765 return false;
4766
4767 /* The blitter was dysfunctional on early prototypes */
4768 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4769 DRM_INFO("BLT not supported on this pre-production hardware;"
4770 " graphics performance will be degraded.\n");
4771 return false;
4772 }
4773
4774 return true;
4775 }
4776
4777 static void init_unused_ring(struct drm_device *dev, u32 base)
4778 {
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780
4781 I915_WRITE(RING_CTL(base), 0);
4782 I915_WRITE(RING_HEAD(base), 0);
4783 I915_WRITE(RING_TAIL(base), 0);
4784 I915_WRITE(RING_START(base), 0);
4785 }
4786
4787 static void init_unused_rings(struct drm_device *dev)
4788 {
4789 if (IS_I830(dev)) {
4790 init_unused_ring(dev, PRB1_BASE);
4791 init_unused_ring(dev, SRB0_BASE);
4792 init_unused_ring(dev, SRB1_BASE);
4793 init_unused_ring(dev, SRB2_BASE);
4794 init_unused_ring(dev, SRB3_BASE);
4795 } else if (IS_GEN2(dev)) {
4796 init_unused_ring(dev, SRB0_BASE);
4797 init_unused_ring(dev, SRB1_BASE);
4798 } else if (IS_GEN3(dev)) {
4799 init_unused_ring(dev, PRB1_BASE);
4800 init_unused_ring(dev, PRB2_BASE);
4801 }
4802 }
4803
4804 int i915_gem_init_rings(struct drm_device *dev)
4805 {
4806 struct drm_i915_private *dev_priv = dev->dev_private;
4807 int ret;
4808
4809 ret = intel_init_render_ring_buffer(dev);
4810 if (ret)
4811 return ret;
4812
4813 if (HAS_BSD(dev)) {
4814 ret = intel_init_bsd_ring_buffer(dev);
4815 if (ret)
4816 goto cleanup_render_ring;
4817 }
4818
4819 if (intel_enable_blt(dev)) {
4820 ret = intel_init_blt_ring_buffer(dev);
4821 if (ret)
4822 goto cleanup_bsd_ring;
4823 }
4824
4825 if (HAS_VEBOX(dev)) {
4826 ret = intel_init_vebox_ring_buffer(dev);
4827 if (ret)
4828 goto cleanup_blt_ring;
4829 }
4830
4831 if (HAS_BSD2(dev)) {
4832 ret = intel_init_bsd2_ring_buffer(dev);
4833 if (ret)
4834 goto cleanup_vebox_ring;
4835 }
4836
4837 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4838 if (ret)
4839 goto cleanup_bsd2_ring;
4840
4841 return 0;
4842
4843 cleanup_bsd2_ring:
4844 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4845 cleanup_vebox_ring:
4846 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4847 cleanup_blt_ring:
4848 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4849 cleanup_bsd_ring:
4850 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4851 cleanup_render_ring:
4852 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4853
4854 return ret;
4855 }
4856
4857 int
4858 i915_gem_init_hw(struct drm_device *dev)
4859 {
4860 struct drm_i915_private *dev_priv = dev->dev_private;
4861 struct intel_engine_cs *ring;
4862 int ret, i;
4863
4864 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4865 return -EIO;
4866
4867 /* Double layer security blanket, see i915_gem_init() */
4868 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4869
4870 if (dev_priv->ellc_size)
4871 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4872
4873 if (IS_HASWELL(dev))
4874 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4875 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4876
4877 if (HAS_PCH_NOP(dev)) {
4878 if (IS_IVYBRIDGE(dev)) {
4879 u32 temp = I915_READ(GEN7_MSG_CTL);
4880 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4881 I915_WRITE(GEN7_MSG_CTL, temp);
4882 } else if (INTEL_INFO(dev)->gen >= 7) {
4883 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4884 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4885 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4886 }
4887 }
4888
4889 i915_gem_init_swizzling(dev);
4890
4891 /*
4892 * At least 830 can leave some of the unused rings
4893 * "active" (ie. head != tail) after resume which
4894 * will prevent c3 entry. Makes sure all unused rings
4895 * are totally idle.
