]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Introduce i915_gem_set_seqno()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42 unsigned alignment,
43 bool map_and_fenceable,
44 bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46 struct drm_i915_gem_object *obj,
47 struct drm_i915_gem_pwrite *args,
48 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64 if (obj->tiling_mode)
65 i915_gem_release_mmap(obj);
66
67 /* As we do not have an associated fence register, we will force
68 * a tiling change if we ever need to acquire one.
69 */
70 obj->fence_dirty = false;
71 obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76 size_t size)
77 {
78 dev_priv->mm.object_count++;
79 dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84 {
85 dev_priv->mm.object_count--;
86 dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct drm_device *dev)
91 {
92 struct drm_i915_private *dev_priv = dev->dev_private;
93 struct completion *x = &dev_priv->error_completion;
94 unsigned long flags;
95 int ret;
96
97 if (!atomic_read(&dev_priv->mm.wedged))
98 return 0;
99
100 /*
101 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
102 * userspace. If it takes that long something really bad is going on and
103 * we should simply try to bail out and fail as gracefully as possible.
104 */
105 ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
106 if (ret == 0) {
107 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
108 return -EIO;
109 } else if (ret < 0) {
110 return ret;
111 }
112
113 if (atomic_read(&dev_priv->mm.wedged)) {
114 /* GPU is hung, bump the completion count to account for
115 * the token we just consumed so that we never hit zero and
116 * end up waiting upon a subsequent completion event that
117 * will never happen.
118 */
119 spin_lock_irqsave(&x->wait.lock, flags);
120 x->done++;
121 spin_unlock_irqrestore(&x->wait.lock, flags);
122 }
123 return 0;
124 }
125
126 int i915_mutex_lock_interruptible(struct drm_device *dev)
127 {
128 int ret;
129
130 ret = i915_gem_wait_for_error(dev);
131 if (ret)
132 return ret;
133
134 ret = mutex_lock_interruptible(&dev->struct_mutex);
135 if (ret)
136 return ret;
137
138 WARN_ON(i915_verify_lists(dev));
139 return 0;
140 }
141
142 static inline bool
143 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
144 {
145 return obj->gtt_space && !obj->active;
146 }
147
148 int
149 i915_gem_init_ioctl(struct drm_device *dev, void *data,
150 struct drm_file *file)
151 {
152 struct drm_i915_gem_init *args = data;
153
154 if (drm_core_check_feature(dev, DRIVER_MODESET))
155 return -ENODEV;
156
157 if (args->gtt_start >= args->gtt_end ||
158 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
159 return -EINVAL;
160
161 /* GEM with user mode setting was never supported on ilk and later. */
162 if (INTEL_INFO(dev)->gen >= 5)
163 return -ENODEV;
164
165 mutex_lock(&dev->struct_mutex);
166 i915_gem_init_global_gtt(dev, args->gtt_start,
167 args->gtt_end, args->gtt_end);
168 mutex_unlock(&dev->struct_mutex);
169
170 return 0;
171 }
172
173 int
174 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
175 struct drm_file *file)
176 {
177 struct drm_i915_private *dev_priv = dev->dev_private;
178 struct drm_i915_gem_get_aperture *args = data;
179 struct drm_i915_gem_object *obj;
180 size_t pinned;
181
182 pinned = 0;
183 mutex_lock(&dev->struct_mutex);
184 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
185 if (obj->pin_count)
186 pinned += obj->gtt_space->size;
187 mutex_unlock(&dev->struct_mutex);
188
189 args->aper_size = dev_priv->mm.gtt_total;
190 args->aper_available_size = args->aper_size - pinned;
191
192 return 0;
193 }
194
195 void *i915_gem_object_alloc(struct drm_device *dev)
196 {
197 struct drm_i915_private *dev_priv = dev->dev_private;
198 return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
199 }
200
201 void i915_gem_object_free(struct drm_i915_gem_object *obj)
202 {
203 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
204 kmem_cache_free(dev_priv->slab, obj);
205 }
206
207 static int
208 i915_gem_create(struct drm_file *file,
209 struct drm_device *dev,
210 uint64_t size,
211 uint32_t *handle_p)
212 {
213 struct drm_i915_gem_object *obj;
214 int ret;
215 u32 handle;
216
217 size = roundup(size, PAGE_SIZE);
218 if (size == 0)
219 return -EINVAL;
220
221 /* Allocate the new object */
222 obj = i915_gem_alloc_object(dev, size);
223 if (obj == NULL)
224 return -ENOMEM;
225
226 ret = drm_gem_handle_create(file, &obj->base, &handle);
227 if (ret) {
228 drm_gem_object_release(&obj->base);
229 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
230 i915_gem_object_free(obj);
231 return ret;
232 }
233
234 /* drop reference from allocate - handle holds it now */
235 drm_gem_object_unreference(&obj->base);
236 trace_i915_gem_object_create(obj);
237
238 *handle_p = handle;
239 return 0;
240 }
241
242 int
243 i915_gem_dumb_create(struct drm_file *file,
244 struct drm_device *dev,
245 struct drm_mode_create_dumb *args)
246 {
247 /* have to work out size/pitch and return them */
248 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
249 args->size = args->pitch * args->height;
250 return i915_gem_create(file, dev,
251 args->size, &args->handle);
252 }
253
254 int i915_gem_dumb_destroy(struct drm_file *file,
255 struct drm_device *dev,
256 uint32_t handle)
257 {
258 return drm_gem_handle_delete(file, handle);
259 }
260
261 /**
262 * Creates a new mm object and returns a handle to it.
263 */
264 int
265 i915_gem_create_ioctl(struct drm_device *dev, void *data,
266 struct drm_file *file)
267 {
268 struct drm_i915_gem_create *args = data;
269
270 return i915_gem_create(file, dev,
271 args->size, &args->handle);
272 }
273
274 static inline int
275 __copy_to_user_swizzled(char __user *cpu_vaddr,
276 const char *gpu_vaddr, int gpu_offset,
277 int length)
278 {
279 int ret, cpu_offset = 0;
280
281 while (length > 0) {
282 int cacheline_end = ALIGN(gpu_offset + 1, 64);
283 int this_length = min(cacheline_end - gpu_offset, length);
284 int swizzled_gpu_offset = gpu_offset ^ 64;
285
286 ret = __copy_to_user(cpu_vaddr + cpu_offset,
287 gpu_vaddr + swizzled_gpu_offset,
288 this_length);
289 if (ret)
290 return ret + length;
291
292 cpu_offset += this_length;
293 gpu_offset += this_length;
294 length -= this_length;
295 }
296
297 return 0;
298 }
299
300 static inline int
301 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
302 const char __user *cpu_vaddr,
303 int length)
304 {
305 int ret, cpu_offset = 0;
306
307 while (length > 0) {
308 int cacheline_end = ALIGN(gpu_offset + 1, 64);
309 int this_length = min(cacheline_end - gpu_offset, length);
310 int swizzled_gpu_offset = gpu_offset ^ 64;
311
312 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
313 cpu_vaddr + cpu_offset,
314 this_length);
315 if (ret)
316 return ret + length;
317
318 cpu_offset += this_length;
319 gpu_offset += this_length;
320 length -= this_length;
321 }
322
323 return 0;
324 }
325
326 /* Per-page copy function for the shmem pread fastpath.
327 * Flushes invalid cachelines before reading the target if
328 * needs_clflush is set. */
329 static int
330 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
331 char __user *user_data,
332 bool page_do_bit17_swizzling, bool needs_clflush)
333 {
334 char *vaddr;
335 int ret;
336
337 if (unlikely(page_do_bit17_swizzling))
338 return -EINVAL;
339
340 vaddr = kmap_atomic(page);
341 if (needs_clflush)
342 drm_clflush_virt_range(vaddr + shmem_page_offset,
343 page_length);
344 ret = __copy_to_user_inatomic(user_data,
345 vaddr + shmem_page_offset,
346 page_length);
347 kunmap_atomic(vaddr);
348
349 return ret ? -EFAULT : 0;
350 }
351
352 static void
353 shmem_clflush_swizzled_range(char *addr, unsigned long length,
354 bool swizzled)
355 {
356 if (unlikely(swizzled)) {
357 unsigned long start = (unsigned long) addr;
358 unsigned long end = (unsigned long) addr + length;
359
360 /* For swizzling simply ensure that we always flush both
361 * channels. Lame, but simple and it works. Swizzled
362 * pwrite/pread is far from a hotpath - current userspace
363 * doesn't use it at all. */
364 start = round_down(start, 128);
365 end = round_up(end, 128);
366
367 drm_clflush_virt_range((void *)start, end - start);
368 } else {
369 drm_clflush_virt_range(addr, length);
370 }
371
372 }
373
374 /* Only difference to the fast-path function is that this can handle bit17
375 * and uses non-atomic copy and kmap functions. */
376 static int
377 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
378 char __user *user_data,
379 bool page_do_bit17_swizzling, bool needs_clflush)
380 {
381 char *vaddr;
382 int ret;
383
384 vaddr = kmap(page);
385 if (needs_clflush)
386 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
387 page_length,
388 page_do_bit17_swizzling);
389
390 if (page_do_bit17_swizzling)
391 ret = __copy_to_user_swizzled(user_data,
392 vaddr, shmem_page_offset,
393 page_length);
394 else
395 ret = __copy_to_user(user_data,
396 vaddr + shmem_page_offset,
397 page_length);
398 kunmap(page);
399
400 return ret ? - EFAULT : 0;
401 }
402
403 static int
404 i915_gem_shmem_pread(struct drm_device *dev,
405 struct drm_i915_gem_object *obj,
406 struct drm_i915_gem_pread *args,
407 struct drm_file *file)
408 {
409 char __user *user_data;
410 ssize_t remain;
411 loff_t offset;
412 int shmem_page_offset, page_length, ret = 0;
413 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
414 int prefaulted = 0;
415 int needs_clflush = 0;
416 struct scatterlist *sg;
417 int i;
418
419 user_data = (char __user *) (uintptr_t) args->data_ptr;
420 remain = args->size;
421
422 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
423
424 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
425 /* If we're not in the cpu read domain, set ourself into the gtt
426 * read domain and manually flush cachelines (if required). This
427 * optimizes for the case when the gpu will dirty the data
428 * anyway again before the next pread happens. */
429 if (obj->cache_level == I915_CACHE_NONE)
430 needs_clflush = 1;
431 if (obj->gtt_space) {
432 ret = i915_gem_object_set_to_gtt_domain(obj, false);
433 if (ret)
434 return ret;
435 }
436 }
437
438 ret = i915_gem_object_get_pages(obj);
439 if (ret)
440 return ret;
441
442 i915_gem_object_pin_pages(obj);
443
444 offset = args->offset;
445
446 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
447 struct page *page;
448
449 if (i < offset >> PAGE_SHIFT)
450 continue;
451
452 if (remain <= 0)
453 break;
454
455 /* Operation in this page
456 *
457 * shmem_page_offset = offset within page in shmem file
458 * page_length = bytes to copy for this page
459 */
460 shmem_page_offset = offset_in_page(offset);
461 page_length = remain;
462 if ((shmem_page_offset + page_length) > PAGE_SIZE)
463 page_length = PAGE_SIZE - shmem_page_offset;
464
465 page = sg_page(sg);
466 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
467 (page_to_phys(page) & (1 << 17)) != 0;
468
469 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
470 user_data, page_do_bit17_swizzling,
471 needs_clflush);
472 if (ret == 0)
473 goto next_page;
474
475 mutex_unlock(&dev->struct_mutex);
476
477 if (!prefaulted) {
478 ret = fault_in_multipages_writeable(user_data, remain);
479 /* Userspace is tricking us, but we've already clobbered
480 * its pages with the prefault and promised to write the
481 * data up to the first fault. Hence ignore any errors
482 * and just continue. */
483 (void)ret;
484 prefaulted = 1;
485 }
486
487 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
488 user_data, page_do_bit17_swizzling,
489 needs_clflush);
490
491 mutex_lock(&dev->struct_mutex);
492
493 next_page:
494 mark_page_accessed(page);
495
496 if (ret)
497 goto out;
498
499 remain -= page_length;
500 user_data += page_length;
501 offset += page_length;
502 }
503
504 out:
505 i915_gem_object_unpin_pages(obj);
506
507 return ret;
508 }
509
510 /**
511 * Reads data from the object referenced by handle.
512 *
513 * On error, the contents of *data are undefined.
514 */
515 int
516 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
517 struct drm_file *file)
518 {
519 struct drm_i915_gem_pread *args = data;
520 struct drm_i915_gem_object *obj;
521 int ret = 0;
522
523 if (args->size == 0)
524 return 0;
525
526 if (!access_ok(VERIFY_WRITE,
527 (char __user *)(uintptr_t)args->data_ptr,
528 args->size))
529 return -EFAULT;
530
531 ret = i915_mutex_lock_interruptible(dev);
532 if (ret)
533 return ret;
534
535 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
536 if (&obj->base == NULL) {
537 ret = -ENOENT;
538 goto unlock;
539 }
540
541 /* Bounds check source. */
542 if (args->offset > obj->base.size ||
543 args->size > obj->base.size - args->offset) {
544 ret = -EINVAL;
545 goto out;
546 }
547
548 /* prime objects have no backing filp to GEM pread/pwrite
549 * pages from.
550 */
551 if (!obj->base.filp) {
552 ret = -EINVAL;
553 goto out;
554 }
555
556 trace_i915_gem_object_pread(obj, args->offset, args->size);
557
558 ret = i915_gem_shmem_pread(dev, obj, args, file);
559
560 out:
561 drm_gem_object_unreference(&obj->base);
562 unlock:
563 mutex_unlock(&dev->struct_mutex);
564 return ret;
565 }
566
567 /* This is the fast write path which cannot handle
568 * page faults in the source data
569 */
570
571 static inline int
572 fast_user_write(struct io_mapping *mapping,
573 loff_t page_base, int page_offset,
574 char __user *user_data,
575 int length)
576 {
577 void __iomem *vaddr_atomic;
578 void *vaddr;
579 unsigned long unwritten;
580
581 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
582 /* We can use the cpu mem copy function because this is X86. */
583 vaddr = (void __force*)vaddr_atomic + page_offset;
584 unwritten = __copy_from_user_inatomic_nocache(vaddr,
585 user_data, length);
586 io_mapping_unmap_atomic(vaddr_atomic);
587 return unwritten;
588 }
589
590 /**
591 * This is the fast pwrite path, where we copy the data directly from the
592 * user into the GTT, uncached.
