]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6 into fixes
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
42 bool write);
43 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
44 uint64_t offset,
45 uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
47 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
48 unsigned alignment,
49 bool map_and_fenceable);
50 static void i915_gem_clear_fence_reg(struct drm_device *dev,
51 struct drm_i915_fence_reg *reg);
52 static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
57
58 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
59 int nr_to_scan,
60 gfp_t gfp_mask);
61
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 dev_priv->mm.object_count++;
68 dev_priv->mm.object_memory += size;
69 }
70
71 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
72 size_t size)
73 {
74 dev_priv->mm.object_count--;
75 dev_priv->mm.object_memory -= size;
76 }
77
78 int
79 i915_gem_check_is_wedged(struct drm_device *dev)
80 {
81 struct drm_i915_private *dev_priv = dev->dev_private;
82 struct completion *x = &dev_priv->error_completion;
83 unsigned long flags;
84 int ret;
85
86 if (!atomic_read(&dev_priv->mm.wedged))
87 return 0;
88
89 ret = wait_for_completion_interruptible(x);
90 if (ret)
91 return ret;
92
93 /* Success, we reset the GPU! */
94 if (!atomic_read(&dev_priv->mm.wedged))
95 return 0;
96
97 /* GPU is hung, bump the completion count to account for
98 * the token we just consumed so that we never hit zero and
99 * end up waiting upon a subsequent completion event that
100 * will never happen.
101 */
102 spin_lock_irqsave(&x->wait.lock, flags);
103 x->done++;
104 spin_unlock_irqrestore(&x->wait.lock, flags);
105 return -EIO;
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_check_is_wedged(dev);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 if (atomic_read(&dev_priv->mm.wedged)) {
122 mutex_unlock(&dev->struct_mutex);
123 return -EAGAIN;
124 }
125
126 WARN_ON(i915_verify_lists(dev));
127 return 0;
128 }
129
130 static inline bool
131 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
132 {
133 return obj->gtt_space && !obj->active && obj->pin_count == 0;
134 }
135
136 void i915_gem_do_init(struct drm_device *dev,
137 unsigned long start,
138 unsigned long mappable_end,
139 unsigned long end)
140 {
141 drm_i915_private_t *dev_priv = dev->dev_private;
142
143 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
144
145 dev_priv->mm.gtt_start = start;
146 dev_priv->mm.gtt_mappable_end = mappable_end;
147 dev_priv->mm.gtt_end = end;
148 dev_priv->mm.gtt_total = end - start;
149 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
150
151 /* Take over this portion of the GTT */
152 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
153 }
154
155 int
156 i915_gem_init_ioctl(struct drm_device *dev, void *data,
157 struct drm_file *file)
158 {
159 struct drm_i915_gem_init *args = data;
160
161 if (args->gtt_start >= args->gtt_end ||
162 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
163 return -EINVAL;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
167 mutex_unlock(&dev->struct_mutex);
168
169 return 0;
170 }
171
172 int
173 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
174 struct drm_file *file)
175 {
176 struct drm_i915_private *dev_priv = dev->dev_private;
177 struct drm_i915_gem_get_aperture *args = data;
178 struct drm_i915_gem_object *obj;
179 size_t pinned;
180
181 if (!(dev->driver->driver_features & DRIVER_GEM))
182 return -ENODEV;
183
184 pinned = 0;
185 mutex_lock(&dev->struct_mutex);
186 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
187 pinned += obj->gtt_space->size;
188 mutex_unlock(&dev->struct_mutex);
189
190 args->aper_size = dev_priv->mm.gtt_total;
191 args->aper_available_size = args->aper_size -pinned;
192
193 return 0;
194 }
195
196 /**
197 * Creates a new mm object and returns a handle to it.
198 */
199 int
200 i915_gem_create_ioctl(struct drm_device *dev, void *data,
201 struct drm_file *file)
202 {
203 struct drm_i915_gem_create *args = data;
204 struct drm_i915_gem_object *obj;
205 int ret;
206 u32 handle;
207
208 args->size = roundup(args->size, PAGE_SIZE);
209
210 /* Allocate the new object */
211 obj = i915_gem_alloc_object(dev, args->size);
212 if (obj == NULL)
213 return -ENOMEM;
214
215 ret = drm_gem_handle_create(file, &obj->base, &handle);
216 if (ret) {
217 drm_gem_object_release(&obj->base);
218 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
219 kfree(obj);
220 return ret;
221 }
222
223 /* drop reference from allocate - handle holds it now */
224 drm_gem_object_unreference(&obj->base);
225 trace_i915_gem_object_create(obj);
226
227 args->handle = handle;
228 return 0;
229 }
230
231 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
232 {
233 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
234
235 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
236 obj->tiling_mode != I915_TILING_NONE;
237 }
238
239 static inline void
240 slow_shmem_copy(struct page *dst_page,
241 int dst_offset,
242 struct page *src_page,
243 int src_offset,
244 int length)
245 {
246 char *dst_vaddr, *src_vaddr;
247
248 dst_vaddr = kmap(dst_page);
249 src_vaddr = kmap(src_page);
250
251 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
252
253 kunmap(src_page);
254 kunmap(dst_page);
255 }
256
257 static inline void
258 slow_shmem_bit17_copy(struct page *gpu_page,
259 int gpu_offset,
260 struct page *cpu_page,
261 int cpu_offset,
262 int length,
263 int is_read)
264 {
265 char *gpu_vaddr, *cpu_vaddr;
266
267 /* Use the unswizzled path if this page isn't affected. */
268 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
269 if (is_read)
270 return slow_shmem_copy(cpu_page, cpu_offset,
271 gpu_page, gpu_offset, length);
272 else
273 return slow_shmem_copy(gpu_page, gpu_offset,
274 cpu_page, cpu_offset, length);
275 }
276
277 gpu_vaddr = kmap(gpu_page);
278 cpu_vaddr = kmap(cpu_page);
279
280 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
281 * XORing with the other bits (A9 for Y, A9 and A10 for X)
282 */
283 while (length > 0) {
284 int cacheline_end = ALIGN(gpu_offset + 1, 64);
285 int this_length = min(cacheline_end - gpu_offset, length);
286 int swizzled_gpu_offset = gpu_offset ^ 64;
287
288 if (is_read) {
289 memcpy(cpu_vaddr + cpu_offset,
290 gpu_vaddr + swizzled_gpu_offset,
291 this_length);
292 } else {
293 memcpy(gpu_vaddr + swizzled_gpu_offset,
294 cpu_vaddr + cpu_offset,
295 this_length);
296 }
297 cpu_offset += this_length;
298 gpu_offset += this_length;
299 length -= this_length;
300 }
301
302 kunmap(cpu_page);
303 kunmap(gpu_page);
304 }
305
306 /**
307 * This is the fast shmem pread path, which attempts to copy_from_user directly
308 * from the backing pages of the object to the user's address space. On a
309 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
310 */
311 static int
312 i915_gem_shmem_pread_fast(struct drm_device *dev,
313 struct drm_i915_gem_object *obj,
314 struct drm_i915_gem_pread *args,
315 struct drm_file *file)
316 {
317 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
318 ssize_t remain;
319 loff_t offset;
320 char __user *user_data;
321 int page_offset, page_length;
322
323 user_data = (char __user *) (uintptr_t) args->data_ptr;
324 remain = args->size;
325
326 offset = args->offset;
327
328 while (remain > 0) {
329 struct page *page;
330 char *vaddr;
331 int ret;
332
333 /* Operation in this page
334 *
335 * page_offset = offset within page
336 * page_length = bytes to copy for this page
337 */
338 page_offset = offset & (PAGE_SIZE-1);
339 page_length = remain;
340 if ((page_offset + remain) > PAGE_SIZE)
341 page_length = PAGE_SIZE - page_offset;
342
343 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
344 GFP_HIGHUSER | __GFP_RECLAIMABLE);
345 if (IS_ERR(page))
346 return PTR_ERR(page);
347
348 vaddr = kmap_atomic(page);
349 ret = __copy_to_user_inatomic(user_data,
350 vaddr + page_offset,
351 page_length);
352 kunmap_atomic(vaddr);
353
354 mark_page_accessed(page);
355 page_cache_release(page);
356 if (ret)
357 return -EFAULT;
358
359 remain -= page_length;
360 user_data += page_length;
361 offset += page_length;
362 }
363
364 return 0;
365 }
366
367 /**
368 * This is the fallback shmem pread path, which allocates temporary storage
369 * in kernel space to copy_to_user into outside of the struct_mutex, so we
370 * can copy out of the object's backing pages while holding the struct mutex
371 * and not take page faults.
372 */
373 static int
374 i915_gem_shmem_pread_slow(struct drm_device *dev,
375 struct drm_i915_gem_object *obj,
376 struct drm_i915_gem_pread *args,
377 struct drm_file *file)
378 {
379 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
380 struct mm_struct *mm = current->mm;
381 struct page **user_pages;
382 ssize_t remain;
383 loff_t offset, pinned_pages, i;
384 loff_t first_data_page, last_data_page, num_pages;
385 int shmem_page_offset;
386 int data_page_index, data_page_offset;
387 int page_length;
388 int ret;
389 uint64_t data_ptr = args->data_ptr;
390 int do_bit17_swizzling;
391
392 remain = args->size;
393
394 /* Pin the user pages containing the data. We can't fault while
395 * holding the struct mutex, yet we want to hold it while
396 * dereferencing the user data.
397 */
398 first_data_page = data_ptr / PAGE_SIZE;
399 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
400 num_pages = last_data_page - first_data_page + 1;
401
402 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
403 if (user_pages == NULL)
404 return -ENOMEM;
405
406 mutex_unlock(&dev->struct_mutex);
407 down_read(&mm->mmap_sem);
408 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
409 num_pages, 1, 0, user_pages, NULL);
410 up_read(&mm->mmap_sem);
411 mutex_lock(&dev->struct_mutex);
412 if (pinned_pages < num_pages) {
413 ret = -EFAULT;
414 goto out;
415 }
416
417 ret = i915_gem_object_set_cpu_read_domain_range(obj,
418 args->offset,
419 args->size);
420 if (ret)
421 goto out;
422
423 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
424
425 offset = args->offset;
426
427 while (remain > 0) {
428 struct page *page;
429
430 /* Operation in this page
431 *
432 * shmem_page_offset = offset within page in shmem file
433 * data_page_index = page number in get_user_pages return
434 * data_page_offset = offset with data_page_index page.
435 * page_length = bytes to copy for this page
436 */
437 shmem_page_offset = offset & ~PAGE_MASK;
438 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
439 data_page_offset = data_ptr & ~PAGE_MASK;
440
441 page_length = remain;
442 if ((shmem_page_offset + page_length) > PAGE_SIZE)
443 page_length = PAGE_SIZE - shmem_page_offset;
444 if ((data_page_offset + page_length) > PAGE_SIZE)
445 page_length = PAGE_SIZE - data_page_offset;
446
447 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
448 GFP_HIGHUSER | __GFP_RECLAIMABLE);
449 if (IS_ERR(page))
450 return PTR_ERR(page);
451
452 if (do_bit17_swizzling) {
453 slow_shmem_bit17_copy(page,
454 shmem_page_offset,
455 user_pages[data_page_index],
456 data_page_offset,
457 page_length,
458 1);
459 } else {
460 slow_shmem_copy(user_pages[data_page_index],
461 data_page_offset,
462 page,
463 shmem_page_offset,
464 page_length);
465 }
466
467 mark_page_accessed(page);
468 page_cache_release(page);
469
470 remain -= page_length;
471 data_ptr += page_length;
472 offset += page_length;
473 }
474
475 out:
476 for (i = 0; i < pinned_pages; i++) {
477 SetPageDirty(user_pages[i]);
478 mark_page_accessed(user_pages[i]);
479 page_cache_release(user_pages[i]);
480 }
481 drm_free_large(user_pages);
482
483 return ret;
484 }
485
486 /**
487 * Reads data from the object referenced by handle.
488 *
489 * On error, the contents of *data are undefined.
490 */
491 int
492 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
493 struct drm_file *file)
494 {
495 struct drm_i915_gem_pread *args = data;
496 struct drm_i915_gem_object *obj;
497 int ret = 0;
498
499 if (args->size == 0)
500 return 0;
501
502 if (!access_ok(VERIFY_WRITE,
503 (char __user *)(uintptr_t)args->data_ptr,
504 args->size))
505 return -EFAULT;
506
507 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
508 args->size);
509 if (ret)
510 return -EFAULT;
511
512 ret = i915_mutex_lock_interruptible(dev);
513 if (ret)
514 return ret;
515
516 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
517 if (obj == NULL) {
518 ret = -ENOENT;
519 goto unlock;
520 }
521
522 /* Bounds check source. */
523 if (args->offset > obj->base.size ||
524 args->size > obj->base.size - args->offset) {
525 ret = -EINVAL;
526 goto out;
527 }
528
529 ret = i915_gem_object_set_cpu_read_domain_range(obj,
530 args->offset,
531 args->size);
532 if (ret)
533 goto out;
534
535 ret = -EFAULT;
536 if (!i915_gem_object_needs_bit17_swizzle(obj))
537 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
538 if (ret == -EFAULT)
539 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
540
541 out:
542 drm_gem_object_unreference(&obj->base);
543 unlock:
544 mutex_unlock(&dev->struct_mutex);
545 return ret;
546 }
547
548 /* This is the fast write path which cannot handle
549 * page faults in the source data
550 */
551
552 static inline int
553 fast_user_write(struct io_mapping *mapping,
554 loff_t page_base, int page_offset,
555 char __user *user_data,
556 int length)
557 {
558 char *vaddr_atomic;
559 unsigned long unwritten;
560
561 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
562 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
563 user_data, length);
564 io_mapping_unmap_atomic(vaddr_atomic);
565 return unwritten;
566 }
567
568 /* Here's the write path which can sleep for
569 * page faults
570 */
571
572 static inline void
573 slow_kernel_write(struct io_mapping *mapping,
574 loff_t gtt_base, int gtt_offset,
575 struct page *user_page, int user_offset,
576 int length)
577 {
578 char __iomem *dst_vaddr;
579 char *src_vaddr;
580
581 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
582 src_vaddr = kmap(user_page);
583
584 memcpy_toio(dst_vaddr + gtt_offset,
585 src_vaddr + user_offset,
586 length);
587
588 kunmap(user_page);
589 io_mapping_unmap(dst_vaddr);
590 }
591
592 /**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601 {
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length;
607
608 user_data = (char __user *) (uintptr_t) args->data_ptr;
609 remain = args->size;
610
611 offset = obj->gtt_offset + args->offset;
612
613 while (remain > 0) {
614 /* Operation in this page
615 *
616 * page_base = page offset within aperture
617 * page_offset = offset within page
618 * page_length = bytes to copy for this page
619 */
620 page_base = (offset & ~(PAGE_SIZE-1));
621 page_offset = offset & (PAGE_SIZE-1);
622 page_length = remain;
623 if ((page_offset + remain) > PAGE_SIZE)
624 page_length = PAGE_SIZE - page_offset;
625
626 /* If we get a fault while copying data, then (presumably) our
627 * source page isn't available. Return the error and we'll
628 * retry in the slow path.
