]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51 enum i915_cache_level level)
52 {
53 return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59 return true;
60
61 return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66 size_t size)
67 {
68 spin_lock(&dev_priv->mm.object_stat_lock);
69 dev_priv->mm.object_count++;
70 dev_priv->mm.object_memory += size;
71 spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75 size_t size)
76 {
77 spin_lock(&dev_priv->mm.object_stat_lock);
78 dev_priv->mm.object_count--;
79 dev_priv->mm.object_memory -= size;
80 spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86 int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89 i915_terminally_wedged(error))
90 if (EXIT_COND)
91 return 0;
92
93 /*
94 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95 * userspace. If it takes that long something really bad is going on and
96 * we should simply try to bail out and fail as gracefully as possible.
97 */
98 ret = wait_event_interruptible_timeout(error->reset_queue,
99 EXIT_COND,
100 10*HZ);
101 if (ret == 0) {
102 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103 return -EIO;
104 } else if (ret < 0) {
105 return ret;
106 }
107 #undef EXIT_COND
108
109 return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114 struct drm_i915_private *dev_priv = dev->dev_private;
115 int ret;
116
117 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118 if (ret)
119 return ret;
120
121 ret = mutex_lock_interruptible(&dev->struct_mutex);
122 if (ret)
123 return ret;
124
125 WARN_ON(i915_verify_lists(dev));
126 return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131 struct drm_file *file)
132 {
133 struct drm_i915_private *dev_priv = dev->dev_private;
134 struct drm_i915_gem_get_aperture *args = data;
135 struct i915_gtt *ggtt = &dev_priv->gtt;
136 struct i915_vma *vma;
137 size_t pinned;
138
139 pinned = 0;
140 mutex_lock(&dev->struct_mutex);
141 list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142 if (vma->pin_count)
143 pinned += vma->node.size;
144 list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145 if (vma->pin_count)
146 pinned += vma->node.size;
147 mutex_unlock(&dev->struct_mutex);
148
149 args->aper_size = dev_priv->gtt.base.total;
150 args->aper_available_size = args->aper_size - pinned;
151
152 return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159 char *vaddr = obj->phys_handle->vaddr;
160 struct sg_table *st;
161 struct scatterlist *sg;
162 int i;
163
164 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165 return -EINVAL;
166
167 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168 struct page *page;
169 char *src;
170
171 page = shmem_read_mapping_page(mapping, i);
172 if (IS_ERR(page))
173 return PTR_ERR(page);
174
175 src = kmap_atomic(page);
176 memcpy(vaddr, src, PAGE_SIZE);
177 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178 kunmap_atomic(src);
179
180 page_cache_release(page);
181 vaddr += PAGE_SIZE;
182 }
183
184 i915_gem_chipset_flush(obj->base.dev);
185
186 st = kmalloc(sizeof(*st), GFP_KERNEL);
187 if (st == NULL)
188 return -ENOMEM;
189
190 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191 kfree(st);
192 return -ENOMEM;
193 }
194
195 sg = st->sgl;
196 sg->offset = 0;
197 sg->length = obj->base.size;
198
199 sg_dma_address(sg) = obj->phys_handle->busaddr;
200 sg_dma_len(sg) = obj->base.size;
201
202 obj->pages = st;
203 return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209 int ret;
210
211 BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213 ret = i915_gem_object_set_to_cpu_domain(obj, true);
214 if (ret) {
215 /* In the event of a disaster, abandon all caches and
216 * hope for the best.
217 */
218 WARN_ON(ret != -EIO);
219 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220 }
221
222 if (obj->madv == I915_MADV_DONTNEED)
223 obj->dirty = 0;
224
225 if (obj->dirty) {
226 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227 char *vaddr = obj->phys_handle->vaddr;
228 int i;
229
230 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231 struct page *page;
232 char *dst;
233
234 page = shmem_read_mapping_page(mapping, i);
235 if (IS_ERR(page))
236 continue;
237
238 dst = kmap_atomic(page);
239 drm_clflush_virt_range(vaddr, PAGE_SIZE);
240 memcpy(dst, vaddr, PAGE_SIZE);
241 kunmap_atomic(dst);
242
243 set_page_dirty(page);
244 if (obj->madv == I915_MADV_WILLNEED)
245 mark_page_accessed(page);
246 page_cache_release(page);
247 vaddr += PAGE_SIZE;
248 }
249 obj->dirty = 0;
250 }
251
252 sg_free_table(obj->pages);
253 kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259 drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263 .get_pages = i915_gem_object_get_pages_phys,
264 .put_pages = i915_gem_object_put_pages_phys,
265 .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271 struct i915_vma *vma, *next;
272 int ret;
273
274 drm_gem_object_reference(&obj->base);
275 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276 if (i915_vma_unbind(vma))
277 break;
278
279 ret = i915_gem_object_put_pages(obj);
280 drm_gem_object_unreference(&obj->base);
281
282 return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287 int align)
288 {
289 drm_dma_handle_t *phys;
290 int ret;
291
292 if (obj->phys_handle) {
293 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294 return -EBUSY;
295
296 return 0;
297 }
298
299 if (obj->madv != I915_MADV_WILLNEED)
300 return -EFAULT;
301
302 if (obj->base.filp == NULL)
303 return -EINVAL;
304
305 ret = drop_pages(obj);
306 if (ret)
307 return ret;
308
309 /* create a new object */
310 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311 if (!phys)
312 return -ENOMEM;
313
314 obj->phys_handle = phys;
315 obj->ops = &i915_gem_phys_ops;
316
317 return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322 struct drm_i915_gem_pwrite *args,
323 struct drm_file *file_priv)
324 {
325 struct drm_device *dev = obj->base.dev;
326 void *vaddr = obj->phys_handle->vaddr + args->offset;
327 char __user *user_data = to_user_ptr(args->data_ptr);
328 int ret = 0;
329
330 /* We manually control the domain here and pretend that it
331 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332 */
333 ret = i915_gem_object_wait_rendering(obj, false);
334 if (ret)
335 return ret;
336
337 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339 unsigned long unwritten;
340
341 /* The physical object once assigned is fixed for the lifetime
342 * of the obj, so we can safely drop the lock and continue
343 * to access vaddr.
344 */
345 mutex_unlock(&dev->struct_mutex);
346 unwritten = copy_from_user(vaddr, user_data, args->size);
347 mutex_lock(&dev->struct_mutex);
348 if (unwritten) {
349 ret = -EFAULT;
350 goto out;
351 }
352 }
353
354 drm_clflush_virt_range(vaddr, args->size);
355 i915_gem_chipset_flush(dev);
356
357 out:
358 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359 return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371 kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376 struct drm_device *dev,
377 uint64_t size,
378 uint32_t *handle_p)
379 {
380 struct drm_i915_gem_object *obj;
381 int ret;
382 u32 handle;
383
384 size = roundup(size, PAGE_SIZE);
385 if (size == 0)
386 return -EINVAL;
387
388 /* Allocate the new object */
389 obj = i915_gem_alloc_object(dev, size);
390 if (obj == NULL)
391 return -ENOMEM;
392
393 ret = drm_gem_handle_create(file, &obj->base, &handle);
394 /* drop reference from allocate - handle holds it now */
395 drm_gem_object_unreference_unlocked(&obj->base);
396 if (ret)
397 return ret;
398
399 *handle_p = handle;
400 return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405 struct drm_device *dev,
406 struct drm_mode_create_dumb *args)
407 {
408 /* have to work out size/pitch and return them */
409 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410 args->size = args->pitch * args->height;
411 return i915_gem_create(file, dev,
412 args->size, &args->handle);
413 }
414
415 /**
416 * Creates a new mm object and returns a handle to it.
417 */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420 struct drm_file *file)
421 {
422 struct drm_i915_gem_create *args = data;
423
424 return i915_gem_create(file, dev,
425 args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430 const char *gpu_vaddr, int gpu_offset,
431 int length)
432 {
433 int ret, cpu_offset = 0;
434
435 while (length > 0) {
436 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437 int this_length = min(cacheline_end - gpu_offset, length);
438 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441 gpu_vaddr + swizzled_gpu_offset,
442 this_length);
443 if (ret)
444 return ret + length;
445
446 cpu_offset += this_length;
447 gpu_offset += this_length;
448 length -= this_length;
449 }
450
451 return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456 const char __user *cpu_vaddr,
457 int length)
458 {
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467 cpu_vaddr + cpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478 }
479
480 /*
481 * Pins the specified object's pages and synchronizes the object with
482 * GPU accesses. Sets needs_clflush to non-zero if the caller should
483 * flush the object from the CPU cache.
484 */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486 int *needs_clflush)
487 {
488 int ret;
489
490 *needs_clflush = 0;
491
492 if (!obj->base.filp)
493 return -EINVAL;
494
495 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496 /* If we're not in the cpu read domain, set ourself into the gtt
497 * read domain and manually flush cachelines (if required). This
498 * optimizes for the case when the gpu will dirty the data
499 * anyway again before the next pread happens. */
500 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501 obj->cache_level);
502 ret = i915_gem_object_wait_rendering(obj, true);
503 if (ret)
504 return ret;
505 }
506
507 ret = i915_gem_object_get_pages(obj);
508 if (ret)
509 return ret;
510
511 i915_gem_object_pin_pages(obj);
512
513 return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517 * Flushes invalid cachelines before reading the target if
518 * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521 char __user *user_data,
522 bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524 char *vaddr;
525 int ret;
526
527 if (unlikely(page_do_bit17_swizzling))
528 return -EINVAL;
529
530 vaddr = kmap_atomic(page);
531 if (needs_clflush)
532 drm_clflush_virt_range(vaddr + shmem_page_offset,
533 page_length);
534 ret = __copy_to_user_inatomic(user_data,
535 vaddr + shmem_page_offset,
536 page_length);
537 kunmap_atomic(vaddr);
538
539 return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544 bool swizzled)
545 {
546 if (unlikely(swizzled)) {
547 unsigned long start = (unsigned long) addr;
548 unsigned long end = (unsigned long) addr + length;
549
550 /* For swizzling simply ensure that we always flush both
551 * channels. Lame, but simple and it works. Swizzled
552 * pwrite/pread is far from a hotpath - current userspace
553 * doesn't use it at all. */
554 start = round_down(start, 128);
555 end = round_up(end, 128);
556
557 drm_clflush_virt_range((void *)start, end - start);
558 } else {
559 drm_clflush_virt_range(addr, length);
560 }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565 * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568 char __user *user_data,
569 bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571 char *vaddr;
572 int ret;
573
574 vaddr = kmap(page);
575 if (needs_clflush)
576 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577 page_length,
578 page_do_bit17_swizzling);
579
580 if (page_do_bit17_swizzling)
581 ret = __copy_to_user_swizzled(user_data,
582 vaddr, shmem_page_offset,
583 page_length);
584 else
585 ret = __copy_to_user(user_data,
586 vaddr + shmem_page_offset,
587 page_length);
588 kunmap(page);
589
590 return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595 struct drm_i915_gem_object *obj,
596 struct drm_i915_gem_pread *args,
597 struct drm_file *file)
598 {
599 char __user *user_data;
600 ssize_t remain;
601 loff_t offset;
602 int shmem_page_offset, page_length, ret = 0;
603 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604 int prefaulted = 0;
605 int needs_clflush = 0;
606 struct sg_page_iter sg_iter;
607
608 user_data = to_user_ptr(args->data_ptr);
609 remain = args->size;
610
611 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614 if (ret)
615 return ret;
616
617 offset = args->offset;
618
619 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620 offset >> PAGE_SHIFT) {
621 struct page *page = sg_page_iter_page(&sg_iter);
622
623 if (remain <= 0)
624 break;
625
626 /* Operation in this page
627 *
628 * shmem_page_offset = offset within page in shmem file
629 * page_length = bytes to copy for this page
630 */
631 shmem_page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634 page_length = PAGE_SIZE - shmem_page_offset;
635
636 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637 (page_to_phys(page) & (1 << 17)) != 0;
638
639 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640 user_data, page_do_bit17_swizzling,
641 needs_clflush);
642 if (ret == 0)
643 goto next_page;
644
645 mutex_unlock(&dev->struct_mutex);
646
647 if (likely(!i915.prefault_disable) && !prefaulted) {
648 ret = fault_in_multipages_writeable(user_data, remain);
649 /* Userspace is tricking us, but we've already clobbered
650 * its pages with the prefault and promised to write the
651 * data up to the first fault. Hence ignore any errors
652 * and just continue. */
653 (void)ret;
654 prefaulted = 1;
655 }
656
657 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658 user_data, page_do_bit17_swizzling,
659 needs_clflush);
660
661 mutex_lock(&dev->struct_mutex);
662
663 if (ret)
664 goto out;
665
666 next_page:
667 remain -= page_length;
668 user_data += page_length;
669 offset += page_length;
670 }
671
672 out:
673 i915_gem_object_unpin_pages(obj);
674
675 return ret;
676 }
677
678 /**
679 * Reads data from the object referenced by handle.
680 *
681 * On error, the contents of *data are undefined.
682 */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685 struct drm_file *file)
686 {
687 struct drm_i915_gem_pread *args = data;
688 struct drm_i915_gem_object *obj;
689 int ret = 0;
690
691 if (args->size == 0)
692 return 0;
693
694 if (!access_ok(VERIFY_WRITE,
695 to_user_ptr(args->data_ptr),
696 args->size))
697 return -EFAULT;
698
699 ret = i915_mutex_lock_interruptible(dev);
700 if (ret)
701 return ret;
702
703 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704 if (&obj->base == NULL) {
705 ret = -ENOENT;
706 goto unlock;
707 }
708
709 /* Bounds check source. */
710 if (args->offset > obj->base.size ||
711 args->size > obj->base.size - args->offset) {
712 ret = -EINVAL;
713 goto out;
714 }
715
716 /* prime objects have no backing filp to GEM pread/pwrite
717 * pages from.
718 */
719 if (!obj->base.filp) {
720 ret = -EINVAL;
721 goto out;
722 }
723
724 trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726 ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729 drm_gem_object_unreference(&obj->base);
730 unlock:
731 mutex_unlock(&dev->struct_mutex);
732 return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736 * page faults in the source data
737 */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741 loff_t page_base, int page_offset,
742 char __user *user_data,
743 int length)
744 {
745 void __iomem *vaddr_atomic;
746 void *vaddr;
747 unsigned long unwritten;
748
749 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750 /* We can use the cpu mem copy function because this is X86. */
751 vaddr = (void __force*)vaddr_atomic + page_offset;
752 unwritten = __copy_from_user_inatomic_nocache(vaddr,
753 user_data, length);
754 io_mapping_unmap_atomic(vaddr_atomic);
755 return unwritten;
756 }
757
758 /**
759 * This is the fast pwrite path, where we copy the data directly from the
760 * user into the GTT, uncached.
761 */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764 struct drm_i915_gem_object *obj,
765 struct drm_i915_gem_pwrite *args,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = dev->dev_private;
769 ssize_t remain;
770 loff_t offset, page_base;
771 char __user *user_data;
772 int page_offset, page_length, ret;
773
774 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775 if (ret)
776 goto out;
777
778 ret = i915_gem_object_set_to_gtt_domain(obj, true);
779 if (ret)
780 goto out_unpin;
781
782 ret = i915_gem_object_put_fence(obj);
783 if (ret)
784 goto out_unpin;
785
786 user_data = to_user_ptr(args->data_ptr);
787 remain = args->size;
788
789 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793 while (remain > 0) {
794 /* Operation in this page
795 *
796 * page_base = page offset within aperture
797 * page_offset = offset within page
798 * page_length = bytes to copy for this page
799 */
800 page_base = offset & PAGE_MASK;
801 page_offset = offset_in_page(offset);
802 page_length = remain;
803 if ((page_offset + remain) > PAGE_SIZE)
804 page_length = PAGE_SIZE - page_offset;
805
806 /* If we get a fault while copying data, then (presumably) our
807 * source page isn't available. Return the error and we'll
808 * retry in the slow path.
