]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: enable MCHBAR if needed
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
49 static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53 struct drm_i915_gem_pwrite *args,
54 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57 unsigned long end)
58 {
59 drm_i915_private_t *dev_priv = dev->dev_private;
60
61 if (start >= end ||
62 (start & (PAGE_SIZE - 1)) != 0 ||
63 (end & (PAGE_SIZE - 1)) != 0) {
64 return -EINVAL;
65 }
66
67 drm_mm_init(&dev_priv->mm.gtt_space, start,
68 end - start);
69
70 dev->gtt_total = (uint32_t) (end - start);
71
72 return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77 struct drm_file *file_priv)
78 {
79 struct drm_i915_gem_init *args = data;
80 int ret;
81
82 mutex_lock(&dev->struct_mutex);
83 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84 mutex_unlock(&dev->struct_mutex);
85
86 return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91 struct drm_file *file_priv)
92 {
93 struct drm_i915_gem_get_aperture *args = data;
94
95 if (!(dev->driver->driver_features & DRIVER_GEM))
96 return -ENODEV;
97
98 args->aper_size = dev->gtt_total;
99 args->aper_available_size = (args->aper_size -
100 atomic_read(&dev->pin_memory));
101
102 return 0;
103 }
104
105
106 /**
107 * Creates a new mm object and returns a handle to it.
108 */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111 struct drm_file *file_priv)
112 {
113 struct drm_i915_gem_create *args = data;
114 struct drm_gem_object *obj;
115 int handle, ret;
116
117 args->size = roundup(args->size, PAGE_SIZE);
118
119 /* Allocate the new object */
120 obj = drm_gem_object_alloc(dev, args->size);
121 if (obj == NULL)
122 return -ENOMEM;
123
124 ret = drm_gem_handle_create(file_priv, obj, &handle);
125 mutex_lock(&dev->struct_mutex);
126 drm_gem_object_handle_unreference(obj);
127 mutex_unlock(&dev->struct_mutex);
128
129 if (ret)
130 return ret;
131
132 args->handle = handle;
133
134 return 0;
135 }
136
137 static inline int
138 fast_shmem_read(struct page **pages,
139 loff_t page_base, int page_offset,
140 char __user *data,
141 int length)
142 {
143 char __iomem *vaddr;
144 int unwritten;
145
146 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
147 if (vaddr == NULL)
148 return -ENOMEM;
149 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
150 kunmap_atomic(vaddr, KM_USER0);
151
152 if (unwritten)
153 return -EFAULT;
154
155 return 0;
156 }
157
158 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
159 {
160 drm_i915_private_t *dev_priv = obj->dev->dev_private;
161 struct drm_i915_gem_object *obj_priv = obj->driver_private;
162
163 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
164 obj_priv->tiling_mode != I915_TILING_NONE;
165 }
166
167 static inline int
168 slow_shmem_copy(struct page *dst_page,
169 int dst_offset,
170 struct page *src_page,
171 int src_offset,
172 int length)
173 {
174 char *dst_vaddr, *src_vaddr;
175
176 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
177 if (dst_vaddr == NULL)
178 return -ENOMEM;
179
180 src_vaddr = kmap_atomic(src_page, KM_USER1);
181 if (src_vaddr == NULL) {
182 kunmap_atomic(dst_vaddr, KM_USER0);
183 return -ENOMEM;
184 }
185
186 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
187
188 kunmap_atomic(src_vaddr, KM_USER1);
189 kunmap_atomic(dst_vaddr, KM_USER0);
190
191 return 0;
192 }
193
194 static inline int
195 slow_shmem_bit17_copy(struct page *gpu_page,
196 int gpu_offset,
197 struct page *cpu_page,
198 int cpu_offset,
199 int length,
200 int is_read)
201 {
202 char *gpu_vaddr, *cpu_vaddr;
203
204 /* Use the unswizzled path if this page isn't affected. */
205 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
206 if (is_read)
207 return slow_shmem_copy(cpu_page, cpu_offset,
208 gpu_page, gpu_offset, length);
209 else
210 return slow_shmem_copy(gpu_page, gpu_offset,
211 cpu_page, cpu_offset, length);
212 }
213
214 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
215 if (gpu_vaddr == NULL)
216 return -ENOMEM;
217
218 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
219 if (cpu_vaddr == NULL) {
220 kunmap_atomic(gpu_vaddr, KM_USER0);
221 return -ENOMEM;
222 }
223
224 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
225 * XORing with the other bits (A9 for Y, A9 and A10 for X)
226 */
227 while (length > 0) {
228 int cacheline_end = ALIGN(gpu_offset + 1, 64);
229 int this_length = min(cacheline_end - gpu_offset, length);
230 int swizzled_gpu_offset = gpu_offset ^ 64;
231
232 if (is_read) {
233 memcpy(cpu_vaddr + cpu_offset,
234 gpu_vaddr + swizzled_gpu_offset,
235 this_length);
236 } else {
237 memcpy(gpu_vaddr + swizzled_gpu_offset,
238 cpu_vaddr + cpu_offset,
239 this_length);
240 }
241 cpu_offset += this_length;
242 gpu_offset += this_length;
243 length -= this_length;
244 }
245
246 kunmap_atomic(cpu_vaddr, KM_USER1);
247 kunmap_atomic(gpu_vaddr, KM_USER0);
248
249 return 0;
250 }
251
252 /**
253 * This is the fast shmem pread path, which attempts to copy_from_user directly
254 * from the backing pages of the object to the user's address space. On a
255 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
256 */
257 static int
258 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
259 struct drm_i915_gem_pread *args,
260 struct drm_file *file_priv)
261 {
262 struct drm_i915_gem_object *obj_priv = obj->driver_private;
263 ssize_t remain;
264 loff_t offset, page_base;
265 char __user *user_data;
266 int page_offset, page_length;
267 int ret;
268
269 user_data = (char __user *) (uintptr_t) args->data_ptr;
270 remain = args->size;
271
272 mutex_lock(&dev->struct_mutex);
273
274 ret = i915_gem_object_get_pages(obj);
275 if (ret != 0)
276 goto fail_unlock;
277
278 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
279 args->size);
280 if (ret != 0)
281 goto fail_put_pages;
282
283 obj_priv = obj->driver_private;
284 offset = args->offset;
285
286 while (remain > 0) {
287 /* Operation in this page
288 *
289 * page_base = page offset within aperture
290 * page_offset = offset within page
291 * page_length = bytes to copy for this page
292 */
293 page_base = (offset & ~(PAGE_SIZE-1));
294 page_offset = offset & (PAGE_SIZE-1);
295 page_length = remain;
296 if ((page_offset + remain) > PAGE_SIZE)
297 page_length = PAGE_SIZE - page_offset;
298
299 ret = fast_shmem_read(obj_priv->pages,
300 page_base, page_offset,
301 user_data, page_length);
302 if (ret)
303 goto fail_put_pages;
304
305 remain -= page_length;
306 user_data += page_length;
307 offset += page_length;
308 }
309
310 fail_put_pages:
311 i915_gem_object_put_pages(obj);
312 fail_unlock:
313 mutex_unlock(&dev->struct_mutex);
314
315 return ret;
316 }
317
318 /**
319 * This is the fallback shmem pread path, which allocates temporary storage
320 * in kernel space to copy_to_user into outside of the struct_mutex, so we
321 * can copy out of the object's backing pages while holding the struct mutex
322 * and not take page faults.
323 */
324 static int
325 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
326 struct drm_i915_gem_pread *args,
327 struct drm_file *file_priv)
328 {
329 struct drm_i915_gem_object *obj_priv = obj->driver_private;
330 struct mm_struct *mm = current->mm;
331 struct page **user_pages;
332 ssize_t remain;
333 loff_t offset, pinned_pages, i;
334 loff_t first_data_page, last_data_page, num_pages;
335 int shmem_page_index, shmem_page_offset;
336 int data_page_index, data_page_offset;
337 int page_length;
338 int ret;
339 uint64_t data_ptr = args->data_ptr;
340 int do_bit17_swizzling;
341
342 remain = args->size;
343
344 /* Pin the user pages containing the data. We can't fault while
345 * holding the struct mutex, yet we want to hold it while
346 * dereferencing the user data.
347 */
348 first_data_page = data_ptr / PAGE_SIZE;
349 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
350 num_pages = last_data_page - first_data_page + 1;
351
352 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
353 if (user_pages == NULL)
354 return -ENOMEM;
355
356 down_read(&mm->mmap_sem);
357 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
358 num_pages, 1, 0, user_pages, NULL);
359 up_read(&mm->mmap_sem);
360 if (pinned_pages < num_pages) {
361 ret = -EFAULT;
362 goto fail_put_user_pages;
363 }
364
365 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
366
367 mutex_lock(&dev->struct_mutex);
368
369 ret = i915_gem_object_get_pages(obj);
370 if (ret != 0)
371 goto fail_unlock;
372
373 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
374 args->size);
375 if (ret != 0)
376 goto fail_put_pages;
377
378 obj_priv = obj->driver_private;
379 offset = args->offset;
380
381 while (remain > 0) {
382 /* Operation in this page
383 *
384 * shmem_page_index = page number within shmem file
385 * shmem_page_offset = offset within page in shmem file
386 * data_page_index = page number in get_user_pages return
387 * data_page_offset = offset with data_page_index page.
388 * page_length = bytes to copy for this page
389 */
390 shmem_page_index = offset / PAGE_SIZE;
391 shmem_page_offset = offset & ~PAGE_MASK;
392 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
393 data_page_offset = data_ptr & ~PAGE_MASK;
394
395 page_length = remain;
396 if ((shmem_page_offset + page_length) > PAGE_SIZE)
397 page_length = PAGE_SIZE - shmem_page_offset;
398 if ((data_page_offset + page_length) > PAGE_SIZE)
399 page_length = PAGE_SIZE - data_page_offset;
400
401 if (do_bit17_swizzling) {
402 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
403 shmem_page_offset,
404 user_pages[data_page_index],
405 data_page_offset,
406 page_length,
407 1);
408 } else {
409 ret = slow_shmem_copy(user_pages[data_page_index],
410 data_page_offset,
411 obj_priv->pages[shmem_page_index],
412 shmem_page_offset,
413 page_length);
414 }
415 if (ret)
416 goto fail_put_pages;
417
418 remain -= page_length;
419 data_ptr += page_length;
420 offset += page_length;
421 }
422
423 fail_put_pages:
424 i915_gem_object_put_pages(obj);
425 fail_unlock:
426 mutex_unlock(&dev->struct_mutex);
427 fail_put_user_pages:
428 for (i = 0; i < pinned_pages; i++) {
429 SetPageDirty(user_pages[i]);
430 page_cache_release(user_pages[i]);
431 }
432 drm_free_large(user_pages);
433
434 return ret;
435 }
436
437 /**
438 * Reads data from the object referenced by handle.
439 *
440 * On error, the contents of *data are undefined.
441 */
442 int
443 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
444 struct drm_file *file_priv)
445 {
446 struct drm_i915_gem_pread *args = data;
447 struct drm_gem_object *obj;
448 struct drm_i915_gem_object *obj_priv;
449 int ret;
450
451 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
452 if (obj == NULL)
453 return -EBADF;
454 obj_priv = obj->driver_private;
455
456 /* Bounds check source.
457 *
458 * XXX: This could use review for overflow issues...
459 */
460 if (args->offset > obj->size || args->size > obj->size ||
461 args->offset + args->size > obj->size) {
462 drm_gem_object_unreference(obj);
463 return -EINVAL;
464 }
465
466 if (i915_gem_object_needs_bit17_swizzle(obj)) {
467 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
468 } else {
469 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
470 if (ret != 0)
471 ret = i915_gem_shmem_pread_slow(dev, obj, args,
472 file_priv);
473 }
474
475 drm_gem_object_unreference(obj);
476
477 return ret;
478 }
479
480 /* This is the fast write path which cannot handle
481 * page faults in the source data
482 */
483
484 static inline int
485 fast_user_write(struct io_mapping *mapping,
486 loff_t page_base, int page_offset,
487 char __user *user_data,
488 int length)
489 {
490 char *vaddr_atomic;
491 unsigned long unwritten;
492
493 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
494 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
495 user_data, length);
496 io_mapping_unmap_atomic(vaddr_atomic);
497 if (unwritten)
498 return -EFAULT;
499 return 0;
500 }
501
502 /* Here's the write path which can sleep for
503 * page faults
504 */
505
506 static inline int
507 slow_kernel_write(struct io_mapping *mapping,
508 loff_t gtt_base, int gtt_offset,
509 struct page *user_page, int user_offset,
510 int length)
511 {
512 char *src_vaddr, *dst_vaddr;
513 unsigned long unwritten;
514
515 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
516 src_vaddr = kmap_atomic(user_page, KM_USER1);
517 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
518 src_vaddr + user_offset,
519 length);
520 kunmap_atomic(src_vaddr, KM_USER1);
521 io_mapping_unmap_atomic(dst_vaddr);
522 if (unwritten)
523 return -EFAULT;
524 return 0;
525 }
526
527 static inline int
528 fast_shmem_write(struct page **pages,
529 loff_t page_base, int page_offset,
530 char __user *data,
531 int length)
532 {
533 char __iomem *vaddr;
534 unsigned long unwritten;
535
536 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
537 if (vaddr == NULL)
538 return -ENOMEM;
539 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
540 kunmap_atomic(vaddr, KM_USER0);
541
542 if (unwritten)
543 return -EFAULT;
544 return 0;
545 }
546
547 /**
548 * This is the fast pwrite path, where we copy the data directly from the
549 * user into the GTT, uncached.
550 */
551 static int
552 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
553 struct drm_i915_gem_pwrite *args,
554 struct drm_file *file_priv)
555 {
556 struct drm_i915_gem_object *obj_priv = obj->driver_private;
557 drm_i915_private_t *dev_priv = dev->dev_private;
558 ssize_t remain;
559 loff_t offset, page_base;
560 char __user *user_data;
561 int page_offset, page_length;
562 int ret;
563
564 user_data = (char __user *) (uintptr_t) args->data_ptr;
565 remain = args->size;
566 if (!access_ok(VERIFY_READ, user_data, remain))
567 return -EFAULT;
568
569
570 mutex_lock(&dev->struct_mutex);
571 ret = i915_gem_object_pin(obj, 0);
572 if (ret) {
573 mutex_unlock(&dev->struct_mutex);
574 return ret;
575 }
576 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
577 if (ret)
578 goto fail;
579
580 obj_priv = obj->driver_private;
581 offset = obj_priv->gtt_offset + args->offset;
582
583 while (remain > 0) {
584 /* Operation in this page
585 *
586 * page_base = page offset within aperture
587 * page_offset = offset within page
588 * page_length = bytes to copy for this page
589 */
590 page_base = (offset & ~(PAGE_SIZE-1));
591 page_offset = offset & (PAGE_SIZE-1);
592 page_length = remain;
593 if ((page_offset + remain) > PAGE_SIZE)
594 page_length = PAGE_SIZE - page_offset;
595
596 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
597 page_offset, user_data, page_length);
598
599 /* If we get a fault while copying data, then (presumably) our
600 * source page isn't available. Return the error and we'll
601 * retry in the slow path.
602 */
603 if (ret)
604 goto fail;
605
606 remain -= page_length;
607 user_data += page_length;
608 offset += page_length;
609 }
610
611 fail:
612 i915_gem_object_unpin(obj);
613 mutex_unlock(&dev->struct_mutex);
614
615 return ret;
616 }
617
618 /**
619 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
620 * the memory and maps it using kmap_atomic for copying.
621 *
622 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
623 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
624 */
625 static int
626 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
627 struct drm_i915_gem_pwrite *args,
628 struct drm_file *file_priv)
629 {
630 struct drm_i915_gem_object *obj_priv = obj->driver_private;
631 drm_i915_private_t *dev_priv = dev->dev_private;
632 ssize_t remain;
633 loff_t gtt_page_base, offset;
634 loff_t first_data_page, last_data_page, num_pages;
635 loff_t pinned_pages, i;
636 struct page **user_pages;
637 struct mm_struct *mm = current->mm;
638 int gtt_page_offset, data_page_offset, data_page_index, page_length;
639 int ret;
640 uint64_t data_ptr = args->data_ptr;
641
642 remain = args->size;
643
644 /* Pin the user pages containing the data. We can't fault while
645 * holding the struct mutex, and all of the pwrite implementations
646 * want to hold it while dereferencing the user data.