629 */
630 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
631 page_offset, user_data, page_length))
632
633 return -EFAULT;
634
635 remain -= page_length;
636 user_data += page_length;
637 offset += page_length;
638 }
639
640 return 0;
641 }
642
643 /**
644 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
645 * the memory and maps it using kmap_atomic for copying.
646 *
647 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
648 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
649 */
650 static int
651 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
652 struct drm_i915_gem_object *obj,
653 struct drm_i915_gem_pwrite *args,
654 struct drm_file *file)
655 {
656 drm_i915_private_t *dev_priv = dev->dev_private;
657 ssize_t remain;
658 loff_t gtt_page_base, offset;
659 loff_t first_data_page, last_data_page, num_pages;
660 loff_t pinned_pages, i;
661 struct page **user_pages;
662 struct mm_struct *mm = current->mm;
663 int gtt_page_offset, data_page_offset, data_page_index, page_length;
664 int ret;
665 uint64_t data_ptr = args->data_ptr;
666
667 remain = args->size;
668
669 /* Pin the user pages containing the data. We can't fault while
670 * holding the struct mutex, and all of the pwrite implementations
671 * want to hold it while dereferencing the user data.
672 */
673 first_data_page = data_ptr / PAGE_SIZE;
674 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
675 num_pages = last_data_page - first_data_page + 1;
676
677 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
678 if (user_pages == NULL)
679 return -ENOMEM;
680
681 mutex_unlock(&dev->struct_mutex);
682 down_read(&mm->mmap_sem);
683 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
684 num_pages, 0, 0, user_pages, NULL);
685 up_read(&mm->mmap_sem);
686 mutex_lock(&dev->struct_mutex);
687 if (pinned_pages < num_pages) {
688 ret = -EFAULT;
689 goto out_unpin_pages;
690 }
691
692 ret = i915_gem_object_set_to_gtt_domain(obj, true);
693 if (ret)
694 goto out_unpin_pages;
695
696 ret = i915_gem_object_put_fence(obj);
697 if (ret)
698 goto out_unpin_pages;
699
700 offset = obj->gtt_offset + args->offset;
701
702 while (remain > 0) {
703 /* Operation in this page
704 *
705 * gtt_page_base = page offset within aperture
706 * gtt_page_offset = offset within page in aperture
707 * data_page_index = page number in get_user_pages return
708 * data_page_offset = offset with data_page_index page.
709 * page_length = bytes to copy for this page
710 */
711 gtt_page_base = offset & PAGE_MASK;
712 gtt_page_offset = offset & ~PAGE_MASK;
713 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
714 data_page_offset = data_ptr & ~PAGE_MASK;
715
716 page_length = remain;
717 if ((gtt_page_offset + page_length) > PAGE_SIZE)
718 page_length = PAGE_SIZE - gtt_page_offset;
719 if ((data_page_offset + page_length) > PAGE_SIZE)
720 page_length = PAGE_SIZE - data_page_offset;
721
722 slow_kernel_write(dev_priv->mm.gtt_mapping,
723 gtt_page_base, gtt_page_offset,
724 user_pages[data_page_index],
725 data_page_offset,
726 page_length);
727
728 remain -= page_length;
729 offset += page_length;
730 data_ptr += page_length;
731 }
732
733 out_unpin_pages:
734 for (i = 0; i < pinned_pages; i++)
735 page_cache_release(user_pages[i]);
736 drm_free_large(user_pages);
737
738 return ret;
739 }
740
741 /**
742 * This is the fast shmem pwrite path, which attempts to directly
743 * copy_from_user into the kmapped pages backing the object.
744 */
745 static int
746 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
747 struct drm_i915_gem_object *obj,
748 struct drm_i915_gem_pwrite *args,
749 struct drm_file *file)
750 {
751 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
752 ssize_t remain;
753 loff_t offset;
754 char __user *user_data;
755 int page_offset, page_length;
756
757 user_data = (char __user *) (uintptr_t) args->data_ptr;
758 remain = args->size;
759
760 offset = args->offset;
761 obj->dirty = 1;
762
763 while (remain > 0) {
764 struct page *page;
765 char *vaddr;
766 int ret;
767
768 /* Operation in this page
769 *
770 * page_offset = offset within page
771 * page_length = bytes to copy for this page
772 */
773 page_offset = offset & (PAGE_SIZE-1);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
778 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
779 GFP_HIGHUSER | __GFP_RECLAIMABLE);
780 if (IS_ERR(page))
781 return PTR_ERR(page);
782
783 vaddr = kmap_atomic(page, KM_USER0);
784 ret = __copy_from_user_inatomic(vaddr + page_offset,
785 user_data,
786 page_length);
787 kunmap_atomic(vaddr, KM_USER0);
788
789 set_page_dirty(page);
790 mark_page_accessed(page);
791 page_cache_release(page);
792
793 /* If we get a fault while copying data, then (presumably) our
794 * source page isn't available. Return the error and we'll
795 * retry in the slow path.
796 */
797 if (ret)
798 return -EFAULT;
799
800 remain -= page_length;
801 user_data += page_length;
802 offset += page_length;
803 }
804
805 return 0;
806 }
807
808 /**
809 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
810 * the memory and maps it using kmap_atomic for copying.
811 *
812 * This avoids taking mmap_sem for faulting on the user's address while the
813 * struct_mutex is held.
814 */
815 static int
816 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
817 struct drm_i915_gem_object *obj,
818 struct drm_i915_gem_pwrite *args,
819 struct drm_file *file)
820 {
821 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
822 struct mm_struct *mm = current->mm;
823 struct page **user_pages;
824 ssize_t remain;
825 loff_t offset, pinned_pages, i;
826 loff_t first_data_page, last_data_page, num_pages;
827 int shmem_page_offset;
828 int data_page_index, data_page_offset;
829 int page_length;
830 int ret;
831 uint64_t data_ptr = args->data_ptr;
832 int do_bit17_swizzling;
833
834 remain = args->size;
835
836 /* Pin the user pages containing the data. We can't fault while
837 * holding the struct mutex, and all of the pwrite implementations
838 * want to hold it while dereferencing the user data.
839 */
840 first_data_page = data_ptr / PAGE_SIZE;
841 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
842 num_pages = last_data_page - first_data_page + 1;
843
844 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
845 if (user_pages == NULL)
846 return -ENOMEM;
847
848 mutex_unlock(&dev->struct_mutex);
849 down_read(&mm->mmap_sem);
850 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
851 num_pages, 0, 0, user_pages, NULL);
852 up_read(&mm->mmap_sem);
853 mutex_lock(&dev->struct_mutex);
854 if (pinned_pages < num_pages) {
855 ret = -EFAULT;
856 goto out;
857 }
858
859 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
860 if (ret)
861 goto out;
862
863 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
864
865 offset = args->offset;
866 obj->dirty = 1;
867
868 while (remain > 0) {
869 struct page *page;
870
871 /* Operation in this page
872 *
873 * shmem_page_offset = offset within page in shmem file
874 * data_page_index = page number in get_user_pages return
875 * data_page_offset = offset with data_page_index page.
876 * page_length = bytes to copy for this page
877 */
878 shmem_page_offset = offset & ~PAGE_MASK;
879 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
880 data_page_offset = data_ptr & ~PAGE_MASK;
881
882 page_length = remain;
883 if ((shmem_page_offset + page_length) > PAGE_SIZE)
884 page_length = PAGE_SIZE - shmem_page_offset;
885 if ((data_page_offset + page_length) > PAGE_SIZE)
886 page_length = PAGE_SIZE - data_page_offset;
887
888 page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
889 GFP_HIGHUSER | __GFP_RECLAIMABLE);
890 if (IS_ERR(page)) {
891 ret = PTR_ERR(page);
892 goto out;
893 }
894
895 if (do_bit17_swizzling) {
896 slow_shmem_bit17_copy(page,
897 shmem_page_offset,
898 user_pages[data_page_index],
899 data_page_offset,
900 page_length,
901 0);
902 } else {
903 slow_shmem_copy(page,
904 shmem_page_offset,
905 user_pages[data_page_index],
906 data_page_offset,
907 page_length);
908 }
909
910 set_page_dirty(page);
911 mark_page_accessed(page);
912 page_cache_release(page);
913
914 remain -= page_length;
915 data_ptr += page_length;
916 offset += page_length;
917 }
918
919 out:
920 for (i = 0; i < pinned_pages; i++)
921 page_cache_release(user_pages[i]);
922 drm_free_large(user_pages);
923
924 return ret;
925 }
926
927 /**
928 * Writes data to the object referenced by handle.
929 *
930 * On error, the contents of the buffer that were to be modified are undefined.
931 */
932 int
933 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
934 struct drm_file *file)
935 {
936 struct drm_i915_gem_pwrite *args = data;
937 struct drm_i915_gem_object *obj;
938 int ret;
939
940 if (args->size == 0)
941 return 0;
942
943 if (!access_ok(VERIFY_READ,
944 (char __user *)(uintptr_t)args->data_ptr,
945 args->size))
946 return -EFAULT;
947
948 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
949 args->size);
950 if (ret)
951 return -EFAULT;
952
953 ret = i915_mutex_lock_interruptible(dev);
954 if (ret)
955 return ret;
956
957 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
958 if (obj == NULL) {
959 ret = -ENOENT;
960 goto unlock;
961 }
962
963 /* Bounds check destination. */
964 if (args->offset > obj->base.size ||
965 args->size > obj->base.size - args->offset) {
966 ret = -EINVAL;
967 goto out;
968 }
969
970 /* We can only do the GTT pwrite on untiled buffers, as otherwise
971 * it would end up going through the fenced access, and we'll get
972 * different detiling behavior between reading and writing.
973 * pread/pwrite currently are reading and writing from the CPU
974 * perspective, requiring manual detiling by the client.
975 */
976 if (obj->phys_obj)
977 ret = i915_gem_phys_pwrite(dev, obj, args, file);
978 else if (obj->gtt_space &&
979 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
980 ret = i915_gem_object_pin(obj, 0, true);
981 if (ret)
982 goto out;
983
984 ret = i915_gem_object_set_to_gtt_domain(obj, true);
985 if (ret)
986 goto out_unpin;
987
988 ret = i915_gem_object_put_fence(obj);
989 if (ret)
990 goto out_unpin;
991
992 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
993 if (ret == -EFAULT)
994 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
995
996 out_unpin:
997 i915_gem_object_unpin(obj);
998 } else {
999 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1000 if (ret)
1001 goto out;
1002
1003 ret = -EFAULT;
1004 if (!i915_gem_object_needs_bit17_swizzle(obj))
1005 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1006 if (ret == -EFAULT)
1007 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1008 }
1009
1010 out:
1011 drm_gem_object_unreference(&obj->base);
1012 unlock:
1013 mutex_unlock(&dev->struct_mutex);
1014 return ret;
1015 }
1016
1017 /**
1018 * Called when user space prepares to use an object with the CPU, either
1019 * through the mmap ioctl's mapping or a GTT mapping.
1020 */
1021 int
1022 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1023 struct drm_file *file)
1024 {
1025 struct drm_i915_gem_set_domain *args = data;
1026 struct drm_i915_gem_object *obj;
1027 uint32_t read_domains = args->read_domains;
1028 uint32_t write_domain = args->write_domain;
1029 int ret;
1030
1031 if (!(dev->driver->driver_features & DRIVER_GEM))
1032 return -ENODEV;
1033
1034 /* Only handle setting domains to types used by the CPU. */
1035 if (write_domain & I915_GEM_GPU_DOMAINS)
1036 return -EINVAL;
1037
1038 if (read_domains & I915_GEM_GPU_DOMAINS)
1039 return -EINVAL;
1040
1041 /* Having something in the write domain implies it's in the read
1042 * domain, and only that read domain. Enforce that in the request.
1043 */
1044 if (write_domain != 0 && read_domains != write_domain)
1045 return -EINVAL;
1046
1047 ret = i915_mutex_lock_interruptible(dev);
1048 if (ret)
1049 return ret;
1050
1051 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1052 if (obj == NULL) {
1053 ret = -ENOENT;
1054 goto unlock;
1055 }
1056
1057 if (read_domains & I915_GEM_DOMAIN_GTT) {
1058 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1059
1060 /* Silently promote "you're not bound, there was nothing to do"
1061 * to success, since the client was just asking us to
1062 * make sure everything was done.
1063 */
1064 if (ret == -EINVAL)
1065 ret = 0;
1066 } else {
1067 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1068 }
1069
1070 drm_gem_object_unreference(&obj->base);
1071 unlock:
1072 mutex_unlock(&dev->struct_mutex);
1073 return ret;
1074 }
1075
1076 /**
1077 * Called when user space has done writes to this buffer
1078 */
1079 int
1080 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1081 struct drm_file *file)
1082 {
1083 struct drm_i915_gem_sw_finish *args = data;
1084 struct drm_i915_gem_object *obj;
1085 int ret = 0;
1086
1087 if (!(dev->driver->driver_features & DRIVER_GEM))
1088 return -ENODEV;
1089
1090 ret = i915_mutex_lock_interruptible(dev);
1091 if (ret)
1092 return ret;
1093
1094 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1095 if (obj == NULL) {
1096 ret = -ENOENT;
1097 goto unlock;
1098 }
1099
1100 /* Pinned buffers may be scanout, so flush the cache */
1101 if (obj->pin_count)
1102 i915_gem_object_flush_cpu_write_domain(obj);
1103
1104 drm_gem_object_unreference(&obj->base);
1105 unlock:
1106 mutex_unlock(&dev->struct_mutex);
1107 return ret;
1108 }
1109
1110 /**
1111 * Maps the contents of an object, returning the address it is mapped
1112 * into.
1113 *
1114 * While the mapping holds a reference on the contents of the object, it doesn't
1115 * imply a ref on the object itself.