809 */
810 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811 page_offset, user_data, page_length)) {
812 ret = -EFAULT;
813 goto out_flush;
814 }
815
816 remain -= page_length;
817 user_data += page_length;
818 offset += page_length;
819 }
820
821 out_flush:
822 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824 i915_gem_object_ggtt_unpin(obj);
825 out:
826 return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830 * Flushes invalid cachelines before writing to the target if
831 * needs_clflush_before is set and flushes out any written cachelines after
832 * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835 char __user *user_data,
836 bool page_do_bit17_swizzling,
837 bool needs_clflush_before,
838 bool needs_clflush_after)
839 {
840 char *vaddr;
841 int ret;
842
843 if (unlikely(page_do_bit17_swizzling))
844 return -EINVAL;
845
846 vaddr = kmap_atomic(page);
847 if (needs_clflush_before)
848 drm_clflush_virt_range(vaddr + shmem_page_offset,
849 page_length);
850 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851 user_data, page_length);
852 if (needs_clflush_after)
853 drm_clflush_virt_range(vaddr + shmem_page_offset,
854 page_length);
855 kunmap_atomic(vaddr);
856
857 return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861 * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864 char __user *user_data,
865 bool page_do_bit17_swizzling,
866 bool needs_clflush_before,
867 bool needs_clflush_after)
868 {
869 char *vaddr;
870 int ret;
871
872 vaddr = kmap(page);
873 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875 page_length,
876 page_do_bit17_swizzling);
877 if (page_do_bit17_swizzling)
878 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879 user_data,
880 page_length);
881 else
882 ret = __copy_from_user(vaddr + shmem_page_offset,
883 user_data,
884 page_length);
885 if (needs_clflush_after)
886 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887 page_length,
888 page_do_bit17_swizzling);
889 kunmap(page);
890
891 return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896 struct drm_i915_gem_object *obj,
897 struct drm_i915_gem_pwrite *args,
898 struct drm_file *file)
899 {
900 ssize_t remain;
901 loff_t offset;
902 char __user *user_data;
903 int shmem_page_offset, page_length, ret = 0;
904 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905 int hit_slowpath = 0;
906 int needs_clflush_after = 0;
907 int needs_clflush_before = 0;
908 struct sg_page_iter sg_iter;
909
910 user_data = to_user_ptr(args->data_ptr);
911 remain = args->size;
912
913 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916 /* If we're not in the cpu write domain, set ourself into the gtt
917 * write domain and manually flush cachelines (if required). This
918 * optimizes for the case when the gpu will use the data
919 * right away and we therefore have to clflush anyway. */
920 needs_clflush_after = cpu_write_needs_clflush(obj);
921 ret = i915_gem_object_wait_rendering(obj, false);
922 if (ret)
923 return ret;
924 }
925 /* Same trick applies to invalidate partially written cachelines read
926 * before writing. */
927 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928 needs_clflush_before =
929 !cpu_cache_is_coherent(dev, obj->cache_level);
930
931 ret = i915_gem_object_get_pages(obj);
932 if (ret)
933 return ret;
934
935 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937 i915_gem_object_pin_pages(obj);
938
939 offset = args->offset;
940 obj->dirty = 1;
941
942 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943 offset >> PAGE_SHIFT) {
944 struct page *page = sg_page_iter_page(&sg_iter);
945 int partial_cacheline_write;
946
947 if (remain <= 0)
948 break;
949
950 /* Operation in this page
951 *
952 * shmem_page_offset = offset within page in shmem file
953 * page_length = bytes to copy for this page
954 */
955 shmem_page_offset = offset_in_page(offset);
956
957 page_length = remain;
958 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959 page_length = PAGE_SIZE - shmem_page_offset;
960
961 /* If we don't overwrite a cacheline completely we need to be
962 * careful to have up-to-date data by first clflushing. Don't
963 * overcomplicate things and flush the entire patch. */
964 partial_cacheline_write = needs_clflush_before &&
965 ((shmem_page_offset | page_length)
966 & (boot_cpu_data.x86_clflush_size - 1));
967
968 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969 (page_to_phys(page) & (1 << 17)) != 0;
970
971 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972 user_data, page_do_bit17_swizzling,
973 partial_cacheline_write,
974 needs_clflush_after);
975 if (ret == 0)
976 goto next_page;
977
978 hit_slowpath = 1;
979 mutex_unlock(&dev->struct_mutex);
980 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981 user_data, page_do_bit17_swizzling,
982 partial_cacheline_write,
983 needs_clflush_after);
984
985 mutex_lock(&dev->struct_mutex);
986
987 if (ret)
988 goto out;
989
990 next_page:
991 remain -= page_length;
992 user_data += page_length;
993 offset += page_length;
994 }
995
996 out:
997 i915_gem_object_unpin_pages(obj);
998
999 if (hit_slowpath) {
1000 /*
1001 * Fixup: Flush cpu caches in case we didn't flush the dirty
1002 * cachelines in-line while writing and the object moved
1003 * out of the cpu write domain while we've dropped the lock.
1004 */
1005 if (!needs_clflush_after &&
1006 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007 if (i915_gem_clflush_object(obj, obj->pin_display))
1008 needs_clflush_after = true;
1009 }
1010 }
1011
1012 if (needs_clflush_after)
1013 i915_gem_chipset_flush(dev);
1014 else
1015 obj->cache_dirty = true;
1016
1017 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018 return ret;
1019 }
1020
1021 /**
1022 * Writes data to the object referenced by handle.
1023 *
1024 * On error, the contents of the buffer that were to be modified are undefined.
1025 */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028 struct drm_file *file)
1029 {
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 struct drm_i915_gem_pwrite *args = data;
1032 struct drm_i915_gem_object *obj;
1033 int ret;
1034
1035 if (args->size == 0)
1036 return 0;
1037
1038 if (!access_ok(VERIFY_READ,
1039 to_user_ptr(args->data_ptr),
1040 args->size))
1041 return -EFAULT;
1042
1043 if (likely(!i915.prefault_disable)) {
1044 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045 args->size);
1046 if (ret)
1047 return -EFAULT;
1048 }
1049
1050 intel_runtime_pm_get(dev_priv);
1051
1052 ret = i915_mutex_lock_interruptible(dev);
1053 if (ret)
1054 goto put_rpm;
1055
1056 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057 if (&obj->base == NULL) {
1058 ret = -ENOENT;
1059 goto unlock;
1060 }
1061
1062 /* Bounds check destination. */
1063 if (args->offset > obj->base.size ||
1064 args->size > obj->base.size - args->offset) {
1065 ret = -EINVAL;
1066 goto out;
1067 }
1068
1069 /* prime objects have no backing filp to GEM pread/pwrite
1070 * pages from.
1071 */
1072 if (!obj->base.filp) {
1073 ret = -EINVAL;
1074 goto out;
1075 }
1076
1077 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079 ret = -EFAULT;
1080 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081 * it would end up going through the fenced access, and we'll get
1082 * different detiling behavior between reading and writing.
1083 * pread/pwrite currently are reading and writing from the CPU
1084 * perspective, requiring manual detiling by the client.
1085 */
1086 if (obj->tiling_mode == I915_TILING_NONE &&
1087 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088 cpu_write_needs_clflush(obj)) {
1089 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090 /* Note that the gtt paths might fail with non-page-backed user
1091 * pointers (e.g. gtt mappings when moving data between
1092 * textures). Fallback to the shmem path in that case. */
1093 }
1094
1095 if (ret == -EFAULT || ret == -ENOSPC) {
1096 if (obj->phys_handle)
1097 ret = i915_gem_phys_pwrite(obj, args, file);
1098 else
1099 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100 }
1101
1102 out:
1103 drm_gem_object_unreference(&obj->base);
1104 unlock:
1105 mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107 intel_runtime_pm_put(dev_priv);
1108
1109 return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114 bool interruptible)
1115 {
1116 if (i915_reset_in_progress(error)) {
1117 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118 * -EIO unconditionally for these. */
1119 if (!interruptible)
1120 return -EIO;
1121
1122 /* Recovery complete, but the reset failed ... */
1123 if (i915_terminally_wedged(error))
1124 return -EIO;
1125
1126 /*
1127 * Check if GPU Reset is in progress - we need intel_ring_begin
1128 * to work properly to reinit the hw state while the gpu is
1129 * still marked as reset-in-progress. Handle this with a flag.
1130 */
1131 if (!error->reload_in_reset)
1132 return -EAGAIN;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140 wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144 struct intel_engine_cs *ring)
1145 {
1146 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static unsigned long local_clock_us(unsigned *cpu)
1150 {
1151 unsigned long t;
1152
1153 /* Cheaply and approximately convert from nanoseconds to microseconds.
1154 * The result and subsequent calculations are also defined in the same
1155 * approximate microseconds units. The principal source of timing
1156 * error here is from the simple truncation.
1157 *
1158 * Note that local_clock() is only defined wrt to the current CPU;
1159 * the comparisons are no longer valid if we switch CPUs. Instead of
1160 * blocking preemption for the entire busywait, we can detect the CPU
1161 * switch and use that as indicator of system load and a reason to
1162 * stop busywaiting, see busywait_stop().
1163 */
1164 *cpu = get_cpu();
1165 t = local_clock() >> 10;
1166 put_cpu();
1167
1168 return t;
1169 }
1170
1171 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1172 {
1173 unsigned this_cpu;
1174
1175 if (time_after(local_clock_us(&this_cpu), timeout))
1176 return true;
1177
1178 return this_cpu != cpu;
1179 }
1180
1181 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1182 {
1183 unsigned long timeout;
1184 unsigned cpu;
1185
1186 /* When waiting for high frequency requests, e.g. during synchronous
1187 * rendering split between the CPU and GPU, the finite amount of time
1188 * required to set up the irq and wait upon it limits the response
1189 * rate. By busywaiting on the request completion for a short while we
1190 * can service the high frequency waits as quick as possible. However,
1191 * if it is a slow request, we want to sleep as quickly as possible.
1192 * The tradeoff between waiting and sleeping is roughly the time it
1193 * takes to sleep on a request, on the order of a microsecond.
1194 */
1195
1196 if (req->ring->irq_refcount)
1197 return -EBUSY;
1198
1199 /* Only spin if we know the GPU is processing this request */
1200 if (!i915_gem_request_started(req, true))
1201 return -EAGAIN;
1202
1203 timeout = local_clock_us(&cpu) + 5;
1204 while (!need_resched()) {
1205 if (i915_gem_request_completed(req, true))
1206 return 0;
1207
1208 if (signal_pending_state(state, current))
1209 break;
1210
1211 if (busywait_stop(timeout, cpu))
1212 break;
1213
1214 cpu_relax_lowlatency();
1215 }
1216
1217 if (i915_gem_request_completed(req, false))
1218 return 0;
1219
1220 return -EAGAIN;
1221 }
1222
1223 /**
1224 * __i915_wait_request - wait until execution of request has finished
1225 * @req: duh!
1226 * @reset_counter: reset sequence associated with the given request
1227 * @interruptible: do an interruptible wait (normally yes)
1228 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1229 *
1230 * Note: It is of utmost importance that the passed in seqno and reset_counter
1231 * values have been read by the caller in an smp safe manner. Where read-side
1232 * locks are involved, it is sufficient to read the reset_counter before
1233 * unlocking the lock that protects the seqno. For lockless tricks, the
1234 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1235 * inserted.
1236 *
1237 * Returns 0 if the request was found within the alloted time. Else returns the
1238 * errno with remaining time filled in timeout argument.
1239 */
1240 int __i915_wait_request(struct drm_i915_gem_request *req,
1241 unsigned reset_counter,
1242 bool interruptible,
1243 s64 *timeout,
1244 struct intel_rps_client *rps)
1245 {
1246 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1247 struct drm_device *dev = ring->dev;
1248 struct drm_i915_private *dev_priv = dev->dev_private;
1249 const bool irq_test_in_progress =
1250 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1251 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1252 DEFINE_WAIT(wait);
1253 unsigned long timeout_expire;
1254 s64 before, now;
1255 int ret;
1256
1257 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1258
1259 if (list_empty(&req->list))
1260 return 0;
1261
1262 if (i915_gem_request_completed(req, true))
1263 return 0;
1264
1265 timeout_expire = 0;
1266 if (timeout) {
1267 if (WARN_ON(*timeout < 0))
1268 return -EINVAL;
1269
1270 if (*timeout == 0)
1271 return -ETIME;
1272
1273 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1274 }
1275
1276 if (INTEL_INFO(dev_priv)->gen >= 6)
1277 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1278
1279 /* Record current time in case interrupted by signal, or wedged */
1280 trace_i915_gem_request_wait_begin(req);
1281 before = ktime_get_raw_ns();
1282
1283 /* Optimistic spin for the next jiffie before touching IRQs */
1284 ret = __i915_spin_request(req, state);
1285 if (ret == 0)
1286 goto out;
1287
1288 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1289 ret = -ENODEV;
1290 goto out;
1291 }
1292
1293 for (;;) {
1294 struct timer_list timer;
1295
1296 prepare_to_wait(&ring->irq_queue, &wait, state);
1297
1298 /* We need to check whether any gpu reset happened in between
1299 * the caller grabbing the seqno and now ... */
1300 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1301 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1302 * is truely gone. */
1303 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1304 if (ret == 0)
1305 ret = -EAGAIN;
1306 break;
1307 }
1308
1309 if (i915_gem_request_completed(req, false)) {
1310 ret = 0;
1311 break;
1312 }
1313
1314 if (signal_pending_state(state, current)) {
1315 ret = -ERESTARTSYS;
1316 break;
1317 }
1318
1319 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1320 ret = -ETIME;
1321 break;
1322 }
1323
1324 timer.function = NULL;
1325 if (timeout || missed_irq(dev_priv, ring)) {
1326 unsigned long expire;
1327
1328 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1329 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1330 mod_timer(&timer, expire);
1331 }
1332
1333 io_schedule();
1334
1335 if (timer.function) {
1336 del_singleshot_timer_sync(&timer);
1337 destroy_timer_on_stack(&timer);
1338 }
1339 }
1340 if (!irq_test_in_progress)
1341 ring->irq_put(ring);
1342
1343 finish_wait(&ring->irq_queue, &wait);
1344
1345 out:
1346 now = ktime_get_raw_ns();
1347 trace_i915_gem_request_wait_end(req);
1348
1349 if (timeout) {
1350 s64 tres = *timeout - (now - before);
1351
1352 *timeout = tres < 0 ? 0 : tres;
1353
1354 /*
1355 * Apparently ktime isn't accurate enough and occasionally has a
1356 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1357 * things up to make the test happy. We allow up to 1 jiffy.
1358 *
1359 * This is a regrssion from the timespec->ktime conversion.
1360 */
1361 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1362 *timeout = 0;
1363 }
1364
1365 return ret;
1366 }
1367
1368 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1369 struct drm_file *file)
1370 {
1371 struct drm_i915_private *dev_private;
1372 struct drm_i915_file_private *file_priv;
1373
1374 WARN_ON(!req || !file || req->file_priv);
1375
1376 if (!req || !file)
1377 return -EINVAL;
1378
1379 if (req->file_priv)
1380 return -EINVAL;
1381
1382 dev_private = req->ring->dev->dev_private;
1383 file_priv = file->driver_priv;
1384
1385 spin_lock(&file_priv->mm.lock);
1386 req->file_priv = file_priv;
1387 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1388 spin_unlock(&file_priv->mm.lock);
1389
1390 req->pid = get_pid(task_pid(current));
1391
1392 return 0;
1393 }
1394
1395 static inline void
1396 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1397 {
1398 struct drm_i915_file_private *file_priv = request->file_priv;
1399
1400 if (!file_priv)
1401 return;
1402
1403 spin_lock(&file_priv->mm.lock);
1404 list_del(&request->client_list);
1405 request->file_priv = NULL;
1406 spin_unlock(&file_priv->mm.lock);
1407
1408 put_pid(request->pid);
1409 request->pid = NULL;
1410 }
1411
1412 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1413 {
1414 trace_i915_gem_request_retire(request);
1415
1416 /* We know the GPU must have read the request to have
1417 * sent us the seqno + interrupt, so use the position
1418 * of tail of the request to update the last known position
1419 * of the GPU head.
1420 *
1421 * Note this requires that we are always called in request
1422 * completion order.
1423 */
1424 request->ringbuf->last_retired_head = request->postfix;
1425
1426 list_del_init(&request->list);
1427 i915_gem_request_remove_from_client(request);
1428
1429 i915_gem_request_unreference(request);
1430 }
1431
1432 static void
1433 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1434 {
1435 struct intel_engine_cs *engine = req->ring;
1436 struct drm_i915_gem_request *tmp;
1437
1438 lockdep_assert_held(&engine->dev->struct_mutex);
1439
1440 if (list_empty(&req->list))
1441 return;
1442
1443 do {
1444 tmp = list_first_entry(&engine->request_list,
1445 typeof(*tmp), list);
1446
1447 i915_gem_request_retire(tmp);
1448 } while (tmp != req);
1449
1450 WARN_ON(i915_verify_lists(engine->dev));
1451 }
1452
1453 /**
1454 * Waits for a request to be signaled, and cleans up the
1455 * request and object lists appropriately for that event.
1456 */
1457 int
1458 i915_wait_request(struct drm_i915_gem_request *req)
1459 {
1460 struct drm_device *dev;
1461 struct drm_i915_private *dev_priv;
1462 bool interruptible;
1463 int ret;
1464
1465 BUG_ON(req == NULL);
1466
1467 dev = req->ring->dev;
1468 dev_priv = dev->dev_private;
1469 interruptible = dev_priv->mm.interruptible;
1470
1471 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1472
1473 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1474 if (ret)
1475 return ret;
1476
1477 ret = __i915_wait_request(req,
1478 atomic_read(&dev_priv->gpu_error.reset_counter),
1479 interruptible, NULL, NULL);
1480 if (ret)
1481 return ret;
1482
1483 __i915_gem_request_retire__upto(req);
1484 return 0;
1485 }
1486
1487 /**
1488 * Ensures that all rendering to the object has completed and the object is
1489 * safe to unbind from the GTT or access from the CPU.
1490 */
1491 int
1492 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1493 bool readonly)
1494 {
1495 int ret, i;
1496
1497 if (!obj->active)
1498 return 0;
1499
1500 if (readonly) {
1501 if (obj->last_write_req != NULL) {
1502 ret = i915_wait_request(obj->last_write_req);
1503 if (ret)
1504 return ret;
1505
1506 i = obj->last_write_req->ring->id;
1507 if (obj->last_read_req[i] == obj->last_write_req)
1508 i915_gem_object_retire__read(obj, i);
1509 else
1510 i915_gem_object_retire__write(obj);
1511 }
1512 } else {
1513 for (i = 0; i < I915_NUM_RINGS; i++) {
1514 if (obj->last_read_req[i] == NULL)
1515 continue;
1516
1517 ret = i915_wait_request(obj->last_read_req[i]);
1518 if (ret)
1519 return ret;
1520
1521 i915_gem_object_retire__read(obj, i);
1522 }
1523 RQ_BUG_ON(obj->active);
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
1530 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1531 struct drm_i915_gem_request *req)
1532 {
1533 int ring = req->ring->id;
1534
1535 if (obj->last_read_req[ring] == req)
1536 i915_gem_object_retire__read(obj, ring);
1537 else if (obj->last_write_req == req)
1538 i915_gem_object_retire__write(obj);
1539
1540 __i915_gem_request_retire__upto(req);
1541 }
1542
1543 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1544 * as the object state may change during this call.
1545 */
1546 static __must_check int
1547 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1548 struct intel_rps_client *rps,
1549 bool readonly)
1550 {
1551 struct drm_device *dev = obj->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1554 unsigned reset_counter;
1555 int ret, i, n = 0;
1556
1557 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1558 BUG_ON(!dev_priv->mm.interruptible);
1559
1560 if (!obj->active)
1561 return 0;
1562
1563 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1564 if (ret)
1565 return ret;
1566
1567 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1568
1569 if (readonly) {
1570 struct drm_i915_gem_request *req;
1571
1572 req = obj->last_write_req;
1573 if (req == NULL)
1574 return 0;
1575
1576 requests[n++] = i915_gem_request_reference(req);
1577 } else {
1578 for (i = 0; i < I915_NUM_RINGS; i++) {
1579 struct drm_i915_gem_request *req;
1580
1581 req = obj->last_read_req[i];
1582 if (req == NULL)
1583 continue;
1584
1585 requests[n++] = i915_gem_request_reference(req);
1586 }
1587 }
1588
1589 mutex_unlock(&dev->struct_mutex);
1590 for (i = 0; ret == 0 && i < n; i++)
1591 ret = __i915_wait_request(requests[i], reset_counter, true,
1592 NULL, rps);
1593 mutex_lock(&dev->struct_mutex);
1594
1595 for (i = 0; i < n; i++) {
1596 if (ret == 0)
1597 i915_gem_object_retire_request(obj, requests[i]);
1598 i915_gem_request_unreference(requests[i]);
1599 }
1600
1601 return ret;
1602 }
1603
1604 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1605 {
1606 struct drm_i915_file_private *fpriv = file->driver_priv;
1607 return &fpriv->rps;
1608 }
1609
1610 /**
1611 * Called when user space prepares to use an object with the CPU, either
1612 * through the mmap ioctl's mapping or a GTT mapping.