647 */
648 first_data_page = data_ptr / PAGE_SIZE;
649 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
650 num_pages = last_data_page - first_data_page + 1;
651
652 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
653 if (user_pages == NULL)
654 return -ENOMEM;
655
656 down_read(&mm->mmap_sem);
657 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
658 num_pages, 0, 0, user_pages, NULL);
659 up_read(&mm->mmap_sem);
660 if (pinned_pages < num_pages) {
661 ret = -EFAULT;
662 goto out_unpin_pages;
663 }
664
665 mutex_lock(&dev->struct_mutex);
666 ret = i915_gem_object_pin(obj, 0);
667 if (ret)
668 goto out_unlock;
669
670 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
671 if (ret)
672 goto out_unpin_object;
673
674 obj_priv = obj->driver_private;
675 offset = obj_priv->gtt_offset + args->offset;
676
677 while (remain > 0) {
678 /* Operation in this page
679 *
680 * gtt_page_base = page offset within aperture
681 * gtt_page_offset = offset within page in aperture
682 * data_page_index = page number in get_user_pages return
683 * data_page_offset = offset with data_page_index page.
684 * page_length = bytes to copy for this page
685 */
686 gtt_page_base = offset & PAGE_MASK;
687 gtt_page_offset = offset & ~PAGE_MASK;
688 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
689 data_page_offset = data_ptr & ~PAGE_MASK;
690
691 page_length = remain;
692 if ((gtt_page_offset + page_length) > PAGE_SIZE)
693 page_length = PAGE_SIZE - gtt_page_offset;
694 if ((data_page_offset + page_length) > PAGE_SIZE)
695 page_length = PAGE_SIZE - data_page_offset;
696
697 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
698 gtt_page_base, gtt_page_offset,
699 user_pages[data_page_index],
700 data_page_offset,
701 page_length);
702
703 /* If we get a fault while copying data, then (presumably) our
704 * source page isn't available. Return the error and we'll
705 * retry in the slow path.
706 */
707 if (ret)
708 goto out_unpin_object;
709
710 remain -= page_length;
711 offset += page_length;
712 data_ptr += page_length;
713 }
714
715 out_unpin_object:
716 i915_gem_object_unpin(obj);
717 out_unlock:
718 mutex_unlock(&dev->struct_mutex);
719 out_unpin_pages:
720 for (i = 0; i < pinned_pages; i++)
721 page_cache_release(user_pages[i]);
722 drm_free_large(user_pages);
723
724 return ret;
725 }
726
727 /**
728 * This is the fast shmem pwrite path, which attempts to directly
729 * copy_from_user into the kmapped pages backing the object.
730 */
731 static int
732 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
733 struct drm_i915_gem_pwrite *args,
734 struct drm_file *file_priv)
735 {
736 struct drm_i915_gem_object *obj_priv = obj->driver_private;
737 ssize_t remain;
738 loff_t offset, page_base;
739 char __user *user_data;
740 int page_offset, page_length;
741 int ret;
742
743 user_data = (char __user *) (uintptr_t) args->data_ptr;
744 remain = args->size;
745
746 mutex_lock(&dev->struct_mutex);
747
748 ret = i915_gem_object_get_pages(obj);
749 if (ret != 0)
750 goto fail_unlock;
751
752 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
753 if (ret != 0)
754 goto fail_put_pages;
755
756 obj_priv = obj->driver_private;
757 offset = args->offset;
758 obj_priv->dirty = 1;
759
760 while (remain > 0) {
761 /* Operation in this page
762 *
763 * page_base = page offset within aperture
764 * page_offset = offset within page
765 * page_length = bytes to copy for this page
766 */
767 page_base = (offset & ~(PAGE_SIZE-1));
768 page_offset = offset & (PAGE_SIZE-1);
769 page_length = remain;
770 if ((page_offset + remain) > PAGE_SIZE)
771 page_length = PAGE_SIZE - page_offset;
772
773 ret = fast_shmem_write(obj_priv->pages,
774 page_base, page_offset,
775 user_data, page_length);
776 if (ret)
777 goto fail_put_pages;
778
779 remain -= page_length;
780 user_data += page_length;
781 offset += page_length;
782 }
783
784 fail_put_pages:
785 i915_gem_object_put_pages(obj);
786 fail_unlock:
787 mutex_unlock(&dev->struct_mutex);
788
789 return ret;
790 }
791
792 /**
793 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
794 * the memory and maps it using kmap_atomic for copying.
795 *
796 * This avoids taking mmap_sem for faulting on the user's address while the
797 * struct_mutex is held.
798 */
799 static int
800 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
801 struct drm_i915_gem_pwrite *args,
802 struct drm_file *file_priv)
803 {
804 struct drm_i915_gem_object *obj_priv = obj->driver_private;
805 struct mm_struct *mm = current->mm;
806 struct page **user_pages;
807 ssize_t remain;
808 loff_t offset, pinned_pages, i;
809 loff_t first_data_page, last_data_page, num_pages;
810 int shmem_page_index, shmem_page_offset;
811 int data_page_index, data_page_offset;
812 int page_length;
813 int ret;
814 uint64_t data_ptr = args->data_ptr;
815 int do_bit17_swizzling;
816
817 remain = args->size;
818
819 /* Pin the user pages containing the data. We can't fault while
820 * holding the struct mutex, and all of the pwrite implementations
821 * want to hold it while dereferencing the user data.
822 */
823 first_data_page = data_ptr / PAGE_SIZE;
824 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
825 num_pages = last_data_page - first_data_page + 1;
826
827 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
828 if (user_pages == NULL)
829 return -ENOMEM;
830
831 down_read(&mm->mmap_sem);
832 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
833 num_pages, 0, 0, user_pages, NULL);
834 up_read(&mm->mmap_sem);
835 if (pinned_pages < num_pages) {
836 ret = -EFAULT;
837 goto fail_put_user_pages;
838 }
839
840 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
841
842 mutex_lock(&dev->struct_mutex);
843
844 ret = i915_gem_object_get_pages(obj);
845 if (ret != 0)
846 goto fail_unlock;
847
848 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
849 if (ret != 0)
850 goto fail_put_pages;
851
852 obj_priv = obj->driver_private;
853 offset = args->offset;
854 obj_priv->dirty = 1;
855
856 while (remain > 0) {
857 /* Operation in this page
858 *
859 * shmem_page_index = page number within shmem file
860 * shmem_page_offset = offset within page in shmem file
861 * data_page_index = page number in get_user_pages return
862 * data_page_offset = offset with data_page_index page.
863 * page_length = bytes to copy for this page
864 */
865 shmem_page_index = offset / PAGE_SIZE;
866 shmem_page_offset = offset & ~PAGE_MASK;
867 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
868 data_page_offset = data_ptr & ~PAGE_MASK;
869
870 page_length = remain;
871 if ((shmem_page_offset + page_length) > PAGE_SIZE)
872 page_length = PAGE_SIZE - shmem_page_offset;
873 if ((data_page_offset + page_length) > PAGE_SIZE)
874 page_length = PAGE_SIZE - data_page_offset;
875
876 if (do_bit17_swizzling) {
877 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
878 shmem_page_offset,
879 user_pages[data_page_index],
880 data_page_offset,
881 page_length,
882 0);
883 } else {
884 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
885 shmem_page_offset,
886 user_pages[data_page_index],
887 data_page_offset,
888 page_length);
889 }
890 if (ret)
891 goto fail_put_pages;
892
893 remain -= page_length;
894 data_ptr += page_length;
895 offset += page_length;
896 }
897
898 fail_put_pages:
899 i915_gem_object_put_pages(obj);
900 fail_unlock:
901 mutex_unlock(&dev->struct_mutex);
902 fail_put_user_pages:
903 for (i = 0; i < pinned_pages; i++)
904 page_cache_release(user_pages[i]);
905 drm_free_large(user_pages);
906
907 return ret;
908 }
909
910 /**
911 * Writes data to the object referenced by handle.
912 *
913 * On error, the contents of the buffer that were to be modified are undefined.
914 */
915 int
916 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
917 struct drm_file *file_priv)
918 {
919 struct drm_i915_gem_pwrite *args = data;
920 struct drm_gem_object *obj;
921 struct drm_i915_gem_object *obj_priv;
922 int ret = 0;
923
924 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
925 if (obj == NULL)
926 return -EBADF;
927 obj_priv = obj->driver_private;
928
929 /* Bounds check destination.
930 *
931 * XXX: This could use review for overflow issues...
932 */
933 if (args->offset > obj->size || args->size > obj->size ||
934 args->offset + args->size > obj->size) {
935 drm_gem_object_unreference(obj);
936 return -EINVAL;
937 }
938
939 /* We can only do the GTT pwrite on untiled buffers, as otherwise
940 * it would end up going through the fenced access, and we'll get
941 * different detiling behavior between reading and writing.
942 * pread/pwrite currently are reading and writing from the CPU
943 * perspective, requiring manual detiling by the client.
944 */
945 if (obj_priv->phys_obj)
946 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
947 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
948 dev->gtt_total != 0) {
949 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
950 if (ret == -EFAULT) {
951 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
952 file_priv);
953 }
954 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
955 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
956 } else {
957 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
958 if (ret == -EFAULT) {
959 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
960 file_priv);
961 }
962 }
963
964 #if WATCH_PWRITE
965 if (ret)
966 DRM_INFO("pwrite failed %d\n", ret);
967 #endif
968
969 drm_gem_object_unreference(obj);
970
971 return ret;
972 }
973
974 /**
975 * Called when user space prepares to use an object with the CPU, either
976 * through the mmap ioctl's mapping or a GTT mapping.
977 */
978 int
979 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
980 struct drm_file *file_priv)
981 {
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
993 return -EINVAL;
994
995 if (read_domains & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1012 #endif
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1015
1016 /* Silently promote "you're not bound, there was nothing to do"
1017 * to success, since the client was just asking us to
1018 * make sure everything was done.
1019 */
1020 if (ret == -EINVAL)
1021 ret = 0;
1022 } else {
1023 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1024 }
1025
1026 drm_gem_object_unreference(obj);
1027 mutex_unlock(&dev->struct_mutex);
1028 return ret;
1029 }
1030
1031 /**
1032 * Called when user space has done writes to this buffer
1033 */
1034 int
1035 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1036 struct drm_file *file_priv)
1037 {
1038 struct drm_i915_gem_sw_finish *args = data;
1039 struct drm_gem_object *obj;
1040 struct drm_i915_gem_object *obj_priv;
1041 int ret = 0;
1042
1043 if (!(dev->driver->driver_features & DRIVER_GEM))
1044 return -ENODEV;
1045
1046 mutex_lock(&dev->struct_mutex);
1047 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1048 if (obj == NULL) {
1049 mutex_unlock(&dev->struct_mutex);
1050 return -EBADF;
1051 }
1052
1053 #if WATCH_BUF
1054 DRM_INFO("%s: sw_finish %d (%p %d)\n",
1055 __func__, args->handle, obj, obj->size);
1056 #endif
1057 obj_priv = obj->driver_private;
1058
1059 /* Pinned buffers may be scanout, so flush the cache */
1060 if (obj_priv->pin_count)
1061 i915_gem_object_flush_cpu_write_domain(obj);
1062
1063 drm_gem_object_unreference(obj);
1064 mutex_unlock(&dev->struct_mutex);
1065 return ret;
1066 }
1067
1068 /**
1069 * Maps the contents of an object, returning the address it is mapped
1070 * into.
1071 *
1072 * While the mapping holds a reference on the contents of the object, it doesn't
1073 * imply a ref on the object itself.
1074 */
1075 int
1076 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1077 struct drm_file *file_priv)
1078 {
1079 struct drm_i915_gem_mmap *args = data;
1080 struct drm_gem_object *obj;
1081 loff_t offset;
1082 unsigned long addr;
1083
1084 if (!(dev->driver->driver_features & DRIVER_GEM))
1085 return -ENODEV;
1086
1087 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1088 if (obj == NULL)
1089 return -EBADF;
1090
1091 offset = args->offset;
1092
1093 down_write(&current->mm->mmap_sem);
1094 addr = do_mmap(obj->filp, 0, args->size,
1095 PROT_READ | PROT_WRITE, MAP_SHARED,
1096 args->offset);
1097 up_write(&current->mm->mmap_sem);
1098 mutex_lock(&dev->struct_mutex);
1099 drm_gem_object_unreference(obj);
1100 mutex_unlock(&dev->struct_mutex);
1101 if (IS_ERR((void *)addr))
1102 return addr;
1103
1104 args->addr_ptr = (uint64_t) addr;
1105
1106 return 0;
1107 }
1108
1109 /**
1110 * i915_gem_fault - fault a page into the GTT
1111 * vma: VMA in question
1112 * vmf: fault info
1113 *
1114 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1115 * from userspace. The fault handler takes care of binding the object to
1116 * the GTT (if needed), allocating and programming a fence register (again,
1117 * only if needed based on whether the old reg is still valid or the object
1118 * is tiled) and inserting a new PTE into the faulting process.
1119 *
1120 * Note that the faulting process may involve evicting existing objects
1121 * from the GTT and/or fence registers to make room. So performance may
1122 * suffer if the GTT working set is large or there are few fence registers
1123 * left.
1124 */
1125 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1126 {
1127 struct drm_gem_object *obj = vma->vm_private_data;
1128 struct drm_device *dev = obj->dev;
1129 struct drm_i915_private *dev_priv = dev->dev_private;
1130 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1131 pgoff_t page_offset;
1132 unsigned long pfn;
1133 int ret = 0;
1134 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1135
1136 /* We don't use vmf->pgoff since that has the fake offset */
1137 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1138 PAGE_SHIFT;
1139
1140 /* Now bind it into the GTT if needed */
1141 mutex_lock(&dev->struct_mutex);
1142 if (!obj_priv->gtt_space) {
1143 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1144 if (ret) {
1145 mutex_unlock(&dev->struct_mutex);
1146 return VM_FAULT_SIGBUS;
1147 }
1148
1149 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1150 if (ret) {
1151 mutex_unlock(&dev->struct_mutex);
1152 return VM_FAULT_SIGBUS;
1153 }
1154
1155 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1156 }
1157
1158 /* Need a new fence register? */
1159 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1160 obj_priv->tiling_mode != I915_TILING_NONE) {
1161 ret = i915_gem_object_get_fence_reg(obj, write);
1162 if (ret) {
1163 mutex_unlock(&dev->struct_mutex);
1164 return VM_FAULT_SIGBUS;
1165 }
1166 }
1167
1168 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1169 page_offset;
1170
1171 /* Finally, remap it using the new GTT offset */
1172 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1173
1174 mutex_unlock(&dev->struct_mutex);
1175
1176 switch (ret) {
1177 case -ENOMEM:
1178 case -EAGAIN:
1179 return VM_FAULT_OOM;
1180 case -EFAULT:
1181 case -EINVAL:
1182 return VM_FAULT_SIGBUS;
1183 default:
1184 return VM_FAULT_NOPAGE;
1185 }
1186 }
1187
1188 /**
1189 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1190 * @obj: obj in question
1191 *
1192 * GEM memory mapping works by handing back to userspace a fake mmap offset
1193 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1194 * up the object based on the offset and sets up the various memory mapping
1195 * structures.
1196 *
1197 * This routine allocates and attaches a fake offset for @obj.