593 */
594 static int
595 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
596 struct drm_i915_gem_object *obj,
597 struct drm_i915_gem_pwrite *args,
598 struct drm_file *file)
599 {
600 drm_i915_private_t *dev_priv = dev->dev_private;
601 ssize_t remain;
602 loff_t offset, page_base;
603 char __user *user_data;
604 int page_offset, page_length, ret;
605
606 ret = i915_gem_object_pin(obj, 0, true, true);
607 if (ret)
608 goto out;
609
610 ret = i915_gem_object_set_to_gtt_domain(obj, true);
611 if (ret)
612 goto out_unpin;
613
614 ret = i915_gem_object_put_fence(obj);
615 if (ret)
616 goto out_unpin;
617
618 user_data = (char __user *) (uintptr_t) args->data_ptr;
619 remain = args->size;
620
621 offset = obj->gtt_offset + args->offset;
622
623 while (remain > 0) {
624 /* Operation in this page
625 *
626 * page_base = page offset within aperture
627 * page_offset = offset within page
628 * page_length = bytes to copy for this page
629 */
630 page_base = offset & PAGE_MASK;
631 page_offset = offset_in_page(offset);
632 page_length = remain;
633 if ((page_offset + remain) > PAGE_SIZE)
634 page_length = PAGE_SIZE - page_offset;
635
636 /* If we get a fault while copying data, then (presumably) our
637 * source page isn't available. Return the error and we'll
638 * retry in the slow path.
639 */
640 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
641 page_offset, user_data, page_length)) {
642 ret = -EFAULT;
643 goto out_unpin;
644 }
645
646 remain -= page_length;
647 user_data += page_length;
648 offset += page_length;
649 }
650
651 out_unpin:
652 i915_gem_object_unpin(obj);
653 out:
654 return ret;
655 }
656
657 /* Per-page copy function for the shmem pwrite fastpath.
658 * Flushes invalid cachelines before writing to the target if
659 * needs_clflush_before is set and flushes out any written cachelines after
660 * writing if needs_clflush is set. */
661 static int
662 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
663 char __user *user_data,
664 bool page_do_bit17_swizzling,
665 bool needs_clflush_before,
666 bool needs_clflush_after)
667 {
668 char *vaddr;
669 int ret;
670
671 if (unlikely(page_do_bit17_swizzling))
672 return -EINVAL;
673
674 vaddr = kmap_atomic(page);
675 if (needs_clflush_before)
676 drm_clflush_virt_range(vaddr + shmem_page_offset,
677 page_length);
678 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
679 user_data,
680 page_length);
681 if (needs_clflush_after)
682 drm_clflush_virt_range(vaddr + shmem_page_offset,
683 page_length);
684 kunmap_atomic(vaddr);
685
686 return ret ? -EFAULT : 0;
687 }
688
689 /* Only difference to the fast-path function is that this can handle bit17
690 * and uses non-atomic copy and kmap functions. */
691 static int
692 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
693 char __user *user_data,
694 bool page_do_bit17_swizzling,
695 bool needs_clflush_before,
696 bool needs_clflush_after)
697 {
698 char *vaddr;
699 int ret;
700
701 vaddr = kmap(page);
702 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
703 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
704 page_length,
705 page_do_bit17_swizzling);
706 if (page_do_bit17_swizzling)
707 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
708 user_data,
709 page_length);
710 else
711 ret = __copy_from_user(vaddr + shmem_page_offset,
712 user_data,
713 page_length);
714 if (needs_clflush_after)
715 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
716 page_length,
717 page_do_bit17_swizzling);
718 kunmap(page);
719
720 return ret ? -EFAULT : 0;
721 }
722
723 static int
724 i915_gem_shmem_pwrite(struct drm_device *dev,
725 struct drm_i915_gem_object *obj,
726 struct drm_i915_gem_pwrite *args,
727 struct drm_file *file)
728 {
729 ssize_t remain;
730 loff_t offset;
731 char __user *user_data;
732 int shmem_page_offset, page_length, ret = 0;
733 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
734 int hit_slowpath = 0;
735 int needs_clflush_after = 0;
736 int needs_clflush_before = 0;
737 int i;
738 struct scatterlist *sg;
739
740 user_data = (char __user *) (uintptr_t) args->data_ptr;
741 remain = args->size;
742
743 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
744
745 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
746 /* If we're not in the cpu write domain, set ourself into the gtt
747 * write domain and manually flush cachelines (if required). This
748 * optimizes for the case when the gpu will use the data
749 * right away and we therefore have to clflush anyway. */
750 if (obj->cache_level == I915_CACHE_NONE)
751 needs_clflush_after = 1;
752 if (obj->gtt_space) {
753 ret = i915_gem_object_set_to_gtt_domain(obj, true);
754 if (ret)
755 return ret;
756 }
757 }
758 /* Same trick applies for invalidate partially written cachelines before
759 * writing. */
760 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
761 && obj->cache_level == I915_CACHE_NONE)
762 needs_clflush_before = 1;
763
764 ret = i915_gem_object_get_pages(obj);
765 if (ret)
766 return ret;
767
768 i915_gem_object_pin_pages(obj);
769
770 offset = args->offset;
771 obj->dirty = 1;
772
773 for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
774 struct page *page;
775 int partial_cacheline_write;
776
777 if (i < offset >> PAGE_SHIFT)
778 continue;
779
780 if (remain <= 0)
781 break;
782
783 /* Operation in this page
784 *
785 * shmem_page_offset = offset within page in shmem file
786 * page_length = bytes to copy for this page
787 */
788 shmem_page_offset = offset_in_page(offset);
789
790 page_length = remain;
791 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792 page_length = PAGE_SIZE - shmem_page_offset;
793
794 /* If we don't overwrite a cacheline completely we need to be
795 * careful to have up-to-date data by first clflushing. Don't
796 * overcomplicate things and flush the entire patch. */
797 partial_cacheline_write = needs_clflush_before &&
798 ((shmem_page_offset | page_length)
799 & (boot_cpu_data.x86_clflush_size - 1));
800
801 page = sg_page(sg);
802 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
803 (page_to_phys(page) & (1 << 17)) != 0;
804
805 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
806 user_data, page_do_bit17_swizzling,
807 partial_cacheline_write,
808 needs_clflush_after);
809 if (ret == 0)
810 goto next_page;
811
812 hit_slowpath = 1;
813 mutex_unlock(&dev->struct_mutex);
814 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
815 user_data, page_do_bit17_swizzling,
816 partial_cacheline_write,
817 needs_clflush_after);
818
819 mutex_lock(&dev->struct_mutex);
820
821 next_page:
822 set_page_dirty(page);
823 mark_page_accessed(page);
824
825 if (ret)
826 goto out;
827
828 remain -= page_length;
829 user_data += page_length;
830 offset += page_length;
831 }
832
833 out:
834 i915_gem_object_unpin_pages(obj);
835
836 if (hit_slowpath) {
837 /*
838 * Fixup: Flush cpu caches in case we didn't flush the dirty
839 * cachelines in-line while writing and the object moved
840 * out of the cpu write domain while we've dropped the lock.
841 */
842 if (!needs_clflush_after &&
843 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
844 i915_gem_clflush_object(obj);
845 i915_gem_chipset_flush(dev);
846 }
847 }
848
849 if (needs_clflush_after)
850 i915_gem_chipset_flush(dev);
851
852 return ret;
853 }
854
855 /**
856 * Writes data to the object referenced by handle.
857 *
858 * On error, the contents of the buffer that were to be modified are undefined.
859 */
860 int
861 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
862 struct drm_file *file)
863 {
864 struct drm_i915_gem_pwrite *args = data;
865 struct drm_i915_gem_object *obj;
866 int ret;
867
868 if (args->size == 0)
869 return 0;
870
871 if (!access_ok(VERIFY_READ,
872 (char __user *)(uintptr_t)args->data_ptr,
873 args->size))
874 return -EFAULT;
875
876 ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
877 args->size);
878 if (ret)
879 return -EFAULT;
880
881 ret = i915_mutex_lock_interruptible(dev);
882 if (ret)
883 return ret;
884
885 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
886 if (&obj->base == NULL) {
887 ret = -ENOENT;
888 goto unlock;
889 }
890
891 /* Bounds check destination. */
892 if (args->offset > obj->base.size ||
893 args->size > obj->base.size - args->offset) {
894 ret = -EINVAL;
895 goto out;
896 }
897
898 /* prime objects have no backing filp to GEM pread/pwrite
899 * pages from.
900 */
901 if (!obj->base.filp) {
902 ret = -EINVAL;
903 goto out;
904 }
905
906 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
907
908 ret = -EFAULT;
909 /* We can only do the GTT pwrite on untiled buffers, as otherwise
910 * it would end up going through the fenced access, and we'll get
911 * different detiling behavior between reading and writing.
912 * pread/pwrite currently are reading and writing from the CPU
913 * perspective, requiring manual detiling by the client.
914 */
915 if (obj->phys_obj) {
916 ret = i915_gem_phys_pwrite(dev, obj, args, file);
917 goto out;
918 }
919
920 if (obj->cache_level == I915_CACHE_NONE &&
921 obj->tiling_mode == I915_TILING_NONE &&
922 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
923 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
924 /* Note that the gtt paths might fail with non-page-backed user
925 * pointers (e.g. gtt mappings when moving data between
926 * textures). Fallback to the shmem path in that case. */
927 }
928
929 if (ret == -EFAULT || ret == -ENOSPC)
930 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
931
932 out:
933 drm_gem_object_unreference(&obj->base);
934 unlock:
935 mutex_unlock(&dev->struct_mutex);
936 return ret;
937 }
938
939 int
940 i915_gem_check_wedge(struct drm_i915_private *dev_priv,
941 bool interruptible)
942 {
943 if (atomic_read(&dev_priv->mm.wedged)) {
944 struct completion *x = &dev_priv->error_completion;
945 bool recovery_complete;
946 unsigned long flags;
947
948 /* Give the error handler a chance to run. */
949 spin_lock_irqsave(&x->wait.lock, flags);
950 recovery_complete = x->done > 0;
951 spin_unlock_irqrestore(&x->wait.lock, flags);
952
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but still wedged means reset failure. */
959 if (recovery_complete)
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966 }
967
968 /*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_request)
981 ret = i915_add_request(ring, NULL, NULL);
982
983 return ret;
984 }
985
986 /**
987 * __wait_seqno - wait until execution of seqno has finished
988 * @ring: the ring expected to report seqno
989 * @seqno: duh!
990 * @interruptible: do an interruptible wait (normally yes)
991 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
992 *
993 * Returns 0 if the seqno was found within the alloted time. Else returns the
994 * errno with remaining time filled in timeout argument.
995 */
996 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
997 bool interruptible, struct timespec *timeout)
998 {
999 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1000 struct timespec before, now, wait_time={1,0};
1001 unsigned long timeout_jiffies;
1002 long end;
1003 bool wait_forever = true;
1004 int ret;
1005
1006 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1007 return 0;
1008
1009 trace_i915_gem_request_wait_begin(ring, seqno);
1010
1011 if (timeout != NULL) {
1012 wait_time = *timeout;
1013 wait_forever = false;
1014 }
1015
1016 timeout_jiffies = timespec_to_jiffies(&wait_time);
1017
1018 if (WARN_ON(!ring->irq_get(ring)))
1019 return -ENODEV;
1020
1021 /* Record current time in case interrupted by signal, or wedged * */
1022 getrawmonotonic(&before);
1023
1024 #define EXIT_COND \
1025 (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1026 atomic_read(&dev_priv->mm.wedged))
1027 do {
1028 if (interruptible)
1029 end = wait_event_interruptible_timeout(ring->irq_queue,
1030 EXIT_COND,
1031 timeout_jiffies);
1032 else
1033 end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1034 timeout_jiffies);
1035
1036 ret = i915_gem_check_wedge(dev_priv, interruptible);
1037 if (ret)
1038 end = ret;
1039 } while (end == 0 && wait_forever);
1040
1041 getrawmonotonic(&now);
1042
1043 ring->irq_put(ring);
1044 trace_i915_gem_request_wait_end(ring, seqno);
1045 #undef EXIT_COND
1046
1047 if (timeout) {
1048 struct timespec sleep_time = timespec_sub(now, before);
1049 *timeout = timespec_sub(*timeout, sleep_time);
1050 }
1051
1052 switch (end) {
1053 case -EIO:
1054 case -EAGAIN: /* Wedged */
1055 case -ERESTARTSYS: /* Signal */
1056 return (int)end;
1057 case 0: /* Timeout */
1058 if (timeout)
1059 set_normalized_timespec(timeout, 0, 0);
1060 return -ETIME;
1061 default: /* Completed */
1062 WARN_ON(end < 0); /* We're not aware of other errors */
1063 return 0;
1064 }
1065 }
1066
1067 /**
1068 * Waits for a sequence number to be signaled, and cleans up the
1069 * request and object lists appropriately for that event.
1070 */
1071 int
1072 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1073 {
1074 struct drm_device *dev = ring->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 bool interruptible = dev_priv->mm.interruptible;
1077 int ret;
1078
1079 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1080 BUG_ON(seqno == 0);
1081
1082 ret = i915_gem_check_wedge(dev_priv, interruptible);
1083 if (ret)
1084 return ret;
1085
1086 ret = i915_gem_check_olr(ring, seqno);
1087 if (ret)
1088 return ret;
1089
1090 return __wait_seqno(ring, seqno, interruptible, NULL);
1091 }
1092
1093 /**
1094 * Ensures that all rendering to the object has completed and the object is
1095 * safe to unbind from the GTT or access from the CPU.
1096 */
1097 static __must_check int
1098 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1099 bool readonly)
1100 {
1101 struct intel_ring_buffer *ring = obj->ring;
1102 u32 seqno;
1103 int ret;
1104
1105 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1106 if (seqno == 0)
1107 return 0;
1108
1109 ret = i915_wait_seqno(ring, seqno);
1110 if (ret)
1111 return ret;
1112
1113 i915_gem_retire_requests_ring(ring);
1114
1115 /* Manually manage the write flush as we may have not yet
1116 * retired the buffer.
1117 */
1118 if (obj->last_write_seqno &&
1119 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1120 obj->last_write_seqno = 0;
1121 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1122 }
1123
1124 return 0;
1125 }
1126
1127 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1128 * as the object state may change during this call.