1613 */
1614 int
1615 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1616 struct drm_file *file)
1617 {
1618 struct drm_i915_gem_set_domain *args = data;
1619 struct drm_i915_gem_object *obj;
1620 uint32_t read_domains = args->read_domains;
1621 uint32_t write_domain = args->write_domain;
1622 int ret;
1623
1624 /* Only handle setting domains to types used by the CPU. */
1625 if (write_domain & I915_GEM_GPU_DOMAINS)
1626 return -EINVAL;
1627
1628 if (read_domains & I915_GEM_GPU_DOMAINS)
1629 return -EINVAL;
1630
1631 /* Having something in the write domain implies it's in the read
1632 * domain, and only that read domain. Enforce that in the request.
1633 */
1634 if (write_domain != 0 && read_domains != write_domain)
1635 return -EINVAL;
1636
1637 ret = i915_mutex_lock_interruptible(dev);
1638 if (ret)
1639 return ret;
1640
1641 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1642 if (&obj->base == NULL) {
1643 ret = -ENOENT;
1644 goto unlock;
1645 }
1646
1647 /* Try to flush the object off the GPU without holding the lock.
1648 * We will repeat the flush holding the lock in the normal manner
1649 * to catch cases where we are gazumped.
1650 */
1651 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1652 to_rps_client(file),
1653 !write_domain);
1654 if (ret)
1655 goto unref;
1656
1657 if (read_domains & I915_GEM_DOMAIN_GTT)
1658 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1659 else
1660 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1661
1662 if (write_domain != 0)
1663 intel_fb_obj_invalidate(obj,
1664 write_domain == I915_GEM_DOMAIN_GTT ?
1665 ORIGIN_GTT : ORIGIN_CPU);
1666
1667 unref:
1668 drm_gem_object_unreference(&obj->base);
1669 unlock:
1670 mutex_unlock(&dev->struct_mutex);
1671 return ret;
1672 }
1673
1674 /**
1675 * Called when user space has done writes to this buffer
1676 */
1677 int
1678 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1679 struct drm_file *file)
1680 {
1681 struct drm_i915_gem_sw_finish *args = data;
1682 struct drm_i915_gem_object *obj;
1683 int ret = 0;
1684
1685 ret = i915_mutex_lock_interruptible(dev);
1686 if (ret)
1687 return ret;
1688
1689 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1690 if (&obj->base == NULL) {
1691 ret = -ENOENT;
1692 goto unlock;
1693 }
1694
1695 /* Pinned buffers may be scanout, so flush the cache */
1696 if (obj->pin_display)
1697 i915_gem_object_flush_cpu_write_domain(obj);
1698
1699 drm_gem_object_unreference(&obj->base);
1700 unlock:
1701 mutex_unlock(&dev->struct_mutex);
1702 return ret;
1703 }
1704
1705 /**
1706 * Maps the contents of an object, returning the address it is mapped
1707 * into.
1708 *
1709 * While the mapping holds a reference on the contents of the object, it doesn't
1710 * imply a ref on the object itself.
1711 *
1712 * IMPORTANT:
1713 *
1714 * DRM driver writers who look a this function as an example for how to do GEM
1715 * mmap support, please don't implement mmap support like here. The modern way
1716 * to implement DRM mmap support is with an mmap offset ioctl (like
1717 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1718 * That way debug tooling like valgrind will understand what's going on, hiding
1719 * the mmap call in a driver private ioctl will break that. The i915 driver only
1720 * does cpu mmaps this way because we didn't know better.
1721 */
1722 int
1723 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1724 struct drm_file *file)
1725 {
1726 struct drm_i915_gem_mmap *args = data;
1727 struct drm_gem_object *obj;
1728 unsigned long addr;
1729
1730 if (args->flags & ~(I915_MMAP_WC))
1731 return -EINVAL;
1732
1733 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1734 return -ENODEV;
1735
1736 obj = drm_gem_object_lookup(dev, file, args->handle);
1737 if (obj == NULL)
1738 return -ENOENT;
1739
1740 /* prime objects have no backing filp to GEM mmap
1741 * pages from.
1742 */
1743 if (!obj->filp) {
1744 drm_gem_object_unreference_unlocked(obj);
1745 return -EINVAL;
1746 }
1747
1748 addr = vm_mmap(obj->filp, 0, args->size,
1749 PROT_READ | PROT_WRITE, MAP_SHARED,
1750 args->offset);
1751 if (args->flags & I915_MMAP_WC) {
1752 struct mm_struct *mm = current->mm;
1753 struct vm_area_struct *vma;
1754
1755 down_write(&mm->mmap_sem);
1756 vma = find_vma(mm, addr);
1757 if (vma)
1758 vma->vm_page_prot =
1759 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1760 else
1761 addr = -ENOMEM;
1762 up_write(&mm->mmap_sem);
1763 }
1764 drm_gem_object_unreference_unlocked(obj);
1765 if (IS_ERR((void *)addr))
1766 return addr;
1767
1768 args->addr_ptr = (uint64_t) addr;
1769
1770 return 0;
1771 }
1772
1773 /**
1774 * i915_gem_fault - fault a page into the GTT
1775 * @vma: VMA in question
1776 * @vmf: fault info
1777 *
1778 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1779 * from userspace. The fault handler takes care of binding the object to
1780 * the GTT (if needed), allocating and programming a fence register (again,
1781 * only if needed based on whether the old reg is still valid or the object
1782 * is tiled) and inserting a new PTE into the faulting process.
1783 *
1784 * Note that the faulting process may involve evicting existing objects
1785 * from the GTT and/or fence registers to make room. So performance may
1786 * suffer if the GTT working set is large or there are few fence registers
1787 * left.
1788 */
1789 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1790 {
1791 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1792 struct drm_device *dev = obj->base.dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 struct i915_ggtt_view view = i915_ggtt_view_normal;
1795 pgoff_t page_offset;
1796 unsigned long pfn;
1797 int ret = 0;
1798 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1799
1800 intel_runtime_pm_get(dev_priv);
1801
1802 /* We don't use vmf->pgoff since that has the fake offset */
1803 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1804 PAGE_SHIFT;
1805
1806 ret = i915_mutex_lock_interruptible(dev);
1807 if (ret)
1808 goto out;
1809
1810 trace_i915_gem_object_fault(obj, page_offset, true, write);
1811
1812 /* Try to flush the object off the GPU first without holding the lock.
1813 * Upon reacquiring the lock, we will perform our sanity checks and then
1814 * repeat the flush holding the lock in the normal manner to catch cases
1815 * where we are gazumped.
1816 */
1817 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1818 if (ret)
1819 goto unlock;
1820
1821 /* Access to snoopable pages through the GTT is incoherent. */
1822 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1823 ret = -EFAULT;
1824 goto unlock;
1825 }
1826
1827 /* Use a partial view if the object is bigger than the aperture. */
1828 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1829 obj->tiling_mode == I915_TILING_NONE) {
1830 static const unsigned int chunk_size = 256; // 1 MiB
1831
1832 memset(&view, 0, sizeof(view));
1833 view.type = I915_GGTT_VIEW_PARTIAL;
1834 view.params.partial.offset = rounddown(page_offset, chunk_size);
1835 view.params.partial.size =
1836 min_t(unsigned int,
1837 chunk_size,
1838 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1839 view.params.partial.offset);
1840 }
1841
1842 /* Now pin it into the GTT if needed */
1843 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1844 if (ret)
1845 goto unlock;
1846
1847 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1848 if (ret)
1849 goto unpin;
1850
1851 ret = i915_gem_object_get_fence(obj);
1852 if (ret)
1853 goto unpin;
1854
1855 /* Finally, remap it using the new GTT offset */
1856 pfn = dev_priv->gtt.mappable_base +
1857 i915_gem_obj_ggtt_offset_view(obj, &view);
1858 pfn >>= PAGE_SHIFT;
1859
1860 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1861 /* Overriding existing pages in partial view does not cause
1862 * us any trouble as TLBs are still valid because the fault
1863 * is due to userspace losing part of the mapping or never
1864 * having accessed it before (at this partials' range).
1865 */
1866 unsigned long base = vma->vm_start +
1867 (view.params.partial.offset << PAGE_SHIFT);
1868 unsigned int i;
1869
1870 for (i = 0; i < view.params.partial.size; i++) {
1871 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1872 if (ret)
1873 break;
1874 }
1875
1876 obj->fault_mappable = true;
1877 } else {
1878 if (!obj->fault_mappable) {
1879 unsigned long size = min_t(unsigned long,
1880 vma->vm_end - vma->vm_start,
1881 obj->base.size);
1882 int i;
1883
1884 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1885 ret = vm_insert_pfn(vma,
1886 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1887 pfn + i);
1888 if (ret)
1889 break;
1890 }
1891
1892 obj->fault_mappable = true;
1893 } else
1894 ret = vm_insert_pfn(vma,
1895 (unsigned long)vmf->virtual_address,
1896 pfn + page_offset);
1897 }
1898 unpin:
1899 i915_gem_object_ggtt_unpin_view(obj, &view);
1900 unlock:
1901 mutex_unlock(&dev->struct_mutex);
1902 out:
1903 switch (ret) {
1904 case -EIO:
1905 /*
1906 * We eat errors when the gpu is terminally wedged to avoid
1907 * userspace unduly crashing (gl has no provisions for mmaps to
1908 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1909 * and so needs to be reported.
1910 */
1911 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1912 ret = VM_FAULT_SIGBUS;
1913 break;
1914 }
1915 case -EAGAIN:
1916 /*
1917 * EAGAIN means the gpu is hung and we'll wait for the error
1918 * handler to reset everything when re-faulting in
1919 * i915_mutex_lock_interruptible.
1920 */
1921 case 0:
1922 case -ERESTARTSYS:
1923 case -EINTR:
1924 case -EBUSY:
1925 /*
1926 * EBUSY is ok: this just means that another thread
1927 * already did the job.
1928 */
1929 ret = VM_FAULT_NOPAGE;
1930 break;
1931 case -ENOMEM:
1932 ret = VM_FAULT_OOM;
1933 break;
1934 case -ENOSPC:
1935 case -EFAULT:
1936 ret = VM_FAULT_SIGBUS;
1937 break;
1938 default:
1939 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1940 ret = VM_FAULT_SIGBUS;
1941 break;
1942 }
1943
1944 intel_runtime_pm_put(dev_priv);
1945 return ret;
1946 }
1947
1948 /**
1949 * i915_gem_release_mmap - remove physical page mappings
1950 * @obj: obj in question
1951 *
1952 * Preserve the reservation of the mmapping with the DRM core code, but
1953 * relinquish ownership of the pages back to the system.
1954 *
1955 * It is vital that we remove the page mapping if we have mapped a tiled
1956 * object through the GTT and then lose the fence register due to
1957 * resource pressure. Similarly if the object has been moved out of the
1958 * aperture, than pages mapped into userspace must be revoked. Removing the
1959 * mapping will then trigger a page fault on the next user access, allowing
1960 * fixup by i915_gem_fault().
1961 */
1962 void
1963 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1964 {
1965 if (!obj->fault_mappable)
1966 return;
1967
1968 drm_vma_node_unmap(&obj->base.vma_node,
1969 obj->base.dev->anon_inode->i_mapping);
1970 obj->fault_mappable = false;
1971 }
1972
1973 void
1974 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1975 {
1976 struct drm_i915_gem_object *obj;
1977
1978 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1979 i915_gem_release_mmap(obj);
1980 }
1981
1982 uint32_t
1983 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1984 {
1985 uint32_t gtt_size;
1986
1987 if (INTEL_INFO(dev)->gen >= 4 ||
1988 tiling_mode == I915_TILING_NONE)
1989 return size;
1990
1991 /* Previous chips need a power-of-two fence region when tiling */
1992 if (INTEL_INFO(dev)->gen == 3)
1993 gtt_size = 1024*1024;
1994 else
1995 gtt_size = 512*1024;
1996
1997 while (gtt_size < size)
1998 gtt_size <<= 1;
1999
2000 return gtt_size;
2001 }
2002
2003 /**
2004 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2005 * @obj: object to check
2006 *
2007 * Return the required GTT alignment for an object, taking into account
2008 * potential fence register mapping.
2009 */
2010 uint32_t
2011 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2012 int tiling_mode, bool fenced)
2013 {
2014 /*
2015 * Minimum alignment is 4k (GTT page size), but might be greater
2016 * if a fence register is needed for the object.
2017 */
2018 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2019 tiling_mode == I915_TILING_NONE)
2020 return 4096;
2021
2022 /*
2023 * Previous chips need to be aligned to the size of the smallest
2024 * fence register that can contain the object.
2025 */
2026 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2027 }
2028
2029 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2030 {
2031 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2032 int ret;
2033
2034 if (drm_vma_node_has_offset(&obj->base.vma_node))
2035 return 0;
2036
2037 dev_priv->mm.shrinker_no_lock_stealing = true;
2038
2039 ret = drm_gem_create_mmap_offset(&obj->base);
2040 if (ret != -ENOSPC)
2041 goto out;
2042
2043 /* Badly fragmented mmap space? The only way we can recover
2044 * space is by destroying unwanted objects. We can't randomly release
2045 * mmap_offsets as userspace expects them to be persistent for the
2046 * lifetime of the objects. The closest we can is to release the
2047 * offsets on purgeable objects by truncating it and marking it purged,
2048 * which prevents userspace from ever using that object again.
2049 */
2050 i915_gem_shrink(dev_priv,
2051 obj->base.size >> PAGE_SHIFT,
2052 I915_SHRINK_BOUND |
2053 I915_SHRINK_UNBOUND |
2054 I915_SHRINK_PURGEABLE);
2055 ret = drm_gem_create_mmap_offset(&obj->base);
2056 if (ret != -ENOSPC)
2057 goto out;
2058
2059 i915_gem_shrink_all(dev_priv);
2060 ret = drm_gem_create_mmap_offset(&obj->base);
2061 out:
2062 dev_priv->mm.shrinker_no_lock_stealing = false;
2063
2064 return ret;
2065 }
2066
2067 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069 drm_gem_free_mmap_offset(&obj->base);
2070 }
2071
2072 int
2073 i915_gem_mmap_gtt(struct drm_file *file,
2074 struct drm_device *dev,
2075 uint32_t handle,
2076 uint64_t *offset)
2077 {
2078 struct drm_i915_gem_object *obj;
2079 int ret;
2080
2081 ret = i915_mutex_lock_interruptible(dev);
2082 if (ret)
2083 return ret;
2084
2085 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2086 if (&obj->base == NULL) {
2087 ret = -ENOENT;
2088 goto unlock;
2089 }
2090
2091 if (obj->madv != I915_MADV_WILLNEED) {
2092 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2093 ret = -EFAULT;
2094 goto out;
2095 }
2096
2097 ret = i915_gem_object_create_mmap_offset(obj);
2098 if (ret)
2099 goto out;
2100
2101 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2102
2103 out:
2104 drm_gem_object_unreference(&obj->base);
2105 unlock:
2106 mutex_unlock(&dev->struct_mutex);
2107 return ret;
2108 }
2109
2110 /**
2111 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2112 * @dev: DRM device
2113 * @data: GTT mapping ioctl data
2114 * @file: GEM object info
2115 *
2116 * Simply returns the fake offset to userspace so it can mmap it.
2117 * The mmap call will end up in drm_gem_mmap(), which will set things
2118 * up so we can get faults in the handler above.
2119 *
2120 * The fault handler will take care of binding the object into the GTT
2121 * (since it may have been evicted to make room for something), allocating
2122 * a fence register, and mapping the appropriate aperture address into
2123 * userspace.
2124 */
2125 int
2126 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2127 struct drm_file *file)
2128 {
2129 struct drm_i915_gem_mmap_gtt *args = data;
2130
2131 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2132 }
2133
2134 /* Immediately discard the backing storage */
2135 static void
2136 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2137 {
2138 i915_gem_object_free_mmap_offset(obj);
2139
2140 if (obj->base.filp == NULL)
2141 return;
2142
2143 /* Our goal here is to return as much of the memory as
2144 * is possible back to the system as we are called from OOM.
2145 * To do this we must instruct the shmfs to drop all of its
2146 * backing pages, *now*.
2147 */
2148 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2149 obj->madv = __I915_MADV_PURGED;
2150 }
2151
2152 /* Try to discard unwanted pages */
2153 static void
2154 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2155 {
2156 struct address_space *mapping;
2157
2158 switch (obj->madv) {
2159 case I915_MADV_DONTNEED:
2160 i915_gem_object_truncate(obj);
2161 case __I915_MADV_PURGED:
2162 return;
2163 }
2164
2165 if (obj->base.filp == NULL)
2166 return;
2167
2168 mapping = file_inode(obj->base.filp)->i_mapping,
2169 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2170 }
2171
2172 static void
2173 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2174 {
2175 struct sg_page_iter sg_iter;
2176 int ret;
2177
2178 BUG_ON(obj->madv == __I915_MADV_PURGED);
2179
2180 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2181 if (ret) {
2182 /* In the event of a disaster, abandon all caches and
2183 * hope for the best.