1116 */
1117 int
1118 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1119 struct drm_file *file)
1120 {
1121 struct drm_i915_private *dev_priv = dev->dev_private;
1122 struct drm_i915_gem_mmap *args = data;
1123 struct drm_gem_object *obj;
1124 loff_t offset;
1125 unsigned long addr;
1126
1127 if (!(dev->driver->driver_features & DRIVER_GEM))
1128 return -ENODEV;
1129
1130 obj = drm_gem_object_lookup(dev, file, args->handle);
1131 if (obj == NULL)
1132 return -ENOENT;
1133
1134 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1135 drm_gem_object_unreference_unlocked(obj);
1136 return -E2BIG;
1137 }
1138
1139 offset = args->offset;
1140
1141 down_write(&current->mm->mmap_sem);
1142 addr = do_mmap(obj->filp, 0, args->size,
1143 PROT_READ | PROT_WRITE, MAP_SHARED,
1144 args->offset);
1145 up_write(&current->mm->mmap_sem);
1146 drm_gem_object_unreference_unlocked(obj);
1147 if (IS_ERR((void *)addr))
1148 return addr;
1149
1150 args->addr_ptr = (uint64_t) addr;
1151
1152 return 0;
1153 }
1154
1155 /**
1156 * i915_gem_fault - fault a page into the GTT
1157 * vma: VMA in question
1158 * vmf: fault info
1159 *
1160 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1161 * from userspace. The fault handler takes care of binding the object to
1162 * the GTT (if needed), allocating and programming a fence register (again,
1163 * only if needed based on whether the old reg is still valid or the object
1164 * is tiled) and inserting a new PTE into the faulting process.
1165 *
1166 * Note that the faulting process may involve evicting existing objects
1167 * from the GTT and/or fence registers to make room. So performance may
1168 * suffer if the GTT working set is large or there are few fence registers
1169 * left.
1170 */
1171 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1172 {
1173 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1174 struct drm_device *dev = obj->base.dev;
1175 drm_i915_private_t *dev_priv = dev->dev_private;
1176 pgoff_t page_offset;
1177 unsigned long pfn;
1178 int ret = 0;
1179 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1180
1181 /* We don't use vmf->pgoff since that has the fake offset */
1182 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1183 PAGE_SHIFT;
1184
1185 /* Now bind it into the GTT if needed */
1186 mutex_lock(&dev->struct_mutex);
1187
1188 if (!obj->map_and_fenceable) {
1189 ret = i915_gem_object_unbind(obj);
1190 if (ret)
1191 goto unlock;
1192 }
1193 if (!obj->gtt_space) {
1194 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1195 if (ret)
1196 goto unlock;
1197 }
1198
1199 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1200 if (ret)
1201 goto unlock;
1202
1203 if (obj->tiling_mode == I915_TILING_NONE)
1204 ret = i915_gem_object_put_fence(obj);
1205 else
1206 ret = i915_gem_object_get_fence(obj, NULL, true);
1207 if (ret)
1208 goto unlock;
1209
1210 if (i915_gem_object_is_inactive(obj))
1211 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1212
1213 obj->fault_mappable = true;
1214
1215 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1216 page_offset;
1217
1218 /* Finally, remap it using the new GTT offset */
1219 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1220 unlock:
1221 mutex_unlock(&dev->struct_mutex);
1222
1223 switch (ret) {
1224 case -EAGAIN:
1225 set_need_resched();
1226 case 0:
1227 case -ERESTARTSYS:
1228 return VM_FAULT_NOPAGE;
1229 case -ENOMEM:
1230 return VM_FAULT_OOM;
1231 default:
1232 return VM_FAULT_SIGBUS;
1233 }
1234 }
1235
1236 /**
1237 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1238 * @obj: obj in question
1239 *
1240 * GEM memory mapping works by handing back to userspace a fake mmap offset
1241 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1242 * up the object based on the offset and sets up the various memory mapping
1243 * structures.
1244 *
1245 * This routine allocates and attaches a fake offset for @obj.
1246 */
1247 static int
1248 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1249 {
1250 struct drm_device *dev = obj->base.dev;
1251 struct drm_gem_mm *mm = dev->mm_private;
1252 struct drm_map_list *list;
1253 struct drm_local_map *map;
1254 int ret = 0;
1255
1256 /* Set the object up for mmap'ing */
1257 list = &obj->base.map_list;
1258 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1259 if (!list->map)
1260 return -ENOMEM;
1261
1262 map = list->map;
1263 map->type = _DRM_GEM;
1264 map->size = obj->base.size;
1265 map->handle = obj;
1266
1267 /* Get a DRM GEM mmap offset allocated... */
1268 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1269 obj->base.size / PAGE_SIZE,
1270 0, 0);
1271 if (!list->file_offset_node) {
1272 DRM_ERROR("failed to allocate offset for bo %d\n",
1273 obj->base.name);
1274 ret = -ENOSPC;
1275 goto out_free_list;
1276 }
1277
1278 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1279 obj->base.size / PAGE_SIZE,
1280 0);
1281 if (!list->file_offset_node) {
1282 ret = -ENOMEM;
1283 goto out_free_list;
1284 }
1285
1286 list->hash.key = list->file_offset_node->start;
1287 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1288 if (ret) {
1289 DRM_ERROR("failed to add to map hash\n");
1290 goto out_free_mm;
1291 }
1292
1293 return 0;
1294
1295 out_free_mm:
1296 drm_mm_put_block(list->file_offset_node);
1297 out_free_list:
1298 kfree(list->map);
1299 list->map = NULL;
1300
1301 return ret;
1302 }
1303
1304 /**
1305 * i915_gem_release_mmap - remove physical page mappings
1306 * @obj: obj in question
1307 *
1308 * Preserve the reservation of the mmapping with the DRM core code, but
1309 * relinquish ownership of the pages back to the system.
1310 *
1311 * It is vital that we remove the page mapping if we have mapped a tiled
1312 * object through the GTT and then lose the fence register due to
1313 * resource pressure. Similarly if the object has been moved out of the
1314 * aperture, than pages mapped into userspace must be revoked. Removing the
1315 * mapping will then trigger a page fault on the next user access, allowing
1316 * fixup by i915_gem_fault().
1317 */
1318 void
1319 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1320 {
1321 if (!obj->fault_mappable)
1322 return;
1323
1324 unmap_mapping_range(obj->base.dev->dev_mapping,
1325 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1326 obj->base.size, 1);
1327
1328 obj->fault_mappable = false;
1329 }
1330
1331 static void
1332 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1333 {
1334 struct drm_device *dev = obj->base.dev;
1335 struct drm_gem_mm *mm = dev->mm_private;
1336 struct drm_map_list *list = &obj->base.map_list;
1337
1338 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1339 drm_mm_put_block(list->file_offset_node);
1340 kfree(list->map);
1341 list->map = NULL;
1342 }
1343
1344 static uint32_t
1345 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1346 {
1347 struct drm_device *dev = obj->base.dev;
1348 uint32_t size;
1349
1350 if (INTEL_INFO(dev)->gen >= 4 ||
1351 obj->tiling_mode == I915_TILING_NONE)
1352 return obj->base.size;
1353
1354 /* Previous chips need a power-of-two fence region when tiling */
1355 if (INTEL_INFO(dev)->gen == 3)
1356 size = 1024*1024;
1357 else
1358 size = 512*1024;
1359
1360 while (size < obj->base.size)
1361 size <<= 1;
1362
1363 return size;
1364 }
1365
1366 /**
1367 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1368 * @obj: object to check
1369 *
1370 * Return the required GTT alignment for an object, taking into account
1371 * potential fence register mapping.
1372 */
1373 static uint32_t
1374 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1375 {
1376 struct drm_device *dev = obj->base.dev;
1377
1378 /*
1379 * Minimum alignment is 4k (GTT page size), but might be greater
1380 * if a fence register is needed for the object.
1381 */
1382 if (INTEL_INFO(dev)->gen >= 4 ||
1383 obj->tiling_mode == I915_TILING_NONE)
1384 return 4096;
1385
1386 /*
1387 * Previous chips need to be aligned to the size of the smallest
1388 * fence register that can contain the object.
1389 */
1390 return i915_gem_get_gtt_size(obj);
1391 }
1392
1393 /**
1394 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1395 * unfenced object
1396 * @obj: object to check
1397 *
1398 * Return the required GTT alignment for an object, only taking into account
1399 * unfenced tiled surface requirements.
1400 */
1401 static uint32_t
1402 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1403 {
1404 struct drm_device *dev = obj->base.dev;
1405 int tile_height;
1406
1407 /*
1408 * Minimum alignment is 4k (GTT page size) for sane hw.
1409 */
1410 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1411 obj->tiling_mode == I915_TILING_NONE)
1412 return 4096;
1413
1414 /*
1415 * Older chips need unfenced tiled buffers to be aligned to the left
1416 * edge of an even tile row (where tile rows are counted as if the bo is
1417 * placed in a fenced gtt region).
1418 */
1419 if (IS_GEN2(dev) ||
1420 (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
1421 tile_height = 32;
1422 else
1423 tile_height = 8;
1424
1425 return tile_height * obj->stride * 2;
1426 }
1427
1428 /**
1429 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1430 * @dev: DRM device
1431 * @data: GTT mapping ioctl data
1432 * @file: GEM object info
1433 *
1434 * Simply returns the fake offset to userspace so it can mmap it.
1435 * The mmap call will end up in drm_gem_mmap(), which will set things
1436 * up so we can get faults in the handler above.
1437 *
1438 * The fault handler will take care of binding the object into the GTT
1439 * (since it may have been evicted to make room for something), allocating
1440 * a fence register, and mapping the appropriate aperture address into
1441 * userspace.
1442 */
1443 int
1444 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1445 struct drm_file *file)
1446 {
1447 struct drm_i915_private *dev_priv = dev->dev_private;
1448 struct drm_i915_gem_mmap_gtt *args = data;
1449 struct drm_i915_gem_object *obj;
1450 int ret;
1451
1452 if (!(dev->driver->driver_features & DRIVER_GEM))
1453 return -ENODEV;
1454
1455 ret = i915_mutex_lock_interruptible(dev);
1456 if (ret)
1457 return ret;
1458
1459 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1460 if (obj == NULL) {
1461 ret = -ENOENT;
1462 goto unlock;
1463 }
1464
1465 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1466 ret = -E2BIG;
1467 goto unlock;
1468 }
1469
1470 if (obj->madv != I915_MADV_WILLNEED) {
1471 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1472 ret = -EINVAL;
1473 goto out;
1474 }
1475
1476 if (!obj->base.map_list.map) {
1477 ret = i915_gem_create_mmap_offset(obj);
1478 if (ret)
1479 goto out;
1480 }
1481
1482 args->offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1483
1484 out:
1485 drm_gem_object_unreference(&obj->base);
1486 unlock:
1487 mutex_unlock(&dev->struct_mutex);
1488 return ret;
1489 }
1490
1491 static int
1492 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1493 gfp_t gfpmask)
1494 {
1495 int page_count, i;
1496 struct address_space *mapping;
1497 struct inode *inode;
1498 struct page *page;
1499
1500 /* Get the list of pages out of our struct file. They'll be pinned
1501 * at this point until we release them.
1502 */
1503 page_count = obj->base.size / PAGE_SIZE;
1504 BUG_ON(obj->pages != NULL);
1505 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1506 if (obj->pages == NULL)
1507 return -ENOMEM;
1508
1509 inode = obj->base.filp->f_path.dentry->d_inode;
1510 mapping = inode->i_mapping;
1511 for (i = 0; i < page_count; i++) {
1512 page = read_cache_page_gfp(mapping, i,
1513 GFP_HIGHUSER |
1514 __GFP_COLD |
1515 __GFP_RECLAIMABLE |
1516 gfpmask);
1517 if (IS_ERR(page))
1518 goto err_pages;
1519
1520 obj->pages[i] = page;
1521 }
1522
1523 if (obj->tiling_mode != I915_TILING_NONE)
1524 i915_gem_object_do_bit_17_swizzle(obj);
1525
1526 return 0;
1527
1528 err_pages:
1529 while (i--)
1530 page_cache_release(obj->pages[i]);
1531
1532 drm_free_large(obj->pages);
1533 obj->pages = NULL;
1534 return PTR_ERR(page);
1535 }
1536
1537 static void
1538 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1539 {
1540 int page_count = obj->base.size / PAGE_SIZE;
1541 int i;
1542
1543 BUG_ON(obj->madv == __I915_MADV_PURGED);
1544
1545 if (obj->tiling_mode != I915_TILING_NONE)
1546 i915_gem_object_save_bit_17_swizzle(obj);
1547
1548 if (obj->madv == I915_MADV_DONTNEED)
1549 obj->dirty = 0;
1550
1551 for (i = 0; i < page_count; i++) {
1552 if (obj->dirty)
1553 set_page_dirty(obj->pages[i]);
1554
1555 if (obj->madv == I915_MADV_WILLNEED)
1556 mark_page_accessed(obj->pages[i]);
1557
1558 page_cache_release(obj->pages[i]);
1559 }
1560 obj->dirty = 0;
1561
1562 drm_free_large(obj->pages);
1563 obj->pages = NULL;
1564 }
1565
1566 void
1567 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1568 struct intel_ring_buffer *ring,
1569 u32 seqno)
1570 {
1571 struct drm_device *dev = obj->base.dev;
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573
1574 BUG_ON(ring == NULL);
1575 obj->ring = ring;
1576
1577 /* Add a reference if we're newly entering the active list. */
1578 if (!obj->active) {
1579 drm_gem_object_reference(&obj->base);
1580 obj->active = 1;
1581 }
1582
1583 /* Move from whatever list we were on to the tail of execution. */
1584 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1585 list_move_tail(&obj->ring_list, &ring->active_list);
1586
1587 obj->last_rendering_seqno = seqno;
1588 if (obj->fenced_gpu_access) {
1589 struct drm_i915_fence_reg *reg;
1590
1591 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1592
1593 obj->last_fenced_seqno = seqno;
1594 obj->last_fenced_ring = ring;
1595
1596 reg = &dev_priv->fence_regs[obj->fence_reg];
1597 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1598 }
1599 }
1600
1601 static void
1602 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1603 {
1604 list_del_init(&obj->ring_list);
1605 obj->last_rendering_seqno = 0;
1606 }
1607
1608 static void
1609 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1610 {
1611 struct drm_device *dev = obj->base.dev;
1612 drm_i915_private_t *dev_priv = dev->dev_private;
1613
1614 BUG_ON(!obj->active);
1615 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1616
1617 i915_gem_object_move_off_active(obj);
1618 }
1619
1620 static void
1621 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1622 {
1623 struct drm_device *dev = obj->base.dev;
1624 struct drm_i915_private *dev_priv = dev->dev_private;
1625
1626 if (obj->pin_count != 0)
1627 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1628 else
1629 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1630
1631 BUG_ON(!list_empty(&obj->gpu_write_list));
1632 BUG_ON(!obj->active);
1633 obj->ring = NULL;
1634
1635 i915_gem_object_move_off_active(obj);
1636 obj->fenced_gpu_access = false;
1637
1638 obj->active = 0;
1639 obj->pending_gpu_write = false;
1640 drm_gem_object_unreference(&obj->base);
1641
1642 WARN_ON(i915_verify_lists(dev));
1643 }
1644
1645 /* Immediately discard the backing storage */
1646 static void
1647 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1648 {
1649 struct inode *inode;
1650
1651 /* Our goal here is to return as much of the memory as
1652 * is possible back to the system as we are called from OOM.