1129 */
1130 static __must_check int
1131 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1132 bool readonly)
1133 {
1134 struct drm_device *dev = obj->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136 struct intel_ring_buffer *ring = obj->ring;
1137 u32 seqno;
1138 int ret;
1139
1140 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1141 BUG_ON(!dev_priv->mm.interruptible);
1142
1143 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1144 if (seqno == 0)
1145 return 0;
1146
1147 ret = i915_gem_check_wedge(dev_priv, true);
1148 if (ret)
1149 return ret;
1150
1151 ret = i915_gem_check_olr(ring, seqno);
1152 if (ret)
1153 return ret;
1154
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = __wait_seqno(ring, seqno, true, NULL);
1157 mutex_lock(&dev->struct_mutex);
1158
1159 i915_gem_retire_requests_ring(ring);
1160
1161 /* Manually manage the write flush as we may have not yet
1162 * retired the buffer.
1163 */
1164 if (obj->last_write_seqno &&
1165 i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168 }
1169
1170 return ret;
1171 }
1172
1173 /**
1174 * Called when user space prepares to use an object with the CPU, either
1175 * through the mmap ioctl's mapping or a GTT mapping.
1176 */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179 struct drm_file *file)
1180 {
1181 struct drm_i915_gem_set_domain *args = data;
1182 struct drm_i915_gem_object *obj;
1183 uint32_t read_domains = args->read_domains;
1184 uint32_t write_domain = args->write_domain;
1185 int ret;
1186
1187 /* Only handle setting domains to types used by the CPU. */
1188 if (write_domain & I915_GEM_GPU_DOMAINS)
1189 return -EINVAL;
1190
1191 if (read_domains & I915_GEM_GPU_DOMAINS)
1192 return -EINVAL;
1193
1194 /* Having something in the write domain implies it's in the read
1195 * domain, and only that read domain. Enforce that in the request.
1196 */
1197 if (write_domain != 0 && read_domains != write_domain)
1198 return -EINVAL;
1199
1200 ret = i915_mutex_lock_interruptible(dev);
1201 if (ret)
1202 return ret;
1203
1204 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205 if (&obj->base == NULL) {
1206 ret = -ENOENT;
1207 goto unlock;
1208 }
1209
1210 /* Try to flush the object off the GPU without holding the lock.
1211 * We will repeat the flush holding the lock in the normal manner
1212 * to catch cases where we are gazumped.
1213 */
1214 ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215 if (ret)
1216 goto unref;
1217
1218 if (read_domains & I915_GEM_DOMAIN_GTT) {
1219 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221 /* Silently promote "you're not bound, there was nothing to do"
1222 * to success, since the client was just asking us to
1223 * make sure everything was done.
1224 */
1225 if (ret == -EINVAL)
1226 ret = 0;
1227 } else {
1228 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229 }
1230
1231 unref:
1232 drm_gem_object_unreference(&obj->base);
1233 unlock:
1234 mutex_unlock(&dev->struct_mutex);
1235 return ret;
1236 }
1237
1238 /**
1239 * Called when user space has done writes to this buffer
1240 */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243 struct drm_file *file)
1244 {
1245 struct drm_i915_gem_sw_finish *args = data;
1246 struct drm_i915_gem_object *obj;
1247 int ret = 0;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Pinned buffers may be scanout, so flush the cache */
1260 if (obj->pin_count)
1261 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263 drm_gem_object_unreference(&obj->base);
1264 unlock:
1265 mutex_unlock(&dev->struct_mutex);
1266 return ret;
1267 }
1268
1269 /**
1270 * Maps the contents of an object, returning the address it is mapped
1271 * into.
1272 *
1273 * While the mapping holds a reference on the contents of the object, it doesn't
1274 * imply a ref on the object itself.
1275 */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278 struct drm_file *file)
1279 {
1280 struct drm_i915_gem_mmap *args = data;
1281 struct drm_gem_object *obj;
1282 unsigned long addr;
1283
1284 obj = drm_gem_object_lookup(dev, file, args->handle);
1285 if (obj == NULL)
1286 return -ENOENT;
1287
1288 /* prime objects have no backing filp to GEM mmap
1289 * pages from.
1290 */
1291 if (!obj->filp) {
1292 drm_gem_object_unreference_unlocked(obj);
1293 return -EINVAL;
1294 }
1295
1296 addr = vm_mmap(obj->filp, 0, args->size,
1297 PROT_READ | PROT_WRITE, MAP_SHARED,
1298 args->offset);
1299 drm_gem_object_unreference_unlocked(obj);
1300 if (IS_ERR((void *)addr))
1301 return addr;
1302
1303 args->addr_ptr = (uint64_t) addr;
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * i915_gem_fault - fault a page into the GTT
1310 * vma: VMA in question
1311 * vmf: fault info
1312 *
1313 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314 * from userspace. The fault handler takes care of binding the object to
1315 * the GTT (if needed), allocating and programming a fence register (again,
1316 * only if needed based on whether the old reg is still valid or the object
1317 * is tiled) and inserting a new PTE into the faulting process.
1318 *
1319 * Note that the faulting process may involve evicting existing objects
1320 * from the GTT and/or fence registers to make room. So performance may
1321 * suffer if the GTT working set is large or there are few fence registers
1322 * left.
1323 */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327 struct drm_device *dev = obj->base.dev;
1328 drm_i915_private_t *dev_priv = dev->dev_private;
1329 pgoff_t page_offset;
1330 unsigned long pfn;
1331 int ret = 0;
1332 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334 /* We don't use vmf->pgoff since that has the fake offset */
1335 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336 PAGE_SHIFT;
1337
1338 ret = i915_mutex_lock_interruptible(dev);
1339 if (ret)
1340 goto out;
1341
1342 trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344 /* Access to snoopable pages through the GTT is incoherent. */
1345 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346 ret = -EINVAL;
1347 goto unlock;
1348 }
1349
1350 /* Now bind it into the GTT if needed */
1351 ret = i915_gem_object_pin(obj, 0, true, false);
1352 if (ret)
1353 goto unlock;
1354
1355 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356 if (ret)
1357 goto unpin;
1358
1359 ret = i915_gem_object_get_fence(obj);
1360 if (ret)
1361 goto unpin;
1362
1363 obj->fault_mappable = true;
1364
1365 pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
1366 page_offset;
1367
1368 /* Finally, remap it using the new GTT offset */
1369 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371 i915_gem_object_unpin(obj);
1372 unlock:
1373 mutex_unlock(&dev->struct_mutex);
1374 out:
1375 switch (ret) {
1376 case -EIO:
1377 /* If this -EIO is due to a gpu hang, give the reset code a
1378 * chance to clean up the mess. Otherwise return the proper
1379 * SIGBUS. */
1380 if (!atomic_read(&dev_priv->mm.wedged))
1381 return VM_FAULT_SIGBUS;
1382 case -EAGAIN:
1383 /* Give the error handler a chance to run and move the
1384 * objects off the GPU active list. Next time we service the
1385 * fault, we should be able to transition the page into the
1386 * GTT without touching the GPU (and so avoid further
1387 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388 * with coherency, just lost writes.
1389 */
1390 set_need_resched();
1391 case 0:
1392 case -ERESTARTSYS:
1393 case -EINTR:
1394 case -EBUSY:
1395 /*
1396 * EBUSY is ok: this just means that another thread
1397 * already did the job.
1398 */
1399 return VM_FAULT_NOPAGE;
1400 case -ENOMEM:
1401 return VM_FAULT_OOM;
1402 case -ENOSPC:
1403 return VM_FAULT_SIGBUS;
1404 default:
1405 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406 return VM_FAULT_SIGBUS;
1407 }
1408 }
1409
1410 /**
1411 * i915_gem_release_mmap - remove physical page mappings
1412 * @obj: obj in question
1413 *
1414 * Preserve the reservation of the mmapping with the DRM core code, but
1415 * relinquish ownership of the pages back to the system.
1416 *
1417 * It is vital that we remove the page mapping if we have mapped a tiled
1418 * object through the GTT and then lose the fence register due to
1419 * resource pressure. Similarly if the object has been moved out of the
1420 * aperture, than pages mapped into userspace must be revoked. Removing the
1421 * mapping will then trigger a page fault on the next user access, allowing
1422 * fixup by i915_gem_fault().
1423 */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427 if (!obj->fault_mappable)
1428 return;
1429
1430 if (obj->base.dev->dev_mapping)
1431 unmap_mapping_range(obj->base.dev->dev_mapping,
1432 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433 obj->base.size, 1);
1434
1435 obj->fault_mappable = false;
1436 }
1437
1438 static uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441 uint32_t gtt_size;
1442
1443 if (INTEL_INFO(dev)->gen >= 4 ||
1444 tiling_mode == I915_TILING_NONE)
1445 return size;
1446
1447 /* Previous chips need a power-of-two fence region when tiling */
1448 if (INTEL_INFO(dev)->gen == 3)
1449 gtt_size = 1024*1024;
1450 else
1451 gtt_size = 512*1024;
1452
1453 while (gtt_size < size)
1454 gtt_size <<= 1;
1455
1456 return gtt_size;
1457 }
1458
1459 /**
1460 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461 * @obj: object to check
1462 *
1463 * Return the required GTT alignment for an object, taking into account
1464 * potential fence register mapping.
1465 */
1466 static uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev,
1468 uint32_t size,
1469 int tiling_mode)
1470 {
1471 /*
1472 * Minimum alignment is 4k (GTT page size), but might be greater
1473 * if a fence register is needed for the object.
1474 */
1475 if (INTEL_INFO(dev)->gen >= 4 ||
1476 tiling_mode == I915_TILING_NONE)
1477 return 4096;
1478
1479 /*
1480 * Previous chips need to be aligned to the size of the smallest
1481 * fence register that can contain the object.
1482 */
1483 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1484 }
1485
1486 /**
1487 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1488 * unfenced object
1489 * @dev: the device
1490 * @size: size of the object
1491 * @tiling_mode: tiling mode of the object
1492 *
1493 * Return the required GTT alignment for an object, only taking into account
1494 * unfenced tiled surface requirements.
1495 */
1496 uint32_t
1497 i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
1498 uint32_t size,
1499 int tiling_mode)
1500 {
1501 /*
1502 * Minimum alignment is 4k (GTT page size) for sane hw.
1503 */
1504 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1505 tiling_mode == I915_TILING_NONE)
1506 return 4096;
1507
1508 /* Previous hardware however needs to be aligned to a power-of-two
1509 * tile height. The simplest method for determining this is to reuse
1510 * the power-of-tile object size.
1511 */
1512 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1513 }
1514
1515 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1516 {
1517 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1518 int ret;
1519
1520 if (obj->base.map_list.map)
1521 return 0;
1522
1523 ret = drm_gem_create_mmap_offset(&obj->base);
1524 if (ret != -ENOSPC)
1525 return ret;
1526
1527 /* Badly fragmented mmap space? The only way we can recover
1528 * space is by destroying unwanted objects. We can't randomly release
1529 * mmap_offsets as userspace expects them to be persistent for the
1530 * lifetime of the objects. The closest we can is to release the
1531 * offsets on purgeable objects by truncating it and marking it purged,
1532 * which prevents userspace from ever using that object again.
1533 */
1534 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1535 ret = drm_gem_create_mmap_offset(&obj->base);
1536 if (ret != -ENOSPC)
1537 return ret;
1538
1539 i915_gem_shrink_all(dev_priv);
1540 return drm_gem_create_mmap_offset(&obj->base);
1541 }
1542
1543 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1544 {
1545 if (!obj->base.map_list.map)
1546 return;
1547
1548 drm_gem_free_mmap_offset(&obj->base);
1549 }
1550
1551 int
1552 i915_gem_mmap_gtt(struct drm_file *file,
1553 struct drm_device *dev,
1554 uint32_t handle,
1555 uint64_t *offset)
1556 {
1557 struct drm_i915_private *dev_priv = dev->dev_private;
1558 struct drm_i915_gem_object *obj;
1559 int ret;
1560
1561 ret = i915_mutex_lock_interruptible(dev);
1562 if (ret)
1563 return ret;
1564
1565 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1566 if (&obj->base == NULL) {
1567 ret = -ENOENT;
1568 goto unlock;
1569 }
1570
1571 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1572 ret = -E2BIG;
1573 goto out;
1574 }
1575
1576 if (obj->madv != I915_MADV_WILLNEED) {
1577 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1578 ret = -EINVAL;
1579 goto out;
1580 }
1581
1582 ret = i915_gem_object_create_mmap_offset(obj);
1583 if (ret)
1584 goto out;
1585
1586 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1587
1588 out:
1589 drm_gem_object_unreference(&obj->base);
1590 unlock:
1591 mutex_unlock(&dev->struct_mutex);
1592 return ret;
1593 }
1594
1595 /**
1596 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1597 * @dev: DRM device
1598 * @data: GTT mapping ioctl data
1599 * @file: GEM object info
1600 *
1601 * Simply returns the fake offset to userspace so it can mmap it.
1602 * The mmap call will end up in drm_gem_mmap(), which will set things
1603 * up so we can get faults in the handler above.
1604 *
1605 * The fault handler will take care of binding the object into the GTT
1606 * (since it may have been evicted to make room for something), allocating
1607 * a fence register, and mapping the appropriate aperture address into
1608 * userspace.
1609 */
1610 int
1611 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1612 struct drm_file *file)
1613 {
1614 struct drm_i915_gem_mmap_gtt *args = data;
1615
1616 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1617 }
1618
1619 /* Immediately discard the backing storage */
1620 static void
1621 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1622 {
1623 struct inode *inode;
1624
1625 i915_gem_object_free_mmap_offset(obj);
1626
1627 if (obj->base.filp == NULL)
1628 return;
1629
1630 /* Our goal here is to return as much of the memory as
1631 * is possible back to the system as we are called from OOM.
1632 * To do this we must instruct the shmfs to drop all of its
1633 * backing pages, *now*.
1634 */
1635 inode = obj->base.filp->f_path.dentry->d_inode;
1636 shmem_truncate_range(inode, 0, (loff_t)-1);
1637
1638 obj->madv = __I915_MADV_PURGED;
1639 }
1640
1641 static inline int
1642 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1643 {
1644 return obj->madv == I915_MADV_DONTNEED;
1645 }
1646
1647 static void
1648 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1649 {
1650 int page_count = obj->base.size / PAGE_SIZE;
1651 struct scatterlist *sg;
1652 int ret, i;
1653
1654 BUG_ON(obj->madv == __I915_MADV_PURGED);
1655
1656 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1657 if (ret) {
1658 /* In the event of a disaster, abandon all caches and
1659 * hope for the best.