1198 */
1199 static int
1200 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1201 {
1202 struct drm_device *dev = obj->dev;
1203 struct drm_gem_mm *mm = dev->mm_private;
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205 struct drm_map_list *list;
1206 struct drm_local_map *map;
1207 int ret = 0;
1208
1209 /* Set the object up for mmap'ing */
1210 list = &obj->map_list;
1211 list->map = drm_calloc(1, sizeof(struct drm_map_list),
1212 DRM_MEM_DRIVER);
1213 if (!list->map)
1214 return -ENOMEM;
1215
1216 map = list->map;
1217 map->type = _DRM_GEM;
1218 map->size = obj->size;
1219 map->handle = obj;
1220
1221 /* Get a DRM GEM mmap offset allocated... */
1222 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1223 obj->size / PAGE_SIZE, 0, 0);
1224 if (!list->file_offset_node) {
1225 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1226 ret = -ENOMEM;
1227 goto out_free_list;
1228 }
1229
1230 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1231 obj->size / PAGE_SIZE, 0);
1232 if (!list->file_offset_node) {
1233 ret = -ENOMEM;
1234 goto out_free_list;
1235 }
1236
1237 list->hash.key = list->file_offset_node->start;
1238 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1239 DRM_ERROR("failed to add to map hash\n");
1240 goto out_free_mm;
1241 }
1242
1243 /* By now we should be all set, any drm_mmap request on the offset
1244 * below will get to our mmap & fault handler */
1245 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1246
1247 return 0;
1248
1249 out_free_mm:
1250 drm_mm_put_block(list->file_offset_node);
1251 out_free_list:
1252 drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1253
1254 return ret;
1255 }
1256
1257 static void
1258 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1259 {
1260 struct drm_device *dev = obj->dev;
1261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262 struct drm_gem_mm *mm = dev->mm_private;
1263 struct drm_map_list *list;
1264
1265 list = &obj->map_list;
1266 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1267
1268 if (list->file_offset_node) {
1269 drm_mm_put_block(list->file_offset_node);
1270 list->file_offset_node = NULL;
1271 }
1272
1273 if (list->map) {
1274 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1275 list->map = NULL;
1276 }
1277
1278 obj_priv->mmap_offset = 0;
1279 }
1280
1281 /**
1282 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1283 * @obj: object to check
1284 *
1285 * Return the required GTT alignment for an object, taking into account
1286 * potential fence register mapping if needed.
1287 */
1288 static uint32_t
1289 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1290 {
1291 struct drm_device *dev = obj->dev;
1292 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1293 int start, i;
1294
1295 /*
1296 * Minimum alignment is 4k (GTT page size), but might be greater
1297 * if a fence register is needed for the object.
1298 */
1299 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1300 return 4096;
1301
1302 /*
1303 * Previous chips need to be aligned to the size of the smallest
1304 * fence register that can contain the object.
1305 */
1306 if (IS_I9XX(dev))
1307 start = 1024*1024;
1308 else
1309 start = 512*1024;
1310
1311 for (i = start; i < obj->size; i <<= 1)
1312 ;
1313
1314 return i;
1315 }
1316
1317 /**
1318 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1319 * @dev: DRM device
1320 * @data: GTT mapping ioctl data
1321 * @file_priv: GEM object info
1322 *
1323 * Simply returns the fake offset to userspace so it can mmap it.
1324 * The mmap call will end up in drm_gem_mmap(), which will set things
1325 * up so we can get faults in the handler above.
1326 *
1327 * The fault handler will take care of binding the object into the GTT
1328 * (since it may have been evicted to make room for something), allocating
1329 * a fence register, and mapping the appropriate aperture address into
1330 * userspace.
1331 */
1332 int
1333 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1334 struct drm_file *file_priv)
1335 {
1336 struct drm_i915_gem_mmap_gtt *args = data;
1337 struct drm_i915_private *dev_priv = dev->dev_private;
1338 struct drm_gem_object *obj;
1339 struct drm_i915_gem_object *obj_priv;
1340 int ret;
1341
1342 if (!(dev->driver->driver_features & DRIVER_GEM))
1343 return -ENODEV;
1344
1345 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1346 if (obj == NULL)
1347 return -EBADF;
1348
1349 mutex_lock(&dev->struct_mutex);
1350
1351 obj_priv = obj->driver_private;
1352
1353 if (!obj_priv->mmap_offset) {
1354 ret = i915_gem_create_mmap_offset(obj);
1355 if (ret) {
1356 drm_gem_object_unreference(obj);
1357 mutex_unlock(&dev->struct_mutex);
1358 return ret;
1359 }
1360 }
1361
1362 args->offset = obj_priv->mmap_offset;
1363
1364 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1365
1366 /* Make sure the alignment is correct for fence regs etc */
1367 if (obj_priv->agp_mem &&
1368 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1369 drm_gem_object_unreference(obj);
1370 mutex_unlock(&dev->struct_mutex);
1371 return -EINVAL;
1372 }
1373
1374 /*
1375 * Pull it into the GTT so that we have a page list (makes the
1376 * initial fault faster and any subsequent flushing possible).
1377 */
1378 if (!obj_priv->agp_mem) {
1379 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1380 if (ret) {
1381 drm_gem_object_unreference(obj);
1382 mutex_unlock(&dev->struct_mutex);
1383 return ret;
1384 }
1385 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1386 }
1387
1388 drm_gem_object_unreference(obj);
1389 mutex_unlock(&dev->struct_mutex);
1390
1391 return 0;
1392 }
1393
1394 void
1395 i915_gem_object_put_pages(struct drm_gem_object *obj)
1396 {
1397 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1398 int page_count = obj->size / PAGE_SIZE;
1399 int i;
1400
1401 BUG_ON(obj_priv->pages_refcount == 0);
1402
1403 if (--obj_priv->pages_refcount != 0)
1404 return;
1405
1406 if (obj_priv->tiling_mode != I915_TILING_NONE)
1407 i915_gem_object_save_bit_17_swizzle(obj);
1408
1409 for (i = 0; i < page_count; i++)
1410 if (obj_priv->pages[i] != NULL) {
1411 if (obj_priv->dirty)
1412 set_page_dirty(obj_priv->pages[i]);
1413 mark_page_accessed(obj_priv->pages[i]);
1414 page_cache_release(obj_priv->pages[i]);
1415 }
1416 obj_priv->dirty = 0;
1417
1418 drm_free_large(obj_priv->pages);
1419 obj_priv->pages = NULL;
1420 }
1421
1422 static void
1423 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1424 {
1425 struct drm_device *dev = obj->dev;
1426 drm_i915_private_t *dev_priv = dev->dev_private;
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428
1429 /* Add a reference if we're newly entering the active list. */
1430 if (!obj_priv->active) {
1431 drm_gem_object_reference(obj);
1432 obj_priv->active = 1;
1433 }
1434 /* Move from whatever list we were on to the tail of execution. */
1435 spin_lock(&dev_priv->mm.active_list_lock);
1436 list_move_tail(&obj_priv->list,
1437 &dev_priv->mm.active_list);
1438 spin_unlock(&dev_priv->mm.active_list_lock);
1439 obj_priv->last_rendering_seqno = seqno;
1440 }
1441
1442 static void
1443 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1444 {
1445 struct drm_device *dev = obj->dev;
1446 drm_i915_private_t *dev_priv = dev->dev_private;
1447 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1448
1449 BUG_ON(!obj_priv->active);
1450 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1451 obj_priv->last_rendering_seqno = 0;
1452 }
1453
1454 static void
1455 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1456 {
1457 struct drm_device *dev = obj->dev;
1458 drm_i915_private_t *dev_priv = dev->dev_private;
1459 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1460
1461 i915_verify_inactive(dev, __FILE__, __LINE__);
1462 if (obj_priv->pin_count != 0)
1463 list_del_init(&obj_priv->list);
1464 else
1465 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1466
1467 obj_priv->last_rendering_seqno = 0;
1468 if (obj_priv->active) {
1469 obj_priv->active = 0;
1470 drm_gem_object_unreference(obj);
1471 }
1472 i915_verify_inactive(dev, __FILE__, __LINE__);
1473 }
1474
1475 /**
1476 * Creates a new sequence number, emitting a write of it to the status page
1477 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1478 *
1479 * Must be called with struct_lock held.
1480 *
1481 * Returned sequence numbers are nonzero on success.
1482 */
1483 static uint32_t
1484 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1485 uint32_t flush_domains)
1486 {
1487 drm_i915_private_t *dev_priv = dev->dev_private;
1488 struct drm_i915_file_private *i915_file_priv = NULL;
1489 struct drm_i915_gem_request *request;
1490 uint32_t seqno;
1491 int was_empty;
1492 RING_LOCALS;
1493
1494 if (file_priv != NULL)
1495 i915_file_priv = file_priv->driver_priv;
1496
1497 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1498 if (request == NULL)
1499 return 0;
1500
1501 /* Grab the seqno we're going to make this request be, and bump the
1502 * next (skipping 0 so it can be the reserved no-seqno value).
1503 */
1504 seqno = dev_priv->mm.next_gem_seqno;
1505 dev_priv->mm.next_gem_seqno++;
1506 if (dev_priv->mm.next_gem_seqno == 0)
1507 dev_priv->mm.next_gem_seqno++;
1508
1509 BEGIN_LP_RING(4);
1510 OUT_RING(MI_STORE_DWORD_INDEX);
1511 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1512 OUT_RING(seqno);
1513
1514 OUT_RING(MI_USER_INTERRUPT);
1515 ADVANCE_LP_RING();
1516
1517 DRM_DEBUG("%d\n", seqno);
1518
1519 request->seqno = seqno;
1520 request->emitted_jiffies = jiffies;
1521 was_empty = list_empty(&dev_priv->mm.request_list);
1522 list_add_tail(&request->list, &dev_priv->mm.request_list);
1523 if (i915_file_priv) {
1524 list_add_tail(&request->client_list,
1525 &i915_file_priv->mm.request_list);
1526 } else {
1527 INIT_LIST_HEAD(&request->client_list);
1528 }
1529
1530 /* Associate any objects on the flushing list matching the write
1531 * domain we're flushing with our flush.
1532 */
1533 if (flush_domains != 0) {
1534 struct drm_i915_gem_object *obj_priv, *next;
1535
1536 list_for_each_entry_safe(obj_priv, next,
1537 &dev_priv->mm.flushing_list, list) {
1538 struct drm_gem_object *obj = obj_priv->obj;
1539
1540 if ((obj->write_domain & flush_domains) ==
1541 obj->write_domain) {
1542 obj->write_domain = 0;
1543 i915_gem_object_move_to_active(obj, seqno);
1544 }
1545 }
1546
1547 }
1548
1549 if (was_empty && !dev_priv->mm.suspended)
1550 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1551 return seqno;
1552 }
1553
1554 /**
1555 * Command execution barrier
1556 *
1557 * Ensures that all commands in the ring are finished
1558 * before signalling the CPU
1559 */
1560 static uint32_t
1561 i915_retire_commands(struct drm_device *dev)
1562 {
1563 drm_i915_private_t *dev_priv = dev->dev_private;
1564 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1565 uint32_t flush_domains = 0;
1566 RING_LOCALS;
1567
1568 /* The sampler always gets flushed on i965 (sigh) */
1569 if (IS_I965G(dev))
1570 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1571 BEGIN_LP_RING(2);
1572 OUT_RING(cmd);
1573 OUT_RING(0); /* noop */
1574 ADVANCE_LP_RING();
1575 return flush_domains;
1576 }
1577
1578 /**
1579 * Moves buffers associated only with the given active seqno from the active
1580 * to inactive list, potentially freeing them.
1581 */
1582 static void
1583 i915_gem_retire_request(struct drm_device *dev,
1584 struct drm_i915_gem_request *request)
1585 {
1586 drm_i915_private_t *dev_priv = dev->dev_private;
1587
1588 /* Move any buffers on the active list that are no longer referenced
1589 * by the ringbuffer to the flushing/inactive lists as appropriate.
1590 */
1591 spin_lock(&dev_priv->mm.active_list_lock);
1592 while (!list_empty(&dev_priv->mm.active_list)) {
1593 struct drm_gem_object *obj;
1594 struct drm_i915_gem_object *obj_priv;
1595
1596 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1597 struct drm_i915_gem_object,
1598 list);
1599 obj = obj_priv->obj;
1600
1601 /* If the seqno being retired doesn't match the oldest in the
1602 * list, then the oldest in the list must still be newer than
1603 * this seqno.
1604 */
1605 if (obj_priv->last_rendering_seqno != request->seqno)
1606 goto out;
1607
1608 #if WATCH_LRU
1609 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1610 __func__, request->seqno, obj);
1611 #endif
1612
1613 if (obj->write_domain != 0)
1614 i915_gem_object_move_to_flushing(obj);
1615 else {
1616 /* Take a reference on the object so it won't be
1617 * freed while the spinlock is held. The list
1618 * protection for this spinlock is safe when breaking
1619 * the lock like this since the next thing we do
1620 * is just get the head of the list again.
1621 */
1622 drm_gem_object_reference(obj);
1623 i915_gem_object_move_to_inactive(obj);
1624 spin_unlock(&dev_priv->mm.active_list_lock);
1625 drm_gem_object_unreference(obj);
1626 spin_lock(&dev_priv->mm.active_list_lock);
1627 }
1628 }
1629 out:
1630 spin_unlock(&dev_priv->mm.active_list_lock);
1631 }
1632
1633 /**
1634 * Returns true if seq1 is later than seq2.
1635 */
1636 static int
1637 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1638 {
1639 return (int32_t)(seq1 - seq2) >= 0;
1640 }
1641
1642 uint32_t
1643 i915_get_gem_seqno(struct drm_device *dev)
1644 {
1645 drm_i915_private_t *dev_priv = dev->dev_private;
1646
1647 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1648 }
1649
1650 /**
1651 * This function clears the request list as sequence numbers are passed.
1652 */
1653 void
1654 i915_gem_retire_requests(struct drm_device *dev)
1655 {
1656 drm_i915_private_t *dev_priv = dev->dev_private;
1657 uint32_t seqno;
1658
1659 if (!dev_priv->hw_status_page)
1660 return;
1661
1662 seqno = i915_get_gem_seqno(dev);
1663
1664 while (!list_empty(&dev_priv->mm.request_list)) {
1665 struct drm_i915_gem_request *request;
1666 uint32_t retiring_seqno;
1667
1668 request = list_first_entry(&dev_priv->mm.request_list,
1669 struct drm_i915_gem_request,
1670 list);
1671 retiring_seqno = request->seqno;
1672
1673 if (i915_seqno_passed(seqno, retiring_seqno) ||
1674 dev_priv->mm.wedged) {
1675 i915_gem_retire_request(dev, request);
1676
1677 list_del(&request->list);
1678 list_del(&request->client_list);
1679 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1680 } else
1681 break;
1682 }
1683 }
1684
1685 void
1686 i915_gem_retire_work_handler(struct work_struct *work)
1687 {
1688 drm_i915_private_t *dev_priv;
1689 struct drm_device *dev;
1690
1691 dev_priv = container_of(work, drm_i915_private_t,
1692 mm.retire_work.work);
1693 dev = dev_priv->dev;
1694
1695 mutex_lock(&dev->struct_mutex);
1696 i915_gem_retire_requests(dev);
1697 if (!dev_priv->mm.suspended &&
1698 !list_empty(&dev_priv->mm.request_list))
1699 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1700 mutex_unlock(&dev->struct_mutex);
1701 }
1702
1703 /**
1704 * Waits for a sequence number to be signaled, and cleans up the
1705 * request and object lists appropriately for that event.
1706 */
1707 static int
1708 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1709 {
1710 drm_i915_private_t *dev_priv = dev->dev_private;
1711 u32 ier;
1712 int ret = 0;
1713
1714 BUG_ON(seqno == 0);
1715
1716 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1717 ier = I915_READ(IER);
1718 if (!ier) {
1719 DRM_ERROR("something (likely vbetool) disabled "
1720 "interrupts, re-enabling\n");
1721 i915_driver_irq_preinstall(dev);
1722 i915_driver_irq_postinstall(dev);
1723 }
1724
1725 dev_priv->mm.waiting_gem_seqno = seqno;
1726 i915_user_irq_get(dev);
1727 ret = wait_event_interruptible(dev_priv->irq_queue,
1728 i915_seqno_passed(i915_get_gem_seqno(dev),
1729 seqno) ||
1730 dev_priv->mm.wedged);
1731 i915_user_irq_put(dev);
1732 dev_priv->mm.waiting_gem_seqno = 0;
1733 }
1734 if (dev_priv->mm.wedged)
1735 ret = -EIO;
1736
1737 if (ret && ret != -ERESTARTSYS)
1738 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1739 __func__, ret, seqno, i915_get_gem_seqno(dev));
1740
1741 /* Directly dispatch request retiring. While we have the work queue
1742 * to handle this, the waiter on a request often wants an associated
1743 * buffer to have made it to the inactive list, and we would need
1744 * a separate wait queue to handle that.