1653 * To do this we must instruct the shmfs to drop all of its
1654 * backing pages, *now*. Here we mirror the actions taken
1655 * when by shmem_delete_inode() to release the backing store.
1656 */
1657 inode = obj->base.filp->f_path.dentry->d_inode;
1658 truncate_inode_pages(inode->i_mapping, 0);
1659 if (inode->i_op->truncate_range)
1660 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1661
1662 obj->madv = __I915_MADV_PURGED;
1663 }
1664
1665 static inline int
1666 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1667 {
1668 return obj->madv == I915_MADV_DONTNEED;
1669 }
1670
1671 static void
1672 i915_gem_process_flushing_list(struct drm_device *dev,
1673 uint32_t flush_domains,
1674 struct intel_ring_buffer *ring)
1675 {
1676 struct drm_i915_gem_object *obj, *next;
1677
1678 list_for_each_entry_safe(obj, next,
1679 &ring->gpu_write_list,
1680 gpu_write_list) {
1681 if (obj->base.write_domain & flush_domains) {
1682 uint32_t old_write_domain = obj->base.write_domain;
1683
1684 obj->base.write_domain = 0;
1685 list_del_init(&obj->gpu_write_list);
1686 i915_gem_object_move_to_active(obj, ring,
1687 i915_gem_next_request_seqno(dev, ring));
1688
1689 trace_i915_gem_object_change_domain(obj,
1690 obj->base.read_domains,
1691 old_write_domain);
1692 }
1693 }
1694 }
1695
1696 int
1697 i915_add_request(struct drm_device *dev,
1698 struct drm_file *file,
1699 struct drm_i915_gem_request *request,
1700 struct intel_ring_buffer *ring)
1701 {
1702 drm_i915_private_t *dev_priv = dev->dev_private;
1703 struct drm_i915_file_private *file_priv = NULL;
1704 uint32_t seqno;
1705 int was_empty;
1706 int ret;
1707
1708 BUG_ON(request == NULL);
1709
1710 if (file != NULL)
1711 file_priv = file->driver_priv;
1712
1713 ret = ring->add_request(ring, &seqno);
1714 if (ret)
1715 return ret;
1716
1717 ring->outstanding_lazy_request = false;
1718
1719 request->seqno = seqno;
1720 request->ring = ring;
1721 request->emitted_jiffies = jiffies;
1722 was_empty = list_empty(&ring->request_list);
1723 list_add_tail(&request->list, &ring->request_list);
1724
1725 if (file_priv) {
1726 spin_lock(&file_priv->mm.lock);
1727 request->file_priv = file_priv;
1728 list_add_tail(&request->client_list,
1729 &file_priv->mm.request_list);
1730 spin_unlock(&file_priv->mm.lock);
1731 }
1732
1733 if (!dev_priv->mm.suspended) {
1734 mod_timer(&dev_priv->hangcheck_timer,
1735 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1736 if (was_empty)
1737 queue_delayed_work(dev_priv->wq,
1738 &dev_priv->mm.retire_work, HZ);
1739 }
1740 return 0;
1741 }
1742
1743 static inline void
1744 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1745 {
1746 struct drm_i915_file_private *file_priv = request->file_priv;
1747
1748 if (!file_priv)
1749 return;
1750
1751 spin_lock(&file_priv->mm.lock);
1752 list_del(&request->client_list);
1753 request->file_priv = NULL;
1754 spin_unlock(&file_priv->mm.lock);
1755 }
1756
1757 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1758 struct intel_ring_buffer *ring)
1759 {
1760 while (!list_empty(&ring->request_list)) {
1761 struct drm_i915_gem_request *request;
1762
1763 request = list_first_entry(&ring->request_list,
1764 struct drm_i915_gem_request,
1765 list);
1766
1767 list_del(&request->list);
1768 i915_gem_request_remove_from_client(request);
1769 kfree(request);
1770 }
1771
1772 while (!list_empty(&ring->active_list)) {
1773 struct drm_i915_gem_object *obj;
1774
1775 obj = list_first_entry(&ring->active_list,
1776 struct drm_i915_gem_object,
1777 ring_list);
1778
1779 obj->base.write_domain = 0;
1780 list_del_init(&obj->gpu_write_list);
1781 i915_gem_object_move_to_inactive(obj);
1782 }
1783 }
1784
1785 static void i915_gem_reset_fences(struct drm_device *dev)
1786 {
1787 struct drm_i915_private *dev_priv = dev->dev_private;
1788 int i;
1789
1790 for (i = 0; i < 16; i++) {
1791 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1792 struct drm_i915_gem_object *obj = reg->obj;
1793
1794 if (!obj)
1795 continue;
1796
1797 if (obj->tiling_mode)
1798 i915_gem_release_mmap(obj);
1799
1800 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1801 reg->obj->fenced_gpu_access = false;
1802 reg->obj->last_fenced_seqno = 0;
1803 reg->obj->last_fenced_ring = NULL;
1804 i915_gem_clear_fence_reg(dev, reg);
1805 }
1806 }
1807
1808 void i915_gem_reset(struct drm_device *dev)
1809 {
1810 struct drm_i915_private *dev_priv = dev->dev_private;
1811 struct drm_i915_gem_object *obj;
1812 int i;
1813
1814 for (i = 0; i < I915_NUM_RINGS; i++)
1815 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1816
1817 /* Remove anything from the flushing lists. The GPU cache is likely
1818 * to be lost on reset along with the data, so simply move the
1819 * lost bo to the inactive list.
1820 */
1821 while (!list_empty(&dev_priv->mm.flushing_list)) {
1822 obj= list_first_entry(&dev_priv->mm.flushing_list,
1823 struct drm_i915_gem_object,
1824 mm_list);
1825
1826 obj->base.write_domain = 0;
1827 list_del_init(&obj->gpu_write_list);
1828 i915_gem_object_move_to_inactive(obj);
1829 }
1830
1831 /* Move everything out of the GPU domains to ensure we do any
1832 * necessary invalidation upon reuse.
1833 */
1834 list_for_each_entry(obj,
1835 &dev_priv->mm.inactive_list,
1836 mm_list)
1837 {
1838 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1839 }
1840
1841 /* The fence registers are invalidated so clear them out */
1842 i915_gem_reset_fences(dev);
1843 }
1844
1845 /**
1846 * This function clears the request list as sequence numbers are passed.
1847 */
1848 static void
1849 i915_gem_retire_requests_ring(struct drm_device *dev,
1850 struct intel_ring_buffer *ring)
1851 {
1852 drm_i915_private_t *dev_priv = dev->dev_private;
1853 uint32_t seqno;
1854 int i;
1855
1856 if (!ring->status_page.page_addr ||
1857 list_empty(&ring->request_list))
1858 return;
1859
1860 WARN_ON(i915_verify_lists(dev));
1861
1862 seqno = ring->get_seqno(ring);
1863
1864 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1865 if (seqno >= ring->sync_seqno[i])
1866 ring->sync_seqno[i] = 0;
1867
1868 while (!list_empty(&ring->request_list)) {
1869 struct drm_i915_gem_request *request;
1870
1871 request = list_first_entry(&ring->request_list,
1872 struct drm_i915_gem_request,
1873 list);
1874
1875 if (!i915_seqno_passed(seqno, request->seqno))
1876 break;
1877
1878 trace_i915_gem_request_retire(dev, request->seqno);
1879
1880 list_del(&request->list);
1881 i915_gem_request_remove_from_client(request);
1882 kfree(request);
1883 }
1884
1885 /* Move any buffers on the active list that are no longer referenced
1886 * by the ringbuffer to the flushing/inactive lists as appropriate.
1887 */
1888 while (!list_empty(&ring->active_list)) {
1889 struct drm_i915_gem_object *obj;
1890
1891 obj= list_first_entry(&ring->active_list,
1892 struct drm_i915_gem_object,
1893 ring_list);
1894
1895 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1896 break;
1897
1898 if (obj->base.write_domain != 0)
1899 i915_gem_object_move_to_flushing(obj);
1900 else
1901 i915_gem_object_move_to_inactive(obj);
1902 }
1903
1904 if (unlikely (dev_priv->trace_irq_seqno &&
1905 i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1906 ring->irq_put(ring);
1907 dev_priv->trace_irq_seqno = 0;
1908 }
1909
1910 WARN_ON(i915_verify_lists(dev));
1911 }
1912
1913 void
1914 i915_gem_retire_requests(struct drm_device *dev)
1915 {
1916 drm_i915_private_t *dev_priv = dev->dev_private;
1917 int i;
1918
1919 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1920 struct drm_i915_gem_object *obj, *next;
1921
1922 /* We must be careful that during unbind() we do not
1923 * accidentally infinitely recurse into retire requests.
1924 * Currently:
1925 * retire -> free -> unbind -> wait -> retire_ring
1926 */
1927 list_for_each_entry_safe(obj, next,
1928 &dev_priv->mm.deferred_free_list,
1929 mm_list)
1930 i915_gem_free_object_tail(obj);
1931 }
1932
1933 for (i = 0; i < I915_NUM_RINGS; i++)
1934 i915_gem_retire_requests_ring(dev, &dev_priv->ring[i]);
1935 }
1936
1937 static void
1938 i915_gem_retire_work_handler(struct work_struct *work)
1939 {
1940 drm_i915_private_t *dev_priv;
1941 struct drm_device *dev;
1942 bool idle;
1943 int i;
1944
1945 dev_priv = container_of(work, drm_i915_private_t,
1946 mm.retire_work.work);
1947 dev = dev_priv->dev;
1948
1949 /* Come back later if the device is busy... */
1950 if (!mutex_trylock(&dev->struct_mutex)) {
1951 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1952 return;
1953 }
1954
1955 i915_gem_retire_requests(dev);
1956
1957 /* Send a periodic flush down the ring so we don't hold onto GEM
1958 * objects indefinitely.
1959 */
1960 idle = true;
1961 for (i = 0; i < I915_NUM_RINGS; i++) {
1962 struct intel_ring_buffer *ring = &dev_priv->ring[i];
1963
1964 if (!list_empty(&ring->gpu_write_list)) {
1965 struct drm_i915_gem_request *request;
1966 int ret;
1967
1968 ret = i915_gem_flush_ring(dev, ring, 0,
1969 I915_GEM_GPU_DOMAINS);
1970 request = kzalloc(sizeof(*request), GFP_KERNEL);
1971 if (ret || request == NULL ||
1972 i915_add_request(dev, NULL, request, ring))
1973 kfree(request);
1974 }
1975
1976 idle &= list_empty(&ring->request_list);
1977 }
1978
1979 if (!dev_priv->mm.suspended && !idle)
1980 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1981
1982 mutex_unlock(&dev->struct_mutex);
1983 }
1984
1985 int
1986 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1987 bool interruptible, struct intel_ring_buffer *ring)
1988 {
1989 drm_i915_private_t *dev_priv = dev->dev_private;
1990 u32 ier;
1991 int ret = 0;
1992
1993 BUG_ON(seqno == 0);
1994
1995 if (atomic_read(&dev_priv->mm.wedged))
1996 return -EAGAIN;
1997
1998 if (seqno == ring->outstanding_lazy_request) {
1999 struct drm_i915_gem_request *request;
2000
2001 request = kzalloc(sizeof(*request), GFP_KERNEL);
2002 if (request == NULL)
2003 return -ENOMEM;
2004
2005 ret = i915_add_request(dev, NULL, request, ring);
2006 if (ret) {
2007 kfree(request);
2008 return ret;
2009 }
2010
2011 seqno = request->seqno;
2012 }
2013
2014 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2015 if (HAS_PCH_SPLIT(dev))
2016 ier = I915_READ(DEIER) | I915_READ(GTIER);
2017 else
2018 ier = I915_READ(IER);
2019 if (!ier) {
2020 DRM_ERROR("something (likely vbetool) disabled "
2021 "interrupts, re-enabling\n");
2022 i915_driver_irq_preinstall(dev);
2023 i915_driver_irq_postinstall(dev);
2024 }
2025
2026 trace_i915_gem_request_wait_begin(dev, seqno);
2027
2028 ring->waiting_seqno = seqno;
2029 if (ring->irq_get(ring)) {
2030 if (interruptible)
2031 ret = wait_event_interruptible(ring->irq_queue,
2032 i915_seqno_passed(ring->get_seqno(ring), seqno)
2033 || atomic_read(&dev_priv->mm.wedged));
2034 else
2035 wait_event(ring->irq_queue,
2036 i915_seqno_passed(ring->get_seqno(ring), seqno)
2037 || atomic_read(&dev_priv->mm.wedged));
2038
2039 ring->irq_put(ring);
2040 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2041 seqno) ||
2042 atomic_read(&dev_priv->mm.wedged), 3000))
2043 ret = -EBUSY;
2044 ring->waiting_seqno = 0;
2045
2046 trace_i915_gem_request_wait_end(dev, seqno);
2047 }
2048 if (atomic_read(&dev_priv->mm.wedged))
2049 ret = -EAGAIN;
2050
2051 if (ret && ret != -ERESTARTSYS)
2052 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2053 __func__, ret, seqno, ring->get_seqno(ring),
2054 dev_priv->next_seqno);
2055
2056 /* Directly dispatch request retiring. While we have the work queue
2057 * to handle this, the waiter on a request often wants an associated
2058 * buffer to have made it to the inactive list, and we would need
2059 * a separate wait queue to handle that.
2060 */
2061 if (ret == 0)
2062 i915_gem_retire_requests_ring(dev, ring);
2063
2064 return ret;
2065 }
2066
2067 /**
2068 * Waits for a sequence number to be signaled, and cleans up the
2069 * request and object lists appropriately for that event.
2070 */
2071 static int
2072 i915_wait_request(struct drm_device *dev, uint32_t seqno,
2073 struct intel_ring_buffer *ring)
2074 {
2075 return i915_do_wait_request(dev, seqno, 1, ring);
2076 }
2077
2078 /**
2079 * Ensures that all rendering to the object has completed and the object is
2080 * safe to unbind from the GTT or access from the CPU.
2081 */
2082 int
2083 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2084 bool interruptible)
2085 {
2086 struct drm_device *dev = obj->base.dev;
2087 int ret;
2088
2089 /* This function only exists to support waiting for existing rendering,
2090 * not for emitting required flushes.
2091 */
2092 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2093
2094 /* If there is rendering queued on the buffer being evicted, wait for
2095 * it.