1660 */
1661 WARN_ON(ret != -EIO);
1662 i915_gem_clflush_object(obj);
1663 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1664 }
1665
1666 if (i915_gem_object_needs_bit17_swizzle(obj))
1667 i915_gem_object_save_bit_17_swizzle(obj);
1668
1669 if (obj->madv == I915_MADV_DONTNEED)
1670 obj->dirty = 0;
1671
1672 for_each_sg(obj->pages->sgl, sg, page_count, i) {
1673 struct page *page = sg_page(sg);
1674
1675 if (obj->dirty)
1676 set_page_dirty(page);
1677
1678 if (obj->madv == I915_MADV_WILLNEED)
1679 mark_page_accessed(page);
1680
1681 page_cache_release(page);
1682 }
1683 obj->dirty = 0;
1684
1685 sg_free_table(obj->pages);
1686 kfree(obj->pages);
1687 }
1688
1689 static int
1690 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1691 {
1692 const struct drm_i915_gem_object_ops *ops = obj->ops;
1693
1694 if (obj->pages == NULL)
1695 return 0;
1696
1697 BUG_ON(obj->gtt_space);
1698
1699 if (obj->pages_pin_count)
1700 return -EBUSY;
1701
1702 ops->put_pages(obj);
1703 obj->pages = NULL;
1704
1705 list_del(&obj->gtt_list);
1706 if (i915_gem_object_is_purgeable(obj))
1707 i915_gem_object_truncate(obj);
1708
1709 return 0;
1710 }
1711
1712 static long
1713 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1714 {
1715 struct drm_i915_gem_object *obj, *next;
1716 long count = 0;
1717
1718 list_for_each_entry_safe(obj, next,
1719 &dev_priv->mm.unbound_list,
1720 gtt_list) {
1721 if (i915_gem_object_is_purgeable(obj) &&
1722 i915_gem_object_put_pages(obj) == 0) {
1723 count += obj->base.size >> PAGE_SHIFT;
1724 if (count >= target)
1725 return count;
1726 }
1727 }
1728
1729 list_for_each_entry_safe(obj, next,
1730 &dev_priv->mm.inactive_list,
1731 mm_list) {
1732 if (i915_gem_object_is_purgeable(obj) &&
1733 i915_gem_object_unbind(obj) == 0 &&
1734 i915_gem_object_put_pages(obj) == 0) {
1735 count += obj->base.size >> PAGE_SHIFT;
1736 if (count >= target)
1737 return count;
1738 }
1739 }
1740
1741 return count;
1742 }
1743
1744 static void
1745 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1746 {
1747 struct drm_i915_gem_object *obj, *next;
1748
1749 i915_gem_evict_everything(dev_priv->dev);
1750
1751 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1752 i915_gem_object_put_pages(obj);
1753 }
1754
1755 static int
1756 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1757 {
1758 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1759 int page_count, i;
1760 struct address_space *mapping;
1761 struct sg_table *st;
1762 struct scatterlist *sg;
1763 struct page *page;
1764 gfp_t gfp;
1765
1766 /* Assert that the object is not currently in any GPU domain. As it
1767 * wasn't in the GTT, there shouldn't be any way it could have been in
1768 * a GPU cache
1769 */
1770 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1771 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1772
1773 st = kmalloc(sizeof(*st), GFP_KERNEL);
1774 if (st == NULL)
1775 return -ENOMEM;
1776
1777 page_count = obj->base.size / PAGE_SIZE;
1778 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1779 sg_free_table(st);
1780 kfree(st);
1781 return -ENOMEM;
1782 }
1783
1784 /* Get the list of pages out of our struct file. They'll be pinned
1785 * at this point until we release them.
1786 *
1787 * Fail silently without starting the shrinker
1788 */
1789 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
1790 gfp = mapping_gfp_mask(mapping);
1791 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1792 gfp &= ~(__GFP_IO | __GFP_WAIT);
1793 for_each_sg(st->sgl, sg, page_count, i) {
1794 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795 if (IS_ERR(page)) {
1796 i915_gem_purge(dev_priv, page_count);
1797 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798 }
1799 if (IS_ERR(page)) {
1800 /* We've tried hard to allocate the memory by reaping
1801 * our own buffer, now let the real VM do its job and
1802 * go down in flames if truly OOM.
1803 */
1804 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
1805 gfp |= __GFP_IO | __GFP_WAIT;
1806
1807 i915_gem_shrink_all(dev_priv);
1808 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1809 if (IS_ERR(page))
1810 goto err_pages;
1811
1812 gfp |= __GFP_NORETRY | __GFP_NOWARN;
1813 gfp &= ~(__GFP_IO | __GFP_WAIT);
1814 }
1815
1816 sg_set_page(sg, page, PAGE_SIZE, 0);
1817 }
1818
1819 obj->pages = st;
1820
1821 if (i915_gem_object_needs_bit17_swizzle(obj))
1822 i915_gem_object_do_bit_17_swizzle(obj);
1823
1824 return 0;
1825
1826 err_pages:
1827 for_each_sg(st->sgl, sg, i, page_count)
1828 page_cache_release(sg_page(sg));
1829 sg_free_table(st);
1830 kfree(st);
1831 return PTR_ERR(page);
1832 }
1833
1834 /* Ensure that the associated pages are gathered from the backing storage
1835 * and pinned into our object. i915_gem_object_get_pages() may be called
1836 * multiple times before they are released by a single call to
1837 * i915_gem_object_put_pages() - once the pages are no longer referenced
1838 * either as a result of memory pressure (reaping pages under the shrinker)
1839 * or as the object is itself released.
1840 */
1841 int
1842 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1843 {
1844 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1845 const struct drm_i915_gem_object_ops *ops = obj->ops;
1846 int ret;
1847
1848 if (obj->pages)
1849 return 0;
1850
1851 BUG_ON(obj->pages_pin_count);
1852
1853 ret = ops->get_pages(obj);
1854 if (ret)
1855 return ret;
1856
1857 list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1858 return 0;
1859 }
1860
1861 void
1862 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1863 struct intel_ring_buffer *ring)
1864 {
1865 struct drm_device *dev = obj->base.dev;
1866 struct drm_i915_private *dev_priv = dev->dev_private;
1867 u32 seqno = intel_ring_get_seqno(ring);
1868
1869 BUG_ON(ring == NULL);
1870 obj->ring = ring;
1871
1872 /* Add a reference if we're newly entering the active list. */
1873 if (!obj->active) {
1874 drm_gem_object_reference(&obj->base);
1875 obj->active = 1;
1876 }
1877
1878 /* Move from whatever list we were on to the tail of execution. */
1879 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1880 list_move_tail(&obj->ring_list, &ring->active_list);
1881
1882 obj->last_read_seqno = seqno;
1883
1884 if (obj->fenced_gpu_access) {
1885 obj->last_fenced_seqno = seqno;
1886
1887 /* Bump MRU to take account of the delayed flush */
1888 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1889 struct drm_i915_fence_reg *reg;
1890
1891 reg = &dev_priv->fence_regs[obj->fence_reg];
1892 list_move_tail(&reg->lru_list,
1893 &dev_priv->mm.fence_list);
1894 }
1895 }
1896 }
1897
1898 static void
1899 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1900 {
1901 struct drm_device *dev = obj->base.dev;
1902 struct drm_i915_private *dev_priv = dev->dev_private;
1903
1904 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1905 BUG_ON(!obj->active);
1906
1907 if (obj->pin_count) /* are we a framebuffer? */
1908 intel_mark_fb_idle(obj);
1909
1910 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1911
1912 list_del_init(&obj->ring_list);
1913 obj->ring = NULL;
1914
1915 obj->last_read_seqno = 0;
1916 obj->last_write_seqno = 0;
1917 obj->base.write_domain = 0;
1918
1919 obj->last_fenced_seqno = 0;
1920 obj->fenced_gpu_access = false;
1921
1922 obj->active = 0;
1923 drm_gem_object_unreference(&obj->base);
1924
1925 WARN_ON(i915_verify_lists(dev));
1926 }
1927
1928 static int
1929 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1930 {
1931 struct drm_i915_private *dev_priv = dev->dev_private;
1932 struct intel_ring_buffer *ring;
1933 int ret, i, j;
1934
1935 /* Carefully retire all requests without writing to the rings */
1936 for_each_ring(ring, dev_priv, i) {
1937 ret = intel_ring_idle(ring);
1938 if (ret)
1939 return ret;
1940 }
1941 i915_gem_retire_requests(dev);
1942
1943 /* Finally reset hw state */
1944 for_each_ring(ring, dev_priv, i) {
1945 intel_ring_init_seqno(ring, seqno);
1946
1947 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1948 ring->sync_seqno[j] = 0;
1949 }
1950
1951 return 0;
1952 }
1953
1954 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1955 {
1956 struct drm_i915_private *dev_priv = dev->dev_private;
1957 int ret;
1958
1959 if (seqno == 0)
1960 return -EINVAL;
1961
1962 /* HWS page needs to be set less than what we
1963 * will inject to ring
1964 */
1965 ret = i915_gem_init_seqno(dev, seqno - 1);
1966 if (ret)
1967 return ret;
1968
1969 /* Carefully set the last_seqno value so that wrap
1970 * detection still works
1971 */
1972 dev_priv->next_seqno = seqno;
1973 dev_priv->last_seqno = seqno - 1;
1974 if (dev_priv->last_seqno == 0)
1975 dev_priv->last_seqno--;
1976
1977 return 0;
1978 }
1979
1980 int
1981 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1982 {
1983 struct drm_i915_private *dev_priv = dev->dev_private;
1984
1985 /* reserve 0 for non-seqno */
1986 if (dev_priv->next_seqno == 0) {
1987 int ret = i915_gem_init_seqno(dev, 0);
1988 if (ret)
1989 return ret;
1990
1991 dev_priv->next_seqno = 1;
1992 }
1993
1994 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1995 return 0;
1996 }
1997
1998 int
1999 i915_add_request(struct intel_ring_buffer *ring,
2000 struct drm_file *file,
2001 u32 *out_seqno)
2002 {
2003 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2004 struct drm_i915_gem_request *request;
2005 u32 request_ring_position;
2006 int was_empty;
2007 int ret;
2008
2009 /*
2010 * Emit any outstanding flushes - execbuf can fail to emit the flush
2011 * after having emitted the batchbuffer command. Hence we need to fix
2012 * things up similar to emitting the lazy request. The difference here
2013 * is that the flush _must_ happen before the next request, no matter
2014 * what.
2015 */
2016 ret = intel_ring_flush_all_caches(ring);
2017 if (ret)
2018 return ret;
2019
2020 request = kmalloc(sizeof(*request), GFP_KERNEL);
2021 if (request == NULL)
2022 return -ENOMEM;
2023
2024
2025 /* Record the position of the start of the request so that
2026 * should we detect the updated seqno part-way through the
2027 * GPU processing the request, we never over-estimate the
2028 * position of the head.
2029 */
2030 request_ring_position = intel_ring_get_tail(ring);
2031
2032 ret = ring->add_request(ring);
2033 if (ret) {
2034 kfree(request);
2035 return ret;
2036 }
2037
2038 request->seqno = intel_ring_get_seqno(ring);
2039 request->ring = ring;
2040 request->tail = request_ring_position;
2041 request->emitted_jiffies = jiffies;
2042 was_empty = list_empty(&ring->request_list);
2043 list_add_tail(&request->list, &ring->request_list);
2044 request->file_priv = NULL;
2045
2046 if (file) {
2047 struct drm_i915_file_private *file_priv = file->driver_priv;
2048
2049 spin_lock(&file_priv->mm.lock);
2050 request->file_priv = file_priv;
2051 list_add_tail(&request->client_list,
2052 &file_priv->mm.request_list);
2053 spin_unlock(&file_priv->mm.lock);
2054 }
2055
2056 trace_i915_gem_request_add(ring, request->seqno);
2057 ring->outstanding_lazy_request = 0;
2058
2059 if (!dev_priv->mm.suspended) {
2060 if (i915_enable_hangcheck) {
2061 mod_timer(&dev_priv->hangcheck_timer,
2062 round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2063 }
2064 if (was_empty) {
2065 queue_delayed_work(dev_priv->wq,
2066 &dev_priv->mm.retire_work,
2067 round_jiffies_up_relative(HZ));
2068 intel_mark_busy(dev_priv->dev);
2069 }
2070 }
2071
2072 if (out_seqno)
2073 *out_seqno = request->seqno;
2074 return 0;
2075 }
2076
2077 static inline void
2078 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2079 {
2080 struct drm_i915_file_private *file_priv = request->file_priv;
2081
2082 if (!file_priv)
2083 return;
2084
2085 spin_lock(&file_priv->mm.lock);
2086 if (request->file_priv) {
2087 list_del(&request->client_list);
2088 request->file_priv = NULL;
2089 }
2090 spin_unlock(&file_priv->mm.lock);
2091 }
2092
2093 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2094 struct intel_ring_buffer *ring)
2095 {
2096 while (!list_empty(&ring->request_list)) {
2097 struct drm_i915_gem_request *request;
2098
2099 request = list_first_entry(&ring->request_list,
2100 struct drm_i915_gem_request,
2101 list);
2102
2103 list_del(&request->list);
2104 i915_gem_request_remove_from_client(request);
2105 kfree(request);
2106 }
2107
2108 while (!list_empty(&ring->active_list)) {
2109 struct drm_i915_gem_object *obj;
2110
2111 obj = list_first_entry(&ring->active_list,
2112 struct drm_i915_gem_object,
2113 ring_list);
2114
2115 i915_gem_object_move_to_inactive(obj);
2116 }
2117 }
2118
2119 static void i915_gem_reset_fences(struct drm_device *dev)
2120 {
2121 struct drm_i915_private *dev_priv = dev->dev_private;
2122 int i;
2123
2124 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2125 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2126
2127 i915_gem_write_fence(dev, i, NULL);
2128
2129 if (reg->obj)
2130 i915_gem_object_fence_lost(reg->obj);
2131
2132 reg->pin_count = 0;
2133 reg->obj = NULL;
2134 INIT_LIST_HEAD(&reg->lru_list);
2135 }
2136
2137 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2138 }
2139
2140 void i915_gem_reset(struct drm_device *dev)
2141 {
2142 struct drm_i915_private *dev_priv = dev->dev_private;
2143 struct drm_i915_gem_object *obj;
2144 struct intel_ring_buffer *ring;
2145 int i;
2146
2147 for_each_ring(ring, dev_priv, i)
2148 i915_gem_reset_ring_lists(dev_priv, ring);
2149
2150 /* Move everything out of the GPU domains to ensure we do any
2151 * necessary invalidation upon reuse.