1745 */
1746 if (ret == 0)
1747 i915_gem_retire_requests(dev);
1748
1749 return ret;
1750 }
1751
1752 static void
1753 i915_gem_flush(struct drm_device *dev,
1754 uint32_t invalidate_domains,
1755 uint32_t flush_domains)
1756 {
1757 drm_i915_private_t *dev_priv = dev->dev_private;
1758 uint32_t cmd;
1759 RING_LOCALS;
1760
1761 #if WATCH_EXEC
1762 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1763 invalidate_domains, flush_domains);
1764 #endif
1765
1766 if (flush_domains & I915_GEM_DOMAIN_CPU)
1767 drm_agp_chipset_flush(dev);
1768
1769 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
1770 I915_GEM_DOMAIN_GTT)) {
1771 /*
1772 * read/write caches:
1773 *
1774 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1775 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1776 * also flushed at 2d versus 3d pipeline switches.
1777 *
1778 * read-only caches:
1779 *
1780 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1781 * MI_READ_FLUSH is set, and is always flushed on 965.
1782 *
1783 * I915_GEM_DOMAIN_COMMAND may not exist?
1784 *
1785 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1786 * invalidated when MI_EXE_FLUSH is set.
1787 *
1788 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1789 * invalidated with every MI_FLUSH.
1790 *
1791 * TLBs:
1792 *
1793 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1794 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1795 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1796 * are flushed at any MI_FLUSH.
1797 */
1798
1799 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1800 if ((invalidate_domains|flush_domains) &
1801 I915_GEM_DOMAIN_RENDER)
1802 cmd &= ~MI_NO_WRITE_FLUSH;
1803 if (!IS_I965G(dev)) {
1804 /*
1805 * On the 965, the sampler cache always gets flushed
1806 * and this bit is reserved.
1807 */
1808 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1809 cmd |= MI_READ_FLUSH;
1810 }
1811 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1812 cmd |= MI_EXE_FLUSH;
1813
1814 #if WATCH_EXEC
1815 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1816 #endif
1817 BEGIN_LP_RING(2);
1818 OUT_RING(cmd);
1819 OUT_RING(0); /* noop */
1820 ADVANCE_LP_RING();
1821 }
1822 }
1823
1824 /**
1825 * Ensures that all rendering to the object has completed and the object is
1826 * safe to unbind from the GTT or access from the CPU.
1827 */
1828 static int
1829 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1830 {
1831 struct drm_device *dev = obj->dev;
1832 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1833 int ret;
1834
1835 /* This function only exists to support waiting for existing rendering,
1836 * not for emitting required flushes.
1837 */
1838 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1839
1840 /* If there is rendering queued on the buffer being evicted, wait for
1841 * it.
1842 */
1843 if (obj_priv->active) {
1844 #if WATCH_BUF
1845 DRM_INFO("%s: object %p wait for seqno %08x\n",
1846 __func__, obj, obj_priv->last_rendering_seqno);
1847 #endif
1848 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1849 if (ret != 0)
1850 return ret;
1851 }
1852
1853 return 0;
1854 }
1855
1856 /**
1857 * Unbinds an object from the GTT aperture.
1858 */
1859 int
1860 i915_gem_object_unbind(struct drm_gem_object *obj)
1861 {
1862 struct drm_device *dev = obj->dev;
1863 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1864 loff_t offset;
1865 int ret = 0;
1866
1867 #if WATCH_BUF
1868 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1869 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1870 #endif
1871 if (obj_priv->gtt_space == NULL)
1872 return 0;
1873
1874 if (obj_priv->pin_count != 0) {
1875 DRM_ERROR("Attempting to unbind pinned buffer\n");
1876 return -EINVAL;
1877 }
1878
1879 /* Move the object to the CPU domain to ensure that
1880 * any possible CPU writes while it's not in the GTT
1881 * are flushed when we go to remap it. This will
1882 * also ensure that all pending GPU writes are finished
1883 * before we unbind.
1884 */
1885 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1886 if (ret) {
1887 if (ret != -ERESTARTSYS)
1888 DRM_ERROR("set_domain failed: %d\n", ret);
1889 return ret;
1890 }
1891
1892 if (obj_priv->agp_mem != NULL) {
1893 drm_unbind_agp(obj_priv->agp_mem);
1894 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1895 obj_priv->agp_mem = NULL;
1896 }
1897
1898 BUG_ON(obj_priv->active);
1899
1900 /* blow away mappings if mapped through GTT */
1901 offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1902 if (dev->dev_mapping)
1903 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1904
1905 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1906 i915_gem_clear_fence_reg(obj);
1907
1908 i915_gem_object_put_pages(obj);
1909
1910 if (obj_priv->gtt_space) {
1911 atomic_dec(&dev->gtt_count);
1912 atomic_sub(obj->size, &dev->gtt_memory);
1913
1914 drm_mm_put_block(obj_priv->gtt_space);
1915 obj_priv->gtt_space = NULL;
1916 }
1917
1918 /* Remove ourselves from the LRU list if present. */
1919 if (!list_empty(&obj_priv->list))
1920 list_del_init(&obj_priv->list);
1921
1922 return 0;
1923 }
1924
1925 static int
1926 i915_gem_evict_something(struct drm_device *dev)
1927 {
1928 drm_i915_private_t *dev_priv = dev->dev_private;
1929 struct drm_gem_object *obj;
1930 struct drm_i915_gem_object *obj_priv;
1931 int ret = 0;
1932
1933 for (;;) {
1934 /* If there's an inactive buffer available now, grab it
1935 * and be done.
1936 */
1937 if (!list_empty(&dev_priv->mm.inactive_list)) {
1938 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1939 struct drm_i915_gem_object,
1940 list);
1941 obj = obj_priv->obj;
1942 BUG_ON(obj_priv->pin_count != 0);
1943 #if WATCH_LRU
1944 DRM_INFO("%s: evicting %p\n", __func__, obj);
1945 #endif
1946 BUG_ON(obj_priv->active);
1947
1948 /* Wait on the rendering and unbind the buffer. */
1949 ret = i915_gem_object_unbind(obj);
1950 break;
1951 }
1952
1953 /* If we didn't get anything, but the ring is still processing
1954 * things, wait for one of those things to finish and hopefully
1955 * leave us a buffer to evict.
1956 */
1957 if (!list_empty(&dev_priv->mm.request_list)) {
1958 struct drm_i915_gem_request *request;
1959
1960 request = list_first_entry(&dev_priv->mm.request_list,
1961 struct drm_i915_gem_request,
1962 list);
1963
1964 ret = i915_wait_request(dev, request->seqno);
1965 if (ret)
1966 break;
1967
1968 /* if waiting caused an object to become inactive,
1969 * then loop around and wait for it. Otherwise, we
1970 * assume that waiting freed and unbound something,
1971 * so there should now be some space in the GTT
1972 */
1973 if (!list_empty(&dev_priv->mm.inactive_list))
1974 continue;
1975 break;
1976 }
1977
1978 /* If we didn't have anything on the request list but there
1979 * are buffers awaiting a flush, emit one and try again.
1980 * When we wait on it, those buffers waiting for that flush
1981 * will get moved to inactive.
1982 */
1983 if (!list_empty(&dev_priv->mm.flushing_list)) {
1984 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1985 struct drm_i915_gem_object,
1986 list);
1987 obj = obj_priv->obj;
1988
1989 i915_gem_flush(dev,
1990 obj->write_domain,
1991 obj->write_domain);
1992 i915_add_request(dev, NULL, obj->write_domain);
1993
1994 obj = NULL;
1995 continue;
1996 }
1997
1998 DRM_ERROR("inactive empty %d request empty %d "
1999 "flushing empty %d\n",
2000 list_empty(&dev_priv->mm.inactive_list),
2001 list_empty(&dev_priv->mm.request_list),
2002 list_empty(&dev_priv->mm.flushing_list));
2003 /* If we didn't do any of the above, there's nothing to be done
2004 * and we just can't fit it in.
2005 */
2006 return -ENOMEM;
2007 }
2008 return ret;
2009 }
2010
2011 static int
2012 i915_gem_evict_everything(struct drm_device *dev)
2013 {
2014 int ret;
2015
2016 for (;;) {
2017 ret = i915_gem_evict_something(dev);
2018 if (ret != 0)
2019 break;
2020 }
2021 if (ret == -ENOMEM)
2022 return 0;
2023 return ret;
2024 }
2025
2026 int
2027 i915_gem_object_get_pages(struct drm_gem_object *obj)
2028 {
2029 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2030 int page_count, i;
2031 struct address_space *mapping;
2032 struct inode *inode;
2033 struct page *page;
2034 int ret;
2035
2036 if (obj_priv->pages_refcount++ != 0)
2037 return 0;
2038
2039 /* Get the list of pages out of our struct file. They'll be pinned
2040 * at this point until we release them.
2041 */
2042 page_count = obj->size / PAGE_SIZE;
2043 BUG_ON(obj_priv->pages != NULL);
2044 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2045 if (obj_priv->pages == NULL) {
2046 DRM_ERROR("Faled to allocate page list\n");
2047 obj_priv->pages_refcount--;
2048 return -ENOMEM;
2049 }
2050
2051 inode = obj->filp->f_path.dentry->d_inode;
2052 mapping = inode->i_mapping;
2053 for (i = 0; i < page_count; i++) {
2054 page = read_mapping_page(mapping, i, NULL);
2055 if (IS_ERR(page)) {
2056 ret = PTR_ERR(page);
2057 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2058 i915_gem_object_put_pages(obj);
2059 return ret;
2060 }
2061 obj_priv->pages[i] = page;
2062 }
2063
2064 if (obj_priv->tiling_mode != I915_TILING_NONE)
2065 i915_gem_object_do_bit_17_swizzle(obj);
2066
2067 return 0;
2068 }
2069
2070 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2071 {
2072 struct drm_gem_object *obj = reg->obj;
2073 struct drm_device *dev = obj->dev;
2074 drm_i915_private_t *dev_priv = dev->dev_private;
2075 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2076 int regnum = obj_priv->fence_reg;
2077 uint64_t val;
2078
2079 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2080 0xfffff000) << 32;
2081 val |= obj_priv->gtt_offset & 0xfffff000;
2082 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2083 if (obj_priv->tiling_mode == I915_TILING_Y)
2084 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2085 val |= I965_FENCE_REG_VALID;
2086
2087 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2088 }
2089
2090 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2091 {
2092 struct drm_gem_object *obj = reg->obj;
2093 struct drm_device *dev = obj->dev;
2094 drm_i915_private_t *dev_priv = dev->dev_private;
2095 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2096 int regnum = obj_priv->fence_reg;
2097 int tile_width;
2098 uint32_t fence_reg, val;
2099 uint32_t pitch_val;
2100
2101 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2102 (obj_priv->gtt_offset & (obj->size - 1))) {
2103 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2104 __func__, obj_priv->gtt_offset, obj->size);
2105 return;
2106 }
2107
2108 if (obj_priv->tiling_mode == I915_TILING_Y &&
2109 HAS_128_BYTE_Y_TILING(dev))
2110 tile_width = 128;
2111 else
2112 tile_width = 512;
2113
2114 /* Note: pitch better be a power of two tile widths */
2115 pitch_val = obj_priv->stride / tile_width;
2116 pitch_val = ffs(pitch_val) - 1;
2117
2118 val = obj_priv->gtt_offset;
2119 if (obj_priv->tiling_mode == I915_TILING_Y)
2120 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2121 val |= I915_FENCE_SIZE_BITS(obj->size);
2122 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2123 val |= I830_FENCE_REG_VALID;
2124
2125 if (regnum < 8)
2126 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2127 else
2128 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2129 I915_WRITE(fence_reg, val);
2130 }
2131
2132 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2133 {
2134 struct drm_gem_object *obj = reg->obj;
2135 struct drm_device *dev = obj->dev;
2136 drm_i915_private_t *dev_priv = dev->dev_private;
2137 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2138 int regnum = obj_priv->fence_reg;
2139 uint32_t val;
2140 uint32_t pitch_val;
2141 uint32_t fence_size_bits;
2142
2143 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2144 (obj_priv->gtt_offset & (obj->size - 1))) {
2145 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2146 __func__, obj_priv->gtt_offset);
2147 return;
2148 }
2149
2150 pitch_val = obj_priv->stride / 128;
2151 pitch_val = ffs(pitch_val) - 1;
2152 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2153
2154 val = obj_priv->gtt_offset;
2155 if (obj_priv->tiling_mode == I915_TILING_Y)
2156 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2157 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2158 WARN_ON(fence_size_bits & ~0x00000f00);
2159 val |= fence_size_bits;
2160 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2161 val |= I830_FENCE_REG_VALID;
2162
2163 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2164
2165 }
2166
2167 /**
2168 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2169 * @obj: object to map through a fence reg
2170 * @write: object is about to be written
2171 *
2172 * When mapping objects through the GTT, userspace wants to be able to write
2173 * to them without having to worry about swizzling if the object is tiled.
2174 *
2175 * This function walks the fence regs looking for a free one for @obj,
2176 * stealing one if it can't find any.
2177 *
2178 * It then sets up the reg based on the object's properties: address, pitch
2179 * and tiling format.
2180 */
2181 static int
2182 i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
2183 {
2184 struct drm_device *dev = obj->dev;
2185 struct drm_i915_private *dev_priv = dev->dev_private;
2186 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2187 struct drm_i915_fence_reg *reg = NULL;
2188 struct drm_i915_gem_object *old_obj_priv = NULL;
2189 int i, ret, avail;
2190
2191 switch (obj_priv->tiling_mode) {
2192 case I915_TILING_NONE:
2193 WARN(1, "allocating a fence for non-tiled object?\n");
2194 break;
2195 case I915_TILING_X:
2196 if (!obj_priv->stride)
2197 return -EINVAL;
2198 WARN((obj_priv->stride & (512 - 1)),
2199 "object 0x%08x is X tiled but has non-512B pitch\n",
2200 obj_priv->gtt_offset);
2201 break;
2202 case I915_TILING_Y:
2203 if (!obj_priv->stride)
2204 return -EINVAL;
2205 WARN((obj_priv->stride & (128 - 1)),
2206 "object 0x%08x is Y tiled but has non-128B pitch\n",
2207 obj_priv->gtt_offset);
2208 break;
2209 }
2210
2211 /* First try to find a free reg */
2212 try_again:
2213 avail = 0;
2214 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2215 reg = &dev_priv->fence_regs[i];
2216 if (!reg->obj)
2217 break;
2218
2219 old_obj_priv = reg->obj->driver_private;
2220 if (!old_obj_priv->pin_count)
2221 avail++;
2222 }
2223
2224 /* None available, try to steal one or wait for a user to finish */
2225 if (i == dev_priv->num_fence_regs) {
2226 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2227 loff_t offset;
2228
2229 if (avail == 0)
2230 return -ENOMEM;
2231
2232 for (i = dev_priv->fence_reg_start;
2233 i < dev_priv->num_fence_regs; i++) {
2234 uint32_t this_seqno;
2235
2236 reg = &dev_priv->fence_regs[i];
2237 old_obj_priv = reg->obj->driver_private;
2238
2239 if (old_obj_priv->pin_count)
2240 continue;
2241
2242 /* i915 uses fences for GPU access to tiled buffers */
2243 if (IS_I965G(dev) || !old_obj_priv->active)
2244 break;
2245
2246 /* find the seqno of the first available fence */
2247 this_seqno = old_obj_priv->last_rendering_seqno;
2248 if (this_seqno != 0 &&
2249 reg->obj->write_domain == 0 &&
2250 i915_seqno_passed(seqno, this_seqno))
2251 seqno = this_seqno;
2252 }
2253
2254 /*
2255 * Now things get ugly... we have to wait for one of the
2256 * objects to finish before trying again.
2257 */
2258 if (i == dev_priv->num_fence_regs) {
2259 if (seqno == dev_priv->mm.next_gem_seqno) {
2260 i915_gem_flush(dev,
2261 I915_GEM_GPU_DOMAINS,
2262 I915_GEM_GPU_DOMAINS);
2263 seqno = i915_add_request(dev, NULL,
2264 I915_GEM_GPU_DOMAINS);
2265 if (seqno == 0)
2266 return -ENOMEM;
2267 }
2268
2269 ret = i915_wait_request(dev, seqno);
2270 if (ret)
2271 return ret;
2272 goto try_again;
2273 }
2274
2275 /*
2276 * Zap this virtual mapping so we can set up a fence again
2277 * for this object next time we need it.