2096 */
2097 if (obj->active) {
2098 ret = i915_do_wait_request(dev,
2099 obj->last_rendering_seqno,
2100 interruptible,
2101 obj->ring);
2102 if (ret)
2103 return ret;
2104 }
2105
2106 return 0;
2107 }
2108
2109 /**
2110 * Unbinds an object from the GTT aperture.
2111 */
2112 int
2113 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2114 {
2115 int ret = 0;
2116
2117 if (obj->gtt_space == NULL)
2118 return 0;
2119
2120 if (obj->pin_count != 0) {
2121 DRM_ERROR("Attempting to unbind pinned buffer\n");
2122 return -EINVAL;
2123 }
2124
2125 /* blow away mappings if mapped through GTT */
2126 i915_gem_release_mmap(obj);
2127
2128 /* Move the object to the CPU domain to ensure that
2129 * any possible CPU writes while it's not in the GTT
2130 * are flushed when we go to remap it. This will
2131 * also ensure that all pending GPU writes are finished
2132 * before we unbind.
2133 */
2134 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2135 if (ret == -ERESTARTSYS)
2136 return ret;
2137 /* Continue on if we fail due to EIO, the GPU is hung so we
2138 * should be safe and we need to cleanup or else we might
2139 * cause memory corruption through use-after-free.
2140 */
2141 if (ret) {
2142 i915_gem_clflush_object(obj);
2143 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2144 }
2145
2146 /* release the fence reg _after_ flushing */
2147 ret = i915_gem_object_put_fence(obj);
2148 if (ret == -ERESTARTSYS)
2149 return ret;
2150
2151 i915_gem_gtt_unbind_object(obj);
2152 i915_gem_object_put_pages_gtt(obj);
2153
2154 list_del_init(&obj->gtt_list);
2155 list_del_init(&obj->mm_list);
2156 /* Avoid an unnecessary call to unbind on rebind. */
2157 obj->map_and_fenceable = true;
2158
2159 drm_mm_put_block(obj->gtt_space);
2160 obj->gtt_space = NULL;
2161 obj->gtt_offset = 0;
2162
2163 if (i915_gem_object_is_purgeable(obj))
2164 i915_gem_object_truncate(obj);
2165
2166 trace_i915_gem_object_unbind(obj);
2167
2168 return ret;
2169 }
2170
2171 int
2172 i915_gem_flush_ring(struct drm_device *dev,
2173 struct intel_ring_buffer *ring,
2174 uint32_t invalidate_domains,
2175 uint32_t flush_domains)
2176 {
2177 int ret;
2178
2179 ret = ring->flush(ring, invalidate_domains, flush_domains);
2180 if (ret)
2181 return ret;
2182
2183 i915_gem_process_flushing_list(dev, flush_domains, ring);
2184 return 0;
2185 }
2186
2187 static int i915_ring_idle(struct drm_device *dev,
2188 struct intel_ring_buffer *ring)
2189 {
2190 int ret;
2191
2192 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2193 return 0;
2194
2195 if (!list_empty(&ring->gpu_write_list)) {
2196 ret = i915_gem_flush_ring(dev, ring,
2197 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2198 if (ret)
2199 return ret;
2200 }
2201
2202 return i915_wait_request(dev,
2203 i915_gem_next_request_seqno(dev, ring),
2204 ring);
2205 }
2206
2207 int
2208 i915_gpu_idle(struct drm_device *dev)
2209 {
2210 drm_i915_private_t *dev_priv = dev->dev_private;
2211 bool lists_empty;
2212 int ret, i;
2213
2214 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2215 list_empty(&dev_priv->mm.active_list));
2216 if (lists_empty)
2217 return 0;
2218
2219 /* Flush everything onto the inactive list. */
2220 for (i = 0; i < I915_NUM_RINGS; i++) {
2221 ret = i915_ring_idle(dev, &dev_priv->ring[i]);
2222 if (ret)
2223 return ret;
2224 }
2225
2226 return 0;
2227 }
2228
2229 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2230 struct intel_ring_buffer *pipelined)
2231 {
2232 struct drm_device *dev = obj->base.dev;
2233 drm_i915_private_t *dev_priv = dev->dev_private;
2234 u32 size = obj->gtt_space->size;
2235 int regnum = obj->fence_reg;
2236 uint64_t val;
2237
2238 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2239 0xfffff000) << 32;
2240 val |= obj->gtt_offset & 0xfffff000;
2241 val |= (uint64_t)((obj->stride / 128) - 1) <<
2242 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2243
2244 if (obj->tiling_mode == I915_TILING_Y)
2245 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2246 val |= I965_FENCE_REG_VALID;
2247
2248 if (pipelined) {
2249 int ret = intel_ring_begin(pipelined, 6);
2250 if (ret)
2251 return ret;
2252
2253 intel_ring_emit(pipelined, MI_NOOP);
2254 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2255 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2256 intel_ring_emit(pipelined, (u32)val);
2257 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2258 intel_ring_emit(pipelined, (u32)(val >> 32));
2259 intel_ring_advance(pipelined);
2260 } else
2261 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2262
2263 return 0;
2264 }
2265
2266 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2267 struct intel_ring_buffer *pipelined)
2268 {
2269 struct drm_device *dev = obj->base.dev;
2270 drm_i915_private_t *dev_priv = dev->dev_private;
2271 u32 size = obj->gtt_space->size;
2272 int regnum = obj->fence_reg;
2273 uint64_t val;
2274
2275 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2276 0xfffff000) << 32;
2277 val |= obj->gtt_offset & 0xfffff000;
2278 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2279 if (obj->tiling_mode == I915_TILING_Y)
2280 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2281 val |= I965_FENCE_REG_VALID;
2282
2283 if (pipelined) {
2284 int ret = intel_ring_begin(pipelined, 6);
2285 if (ret)
2286 return ret;
2287
2288 intel_ring_emit(pipelined, MI_NOOP);
2289 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2290 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2291 intel_ring_emit(pipelined, (u32)val);
2292 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2293 intel_ring_emit(pipelined, (u32)(val >> 32));
2294 intel_ring_advance(pipelined);
2295 } else
2296 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2297
2298 return 0;
2299 }
2300
2301 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2302 struct intel_ring_buffer *pipelined)
2303 {
2304 struct drm_device *dev = obj->base.dev;
2305 drm_i915_private_t *dev_priv = dev->dev_private;
2306 u32 size = obj->gtt_space->size;
2307 u32 fence_reg, val, pitch_val;
2308 int tile_width;
2309
2310 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2311 (size & -size) != size ||
2312 (obj->gtt_offset & (size - 1)),
2313 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2314 obj->gtt_offset, obj->map_and_fenceable, size))
2315 return -EINVAL;
2316
2317 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2318 tile_width = 128;
2319 else
2320 tile_width = 512;
2321
2322 /* Note: pitch better be a power of two tile widths */
2323 pitch_val = obj->stride / tile_width;
2324 pitch_val = ffs(pitch_val) - 1;
2325
2326 val = obj->gtt_offset;
2327 if (obj->tiling_mode == I915_TILING_Y)
2328 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2329 val |= I915_FENCE_SIZE_BITS(size);
2330 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2331 val |= I830_FENCE_REG_VALID;
2332
2333 fence_reg = obj->fence_reg;
2334 if (fence_reg < 8)
2335 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2336 else
2337 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2338
2339 if (pipelined) {
2340 int ret = intel_ring_begin(pipelined, 4);
2341 if (ret)
2342 return ret;
2343
2344 intel_ring_emit(pipelined, MI_NOOP);
2345 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2346 intel_ring_emit(pipelined, fence_reg);
2347 intel_ring_emit(pipelined, val);
2348 intel_ring_advance(pipelined);
2349 } else
2350 I915_WRITE(fence_reg, val);
2351
2352 return 0;
2353 }
2354
2355 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2356 struct intel_ring_buffer *pipelined)
2357 {
2358 struct drm_device *dev = obj->base.dev;
2359 drm_i915_private_t *dev_priv = dev->dev_private;
2360 u32 size = obj->gtt_space->size;
2361 int regnum = obj->fence_reg;
2362 uint32_t val;
2363 uint32_t pitch_val;
2364
2365 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2366 (size & -size) != size ||
2367 (obj->gtt_offset & (size - 1)),
2368 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2369 obj->gtt_offset, size))
2370 return -EINVAL;
2371
2372 pitch_val = obj->stride / 128;
2373 pitch_val = ffs(pitch_val) - 1;
2374
2375 val = obj->gtt_offset;
2376 if (obj->tiling_mode == I915_TILING_Y)
2377 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2378 val |= I830_FENCE_SIZE_BITS(size);
2379 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2380 val |= I830_FENCE_REG_VALID;
2381
2382 if (pipelined) {
2383 int ret = intel_ring_begin(pipelined, 4);
2384 if (ret)
2385 return ret;
2386
2387 intel_ring_emit(pipelined, MI_NOOP);
2388 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2389 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2390 intel_ring_emit(pipelined, val);
2391 intel_ring_advance(pipelined);
2392 } else
2393 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2394
2395 return 0;
2396 }
2397
2398 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2399 {
2400 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2401 }
2402
2403 static int
2404 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2405 struct intel_ring_buffer *pipelined,
2406 bool interruptible)
2407 {
2408 int ret;
2409
2410 if (obj->fenced_gpu_access) {
2411 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2412 ret = i915_gem_flush_ring(obj->base.dev,
2413 obj->last_fenced_ring,
2414 0, obj->base.write_domain);
2415 if (ret)
2416 return ret;
2417 }
2418
2419 obj->fenced_gpu_access = false;
2420 }
2421
2422 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2423 if (!ring_passed_seqno(obj->last_fenced_ring,
2424 obj->last_fenced_seqno)) {
2425 ret = i915_do_wait_request(obj->base.dev,
2426 obj->last_fenced_seqno,
2427 interruptible,
2428 obj->last_fenced_ring);
2429 if (ret)
2430 return ret;
2431 }
2432
2433 obj->last_fenced_seqno = 0;
2434 obj->last_fenced_ring = NULL;
2435 }
2436
2437 /* Ensure that all CPU reads are completed before installing a fence
2438 * and all writes before removing the fence.
2439 */
2440 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2441 mb();
2442
2443 return 0;
2444 }
2445
2446 int
2447 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2448 {
2449 int ret;
2450
2451 if (obj->tiling_mode)
2452 i915_gem_release_mmap(obj);
2453
2454 ret = i915_gem_object_flush_fence(obj, NULL, true);
2455 if (ret)
2456 return ret;
2457
2458 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2459 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2460 i915_gem_clear_fence_reg(obj->base.dev,
2461 &dev_priv->fence_regs[obj->fence_reg]);
2462
2463 obj->fence_reg = I915_FENCE_REG_NONE;
2464 }
2465
2466 return 0;
2467 }
2468
2469 static struct drm_i915_fence_reg *
2470 i915_find_fence_reg(struct drm_device *dev,
2471 struct intel_ring_buffer *pipelined)
2472 {
2473 struct drm_i915_private *dev_priv = dev->dev_private;
2474 struct drm_i915_fence_reg *reg, *first, *avail;
2475 int i;
2476
2477 /* First try to find a free reg */
2478 avail = NULL;
2479 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2480 reg = &dev_priv->fence_regs[i];
2481 if (!reg->obj)
2482 return reg;
2483
2484 if (!reg->obj->pin_count)
2485 avail = reg;
2486 }
2487
2488 if (avail == NULL)
2489 return NULL;
2490
2491 /* None available, try to steal one or wait for a user to finish */
2492 avail = first = NULL;
2493 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2494 if (reg->obj->pin_count)
2495 continue;
2496
2497 if (first == NULL)
2498 first = reg;
2499
2500 if (!pipelined ||
2501 !reg->obj->last_fenced_ring ||
2502 reg->obj->last_fenced_ring == pipelined) {
2503 avail = reg;
2504 break;
2505 }
2506 }
2507
2508 if (avail == NULL)
2509 avail = first;
2510
2511 return avail;
2512 }
2513
2514 /**
2515 * i915_gem_object_get_fence - set up a fence reg for an object
2516 * @obj: object to map through a fence reg
2517 * @pipelined: ring on which to queue the change, or NULL for CPU access
2518 * @interruptible: must we wait uninterruptibly for the register to retire?
2519 *
2520 * When mapping objects through the GTT, userspace wants to be able to write
2521 * to them without having to worry about swizzling if the object is tiled.
2522 *
2523 * This function walks the fence regs looking for a free one for @obj,
2524 * stealing one if it can't find any.
2525 *
2526 * It then sets up the reg based on the object's properties: address, pitch
2527 * and tiling format.