2152 */
2153 list_for_each_entry(obj,
2154 &dev_priv->mm.inactive_list,
2155 mm_list)
2156 {
2157 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2158 }
2159
2160 /* The fence registers are invalidated so clear them out */
2161 i915_gem_reset_fences(dev);
2162 }
2163
2164 /**
2165 * This function clears the request list as sequence numbers are passed.
2166 */
2167 void
2168 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2169 {
2170 uint32_t seqno;
2171
2172 if (list_empty(&ring->request_list))
2173 return;
2174
2175 WARN_ON(i915_verify_lists(ring->dev));
2176
2177 seqno = ring->get_seqno(ring, true);
2178
2179 while (!list_empty(&ring->request_list)) {
2180 struct drm_i915_gem_request *request;
2181
2182 request = list_first_entry(&ring->request_list,
2183 struct drm_i915_gem_request,
2184 list);
2185
2186 if (!i915_seqno_passed(seqno, request->seqno))
2187 break;
2188
2189 trace_i915_gem_request_retire(ring, request->seqno);
2190 /* We know the GPU must have read the request to have
2191 * sent us the seqno + interrupt, so use the position
2192 * of tail of the request to update the last known position
2193 * of the GPU head.
2194 */
2195 ring->last_retired_head = request->tail;
2196
2197 list_del(&request->list);
2198 i915_gem_request_remove_from_client(request);
2199 kfree(request);
2200 }
2201
2202 /* Move any buffers on the active list that are no longer referenced
2203 * by the ringbuffer to the flushing/inactive lists as appropriate.
2204 */
2205 while (!list_empty(&ring->active_list)) {
2206 struct drm_i915_gem_object *obj;
2207
2208 obj = list_first_entry(&ring->active_list,
2209 struct drm_i915_gem_object,
2210 ring_list);
2211
2212 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2213 break;
2214
2215 i915_gem_object_move_to_inactive(obj);
2216 }
2217
2218 if (unlikely(ring->trace_irq_seqno &&
2219 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2220 ring->irq_put(ring);
2221 ring->trace_irq_seqno = 0;
2222 }
2223
2224 WARN_ON(i915_verify_lists(ring->dev));
2225 }
2226
2227 void
2228 i915_gem_retire_requests(struct drm_device *dev)
2229 {
2230 drm_i915_private_t *dev_priv = dev->dev_private;
2231 struct intel_ring_buffer *ring;
2232 int i;
2233
2234 for_each_ring(ring, dev_priv, i)
2235 i915_gem_retire_requests_ring(ring);
2236 }
2237
2238 static void
2239 i915_gem_retire_work_handler(struct work_struct *work)
2240 {
2241 drm_i915_private_t *dev_priv;
2242 struct drm_device *dev;
2243 struct intel_ring_buffer *ring;
2244 bool idle;
2245 int i;
2246
2247 dev_priv = container_of(work, drm_i915_private_t,
2248 mm.retire_work.work);
2249 dev = dev_priv->dev;
2250
2251 /* Come back later if the device is busy... */
2252 if (!mutex_trylock(&dev->struct_mutex)) {
2253 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2254 round_jiffies_up_relative(HZ));
2255 return;
2256 }
2257
2258 i915_gem_retire_requests(dev);
2259
2260 /* Send a periodic flush down the ring so we don't hold onto GEM
2261 * objects indefinitely.
2262 */
2263 idle = true;
2264 for_each_ring(ring, dev_priv, i) {
2265 if (ring->gpu_caches_dirty)
2266 i915_add_request(ring, NULL, NULL);
2267
2268 idle &= list_empty(&ring->request_list);
2269 }
2270
2271 if (!dev_priv->mm.suspended && !idle)
2272 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2273 round_jiffies_up_relative(HZ));
2274 if (idle)
2275 intel_mark_idle(dev);
2276
2277 mutex_unlock(&dev->struct_mutex);
2278 }
2279
2280 /**
2281 * Ensures that an object will eventually get non-busy by flushing any required
2282 * write domains, emitting any outstanding lazy request and retiring and
2283 * completed requests.
2284 */
2285 static int
2286 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2287 {
2288 int ret;
2289
2290 if (obj->active) {
2291 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2292 if (ret)
2293 return ret;
2294
2295 i915_gem_retire_requests_ring(obj->ring);
2296 }
2297
2298 return 0;
2299 }
2300
2301 /**
2302 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2303 * @DRM_IOCTL_ARGS: standard ioctl arguments
2304 *
2305 * Returns 0 if successful, else an error is returned with the remaining time in
2306 * the timeout parameter.
2307 * -ETIME: object is still busy after timeout
2308 * -ERESTARTSYS: signal interrupted the wait
2309 * -ENONENT: object doesn't exist
2310 * Also possible, but rare:
2311 * -EAGAIN: GPU wedged
2312 * -ENOMEM: damn
2313 * -ENODEV: Internal IRQ fail
2314 * -E?: The add request failed
2315 *
2316 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2317 * non-zero timeout parameter the wait ioctl will wait for the given number of
2318 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2319 * without holding struct_mutex the object may become re-busied before this
2320 * function completes. A similar but shorter * race condition exists in the busy
2321 * ioctl
2322 */
2323 int
2324 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2325 {
2326 struct drm_i915_gem_wait *args = data;
2327 struct drm_i915_gem_object *obj;
2328 struct intel_ring_buffer *ring = NULL;
2329 struct timespec timeout_stack, *timeout = NULL;
2330 u32 seqno = 0;
2331 int ret = 0;
2332
2333 if (args->timeout_ns >= 0) {
2334 timeout_stack = ns_to_timespec(args->timeout_ns);
2335 timeout = &timeout_stack;
2336 }
2337
2338 ret = i915_mutex_lock_interruptible(dev);
2339 if (ret)
2340 return ret;
2341
2342 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2343 if (&obj->base == NULL) {
2344 mutex_unlock(&dev->struct_mutex);
2345 return -ENOENT;
2346 }
2347
2348 /* Need to make sure the object gets inactive eventually. */
2349 ret = i915_gem_object_flush_active(obj);
2350 if (ret)
2351 goto out;
2352
2353 if (obj->active) {
2354 seqno = obj->last_read_seqno;
2355 ring = obj->ring;
2356 }
2357
2358 if (seqno == 0)
2359 goto out;
2360
2361 /* Do this after OLR check to make sure we make forward progress polling
2362 * on this IOCTL with a 0 timeout (like busy ioctl)
2363 */
2364 if (!args->timeout_ns) {
2365 ret = -ETIME;
2366 goto out;
2367 }
2368
2369 drm_gem_object_unreference(&obj->base);
2370 mutex_unlock(&dev->struct_mutex);
2371
2372 ret = __wait_seqno(ring, seqno, true, timeout);
2373 if (timeout) {
2374 WARN_ON(!timespec_valid(timeout));
2375 args->timeout_ns = timespec_to_ns(timeout);
2376 }
2377 return ret;
2378
2379 out:
2380 drm_gem_object_unreference(&obj->base);
2381 mutex_unlock(&dev->struct_mutex);
2382 return ret;
2383 }
2384
2385 /**
2386 * i915_gem_object_sync - sync an object to a ring.
2387 *
2388 * @obj: object which may be in use on another ring.
2389 * @to: ring we wish to use the object on. May be NULL.
2390 *
2391 * This code is meant to abstract object synchronization with the GPU.
2392 * Calling with NULL implies synchronizing the object with the CPU
2393 * rather than a particular GPU ring.
2394 *
2395 * Returns 0 if successful, else propagates up the lower layer error.
2396 */
2397 int
2398 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2399 struct intel_ring_buffer *to)
2400 {
2401 struct intel_ring_buffer *from = obj->ring;
2402 u32 seqno;
2403 int ret, idx;
2404
2405 if (from == NULL || to == from)
2406 return 0;
2407
2408 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2409 return i915_gem_object_wait_rendering(obj, false);
2410
2411 idx = intel_ring_sync_index(from, to);
2412
2413 seqno = obj->last_read_seqno;
2414 if (seqno <= from->sync_seqno[idx])
2415 return 0;
2416
2417 ret = i915_gem_check_olr(obj->ring, seqno);
2418 if (ret)
2419 return ret;
2420
2421 ret = to->sync_to(to, from, seqno);
2422 if (!ret)
2423 /* We use last_read_seqno because sync_to()
2424 * might have just caused seqno wrap under
2425 * the radar.
2426 */
2427 from->sync_seqno[idx] = obj->last_read_seqno;
2428
2429 return ret;
2430 }
2431
2432 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2433 {
2434 u32 old_write_domain, old_read_domains;
2435
2436 /* Act a barrier for all accesses through the GTT */
2437 mb();
2438
2439 /* Force a pagefault for domain tracking on next user access */
2440 i915_gem_release_mmap(obj);
2441
2442 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2443 return;
2444
2445 old_read_domains = obj->base.read_domains;
2446 old_write_domain = obj->base.write_domain;
2447
2448 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2449 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2450
2451 trace_i915_gem_object_change_domain(obj,
2452 old_read_domains,
2453 old_write_domain);
2454 }
2455
2456 /**
2457 * Unbinds an object from the GTT aperture.
2458 */
2459 int
2460 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2461 {
2462 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2463 int ret = 0;
2464
2465 if (obj->gtt_space == NULL)
2466 return 0;
2467
2468 if (obj->pin_count)
2469 return -EBUSY;
2470
2471 BUG_ON(obj->pages == NULL);
2472
2473 ret = i915_gem_object_finish_gpu(obj);
2474 if (ret)
2475 return ret;
2476 /* Continue on if we fail due to EIO, the GPU is hung so we
2477 * should be safe and we need to cleanup or else we might
2478 * cause memory corruption through use-after-free.
2479 */
2480
2481 i915_gem_object_finish_gtt(obj);
2482
2483 /* release the fence reg _after_ flushing */
2484 ret = i915_gem_object_put_fence(obj);
2485 if (ret)
2486 return ret;
2487
2488 trace_i915_gem_object_unbind(obj);
2489
2490 if (obj->has_global_gtt_mapping)
2491 i915_gem_gtt_unbind_object(obj);
2492 if (obj->has_aliasing_ppgtt_mapping) {
2493 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2494 obj->has_aliasing_ppgtt_mapping = 0;
2495 }
2496 i915_gem_gtt_finish_object(obj);
2497
2498 list_del(&obj->mm_list);
2499 list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2500 /* Avoid an unnecessary call to unbind on rebind. */
2501 obj->map_and_fenceable = true;
2502
2503 drm_mm_put_block(obj->gtt_space);
2504 obj->gtt_space = NULL;
2505 obj->gtt_offset = 0;
2506
2507 return 0;
2508 }
2509
2510 int i915_gpu_idle(struct drm_device *dev)
2511 {
2512 drm_i915_private_t *dev_priv = dev->dev_private;
2513 struct intel_ring_buffer *ring;
2514 int ret, i;
2515
2516 /* Flush everything onto the inactive list. */
2517 for_each_ring(ring, dev_priv, i) {
2518 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2519 if (ret)
2520 return ret;
2521
2522 ret = intel_ring_idle(ring);
2523 if (ret)
2524 return ret;
2525 }
2526
2527 return 0;
2528 }
2529
2530 static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
2531 struct drm_i915_gem_object *obj)
2532 {
2533 drm_i915_private_t *dev_priv = dev->dev_private;
2534 uint64_t val;
2535
2536 if (obj) {
2537 u32 size = obj->gtt_space->size;
2538
2539 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2540 0xfffff000) << 32;
2541 val |= obj->gtt_offset & 0xfffff000;
2542 val |= (uint64_t)((obj->stride / 128) - 1) <<
2543 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2544
2545 if (obj->tiling_mode == I915_TILING_Y)
2546 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2547 val |= I965_FENCE_REG_VALID;
2548 } else
2549 val = 0;
2550
2551 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
2552 POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
2553 }
2554
2555 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2556 struct drm_i915_gem_object *obj)
2557 {
2558 drm_i915_private_t *dev_priv = dev->dev_private;
2559 uint64_t val;
2560
2561 if (obj) {
2562 u32 size = obj->gtt_space->size;
2563
2564 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2565 0xfffff000) << 32;
2566 val |= obj->gtt_offset & 0xfffff000;
2567 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2568 if (obj->tiling_mode == I915_TILING_Y)
2569 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2570 val |= I965_FENCE_REG_VALID;
2571 } else
2572 val = 0;
2573
2574 I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
2575 POSTING_READ(FENCE_REG_965_0 + reg * 8);
2576 }
2577
2578 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2579 struct drm_i915_gem_object *obj)
2580 {
2581 drm_i915_private_t *dev_priv = dev->dev_private;
2582 u32 val;
2583
2584 if (obj) {
2585 u32 size = obj->gtt_space->size;
2586 int pitch_val;
2587 int tile_width;
2588
2589 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2590 (size & -size) != size ||
2591 (obj->gtt_offset & (size - 1)),
2592 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2593 obj->gtt_offset, obj->map_and_fenceable, size);
2594
2595 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2596 tile_width = 128;
2597 else
2598 tile_width = 512;
2599
2600 /* Note: pitch better be a power of two tile widths */
2601 pitch_val = obj->stride / tile_width;
2602 pitch_val = ffs(pitch_val) - 1;
2603
2604 val = obj->gtt_offset;
2605 if (obj->tiling_mode == I915_TILING_Y)
2606 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2607 val |= I915_FENCE_SIZE_BITS(size);
2608 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2609 val |= I830_FENCE_REG_VALID;
2610 } else
2611 val = 0;
2612
2613 if (reg < 8)
2614 reg = FENCE_REG_830_0 + reg * 4;
2615 else
2616 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2617
2618 I915_WRITE(reg, val);
2619 POSTING_READ(reg);
2620 }
2621
2622 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2623 struct drm_i915_gem_object *obj)
2624 {
2625 drm_i915_private_t *dev_priv = dev->dev_private;
2626 uint32_t val;
2627
2628 if (obj) {
2629 u32 size = obj->gtt_space->size;
2630 uint32_t pitch_val;
2631
2632 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2633 (size & -size) != size ||
2634 (obj->gtt_offset & (size - 1)),
2635 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2636 obj->gtt_offset, size);
2637
2638 pitch_val = obj->stride / 128;
2639 pitch_val = ffs(pitch_val) - 1;
2640
2641 val = obj->gtt_offset;
2642 if (obj->tiling_mode == I915_TILING_Y)
2643 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2644 val |= I830_FENCE_SIZE_BITS(size);
2645 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2646 val |= I830_FENCE_REG_VALID;
2647 } else
2648 val = 0;
2649
2650 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2651 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2652 }
2653
2654 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2655 struct drm_i915_gem_object *obj)
2656 {
2657 switch (INTEL_INFO(dev)->gen) {
2658 case 7:
2659 case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
2660 case 5:
2661 case 4: i965_write_fence_reg(dev, reg, obj); break;
2662 case 3: i915_write_fence_reg(dev, reg, obj); break;
2663 case 2: i830_write_fence_reg(dev, reg, obj); break;
2664 default: BUG();
2665 }
2666 }
2667
2668 static inline int fence_number(struct drm_i915_private *dev_priv,
2669 struct drm_i915_fence_reg *fence)
2670 {
2671 return fence - dev_priv->fence_regs;
2672 }
2673
2674 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2675 struct drm_i915_fence_reg *fence,
2676 bool enable)
2677 {
2678 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2679 int reg = fence_number(dev_priv, fence);
2680
2681 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2682
2683 if (enable) {
2684 obj->fence_reg = reg;
2685 fence->obj = obj;
2686 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2687 } else {
2688 obj->fence_reg = I915_FENCE_REG_NONE;
2689 fence->obj = NULL;
2690 list_del_init(&fence->lru_list);
2691 }
2692 }
2693
2694 static int
2695 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
2696 {
2697 if (obj->last_fenced_seqno) {
2698 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2699 if (ret)
2700 return ret;
2701
2702 obj->last_fenced_seqno = 0;
2703 }
2704
2705 /* Ensure that all CPU reads are completed before installing a fence
2706 * and all writes before removing the fence.