2184 */
2185 WARN_ON(ret != -EIO);
2186 i915_gem_clflush_object(obj, true);
2187 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2188 }
2189
2190 i915_gem_gtt_finish_object(obj);
2191
2192 if (i915_gem_object_needs_bit17_swizzle(obj))
2193 i915_gem_object_save_bit_17_swizzle(obj);
2194
2195 if (obj->madv == I915_MADV_DONTNEED)
2196 obj->dirty = 0;
2197
2198 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2199 struct page *page = sg_page_iter_page(&sg_iter);
2200
2201 if (obj->dirty)
2202 set_page_dirty(page);
2203
2204 if (obj->madv == I915_MADV_WILLNEED)
2205 mark_page_accessed(page);
2206
2207 page_cache_release(page);
2208 }
2209 obj->dirty = 0;
2210
2211 sg_free_table(obj->pages);
2212 kfree(obj->pages);
2213 }
2214
2215 int
2216 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2217 {
2218 const struct drm_i915_gem_object_ops *ops = obj->ops;
2219
2220 if (obj->pages == NULL)
2221 return 0;
2222
2223 if (obj->pages_pin_count)
2224 return -EBUSY;
2225
2226 BUG_ON(i915_gem_obj_bound_any(obj));
2227
2228 /* ->put_pages might need to allocate memory for the bit17 swizzle
2229 * array, hence protect them from being reaped by removing them from gtt
2230 * lists early. */
2231 list_del(&obj->global_list);
2232
2233 ops->put_pages(obj);
2234 obj->pages = NULL;
2235
2236 i915_gem_object_invalidate(obj);
2237
2238 return 0;
2239 }
2240
2241 static int
2242 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2243 {
2244 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2245 int page_count, i;
2246 struct address_space *mapping;
2247 struct sg_table *st;
2248 struct scatterlist *sg;
2249 struct sg_page_iter sg_iter;
2250 struct page *page;
2251 unsigned long last_pfn = 0; /* suppress gcc warning */
2252 int ret;
2253 gfp_t gfp;
2254
2255 /* Assert that the object is not currently in any GPU domain. As it
2256 * wasn't in the GTT, there shouldn't be any way it could have been in
2257 * a GPU cache
2258 */
2259 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2260 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2261
2262 st = kmalloc(sizeof(*st), GFP_KERNEL);
2263 if (st == NULL)
2264 return -ENOMEM;
2265
2266 page_count = obj->base.size / PAGE_SIZE;
2267 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2268 kfree(st);
2269 return -ENOMEM;
2270 }
2271
2272 /* Get the list of pages out of our struct file. They'll be pinned
2273 * at this point until we release them.
2274 *
2275 * Fail silently without starting the shrinker
2276 */
2277 mapping = file_inode(obj->base.filp)->i_mapping;
2278 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2279 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2280 sg = st->sgl;
2281 st->nents = 0;
2282 for (i = 0; i < page_count; i++) {
2283 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2284 if (IS_ERR(page)) {
2285 i915_gem_shrink(dev_priv,
2286 page_count,
2287 I915_SHRINK_BOUND |
2288 I915_SHRINK_UNBOUND |
2289 I915_SHRINK_PURGEABLE);
2290 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2291 }
2292 if (IS_ERR(page)) {
2293 /* We've tried hard to allocate the memory by reaping
2294 * our own buffer, now let the real VM do its job and
2295 * go down in flames if truly OOM.
2296 */
2297 i915_gem_shrink_all(dev_priv);
2298 page = shmem_read_mapping_page(mapping, i);
2299 if (IS_ERR(page)) {
2300 ret = PTR_ERR(page);
2301 goto err_pages;
2302 }
2303 }
2304 #ifdef CONFIG_SWIOTLB
2305 if (swiotlb_nr_tbl()) {
2306 st->nents++;
2307 sg_set_page(sg, page, PAGE_SIZE, 0);
2308 sg = sg_next(sg);
2309 continue;
2310 }
2311 #endif
2312 if (!i || page_to_pfn(page) != last_pfn + 1) {
2313 if (i)
2314 sg = sg_next(sg);
2315 st->nents++;
2316 sg_set_page(sg, page, PAGE_SIZE, 0);
2317 } else {
2318 sg->length += PAGE_SIZE;
2319 }
2320 last_pfn = page_to_pfn(page);
2321
2322 /* Check that the i965g/gm workaround works. */
2323 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2324 }
2325 #ifdef CONFIG_SWIOTLB
2326 if (!swiotlb_nr_tbl())
2327 #endif
2328 sg_mark_end(sg);
2329 obj->pages = st;
2330
2331 ret = i915_gem_gtt_prepare_object(obj);
2332 if (ret)
2333 goto err_pages;
2334
2335 if (i915_gem_object_needs_bit17_swizzle(obj))
2336 i915_gem_object_do_bit_17_swizzle(obj);
2337
2338 if (obj->tiling_mode != I915_TILING_NONE &&
2339 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2340 i915_gem_object_pin_pages(obj);
2341
2342 return 0;
2343
2344 err_pages:
2345 sg_mark_end(sg);
2346 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2347 page_cache_release(sg_page_iter_page(&sg_iter));
2348 sg_free_table(st);
2349 kfree(st);
2350
2351 /* shmemfs first checks if there is enough memory to allocate the page
2352 * and reports ENOSPC should there be insufficient, along with the usual
2353 * ENOMEM for a genuine allocation failure.
2354 *
2355 * We use ENOSPC in our driver to mean that we have run out of aperture
2356 * space and so want to translate the error from shmemfs back to our
2357 * usual understanding of ENOMEM.
2358 */
2359 if (ret == -ENOSPC)
2360 ret = -ENOMEM;
2361
2362 return ret;
2363 }
2364
2365 /* Ensure that the associated pages are gathered from the backing storage
2366 * and pinned into our object. i915_gem_object_get_pages() may be called
2367 * multiple times before they are released by a single call to
2368 * i915_gem_object_put_pages() - once the pages are no longer referenced
2369 * either as a result of memory pressure (reaping pages under the shrinker)
2370 * or as the object is itself released.
2371 */
2372 int
2373 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2374 {
2375 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2376 const struct drm_i915_gem_object_ops *ops = obj->ops;
2377 int ret;
2378
2379 if (obj->pages)
2380 return 0;
2381
2382 if (obj->madv != I915_MADV_WILLNEED) {
2383 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2384 return -EFAULT;
2385 }
2386
2387 BUG_ON(obj->pages_pin_count);
2388
2389 ret = ops->get_pages(obj);
2390 if (ret)
2391 return ret;
2392
2393 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2394
2395 obj->get_page.sg = obj->pages->sgl;
2396 obj->get_page.last = 0;
2397
2398 return 0;
2399 }
2400
2401 void i915_vma_move_to_active(struct i915_vma *vma,
2402 struct drm_i915_gem_request *req)
2403 {
2404 struct drm_i915_gem_object *obj = vma->obj;
2405 struct intel_engine_cs *ring;
2406
2407 ring = i915_gem_request_get_ring(req);
2408
2409 /* Add a reference if we're newly entering the active list. */
2410 if (obj->active == 0)
2411 drm_gem_object_reference(&obj->base);
2412 obj->active |= intel_ring_flag(ring);
2413
2414 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2415 i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2416
2417 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2418 }
2419
2420 static void
2421 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2422 {
2423 RQ_BUG_ON(obj->last_write_req == NULL);
2424 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2425
2426 i915_gem_request_assign(&obj->last_write_req, NULL);
2427 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2428 }
2429
2430 static void
2431 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2432 {
2433 struct i915_vma *vma;
2434
2435 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2436 RQ_BUG_ON(!(obj->active & (1 << ring)));
2437
2438 list_del_init(&obj->ring_list[ring]);
2439 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2440
2441 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2442 i915_gem_object_retire__write(obj);
2443
2444 obj->active &= ~(1 << ring);
2445 if (obj->active)
2446 return;
2447
2448 /* Bump our place on the bound list to keep it roughly in LRU order
2449 * so that we don't steal from recently used but inactive objects
2450 * (unless we are forced to ofc!)
2451 */
2452 list_move_tail(&obj->global_list,
2453 &to_i915(obj->base.dev)->mm.bound_list);
2454
2455 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2456 if (!list_empty(&vma->mm_list))
2457 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2458 }
2459
2460 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2461 drm_gem_object_unreference(&obj->base);
2462 }
2463
2464 static int
2465 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2466 {
2467 struct drm_i915_private *dev_priv = dev->dev_private;
2468 struct intel_engine_cs *ring;
2469 int ret, i, j;
2470
2471 /* Carefully retire all requests without writing to the rings */
2472 for_each_ring(ring, dev_priv, i) {
2473 ret = intel_ring_idle(ring);
2474 if (ret)
2475 return ret;
2476 }
2477 i915_gem_retire_requests(dev);
2478
2479 /* Finally reset hw state */
2480 for_each_ring(ring, dev_priv, i) {
2481 intel_ring_init_seqno(ring, seqno);
2482
2483 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2484 ring->semaphore.sync_seqno[j] = 0;
2485 }
2486
2487 return 0;
2488 }
2489
2490 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2491 {
2492 struct drm_i915_private *dev_priv = dev->dev_private;
2493 int ret;
2494
2495 if (seqno == 0)
2496 return -EINVAL;
2497
2498 /* HWS page needs to be set less than what we
2499 * will inject to ring
2500 */
2501 ret = i915_gem_init_seqno(dev, seqno - 1);
2502 if (ret)
2503 return ret;
2504
2505 /* Carefully set the last_seqno value so that wrap
2506 * detection still works
2507 */
2508 dev_priv->next_seqno = seqno;
2509 dev_priv->last_seqno = seqno - 1;
2510 if (dev_priv->last_seqno == 0)
2511 dev_priv->last_seqno--;
2512
2513 return 0;
2514 }
2515
2516 int
2517 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2518 {
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520
2521 /* reserve 0 for non-seqno */
2522 if (dev_priv->next_seqno == 0) {
2523 int ret = i915_gem_init_seqno(dev, 0);
2524 if (ret)
2525 return ret;
2526
2527 dev_priv->next_seqno = 1;
2528 }
2529
2530 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2531 return 0;
2532 }
2533
2534 /*
2535 * NB: This function is not allowed to fail. Doing so would mean the the
2536 * request is not being tracked for completion but the work itself is
2537 * going to happen on the hardware. This would be a Bad Thing(tm).
2538 */
2539 void __i915_add_request(struct drm_i915_gem_request *request,
2540 struct drm_i915_gem_object *obj,
2541 bool flush_caches)
2542 {
2543 struct intel_engine_cs *ring;
2544 struct drm_i915_private *dev_priv;
2545 struct intel_ringbuffer *ringbuf;
2546 u32 request_start;
2547 int ret;
2548
2549 if (WARN_ON(request == NULL))
2550 return;
2551
2552 ring = request->ring;
2553 dev_priv = ring->dev->dev_private;
2554 ringbuf = request->ringbuf;
2555
2556 /*
2557 * To ensure that this call will not fail, space for its emissions
2558 * should already have been reserved in the ring buffer. Let the ring
2559 * know that it is time to use that space up.
2560 */
2561 intel_ring_reserved_space_use(ringbuf);
2562
2563 request_start = intel_ring_get_tail(ringbuf);
2564 /*
2565 * Emit any outstanding flushes - execbuf can fail to emit the flush
2566 * after having emitted the batchbuffer command. Hence we need to fix
2567 * things up similar to emitting the lazy request. The difference here
2568 * is that the flush _must_ happen before the next request, no matter
2569 * what.
2570 */
2571 if (flush_caches) {
2572 if (i915.enable_execlists)
2573 ret = logical_ring_flush_all_caches(request);
2574 else
2575 ret = intel_ring_flush_all_caches(request);
2576 /* Not allowed to fail! */
2577 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2578 }
2579
2580 /* Record the position of the start of the request so that
2581 * should we detect the updated seqno part-way through the
2582 * GPU processing the request, we never over-estimate the
2583 * position of the head.
2584 */
2585 request->postfix = intel_ring_get_tail(ringbuf);
2586
2587 if (i915.enable_execlists)
2588 ret = ring->emit_request(request);
2589 else {
2590 ret = ring->add_request(request);
2591
2592 request->tail = intel_ring_get_tail(ringbuf);
2593 }
2594 /* Not allowed to fail! */
2595 WARN(ret, "emit|add_request failed: %d!\n", ret);
2596
2597 request->head = request_start;
2598
2599 /* Whilst this request exists, batch_obj will be on the
2600 * active_list, and so will hold the active reference. Only when this
2601 * request is retired will the the batch_obj be moved onto the
2602 * inactive_list and lose its active reference. Hence we do not need
2603 * to explicitly hold another reference here.
2604 */
2605 request->batch_obj = obj;
2606
2607 request->emitted_jiffies = jiffies;
2608 request->previous_seqno = ring->last_submitted_seqno;
2609 ring->last_submitted_seqno = request->seqno;
2610 list_add_tail(&request->list, &ring->request_list);
2611
2612 trace_i915_gem_request_add(request);
2613
2614 i915_queue_hangcheck(ring->dev);
2615
2616 queue_delayed_work(dev_priv->wq,
2617 &dev_priv->mm.retire_work,
2618 round_jiffies_up_relative(HZ));
2619 intel_mark_busy(dev_priv->dev);
2620
2621 /* Sanity check that the reserved size was large enough. */
2622 intel_ring_reserved_space_end(ringbuf);
2623 }
2624
2625 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2626 const struct intel_context *ctx)
2627 {
2628 unsigned long elapsed;
2629
2630 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2631
2632 if (ctx->hang_stats.banned)
2633 return true;
2634
2635 if (ctx->hang_stats.ban_period_seconds &&
2636 elapsed <= ctx->hang_stats.ban_period_seconds) {
2637 if (!i915_gem_context_is_default(ctx)) {
2638 DRM_DEBUG("context hanging too fast, banning!\n");
2639 return true;
2640 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2641 if (i915_stop_ring_allow_warn(dev_priv))
2642 DRM_ERROR("gpu hanging too fast, banning!\n");
2643 return true;
2644 }
2645 }
2646
2647 return false;
2648 }
2649
2650 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2651 struct intel_context *ctx,
2652 const bool guilty)
2653 {
2654 struct i915_ctx_hang_stats *hs;
2655
2656 if (WARN_ON(!ctx))
2657 return;
2658
2659 hs = &ctx->hang_stats;
2660
2661 if (guilty) {
2662 hs->banned = i915_context_is_banned(dev_priv, ctx);
2663 hs->batch_active++;
2664 hs->guilty_ts = get_seconds();
2665 } else {
2666 hs->batch_pending++;
2667 }
2668 }
2669
2670 void i915_gem_request_free(struct kref *req_ref)
2671 {
2672 struct drm_i915_gem_request *req = container_of(req_ref,
2673 typeof(*req), ref);
2674 struct intel_context *ctx = req->ctx;
2675
2676 if (req->file_priv)
2677 i915_gem_request_remove_from_client(req);
2678
2679 if (ctx) {
2680 if (i915.enable_execlists) {
2681 if (ctx != req->ring->default_context)
2682 intel_lr_context_unpin(req);
2683 }
2684
2685 i915_gem_context_unreference(ctx);
2686 }
2687
2688 kmem_cache_free(req->i915->requests, req);
2689 }
2690
2691 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2692 struct intel_context *ctx,
2693 struct drm_i915_gem_request **req_out)
2694 {
2695 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2696 struct drm_i915_gem_request *req;
2697 int ret;
2698
2699 if (!req_out)
2700 return -EINVAL;
2701
2702 *req_out = NULL;
2703
2704 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2705 if (req == NULL)
2706 return -ENOMEM;
2707
2708 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2709 if (ret)
2710 goto err;
2711
2712 kref_init(&req->ref);
2713 req->i915 = dev_priv;
2714 req->ring = ring;
2715 req->ctx = ctx;
2716 i915_gem_context_reference(req->ctx);
2717
2718 if (i915.enable_execlists)
2719 ret = intel_logical_ring_alloc_request_extras(req);
2720 else
2721 ret = intel_ring_alloc_request_extras(req);
2722 if (ret) {
2723 i915_gem_context_unreference(req->ctx);
2724 goto err;
2725 }
2726
2727 /*
2728 * Reserve space in the ring buffer for all the commands required to
2729 * eventually emit this request. This is to guarantee that the
2730 * i915_add_request() call can't fail. Note that the reserve may need
2731 * to be redone if the request is not actually submitted straight
2732 * away, e.g. because a GPU scheduler has deferred it.
2733 */
2734 if (i915.enable_execlists)
2735 ret = intel_logical_ring_reserve_space(req);
2736 else
2737 ret = intel_ring_reserve_space(req);
2738 if (ret) {
2739 /*
2740 * At this point, the request is fully allocated even if not
2741 * fully prepared. Thus it can be cleaned up using the proper
2742 * free code.
2743 */
2744 i915_gem_request_cancel(req);
2745 return ret;
2746 }
2747
2748 *req_out = req;
2749 return 0;
2750
2751 err:
2752 kmem_cache_free(dev_priv->requests, req);
2753 return ret;
2754 }
2755
2756 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2757 {
2758 intel_ring_reserved_space_cancel(req->ringbuf);
2759
2760 i915_gem_request_unreference(req);
2761 }
2762
2763 struct drm_i915_gem_request *
2764 i915_gem_find_active_request(struct intel_engine_cs *ring)
2765 {
2766 struct drm_i915_gem_request *request;
2767
2768 list_for_each_entry(request, &ring->request_list, list) {
2769 if (i915_gem_request_completed(request, false))
2770 continue;
2771
2772 return request;
2773 }
2774
2775 return NULL;
2776 }
2777
2778 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2779 struct intel_engine_cs *ring)
2780 {
2781 struct drm_i915_gem_request *request;
2782 bool ring_hung;
2783
2784 request = i915_gem_find_active_request(ring);
2785
2786 if (request == NULL)
2787 return;
2788
2789 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2790
2791 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2792
2793 list_for_each_entry_continue(request, &ring->request_list, list)
2794 i915_set_reset_status(dev_priv, request->ctx, false);
2795 }
2796
2797 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2798 struct intel_engine_cs *ring)
2799 {
2800 struct intel_ringbuffer *buffer;
2801
2802 while (!list_empty(&ring->active_list)) {
2803 struct drm_i915_gem_object *obj;
2804
2805 obj = list_first_entry(&ring->active_list,
2806 struct drm_i915_gem_object,
2807 ring_list[ring->id]);
2808
2809 i915_gem_object_retire__read(obj, ring->id);
2810 }
2811
2812 /*
2813 * Clear the execlists queue up before freeing the requests, as those
2814 * are the ones that keep the context and ringbuffer backing objects
2815 * pinned in place.