2528 */
2529 int
2530 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2531 struct intel_ring_buffer *pipelined,
2532 bool interruptible)
2533 {
2534 struct drm_device *dev = obj->base.dev;
2535 struct drm_i915_private *dev_priv = dev->dev_private;
2536 struct drm_i915_fence_reg *reg;
2537 int ret;
2538
2539 /* XXX disable pipelining. There are bugs. Shocking. */
2540 pipelined = NULL;
2541
2542 /* Just update our place in the LRU if our fence is getting reused. */
2543 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2544 reg = &dev_priv->fence_regs[obj->fence_reg];
2545 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2546
2547 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2548 pipelined = NULL;
2549
2550 if (!pipelined) {
2551 if (reg->setup_seqno) {
2552 if (!ring_passed_seqno(obj->last_fenced_ring,
2553 reg->setup_seqno)) {
2554 ret = i915_do_wait_request(obj->base.dev,
2555 reg->setup_seqno,
2556 interruptible,
2557 obj->last_fenced_ring);
2558 if (ret)
2559 return ret;
2560 }
2561
2562 reg->setup_seqno = 0;
2563 }
2564 } else if (obj->last_fenced_ring &&
2565 obj->last_fenced_ring != pipelined) {
2566 ret = i915_gem_object_flush_fence(obj,
2567 pipelined,
2568 interruptible);
2569 if (ret)
2570 return ret;
2571 } else if (obj->tiling_changed) {
2572 if (obj->fenced_gpu_access) {
2573 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2574 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
2575 0, obj->base.write_domain);
2576 if (ret)
2577 return ret;
2578 }
2579
2580 obj->fenced_gpu_access = false;
2581 }
2582 }
2583
2584 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2585 pipelined = NULL;
2586 BUG_ON(!pipelined && reg->setup_seqno);
2587
2588 if (obj->tiling_changed) {
2589 if (pipelined) {
2590 reg->setup_seqno =
2591 i915_gem_next_request_seqno(dev, pipelined);
2592 obj->last_fenced_seqno = reg->setup_seqno;
2593 obj->last_fenced_ring = pipelined;
2594 }
2595 goto update;
2596 }
2597
2598 return 0;
2599 }
2600
2601 reg = i915_find_fence_reg(dev, pipelined);
2602 if (reg == NULL)
2603 return -ENOSPC;
2604
2605 ret = i915_gem_object_flush_fence(obj, pipelined, interruptible);
2606 if (ret)
2607 return ret;
2608
2609 if (reg->obj) {
2610 struct drm_i915_gem_object *old = reg->obj;
2611
2612 drm_gem_object_reference(&old->base);
2613
2614 if (old->tiling_mode)
2615 i915_gem_release_mmap(old);
2616
2617 ret = i915_gem_object_flush_fence(old,
2618 pipelined,
2619 interruptible);
2620 if (ret) {
2621 drm_gem_object_unreference(&old->base);
2622 return ret;
2623 }
2624
2625 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2626 pipelined = NULL;
2627
2628 old->fence_reg = I915_FENCE_REG_NONE;
2629 old->last_fenced_ring = pipelined;
2630 old->last_fenced_seqno =
2631 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2632
2633 drm_gem_object_unreference(&old->base);
2634 } else if (obj->last_fenced_seqno == 0)
2635 pipelined = NULL;
2636
2637 reg->obj = obj;
2638 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2639 obj->fence_reg = reg - dev_priv->fence_regs;
2640 obj->last_fenced_ring = pipelined;
2641
2642 reg->setup_seqno =
2643 pipelined ? i915_gem_next_request_seqno(dev, pipelined) : 0;
2644 obj->last_fenced_seqno = reg->setup_seqno;
2645
2646 update:
2647 obj->tiling_changed = false;
2648 switch (INTEL_INFO(dev)->gen) {
2649 case 6:
2650 ret = sandybridge_write_fence_reg(obj, pipelined);
2651 break;
2652 case 5:
2653 case 4:
2654 ret = i965_write_fence_reg(obj, pipelined);
2655 break;
2656 case 3:
2657 ret = i915_write_fence_reg(obj, pipelined);
2658 break;
2659 case 2:
2660 ret = i830_write_fence_reg(obj, pipelined);
2661 break;
2662 }
2663
2664 return ret;
2665 }
2666
2667 /**
2668 * i915_gem_clear_fence_reg - clear out fence register info
2669 * @obj: object to clear
2670 *
2671 * Zeroes out the fence register itself and clears out the associated
2672 * data structures in dev_priv and obj.
2673 */
2674 static void
2675 i915_gem_clear_fence_reg(struct drm_device *dev,
2676 struct drm_i915_fence_reg *reg)
2677 {
2678 drm_i915_private_t *dev_priv = dev->dev_private;
2679 uint32_t fence_reg = reg - dev_priv->fence_regs;
2680
2681 switch (INTEL_INFO(dev)->gen) {
2682 case 6:
2683 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2684 break;
2685 case 5:
2686 case 4:
2687 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2688 break;
2689 case 3:
2690 if (fence_reg >= 8)
2691 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2692 else
2693 case 2:
2694 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2695
2696 I915_WRITE(fence_reg, 0);
2697 break;
2698 }
2699
2700 list_del_init(&reg->lru_list);
2701 reg->obj = NULL;
2702 reg->setup_seqno = 0;
2703 }
2704
2705 /**
2706 * Finds free space in the GTT aperture and binds the object there.
2707 */
2708 static int
2709 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2710 unsigned alignment,
2711 bool map_and_fenceable)
2712 {
2713 struct drm_device *dev = obj->base.dev;
2714 drm_i915_private_t *dev_priv = dev->dev_private;
2715 struct drm_mm_node *free_space;
2716 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2717 u32 size, fence_size, fence_alignment, unfenced_alignment;
2718 bool mappable, fenceable;
2719 int ret;
2720
2721 if (obj->madv != I915_MADV_WILLNEED) {
2722 DRM_ERROR("Attempting to bind a purgeable object\n");
2723 return -EINVAL;
2724 }
2725
2726 fence_size = i915_gem_get_gtt_size(obj);
2727 fence_alignment = i915_gem_get_gtt_alignment(obj);
2728 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2729
2730 if (alignment == 0)
2731 alignment = map_and_fenceable ? fence_alignment :
2732 unfenced_alignment;
2733 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2734 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2735 return -EINVAL;
2736 }
2737
2738 size = map_and_fenceable ? fence_size : obj->base.size;
2739
2740 /* If the object is bigger than the entire aperture, reject it early
2741 * before evicting everything in a vain attempt to find space.
2742 */
2743 if (obj->base.size >
2744 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2745 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2746 return -E2BIG;
2747 }
2748
2749 search_free:
2750 if (map_and_fenceable)
2751 free_space =
2752 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2753 size, alignment, 0,
2754 dev_priv->mm.gtt_mappable_end,
2755 0);
2756 else
2757 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2758 size, alignment, 0);
2759
2760 if (free_space != NULL) {
2761 if (map_and_fenceable)
2762 obj->gtt_space =
2763 drm_mm_get_block_range_generic(free_space,
2764 size, alignment, 0,
2765 dev_priv->mm.gtt_mappable_end,
2766 0);
2767 else
2768 obj->gtt_space =
2769 drm_mm_get_block(free_space, size, alignment);
2770 }
2771 if (obj->gtt_space == NULL) {
2772 /* If the gtt is empty and we're still having trouble
2773 * fitting our object in, we're out of memory.
2774 */
2775 ret = i915_gem_evict_something(dev, size, alignment,
2776 map_and_fenceable);
2777 if (ret)
2778 return ret;
2779
2780 goto search_free;
2781 }
2782
2783 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2784 if (ret) {
2785 drm_mm_put_block(obj->gtt_space);
2786 obj->gtt_space = NULL;
2787
2788 if (ret == -ENOMEM) {
2789 /* first try to reclaim some memory by clearing the GTT */
2790 ret = i915_gem_evict_everything(dev, false);
2791 if (ret) {
2792 /* now try to shrink everyone else */
2793 if (gfpmask) {
2794 gfpmask = 0;
2795 goto search_free;
2796 }
2797
2798 return -ENOMEM;
2799 }
2800
2801 goto search_free;
2802 }
2803
2804 return ret;
2805 }
2806
2807 ret = i915_gem_gtt_bind_object(obj);
2808 if (ret) {
2809 i915_gem_object_put_pages_gtt(obj);
2810 drm_mm_put_block(obj->gtt_space);
2811 obj->gtt_space = NULL;
2812
2813 if (i915_gem_evict_everything(dev, false))
2814 return ret;
2815
2816 goto search_free;
2817 }
2818
2819 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2820 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2821
2822 /* Assert that the object is not currently in any GPU domain. As it
2823 * wasn't in the GTT, there shouldn't be any way it could have been in
2824 * a GPU cache
2825 */
2826 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2827 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2828
2829 obj->gtt_offset = obj->gtt_space->start;
2830
2831 fenceable =
2832 obj->gtt_space->size == fence_size &&
2833 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2834
2835 mappable =
2836 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2837
2838 obj->map_and_fenceable = mappable && fenceable;
2839
2840 trace_i915_gem_object_bind(obj, obj->gtt_offset, map_and_fenceable);
2841 return 0;
2842 }
2843
2844 void
2845 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2846 {
2847 /* If we don't have a page list set up, then we're not pinned
2848 * to GPU, and we can ignore the cache flush because it'll happen
2849 * again at bind time.
2850 */
2851 if (obj->pages == NULL)
2852 return;
2853
2854 trace_i915_gem_object_clflush(obj);
2855
2856 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2857 }
2858
2859 /** Flushes any GPU write domain for the object if it's dirty. */
2860 static int
2861 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2862 {
2863 struct drm_device *dev = obj->base.dev;
2864
2865 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2866 return 0;
2867
2868 /* Queue the GPU write cache flushing we need. */
2869 return i915_gem_flush_ring(dev, obj->ring, 0, obj->base.write_domain);
2870 }
2871
2872 /** Flushes the GTT write domain for the object if it's dirty. */
2873 static void
2874 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2875 {
2876 uint32_t old_write_domain;
2877
2878 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2879 return;
2880
2881 /* No actual flushing is required for the GTT write domain. Writes
2882 * to it immediately go to main memory as far as we know, so there's
2883 * no chipset flush. It also doesn't land in render cache.
2884 *
2885 * However, we do have to enforce the order so that all writes through
2886 * the GTT land before any writes to the device, such as updates to
2887 * the GATT itself.
2888 */
2889 wmb();
2890
2891 i915_gem_release_mmap(obj);
2892
2893 old_write_domain = obj->base.write_domain;
2894 obj->base.write_domain = 0;
2895
2896 trace_i915_gem_object_change_domain(obj,
2897 obj->base.read_domains,
2898 old_write_domain);
2899 }
2900
2901 /** Flushes the CPU write domain for the object if it's dirty. */
2902 static void
2903 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2904 {
2905 uint32_t old_write_domain;
2906
2907 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2908 return;
2909
2910 i915_gem_clflush_object(obj);
2911 intel_gtt_chipset_flush();
2912 old_write_domain = obj->base.write_domain;
2913 obj->base.write_domain = 0;
2914
2915 trace_i915_gem_object_change_domain(obj,
2916 obj->base.read_domains,
2917 old_write_domain);
2918 }
2919
2920 /**
2921 * Moves a single object to the GTT read, and possibly write domain.
2922 *
2923 * This function returns when the move is complete, including waiting on
2924 * flushes to occur.
2925 */
2926 int
2927 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2928 {
2929 uint32_t old_write_domain, old_read_domains;
2930 int ret;
2931
2932 /* Not valid to be called on unbound objects. */
2933 if (obj->gtt_space == NULL)
2934 return -EINVAL;
2935
2936 ret = i915_gem_object_flush_gpu_write_domain(obj);
2937 if (ret)
2938 return ret;
2939
2940 if (obj->pending_gpu_write || write) {
2941 ret = i915_gem_object_wait_rendering(obj, true);
2942 if (ret)
2943 return ret;
2944 }
2945
2946 i915_gem_object_flush_cpu_write_domain(obj);
2947
2948 old_write_domain = obj->base.write_domain;
2949 old_read_domains = obj->base.read_domains;
2950
2951 /* It should now be out of any other write domains, and we can update
2952 * the domain values for our changes.
2953 */
2954 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2955 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2956 if (write) {
2957 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2958 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2959 obj->dirty = 1;
2960 }
2961
2962 trace_i915_gem_object_change_domain(obj,
2963 old_read_domains,
2964 old_write_domain);
2965
2966 return 0;
2967 }
2968
2969 /*
2970 * Prepare buffer for display plane. Use uninterruptible for possible flush
2971 * wait, as in modesetting process we're not supposed to be interrupted.
2972 */
2973 int
2974 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
2975 struct intel_ring_buffer *pipelined)
2976 {
2977 uint32_t old_read_domains;
2978 int ret;
2979
2980 /* Not valid to be called on unbound objects. */
2981 if (obj->gtt_space == NULL)
2982 return -EINVAL;
2983
2984 ret = i915_gem_object_flush_gpu_write_domain(obj);
2985 if (ret)
2986 return ret;
2987
2988
2989 /* Currently, we are always called from an non-interruptible context. */
2990 if (pipelined != obj->ring) {
2991 ret = i915_gem_object_wait_rendering(obj, false);
2992 if (ret)
2993 return ret;
2994 }
2995
2996 i915_gem_object_flush_cpu_write_domain(obj);
2997
2998 old_read_domains = obj->base.read_domains;
2999 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3000
3001 trace_i915_gem_object_change_domain(obj,
3002 old_read_domains,
3003 obj->base.write_domain);
3004
3005 return 0;
3006 }
3007
3008 int
3009 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
3010 bool interruptible)
3011 {
3012 int ret;
3013
3014 if (!obj->active)
3015 return 0;
3016
3017 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3018 ret = i915_gem_flush_ring(obj->base.dev, obj->ring,
3019 0, obj->base.write_domain);
3020 if (ret)
3021 return ret;
3022 }
3023
3024 return i915_gem_object_wait_rendering(obj, interruptible);
3025 }
3026
3027 /**
3028 * Moves a single object to the CPU read, and possibly write domain.
3029 *
3030 * This function returns when the move is complete, including waiting on
3031 * flushes to occur.
3032 */
3033 static int
3034 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3035 {
3036 uint32_t old_write_domain, old_read_domains;
3037 int ret;
3038
3039 ret = i915_gem_object_flush_gpu_write_domain(obj);
3040 if (ret)
3041 return ret;
3042
3043 ret = i915_gem_object_wait_rendering(obj, true);
3044 if (ret)
3045 return ret;
3046
3047 i915_gem_object_flush_gtt_write_domain(obj);
3048
3049 /* If we have a partially-valid cache of the object in the CPU,
3050 * finish invalidating it and free the per-page flags.
3051 */
3052 i915_gem_object_set_to_full_cpu_read_domain(obj);
3053
3054 old_write_domain = obj->base.write_domain;
3055 old_read_domains = obj->base.read_domains;
3056
3057 /* Flush the CPU cache if it's still invalid. */
3058 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3059 i915_gem_clflush_object(obj);
3060
3061 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3062 }
3063
3064 /* It should now be out of any other write domains, and we can update
3065 * the domain values for our changes.
3066 */
3067 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3068
3069 /* If we're writing through the CPU, then the GPU read domains will
3070 * need to be invalidated at next use.
3071 */
3072 if (write) {
3073 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3074 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3075 }
3076
3077 trace_i915_gem_object_change_domain(obj,
3078 old_read_domains,
3079 old_write_domain);
3080
3081 return 0;
3082 }
3083
3084 /**
3085 * Moves the object from a partially CPU read to a full one.
3086 *
3087 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3088 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3089 */
3090 static void
3091 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3092 {
3093 if (!obj->page_cpu_valid)
3094 return;
3095
3096 /* If we're partially in the CPU read domain, finish moving it in.
3097 */
3098 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3099 int i;
3100
3101 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3102 if (obj->page_cpu_valid[i])
3103 continue;
3104 drm_clflush_pages(obj->pages + i, 1);
3105 }
3106 }
3107
3108 /* Free the page_cpu_valid mappings which are now stale, whether
3109 * or not we've got I915_GEM_DOMAIN_CPU.
3110 */
3111 kfree(obj->page_cpu_valid);
3112 obj->page_cpu_valid = NULL;
3113 }
3114
3115 /**
3116 * Set the CPU read domain on a range of the object.
3117 *
3118 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3119 * not entirely valid. The page_cpu_valid member of the object flags which
3120 * pages have been flushed, and will be respected by
3121 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3122 * of the whole object.
3123 *
3124 * This function returns when the move is complete, including waiting on
3125 * flushes to occur.