2707 */
2708 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2709 mb();
2710
2711 obj->fenced_gpu_access = false;
2712 return 0;
2713 }
2714
2715 int
2716 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2717 {
2718 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2719 int ret;
2720
2721 ret = i915_gem_object_flush_fence(obj);
2722 if (ret)
2723 return ret;
2724
2725 if (obj->fence_reg == I915_FENCE_REG_NONE)
2726 return 0;
2727
2728 i915_gem_object_update_fence(obj,
2729 &dev_priv->fence_regs[obj->fence_reg],
2730 false);
2731 i915_gem_object_fence_lost(obj);
2732
2733 return 0;
2734 }
2735
2736 static struct drm_i915_fence_reg *
2737 i915_find_fence_reg(struct drm_device *dev)
2738 {
2739 struct drm_i915_private *dev_priv = dev->dev_private;
2740 struct drm_i915_fence_reg *reg, *avail;
2741 int i;
2742
2743 /* First try to find a free reg */
2744 avail = NULL;
2745 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2746 reg = &dev_priv->fence_regs[i];
2747 if (!reg->obj)
2748 return reg;
2749
2750 if (!reg->pin_count)
2751 avail = reg;
2752 }
2753
2754 if (avail == NULL)
2755 return NULL;
2756
2757 /* None available, try to steal one or wait for a user to finish */
2758 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2759 if (reg->pin_count)
2760 continue;
2761
2762 return reg;
2763 }
2764
2765 return NULL;
2766 }
2767
2768 /**
2769 * i915_gem_object_get_fence - set up fencing for an object
2770 * @obj: object to map through a fence reg
2771 *
2772 * When mapping objects through the GTT, userspace wants to be able to write
2773 * to them without having to worry about swizzling if the object is tiled.
2774 * This function walks the fence regs looking for a free one for @obj,
2775 * stealing one if it can't find any.
2776 *
2777 * It then sets up the reg based on the object's properties: address, pitch
2778 * and tiling format.
2779 *
2780 * For an untiled surface, this removes any existing fence.
2781 */
2782 int
2783 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2784 {
2785 struct drm_device *dev = obj->base.dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 bool enable = obj->tiling_mode != I915_TILING_NONE;
2788 struct drm_i915_fence_reg *reg;
2789 int ret;
2790
2791 /* Have we updated the tiling parameters upon the object and so
2792 * will need to serialise the write to the associated fence register?
2793 */
2794 if (obj->fence_dirty) {
2795 ret = i915_gem_object_flush_fence(obj);
2796 if (ret)
2797 return ret;
2798 }
2799
2800 /* Just update our place in the LRU if our fence is getting reused. */
2801 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2802 reg = &dev_priv->fence_regs[obj->fence_reg];
2803 if (!obj->fence_dirty) {
2804 list_move_tail(&reg->lru_list,
2805 &dev_priv->mm.fence_list);
2806 return 0;
2807 }
2808 } else if (enable) {
2809 reg = i915_find_fence_reg(dev);
2810 if (reg == NULL)
2811 return -EDEADLK;
2812
2813 if (reg->obj) {
2814 struct drm_i915_gem_object *old = reg->obj;
2815
2816 ret = i915_gem_object_flush_fence(old);
2817 if (ret)
2818 return ret;
2819
2820 i915_gem_object_fence_lost(old);
2821 }
2822 } else
2823 return 0;
2824
2825 i915_gem_object_update_fence(obj, reg, enable);
2826 obj->fence_dirty = false;
2827
2828 return 0;
2829 }
2830
2831 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2832 struct drm_mm_node *gtt_space,
2833 unsigned long cache_level)
2834 {
2835 struct drm_mm_node *other;
2836
2837 /* On non-LLC machines we have to be careful when putting differing
2838 * types of snoopable memory together to avoid the prefetcher
2839 * crossing memory domains and dying.
2840 */
2841 if (HAS_LLC(dev))
2842 return true;
2843
2844 if (gtt_space == NULL)
2845 return true;
2846
2847 if (list_empty(&gtt_space->node_list))
2848 return true;
2849
2850 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2851 if (other->allocated && !other->hole_follows && other->color != cache_level)
2852 return false;
2853
2854 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2855 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2856 return false;
2857
2858 return true;
2859 }
2860
2861 static void i915_gem_verify_gtt(struct drm_device *dev)
2862 {
2863 #if WATCH_GTT
2864 struct drm_i915_private *dev_priv = dev->dev_private;
2865 struct drm_i915_gem_object *obj;
2866 int err = 0;
2867
2868 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2869 if (obj->gtt_space == NULL) {
2870 printk(KERN_ERR "object found on GTT list with no space reserved\n");
2871 err++;
2872 continue;
2873 }
2874
2875 if (obj->cache_level != obj->gtt_space->color) {
2876 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2877 obj->gtt_space->start,
2878 obj->gtt_space->start + obj->gtt_space->size,
2879 obj->cache_level,
2880 obj->gtt_space->color);
2881 err++;
2882 continue;
2883 }
2884
2885 if (!i915_gem_valid_gtt_space(dev,
2886 obj->gtt_space,
2887 obj->cache_level)) {
2888 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2889 obj->gtt_space->start,
2890 obj->gtt_space->start + obj->gtt_space->size,
2891 obj->cache_level);
2892 err++;
2893 continue;
2894 }
2895 }
2896
2897 WARN_ON(err);
2898 #endif
2899 }
2900
2901 /**
2902 * Finds free space in the GTT aperture and binds the object there.
2903 */
2904 static int
2905 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2906 unsigned alignment,
2907 bool map_and_fenceable,
2908 bool nonblocking)
2909 {
2910 struct drm_device *dev = obj->base.dev;
2911 drm_i915_private_t *dev_priv = dev->dev_private;
2912 struct drm_mm_node *free_space;
2913 u32 size, fence_size, fence_alignment, unfenced_alignment;
2914 bool mappable, fenceable;
2915 int ret;
2916
2917 if (obj->madv != I915_MADV_WILLNEED) {
2918 DRM_ERROR("Attempting to bind a purgeable object\n");
2919 return -EINVAL;
2920 }
2921
2922 fence_size = i915_gem_get_gtt_size(dev,
2923 obj->base.size,
2924 obj->tiling_mode);
2925 fence_alignment = i915_gem_get_gtt_alignment(dev,
2926 obj->base.size,
2927 obj->tiling_mode);
2928 unfenced_alignment =
2929 i915_gem_get_unfenced_gtt_alignment(dev,
2930 obj->base.size,
2931 obj->tiling_mode);
2932
2933 if (alignment == 0)
2934 alignment = map_and_fenceable ? fence_alignment :
2935 unfenced_alignment;
2936 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2937 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2938 return -EINVAL;
2939 }
2940
2941 size = map_and_fenceable ? fence_size : obj->base.size;
2942
2943 /* If the object is bigger than the entire aperture, reject it early
2944 * before evicting everything in a vain attempt to find space.
2945 */
2946 if (obj->base.size >
2947 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2948 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2949 return -E2BIG;
2950 }
2951
2952 ret = i915_gem_object_get_pages(obj);
2953 if (ret)
2954 return ret;
2955
2956 i915_gem_object_pin_pages(obj);
2957
2958 search_free:
2959 if (map_and_fenceable)
2960 free_space = drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
2961 size, alignment, obj->cache_level,
2962 0, dev_priv->mm.gtt_mappable_end,
2963 false);
2964 else
2965 free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
2966 size, alignment, obj->cache_level,
2967 false);
2968
2969 if (free_space != NULL) {
2970 if (map_and_fenceable)
2971 free_space =
2972 drm_mm_get_block_range_generic(free_space,
2973 size, alignment, obj->cache_level,
2974 0, dev_priv->mm.gtt_mappable_end,
2975 false);
2976 else
2977 free_space =
2978 drm_mm_get_block_generic(free_space,
2979 size, alignment, obj->cache_level,
2980 false);
2981 }
2982 if (free_space == NULL) {
2983 ret = i915_gem_evict_something(dev, size, alignment,
2984 obj->cache_level,
2985 map_and_fenceable,
2986 nonblocking);
2987 if (ret) {
2988 i915_gem_object_unpin_pages(obj);
2989 return ret;
2990 }
2991
2992 goto search_free;
2993 }
2994 if (WARN_ON(!i915_gem_valid_gtt_space(dev,
2995 free_space,
2996 obj->cache_level))) {
2997 i915_gem_object_unpin_pages(obj);
2998 drm_mm_put_block(free_space);
2999 return -EINVAL;
3000 }
3001
3002 ret = i915_gem_gtt_prepare_object(obj);
3003 if (ret) {
3004 i915_gem_object_unpin_pages(obj);
3005 drm_mm_put_block(free_space);
3006 return ret;
3007 }
3008
3009 list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3010 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3011
3012 obj->gtt_space = free_space;
3013 obj->gtt_offset = free_space->start;
3014
3015 fenceable =
3016 free_space->size == fence_size &&
3017 (free_space->start & (fence_alignment - 1)) == 0;
3018
3019 mappable =
3020 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
3021
3022 obj->map_and_fenceable = mappable && fenceable;
3023
3024 i915_gem_object_unpin_pages(obj);
3025 trace_i915_gem_object_bind(obj, map_and_fenceable);
3026 i915_gem_verify_gtt(dev);
3027 return 0;
3028 }
3029
3030 void
3031 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3032 {
3033 /* If we don't have a page list set up, then we're not pinned
3034 * to GPU, and we can ignore the cache flush because it'll happen
3035 * again at bind time.
3036 */
3037 if (obj->pages == NULL)
3038 return;
3039
3040 /* If the GPU is snooping the contents of the CPU cache,
3041 * we do not need to manually clear the CPU cache lines. However,
3042 * the caches are only snooped when the render cache is
3043 * flushed/invalidated. As we always have to emit invalidations
3044 * and flushes when moving into and out of the RENDER domain, correct
3045 * snooping behaviour occurs naturally as the result of our domain
3046 * tracking.
3047 */
3048 if (obj->cache_level != I915_CACHE_NONE)
3049 return;
3050
3051 trace_i915_gem_object_clflush(obj);
3052
3053 drm_clflush_sg(obj->pages);
3054 }
3055
3056 /** Flushes the GTT write domain for the object if it's dirty. */
3057 static void
3058 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3059 {
3060 uint32_t old_write_domain;
3061
3062 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3063 return;
3064
3065 /* No actual flushing is required for the GTT write domain. Writes
3066 * to it immediately go to main memory as far as we know, so there's
3067 * no chipset flush. It also doesn't land in render cache.
3068 *
3069 * However, we do have to enforce the order so that all writes through
3070 * the GTT land before any writes to the device, such as updates to
3071 * the GATT itself.
3072 */
3073 wmb();
3074
3075 old_write_domain = obj->base.write_domain;
3076 obj->base.write_domain = 0;
3077
3078 trace_i915_gem_object_change_domain(obj,
3079 obj->base.read_domains,
3080 old_write_domain);
3081 }
3082
3083 /** Flushes the CPU write domain for the object if it's dirty. */
3084 static void
3085 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3086 {
3087 uint32_t old_write_domain;
3088
3089 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3090 return;
3091
3092 i915_gem_clflush_object(obj);
3093 i915_gem_chipset_flush(obj->base.dev);
3094 old_write_domain = obj->base.write_domain;
3095 obj->base.write_domain = 0;
3096
3097 trace_i915_gem_object_change_domain(obj,
3098 obj->base.read_domains,
3099 old_write_domain);
3100 }
3101
3102 /**
3103 * Moves a single object to the GTT read, and possibly write domain.
3104 *
3105 * This function returns when the move is complete, including waiting on
3106 * flushes to occur.
3107 */
3108 int
3109 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3110 {
3111 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3112 uint32_t old_write_domain, old_read_domains;
3113 int ret;
3114
3115 /* Not valid to be called on unbound objects. */
3116 if (obj->gtt_space == NULL)
3117 return -EINVAL;
3118
3119 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3120 return 0;
3121
3122 ret = i915_gem_object_wait_rendering(obj, !write);
3123 if (ret)
3124 return ret;
3125
3126 i915_gem_object_flush_cpu_write_domain(obj);
3127
3128 old_write_domain = obj->base.write_domain;
3129 old_read_domains = obj->base.read_domains;
3130
3131 /* It should now be out of any other write domains, and we can update
3132 * the domain values for our changes.