2278 */
2279 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2280 if (dev->dev_mapping)
2281 unmap_mapping_range(dev->dev_mapping, offset,
2282 reg->obj->size, 1);
2283 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2284 }
2285
2286 obj_priv->fence_reg = i;
2287 reg->obj = obj;
2288
2289 if (IS_I965G(dev))
2290 i965_write_fence_reg(reg);
2291 else if (IS_I9XX(dev))
2292 i915_write_fence_reg(reg);
2293 else
2294 i830_write_fence_reg(reg);
2295
2296 return 0;
2297 }
2298
2299 /**
2300 * i915_gem_clear_fence_reg - clear out fence register info
2301 * @obj: object to clear
2302 *
2303 * Zeroes out the fence register itself and clears out the associated
2304 * data structures in dev_priv and obj_priv.
2305 */
2306 static void
2307 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2308 {
2309 struct drm_device *dev = obj->dev;
2310 drm_i915_private_t *dev_priv = dev->dev_private;
2311 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2312
2313 if (IS_I965G(dev))
2314 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2315 else {
2316 uint32_t fence_reg;
2317
2318 if (obj_priv->fence_reg < 8)
2319 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2320 else
2321 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2322 8) * 4;
2323
2324 I915_WRITE(fence_reg, 0);
2325 }
2326
2327 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2328 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2329 }
2330
2331 /**
2332 * Finds free space in the GTT aperture and binds the object there.
2333 */
2334 static int
2335 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2336 {
2337 struct drm_device *dev = obj->dev;
2338 drm_i915_private_t *dev_priv = dev->dev_private;
2339 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2340 struct drm_mm_node *free_space;
2341 int page_count, ret;
2342
2343 if (dev_priv->mm.suspended)
2344 return -EBUSY;
2345 if (alignment == 0)
2346 alignment = i915_gem_get_gtt_alignment(obj);
2347 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2348 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2349 return -EINVAL;
2350 }
2351
2352 search_free:
2353 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2354 obj->size, alignment, 0);
2355 if (free_space != NULL) {
2356 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2357 alignment);
2358 if (obj_priv->gtt_space != NULL) {
2359 obj_priv->gtt_space->private = obj;
2360 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2361 }
2362 }
2363 if (obj_priv->gtt_space == NULL) {
2364 bool lists_empty;
2365
2366 /* If the gtt is empty and we're still having trouble
2367 * fitting our object in, we're out of memory.
2368 */
2369 #if WATCH_LRU
2370 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2371 #endif
2372 spin_lock(&dev_priv->mm.active_list_lock);
2373 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2374 list_empty(&dev_priv->mm.flushing_list) &&
2375 list_empty(&dev_priv->mm.active_list));
2376 spin_unlock(&dev_priv->mm.active_list_lock);
2377 if (lists_empty) {
2378 DRM_ERROR("GTT full, but LRU list empty\n");
2379 return -ENOMEM;
2380 }
2381
2382 ret = i915_gem_evict_something(dev);
2383 if (ret != 0) {
2384 if (ret != -ERESTARTSYS)
2385 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2386 return ret;
2387 }
2388 goto search_free;
2389 }
2390
2391 #if WATCH_BUF
2392 DRM_INFO("Binding object of size %d at 0x%08x\n",
2393 obj->size, obj_priv->gtt_offset);
2394 #endif
2395 ret = i915_gem_object_get_pages(obj);
2396 if (ret) {
2397 drm_mm_put_block(obj_priv->gtt_space);
2398 obj_priv->gtt_space = NULL;
2399 return ret;
2400 }
2401
2402 page_count = obj->size / PAGE_SIZE;
2403 /* Create an AGP memory structure pointing at our pages, and bind it
2404 * into the GTT.
2405 */
2406 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2407 obj_priv->pages,
2408 page_count,
2409 obj_priv->gtt_offset,
2410 obj_priv->agp_type);
2411 if (obj_priv->agp_mem == NULL) {
2412 i915_gem_object_put_pages(obj);
2413 drm_mm_put_block(obj_priv->gtt_space);
2414 obj_priv->gtt_space = NULL;
2415 return -ENOMEM;
2416 }
2417 atomic_inc(&dev->gtt_count);
2418 atomic_add(obj->size, &dev->gtt_memory);
2419
2420 /* Assert that the object is not currently in any GPU domain. As it
2421 * wasn't in the GTT, there shouldn't be any way it could have been in
2422 * a GPU cache
2423 */
2424 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2425 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2426
2427 return 0;
2428 }
2429
2430 void
2431 i915_gem_clflush_object(struct drm_gem_object *obj)
2432 {
2433 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2434
2435 /* If we don't have a page list set up, then we're not pinned
2436 * to GPU, and we can ignore the cache flush because it'll happen
2437 * again at bind time.
2438 */
2439 if (obj_priv->pages == NULL)
2440 return;
2441
2442 /* XXX: The 865 in particular appears to be weird in how it handles
2443 * cache flushing. We haven't figured it out, but the
2444 * clflush+agp_chipset_flush doesn't appear to successfully get the
2445 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2446 */
2447 if (IS_I865G(obj->dev)) {
2448 wbinvd();
2449 return;
2450 }
2451
2452 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2453 }
2454
2455 /** Flushes any GPU write domain for the object if it's dirty. */
2456 static void
2457 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2458 {
2459 struct drm_device *dev = obj->dev;
2460 uint32_t seqno;
2461
2462 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2463 return;
2464
2465 /* Queue the GPU write cache flushing we need. */
2466 i915_gem_flush(dev, 0, obj->write_domain);
2467 seqno = i915_add_request(dev, NULL, obj->write_domain);
2468 obj->write_domain = 0;
2469 i915_gem_object_move_to_active(obj, seqno);
2470 }
2471
2472 /** Flushes the GTT write domain for the object if it's dirty. */
2473 static void
2474 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2475 {
2476 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2477 return;
2478
2479 /* No actual flushing is required for the GTT write domain. Writes
2480 * to it immediately go to main memory as far as we know, so there's
2481 * no chipset flush. It also doesn't land in render cache.
2482 */
2483 obj->write_domain = 0;
2484 }
2485
2486 /** Flushes the CPU write domain for the object if it's dirty. */
2487 static void
2488 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2489 {
2490 struct drm_device *dev = obj->dev;
2491
2492 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2493 return;
2494
2495 i915_gem_clflush_object(obj);
2496 drm_agp_chipset_flush(dev);
2497 obj->write_domain = 0;
2498 }
2499
2500 /**
2501 * Moves a single object to the GTT read, and possibly write domain.
2502 *
2503 * This function returns when the move is complete, including waiting on
2504 * flushes to occur.
2505 */
2506 int
2507 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2508 {
2509 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2510 int ret;
2511
2512 /* Not valid to be called on unbound objects. */
2513 if (obj_priv->gtt_space == NULL)
2514 return -EINVAL;
2515
2516 i915_gem_object_flush_gpu_write_domain(obj);
2517 /* Wait on any GPU rendering and flushing to occur. */
2518 ret = i915_gem_object_wait_rendering(obj);
2519 if (ret != 0)
2520 return ret;
2521
2522 /* If we're writing through the GTT domain, then CPU and GPU caches
2523 * will need to be invalidated at next use.
2524 */
2525 if (write)
2526 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2527
2528 i915_gem_object_flush_cpu_write_domain(obj);
2529
2530 /* It should now be out of any other write domains, and we can update
2531 * the domain values for our changes.
2532 */
2533 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2534 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2535 if (write) {
2536 obj->write_domain = I915_GEM_DOMAIN_GTT;
2537 obj_priv->dirty = 1;
2538 }
2539
2540 return 0;
2541 }
2542
2543 /**
2544 * Moves a single object to the CPU read, and possibly write domain.
2545 *
2546 * This function returns when the move is complete, including waiting on
2547 * flushes to occur.
2548 */
2549 static int
2550 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2551 {
2552 int ret;
2553
2554 i915_gem_object_flush_gpu_write_domain(obj);
2555 /* Wait on any GPU rendering and flushing to occur. */
2556 ret = i915_gem_object_wait_rendering(obj);
2557 if (ret != 0)
2558 return ret;
2559
2560 i915_gem_object_flush_gtt_write_domain(obj);
2561
2562 /* If we have a partially-valid cache of the object in the CPU,
2563 * finish invalidating it and free the per-page flags.
2564 */
2565 i915_gem_object_set_to_full_cpu_read_domain(obj);
2566
2567 /* Flush the CPU cache if it's still invalid. */
2568 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2569 i915_gem_clflush_object(obj);
2570
2571 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2572 }
2573
2574 /* It should now be out of any other write domains, and we can update
2575 * the domain values for our changes.
2576 */
2577 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2578
2579 /* If we're writing through the CPU, then the GPU read domains will
2580 * need to be invalidated at next use.
2581 */
2582 if (write) {
2583 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2584 obj->write_domain = I915_GEM_DOMAIN_CPU;
2585 }
2586
2587 return 0;
2588 }
2589
2590 /*
2591 * Set the next domain for the specified object. This
2592 * may not actually perform the necessary flushing/invaliding though,
2593 * as that may want to be batched with other set_domain operations
2594 *
2595 * This is (we hope) the only really tricky part of gem. The goal
2596 * is fairly simple -- track which caches hold bits of the object
2597 * and make sure they remain coherent. A few concrete examples may
2598 * help to explain how it works. For shorthand, we use the notation
2599 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2600 * a pair of read and write domain masks.
2601 *
2602 * Case 1: the batch buffer
2603 *
2604 * 1. Allocated
2605 * 2. Written by CPU
2606 * 3. Mapped to GTT
2607 * 4. Read by GPU
2608 * 5. Unmapped from GTT
2609 * 6. Freed
2610 *
2611 * Let's take these a step at a time
2612 *
2613 * 1. Allocated
2614 * Pages allocated from the kernel may still have
2615 * cache contents, so we set them to (CPU, CPU) always.
2616 * 2. Written by CPU (using pwrite)
2617 * The pwrite function calls set_domain (CPU, CPU) and
2618 * this function does nothing (as nothing changes)
2619 * 3. Mapped by GTT
2620 * This function asserts that the object is not
2621 * currently in any GPU-based read or write domains
2622 * 4. Read by GPU
2623 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2624 * As write_domain is zero, this function adds in the
2625 * current read domains (CPU+COMMAND, 0).
2626 * flush_domains is set to CPU.
2627 * invalidate_domains is set to COMMAND
2628 * clflush is run to get data out of the CPU caches
2629 * then i915_dev_set_domain calls i915_gem_flush to
2630 * emit an MI_FLUSH and drm_agp_chipset_flush
2631 * 5. Unmapped from GTT
2632 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2633 * flush_domains and invalidate_domains end up both zero
2634 * so no flushing/invalidating happens
2635 * 6. Freed
2636 * yay, done
2637 *
2638 * Case 2: The shared render buffer
2639 *
2640 * 1. Allocated
2641 * 2. Mapped to GTT
2642 * 3. Read/written by GPU
2643 * 4. set_domain to (CPU,CPU)
2644 * 5. Read/written by CPU
2645 * 6. Read/written by GPU
2646 *
2647 * 1. Allocated
2648 * Same as last example, (CPU, CPU)
2649 * 2. Mapped to GTT
2650 * Nothing changes (assertions find that it is not in the GPU)
2651 * 3. Read/written by GPU
2652 * execbuffer calls set_domain (RENDER, RENDER)
2653 * flush_domains gets CPU
2654 * invalidate_domains gets GPU
2655 * clflush (obj)
2656 * MI_FLUSH and drm_agp_chipset_flush
2657 * 4. set_domain (CPU, CPU)
2658 * flush_domains gets GPU
2659 * invalidate_domains gets CPU
2660 * wait_rendering (obj) to make sure all drawing is complete.
2661 * This will include an MI_FLUSH to get the data from GPU
2662 * to memory
2663 * clflush (obj) to invalidate the CPU cache
2664 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2665 * 5. Read/written by CPU
2666 * cache lines are loaded and dirtied
2667 * 6. Read written by GPU
2668 * Same as last GPU access
2669 *
2670 * Case 3: The constant buffer
2671 *
2672 * 1. Allocated
2673 * 2. Written by CPU
2674 * 3. Read by GPU
2675 * 4. Updated (written) by CPU again
2676 * 5. Read by GPU
2677 *
2678 * 1. Allocated
2679 * (CPU, CPU)
2680 * 2. Written by CPU
2681 * (CPU, CPU)
2682 * 3. Read by GPU
2683 * (CPU+RENDER, 0)
2684 * flush_domains = CPU
2685 * invalidate_domains = RENDER
2686 * clflush (obj)
2687 * MI_FLUSH
2688 * drm_agp_chipset_flush
2689 * 4. Updated (written) by CPU again
2690 * (CPU, CPU)
2691 * flush_domains = 0 (no previous write domain)
2692 * invalidate_domains = 0 (no new read domains)
2693 * 5. Read by GPU
2694 * (CPU+RENDER, 0)
2695 * flush_domains = CPU
2696 * invalidate_domains = RENDER
2697 * clflush (obj)
2698 * MI_FLUSH
2699 * drm_agp_chipset_flush
2700 */
2701 static void
2702 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2703 {
2704 struct drm_device *dev = obj->dev;
2705 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2706 uint32_t invalidate_domains = 0;
2707 uint32_t flush_domains = 0;
2708
2709 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2710 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2711
2712 #if WATCH_BUF
2713 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2714 __func__, obj,
2715 obj->read_domains, obj->pending_read_domains,
2716 obj->write_domain, obj->pending_write_domain);
2717 #endif
2718 /*
2719 * If the object isn't moving to a new write domain,
2720 * let the object stay in multiple read domains
2721 */
2722 if (obj->pending_write_domain == 0)
2723 obj->pending_read_domains |= obj->read_domains;
2724 else
2725 obj_priv->dirty = 1;
2726
2727 /*
2728 * Flush the current write domain if
2729 * the new read domains don't match. Invalidate
2730 * any read domains which differ from the old
2731 * write domain
2732 */
2733 if (obj->write_domain &&
2734 obj->write_domain != obj->pending_read_domains) {
2735 flush_domains |= obj->write_domain;
2736 invalidate_domains |=
2737 obj->pending_read_domains & ~obj->write_domain;
2738 }
2739 /*
2740 * Invalidate any read caches which may have
2741 * stale data. That is, any new read domains.
2742 */
2743 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2744 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2745 #if WATCH_BUF
2746 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2747 __func__, flush_domains, invalidate_domains);
2748 #endif
2749 i915_gem_clflush_object(obj);
2750 }
2751
2752 /* The actual obj->write_domain will be updated with
2753 * pending_write_domain after we emit the accumulated flush for all
2754 * of our domain changes in execbuffers (which clears objects'
2755 * write_domains). So if we have a current write domain that we
2756 * aren't changing, set pending_write_domain to that.
2757 */
2758 if (flush_domains == 0 && obj->pending_write_domain == 0)
2759 obj->pending_write_domain = obj->write_domain;
2760 obj->read_domains = obj->pending_read_domains;
2761
2762 dev->invalidate_domains |= invalidate_domains;
2763 dev->flush_domains |= flush_domains;
2764 #if WATCH_BUF
2765 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2766 __func__,
2767 obj->read_domains, obj->write_domain,
2768 dev->invalidate_domains, dev->flush_domains);
2769 #endif
2770 }
2771
2772 /**
2773 * Moves the object from a partially CPU read to a full one.
2774 *
2775 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2776 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2777 */
2778 static void
2779 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2780 {
2781 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2782
2783 if (!obj_priv->page_cpu_valid)
2784 return;
2785
2786 /* If we're partially in the CPU read domain, finish moving it in.
2787 */
2788 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2789 int i;
2790
2791 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2792 if (obj_priv->page_cpu_valid[i])
2793 continue;
2794 drm_clflush_pages(obj_priv->pages + i, 1);
2795 }
2796 }
2797
2798 /* Free the page_cpu_valid mappings which are now stale, whether
2799 * or not we've got I915_GEM_DOMAIN_CPU.
2800 */
2801 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2802 DRM_MEM_DRIVER);
2803 obj_priv->page_cpu_valid = NULL;
2804 }
2805
2806 /**
2807 * Set the CPU read domain on a range of the object.
2808 *
2809 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2810 * not entirely valid. The page_cpu_valid member of the object flags which
2811 * pages have been flushed, and will be respected by
2812 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2813 * of the whole object.
2814 *
2815 * This function returns when the move is complete, including waiting on
2816 * flushes to occur.