3126 */
3127 static int
3128 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3129 uint64_t offset, uint64_t size)
3130 {
3131 uint32_t old_read_domains;
3132 int i, ret;
3133
3134 if (offset == 0 && size == obj->base.size)
3135 return i915_gem_object_set_to_cpu_domain(obj, 0);
3136
3137 ret = i915_gem_object_flush_gpu_write_domain(obj);
3138 if (ret)
3139 return ret;
3140
3141 ret = i915_gem_object_wait_rendering(obj, true);
3142 if (ret)
3143 return ret;
3144
3145 i915_gem_object_flush_gtt_write_domain(obj);
3146
3147 /* If we're already fully in the CPU read domain, we're done. */
3148 if (obj->page_cpu_valid == NULL &&
3149 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3150 return 0;
3151
3152 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3153 * newly adding I915_GEM_DOMAIN_CPU
3154 */
3155 if (obj->page_cpu_valid == NULL) {
3156 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3157 GFP_KERNEL);
3158 if (obj->page_cpu_valid == NULL)
3159 return -ENOMEM;
3160 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3161 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3162
3163 /* Flush the cache on any pages that are still invalid from the CPU's
3164 * perspective.
3165 */
3166 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3167 i++) {
3168 if (obj->page_cpu_valid[i])
3169 continue;
3170
3171 drm_clflush_pages(obj->pages + i, 1);
3172
3173 obj->page_cpu_valid[i] = 1;
3174 }
3175
3176 /* It should now be out of any other write domains, and we can update
3177 * the domain values for our changes.
3178 */
3179 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3180
3181 old_read_domains = obj->base.read_domains;
3182 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3183
3184 trace_i915_gem_object_change_domain(obj,
3185 old_read_domains,
3186 obj->base.write_domain);
3187
3188 return 0;
3189 }
3190
3191 /* Throttle our rendering by waiting until the ring has completed our requests
3192 * emitted over 20 msec ago.
3193 *
3194 * Note that if we were to use the current jiffies each time around the loop,
3195 * we wouldn't escape the function with any frames outstanding if the time to
3196 * render a frame was over 20ms.
3197 *
3198 * This should get us reasonable parallelism between CPU and GPU but also
3199 * relatively low latency when blocking on a particular request to finish.
3200 */
3201 static int
3202 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3203 {
3204 struct drm_i915_private *dev_priv = dev->dev_private;
3205 struct drm_i915_file_private *file_priv = file->driver_priv;
3206 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3207 struct drm_i915_gem_request *request;
3208 struct intel_ring_buffer *ring = NULL;
3209 u32 seqno = 0;
3210 int ret;
3211
3212 spin_lock(&file_priv->mm.lock);
3213 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3214 if (time_after_eq(request->emitted_jiffies, recent_enough))
3215 break;
3216
3217 ring = request->ring;
3218 seqno = request->seqno;
3219 }
3220 spin_unlock(&file_priv->mm.lock);
3221
3222 if (seqno == 0)
3223 return 0;
3224
3225 ret = 0;
3226 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3227 /* And wait for the seqno passing without holding any locks and
3228 * causing extra latency for others. This is safe as the irq
3229 * generation is designed to be run atomically and so is
3230 * lockless.
3231 */
3232 if (ring->irq_get(ring)) {
3233 ret = wait_event_interruptible(ring->irq_queue,
3234 i915_seqno_passed(ring->get_seqno(ring), seqno)
3235 || atomic_read(&dev_priv->mm.wedged));
3236 ring->irq_put(ring);
3237
3238 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3239 ret = -EIO;
3240 }
3241 }
3242
3243 if (ret == 0)
3244 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3245
3246 return ret;
3247 }
3248
3249 int
3250 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3251 uint32_t alignment,
3252 bool map_and_fenceable)
3253 {
3254 struct drm_device *dev = obj->base.dev;
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 int ret;
3257
3258 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3259 WARN_ON(i915_verify_lists(dev));
3260
3261 if (obj->gtt_space != NULL) {
3262 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3263 (map_and_fenceable && !obj->map_and_fenceable)) {
3264 WARN(obj->pin_count,
3265 "bo is already pinned with incorrect alignment:"
3266 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3267 " obj->map_and_fenceable=%d\n",
3268 obj->gtt_offset, alignment,
3269 map_and_fenceable,
3270 obj->map_and_fenceable);
3271 ret = i915_gem_object_unbind(obj);
3272 if (ret)
3273 return ret;
3274 }
3275 }
3276
3277 if (obj->gtt_space == NULL) {
3278 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3279 map_and_fenceable);
3280 if (ret)
3281 return ret;
3282 }
3283
3284 if (obj->pin_count++ == 0) {
3285 if (!obj->active)
3286 list_move_tail(&obj->mm_list,
3287 &dev_priv->mm.pinned_list);
3288 }
3289 obj->pin_mappable |= map_and_fenceable;
3290
3291 WARN_ON(i915_verify_lists(dev));
3292 return 0;
3293 }
3294
3295 void
3296 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3297 {
3298 struct drm_device *dev = obj->base.dev;
3299 drm_i915_private_t *dev_priv = dev->dev_private;
3300
3301 WARN_ON(i915_verify_lists(dev));
3302 BUG_ON(obj->pin_count == 0);
3303 BUG_ON(obj->gtt_space == NULL);
3304
3305 if (--obj->pin_count == 0) {
3306 if (!obj->active)
3307 list_move_tail(&obj->mm_list,
3308 &dev_priv->mm.inactive_list);
3309 obj->pin_mappable = false;
3310 }
3311 WARN_ON(i915_verify_lists(dev));
3312 }
3313
3314 int
3315 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3316 struct drm_file *file)
3317 {
3318 struct drm_i915_gem_pin *args = data;
3319 struct drm_i915_gem_object *obj;
3320 int ret;
3321
3322 ret = i915_mutex_lock_interruptible(dev);
3323 if (ret)
3324 return ret;
3325
3326 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3327 if (obj == NULL) {
3328 ret = -ENOENT;
3329 goto unlock;
3330 }
3331
3332 if (obj->madv != I915_MADV_WILLNEED) {
3333 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3334 ret = -EINVAL;
3335 goto out;
3336 }
3337
3338 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3339 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3340 args->handle);
3341 ret = -EINVAL;
3342 goto out;
3343 }
3344
3345 obj->user_pin_count++;
3346 obj->pin_filp = file;
3347 if (obj->user_pin_count == 1) {
3348 ret = i915_gem_object_pin(obj, args->alignment, true);
3349 if (ret)
3350 goto out;
3351 }
3352
3353 /* XXX - flush the CPU caches for pinned objects
3354 * as the X server doesn't manage domains yet
3355 */
3356 i915_gem_object_flush_cpu_write_domain(obj);
3357 args->offset = obj->gtt_offset;
3358 out:
3359 drm_gem_object_unreference(&obj->base);
3360 unlock:
3361 mutex_unlock(&dev->struct_mutex);
3362 return ret;
3363 }
3364
3365 int
3366 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3367 struct drm_file *file)
3368 {
3369 struct drm_i915_gem_pin *args = data;
3370 struct drm_i915_gem_object *obj;
3371 int ret;
3372
3373 ret = i915_mutex_lock_interruptible(dev);
3374 if (ret)
3375 return ret;
3376
3377 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3378 if (obj == NULL) {
3379 ret = -ENOENT;
3380 goto unlock;
3381 }
3382
3383 if (obj->pin_filp != file) {
3384 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3385 args->handle);
3386 ret = -EINVAL;
3387 goto out;
3388 }
3389 obj->user_pin_count--;
3390 if (obj->user_pin_count == 0) {
3391 obj->pin_filp = NULL;
3392 i915_gem_object_unpin(obj);
3393 }
3394
3395 out:
3396 drm_gem_object_unreference(&obj->base);
3397 unlock:
3398 mutex_unlock(&dev->struct_mutex);
3399 return ret;
3400 }
3401
3402 int
3403 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3404 struct drm_file *file)
3405 {
3406 struct drm_i915_gem_busy *args = data;
3407 struct drm_i915_gem_object *obj;
3408 int ret;
3409
3410 ret = i915_mutex_lock_interruptible(dev);
3411 if (ret)
3412 return ret;
3413
3414 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3415 if (obj == NULL) {
3416 ret = -ENOENT;
3417 goto unlock;
3418 }
3419
3420 /* Count all active objects as busy, even if they are currently not used
3421 * by the gpu. Users of this interface expect objects to eventually
3422 * become non-busy without any further actions, therefore emit any
3423 * necessary flushes here.
3424 */
3425 args->busy = obj->active;
3426 if (args->busy) {
3427 /* Unconditionally flush objects, even when the gpu still uses this
3428 * object. Userspace calling this function indicates that it wants to
3429 * use this buffer rather sooner than later, so issuing the required
3430 * flush earlier is beneficial.
3431 */
3432 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3433 ret = i915_gem_flush_ring(dev, obj->ring,
3434 0, obj->base.write_domain);
3435 } else if (obj->ring->outstanding_lazy_request ==
3436 obj->last_rendering_seqno) {
3437 struct drm_i915_gem_request *request;
3438
3439 /* This ring is not being cleared by active usage,
3440 * so emit a request to do so.
3441 */
3442 request = kzalloc(sizeof(*request), GFP_KERNEL);
3443 if (request)
3444 ret = i915_add_request(dev,
3445 NULL, request,
3446 obj->ring);
3447 else
3448 ret = -ENOMEM;
3449 }
3450
3451 /* Update the active list for the hardware's current position.
3452 * Otherwise this only updates on a delayed timer or when irqs
3453 * are actually unmasked, and our working set ends up being
3454 * larger than required.
3455 */
3456 i915_gem_retire_requests_ring(dev, obj->ring);
3457
3458 args->busy = obj->active;
3459 }
3460
3461 drm_gem_object_unreference(&obj->base);
3462 unlock:
3463 mutex_unlock(&dev->struct_mutex);
3464 return ret;
3465 }
3466
3467 int
3468 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3469 struct drm_file *file_priv)
3470 {
3471 return i915_gem_ring_throttle(dev, file_priv);
3472 }
3473
3474 int
3475 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3476 struct drm_file *file_priv)
3477 {
3478 struct drm_i915_gem_madvise *args = data;
3479 struct drm_i915_gem_object *obj;
3480 int ret;
3481
3482 switch (args->madv) {
3483 case I915_MADV_DONTNEED:
3484 case I915_MADV_WILLNEED:
3485 break;
3486 default:
3487 return -EINVAL;
3488 }
3489
3490 ret = i915_mutex_lock_interruptible(dev);
3491 if (ret)
3492 return ret;
3493
3494 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3495 if (obj == NULL) {
3496 ret = -ENOENT;
3497 goto unlock;
3498 }
3499
3500 if (obj->pin_count) {
3501 ret = -EINVAL;
3502 goto out;
3503 }
3504
3505 if (obj->madv != __I915_MADV_PURGED)
3506 obj->madv = args->madv;
3507
3508 /* if the object is no longer bound, discard its backing storage */
3509 if (i915_gem_object_is_purgeable(obj) &&
3510 obj->gtt_space == NULL)
3511 i915_gem_object_truncate(obj);
3512
3513 args->retained = obj->madv != __I915_MADV_PURGED;
3514
3515 out:
3516 drm_gem_object_unreference(&obj->base);
3517 unlock:
3518 mutex_unlock(&dev->struct_mutex);
3519 return ret;
3520 }
3521
3522 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3523 size_t size)
3524 {
3525 struct drm_i915_private *dev_priv = dev->dev_private;
3526 struct drm_i915_gem_object *obj;
3527
3528 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3529 if (obj == NULL)
3530 return NULL;
3531
3532 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3533 kfree(obj);
3534 return NULL;
3535 }
3536
3537 i915_gem_info_add_obj(dev_priv, size);
3538
3539 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3540 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3541
3542 obj->agp_type = AGP_USER_MEMORY;
3543 obj->base.driver_private = NULL;
3544 obj->fence_reg = I915_FENCE_REG_NONE;
3545 INIT_LIST_HEAD(&obj->mm_list);
3546 INIT_LIST_HEAD(&obj->gtt_list);
3547 INIT_LIST_HEAD(&obj->ring_list);
3548 INIT_LIST_HEAD(&obj->exec_list);
3549 INIT_LIST_HEAD(&obj->gpu_write_list);
3550 obj->madv = I915_MADV_WILLNEED;
3551 /* Avoid an unnecessary call to unbind on the first bind. */
3552 obj->map_and_fenceable = true;
3553
3554 return obj;
3555 }
3556
3557 int i915_gem_init_object(struct drm_gem_object *obj)
3558 {
3559 BUG();
3560
3561 return 0;
3562 }
3563
3564 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3565 {
3566 struct drm_device *dev = obj->base.dev;
3567 drm_i915_private_t *dev_priv = dev->dev_private;
3568 int ret;
3569
3570 ret = i915_gem_object_unbind(obj);
3571 if (ret == -ERESTARTSYS) {
3572 list_move(&obj->mm_list,
3573 &dev_priv->mm.deferred_free_list);
3574 return;
3575 }
3576
3577 if (obj->base.map_list.map)
3578 i915_gem_free_mmap_offset(obj);
3579
3580 drm_gem_object_release(&obj->base);
3581 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3582
3583 kfree(obj->page_cpu_valid);
3584 kfree(obj->bit_17);
3585 kfree(obj);
3586 }
3587
3588 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3589 {
3590 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3591 struct drm_device *dev = obj->base.dev;
3592
3593 trace_i915_gem_object_destroy(obj);
3594
3595 while (obj->pin_count > 0)
3596 i915_gem_object_unpin(obj);
3597
3598 if (obj->phys_obj)
3599 i915_gem_detach_phys_object(dev, obj);
3600
3601 i915_gem_free_object_tail(obj);
3602 }
3603
3604 int
3605 i915_gem_idle(struct drm_device *dev)
3606 {
3607 drm_i915_private_t *dev_priv = dev->dev_private;
3608 int ret;
3609
3610 mutex_lock(&dev->struct_mutex);
3611
3612 if (dev_priv->mm.suspended) {
3613 mutex_unlock(&dev->struct_mutex);
3614 return 0;
3615 }
3616
3617 ret = i915_gpu_idle(dev);
3618 if (ret) {
3619 mutex_unlock(&dev->struct_mutex);
3620 return ret;
3621 }
3622
3623 /* Under UMS, be paranoid and evict. */
3624 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3625 ret = i915_gem_evict_inactive(dev, false);
3626 if (ret) {
3627 mutex_unlock(&dev->struct_mutex);
3628 return ret;
3629 }
3630 }
3631
3632 i915_gem_reset_fences(dev);
3633
3634 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3635 * We need to replace this with a semaphore, or something.