3133 */
3134 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3135 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3136 if (write) {
3137 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3138 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3139 obj->dirty = 1;
3140 }
3141
3142 trace_i915_gem_object_change_domain(obj,
3143 old_read_domains,
3144 old_write_domain);
3145
3146 /* And bump the LRU for this access */
3147 if (i915_gem_object_is_inactive(obj))
3148 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3149
3150 return 0;
3151 }
3152
3153 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3154 enum i915_cache_level cache_level)
3155 {
3156 struct drm_device *dev = obj->base.dev;
3157 drm_i915_private_t *dev_priv = dev->dev_private;
3158 int ret;
3159
3160 if (obj->cache_level == cache_level)
3161 return 0;
3162
3163 if (obj->pin_count) {
3164 DRM_DEBUG("can not change the cache level of pinned objects\n");
3165 return -EBUSY;
3166 }
3167
3168 if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3169 ret = i915_gem_object_unbind(obj);
3170 if (ret)
3171 return ret;
3172 }
3173
3174 if (obj->gtt_space) {
3175 ret = i915_gem_object_finish_gpu(obj);
3176 if (ret)
3177 return ret;
3178
3179 i915_gem_object_finish_gtt(obj);
3180
3181 /* Before SandyBridge, you could not use tiling or fence
3182 * registers with snooped memory, so relinquish any fences
3183 * currently pointing to our region in the aperture.
3184 */
3185 if (INTEL_INFO(dev)->gen < 6) {
3186 ret = i915_gem_object_put_fence(obj);
3187 if (ret)
3188 return ret;
3189 }
3190
3191 if (obj->has_global_gtt_mapping)
3192 i915_gem_gtt_bind_object(obj, cache_level);
3193 if (obj->has_aliasing_ppgtt_mapping)
3194 i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3195 obj, cache_level);
3196
3197 obj->gtt_space->color = cache_level;
3198 }
3199
3200 if (cache_level == I915_CACHE_NONE) {
3201 u32 old_read_domains, old_write_domain;
3202
3203 /* If we're coming from LLC cached, then we haven't
3204 * actually been tracking whether the data is in the
3205 * CPU cache or not, since we only allow one bit set
3206 * in obj->write_domain and have been skipping the clflushes.
3207 * Just set it to the CPU cache for now.
3208 */
3209 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3210 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3211
3212 old_read_domains = obj->base.read_domains;
3213 old_write_domain = obj->base.write_domain;
3214
3215 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3216 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3217
3218 trace_i915_gem_object_change_domain(obj,
3219 old_read_domains,
3220 old_write_domain);
3221 }
3222
3223 obj->cache_level = cache_level;
3224 i915_gem_verify_gtt(dev);
3225 return 0;
3226 }
3227
3228 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3229 struct drm_file *file)
3230 {
3231 struct drm_i915_gem_caching *args = data;
3232 struct drm_i915_gem_object *obj;
3233 int ret;
3234
3235 ret = i915_mutex_lock_interruptible(dev);
3236 if (ret)
3237 return ret;
3238
3239 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3240 if (&obj->base == NULL) {
3241 ret = -ENOENT;
3242 goto unlock;
3243 }
3244
3245 args->caching = obj->cache_level != I915_CACHE_NONE;
3246
3247 drm_gem_object_unreference(&obj->base);
3248 unlock:
3249 mutex_unlock(&dev->struct_mutex);
3250 return ret;
3251 }
3252
3253 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file)
3255 {
3256 struct drm_i915_gem_caching *args = data;
3257 struct drm_i915_gem_object *obj;
3258 enum i915_cache_level level;
3259 int ret;
3260
3261 switch (args->caching) {
3262 case I915_CACHING_NONE:
3263 level = I915_CACHE_NONE;
3264 break;
3265 case I915_CACHING_CACHED:
3266 level = I915_CACHE_LLC;
3267 break;
3268 default:
3269 return -EINVAL;
3270 }
3271
3272 ret = i915_mutex_lock_interruptible(dev);
3273 if (ret)
3274 return ret;
3275
3276 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3277 if (&obj->base == NULL) {
3278 ret = -ENOENT;
3279 goto unlock;
3280 }
3281
3282 ret = i915_gem_object_set_cache_level(obj, level);
3283
3284 drm_gem_object_unreference(&obj->base);
3285 unlock:
3286 mutex_unlock(&dev->struct_mutex);
3287 return ret;
3288 }
3289
3290 /*
3291 * Prepare buffer for display plane (scanout, cursors, etc).
3292 * Can be called from an uninterruptible phase (modesetting) and allows
3293 * any flushes to be pipelined (for pageflips).
3294 */
3295 int
3296 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3297 u32 alignment,
3298 struct intel_ring_buffer *pipelined)
3299 {
3300 u32 old_read_domains, old_write_domain;
3301 int ret;
3302
3303 if (pipelined != obj->ring) {
3304 ret = i915_gem_object_sync(obj, pipelined);
3305 if (ret)
3306 return ret;
3307 }
3308
3309 /* The display engine is not coherent with the LLC cache on gen6. As
3310 * a result, we make sure that the pinning that is about to occur is
3311 * done with uncached PTEs. This is lowest common denominator for all
3312 * chipsets.
3313 *
3314 * However for gen6+, we could do better by using the GFDT bit instead
3315 * of uncaching, which would allow us to flush all the LLC-cached data
3316 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3317 */
3318 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3319 if (ret)
3320 return ret;
3321
3322 /* As the user may map the buffer once pinned in the display plane
3323 * (e.g. libkms for the bootup splash), we have to ensure that we
3324 * always use map_and_fenceable for all scanout buffers.
3325 */
3326 ret = i915_gem_object_pin(obj, alignment, true, false);
3327 if (ret)
3328 return ret;
3329
3330 i915_gem_object_flush_cpu_write_domain(obj);
3331
3332 old_write_domain = obj->base.write_domain;
3333 old_read_domains = obj->base.read_domains;
3334
3335 /* It should now be out of any other write domains, and we can update
3336 * the domain values for our changes.
3337 */
3338 obj->base.write_domain = 0;
3339 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3340
3341 trace_i915_gem_object_change_domain(obj,
3342 old_read_domains,
3343 old_write_domain);
3344
3345 return 0;
3346 }
3347
3348 int
3349 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3350 {
3351 int ret;
3352
3353 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3354 return 0;
3355
3356 ret = i915_gem_object_wait_rendering(obj, false);
3357 if (ret)
3358 return ret;
3359
3360 /* Ensure that we invalidate the GPU's caches and TLBs. */
3361 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3362 return 0;
3363 }
3364
3365 /**
3366 * Moves a single object to the CPU read, and possibly write domain.
3367 *
3368 * This function returns when the move is complete, including waiting on
3369 * flushes to occur.
3370 */
3371 int
3372 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3373 {
3374 uint32_t old_write_domain, old_read_domains;
3375 int ret;
3376
3377 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3378 return 0;
3379
3380 ret = i915_gem_object_wait_rendering(obj, !write);
3381 if (ret)
3382 return ret;
3383
3384 i915_gem_object_flush_gtt_write_domain(obj);
3385
3386 old_write_domain = obj->base.write_domain;
3387 old_read_domains = obj->base.read_domains;
3388
3389 /* Flush the CPU cache if it's still invalid. */
3390 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3391 i915_gem_clflush_object(obj);
3392
3393 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3394 }
3395
3396 /* It should now be out of any other write domains, and we can update
3397 * the domain values for our changes.
3398 */
3399 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3400
3401 /* If we're writing through the CPU, then the GPU read domains will
3402 * need to be invalidated at next use.
3403 */
3404 if (write) {
3405 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3406 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3407 }
3408
3409 trace_i915_gem_object_change_domain(obj,
3410 old_read_domains,
3411 old_write_domain);
3412
3413 return 0;
3414 }
3415
3416 /* Throttle our rendering by waiting until the ring has completed our requests
3417 * emitted over 20 msec ago.
3418 *
3419 * Note that if we were to use the current jiffies each time around the loop,
3420 * we wouldn't escape the function with any frames outstanding if the time to
3421 * render a frame was over 20ms.
3422 *
3423 * This should get us reasonable parallelism between CPU and GPU but also
3424 * relatively low latency when blocking on a particular request to finish.
3425 */
3426 static int
3427 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3428 {
3429 struct drm_i915_private *dev_priv = dev->dev_private;
3430 struct drm_i915_file_private *file_priv = file->driver_priv;
3431 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3432 struct drm_i915_gem_request *request;
3433 struct intel_ring_buffer *ring = NULL;
3434 u32 seqno = 0;
3435 int ret;
3436
3437 if (atomic_read(&dev_priv->mm.wedged))
3438 return -EIO;
3439
3440 spin_lock(&file_priv->mm.lock);
3441 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3442 if (time_after_eq(request->emitted_jiffies, recent_enough))
3443 break;
3444
3445 ring = request->ring;
3446 seqno = request->seqno;
3447 }
3448 spin_unlock(&file_priv->mm.lock);
3449
3450 if (seqno == 0)
3451 return 0;
3452
3453 ret = __wait_seqno(ring, seqno, true, NULL);
3454 if (ret == 0)
3455 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3456
3457 return ret;
3458 }
3459
3460 int
3461 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3462 uint32_t alignment,
3463 bool map_and_fenceable,
3464 bool nonblocking)
3465 {
3466 int ret;
3467
3468 if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3469 return -EBUSY;
3470
3471 if (obj->gtt_space != NULL) {
3472 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3473 (map_and_fenceable && !obj->map_and_fenceable)) {
3474 WARN(obj->pin_count,
3475 "bo is already pinned with incorrect alignment:"
3476 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3477 " obj->map_and_fenceable=%d\n",
3478 obj->gtt_offset, alignment,
3479 map_and_fenceable,
3480 obj->map_and_fenceable);
3481 ret = i915_gem_object_unbind(obj);
3482 if (ret)
3483 return ret;
3484 }
3485 }
3486
3487 if (obj->gtt_space == NULL) {
3488 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3489
3490 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3491 map_and_fenceable,
3492 nonblocking);
3493 if (ret)
3494 return ret;
3495
3496 if (!dev_priv->mm.aliasing_ppgtt)
3497 i915_gem_gtt_bind_object(obj, obj->cache_level);
3498 }
3499
3500 if (!obj->has_global_gtt_mapping && map_and_fenceable)
3501 i915_gem_gtt_bind_object(obj, obj->cache_level);
3502
3503 obj->pin_count++;
3504 obj->pin_mappable |= map_and_fenceable;
3505
3506 return 0;
3507 }
3508
3509 void
3510 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3511 {
3512 BUG_ON(obj->pin_count == 0);
3513 BUG_ON(obj->gtt_space == NULL);
3514
3515 if (--obj->pin_count == 0)
3516 obj->pin_mappable = false;
3517 }
3518
3519 int
3520 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3521 struct drm_file *file)
3522 {
3523 struct drm_i915_gem_pin *args = data;
3524 struct drm_i915_gem_object *obj;
3525 int ret;
3526
3527 ret = i915_mutex_lock_interruptible(dev);
3528 if (ret)
3529 return ret;
3530
3531 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3532 if (&obj->base == NULL) {
3533 ret = -ENOENT;
3534 goto unlock;
3535 }
3536
3537 if (obj->madv != I915_MADV_WILLNEED) {
3538 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3539 ret = -EINVAL;
3540 goto out;
3541 }
3542
3543 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3544 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3545 args->handle);
3546 ret = -EINVAL;
3547 goto out;
3548 }
3549
3550 obj->user_pin_count++;
3551 obj->pin_filp = file;
3552 if (obj->user_pin_count == 1) {
3553 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3554 if (ret)
3555 goto out;
3556 }
3557
3558 /* XXX - flush the CPU caches for pinned objects
3559 * as the X server doesn't manage domains yet
3560 */
3561 i915_gem_object_flush_cpu_write_domain(obj);
3562 args->offset = obj->gtt_offset;
3563 out:
3564 drm_gem_object_unreference(&obj->base);
3565 unlock:
3566 mutex_unlock(&dev->struct_mutex);
3567 return ret;
3568 }
3569
3570 int
3571 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3572 struct drm_file *file)
3573 {
3574 struct drm_i915_gem_pin *args = data;
3575 struct drm_i915_gem_object *obj;
3576 int ret;
3577
3578 ret = i915_mutex_lock_interruptible(dev);
3579 if (ret)
3580 return ret;
3581
3582 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3583 if (&obj->base == NULL) {
3584 ret = -ENOENT;
3585 goto unlock;
3586 }
3587
3588 if (obj->pin_filp != file) {
3589 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3590 args->handle);
3591 ret = -EINVAL;
3592 goto out;
3593 }
3594 obj->user_pin_count--;
3595 if (obj->user_pin_count == 0) {
3596 obj->pin_filp = NULL;
3597 i915_gem_object_unpin(obj);
3598 }
3599
3600 out:
3601 drm_gem_object_unreference(&obj->base);
3602 unlock:
3603 mutex_unlock(&dev->struct_mutex);
3604 return ret;
3605 }
3606
3607 int
3608 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3609 struct drm_file *file)
3610 {
3611 struct drm_i915_gem_busy *args = data;
3612 struct drm_i915_gem_object *obj;
3613 int ret;
3614
3615 ret = i915_mutex_lock_interruptible(dev);
3616 if (ret)
3617 return ret;
3618
3619 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3620 if (&obj->base == NULL) {
3621 ret = -ENOENT;
3622 goto unlock;
3623 }
3624
3625 /* Count all active objects as busy, even if they are currently not used
3626 * by the gpu. Users of this interface expect objects to eventually
3627 * become non-busy without any further actions, therefore emit any
3628 * necessary flushes here.