4896 */
4897 init_unused_rings(dev);
4898
4899 for_each_ring(ring, dev_priv, i) {
4900 ret = ring->init_hw(ring);
4901 if (ret)
4902 goto out;
4903 }
4904
4905 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4906 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4907
4908 ret = i915_ppgtt_init_hw(dev);
4909 if (ret && ret != -EIO) {
4910 DRM_ERROR("PPGTT enable failed %d\n", ret);
4911 i915_gem_cleanup_ringbuffer(dev);
4912 }
4913
4914 ret = i915_gem_context_enable(dev_priv);
4915 if (ret && ret != -EIO) {
4916 DRM_ERROR("Context enable failed %d\n", ret);
4917 i915_gem_cleanup_ringbuffer(dev);
4918
4919 goto out;
4920 }
4921
4922 out:
4923 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4924 return ret;
4925 }
4926
4927 int i915_gem_init(struct drm_device *dev)
4928 {
4929 struct drm_i915_private *dev_priv = dev->dev_private;
4930 int ret;
4931
4932 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4933 i915.enable_execlists);
4934
4935 mutex_lock(&dev->struct_mutex);
4936
4937 if (IS_VALLEYVIEW(dev)) {
4938 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4939 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4940 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4941 VLV_GTLC_ALLOWWAKEACK), 10))
4942 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4943 }
4944
4945 if (!i915.enable_execlists) {
4946 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4947 dev_priv->gt.init_rings = i915_gem_init_rings;
4948 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4949 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4950 } else {
4951 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4952 dev_priv->gt.init_rings = intel_logical_rings_init;
4953 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4954 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4955 }
4956
4957 /* This is just a security blanket to placate dragons.
4958 * On some systems, we very sporadically observe that the first TLBs
4959 * used by the CS may be stale, despite us poking the TLB reset. If
4960 * we hold the forcewake during initialisation these problems
4961 * just magically go away.
4962 */
4963 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4964
4965 ret = i915_gem_init_userptr(dev);
4966 if (ret)
4967 goto out_unlock;
4968
4969 i915_gem_init_global_gtt(dev);
4970
4971 ret = i915_gem_context_init(dev);
4972 if (ret)
4973 goto out_unlock;
4974
4975 ret = dev_priv->gt.init_rings(dev);
4976 if (ret)
4977 goto out_unlock;
4978
4979 ret = i915_gem_init_hw(dev);
4980 if (ret == -EIO) {
4981 /* Allow ring initialisation to fail by marking the GPU as
4982 * wedged. But we only want to do this where the GPU is angry,
4983 * for all other failure, such as an allocation failure, bail.