2816 */
2817
2818 if (i915.enable_execlists) {
2819 spin_lock_irq(&ring->execlist_lock);
2820
2821 /* list_splice_tail_init checks for empty lists */
2822 list_splice_tail_init(&ring->execlist_queue,
2823 &ring->execlist_retired_req_list);
2824
2825 spin_unlock_irq(&ring->execlist_lock);
2826 intel_execlists_retire_requests(ring);
2827 }
2828
2829 /*
2830 * We must free the requests after all the corresponding objects have
2831 * been moved off active lists. Which is the same order as the normal
2832 * retire_requests function does. This is important if object hold
2833 * implicit references on things like e.g. ppgtt address spaces through
2834 * the request.
2835 */
2836 while (!list_empty(&ring->request_list)) {
2837 struct drm_i915_gem_request *request;
2838
2839 request = list_first_entry(&ring->request_list,
2840 struct drm_i915_gem_request,
2841 list);
2842
2843 i915_gem_request_retire(request);
2844 }
2845
2846 /* Having flushed all requests from all queues, we know that all
2847 * ringbuffers must now be empty. However, since we do not reclaim
2848 * all space when retiring the request (to prevent HEADs colliding
2849 * with rapid ringbuffer wraparound) the amount of available space
2850 * upon reset is less than when we start. Do one more pass over
2851 * all the ringbuffers to reset last_retired_head.
2852 */
2853 list_for_each_entry(buffer, &ring->buffers, link) {
2854 buffer->last_retired_head = buffer->tail;
2855 intel_ring_update_space(buffer);
2856 }
2857 }
2858
2859 void i915_gem_reset(struct drm_device *dev)
2860 {
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 struct intel_engine_cs *ring;
2863 int i;
2864
2865 /*
2866 * Before we free the objects from the requests, we need to inspect
2867 * them for finding the guilty party. As the requests only borrow
2868 * their reference to the objects, the inspection must be done first.
2869 */
2870 for_each_ring(ring, dev_priv, i)
2871 i915_gem_reset_ring_status(dev_priv, ring);
2872
2873 for_each_ring(ring, dev_priv, i)
2874 i915_gem_reset_ring_cleanup(dev_priv, ring);
2875
2876 i915_gem_context_reset(dev);
2877
2878 i915_gem_restore_fences(dev);
2879
2880 WARN_ON(i915_verify_lists(dev));
2881 }
2882
2883 /**
2884 * This function clears the request list as sequence numbers are passed.
2885 */
2886 void
2887 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2888 {
2889 WARN_ON(i915_verify_lists(ring->dev));
2890
2891 /* Retire requests first as we use it above for the early return.
2892 * If we retire requests last, we may use a later seqno and so clear
2893 * the requests lists without clearing the active list, leading to
2894 * confusion.
2895 */
2896 while (!list_empty(&ring->request_list)) {
2897 struct drm_i915_gem_request *request;
2898
2899 request = list_first_entry(&ring->request_list,
2900 struct drm_i915_gem_request,
2901 list);
2902
2903 if (!i915_gem_request_completed(request, true))
2904 break;
2905
2906 i915_gem_request_retire(request);
2907 }
2908
2909 /* Move any buffers on the active list that are no longer referenced
2910 * by the ringbuffer to the flushing/inactive lists as appropriate,
2911 * before we free the context associated with the requests.
2912 */
2913 while (!list_empty(&ring->active_list)) {
2914 struct drm_i915_gem_object *obj;
2915
2916 obj = list_first_entry(&ring->active_list,
2917 struct drm_i915_gem_object,
2918 ring_list[ring->id]);
2919
2920 if (!list_empty(&obj->last_read_req[ring->id]->list))
2921 break;
2922
2923 i915_gem_object_retire__read(obj, ring->id);
2924 }
2925
2926 if (unlikely(ring->trace_irq_req &&
2927 i915_gem_request_completed(ring->trace_irq_req, true))) {
2928 ring->irq_put(ring);
2929 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2930 }
2931
2932 WARN_ON(i915_verify_lists(ring->dev));
2933 }
2934
2935 bool
2936 i915_gem_retire_requests(struct drm_device *dev)
2937 {
2938 struct drm_i915_private *dev_priv = dev->dev_private;
2939 struct intel_engine_cs *ring;
2940 bool idle = true;
2941 int i;
2942
2943 for_each_ring(ring, dev_priv, i) {
2944 i915_gem_retire_requests_ring(ring);
2945 idle &= list_empty(&ring->request_list);
2946 if (i915.enable_execlists) {
2947 unsigned long flags;
2948
2949 spin_lock_irqsave(&ring->execlist_lock, flags);
2950 idle &= list_empty(&ring->execlist_queue);
2951 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2952
2953 intel_execlists_retire_requests(ring);
2954 }
2955 }
2956
2957 if (idle)
2958 mod_delayed_work(dev_priv->wq,
2959 &dev_priv->mm.idle_work,
2960 msecs_to_jiffies(100));
2961
2962 return idle;
2963 }
2964
2965 static void
2966 i915_gem_retire_work_handler(struct work_struct *work)
2967 {
2968 struct drm_i915_private *dev_priv =
2969 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2970 struct drm_device *dev = dev_priv->dev;
2971 bool idle;
2972
2973 /* Come back later if the device is busy... */
2974 idle = false;
2975 if (mutex_trylock(&dev->struct_mutex)) {
2976 idle = i915_gem_retire_requests(dev);
2977 mutex_unlock(&dev->struct_mutex);
2978 }
2979 if (!idle)
2980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2981 round_jiffies_up_relative(HZ));
2982 }
2983
2984 static void
2985 i915_gem_idle_work_handler(struct work_struct *work)
2986 {
2987 struct drm_i915_private *dev_priv =
2988 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2989 struct drm_device *dev = dev_priv->dev;
2990 struct intel_engine_cs *ring;
2991 int i;
2992
2993 for_each_ring(ring, dev_priv, i)
2994 if (!list_empty(&ring->request_list))
2995 return;
2996
2997 /* we probably should sync with hangcheck here, using cancel_work_sync.
2998 * Also locking seems to be fubar here, ring->request_list is protected
2999 * by dev->struct_mutex. */
3000
3001 intel_mark_idle(dev);
3002
3003 if (mutex_trylock(&dev->struct_mutex)) {
3004 struct intel_engine_cs *ring;
3005 int i;
3006
3007 for_each_ring(ring, dev_priv, i)
3008 i915_gem_batch_pool_fini(&ring->batch_pool);
3009
3010 mutex_unlock(&dev->struct_mutex);
3011 }
3012 }
3013
3014 /**
3015 * Ensures that an object will eventually get non-busy by flushing any required
3016 * write domains, emitting any outstanding lazy request and retiring and
3017 * completed requests.
3018 */
3019 static int
3020 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3021 {
3022 int i;
3023
3024 if (!obj->active)
3025 return 0;
3026
3027 for (i = 0; i < I915_NUM_RINGS; i++) {
3028 struct drm_i915_gem_request *req;
3029
3030 req = obj->last_read_req[i];
3031 if (req == NULL)
3032 continue;
3033
3034 if (list_empty(&req->list))
3035 goto retire;
3036
3037 if (i915_gem_request_completed(req, true)) {
3038 __i915_gem_request_retire__upto(req);
3039 retire:
3040 i915_gem_object_retire__read(obj, i);
3041 }
3042 }
3043
3044 return 0;
3045 }
3046
3047 /**
3048 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3049 * @DRM_IOCTL_ARGS: standard ioctl arguments
3050 *
3051 * Returns 0 if successful, else an error is returned with the remaining time in
3052 * the timeout parameter.
3053 * -ETIME: object is still busy after timeout
3054 * -ERESTARTSYS: signal interrupted the wait
3055 * -ENONENT: object doesn't exist
3056 * Also possible, but rare:
3057 * -EAGAIN: GPU wedged
3058 * -ENOMEM: damn
3059 * -ENODEV: Internal IRQ fail
3060 * -E?: The add request failed
3061 *
3062 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3063 * non-zero timeout parameter the wait ioctl will wait for the given number of
3064 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3065 * without holding struct_mutex the object may become re-busied before this
3066 * function completes. A similar but shorter * race condition exists in the busy
3067 * ioctl
3068 */
3069 int
3070 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3071 {
3072 struct drm_i915_private *dev_priv = dev->dev_private;
3073 struct drm_i915_gem_wait *args = data;
3074 struct drm_i915_gem_object *obj;
3075 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3076 unsigned reset_counter;
3077 int i, n = 0;
3078 int ret;
3079
3080 if (args->flags != 0)
3081 return -EINVAL;
3082
3083 ret = i915_mutex_lock_interruptible(dev);
3084 if (ret)
3085 return ret;
3086
3087 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3088 if (&obj->base == NULL) {
3089 mutex_unlock(&dev->struct_mutex);
3090 return -ENOENT;
3091 }
3092
3093 /* Need to make sure the object gets inactive eventually. */
3094 ret = i915_gem_object_flush_active(obj);
3095 if (ret)
3096 goto out;
3097
3098 if (!obj->active)
3099 goto out;
3100
3101 /* Do this after OLR check to make sure we make forward progress polling
3102 * on this IOCTL with a timeout == 0 (like busy ioctl)
3103 */
3104 if (args->timeout_ns == 0) {
3105 ret = -ETIME;
3106 goto out;
3107 }
3108
3109 drm_gem_object_unreference(&obj->base);
3110 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3111
3112 for (i = 0; i < I915_NUM_RINGS; i++) {
3113 if (obj->last_read_req[i] == NULL)
3114 continue;
3115
3116 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3117 }
3118
3119 mutex_unlock(&dev->struct_mutex);
3120
3121 for (i = 0; i < n; i++) {
3122 if (ret == 0)
3123 ret = __i915_wait_request(req[i], reset_counter, true,
3124 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3125 to_rps_client(file));
3126 i915_gem_request_unreference__unlocked(req[i]);
3127 }
3128 return ret;
3129
3130 out:
3131 drm_gem_object_unreference(&obj->base);
3132 mutex_unlock(&dev->struct_mutex);
3133 return ret;
3134 }
3135
3136 static int
3137 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3138 struct intel_engine_cs *to,
3139 struct drm_i915_gem_request *from_req,
3140 struct drm_i915_gem_request **to_req)
3141 {
3142 struct intel_engine_cs *from;
3143 int ret;
3144
3145 from = i915_gem_request_get_ring(from_req);
3146 if (to == from)
3147 return 0;
3148
3149 if (i915_gem_request_completed(from_req, true))
3150 return 0;
3151
3152 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3153 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3154 ret = __i915_wait_request(from_req,
3155 atomic_read(&i915->gpu_error.reset_counter),
3156 i915->mm.interruptible,
3157 NULL,
3158 &i915->rps.semaphores);
3159 if (ret)
3160 return ret;
3161
3162 i915_gem_object_retire_request(obj, from_req);
3163 } else {
3164 int idx = intel_ring_sync_index(from, to);
3165 u32 seqno = i915_gem_request_get_seqno(from_req);
3166
3167 WARN_ON(!to_req);
3168
3169 if (seqno <= from->semaphore.sync_seqno[idx])
3170 return 0;
3171
3172 if (*to_req == NULL) {
3173 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3174 if (ret)
3175 return ret;
3176 }
3177
3178 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3179 ret = to->semaphore.sync_to(*to_req, from, seqno);
3180 if (ret)
3181 return ret;
3182
3183 /* We use last_read_req because sync_to()
3184 * might have just caused seqno wrap under
3185 * the radar.
3186 */
3187 from->semaphore.sync_seqno[idx] =
3188 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3189 }
3190
3191 return 0;
3192 }
3193
3194 /**
3195 * i915_gem_object_sync - sync an object to a ring.
3196 *
3197 * @obj: object which may be in use on another ring.
3198 * @to: ring we wish to use the object on. May be NULL.
3199 * @to_req: request we wish to use the object for. See below.
3200 * This will be allocated and returned if a request is
3201 * required but not passed in.
3202 *
3203 * This code is meant to abstract object synchronization with the GPU.
3204 * Calling with NULL implies synchronizing the object with the CPU
3205 * rather than a particular GPU ring. Conceptually we serialise writes
3206 * between engines inside the GPU. We only allow one engine to write
3207 * into a buffer at any time, but multiple readers. To ensure each has
3208 * a coherent view of memory, we must:
3209 *
3210 * - If there is an outstanding write request to the object, the new
3211 * request must wait for it to complete (either CPU or in hw, requests
3212 * on the same ring will be naturally ordered).
3213 *
3214 * - If we are a write request (pending_write_domain is set), the new
3215 * request must wait for outstanding read requests to complete.
3216 *
3217 * For CPU synchronisation (NULL to) no request is required. For syncing with
3218 * rings to_req must be non-NULL. However, a request does not have to be
3219 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3220 * request will be allocated automatically and returned through *to_req. Note
3221 * that it is not guaranteed that commands will be emitted (because the system
3222 * might already be idle). Hence there is no need to create a request that
3223 * might never have any work submitted. Note further that if a request is
3224 * returned in *to_req, it is the responsibility of the caller to submit
3225 * that request (after potentially adding more work to it).
3226 *
3227 * Returns 0 if successful, else propagates up the lower layer error.
3228 */
3229 int
3230 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3231 struct intel_engine_cs *to,
3232 struct drm_i915_gem_request **to_req)
3233 {
3234 const bool readonly = obj->base.pending_write_domain == 0;
3235 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3236 int ret, i, n;
3237
3238 if (!obj->active)
3239 return 0;
3240
3241 if (to == NULL)
3242 return i915_gem_object_wait_rendering(obj, readonly);
3243
3244 n = 0;
3245 if (readonly) {
3246 if (obj->last_write_req)
3247 req[n++] = obj->last_write_req;
3248 } else {
3249 for (i = 0; i < I915_NUM_RINGS; i++)
3250 if (obj->last_read_req[i])
3251 req[n++] = obj->last_read_req[i];
3252 }
3253 for (i = 0; i < n; i++) {
3254 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3255 if (ret)
3256 return ret;
3257 }
3258
3259 return 0;
3260 }
3261
3262 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3263 {
3264 u32 old_write_domain, old_read_domains;
3265
3266 /* Force a pagefault for domain tracking on next user access */
3267 i915_gem_release_mmap(obj);
3268
3269 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3270 return;
3271
3272 /* Wait for any direct GTT access to complete */
3273 mb();
3274
3275 old_read_domains = obj->base.read_domains;
3276 old_write_domain = obj->base.write_domain;
3277
3278 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3279 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3280
3281 trace_i915_gem_object_change_domain(obj,
3282 old_read_domains,
3283 old_write_domain);
3284 }
3285
3286 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3287 {
3288 struct drm_i915_gem_object *obj = vma->obj;
3289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3290 int ret;
3291
3292 if (list_empty(&vma->vma_link))
3293 return 0;
3294
3295 if (!drm_mm_node_allocated(&vma->node)) {
3296 i915_gem_vma_destroy(vma);
3297 return 0;
3298 }
3299
3300 if (vma->pin_count)
3301 return -EBUSY;
3302
3303 BUG_ON(obj->pages == NULL);
3304
3305 if (wait) {
3306 ret = i915_gem_object_wait_rendering(obj, false);
3307 if (ret)
3308 return ret;
3309 }
3310
3311 if (i915_is_ggtt(vma->vm) &&
3312 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3313 i915_gem_object_finish_gtt(obj);
3314
3315 /* release the fence reg _after_ flushing */
3316 ret = i915_gem_object_put_fence(obj);
3317 if (ret)
3318 return ret;
3319 }
3320
3321 trace_i915_vma_unbind(vma);
3322
3323 vma->vm->unbind_vma(vma);
3324 vma->bound = 0;
3325
3326 list_del_init(&vma->mm_list);
3327 if (i915_is_ggtt(vma->vm)) {
3328 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3329 obj->map_and_fenceable = false;
3330 } else if (vma->ggtt_view.pages) {
3331 sg_free_table(vma->ggtt_view.pages);
3332 kfree(vma->ggtt_view.pages);
3333 }
3334 vma->ggtt_view.pages = NULL;
3335 }
3336
3337 drm_mm_remove_node(&vma->node);
3338 i915_gem_vma_destroy(vma);
3339
3340 /* Since the unbound list is global, only move to that list if
3341 * no more VMAs exist. */
3342 if (list_empty(&obj->vma_list))
3343 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3344
3345 /* And finally now the object is completely decoupled from this vma,
3346 * we can drop its hold on the backing storage and allow it to be
3347 * reaped by the shrinker.
3348 */
3349 i915_gem_object_unpin_pages(obj);
3350
3351 return 0;
3352 }
3353
3354 int i915_vma_unbind(struct i915_vma *vma)
3355 {
3356 return __i915_vma_unbind(vma, true);
3357 }
3358
3359 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3360 {
3361 return __i915_vma_unbind(vma, false);
3362 }
3363
3364 int i915_gpu_idle(struct drm_device *dev)
3365 {
3366 struct drm_i915_private *dev_priv = dev->dev_private;
3367 struct intel_engine_cs *ring;
3368 int ret, i;
3369
3370 /* Flush everything onto the inactive list. */
3371 for_each_ring(ring, dev_priv, i) {
3372 if (!i915.enable_execlists) {
3373 struct drm_i915_gem_request *req;
3374
3375 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3376 if (ret)
3377 return ret;
3378
3379 ret = i915_switch_context(req);
3380 if (ret) {
3381 i915_gem_request_cancel(req);
3382 return ret;
3383 }
3384
3385 i915_add_request_no_flush(req);
3386 }
3387
3388 ret = intel_ring_idle(ring);
3389 if (ret)
3390 return ret;
3391 }
3392
3393 WARN_ON(i915_verify_lists(dev));
3394 return 0;
3395 }
3396
3397 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3398 unsigned long cache_level)
3399 {
3400 struct drm_mm_node *gtt_space = &vma->node;
3401 struct drm_mm_node *other;
3402
3403 /*
3404 * On some machines we have to be careful when putting differing types
3405 * of snoopable memory together to avoid the prefetcher crossing memory
3406 * domains and dying. During vm initialisation, we decide whether or not
3407 * these constraints apply and set the drm_mm.color_adjust
3408 * appropriately.