2817 */
2818 static int
2819 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2820 uint64_t offset, uint64_t size)
2821 {
2822 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2823 int i, ret;
2824
2825 if (offset == 0 && size == obj->size)
2826 return i915_gem_object_set_to_cpu_domain(obj, 0);
2827
2828 i915_gem_object_flush_gpu_write_domain(obj);
2829 /* Wait on any GPU rendering and flushing to occur. */
2830 ret = i915_gem_object_wait_rendering(obj);
2831 if (ret != 0)
2832 return ret;
2833 i915_gem_object_flush_gtt_write_domain(obj);
2834
2835 /* If we're already fully in the CPU read domain, we're done. */
2836 if (obj_priv->page_cpu_valid == NULL &&
2837 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2838 return 0;
2839
2840 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2841 * newly adding I915_GEM_DOMAIN_CPU
2842 */
2843 if (obj_priv->page_cpu_valid == NULL) {
2844 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2845 DRM_MEM_DRIVER);
2846 if (obj_priv->page_cpu_valid == NULL)
2847 return -ENOMEM;
2848 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2849 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2850
2851 /* Flush the cache on any pages that are still invalid from the CPU's
2852 * perspective.
2853 */
2854 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2855 i++) {
2856 if (obj_priv->page_cpu_valid[i])
2857 continue;
2858
2859 drm_clflush_pages(obj_priv->pages + i, 1);
2860
2861 obj_priv->page_cpu_valid[i] = 1;
2862 }
2863
2864 /* It should now be out of any other write domains, and we can update
2865 * the domain values for our changes.
2866 */
2867 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2868
2869 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2870
2871 return 0;
2872 }
2873
2874 /**
2875 * Pin an object to the GTT and evaluate the relocations landing in it.
2876 */
2877 static int
2878 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2879 struct drm_file *file_priv,
2880 struct drm_i915_gem_exec_object *entry,
2881 struct drm_i915_gem_relocation_entry *relocs)
2882 {
2883 struct drm_device *dev = obj->dev;
2884 drm_i915_private_t *dev_priv = dev->dev_private;
2885 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2886 int i, ret;
2887 void __iomem *reloc_page;
2888
2889 /* Choose the GTT offset for our buffer and put it there. */
2890 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2891 if (ret)
2892 return ret;
2893
2894 entry->offset = obj_priv->gtt_offset;
2895
2896 /* Apply the relocations, using the GTT aperture to avoid cache
2897 * flushing requirements.
2898 */
2899 for (i = 0; i < entry->relocation_count; i++) {
2900 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2901 struct drm_gem_object *target_obj;
2902 struct drm_i915_gem_object *target_obj_priv;
2903 uint32_t reloc_val, reloc_offset;
2904 uint32_t __iomem *reloc_entry;
2905
2906 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2907 reloc->target_handle);
2908 if (target_obj == NULL) {
2909 i915_gem_object_unpin(obj);
2910 return -EBADF;
2911 }
2912 target_obj_priv = target_obj->driver_private;
2913
2914 /* The target buffer should have appeared before us in the
2915 * exec_object list, so it should have a GTT space bound by now.
2916 */
2917 if (target_obj_priv->gtt_space == NULL) {
2918 DRM_ERROR("No GTT space found for object %d\n",
2919 reloc->target_handle);
2920 drm_gem_object_unreference(target_obj);
2921 i915_gem_object_unpin(obj);
2922 return -EINVAL;
2923 }
2924
2925 if (reloc->offset > obj->size - 4) {
2926 DRM_ERROR("Relocation beyond object bounds: "
2927 "obj %p target %d offset %d size %d.\n",
2928 obj, reloc->target_handle,
2929 (int) reloc->offset, (int) obj->size);
2930 drm_gem_object_unreference(target_obj);
2931 i915_gem_object_unpin(obj);
2932 return -EINVAL;
2933 }
2934 if (reloc->offset & 3) {
2935 DRM_ERROR("Relocation not 4-byte aligned: "
2936 "obj %p target %d offset %d.\n",
2937 obj, reloc->target_handle,
2938 (int) reloc->offset);
2939 drm_gem_object_unreference(target_obj);
2940 i915_gem_object_unpin(obj);
2941 return -EINVAL;
2942 }
2943
2944 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2945 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2946 DRM_ERROR("reloc with read/write CPU domains: "
2947 "obj %p target %d offset %d "
2948 "read %08x write %08x",
2949 obj, reloc->target_handle,
2950 (int) reloc->offset,
2951 reloc->read_domains,
2952 reloc->write_domain);
2953 drm_gem_object_unreference(target_obj);
2954 i915_gem_object_unpin(obj);
2955 return -EINVAL;
2956 }
2957
2958 if (reloc->write_domain && target_obj->pending_write_domain &&
2959 reloc->write_domain != target_obj->pending_write_domain) {
2960 DRM_ERROR("Write domain conflict: "
2961 "obj %p target %d offset %d "
2962 "new %08x old %08x\n",
2963 obj, reloc->target_handle,
2964 (int) reloc->offset,
2965 reloc->write_domain,
2966 target_obj->pending_write_domain);
2967 drm_gem_object_unreference(target_obj);
2968 i915_gem_object_unpin(obj);
2969 return -EINVAL;
2970 }
2971
2972 #if WATCH_RELOC
2973 DRM_INFO("%s: obj %p offset %08x target %d "
2974 "read %08x write %08x gtt %08x "
2975 "presumed %08x delta %08x\n",
2976 __func__,
2977 obj,
2978 (int) reloc->offset,
2979 (int) reloc->target_handle,
2980 (int) reloc->read_domains,
2981 (int) reloc->write_domain,
2982 (int) target_obj_priv->gtt_offset,
2983 (int) reloc->presumed_offset,
2984 reloc->delta);
2985 #endif
2986
2987 target_obj->pending_read_domains |= reloc->read_domains;
2988 target_obj->pending_write_domain |= reloc->write_domain;
2989
2990 /* If the relocation already has the right value in it, no
2991 * more work needs to be done.
2992 */
2993 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2994 drm_gem_object_unreference(target_obj);
2995 continue;
2996 }
2997
2998 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2999 if (ret != 0) {
3000 drm_gem_object_unreference(target_obj);
3001 i915_gem_object_unpin(obj);
3002 return -EINVAL;
3003 }
3004
3005 /* Map the page containing the relocation we're going to
3006 * perform.
3007 */
3008 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3009 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3010 (reloc_offset &
3011 ~(PAGE_SIZE - 1)));
3012 reloc_entry = (uint32_t __iomem *)(reloc_page +
3013 (reloc_offset & (PAGE_SIZE - 1)));
3014 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3015
3016 #if WATCH_BUF
3017 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3018 obj, (unsigned int) reloc->offset,
3019 readl(reloc_entry), reloc_val);
3020 #endif
3021 writel(reloc_val, reloc_entry);
3022 io_mapping_unmap_atomic(reloc_page);
3023
3024 /* The updated presumed offset for this entry will be
3025 * copied back out to the user.
3026 */
3027 reloc->presumed_offset = target_obj_priv->gtt_offset;
3028
3029 drm_gem_object_unreference(target_obj);
3030 }
3031
3032 #if WATCH_BUF
3033 if (0)
3034 i915_gem_dump_object(obj, 128, __func__, ~0);
3035 #endif
3036 return 0;
3037 }
3038
3039 /** Dispatch a batchbuffer to the ring
3040 */
3041 static int
3042 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3043 struct drm_i915_gem_execbuffer *exec,
3044 struct drm_clip_rect *cliprects,
3045 uint64_t exec_offset)
3046 {
3047 drm_i915_private_t *dev_priv = dev->dev_private;
3048 int nbox = exec->num_cliprects;
3049 int i = 0, count;
3050 uint32_t exec_start, exec_len;
3051 RING_LOCALS;
3052
3053 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3054 exec_len = (uint32_t) exec->batch_len;
3055
3056 if ((exec_start | exec_len) & 0x7) {
3057 DRM_ERROR("alignment\n");
3058 return -EINVAL;
3059 }
3060
3061 if (!exec_start)
3062 return -EINVAL;
3063
3064 count = nbox ? nbox : 1;
3065
3066 for (i = 0; i < count; i++) {
3067 if (i < nbox) {
3068 int ret = i915_emit_box(dev, cliprects, i,
3069 exec->DR1, exec->DR4);
3070 if (ret)
3071 return ret;
3072 }
3073
3074 if (IS_I830(dev) || IS_845G(dev)) {
3075 BEGIN_LP_RING(4);
3076 OUT_RING(MI_BATCH_BUFFER);
3077 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3078 OUT_RING(exec_start + exec_len - 4);
3079 OUT_RING(0);
3080 ADVANCE_LP_RING();
3081 } else {
3082 BEGIN_LP_RING(2);
3083 if (IS_I965G(dev)) {
3084 OUT_RING(MI_BATCH_BUFFER_START |
3085 (2 << 6) |
3086 MI_BATCH_NON_SECURE_I965);
3087 OUT_RING(exec_start);
3088 } else {
3089 OUT_RING(MI_BATCH_BUFFER_START |
3090 (2 << 6));
3091 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3092 }
3093 ADVANCE_LP_RING();
3094 }
3095 }
3096
3097 /* XXX breadcrumb */
3098 return 0;
3099 }
3100
3101 /* Throttle our rendering by waiting until the ring has completed our requests
3102 * emitted over 20 msec ago.
3103 *
3104 * Note that if we were to use the current jiffies each time around the loop,
3105 * we wouldn't escape the function with any frames outstanding if the time to
3106 * render a frame was over 20ms.
3107 *
3108 * This should get us reasonable parallelism between CPU and GPU but also
3109 * relatively low latency when blocking on a particular request to finish.
3110 */
3111 static int
3112 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3113 {
3114 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3115 int ret = 0;
3116 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3117
3118 mutex_lock(&dev->struct_mutex);
3119 while (!list_empty(&i915_file_priv->mm.request_list)) {
3120 struct drm_i915_gem_request *request;
3121
3122 request = list_first_entry(&i915_file_priv->mm.request_list,
3123 struct drm_i915_gem_request,
3124 client_list);
3125
3126 if (time_after_eq(request->emitted_jiffies, recent_enough))
3127 break;
3128
3129 ret = i915_wait_request(dev, request->seqno);
3130 if (ret != 0)
3131 break;
3132 }
3133 mutex_unlock(&dev->struct_mutex);
3134
3135 return ret;
3136 }
3137
3138 static int
3139 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3140 uint32_t buffer_count,
3141 struct drm_i915_gem_relocation_entry **relocs)
3142 {
3143 uint32_t reloc_count = 0, reloc_index = 0, i;
3144 int ret;
3145
3146 *relocs = NULL;
3147 for (i = 0; i < buffer_count; i++) {
3148 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3149 return -EINVAL;
3150 reloc_count += exec_list[i].relocation_count;
3151 }
3152
3153 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3154 if (*relocs == NULL)
3155 return -ENOMEM;
3156
3157 for (i = 0; i < buffer_count; i++) {
3158 struct drm_i915_gem_relocation_entry __user *user_relocs;
3159
3160 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3161
3162 ret = copy_from_user(&(*relocs)[reloc_index],
3163 user_relocs,
3164 exec_list[i].relocation_count *
3165 sizeof(**relocs));
3166 if (ret != 0) {
3167 drm_free_large(*relocs);
3168 *relocs = NULL;
3169 return -EFAULT;
3170 }
3171
3172 reloc_index += exec_list[i].relocation_count;
3173 }
3174
3175 return 0;
3176 }
3177
3178 static int
3179 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3180 uint32_t buffer_count,
3181 struct drm_i915_gem_relocation_entry *relocs)
3182 {
3183 uint32_t reloc_count = 0, i;
3184 int ret = 0;
3185
3186 for (i = 0; i < buffer_count; i++) {
3187 struct drm_i915_gem_relocation_entry __user *user_relocs;
3188 int unwritten;
3189
3190 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3191
3192 unwritten = copy_to_user(user_relocs,
3193 &relocs[reloc_count],
3194 exec_list[i].relocation_count *
3195 sizeof(*relocs));
3196
3197 if (unwritten) {
3198 ret = -EFAULT;
3199 goto err;
3200 }
3201
3202 reloc_count += exec_list[i].relocation_count;
3203 }
3204
3205 err:
3206 drm_free_large(relocs);
3207
3208 return ret;
3209 }
3210
3211 int
3212 i915_gem_execbuffer(struct drm_device *dev, void *data,
3213 struct drm_file *file_priv)
3214 {
3215 drm_i915_private_t *dev_priv = dev->dev_private;
3216 struct drm_i915_gem_execbuffer *args = data;
3217 struct drm_i915_gem_exec_object *exec_list = NULL;
3218 struct drm_gem_object **object_list = NULL;
3219 struct drm_gem_object *batch_obj;
3220 struct drm_i915_gem_object *obj_priv;
3221 struct drm_clip_rect *cliprects = NULL;
3222 struct drm_i915_gem_relocation_entry *relocs;
3223 int ret, ret2, i, pinned = 0;
3224 uint64_t exec_offset;
3225 uint32_t seqno, flush_domains, reloc_index;
3226 int pin_tries;
3227
3228 #if WATCH_EXEC
3229 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3230 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3231 #endif
3232
3233 if (args->buffer_count < 1) {
3234 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3235 return -EINVAL;
3236 }
3237 /* Copy in the exec list from userland */
3238 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3239 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3240 if (exec_list == NULL || object_list == NULL) {
3241 DRM_ERROR("Failed to allocate exec or object list "
3242 "for %d buffers\n",
3243 args->buffer_count);
3244 ret = -ENOMEM;
3245 goto pre_mutex_err;
3246 }
3247 ret = copy_from_user(exec_list,
3248 (struct drm_i915_relocation_entry __user *)
3249 (uintptr_t) args->buffers_ptr,
3250 sizeof(*exec_list) * args->buffer_count);
3251 if (ret != 0) {
3252 DRM_ERROR("copy %d exec entries failed %d\n",
3253 args->buffer_count, ret);
3254 goto pre_mutex_err;
3255 }
3256
3257 if (args->num_cliprects != 0) {
3258 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3259 DRM_MEM_DRIVER);
3260 if (cliprects == NULL)
3261 goto pre_mutex_err;
3262
3263 ret = copy_from_user(cliprects,
3264 (struct drm_clip_rect __user *)
3265 (uintptr_t) args->cliprects_ptr,
3266 sizeof(*cliprects) * args->num_cliprects);
3267 if (ret != 0) {
3268 DRM_ERROR("copy %d cliprects failed: %d\n",
3269 args->num_cliprects, ret);
3270 goto pre_mutex_err;
3271 }
3272 }
3273
3274 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3275 &relocs);
3276 if (ret != 0)
3277 goto pre_mutex_err;
3278
3279 mutex_lock(&dev->struct_mutex);
3280
3281 i915_verify_inactive(dev, __FILE__, __LINE__);
3282
3283 if (dev_priv->mm.wedged) {
3284 DRM_ERROR("Execbuf while wedged\n");
3285 mutex_unlock(&dev->struct_mutex);
3286 ret = -EIO;
3287 goto pre_mutex_err;
3288 }
3289
3290 if (dev_priv->mm.suspended) {
3291 DRM_ERROR("Execbuf while VT-switched.\n");
3292 mutex_unlock(&dev->struct_mutex);
3293 ret = -EBUSY;
3294 goto pre_mutex_err;
3295 }
3296
3297 /* Look up object handles */
3298 for (i = 0; i < args->buffer_count; i++) {
3299 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3300 exec_list[i].handle);
3301 if (object_list[i] == NULL) {
3302 DRM_ERROR("Invalid object handle %d at index %d\n",
3303 exec_list[i].handle, i);
3304 ret = -EBADF;
3305 goto err;
3306 }
3307
3308 obj_priv = object_list[i]->driver_private;
3309 if (obj_priv->in_execbuffer) {
3310 DRM_ERROR("Object %p appears more than once in object list\n",
3311 object_list[i]);
3312 ret = -EBADF;
3313 goto err;
3314 }
3315 obj_priv->in_execbuffer = true;
3316 }
3317
3318 /* Pin and relocate */
3319 for (pin_tries = 0; ; pin_tries++) {
3320 ret = 0;
3321 reloc_index = 0;
3322
3323 for (i = 0; i < args->buffer_count; i++) {
3324 object_list[i]->pending_read_domains = 0;
3325 object_list[i]->pending_write_domain = 0;
3326 ret = i915_gem_object_pin_and_relocate(object_list[i],
3327 file_priv,
3328 &exec_list[i],
3329 &relocs[reloc_index]);
3330 if (ret)
3331 break;
3332 pinned = i + 1;
3333 reloc_index += exec_list[i].relocation_count;
3334 }
3335 /* success */
3336 if (ret == 0)
3337 break;
3338
3339 /* error other than GTT full, or we've already tried again */
3340 if (ret != -ENOMEM || pin_tries >= 1) {
3341 if (ret != -ERESTARTSYS)
3342 DRM_ERROR("Failed to pin buffers %d\n", ret);
3343 goto err;
3344 }
3345
3346 /* unpin all of our buffers */
3347 for (i = 0; i < pinned; i++)
3348 i915_gem_object_unpin(object_list[i]);
3349 pinned = 0;
3350
3351 /* evict everyone we can from the aperture */
3352 ret = i915_gem_evict_everything(dev);
3353 if (ret)
3354 goto err;
3355 }
3356
3357 /* Set the pending read domains for the batch buffer to COMMAND */
3358 batch_obj = object_list[args->buffer_count-1];
3359 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
3360 batch_obj->pending_write_domain = 0;
3361
3362 i915_verify_inactive(dev, __FILE__, __LINE__);
3363
3364 /* Zero the global flush/invalidate flags. These
3365 * will be modified as new domains are computed
3366 * for each object
3367 */
3368 dev->invalidate_domains = 0;
3369 dev->flush_domains = 0;
3370
3371 for (i = 0; i < args->buffer_count; i++) {
3372 struct drm_gem_object *obj = object_list[i];
3373
3374 /* Compute new gpu domains and update invalidate/flush */
3375 i915_gem_object_set_to_gpu_domain(obj);
3376 }
3377
3378 i915_verify_inactive(dev, __FILE__, __LINE__);
3379
3380 if (dev->invalidate_domains | dev->flush_domains) {
3381 #if WATCH_EXEC
3382 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3383 __func__,
3384 dev->invalidate_domains,
3385 dev->flush_domains);
3386 #endif
3387 i915_gem_flush(dev,
3388 dev->invalidate_domains,
3389 dev->flush_domains);
3390 if (dev->flush_domains)
3391 (void)i915_add_request(dev, file_priv,
3392 dev->flush_domains);
3393 }
3394
3395 for (i = 0; i < args->buffer_count; i++) {
3396 struct drm_gem_object *obj = object_list[i];
3397
3398 obj->write_domain = obj->pending_write_domain;
3399 }
3400
3401 i915_verify_inactive(dev, __FILE__, __LINE__);
3402
3403 #if WATCH_COHERENCY
3404 for (i = 0; i < args->buffer_count; i++) {
3405 i915_gem_object_check_coherency(object_list[i],
3406 exec_list[i].handle);
3407 }
3408 #endif
3409
3410 exec_offset = exec_list[args->buffer_count - 1].offset;
3411
3412 #if WATCH_EXEC
3413 i915_gem_dump_object(batch_obj,
3414 args->batch_len,
3415 __func__,
3416 ~0);
3417 #endif
3418
3419 /* Exec the batchbuffer */
3420 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3421 if (ret) {
3422 DRM_ERROR("dispatch failed %d\n", ret);
3423 goto err;
3424 }
3425
3426 /*
3427 * Ensure that the commands in the batch buffer are
3428 * finished before the interrupt fires
3429 */
3430 flush_domains = i915_retire_commands(dev);
3431
3432 i915_verify_inactive(dev, __FILE__, __LINE__);
3433
3434 /*
3435 * Get a seqno representing the execution of the current buffer,
3436 * which we can wait on. We would like to mitigate these interrupts,
3437 * likely by only creating seqnos occasionally (so that we have
3438 * *some* interrupts representing completion of buffers that we can
3439 * wait on when trying to clear up gtt space).