4984 */
4985 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4986 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4987 ret = 0;
4988 }
4989
4990 out_unlock:
4991 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4992 mutex_unlock(&dev->struct_mutex);
4993
4994 return ret;
4995 }
4996
4997 void
4998 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4999 {
5000 struct drm_i915_private *dev_priv = dev->dev_private;
5001 struct intel_engine_cs *ring;
5002 int i;
5003
5004 for_each_ring(ring, dev_priv, i)
5005 dev_priv->gt.cleanup_ring(ring);
5006 }
5007
5008 static void
5009 init_ring_lists(struct intel_engine_cs *ring)
5010 {
5011 INIT_LIST_HEAD(&ring->active_list);
5012 INIT_LIST_HEAD(&ring->request_list);
5013 }
5014
5015 void i915_init_vm(struct drm_i915_private *dev_priv,
5016 struct i915_address_space *vm)
5017 {
5018 if (!i915_is_ggtt(vm))
5019 drm_mm_init(&vm->mm, vm->start, vm->total);
5020 vm->dev = dev_priv->dev;
5021 INIT_LIST_HEAD(&vm->active_list);
5022 INIT_LIST_HEAD(&vm->inactive_list);
5023 INIT_LIST_HEAD(&vm->global_link);
5024 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5025 }
5026
5027 void
5028 i915_gem_load(struct drm_device *dev)
5029 {
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 int i;
5032
5033 dev_priv->objects =
5034 kmem_cache_create("i915_gem_object",
5035 sizeof(struct drm_i915_gem_object), 0,
5036 SLAB_HWCACHE_ALIGN,
5037 NULL);
5038 dev_priv->vmas =
5039 kmem_cache_create("i915_gem_vma",
5040 sizeof(struct i915_vma), 0,
5041 SLAB_HWCACHE_ALIGN,
5042 NULL);
5043 dev_priv->requests =
5044 kmem_cache_create("i915_gem_request",
5045 sizeof(struct drm_i915_gem_request), 0,
5046 SLAB_HWCACHE_ALIGN,
5047 NULL);
5048
5049 INIT_LIST_HEAD(&dev_priv->vm_list);
5050 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5051
5052 INIT_LIST_HEAD(&dev_priv->context_list);
5053 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5054 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5055 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5056 for (i = 0; i < I915_NUM_RINGS; i++)
5057 init_ring_lists(&dev_priv->ring[i]);
5058 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5059 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5060 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5061 i915_gem_retire_work_handler);
5062 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5063 i915_gem_idle_work_handler);
5064 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5065
5066 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5067
5068 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5069 dev_priv->num_fence_regs = 32;
5070 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5071 dev_priv->num_fence_regs = 16;
5072 else
5073 dev_priv->num_fence_regs = 8;
5074
5075 if (intel_vgpu_active(dev))
5076 dev_priv->num_fence_regs =
5077 I915_READ(vgtif_reg(avail_rs.fence_num));
5078
5079 /* Initialize fence registers to zero */
5080 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5081 i915_gem_restore_fences(dev);
5082
5083 i915_gem_detect_bit_6_swizzle(dev);
5084 init_waitqueue_head(&dev_priv->pending_flip_queue);
5085
5086 dev_priv->mm.interruptible = true;
5087
5088 i915_gem_shrinker_init(dev_priv);
5089
5090 mutex_init(&dev_priv->fb_tracking.lock);
5091 }
5092
5093 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5094 {
5095 struct drm_i915_file_private *file_priv = file->driver_priv;
5096
5097 /* Clean up our request list when the client is going away, so that
5098 * later retire_requests won't dereference our soon-to-be-gone
5099 * file_priv.
5100 */
5101 spin_lock(&file_priv->mm.lock);
5102 while (!list_empty(&file_priv->mm.request_list)) {
5103 struct drm_i915_gem_request *request;
5104
5105 request = list_first_entry(&file_priv->mm.request_list,
5106 struct drm_i915_gem_request,
5107 client_list);
5108 list_del(&request->client_list);
5109 request->file_priv = NULL;
5110 }
5111 spin_unlock(&file_priv->mm.lock);
5112
5113 if (!list_empty(&file_priv->rps_boost)) {
5114 mutex_lock(&to_i915(dev)->rps.hw_lock);
5115 list_del(&file_priv->rps_boost);
5116 mutex_unlock(&to_i915(dev)->rps.hw_lock);
5117 }
5118 }
5119
5120 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5121 {
5122 struct drm_i915_file_private *file_priv;
5123 int ret;
5124
5125 DRM_DEBUG_DRIVER("\n");
5126
5127 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5128 if (!file_priv)
5129 return -ENOMEM;
5130
5131 file->driver_priv = file_priv;
5132 file_priv->dev_priv = dev->dev_private;
5133 file_priv->file = file;
5134 INIT_LIST_HEAD(&file_priv->rps_boost);
5135
5136 spin_lock_init(&file_priv->mm.lock);
5137 INIT_LIST_HEAD(&file_priv->mm.request_list);
5138
5139 ret = i915_gem_context_open(dev, file);
5140 if (ret)
5141 kfree(file_priv);
5142
5143 return ret;
5144 }
5145
5146 /**
5147 * i915_gem_track_fb - update frontbuffer tracking
5148 * old: current GEM buffer for the frontbuffer slots
5149 * new: new GEM buffer for the frontbuffer slots
5150 * frontbuffer_bits: bitmask of frontbuffer slots
5151 *
5152 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5153 * from @old and setting them in @new. Both @old and @new can be NULL.