3409 */
3410 if (vma->vm->mm.color_adjust == NULL)
3411 return true;
3412
3413 if (!drm_mm_node_allocated(gtt_space))
3414 return true;
3415
3416 if (list_empty(&gtt_space->node_list))
3417 return true;
3418
3419 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3420 if (other->allocated && !other->hole_follows && other->color != cache_level)
3421 return false;
3422
3423 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3424 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3425 return false;
3426
3427 return true;
3428 }
3429
3430 /**
3431 * Finds free space in the GTT aperture and binds the object or a view of it
3432 * there.
3433 */
3434 static struct i915_vma *
3435 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3436 struct i915_address_space *vm,
3437 const struct i915_ggtt_view *ggtt_view,
3438 unsigned alignment,
3439 uint64_t flags)
3440 {
3441 struct drm_device *dev = obj->base.dev;
3442 struct drm_i915_private *dev_priv = dev->dev_private;
3443 u32 fence_alignment, unfenced_alignment;
3444 u32 search_flag, alloc_flag;
3445 u64 start, end;
3446 u64 size, fence_size;
3447 struct i915_vma *vma;
3448 int ret;
3449
3450 if (i915_is_ggtt(vm)) {
3451 u32 view_size;
3452
3453 if (WARN_ON(!ggtt_view))
3454 return ERR_PTR(-EINVAL);
3455
3456 view_size = i915_ggtt_view_size(obj, ggtt_view);
3457
3458 fence_size = i915_gem_get_gtt_size(dev,
3459 view_size,
3460 obj->tiling_mode);
3461 fence_alignment = i915_gem_get_gtt_alignment(dev,
3462 view_size,
3463 obj->tiling_mode,
3464 true);
3465 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3466 view_size,
3467 obj->tiling_mode,
3468 false);
3469 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3470 } else {
3471 fence_size = i915_gem_get_gtt_size(dev,
3472 obj->base.size,
3473 obj->tiling_mode);
3474 fence_alignment = i915_gem_get_gtt_alignment(dev,
3475 obj->base.size,
3476 obj->tiling_mode,
3477 true);
3478 unfenced_alignment =
3479 i915_gem_get_gtt_alignment(dev,
3480 obj->base.size,
3481 obj->tiling_mode,
3482 false);
3483 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3484 }
3485
3486 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3487 end = vm->total;
3488 if (flags & PIN_MAPPABLE)
3489 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3490 if (flags & PIN_ZONE_4G)
3491 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3492
3493 if (alignment == 0)
3494 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3495 unfenced_alignment;
3496 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3497 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3498 ggtt_view ? ggtt_view->type : 0,
3499 alignment);
3500 return ERR_PTR(-EINVAL);
3501 }
3502
3503 /* If binding the object/GGTT view requires more space than the entire
3504 * aperture has, reject it early before evicting everything in a vain
3505 * attempt to find space.
3506 */
3507 if (size > end) {
3508 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3509 ggtt_view ? ggtt_view->type : 0,
3510 size,
3511 flags & PIN_MAPPABLE ? "mappable" : "total",
3512 end);
3513 return ERR_PTR(-E2BIG);
3514 }
3515
3516 ret = i915_gem_object_get_pages(obj);
3517 if (ret)
3518 return ERR_PTR(ret);
3519
3520 i915_gem_object_pin_pages(obj);
3521
3522 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3523 i915_gem_obj_lookup_or_create_vma(obj, vm);
3524
3525 if (IS_ERR(vma))
3526 goto err_unpin;
3527
3528 if (flags & PIN_OFFSET_FIXED) {
3529 uint64_t offset = flags & PIN_OFFSET_MASK;
3530
3531 if (offset & (alignment - 1) || offset + size > end) {
3532 ret = -EINVAL;
3533 goto err_free_vma;
3534 }
3535 vma->node.start = offset;
3536 vma->node.size = size;
3537 vma->node.color = obj->cache_level;
3538 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3539 if (ret) {
3540 ret = i915_gem_evict_for_vma(vma);
3541 if (ret == 0)
3542 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3543 }
3544 if (ret)
3545 goto err_free_vma;
3546 } else {
3547 if (flags & PIN_HIGH) {
3548 search_flag = DRM_MM_SEARCH_BELOW;
3549 alloc_flag = DRM_MM_CREATE_TOP;
3550 } else {
3551 search_flag = DRM_MM_SEARCH_DEFAULT;
3552 alloc_flag = DRM_MM_CREATE_DEFAULT;
3553 }
3554
3555 search_free:
3556 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3557 size, alignment,
3558 obj->cache_level,
3559 start, end,
3560 search_flag,
3561 alloc_flag);
3562 if (ret) {
3563 ret = i915_gem_evict_something(dev, vm, size, alignment,
3564 obj->cache_level,
3565 start, end,
3566 flags);
3567 if (ret == 0)
3568 goto search_free;
3569
3570 goto err_free_vma;
3571 }
3572 }
3573 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3574 ret = -EINVAL;
3575 goto err_remove_node;
3576 }
3577
3578 trace_i915_vma_bind(vma, flags);
3579 ret = i915_vma_bind(vma, obj->cache_level, flags);
3580 if (ret)
3581 goto err_remove_node;
3582
3583 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3584 list_add_tail(&vma->mm_list, &vm->inactive_list);
3585
3586 return vma;
3587
3588 err_remove_node:
3589 drm_mm_remove_node(&vma->node);
3590 err_free_vma:
3591 i915_gem_vma_destroy(vma);
3592 vma = ERR_PTR(ret);
3593 err_unpin:
3594 i915_gem_object_unpin_pages(obj);
3595 return vma;
3596 }
3597
3598 bool
3599 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3600 bool force)
3601 {
3602 /* If we don't have a page list set up, then we're not pinned
3603 * to GPU, and we can ignore the cache flush because it'll happen
3604 * again at bind time.
3605 */
3606 if (obj->pages == NULL)
3607 return false;
3608
3609 /*
3610 * Stolen memory is always coherent with the GPU as it is explicitly
3611 * marked as wc by the system, or the system is cache-coherent.
3612 */
3613 if (obj->stolen || obj->phys_handle)
3614 return false;
3615
3616 /* If the GPU is snooping the contents of the CPU cache,
3617 * we do not need to manually clear the CPU cache lines. However,
3618 * the caches are only snooped when the render cache is
3619 * flushed/invalidated. As we always have to emit invalidations
3620 * and flushes when moving into and out of the RENDER domain, correct
3621 * snooping behaviour occurs naturally as the result of our domain
3622 * tracking.
3623 */
3624 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3625 obj->cache_dirty = true;
3626 return false;
3627 }
3628
3629 trace_i915_gem_object_clflush(obj);
3630 drm_clflush_sg(obj->pages);
3631 obj->cache_dirty = false;
3632
3633 return true;
3634 }
3635
3636 /** Flushes the GTT write domain for the object if it's dirty. */
3637 static void
3638 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3639 {
3640 uint32_t old_write_domain;
3641
3642 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3643 return;
3644
3645 /* No actual flushing is required for the GTT write domain. Writes
3646 * to it immediately go to main memory as far as we know, so there's
3647 * no chipset flush. It also doesn't land in render cache.
3648 *
3649 * However, we do have to enforce the order so that all writes through
3650 * the GTT land before any writes to the device, such as updates to
3651 * the GATT itself.
3652 */
3653 wmb();
3654
3655 old_write_domain = obj->base.write_domain;
3656 obj->base.write_domain = 0;
3657
3658 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3659
3660 trace_i915_gem_object_change_domain(obj,
3661 obj->base.read_domains,
3662 old_write_domain);
3663 }
3664
3665 /** Flushes the CPU write domain for the object if it's dirty. */
3666 static void
3667 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3668 {
3669 uint32_t old_write_domain;
3670
3671 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3672 return;
3673
3674 if (i915_gem_clflush_object(obj, obj->pin_display))
3675 i915_gem_chipset_flush(obj->base.dev);
3676
3677 old_write_domain = obj->base.write_domain;
3678 obj->base.write_domain = 0;
3679
3680 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3681
3682 trace_i915_gem_object_change_domain(obj,
3683 obj->base.read_domains,
3684 old_write_domain);
3685 }
3686
3687 /**
3688 * Moves a single object to the GTT read, and possibly write domain.
3689 *
3690 * This function returns when the move is complete, including waiting on
3691 * flushes to occur.
3692 */
3693 int
3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3695 {
3696 uint32_t old_write_domain, old_read_domains;
3697 struct i915_vma *vma;
3698 int ret;
3699
3700 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3701 return 0;
3702
3703 ret = i915_gem_object_wait_rendering(obj, !write);
3704 if (ret)
3705 return ret;
3706
3707 /* Flush and acquire obj->pages so that we are coherent through
3708 * direct access in memory with previous cached writes through
3709 * shmemfs and that our cache domain tracking remains valid.
3710 * For example, if the obj->filp was moved to swap without us
3711 * being notified and releasing the pages, we would mistakenly
3712 * continue to assume that the obj remained out of the CPU cached
3713 * domain.
3714 */
3715 ret = i915_gem_object_get_pages(obj);
3716 if (ret)
3717 return ret;
3718
3719 i915_gem_object_flush_cpu_write_domain(obj);
3720
3721 /* Serialise direct access to this object with the barriers for
3722 * coherent writes from the GPU, by effectively invalidating the
3723 * GTT domain upon first access.
3724 */
3725 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3726 mb();
3727
3728 old_write_domain = obj->base.write_domain;
3729 old_read_domains = obj->base.read_domains;
3730
3731 /* It should now be out of any other write domains, and we can update
3732 * the domain values for our changes.
3733 */
3734 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3735 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3736 if (write) {
3737 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3738 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3739 obj->dirty = 1;
3740 }
3741
3742 trace_i915_gem_object_change_domain(obj,
3743 old_read_domains,
3744 old_write_domain);
3745
3746 /* And bump the LRU for this access */
3747 vma = i915_gem_obj_to_ggtt(obj);
3748 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3749 list_move_tail(&vma->mm_list,
3750 &to_i915(obj->base.dev)->gtt.base.inactive_list);
3751
3752 return 0;
3753 }
3754
3755 /**
3756 * Changes the cache-level of an object across all VMA.
3757 *
3758 * After this function returns, the object will be in the new cache-level
3759 * across all GTT and the contents of the backing storage will be coherent,
3760 * with respect to the new cache-level. In order to keep the backing storage
3761 * coherent for all users, we only allow a single cache level to be set
3762 * globally on the object and prevent it from being changed whilst the
3763 * hardware is reading from the object. That is if the object is currently
3764 * on the scanout it will be set to uncached (or equivalent display
3765 * cache coherency) and all non-MOCS GPU access will also be uncached so
3766 * that all direct access to the scanout remains coherent.
3767 */
3768 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3769 enum i915_cache_level cache_level)
3770 {
3771 struct drm_device *dev = obj->base.dev;
3772 struct i915_vma *vma, *next;
3773 bool bound = false;
3774 int ret = 0;
3775
3776 if (obj->cache_level == cache_level)
3777 goto out;
3778
3779 /* Inspect the list of currently bound VMA and unbind any that would
3780 * be invalid given the new cache-level. This is principally to
3781 * catch the issue of the CS prefetch crossing page boundaries and
3782 * reading an invalid PTE on older architectures.
3783 */
3784 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3785 if (!drm_mm_node_allocated(&vma->node))
3786 continue;
3787
3788 if (vma->pin_count) {
3789 DRM_DEBUG("can not change the cache level of pinned objects\n");
3790 return -EBUSY;
3791 }
3792
3793 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3794 ret = i915_vma_unbind(vma);
3795 if (ret)
3796 return ret;
3797 } else
3798 bound = true;
3799 }
3800
3801 /* We can reuse the existing drm_mm nodes but need to change the
3802 * cache-level on the PTE. We could simply unbind them all and
3803 * rebind with the correct cache-level on next use. However since
3804 * we already have a valid slot, dma mapping, pages etc, we may as
3805 * rewrite the PTE in the belief that doing so tramples upon less
3806 * state and so involves less work.
3807 */
3808 if (bound) {
3809 /* Before we change the PTE, the GPU must not be accessing it.
3810 * If we wait upon the object, we know that all the bound
3811 * VMA are no longer active.
3812 */
3813 ret = i915_gem_object_wait_rendering(obj, false);
3814 if (ret)
3815 return ret;
3816
3817 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3818 /* Access to snoopable pages through the GTT is
3819 * incoherent and on some machines causes a hard
3820 * lockup. Relinquish the CPU mmaping to force
3821 * userspace to refault in the pages and we can
3822 * then double check if the GTT mapping is still
3823 * valid for that pointer access.
3824 */
3825 i915_gem_release_mmap(obj);
3826
3827 /* As we no longer need a fence for GTT access,
3828 * we can relinquish it now (and so prevent having
3829 * to steal a fence from someone else on the next
3830 * fence request). Note GPU activity would have
3831 * dropped the fence as all snoopable access is
3832 * supposed to be linear.
3833 */
3834 ret = i915_gem_object_put_fence(obj);
3835 if (ret)
3836 return ret;
3837 } else {
3838 /* We either have incoherent backing store and
3839 * so no GTT access or the architecture is fully
3840 * coherent. In such cases, existing GTT mmaps
3841 * ignore the cache bit in the PTE and we can
3842 * rewrite it without confusing the GPU or having
3843 * to force userspace to fault back in its mmaps.
3844 */
3845 }
3846
3847 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3848 if (!drm_mm_node_allocated(&vma->node))
3849 continue;
3850
3851 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3852 if (ret)
3853 return ret;
3854 }
3855 }
3856
3857 list_for_each_entry(vma, &obj->vma_list, vma_link)
3858 vma->node.color = cache_level;
3859 obj->cache_level = cache_level;
3860
3861 out:
3862 /* Flush the dirty CPU caches to the backing storage so that the
3863 * object is now coherent at its new cache level (with respect
3864 * to the access domain).
3865 */
3866 if (obj->cache_dirty &&
3867 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3868 cpu_write_needs_clflush(obj)) {
3869 if (i915_gem_clflush_object(obj, true))
3870 i915_gem_chipset_flush(obj->base.dev);
3871 }
3872
3873 return 0;
3874 }
3875
3876 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3877 struct drm_file *file)
3878 {
3879 struct drm_i915_gem_caching *args = data;
3880 struct drm_i915_gem_object *obj;
3881
3882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3883 if (&obj->base == NULL)
3884 return -ENOENT;
3885
3886 switch (obj->cache_level) {
3887 case I915_CACHE_LLC:
3888 case I915_CACHE_L3_LLC:
3889 args->caching = I915_CACHING_CACHED;
3890 break;
3891
3892 case I915_CACHE_WT:
3893 args->caching = I915_CACHING_DISPLAY;
3894 break;
3895
3896 default:
3897 args->caching = I915_CACHING_NONE;
3898 break;
3899 }
3900
3901 drm_gem_object_unreference_unlocked(&obj->base);
3902 return 0;
3903 }
3904
3905 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3906 struct drm_file *file)
3907 {
3908 struct drm_i915_private *dev_priv = dev->dev_private;
3909 struct drm_i915_gem_caching *args = data;
3910 struct drm_i915_gem_object *obj;
3911 enum i915_cache_level level;
3912 int ret;
3913
3914 switch (args->caching) {
3915 case I915_CACHING_NONE:
3916 level = I915_CACHE_NONE;
3917 break;
3918 case I915_CACHING_CACHED:
3919 /*
3920 * Due to a HW issue on BXT A stepping, GPU stores via a
3921 * snooped mapping may leave stale data in a corresponding CPU
3922 * cacheline, whereas normally such cachelines would get
3923 * invalidated.
3924 */
3925 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
3926 return -ENODEV;
3927
3928 level = I915_CACHE_LLC;
3929 break;
3930 case I915_CACHING_DISPLAY:
3931 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3932 break;
3933 default:
3934 return -EINVAL;
3935 }
3936
3937 intel_runtime_pm_get(dev_priv);
3938
3939 ret = i915_mutex_lock_interruptible(dev);
3940 if (ret)
3941 goto rpm_put;
3942
3943 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3944 if (&obj->base == NULL) {
3945 ret = -ENOENT;
3946 goto unlock;
3947 }
3948
3949 ret = i915_gem_object_set_cache_level(obj, level);
3950
3951 drm_gem_object_unreference(&obj->base);
3952 unlock:
3953 mutex_unlock(&dev->struct_mutex);
3954 rpm_put:
3955 intel_runtime_pm_put(dev_priv);
3956
3957 return ret;
3958 }
3959
3960 /*
3961 * Prepare buffer for display plane (scanout, cursors, etc).
3962 * Can be called from an uninterruptible phase (modesetting) and allows
3963 * any flushes to be pipelined (for pageflips).
3964 */
3965 int
3966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3967 u32 alignment,
3968 const struct i915_ggtt_view *view)
3969 {
3970 u32 old_read_domains, old_write_domain;
3971 int ret;
3972
3973 /* Mark the pin_display early so that we account for the
3974 * display coherency whilst setting up the cache domains.
3975 */
3976 obj->pin_display++;
3977
3978 /* The display engine is not coherent with the LLC cache on gen6. As
3979 * a result, we make sure that the pinning that is about to occur is
3980 * done with uncached PTEs. This is lowest common denominator for all
3981 * chipsets.
3982 *
3983 * However for gen6+, we could do better by using the GFDT bit instead
3984 * of uncaching, which would allow us to flush all the LLC-cached data
3985 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3986 */
3987 ret = i915_gem_object_set_cache_level(obj,
3988 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3989 if (ret)
3990 goto err_unpin_display;
3991
3992 /* As the user may map the buffer once pinned in the display plane
3993 * (e.g. libkms for the bootup splash), we have to ensure that we
3994 * always use map_and_fenceable for all scanout buffers.
3995 */
3996 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3997 view->type == I915_GGTT_VIEW_NORMAL ?
3998 PIN_MAPPABLE : 0);
3999 if (ret)
4000 goto err_unpin_display;
4001
4002 i915_gem_object_flush_cpu_write_domain(obj);
4003
4004 old_write_domain = obj->base.write_domain;
4005 old_read_domains = obj->base.read_domains;
4006
4007 /* It should now be out of any other write domains, and we can update
4008 * the domain values for our changes.