3440 */
3441 seqno = i915_add_request(dev, file_priv, flush_domains);
3442 BUG_ON(seqno == 0);
3443 for (i = 0; i < args->buffer_count; i++) {
3444 struct drm_gem_object *obj = object_list[i];
3445
3446 i915_gem_object_move_to_active(obj, seqno);
3447 #if WATCH_LRU
3448 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3449 #endif
3450 }
3451 #if WATCH_LRU
3452 i915_dump_lru(dev, __func__);
3453 #endif
3454
3455 i915_verify_inactive(dev, __FILE__, __LINE__);
3456
3457 err:
3458 for (i = 0; i < pinned; i++)
3459 i915_gem_object_unpin(object_list[i]);
3460
3461 for (i = 0; i < args->buffer_count; i++) {
3462 if (object_list[i]) {
3463 obj_priv = object_list[i]->driver_private;
3464 obj_priv->in_execbuffer = false;
3465 }
3466 drm_gem_object_unreference(object_list[i]);
3467 }
3468
3469 mutex_unlock(&dev->struct_mutex);
3470
3471 if (!ret) {
3472 /* Copy the new buffer offsets back to the user's exec list. */
3473 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3474 (uintptr_t) args->buffers_ptr,
3475 exec_list,
3476 sizeof(*exec_list) * args->buffer_count);
3477 if (ret) {
3478 ret = -EFAULT;
3479 DRM_ERROR("failed to copy %d exec entries "
3480 "back to user (%d)\n",
3481 args->buffer_count, ret);
3482 }
3483 }
3484
3485 /* Copy the updated relocations out regardless of current error
3486 * state. Failure to update the relocs would mean that the next
3487 * time userland calls execbuf, it would do so with presumed offset
3488 * state that didn't match the actual object state.
3489 */
3490 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3491 relocs);
3492 if (ret2 != 0) {
3493 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3494
3495 if (ret == 0)
3496 ret = ret2;
3497 }
3498
3499 pre_mutex_err:
3500 drm_free_large(object_list);
3501 drm_free_large(exec_list);
3502 drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3503 DRM_MEM_DRIVER);
3504
3505 return ret;
3506 }
3507
3508 int
3509 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3510 {
3511 struct drm_device *dev = obj->dev;
3512 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3513 int ret;
3514
3515 i915_verify_inactive(dev, __FILE__, __LINE__);
3516 if (obj_priv->gtt_space == NULL) {
3517 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3518 if (ret != 0) {
3519 if (ret != -EBUSY && ret != -ERESTARTSYS)
3520 DRM_ERROR("Failure to bind: %d\n", ret);
3521 return ret;
3522 }
3523 }
3524 /*
3525 * Pre-965 chips need a fence register set up in order to
3526 * properly handle tiled surfaces.
3527 */
3528 if (!IS_I965G(dev) &&
3529 obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3530 obj_priv->tiling_mode != I915_TILING_NONE) {
3531 ret = i915_gem_object_get_fence_reg(obj, true);
3532 if (ret != 0) {
3533 if (ret != -EBUSY && ret != -ERESTARTSYS)
3534 DRM_ERROR("Failure to install fence: %d\n",
3535 ret);
3536 return ret;
3537 }
3538 }
3539 obj_priv->pin_count++;
3540
3541 /* If the object is not active and not pending a flush,
3542 * remove it from the inactive list
3543 */
3544 if (obj_priv->pin_count == 1) {
3545 atomic_inc(&dev->pin_count);
3546 atomic_add(obj->size, &dev->pin_memory);
3547 if (!obj_priv->active &&
3548 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3549 I915_GEM_DOMAIN_GTT)) == 0 &&
3550 !list_empty(&obj_priv->list))
3551 list_del_init(&obj_priv->list);
3552 }
3553 i915_verify_inactive(dev, __FILE__, __LINE__);
3554
3555 return 0;
3556 }
3557
3558 void
3559 i915_gem_object_unpin(struct drm_gem_object *obj)
3560 {
3561 struct drm_device *dev = obj->dev;
3562 drm_i915_private_t *dev_priv = dev->dev_private;
3563 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3564
3565 i915_verify_inactive(dev, __FILE__, __LINE__);
3566 obj_priv->pin_count--;
3567 BUG_ON(obj_priv->pin_count < 0);
3568 BUG_ON(obj_priv->gtt_space == NULL);
3569
3570 /* If the object is no longer pinned, and is
3571 * neither active nor being flushed, then stick it on
3572 * the inactive list
3573 */
3574 if (obj_priv->pin_count == 0) {
3575 if (!obj_priv->active &&
3576 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
3577 I915_GEM_DOMAIN_GTT)) == 0)
3578 list_move_tail(&obj_priv->list,
3579 &dev_priv->mm.inactive_list);
3580 atomic_dec(&dev->pin_count);
3581 atomic_sub(obj->size, &dev->pin_memory);
3582 }
3583 i915_verify_inactive(dev, __FILE__, __LINE__);
3584 }
3585
3586 int
3587 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3588 struct drm_file *file_priv)
3589 {
3590 struct drm_i915_gem_pin *args = data;
3591 struct drm_gem_object *obj;
3592 struct drm_i915_gem_object *obj_priv;
3593 int ret;
3594
3595 mutex_lock(&dev->struct_mutex);
3596
3597 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3598 if (obj == NULL) {
3599 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3600 args->handle);
3601 mutex_unlock(&dev->struct_mutex);
3602 return -EBADF;
3603 }
3604 obj_priv = obj->driver_private;
3605
3606 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3607 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3608 args->handle);
3609 drm_gem_object_unreference(obj);
3610 mutex_unlock(&dev->struct_mutex);
3611 return -EINVAL;
3612 }
3613
3614 obj_priv->user_pin_count++;
3615 obj_priv->pin_filp = file_priv;
3616 if (obj_priv->user_pin_count == 1) {
3617 ret = i915_gem_object_pin(obj, args->alignment);
3618 if (ret != 0) {
3619 drm_gem_object_unreference(obj);
3620 mutex_unlock(&dev->struct_mutex);
3621 return ret;
3622 }
3623 }
3624
3625 /* XXX - flush the CPU caches for pinned objects
3626 * as the X server doesn't manage domains yet
3627 */
3628 i915_gem_object_flush_cpu_write_domain(obj);
3629 args->offset = obj_priv->gtt_offset;
3630 drm_gem_object_unreference(obj);
3631 mutex_unlock(&dev->struct_mutex);
3632
3633 return 0;
3634 }
3635
3636 int
3637 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3638 struct drm_file *file_priv)
3639 {
3640 struct drm_i915_gem_pin *args = data;
3641 struct drm_gem_object *obj;
3642 struct drm_i915_gem_object *obj_priv;
3643
3644 mutex_lock(&dev->struct_mutex);
3645
3646 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3647 if (obj == NULL) {
3648 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3649 args->handle);
3650 mutex_unlock(&dev->struct_mutex);
3651 return -EBADF;
3652 }
3653
3654 obj_priv = obj->driver_private;
3655 if (obj_priv->pin_filp != file_priv) {
3656 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3657 args->handle);
3658 drm_gem_object_unreference(obj);
3659 mutex_unlock(&dev->struct_mutex);
3660 return -EINVAL;
3661 }
3662 obj_priv->user_pin_count--;
3663 if (obj_priv->user_pin_count == 0) {
3664 obj_priv->pin_filp = NULL;
3665 i915_gem_object_unpin(obj);
3666 }
3667
3668 drm_gem_object_unreference(obj);
3669 mutex_unlock(&dev->struct_mutex);
3670 return 0;
3671 }
3672
3673 int
3674 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3675 struct drm_file *file_priv)
3676 {
3677 struct drm_i915_gem_busy *args = data;
3678 struct drm_gem_object *obj;
3679 struct drm_i915_gem_object *obj_priv;
3680
3681 mutex_lock(&dev->struct_mutex);
3682 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3683 if (obj == NULL) {
3684 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3685 args->handle);
3686 mutex_unlock(&dev->struct_mutex);
3687 return -EBADF;
3688 }
3689
3690 /* Update the active list for the hardware's current position.
3691 * Otherwise this only updates on a delayed timer or when irqs are
3692 * actually unmasked, and our working set ends up being larger than
3693 * required.
3694 */
3695 i915_gem_retire_requests(dev);
3696
3697 obj_priv = obj->driver_private;
3698 /* Don't count being on the flushing list against the object being
3699 * done. Otherwise, a buffer left on the flushing list but not getting
3700 * flushed (because nobody's flushing that domain) won't ever return
3701 * unbusy and get reused by libdrm's bo cache. The other expected
3702 * consumer of this interface, OpenGL's occlusion queries, also specs
3703 * that the objects get unbusy "eventually" without any interference.
3704 */
3705 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3706
3707 drm_gem_object_unreference(obj);
3708 mutex_unlock(&dev->struct_mutex);
3709 return 0;
3710 }
3711
3712 int
3713 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3714 struct drm_file *file_priv)
3715 {
3716 return i915_gem_ring_throttle(dev, file_priv);
3717 }
3718
3719 int i915_gem_init_object(struct drm_gem_object *obj)
3720 {
3721 struct drm_i915_gem_object *obj_priv;
3722
3723 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3724 if (obj_priv == NULL)
3725 return -ENOMEM;
3726
3727 /*
3728 * We've just allocated pages from the kernel,
3729 * so they've just been written by the CPU with
3730 * zeros. They'll need to be clflushed before we
3731 * use them with the GPU.
3732 */
3733 obj->write_domain = I915_GEM_DOMAIN_CPU;
3734 obj->read_domains = I915_GEM_DOMAIN_CPU;
3735
3736 obj_priv->agp_type = AGP_USER_MEMORY;
3737
3738 obj->driver_private = obj_priv;
3739 obj_priv->obj = obj;
3740 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3741 INIT_LIST_HEAD(&obj_priv->list);
3742
3743 return 0;
3744 }
3745
3746 void i915_gem_free_object(struct drm_gem_object *obj)
3747 {
3748 struct drm_device *dev = obj->dev;
3749 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3750
3751 while (obj_priv->pin_count > 0)
3752 i915_gem_object_unpin(obj);
3753
3754 if (obj_priv->phys_obj)
3755 i915_gem_detach_phys_object(dev, obj);
3756
3757 i915_gem_object_unbind(obj);
3758
3759 i915_gem_free_mmap_offset(obj);
3760
3761 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3762 kfree(obj_priv->bit_17);
3763 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3764 }
3765
3766 /** Unbinds all objects that are on the given buffer list. */
3767 static int
3768 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3769 {
3770 struct drm_gem_object *obj;
3771 struct drm_i915_gem_object *obj_priv;
3772 int ret;
3773
3774 while (!list_empty(head)) {
3775 obj_priv = list_first_entry(head,
3776 struct drm_i915_gem_object,
3777 list);
3778 obj = obj_priv->obj;
3779
3780 if (obj_priv->pin_count != 0) {
3781 DRM_ERROR("Pinned object in unbind list\n");
3782 mutex_unlock(&dev->struct_mutex);
3783 return -EINVAL;
3784 }
3785
3786 ret = i915_gem_object_unbind(obj);
3787 if (ret != 0) {
3788 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3789 ret);
3790 mutex_unlock(&dev->struct_mutex);
3791 return ret;
3792 }
3793 }
3794
3795
3796 return 0;
3797 }
3798
3799 int
3800 i915_gem_idle(struct drm_device *dev)
3801 {
3802 drm_i915_private_t *dev_priv = dev->dev_private;
3803 uint32_t seqno, cur_seqno, last_seqno;
3804 int stuck, ret;
3805
3806 mutex_lock(&dev->struct_mutex);
3807
3808 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3809 mutex_unlock(&dev->struct_mutex);
3810 return 0;
3811 }
3812
3813 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3814 * We need to replace this with a semaphore, or something.