3636 * And not confound mm.suspended!
3637 */
3638 dev_priv->mm.suspended = 1;
3639 del_timer_sync(&dev_priv->hangcheck_timer);
3640
3641 i915_kernel_lost_context(dev);
3642 i915_gem_cleanup_ringbuffer(dev);
3643
3644 mutex_unlock(&dev->struct_mutex);
3645
3646 /* Cancel the retire work handler, which should be idle now. */
3647 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3648
3649 return 0;
3650 }
3651
3652 int
3653 i915_gem_init_ringbuffer(struct drm_device *dev)
3654 {
3655 drm_i915_private_t *dev_priv = dev->dev_private;
3656 int ret;
3657
3658 ret = intel_init_render_ring_buffer(dev);
3659 if (ret)
3660 return ret;
3661
3662 if (HAS_BSD(dev)) {
3663 ret = intel_init_bsd_ring_buffer(dev);
3664 if (ret)
3665 goto cleanup_render_ring;
3666 }
3667
3668 if (HAS_BLT(dev)) {
3669 ret = intel_init_blt_ring_buffer(dev);
3670 if (ret)
3671 goto cleanup_bsd_ring;
3672 }
3673
3674 dev_priv->next_seqno = 1;
3675
3676 return 0;
3677
3678 cleanup_bsd_ring:
3679 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3680 cleanup_render_ring:
3681 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3682 return ret;
3683 }
3684
3685 void
3686 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3687 {
3688 drm_i915_private_t *dev_priv = dev->dev_private;
3689 int i;
3690
3691 for (i = 0; i < I915_NUM_RINGS; i++)
3692 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3693 }
3694
3695 int
3696 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3697 struct drm_file *file_priv)
3698 {
3699 drm_i915_private_t *dev_priv = dev->dev_private;
3700 int ret, i;
3701
3702 if (drm_core_check_feature(dev, DRIVER_MODESET))
3703 return 0;
3704
3705 if (atomic_read(&dev_priv->mm.wedged)) {
3706 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3707 atomic_set(&dev_priv->mm.wedged, 0);
3708 }
3709
3710 mutex_lock(&dev->struct_mutex);
3711 dev_priv->mm.suspended = 0;
3712
3713 ret = i915_gem_init_ringbuffer(dev);
3714 if (ret != 0) {
3715 mutex_unlock(&dev->struct_mutex);
3716 return ret;
3717 }
3718
3719 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3720 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3721 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3722 for (i = 0; i < I915_NUM_RINGS; i++) {
3723 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3724 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3725 }
3726 mutex_unlock(&dev->struct_mutex);
3727
3728 ret = drm_irq_install(dev);
3729 if (ret)
3730 goto cleanup_ringbuffer;
3731
3732 return 0;
3733
3734 cleanup_ringbuffer:
3735 mutex_lock(&dev->struct_mutex);
3736 i915_gem_cleanup_ringbuffer(dev);
3737 dev_priv->mm.suspended = 1;
3738 mutex_unlock(&dev->struct_mutex);
3739
3740 return ret;
3741 }
3742
3743 int
3744 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3745 struct drm_file *file_priv)
3746 {
3747 if (drm_core_check_feature(dev, DRIVER_MODESET))
3748 return 0;
3749
3750 drm_irq_uninstall(dev);
3751 return i915_gem_idle(dev);
3752 }
3753
3754 void
3755 i915_gem_lastclose(struct drm_device *dev)
3756 {
3757 int ret;
3758
3759 if (drm_core_check_feature(dev, DRIVER_MODESET))
3760 return;
3761
3762 ret = i915_gem_idle(dev);
3763 if (ret)
3764 DRM_ERROR("failed to idle hardware: %d\n", ret);
3765 }
3766
3767 static void
3768 init_ring_lists(struct intel_ring_buffer *ring)
3769 {
3770 INIT_LIST_HEAD(&ring->active_list);
3771 INIT_LIST_HEAD(&ring->request_list);
3772 INIT_LIST_HEAD(&ring->gpu_write_list);
3773 }
3774
3775 void
3776 i915_gem_load(struct drm_device *dev)
3777 {
3778 int i;
3779 drm_i915_private_t *dev_priv = dev->dev_private;
3780
3781 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3782 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3783 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3784 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3785 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3786 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3787 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3788 for (i = 0; i < I915_NUM_RINGS; i++)
3789 init_ring_lists(&dev_priv->ring[i]);
3790 for (i = 0; i < 16; i++)
3791 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3792 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3793 i915_gem_retire_work_handler);
3794 init_completion(&dev_priv->error_completion);
3795
3796 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3797 if (IS_GEN3(dev)) {
3798 u32 tmp = I915_READ(MI_ARB_STATE);
3799 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3800 /* arb state is a masked write, so set bit + bit in mask */
3801 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3802 I915_WRITE(MI_ARB_STATE, tmp);
3803 }
3804 }
3805
3806 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3807
3808 /* Old X drivers will take 0-2 for front, back, depth buffers */
3809 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3810 dev_priv->fence_reg_start = 3;
3811
3812 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3813 dev_priv->num_fence_regs = 16;
3814 else
3815 dev_priv->num_fence_regs = 8;
3816
3817 /* Initialize fence registers to zero */
3818 switch (INTEL_INFO(dev)->gen) {
3819 case 6:
3820 for (i = 0; i < 16; i++)
3821 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
3822 break;
3823 case 5:
3824 case 4:
3825 for (i = 0; i < 16; i++)
3826 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
3827 break;
3828 case 3:
3829 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3830 for (i = 0; i < 8; i++)
3831 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
3832 case 2:
3833 for (i = 0; i < 8; i++)
3834 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
3835 break;
3836 }
3837 i915_gem_detect_bit_6_swizzle(dev);
3838 init_waitqueue_head(&dev_priv->pending_flip_queue);
3839
3840 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3841 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3842 register_shrinker(&dev_priv->mm.inactive_shrinker);
3843 }
3844
3845 /*
3846 * Create a physically contiguous memory object for this object
3847 * e.g. for cursor + overlay regs
3848 */
3849 static int i915_gem_init_phys_object(struct drm_device *dev,
3850 int id, int size, int align)
3851 {
3852 drm_i915_private_t *dev_priv = dev->dev_private;
3853 struct drm_i915_gem_phys_object *phys_obj;
3854 int ret;
3855
3856 if (dev_priv->mm.phys_objs[id - 1] || !size)
3857 return 0;
3858
3859 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3860 if (!phys_obj)
3861 return -ENOMEM;
3862
3863 phys_obj->id = id;
3864
3865 phys_obj->handle = drm_pci_alloc(dev, size, align);
3866 if (!phys_obj->handle) {
3867 ret = -ENOMEM;
3868 goto kfree_obj;
3869 }
3870 #ifdef CONFIG_X86
3871 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3872 #endif
3873
3874 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3875
3876 return 0;
3877 kfree_obj:
3878 kfree(phys_obj);
3879 return ret;
3880 }
3881
3882 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3883 {
3884 drm_i915_private_t *dev_priv = dev->dev_private;
3885 struct drm_i915_gem_phys_object *phys_obj;
3886
3887 if (!dev_priv->mm.phys_objs[id - 1])
3888 return;
3889
3890 phys_obj = dev_priv->mm.phys_objs[id - 1];
3891 if (phys_obj->cur_obj) {
3892 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3893 }
3894
3895 #ifdef CONFIG_X86
3896 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3897 #endif
3898 drm_pci_free(dev, phys_obj->handle);
3899 kfree(phys_obj);
3900 dev_priv->mm.phys_objs[id - 1] = NULL;
3901 }
3902
3903 void i915_gem_free_all_phys_object(struct drm_device *dev)
3904 {
3905 int i;
3906
3907 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3908 i915_gem_free_phys_object(dev, i);
3909 }
3910
3911 void i915_gem_detach_phys_object(struct drm_device *dev,
3912 struct drm_i915_gem_object *obj)
3913 {
3914 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3915 char *vaddr;
3916 int i;
3917 int page_count;
3918
3919 if (!obj->phys_obj)
3920 return;
3921 vaddr = obj->phys_obj->handle->vaddr;
3922
3923 page_count = obj->base.size / PAGE_SIZE;
3924 for (i = 0; i < page_count; i++) {
3925 struct page *page = read_cache_page_gfp(mapping, i,
3926 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3927 if (!IS_ERR(page)) {
3928 char *dst = kmap_atomic(page);
3929 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3930 kunmap_atomic(dst);
3931
3932 drm_clflush_pages(&page, 1);
3933
3934 set_page_dirty(page);
3935 mark_page_accessed(page);
3936 page_cache_release(page);
3937 }
3938 }
3939 intel_gtt_chipset_flush();
3940
3941 obj->phys_obj->cur_obj = NULL;
3942 obj->phys_obj = NULL;
3943 }
3944
3945 int
3946 i915_gem_attach_phys_object(struct drm_device *dev,
3947 struct drm_i915_gem_object *obj,
3948 int id,
3949 int align)
3950 {
3951 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3952 drm_i915_private_t *dev_priv = dev->dev_private;
3953 int ret = 0;
3954 int page_count;
3955 int i;
3956
3957 if (id > I915_MAX_PHYS_OBJECT)
3958 return -EINVAL;
3959
3960 if (obj->phys_obj) {
3961 if (obj->phys_obj->id == id)
3962 return 0;
3963 i915_gem_detach_phys_object(dev, obj);
3964 }
3965
3966 /* create a new object */
3967 if (!dev_priv->mm.phys_objs[id - 1]) {
3968 ret = i915_gem_init_phys_object(dev, id,
3969 obj->base.size, align);
3970 if (ret) {
3971 DRM_ERROR("failed to init phys object %d size: %zu\n",
3972 id, obj->base.size);
3973 return ret;
3974 }
3975 }
3976
3977 /* bind to the object */
3978 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
3979 obj->phys_obj->cur_obj = obj;
3980
3981 page_count = obj->base.size / PAGE_SIZE;
3982
3983 for (i = 0; i < page_count; i++) {
3984 struct page *page;
3985 char *dst, *src;
3986
3987 page = read_cache_page_gfp(mapping, i,
3988 GFP_HIGHUSER | __GFP_RECLAIMABLE);
3989 if (IS_ERR(page))
3990 return PTR_ERR(page);
3991
3992 src = kmap_atomic(page);
3993 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
3994 memcpy(dst, src, PAGE_SIZE);
3995 kunmap_atomic(src);
3996
3997 mark_page_accessed(page);
3998 page_cache_release(page);
3999 }
4000
4001 return 0;
4002 }
4003
4004 static int
4005 i915_gem_phys_pwrite(struct drm_device *dev,
4006 struct drm_i915_gem_object *obj,
4007 struct drm_i915_gem_pwrite *args,
4008 struct drm_file *file_priv)
4009 {
4010 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4011 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4012
4013 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4014 unsigned long unwritten;
4015
4016 /* The physical object once assigned is fixed for the lifetime
4017 * of the obj, so we can safely drop the lock and continue
4018 * to access vaddr.
4019 */
4020 mutex_unlock(&dev->struct_mutex);
4021 unwritten = copy_from_user(vaddr, user_data, args->size);
4022 mutex_lock(&dev->struct_mutex);
4023 if (unwritten)
4024 return -EFAULT;
4025 }
4026
4027 intel_gtt_chipset_flush();
4028 return 0;
4029 }
4030
4031 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4032 {
4033 struct drm_i915_file_private *file_priv = file->driver_priv;
4034
4035 /* Clean up our request list when the client is going away, so that
4036 * later retire_requests won't dereference our soon-to-be-gone
4037 * file_priv.
4038 */
4039 spin_lock(&file_priv->mm.lock);
4040 while (!list_empty(&file_priv->mm.request_list)) {
4041 struct drm_i915_gem_request *request;
4042
4043 request = list_first_entry(&file_priv->mm.request_list,
4044 struct drm_i915_gem_request,
4045 client_list);
4046 list_del(&request->client_list);
4047 request->file_priv = NULL;
4048 }
4049 spin_unlock(&file_priv->mm.lock);
4050 }
4051
4052 static int
4053 i915_gpu_is_active(struct drm_device *dev)
4054 {
4055 drm_i915_private_t *dev_priv = dev->dev_private;
4056 int lists_empty;
4057
4058 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4059 list_empty(&dev_priv->mm.active_list);
4060
4061 return !lists_empty;
4062 }
4063
4064 static int
4065 i915_gem_inactive_shrink(struct shrinker *shrinker,
4066 int nr_to_scan,
4067 gfp_t gfp_mask)
4068 {
4069 struct drm_i915_private *dev_priv =
4070 container_of(shrinker,
4071 struct drm_i915_private,
4072 mm.inactive_shrinker);
4073 struct drm_device *dev = dev_priv->dev;
4074 struct drm_i915_gem_object *obj, *next;
4075 int cnt;
4076
4077 if (!mutex_trylock(&dev->struct_mutex))
4078 return 0;
4079
4080 /* "fast-path" to count number of available objects */
4081 if (nr_to_scan == 0) {
4082 cnt = 0;
4083 list_for_each_entry(obj,
4084 &dev_priv->mm.inactive_list,
4085 mm_list)
4086 cnt++;
4087 mutex_unlock(&dev->struct_mutex);
4088 return cnt / 100 * sysctl_vfs_cache_pressure;
4089 }
4090
4091 rescan:
4092 /* first scan for clean buffers */
4093 i915_gem_retire_requests(dev);
4094
4095 list_for_each_entry_safe(obj, next,
4096 &dev_priv->mm.inactive_list,
4097 mm_list) {
4098 if (i915_gem_object_is_purgeable(obj)) {
4099 if (i915_gem_object_unbind(obj) == 0 &&
4100 --nr_to_scan == 0)
4101 break;
4102 }
4103 }
4104
4105 /* second pass, evict/count anything still on the inactive list */
4106 cnt = 0;
4107 list_for_each_entry_safe(obj, next,
4108 &dev_priv->mm.inactive_list,
4109 mm_list) {
4110 if (nr_to_scan &&
4111 i915_gem_object_unbind(obj) == 0)
4112 nr_to_scan--;
4113 else
4114 cnt++;
4115 }
4116
4117 if (nr_to_scan && i915_gpu_is_active(dev)) {
4118 /*
4119 * We are desperate for pages, so as a last resort, wait
4120 * for the GPU to finish and discard whatever we can.
4121 * This has a dramatic impact to reduce the number of
4122 * OOM-killer events whilst running the GPU aggressively.
4123 */
4124 if (i915_gpu_idle(dev) == 0)
4125 goto rescan;
4126 }
4127 mutex_unlock(&dev->struct_mutex);
4128 return cnt / 100 * sysctl_vfs_cache_pressure;
4129 }