4009 */
4010 obj->base.write_domain = 0;
4011 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4012
4013 trace_i915_gem_object_change_domain(obj,
4014 old_read_domains,
4015 old_write_domain);
4016
4017 return 0;
4018
4019 err_unpin_display:
4020 obj->pin_display--;
4021 return ret;
4022 }
4023
4024 void
4025 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4026 const struct i915_ggtt_view *view)
4027 {
4028 if (WARN_ON(obj->pin_display == 0))
4029 return;
4030
4031 i915_gem_object_ggtt_unpin_view(obj, view);
4032
4033 obj->pin_display--;
4034 }
4035
4036 /**
4037 * Moves a single object to the CPU read, and possibly write domain.
4038 *
4039 * This function returns when the move is complete, including waiting on
4040 * flushes to occur.
4041 */
4042 int
4043 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4044 {
4045 uint32_t old_write_domain, old_read_domains;
4046 int ret;
4047
4048 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4049 return 0;
4050
4051 ret = i915_gem_object_wait_rendering(obj, !write);
4052 if (ret)
4053 return ret;
4054
4055 i915_gem_object_flush_gtt_write_domain(obj);
4056
4057 old_write_domain = obj->base.write_domain;
4058 old_read_domains = obj->base.read_domains;
4059
4060 /* Flush the CPU cache if it's still invalid. */
4061 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4062 i915_gem_clflush_object(obj, false);
4063
4064 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4065 }
4066
4067 /* It should now be out of any other write domains, and we can update
4068 * the domain values for our changes.
4069 */
4070 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4071
4072 /* If we're writing through the CPU, then the GPU read domains will
4073 * need to be invalidated at next use.
4074 */
4075 if (write) {
4076 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4077 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4078 }
4079
4080 trace_i915_gem_object_change_domain(obj,
4081 old_read_domains,
4082 old_write_domain);
4083
4084 return 0;
4085 }
4086
4087 /* Throttle our rendering by waiting until the ring has completed our requests
4088 * emitted over 20 msec ago.
4089 *
4090 * Note that if we were to use the current jiffies each time around the loop,
4091 * we wouldn't escape the function with any frames outstanding if the time to
4092 * render a frame was over 20ms.
4093 *
4094 * This should get us reasonable parallelism between CPU and GPU but also
4095 * relatively low latency when blocking on a particular request to finish.
4096 */
4097 static int
4098 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4099 {
4100 struct drm_i915_private *dev_priv = dev->dev_private;
4101 struct drm_i915_file_private *file_priv = file->driver_priv;
4102 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4103 struct drm_i915_gem_request *request, *target = NULL;
4104 unsigned reset_counter;
4105 int ret;
4106
4107 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4108 if (ret)
4109 return ret;
4110
4111 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4112 if (ret)
4113 return ret;
4114
4115 spin_lock(&file_priv->mm.lock);
4116 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4117 if (time_after_eq(request->emitted_jiffies, recent_enough))
4118 break;
4119
4120 /*
4121 * Note that the request might not have been submitted yet.
4122 * In which case emitted_jiffies will be zero.
4123 */
4124 if (!request->emitted_jiffies)
4125 continue;
4126
4127 target = request;
4128 }
4129 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4130 if (target)
4131 i915_gem_request_reference(target);
4132 spin_unlock(&file_priv->mm.lock);
4133
4134 if (target == NULL)
4135 return 0;
4136
4137 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4138 if (ret == 0)
4139 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4140
4141 i915_gem_request_unreference__unlocked(target);
4142
4143 return ret;
4144 }
4145
4146 static bool
4147 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4148 {
4149 struct drm_i915_gem_object *obj = vma->obj;
4150
4151 if (alignment &&
4152 vma->node.start & (alignment - 1))
4153 return true;
4154
4155 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4156 return true;
4157
4158 if (flags & PIN_OFFSET_BIAS &&
4159 vma->node.start < (flags & PIN_OFFSET_MASK))
4160 return true;
4161
4162 if (flags & PIN_OFFSET_FIXED &&
4163 vma->node.start != (flags & PIN_OFFSET_MASK))
4164 return true;
4165
4166 return false;
4167 }
4168
4169 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4170 {
4171 struct drm_i915_gem_object *obj = vma->obj;
4172 bool mappable, fenceable;
4173 u32 fence_size, fence_alignment;
4174
4175 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4176 obj->base.size,
4177 obj->tiling_mode);
4178 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4179 obj->base.size,
4180 obj->tiling_mode,
4181 true);
4182
4183 fenceable = (vma->node.size == fence_size &&
4184 (vma->node.start & (fence_alignment - 1)) == 0);
4185
4186 mappable = (vma->node.start + fence_size <=
4187 to_i915(obj->base.dev)->gtt.mappable_end);
4188
4189 obj->map_and_fenceable = mappable && fenceable;
4190 }
4191
4192 static int
4193 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4194 struct i915_address_space *vm,
4195 const struct i915_ggtt_view *ggtt_view,
4196 uint32_t alignment,
4197 uint64_t flags)
4198 {
4199 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4200 struct i915_vma *vma;
4201 unsigned bound;
4202 int ret;
4203
4204 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4205 return -ENODEV;
4206
4207 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4208 return -EINVAL;
4209
4210 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4211 return -EINVAL;
4212
4213 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4214 return -EINVAL;
4215
4216 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4217 i915_gem_obj_to_vma(obj, vm);
4218
4219 if (IS_ERR(vma))
4220 return PTR_ERR(vma);
4221
4222 if (vma) {
4223 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4224 return -EBUSY;
4225
4226 if (i915_vma_misplaced(vma, alignment, flags)) {
4227 WARN(vma->pin_count,
4228 "bo is already pinned in %s with incorrect alignment:"
4229 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4230 " obj->map_and_fenceable=%d\n",
4231 ggtt_view ? "ggtt" : "ppgtt",
4232 upper_32_bits(vma->node.start),
4233 lower_32_bits(vma->node.start),
4234 alignment,
4235 !!(flags & PIN_MAPPABLE),
4236 obj->map_and_fenceable);
4237 ret = i915_vma_unbind(vma);
4238 if (ret)
4239 return ret;
4240
4241 vma = NULL;
4242 }
4243 }
4244
4245 bound = vma ? vma->bound : 0;
4246 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4247 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4248 flags);
4249 if (IS_ERR(vma))
4250 return PTR_ERR(vma);
4251 } else {
4252 ret = i915_vma_bind(vma, obj->cache_level, flags);
4253 if (ret)
4254 return ret;
4255 }
4256
4257 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4258 (bound ^ vma->bound) & GLOBAL_BIND) {
4259 __i915_vma_set_map_and_fenceable(vma);
4260 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4261 }
4262
4263 vma->pin_count++;
4264 return 0;
4265 }
4266
4267 int
4268 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4269 struct i915_address_space *vm,
4270 uint32_t alignment,
4271 uint64_t flags)
4272 {
4273 return i915_gem_object_do_pin(obj, vm,
4274 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4275 alignment, flags);
4276 }
4277
4278 int
4279 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4280 const struct i915_ggtt_view *view,
4281 uint32_t alignment,
4282 uint64_t flags)
4283 {
4284 if (WARN_ONCE(!view, "no view specified"))
4285 return -EINVAL;
4286
4287 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4288 alignment, flags | PIN_GLOBAL);
4289 }
4290
4291 void
4292 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4293 const struct i915_ggtt_view *view)
4294 {
4295 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4296
4297 BUG_ON(!vma);
4298 WARN_ON(vma->pin_count == 0);
4299 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4300
4301 --vma->pin_count;
4302 }
4303
4304 int
4305 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4306 struct drm_file *file)
4307 {
4308 struct drm_i915_gem_busy *args = data;
4309 struct drm_i915_gem_object *obj;
4310 int ret;
4311
4312 ret = i915_mutex_lock_interruptible(dev);
4313 if (ret)
4314 return ret;
4315
4316 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4317 if (&obj->base == NULL) {
4318 ret = -ENOENT;
4319 goto unlock;
4320 }
4321
4322 /* Count all active objects as busy, even if they are currently not used
4323 * by the gpu. Users of this interface expect objects to eventually
4324 * become non-busy without any further actions, therefore emit any
4325 * necessary flushes here.
4326 */
4327 ret = i915_gem_object_flush_active(obj);
4328 if (ret)
4329 goto unref;
4330
4331 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4332 args->busy = obj->active << 16;
4333 if (obj->last_write_req)
4334 args->busy |= obj->last_write_req->ring->id;
4335
4336 unref:
4337 drm_gem_object_unreference(&obj->base);
4338 unlock:
4339 mutex_unlock(&dev->struct_mutex);
4340 return ret;
4341 }
4342
4343 int
4344 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4345 struct drm_file *file_priv)
4346 {
4347 return i915_gem_ring_throttle(dev, file_priv);
4348 }
4349
4350 int
4351 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4352 struct drm_file *file_priv)
4353 {
4354 struct drm_i915_private *dev_priv = dev->dev_private;
4355 struct drm_i915_gem_madvise *args = data;
4356 struct drm_i915_gem_object *obj;
4357 int ret;
4358
4359 switch (args->madv) {
4360 case I915_MADV_DONTNEED:
4361 case I915_MADV_WILLNEED:
4362 break;
4363 default:
4364 return -EINVAL;
4365 }
4366
4367 ret = i915_mutex_lock_interruptible(dev);
4368 if (ret)
4369 return ret;
4370
4371 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4372 if (&obj->base == NULL) {
4373 ret = -ENOENT;
4374 goto unlock;
4375 }
4376
4377 if (i915_gem_obj_is_pinned(obj)) {
4378 ret = -EINVAL;
4379 goto out;
4380 }
4381
4382 if (obj->pages &&
4383 obj->tiling_mode != I915_TILING_NONE &&
4384 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4385 if (obj->madv == I915_MADV_WILLNEED)
4386 i915_gem_object_unpin_pages(obj);
4387 if (args->madv == I915_MADV_WILLNEED)
4388 i915_gem_object_pin_pages(obj);
4389 }
4390
4391 if (obj->madv != __I915_MADV_PURGED)
4392 obj->madv = args->madv;
4393
4394 /* if the object is no longer attached, discard its backing storage */
4395 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4396 i915_gem_object_truncate(obj);
4397
4398 args->retained = obj->madv != __I915_MADV_PURGED;
4399
4400 out:
4401 drm_gem_object_unreference(&obj->base);
4402 unlock:
4403 mutex_unlock(&dev->struct_mutex);
4404 return ret;
4405 }
4406
4407 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4408 const struct drm_i915_gem_object_ops *ops)
4409 {
4410 int i;
4411
4412 INIT_LIST_HEAD(&obj->global_list);
4413 for (i = 0; i < I915_NUM_RINGS; i++)
4414 INIT_LIST_HEAD(&obj->ring_list[i]);
4415 INIT_LIST_HEAD(&obj->obj_exec_link);
4416 INIT_LIST_HEAD(&obj->vma_list);
4417 INIT_LIST_HEAD(&obj->batch_pool_link);
4418
4419 obj->ops = ops;
4420
4421 obj->fence_reg = I915_FENCE_REG_NONE;
4422 obj->madv = I915_MADV_WILLNEED;
4423
4424 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4425 }
4426
4427 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4428 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4429 .get_pages = i915_gem_object_get_pages_gtt,
4430 .put_pages = i915_gem_object_put_pages_gtt,
4431 };
4432
4433 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4434 size_t size)
4435 {
4436 struct drm_i915_gem_object *obj;
4437 struct address_space *mapping;
4438 gfp_t mask;
4439
4440 obj = i915_gem_object_alloc(dev);
4441 if (obj == NULL)
4442 return NULL;
4443
4444 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4445 i915_gem_object_free(obj);
4446 return NULL;
4447 }
4448
4449 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4450 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4451 /* 965gm cannot relocate objects above 4GiB. */
4452 mask &= ~__GFP_HIGHMEM;
4453 mask |= __GFP_DMA32;
4454 }
4455
4456 mapping = file_inode(obj->base.filp)->i_mapping;
4457 mapping_set_gfp_mask(mapping, mask);
4458
4459 i915_gem_object_init(obj, &i915_gem_object_ops);
4460
4461 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4462 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4463
4464 if (HAS_LLC(dev)) {
4465 /* On some devices, we can have the GPU use the LLC (the CPU
4466 * cache) for about a 10% performance improvement
4467 * compared to uncached. Graphics requests other than
4468 * display scanout are coherent with the CPU in
4469 * accessing this cache. This means in this mode we
4470 * don't need to clflush on the CPU side, and on the
4471 * GPU side we only need to flush internal caches to
4472 * get data visible to the CPU.
4473 *
4474 * However, we maintain the display planes as UC, and so
4475 * need to rebind when first used as such.
4476 */
4477 obj->cache_level = I915_CACHE_LLC;
4478 } else
4479 obj->cache_level = I915_CACHE_NONE;
4480
4481 trace_i915_gem_object_create(obj);
4482
4483 return obj;
4484 }
4485
4486 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4487 {
4488 /* If we are the last user of the backing storage (be it shmemfs
4489 * pages or stolen etc), we know that the pages are going to be
4490 * immediately released. In this case, we can then skip copying
4491 * back the contents from the GPU.
4492 */
4493
4494 if (obj->madv != I915_MADV_WILLNEED)
4495 return false;
4496
4497 if (obj->base.filp == NULL)
4498 return true;
4499
4500 /* At first glance, this looks racy, but then again so would be
4501 * userspace racing mmap against close. However, the first external
4502 * reference to the filp can only be obtained through the
4503 * i915_gem_mmap_ioctl() which safeguards us against the user
4504 * acquiring such a reference whilst we are in the middle of
4505 * freeing the object.
4506 */
4507 return atomic_long_read(&obj->base.filp->f_count) == 1;
4508 }
4509
4510 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4511 {
4512 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4513 struct drm_device *dev = obj->base.dev;
4514 struct drm_i915_private *dev_priv = dev->dev_private;
4515 struct i915_vma *vma, *next;
4516
4517 intel_runtime_pm_get(dev_priv);
4518
4519 trace_i915_gem_object_destroy(obj);
4520
4521 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4522 int ret;
4523
4524 vma->pin_count = 0;
4525 ret = i915_vma_unbind(vma);
4526 if (WARN_ON(ret == -ERESTARTSYS)) {
4527 bool was_interruptible;
4528
4529 was_interruptible = dev_priv->mm.interruptible;
4530 dev_priv->mm.interruptible = false;
4531
4532 WARN_ON(i915_vma_unbind(vma));
4533
4534 dev_priv->mm.interruptible = was_interruptible;
4535 }
4536 }
4537
4538 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4539 * before progressing. */
4540 if (obj->stolen)
4541 i915_gem_object_unpin_pages(obj);
4542
4543 WARN_ON(obj->frontbuffer_bits);
4544
4545 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4546 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4547 obj->tiling_mode != I915_TILING_NONE)
4548 i915_gem_object_unpin_pages(obj);
4549
4550 if (WARN_ON(obj->pages_pin_count))
4551 obj->pages_pin_count = 0;
4552 if (discard_backing_storage(obj))
4553 obj->madv = I915_MADV_DONTNEED;
4554 i915_gem_object_put_pages(obj);
4555 i915_gem_object_free_mmap_offset(obj);
4556
4557 BUG_ON(obj->pages);
4558
4559 if (obj->base.import_attach)
4560 drm_prime_gem_destroy(&obj->base, NULL);
4561
4562 if (obj->ops->release)
4563 obj->ops->release(obj);
4564
4565 drm_gem_object_release(&obj->base);
4566 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4567
4568 kfree(obj->bit_17);
4569 i915_gem_object_free(obj);
4570
4571 intel_runtime_pm_put(dev_priv);
4572 }
4573
4574 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4575 struct i915_address_space *vm)
4576 {
4577 struct i915_vma *vma;
4578 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4579 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4580 vma->vm == vm)
4581 return vma;
4582 }
4583 return NULL;
4584 }
4585
4586 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4587 const struct i915_ggtt_view *view)
4588 {
4589 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4590 struct i915_vma *vma;
4591
4592 if (WARN_ONCE(!view, "no view specified"))
4593 return ERR_PTR(-EINVAL);
4594
4595 list_for_each_entry(vma, &obj->vma_list, vma_link)
4596 if (vma->vm == ggtt &&
4597 i915_ggtt_view_equal(&vma->ggtt_view, view))
4598 return vma;
4599 return NULL;
4600 }
4601
4602 void i915_gem_vma_destroy(struct i915_vma *vma)
4603 {
4604 struct i915_address_space *vm = NULL;
4605 WARN_ON(vma->node.allocated);
4606
4607 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4608 if (!list_empty(&vma->exec_list))
4609 return;
4610
4611 vm = vma->vm;
4612
4613 if (!i915_is_ggtt(vm))
4614 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4615
4616 list_del(&vma->vma_link);
4617
4618 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4619 }
4620
4621 static void
4622 i915_gem_stop_ringbuffers(struct drm_device *dev)
4623 {
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625 struct intel_engine_cs *ring;
4626 int i;
4627
4628 for_each_ring(ring, dev_priv, i)
4629 dev_priv->gt.stop_ring(ring);
4630 }
4631
4632 int
4633 i915_gem_suspend(struct drm_device *dev)
4634 {
4635 struct drm_i915_private *dev_priv = dev->dev_private;
4636 int ret = 0;
4637
4638 mutex_lock(&dev->struct_mutex);
4639 ret = i915_gpu_idle(dev);
4640 if (ret)
4641 goto err;
4642
4643 i915_gem_retire_requests(dev);
4644
4645 i915_gem_stop_ringbuffers(dev);
4646 mutex_unlock(&dev->struct_mutex);
4647
4648 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4649 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4650 flush_delayed_work(&dev_priv->mm.idle_work);
4651
4652 /* Assert that we sucessfully flushed all the work and
4653 * reset the GPU back to its idle, low power state.
4654 */
4655 WARN_ON(dev_priv->mm.busy);
4656
4657 return 0;
4658
4659 err:
4660 mutex_unlock(&dev->struct_mutex);
4661 return ret;
4662 }
4663
4664 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4665 {
4666 struct intel_engine_cs *ring = req->ring;
4667 struct drm_device *dev = ring->dev;
4668 struct drm_i915_private *dev_priv = dev->dev_private;
4669 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4670 int i, ret;
4671
4672 if (!HAS_L3_DPF(dev) || !remap_info)
4673 return 0;
4674
4675 ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4676 if (ret)
4677 return ret;
4678
4679 /*
4680 * Note: We do not worry about the concurrent register cacheline hang
4681 * here because no other code should access these registers other than
4682 * at initialization time.