3815 */
3816 dev_priv->mm.suspended = 1;
3817
3818 /* Cancel the retire work handler, wait for it to finish if running
3819 */
3820 mutex_unlock(&dev->struct_mutex);
3821 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3822 mutex_lock(&dev->struct_mutex);
3823
3824 i915_kernel_lost_context(dev);
3825
3826 /* Flush the GPU along with all non-CPU write domains
3827 */
3828 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
3829 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
3830 seqno = i915_add_request(dev, NULL, ~I915_GEM_DOMAIN_CPU);
3831
3832 if (seqno == 0) {
3833 mutex_unlock(&dev->struct_mutex);
3834 return -ENOMEM;
3835 }
3836
3837 dev_priv->mm.waiting_gem_seqno = seqno;
3838 last_seqno = 0;
3839 stuck = 0;
3840 for (;;) {
3841 cur_seqno = i915_get_gem_seqno(dev);
3842 if (i915_seqno_passed(cur_seqno, seqno))
3843 break;
3844 if (last_seqno == cur_seqno) {
3845 if (stuck++ > 100) {
3846 DRM_ERROR("hardware wedged\n");
3847 dev_priv->mm.wedged = 1;
3848 DRM_WAKEUP(&dev_priv->irq_queue);
3849 break;
3850 }
3851 }
3852 msleep(10);
3853 last_seqno = cur_seqno;
3854 }
3855 dev_priv->mm.waiting_gem_seqno = 0;
3856
3857 i915_gem_retire_requests(dev);
3858
3859 spin_lock(&dev_priv->mm.active_list_lock);
3860 if (!dev_priv->mm.wedged) {
3861 /* Active and flushing should now be empty as we've
3862 * waited for a sequence higher than any pending execbuffer
3863 */
3864 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3865 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3866 /* Request should now be empty as we've also waited
3867 * for the last request in the list
3868 */
3869 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3870 }
3871
3872 /* Empty the active and flushing lists to inactive. If there's
3873 * anything left at this point, it means that we're wedged and
3874 * nothing good's going to happen by leaving them there. So strip
3875 * the GPU domains and just stuff them onto inactive.
3876 */
3877 while (!list_empty(&dev_priv->mm.active_list)) {
3878 struct drm_i915_gem_object *obj_priv;
3879
3880 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3881 struct drm_i915_gem_object,
3882 list);
3883 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3884 i915_gem_object_move_to_inactive(obj_priv->obj);
3885 }
3886 spin_unlock(&dev_priv->mm.active_list_lock);
3887
3888 while (!list_empty(&dev_priv->mm.flushing_list)) {
3889 struct drm_i915_gem_object *obj_priv;
3890
3891 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3892 struct drm_i915_gem_object,
3893 list);
3894 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3895 i915_gem_object_move_to_inactive(obj_priv->obj);
3896 }
3897
3898
3899 /* Move all inactive buffers out of the GTT. */
3900 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3901 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3902 if (ret) {
3903 mutex_unlock(&dev->struct_mutex);
3904 return ret;
3905 }
3906
3907 i915_gem_cleanup_ringbuffer(dev);
3908 mutex_unlock(&dev->struct_mutex);
3909
3910 return 0;
3911 }
3912
3913 static int
3914 i915_gem_init_hws(struct drm_device *dev)
3915 {
3916 drm_i915_private_t *dev_priv = dev->dev_private;
3917 struct drm_gem_object *obj;
3918 struct drm_i915_gem_object *obj_priv;
3919 int ret;
3920
3921 /* If we need a physical address for the status page, it's already
3922 * initialized at driver load time.
3923 */
3924 if (!I915_NEED_GFX_HWS(dev))
3925 return 0;
3926
3927 obj = drm_gem_object_alloc(dev, 4096);
3928 if (obj == NULL) {
3929 DRM_ERROR("Failed to allocate status page\n");
3930 return -ENOMEM;
3931 }
3932 obj_priv = obj->driver_private;
3933 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3934
3935 ret = i915_gem_object_pin(obj, 4096);
3936 if (ret != 0) {
3937 drm_gem_object_unreference(obj);
3938 return ret;
3939 }
3940
3941 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3942
3943 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3944 if (dev_priv->hw_status_page == NULL) {
3945 DRM_ERROR("Failed to map status page.\n");
3946 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3947 i915_gem_object_unpin(obj);
3948 drm_gem_object_unreference(obj);
3949 return -EINVAL;
3950 }
3951 dev_priv->hws_obj = obj;
3952 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3953 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3954 I915_READ(HWS_PGA); /* posting read */
3955 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3956
3957 return 0;
3958 }
3959
3960 static void
3961 i915_gem_cleanup_hws(struct drm_device *dev)
3962 {
3963 drm_i915_private_t *dev_priv = dev->dev_private;
3964 struct drm_gem_object *obj;
3965 struct drm_i915_gem_object *obj_priv;
3966
3967 if (dev_priv->hws_obj == NULL)
3968 return;
3969
3970 obj = dev_priv->hws_obj;
3971 obj_priv = obj->driver_private;
3972
3973 kunmap(obj_priv->pages[0]);
3974 i915_gem_object_unpin(obj);
3975 drm_gem_object_unreference(obj);
3976 dev_priv->hws_obj = NULL;
3977
3978 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3979 dev_priv->hw_status_page = NULL;
3980
3981 /* Write high address into HWS_PGA when disabling. */
3982 I915_WRITE(HWS_PGA, 0x1ffff000);
3983 }
3984
3985 int
3986 i915_gem_init_ringbuffer(struct drm_device *dev)
3987 {
3988 drm_i915_private_t *dev_priv = dev->dev_private;
3989 struct drm_gem_object *obj;
3990 struct drm_i915_gem_object *obj_priv;
3991 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
3992 int ret;
3993 u32 head;
3994
3995 ret = i915_gem_init_hws(dev);
3996 if (ret != 0)
3997 return ret;
3998
3999 obj = drm_gem_object_alloc(dev, 128 * 1024);
4000 if (obj == NULL) {
4001 DRM_ERROR("Failed to allocate ringbuffer\n");
4002 i915_gem_cleanup_hws(dev);
4003 return -ENOMEM;
4004 }
4005 obj_priv = obj->driver_private;
4006
4007 ret = i915_gem_object_pin(obj, 4096);
4008 if (ret != 0) {
4009 drm_gem_object_unreference(obj);
4010 i915_gem_cleanup_hws(dev);
4011 return ret;
4012 }
4013
4014 /* Set up the kernel mapping for the ring. */
4015 ring->Size = obj->size;
4016 ring->tail_mask = obj->size - 1;
4017
4018 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4019 ring->map.size = obj->size;
4020 ring->map.type = 0;
4021 ring->map.flags = 0;
4022 ring->map.mtrr = 0;
4023
4024 drm_core_ioremap_wc(&ring->map, dev);
4025 if (ring->map.handle == NULL) {
4026 DRM_ERROR("Failed to map ringbuffer.\n");
4027 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4028 i915_gem_object_unpin(obj);
4029 drm_gem_object_unreference(obj);
4030 i915_gem_cleanup_hws(dev);
4031 return -EINVAL;
4032 }
4033 ring->ring_obj = obj;
4034 ring->virtual_start = ring->map.handle;
4035
4036 /* Stop the ring if it's running. */
4037 I915_WRITE(PRB0_CTL, 0);
4038 I915_WRITE(PRB0_TAIL, 0);
4039 I915_WRITE(PRB0_HEAD, 0);
4040
4041 /* Initialize the ring. */
4042 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4043 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4044
4045 /* G45 ring initialization fails to reset head to zero */
4046 if (head != 0) {
4047 DRM_ERROR("Ring head not reset to zero "
4048 "ctl %08x head %08x tail %08x start %08x\n",
4049 I915_READ(PRB0_CTL),
4050 I915_READ(PRB0_HEAD),
4051 I915_READ(PRB0_TAIL),
4052 I915_READ(PRB0_START));
4053 I915_WRITE(PRB0_HEAD, 0);
4054
4055 DRM_ERROR("Ring head forced to zero "
4056 "ctl %08x head %08x tail %08x start %08x\n",
4057 I915_READ(PRB0_CTL),
4058 I915_READ(PRB0_HEAD),
4059 I915_READ(PRB0_TAIL),
4060 I915_READ(PRB0_START));
4061 }
4062
4063 I915_WRITE(PRB0_CTL,
4064 ((obj->size - 4096) & RING_NR_PAGES) |
4065 RING_NO_REPORT |
4066 RING_VALID);
4067
4068 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4069
4070 /* If the head is still not zero, the ring is dead */
4071 if (head != 0) {
4072 DRM_ERROR("Ring initialization failed "
4073 "ctl %08x head %08x tail %08x start %08x\n",
4074 I915_READ(PRB0_CTL),
4075 I915_READ(PRB0_HEAD),
4076 I915_READ(PRB0_TAIL),
4077 I915_READ(PRB0_START));
4078 return -EIO;
4079 }
4080
4081 /* Update our cache of the ring state */
4082 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4083 i915_kernel_lost_context(dev);
4084 else {
4085 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4086 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4087 ring->space = ring->head - (ring->tail + 8);
4088 if (ring->space < 0)
4089 ring->space += ring->Size;
4090 }
4091
4092 return 0;
4093 }
4094
4095 void
4096 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4097 {
4098 drm_i915_private_t *dev_priv = dev->dev_private;
4099
4100 if (dev_priv->ring.ring_obj == NULL)
4101 return;
4102
4103 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4104
4105 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4106 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4107 dev_priv->ring.ring_obj = NULL;
4108 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4109
4110 i915_gem_cleanup_hws(dev);
4111 }
4112
4113 int
4114 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4115 struct drm_file *file_priv)
4116 {
4117 drm_i915_private_t *dev_priv = dev->dev_private;
4118 int ret;
4119
4120 if (drm_core_check_feature(dev, DRIVER_MODESET))
4121 return 0;
4122
4123 if (dev_priv->mm.wedged) {
4124 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4125 dev_priv->mm.wedged = 0;
4126 }
4127
4128 mutex_lock(&dev->struct_mutex);
4129 dev_priv->mm.suspended = 0;
4130
4131 ret = i915_gem_init_ringbuffer(dev);
4132 if (ret != 0) {
4133 mutex_unlock(&dev->struct_mutex);
4134 return ret;
4135 }
4136
4137 spin_lock(&dev_priv->mm.active_list_lock);
4138 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4139 spin_unlock(&dev_priv->mm.active_list_lock);
4140
4141 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4142 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4143 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4144 mutex_unlock(&dev->struct_mutex);
4145
4146 drm_irq_install(dev);
4147
4148 return 0;
4149 }
4150
4151 int
4152 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4153 struct drm_file *file_priv)
4154 {
4155 int ret;
4156
4157 if (drm_core_check_feature(dev, DRIVER_MODESET))
4158 return 0;
4159
4160 ret = i915_gem_idle(dev);
4161 drm_irq_uninstall(dev);
4162
4163 return ret;
4164 }
4165
4166 void
4167 i915_gem_lastclose(struct drm_device *dev)
4168 {
4169 int ret;
4170
4171 if (drm_core_check_feature(dev, DRIVER_MODESET))
4172 return;
4173
4174 ret = i915_gem_idle(dev);
4175 if (ret)
4176 DRM_ERROR("failed to idle hardware: %d\n", ret);
4177 }
4178
4179 void
4180 i915_gem_load(struct drm_device *dev)
4181 {
4182 drm_i915_private_t *dev_priv = dev->dev_private;
4183
4184 spin_lock_init(&dev_priv->mm.active_list_lock);
4185 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4186 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4187 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4188 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4189 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4190 i915_gem_retire_work_handler);
4191 dev_priv->mm.next_gem_seqno = 1;
4192
4193 /* Old X drivers will take 0-2 for front, back, depth buffers */
4194 dev_priv->fence_reg_start = 3;
4195
4196 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4197 dev_priv->num_fence_regs = 16;
4198 else
4199 dev_priv->num_fence_regs = 8;
4200
4201 i915_gem_detect_bit_6_swizzle(dev);
4202 }
4203
4204 /*
4205 * Create a physically contiguous memory object for this object
4206 * e.g. for cursor + overlay regs
4207 */
4208 int i915_gem_init_phys_object(struct drm_device *dev,
4209 int id, int size)
4210 {
4211 drm_i915_private_t *dev_priv = dev->dev_private;
4212 struct drm_i915_gem_phys_object *phys_obj;
4213 int ret;
4214
4215 if (dev_priv->mm.phys_objs[id - 1] || !size)
4216 return 0;
4217
4218 phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4219 if (!phys_obj)
4220 return -ENOMEM;
4221
4222 phys_obj->id = id;
4223
4224 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4225 if (!phys_obj->handle) {
4226 ret = -ENOMEM;
4227 goto kfree_obj;
4228 }
4229 #ifdef CONFIG_X86
4230 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4231 #endif
4232
4233 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4234
4235 return 0;
4236 kfree_obj:
4237 drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4238 return ret;
4239 }
4240
4241 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4242 {
4243 drm_i915_private_t *dev_priv = dev->dev_private;
4244 struct drm_i915_gem_phys_object *phys_obj;
4245
4246 if (!dev_priv->mm.phys_objs[id - 1])
4247 return;
4248
4249 phys_obj = dev_priv->mm.phys_objs[id - 1];
4250 if (phys_obj->cur_obj) {
4251 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4252 }
4253
4254 #ifdef CONFIG_X86
4255 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4256 #endif
4257 drm_pci_free(dev, phys_obj->handle);
4258 kfree(phys_obj);
4259 dev_priv->mm.phys_objs[id - 1] = NULL;
4260 }
4261
4262 void i915_gem_free_all_phys_object(struct drm_device *dev)
4263 {
4264 int i;
4265
4266 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4267 i915_gem_free_phys_object(dev, i);
4268 }
4269
4270 void i915_gem_detach_phys_object(struct drm_device *dev,
4271 struct drm_gem_object *obj)
4272 {
4273 struct drm_i915_gem_object *obj_priv;
4274 int i;
4275 int ret;
4276 int page_count;
4277
4278 obj_priv = obj->driver_private;
4279 if (!obj_priv->phys_obj)
4280 return;
4281
4282 ret = i915_gem_object_get_pages(obj);
4283 if (ret)
4284 goto out;
4285
4286 page_count = obj->size / PAGE_SIZE;
4287
4288 for (i = 0; i < page_count; i++) {
4289 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4290 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4291
4292 memcpy(dst, src, PAGE_SIZE);
4293 kunmap_atomic(dst, KM_USER0);
4294 }
4295 drm_clflush_pages(obj_priv->pages, page_count);
4296 drm_agp_chipset_flush(dev);
4297 out:
4298 obj_priv->phys_obj->cur_obj = NULL;
4299 obj_priv->phys_obj = NULL;
4300 }
4301
4302 int
4303 i915_gem_attach_phys_object(struct drm_device *dev,
4304 struct drm_gem_object *obj, int id)
4305 {
4306 drm_i915_private_t *dev_priv = dev->dev_private;
4307 struct drm_i915_gem_object *obj_priv;
4308 int ret = 0;
4309 int page_count;
4310 int i;
4311
4312 if (id > I915_MAX_PHYS_OBJECT)
4313 return -EINVAL;
4314
4315 obj_priv = obj->driver_private;
4316
4317 if (obj_priv->phys_obj) {
4318 if (obj_priv->phys_obj->id == id)
4319 return 0;
4320 i915_gem_detach_phys_object(dev, obj);
4321 }
4322
4323
4324 /* create a new object */
4325 if (!dev_priv->mm.phys_objs[id - 1]) {
4326 ret = i915_gem_init_phys_object(dev, id,
4327 obj->size);
4328 if (ret) {
4329 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4330 goto out;
4331 }
4332 }
4333
4334 /* bind to the object */
4335 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4336 obj_priv->phys_obj->cur_obj = obj;
4337
4338 ret = i915_gem_object_get_pages(obj);
4339 if (ret) {
4340 DRM_ERROR("failed to get page list\n");
4341 goto out;
4342 }
4343
4344 page_count = obj->size / PAGE_SIZE;
4345
4346 for (i = 0; i < page_count; i++) {
4347 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4348 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4349
4350 memcpy(dst, src, PAGE_SIZE);
4351 kunmap_atomic(src, KM_USER0);
4352 }
4353
4354 return 0;
4355 out:
4356 return ret;
4357 }
4358
4359 static int
4360 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4361 struct drm_i915_gem_pwrite *args,
4362 struct drm_file *file_priv)
4363 {
4364 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4365 void *obj_addr;
4366 int ret;
4367 char __user *user_data;
4368
4369 user_data = (char __user *) (uintptr_t) args->data_ptr;
4370 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4371
4372 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4373 ret = copy_from_user(obj_addr, user_data, args->size);
4374 if (ret)
4375 return -EFAULT;
4376
4377 drm_agp_chipset_flush(dev);
4378 return 0;
4379 }
4380
4381 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4382 {
4383 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4384
4385 /* Clean up our request list when the client is going away, so that
4386 * later retire_requests won't dereference our soon-to-be-gone
4387 * file_priv.
4388 */
4389 mutex_lock(&dev->struct_mutex);
4390 while (!list_empty(&i915_file_priv->mm.request_list))
4391 list_del_init(i915_file_priv->mm.request_list.next);
4392 mutex_unlock(&dev->struct_mutex);
4393 }