5154 */
5155 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5156 struct drm_i915_gem_object *new,
5157 unsigned frontbuffer_bits)
5158 {
5159 if (old) {
5160 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5161 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5162 old->frontbuffer_bits &= ~frontbuffer_bits;
5163 }
5164
5165 if (new) {
5166 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5167 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5168 new->frontbuffer_bits |= frontbuffer_bits;
5169 }
5170 }
5171
5172 /* All the new VM stuff */
5173 unsigned long
5174 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5175 struct i915_address_space *vm)
5176 {
5177 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5178 struct i915_vma *vma;
5179
5180 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5181
5182 list_for_each_entry(vma, &o->vma_list, vma_link) {
5183 if (i915_is_ggtt(vma->vm) &&
5184 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5185 continue;
5186 if (vma->vm == vm)
5187 return vma->node.start;
5188 }
5189
5190 WARN(1, "%s vma for this object not found.\n",
5191 i915_is_ggtt(vm) ? "global" : "ppgtt");
5192 return -1;
5193 }
5194
5195 unsigned long
5196 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5197 const struct i915_ggtt_view *view)
5198 {
5199 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5200 struct i915_vma *vma;
5201
5202 list_for_each_entry(vma, &o->vma_list, vma_link)
5203 if (vma->vm == ggtt &&
5204 i915_ggtt_view_equal(&vma->ggtt_view, view))
5205 return vma->node.start;
5206
5207 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5208 return -1;
5209 }
5210
5211 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5212 struct i915_address_space *vm)
5213 {
5214 struct i915_vma *vma;
5215
5216 list_for_each_entry(vma, &o->vma_list, vma_link) {
5217 if (i915_is_ggtt(vma->vm) &&
5218 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5219 continue;
5220 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5221 return true;
5222 }
5223
5224 return false;
5225 }
5226
5227 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5228 const struct i915_ggtt_view *view)
5229 {
5230 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5231 struct i915_vma *vma;
5232
5233 list_for_each_entry(vma, &o->vma_list, vma_link)
5234 if (vma->vm == ggtt &&
5235 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5236 drm_mm_node_allocated(&vma->node))
5237 return true;
5238
5239 return false;
5240 }
5241
5242 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5243 {
5244 struct i915_vma *vma;
5245
5246 list_for_each_entry(vma, &o->vma_list, vma_link)
5247 if (drm_mm_node_allocated(&vma->node))
5248 return true;
5249
5250 return false;
5251 }
5252
5253 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5254 struct i915_address_space *vm)
5255 {
5256 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5257 struct i915_vma *vma;
5258
5259 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5260
5261 BUG_ON(list_empty(&o->vma_list));
5262
5263 list_for_each_entry(vma, &o->vma_list, vma_link) {
5264 if (i915_is_ggtt(vma->vm) &&
5265 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5266 continue;
5267 if (vma->vm == vm)
5268 return vma->node.size;
5269 }
5270 return 0;
5271 }
5272
5273 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5274 {
5275 struct i915_vma *vma;
5276 list_for_each_entry(vma, &obj->vma_list, vma_link)
5277 if (vma->pin_count > 0)
5278 return true;
5279
5280 return false;
5281 }
5282