4683 */
4684 for (i = 0; i < GEN7_L3LOG_SIZE / 4; i++) {
4685 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4686 intel_ring_emit_reg(ring, GEN7_L3LOG(slice, i));
4687 intel_ring_emit(ring, remap_info[i]);
4688 }
4689
4690 intel_ring_advance(ring);
4691
4692 return ret;
4693 }
4694
4695 void i915_gem_init_swizzling(struct drm_device *dev)
4696 {
4697 struct drm_i915_private *dev_priv = dev->dev_private;
4698
4699 if (INTEL_INFO(dev)->gen < 5 ||
4700 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4701 return;
4702
4703 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4704 DISP_TILE_SURFACE_SWIZZLING);
4705
4706 if (IS_GEN5(dev))
4707 return;
4708
4709 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4710 if (IS_GEN6(dev))
4711 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4712 else if (IS_GEN7(dev))
4713 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4714 else if (IS_GEN8(dev))
4715 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4716 else
4717 BUG();
4718 }
4719
4720 static void init_unused_ring(struct drm_device *dev, u32 base)
4721 {
4722 struct drm_i915_private *dev_priv = dev->dev_private;
4723
4724 I915_WRITE(RING_CTL(base), 0);
4725 I915_WRITE(RING_HEAD(base), 0);
4726 I915_WRITE(RING_TAIL(base), 0);
4727 I915_WRITE(RING_START(base), 0);
4728 }
4729
4730 static void init_unused_rings(struct drm_device *dev)
4731 {
4732 if (IS_I830(dev)) {
4733 init_unused_ring(dev, PRB1_BASE);
4734 init_unused_ring(dev, SRB0_BASE);
4735 init_unused_ring(dev, SRB1_BASE);
4736 init_unused_ring(dev, SRB2_BASE);
4737 init_unused_ring(dev, SRB3_BASE);
4738 } else if (IS_GEN2(dev)) {
4739 init_unused_ring(dev, SRB0_BASE);
4740 init_unused_ring(dev, SRB1_BASE);
4741 } else if (IS_GEN3(dev)) {
4742 init_unused_ring(dev, PRB1_BASE);
4743 init_unused_ring(dev, PRB2_BASE);
4744 }
4745 }
4746
4747 int i915_gem_init_rings(struct drm_device *dev)
4748 {
4749 struct drm_i915_private *dev_priv = dev->dev_private;
4750 int ret;
4751
4752 ret = intel_init_render_ring_buffer(dev);
4753 if (ret)
4754 return ret;
4755
4756 if (HAS_BSD(dev)) {
4757 ret = intel_init_bsd_ring_buffer(dev);
4758 if (ret)
4759 goto cleanup_render_ring;
4760 }
4761
4762 if (HAS_BLT(dev)) {
4763 ret = intel_init_blt_ring_buffer(dev);
4764 if (ret)
4765 goto cleanup_bsd_ring;
4766 }
4767
4768 if (HAS_VEBOX(dev)) {
4769 ret = intel_init_vebox_ring_buffer(dev);
4770 if (ret)
4771 goto cleanup_blt_ring;
4772 }
4773
4774 if (HAS_BSD2(dev)) {
4775 ret = intel_init_bsd2_ring_buffer(dev);
4776 if (ret)
4777 goto cleanup_vebox_ring;
4778 }
4779
4780 return 0;
4781
4782 cleanup_vebox_ring:
4783 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4784 cleanup_blt_ring:
4785 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4786 cleanup_bsd_ring:
4787 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4788 cleanup_render_ring:
4789 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4790
4791 return ret;
4792 }
4793
4794 int
4795 i915_gem_init_hw(struct drm_device *dev)
4796 {
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 struct intel_engine_cs *ring;
4799 int ret, i, j;
4800
4801 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4802 return -EIO;
4803
4804 /* Double layer security blanket, see i915_gem_init() */
4805 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806
4807 if (dev_priv->ellc_size)
4808 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4809
4810 if (IS_HASWELL(dev))
4811 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4812 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4813
4814 if (HAS_PCH_NOP(dev)) {
4815 if (IS_IVYBRIDGE(dev)) {
4816 u32 temp = I915_READ(GEN7_MSG_CTL);
4817 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4818 I915_WRITE(GEN7_MSG_CTL, temp);
4819 } else if (INTEL_INFO(dev)->gen >= 7) {
4820 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4821 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4822 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4823 }
4824 }
4825
4826 i915_gem_init_swizzling(dev);
4827
4828 /*
4829 * At least 830 can leave some of the unused rings
4830 * "active" (ie. head != tail) after resume which
4831 * will prevent c3 entry. Makes sure all unused rings
4832 * are totally idle.
4833 */
4834 init_unused_rings(dev);
4835
4836 BUG_ON(!dev_priv->ring[RCS].default_context);
4837
4838 ret = i915_ppgtt_init_hw(dev);
4839 if (ret) {
4840 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4841 goto out;
4842 }
4843
4844 /* Need to do basic initialisation of all rings first: */
4845 for_each_ring(ring, dev_priv, i) {
4846 ret = ring->init_hw(ring);
4847 if (ret)
4848 goto out;
4849 }
4850
4851 /* We can't enable contexts until all firmware is loaded */
4852 if (HAS_GUC_UCODE(dev)) {
4853 ret = intel_guc_ucode_load(dev);
4854 if (ret) {
4855 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4856 ret = -EIO;
4857 goto out;
4858 }
4859 }
4860
4861 /*
4862 * Increment the next seqno by 0x100 so we have a visible break
4863 * on re-initialisation
4864 */
4865 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4866 if (ret)
4867 goto out;
4868
4869 /* Now it is safe to go back round and do everything else: */
4870 for_each_ring(ring, dev_priv, i) {
4871 struct drm_i915_gem_request *req;
4872
4873 WARN_ON(!ring->default_context);
4874
4875 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4876 if (ret) {
4877 i915_gem_cleanup_ringbuffer(dev);
4878 goto out;
4879 }
4880
4881 if (ring->id == RCS) {
4882 for (j = 0; j < NUM_L3_SLICES(dev); j++)
4883 i915_gem_l3_remap(req, j);
4884 }
4885
4886 ret = i915_ppgtt_init_ring(req);
4887 if (ret && ret != -EIO) {
4888 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4889 i915_gem_request_cancel(req);
4890 i915_gem_cleanup_ringbuffer(dev);
4891 goto out;
4892 }
4893
4894 ret = i915_gem_context_enable(req);
4895 if (ret && ret != -EIO) {
4896 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4897 i915_gem_request_cancel(req);
4898 i915_gem_cleanup_ringbuffer(dev);
4899 goto out;
4900 }
4901
4902 i915_add_request_no_flush(req);
4903 }
4904
4905 out:
4906 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4907 return ret;
4908 }
4909
4910 int i915_gem_init(struct drm_device *dev)
4911 {
4912 struct drm_i915_private *dev_priv = dev->dev_private;
4913 int ret;
4914
4915 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4916 i915.enable_execlists);
4917
4918 mutex_lock(&dev->struct_mutex);
4919
4920 if (!i915.enable_execlists) {
4921 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4922 dev_priv->gt.init_rings = i915_gem_init_rings;
4923 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4924 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4925 } else {
4926 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4927 dev_priv->gt.init_rings = intel_logical_rings_init;
4928 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4929 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4930 }
4931
4932 /* This is just a security blanket to placate dragons.
4933 * On some systems, we very sporadically observe that the first TLBs
4934 * used by the CS may be stale, despite us poking the TLB reset. If
4935 * we hold the forcewake during initialisation these problems
4936 * just magically go away.
4937 */
4938 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4939
4940 ret = i915_gem_init_userptr(dev);
4941 if (ret)
4942 goto out_unlock;
4943
4944 i915_gem_init_global_gtt(dev);
4945
4946 ret = i915_gem_context_init(dev);
4947 if (ret)
4948 goto out_unlock;
4949
4950 ret = dev_priv->gt.init_rings(dev);
4951 if (ret)
4952 goto out_unlock;
4953
4954 ret = i915_gem_init_hw(dev);
4955 if (ret == -EIO) {
4956 /* Allow ring initialisation to fail by marking the GPU as
4957 * wedged. But we only want to do this where the GPU is angry,
4958 * for all other failure, such as an allocation failure, bail.
4959 */
4960 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4961 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4962 ret = 0;
4963 }
4964
4965 out_unlock:
4966 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4967 mutex_unlock(&dev->struct_mutex);
4968
4969 return ret;
4970 }
4971
4972 void
4973 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4974 {
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 struct intel_engine_cs *ring;
4977 int i;
4978
4979 for_each_ring(ring, dev_priv, i)
4980 dev_priv->gt.cleanup_ring(ring);
4981
4982 if (i915.enable_execlists)
4983 /*
4984 * Neither the BIOS, ourselves or any other kernel
4985 * expects the system to be in execlists mode on startup,
4986 * so we need to reset the GPU back to legacy mode.
4987 */
4988 intel_gpu_reset(dev);
4989 }
4990
4991 static void
4992 init_ring_lists(struct intel_engine_cs *ring)
4993 {
4994 INIT_LIST_HEAD(&ring->active_list);
4995 INIT_LIST_HEAD(&ring->request_list);
4996 }
4997
4998 void
4999 i915_gem_load(struct drm_device *dev)
5000 {
5001 struct drm_i915_private *dev_priv = dev->dev_private;
5002 int i;
5003
5004 dev_priv->objects =
5005 kmem_cache_create("i915_gem_object",
5006 sizeof(struct drm_i915_gem_object), 0,
5007 SLAB_HWCACHE_ALIGN,
5008 NULL);
5009 dev_priv->vmas =
5010 kmem_cache_create("i915_gem_vma",
5011 sizeof(struct i915_vma), 0,
5012 SLAB_HWCACHE_ALIGN,
5013 NULL);
5014 dev_priv->requests =
5015 kmem_cache_create("i915_gem_request",
5016 sizeof(struct drm_i915_gem_request), 0,
5017 SLAB_HWCACHE_ALIGN,
5018 NULL);
5019
5020 INIT_LIST_HEAD(&dev_priv->vm_list);
5021 INIT_LIST_HEAD(&dev_priv->context_list);
5022 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5023 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5024 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5025 for (i = 0; i < I915_NUM_RINGS; i++)
5026 init_ring_lists(&dev_priv->ring[i]);
5027 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5028 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5029 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5030 i915_gem_retire_work_handler);
5031 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5032 i915_gem_idle_work_handler);
5033 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5034
5035 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5036
5037 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
5038 dev_priv->num_fence_regs = 32;
5039 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5040 dev_priv->num_fence_regs = 16;
5041 else
5042 dev_priv->num_fence_regs = 8;
5043
5044 if (intel_vgpu_active(dev))
5045 dev_priv->num_fence_regs =
5046 I915_READ(vgtif_reg(avail_rs.fence_num));
5047
5048 /*
5049 * Set initial sequence number for requests.
5050 * Using this number allows the wraparound to happen early,
5051 * catching any obvious problems.
5052 */
5053 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5054 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5055
5056 /* Initialize fence registers to zero */
5057 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5058 i915_gem_restore_fences(dev);
5059
5060 i915_gem_detect_bit_6_swizzle(dev);
5061 init_waitqueue_head(&dev_priv->pending_flip_queue);
5062
5063 dev_priv->mm.interruptible = true;
5064
5065 i915_gem_shrinker_init(dev_priv);
5066
5067 mutex_init(&dev_priv->fb_tracking.lock);
5068 }
5069
5070 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5071 {
5072 struct drm_i915_file_private *file_priv = file->driver_priv;
5073
5074 /* Clean up our request list when the client is going away, so that
5075 * later retire_requests won't dereference our soon-to-be-gone
5076 * file_priv.
5077 */
5078 spin_lock(&file_priv->mm.lock);
5079 while (!list_empty(&file_priv->mm.request_list)) {
5080 struct drm_i915_gem_request *request;
5081
5082 request = list_first_entry(&file_priv->mm.request_list,
5083 struct drm_i915_gem_request,
5084 client_list);
5085 list_del(&request->client_list);
5086 request->file_priv = NULL;
5087 }
5088 spin_unlock(&file_priv->mm.lock);
5089
5090 if (!list_empty(&file_priv->rps.link)) {
5091 spin_lock(&to_i915(dev)->rps.client_lock);
5092 list_del(&file_priv->rps.link);
5093 spin_unlock(&to_i915(dev)->rps.client_lock);
5094 }
5095 }
5096
5097 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5098 {
5099 struct drm_i915_file_private *file_priv;
5100 int ret;
5101
5102 DRM_DEBUG_DRIVER("\n");
5103
5104 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5105 if (!file_priv)
5106 return -ENOMEM;
5107
5108 file->driver_priv = file_priv;
5109 file_priv->dev_priv = dev->dev_private;
5110 file_priv->file = file;
5111 INIT_LIST_HEAD(&file_priv->rps.link);
5112
5113 spin_lock_init(&file_priv->mm.lock);
5114 INIT_LIST_HEAD(&file_priv->mm.request_list);
5115
5116 ret = i915_gem_context_open(dev, file);
5117 if (ret)
5118 kfree(file_priv);
5119
5120 return ret;
5121 }
5122
5123 /**
5124 * i915_gem_track_fb - update frontbuffer tracking
5125 * @old: current GEM buffer for the frontbuffer slots
5126 * @new: new GEM buffer for the frontbuffer slots
5127 * @frontbuffer_bits: bitmask of frontbuffer slots
5128 *
5129 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5130 * from @old and setting them in @new. Both @old and @new can be NULL.
5131 */
5132 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5133 struct drm_i915_gem_object *new,
5134 unsigned frontbuffer_bits)
5135 {
5136 if (old) {
5137 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5138 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5139 old->frontbuffer_bits &= ~frontbuffer_bits;
5140 }
5141
5142 if (new) {
5143 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5144 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5145 new->frontbuffer_bits |= frontbuffer_bits;
5146 }
5147 }
5148
5149 /* All the new VM stuff */
5150 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5151 struct i915_address_space *vm)
5152 {
5153 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5154 struct i915_vma *vma;
5155
5156 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5157
5158 list_for_each_entry(vma, &o->vma_list, vma_link) {
5159 if (i915_is_ggtt(vma->vm) &&
5160 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5161 continue;
5162 if (vma->vm == vm)
5163 return vma->node.start;
5164 }
5165
5166 WARN(1, "%s vma for this object not found.\n",
5167 i915_is_ggtt(vm) ? "global" : "ppgtt");
5168 return -1;
5169 }
5170
5171 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5172 const struct i915_ggtt_view *view)
5173 {
5174 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5175 struct i915_vma *vma;
5176
5177 list_for_each_entry(vma, &o->vma_list, vma_link)
5178 if (vma->vm == ggtt &&
5179 i915_ggtt_view_equal(&vma->ggtt_view, view))
5180 return vma->node.start;
5181
5182 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5183 return -1;
5184 }
5185
5186 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5187 struct i915_address_space *vm)
5188 {
5189 struct i915_vma *vma;
5190
5191 list_for_each_entry(vma, &o->vma_list, vma_link) {
5192 if (i915_is_ggtt(vma->vm) &&
5193 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5194 continue;
5195 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5196 return true;
5197 }
5198
5199 return false;
5200 }
5201
5202 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5203 const struct i915_ggtt_view *view)
5204 {
5205 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5206 struct i915_vma *vma;
5207
5208 list_for_each_entry(vma, &o->vma_list, vma_link)
5209 if (vma->vm == ggtt &&
5210 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5211 drm_mm_node_allocated(&vma->node))
5212 return true;
5213
5214 return false;
5215 }
5216
5217 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5218 {
5219 struct i915_vma *vma;
5220
5221 list_for_each_entry(vma, &o->vma_list, vma_link)
5222 if (drm_mm_node_allocated(&vma->node))
5223 return true;
5224
5225 return false;
5226 }
5227
5228 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5229 struct i915_address_space *vm)
5230 {
5231 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5232 struct i915_vma *vma;
5233
5234 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5235
5236 BUG_ON(list_empty(&o->vma_list));
5237
5238 list_for_each_entry(vma, &o->vma_list, vma_link) {
5239 if (i915_is_ggtt(vma->vm) &&
5240 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5241 continue;
5242 if (vma->vm == vm)
5243 return vma->node.size;
5244 }
5245 return 0;
5246 }
5247
5248 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5249 {
5250 struct i915_vma *vma;
5251 list_for_each_entry(vma, &obj->vma_list, vma_link)
5252 if (vma->pin_count > 0)
5253 return true;
5254
5255 return false;
5256 }
5257
5258 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5259 struct page *
5260 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5261 {
5262 struct page *page;
5263
5264 /* Only default objects have per-page dirty tracking */
5265 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5266 return NULL;
5267
5268 page = i915_gem_object_get_page(obj, n);
5269 set_page_dirty(page);
5270 return page;
5271 }
5272
5273 /* Allocate a new GEM object and fill it with the supplied data */
5274 struct drm_i915_gem_object *
5275 i915_gem_object_create_from_data(struct drm_device *dev,
5276 const void *data, size_t size)
5277 {
5278 struct drm_i915_gem_object *obj;
5279 struct sg_table *sg;
5280 size_t bytes;
5281 int ret;
5282
5283 obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5284 if (IS_ERR_OR_NULL(obj))
5285 return obj;
5286
5287 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5288 if (ret)
5289 goto fail;
5290
5291 ret = i915_gem_object_get_pages(obj);
5292 if (ret)
5293 goto fail;
5294
5295 i915_gem_object_pin_pages(obj);
5296 sg = obj->pages;
5297 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5298 obj->dirty = 1; /* Backing store is now out of date */
5299 i915_gem_object_unpin_pages(obj);
5300
5301 if (WARN_ON(bytes != size)) {
5302 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5303 ret = -EFAULT;
5304 goto fail;
5305 }
5306
5307 return obj;
5308
5309 fail:
5310 drm_gem_object_unreference(&obj->base);
5311 return ERR_PTR(ret);
5312 }