3629 */
3630 ret = i915_gem_object_flush_active(obj);
3631
3632 args->busy = obj->active;
3633 if (obj->ring) {
3634 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3635 args->busy |= intel_ring_flag(obj->ring) << 16;
3636 }
3637
3638 drm_gem_object_unreference(&obj->base);
3639 unlock:
3640 mutex_unlock(&dev->struct_mutex);
3641 return ret;
3642 }
3643
3644 int
3645 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3646 struct drm_file *file_priv)
3647 {
3648 return i915_gem_ring_throttle(dev, file_priv);
3649 }
3650
3651 int
3652 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3653 struct drm_file *file_priv)
3654 {
3655 struct drm_i915_gem_madvise *args = data;
3656 struct drm_i915_gem_object *obj;
3657 int ret;
3658
3659 switch (args->madv) {
3660 case I915_MADV_DONTNEED:
3661 case I915_MADV_WILLNEED:
3662 break;
3663 default:
3664 return -EINVAL;
3665 }
3666
3667 ret = i915_mutex_lock_interruptible(dev);
3668 if (ret)
3669 return ret;
3670
3671 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3672 if (&obj->base == NULL) {
3673 ret = -ENOENT;
3674 goto unlock;
3675 }
3676
3677 if (obj->pin_count) {
3678 ret = -EINVAL;
3679 goto out;
3680 }
3681
3682 if (obj->madv != __I915_MADV_PURGED)
3683 obj->madv = args->madv;
3684
3685 /* if the object is no longer attached, discard its backing storage */
3686 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3687 i915_gem_object_truncate(obj);
3688
3689 args->retained = obj->madv != __I915_MADV_PURGED;
3690
3691 out:
3692 drm_gem_object_unreference(&obj->base);
3693 unlock:
3694 mutex_unlock(&dev->struct_mutex);
3695 return ret;
3696 }
3697
3698 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3699 const struct drm_i915_gem_object_ops *ops)
3700 {
3701 INIT_LIST_HEAD(&obj->mm_list);
3702 INIT_LIST_HEAD(&obj->gtt_list);
3703 INIT_LIST_HEAD(&obj->ring_list);
3704 INIT_LIST_HEAD(&obj->exec_list);
3705
3706 obj->ops = ops;
3707
3708 obj->fence_reg = I915_FENCE_REG_NONE;
3709 obj->madv = I915_MADV_WILLNEED;
3710 /* Avoid an unnecessary call to unbind on the first bind. */
3711 obj->map_and_fenceable = true;
3712
3713 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3714 }
3715
3716 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3717 .get_pages = i915_gem_object_get_pages_gtt,
3718 .put_pages = i915_gem_object_put_pages_gtt,
3719 };
3720
3721 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3722 size_t size)
3723 {
3724 struct drm_i915_gem_object *obj;
3725 struct address_space *mapping;
3726 gfp_t mask;
3727
3728 obj = i915_gem_object_alloc(dev);
3729 if (obj == NULL)
3730 return NULL;
3731
3732 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3733 i915_gem_object_free(obj);
3734 return NULL;
3735 }
3736
3737 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3738 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3739 /* 965gm cannot relocate objects above 4GiB. */
3740 mask &= ~__GFP_HIGHMEM;
3741 mask |= __GFP_DMA32;
3742 }
3743
3744 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3745 mapping_set_gfp_mask(mapping, mask);
3746
3747 i915_gem_object_init(obj, &i915_gem_object_ops);
3748
3749 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3750 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3751
3752 if (HAS_LLC(dev)) {
3753 /* On some devices, we can have the GPU use the LLC (the CPU
3754 * cache) for about a 10% performance improvement
3755 * compared to uncached. Graphics requests other than
3756 * display scanout are coherent with the CPU in
3757 * accessing this cache. This means in this mode we
3758 * don't need to clflush on the CPU side, and on the
3759 * GPU side we only need to flush internal caches to
3760 * get data visible to the CPU.
3761 *
3762 * However, we maintain the display planes as UC, and so
3763 * need to rebind when first used as such.
3764 */
3765 obj->cache_level = I915_CACHE_LLC;
3766 } else
3767 obj->cache_level = I915_CACHE_NONE;
3768
3769 return obj;
3770 }
3771
3772 int i915_gem_init_object(struct drm_gem_object *obj)
3773 {
3774 BUG();
3775
3776 return 0;
3777 }
3778
3779 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3780 {
3781 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3782 struct drm_device *dev = obj->base.dev;
3783 drm_i915_private_t *dev_priv = dev->dev_private;
3784
3785 trace_i915_gem_object_destroy(obj);
3786
3787 if (obj->phys_obj)
3788 i915_gem_detach_phys_object(dev, obj);
3789
3790 obj->pin_count = 0;
3791 if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3792 bool was_interruptible;
3793
3794 was_interruptible = dev_priv->mm.interruptible;
3795 dev_priv->mm.interruptible = false;
3796
3797 WARN_ON(i915_gem_object_unbind(obj));
3798
3799 dev_priv->mm.interruptible = was_interruptible;
3800 }
3801
3802 obj->pages_pin_count = 0;
3803 i915_gem_object_put_pages(obj);
3804 i915_gem_object_free_mmap_offset(obj);
3805 i915_gem_object_release_stolen(obj);
3806
3807 BUG_ON(obj->pages);
3808
3809 if (obj->base.import_attach)
3810 drm_prime_gem_destroy(&obj->base, NULL);
3811
3812 drm_gem_object_release(&obj->base);
3813 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3814
3815 kfree(obj->bit_17);
3816 i915_gem_object_free(obj);
3817 }
3818
3819 int
3820 i915_gem_idle(struct drm_device *dev)
3821 {
3822 drm_i915_private_t *dev_priv = dev->dev_private;
3823 int ret;
3824
3825 mutex_lock(&dev->struct_mutex);
3826
3827 if (dev_priv->mm.suspended) {
3828 mutex_unlock(&dev->struct_mutex);
3829 return 0;
3830 }
3831
3832 ret = i915_gpu_idle(dev);
3833 if (ret) {
3834 mutex_unlock(&dev->struct_mutex);
3835 return ret;
3836 }
3837 i915_gem_retire_requests(dev);
3838
3839 /* Under UMS, be paranoid and evict. */
3840 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3841 i915_gem_evict_everything(dev);
3842
3843 i915_gem_reset_fences(dev);
3844
3845 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3846 * We need to replace this with a semaphore, or something.
3847 * And not confound mm.suspended!
3848 */
3849 dev_priv->mm.suspended = 1;
3850 del_timer_sync(&dev_priv->hangcheck_timer);
3851
3852 i915_kernel_lost_context(dev);
3853 i915_gem_cleanup_ringbuffer(dev);
3854
3855 mutex_unlock(&dev->struct_mutex);
3856
3857 /* Cancel the retire work handler, which should be idle now. */
3858 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3859
3860 return 0;
3861 }
3862
3863 void i915_gem_l3_remap(struct drm_device *dev)
3864 {
3865 drm_i915_private_t *dev_priv = dev->dev_private;
3866 u32 misccpctl;
3867 int i;
3868
3869 if (!IS_IVYBRIDGE(dev))
3870 return;
3871
3872 if (!dev_priv->l3_parity.remap_info)
3873 return;
3874
3875 misccpctl = I915_READ(GEN7_MISCCPCTL);
3876 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3877 POSTING_READ(GEN7_MISCCPCTL);
3878
3879 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3880 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3881 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3882 DRM_DEBUG("0x%x was already programmed to %x\n",
3883 GEN7_L3LOG_BASE + i, remap);
3884 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3885 DRM_DEBUG_DRIVER("Clearing remapped register\n");
3886 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3887 }
3888
3889 /* Make sure all the writes land before disabling dop clock gating */
3890 POSTING_READ(GEN7_L3LOG_BASE);
3891
3892 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3893 }
3894
3895 void i915_gem_init_swizzling(struct drm_device *dev)
3896 {
3897 drm_i915_private_t *dev_priv = dev->dev_private;
3898
3899 if (INTEL_INFO(dev)->gen < 5 ||
3900 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3901 return;
3902
3903 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3904 DISP_TILE_SURFACE_SWIZZLING);
3905
3906 if (IS_GEN5(dev))
3907 return;
3908
3909 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3910 if (IS_GEN6(dev))
3911 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3912 else if (IS_GEN7(dev))
3913 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3914 else
3915 BUG();
3916 }
3917
3918 static bool
3919 intel_enable_blt(struct drm_device *dev)
3920 {
3921 if (!HAS_BLT(dev))
3922 return false;
3923
3924 /* The blitter was dysfunctional on early prototypes */
3925 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3926 DRM_INFO("BLT not supported on this pre-production hardware;"
3927 " graphics performance will be degraded.\n");
3928 return false;
3929 }
3930
3931 return true;
3932 }
3933
3934 int
3935 i915_gem_init_hw(struct drm_device *dev)
3936 {
3937 drm_i915_private_t *dev_priv = dev->dev_private;
3938 int ret;
3939
3940 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3941 return -EIO;
3942
3943 if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3944 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3945
3946 i915_gem_l3_remap(dev);
3947
3948 i915_gem_init_swizzling(dev);
3949
3950 dev_priv->next_seqno = dev_priv->last_seqno = (u32)~0 - 0x1000;
3951
3952 ret = intel_init_render_ring_buffer(dev);
3953 if (ret)
3954 return ret;
3955
3956 if (HAS_BSD(dev)) {
3957 ret = intel_init_bsd_ring_buffer(dev);
3958 if (ret)
3959 goto cleanup_render_ring;
3960 }
3961
3962 if (intel_enable_blt(dev)) {
3963 ret = intel_init_blt_ring_buffer(dev);
3964 if (ret)
3965 goto cleanup_bsd_ring;
3966 }
3967
3968 /*
3969 * XXX: There was some w/a described somewhere suggesting loading
3970 * contexts before PPGTT.
3971 */
3972 i915_gem_context_init(dev);
3973 i915_gem_init_ppgtt(dev);
3974
3975 return 0;
3976
3977 cleanup_bsd_ring:
3978 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3979 cleanup_render_ring:
3980 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3981 return ret;
3982 }
3983
3984 static bool
3985 intel_enable_ppgtt(struct drm_device *dev)
3986 {
3987 if (i915_enable_ppgtt >= 0)
3988 return i915_enable_ppgtt;
3989
3990 #ifdef CONFIG_INTEL_IOMMU
3991 /* Disable ppgtt on SNB if VT-d is on. */
3992 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
3993 return false;
3994 #endif
3995
3996 return true;
3997 }
3998
3999 int i915_gem_init(struct drm_device *dev)
4000 {
4001 struct drm_i915_private *dev_priv = dev->dev_private;
4002 unsigned long gtt_size, mappable_size;
4003 int ret;
4004
4005 gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
4006 mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
4007
4008 mutex_lock(&dev->struct_mutex);
4009 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
4010 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
4011 * aperture accordingly when using aliasing ppgtt. */
4012 gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
4013
4014 i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
4015
4016 ret = i915_gem_init_aliasing_ppgtt(dev);
4017 if (ret) {
4018 mutex_unlock(&dev->struct_mutex);
4019 return ret;
4020 }
4021 } else {
4022 /* Let GEM Manage all of the aperture.
4023 *
4024 * However, leave one page at the end still bound to the scratch
4025 * page. There are a number of places where the hardware
4026 * apparently prefetches past the end of the object, and we've
4027 * seen multiple hangs with the GPU head pointer stuck in a
4028 * batchbuffer bound at the last page of the aperture. One page
4029 * should be enough to keep any prefetching inside of the
4030 * aperture.
4031 */
4032 i915_gem_init_global_gtt(dev, 0, mappable_size,
4033 gtt_size);
4034 }
4035
4036 ret = i915_gem_init_hw(dev);
4037 mutex_unlock(&dev->struct_mutex);
4038 if (ret) {
4039 i915_gem_cleanup_aliasing_ppgtt(dev);
4040 return ret;
4041 }
4042
4043 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4044 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4045 dev_priv->dri1.allow_batchbuffer = 1;
4046 return 0;
4047 }
4048
4049 void
4050 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4051 {
4052 drm_i915_private_t *dev_priv = dev->dev_private;
4053 struct intel_ring_buffer *ring;
4054 int i;
4055
4056 for_each_ring(ring, dev_priv, i)
4057 intel_cleanup_ring_buffer(ring);
4058 }
4059
4060 int
4061 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4062 struct drm_file *file_priv)
4063 {
4064 drm_i915_private_t *dev_priv = dev->dev_private;
4065 int ret;
4066
4067 if (drm_core_check_feature(dev, DRIVER_MODESET))
4068 return 0;
4069
4070 if (atomic_read(&dev_priv->mm.wedged)) {
4071 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4072 atomic_set(&dev_priv->mm.wedged, 0);
4073 }
4074
4075 mutex_lock(&dev->struct_mutex);
4076 dev_priv->mm.suspended = 0;
4077
4078 ret = i915_gem_init_hw(dev);
4079 if (ret != 0) {
4080 mutex_unlock(&dev->struct_mutex);
4081 return ret;
4082 }
4083
4084 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4085 mutex_unlock(&dev->struct_mutex);
4086
4087 ret = drm_irq_install(dev);
4088 if (ret)
4089 goto cleanup_ringbuffer;
4090
4091 return 0;
4092
4093 cleanup_ringbuffer:
4094 mutex_lock(&dev->struct_mutex);
4095 i915_gem_cleanup_ringbuffer(dev);
4096 dev_priv->mm.suspended = 1;
4097 mutex_unlock(&dev->struct_mutex);
4098
4099 return ret;
4100 }
4101
4102 int
4103 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4104 struct drm_file *file_priv)
4105 {
4106 if (drm_core_check_feature(dev, DRIVER_MODESET))
4107 return 0;
4108
4109 drm_irq_uninstall(dev);
4110 return i915_gem_idle(dev);
4111 }
4112
4113 void
4114 i915_gem_lastclose(struct drm_device *dev)
4115 {
4116 int ret;
4117
4118 if (drm_core_check_feature(dev, DRIVER_MODESET))
4119 return;
4120
4121 ret = i915_gem_idle(dev);
4122 if (ret)
4123 DRM_ERROR("failed to idle hardware: %d\n", ret);
4124 }
4125
4126 static void
4127 init_ring_lists(struct intel_ring_buffer *ring)
4128 {
4129 INIT_LIST_HEAD(&ring->active_list);
4130 INIT_LIST_HEAD(&ring->request_list);
4131 }
4132
4133 void
4134 i915_gem_load(struct drm_device *dev)
4135 {
4136 drm_i915_private_t *dev_priv = dev->dev_private;
4137 int i;
4138
4139 dev_priv->slab =
4140 kmem_cache_create("i915_gem_object",
4141 sizeof(struct drm_i915_gem_object), 0,
4142 SLAB_HWCACHE_ALIGN,
4143 NULL);
4144
4145 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4146 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4147 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4148 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4149 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4150 for (i = 0; i < I915_NUM_RINGS; i++)
4151 init_ring_lists(&dev_priv->ring[i]);
4152 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4153 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4154 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4155 i915_gem_retire_work_handler);
4156 init_completion(&dev_priv->error_completion);
4157
4158 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4159 if (IS_GEN3(dev)) {
4160 I915_WRITE(MI_ARB_STATE,
4161 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4162 }
4163
4164 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4165
4166 /* Old X drivers will take 0-2 for front, back, depth buffers */
4167 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4168 dev_priv->fence_reg_start = 3;
4169
4170 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4171 dev_priv->num_fence_regs = 16;
4172 else
4173 dev_priv->num_fence_regs = 8;
4174
4175 /* Initialize fence registers to zero */
4176 i915_gem_reset_fences(dev);
4177
4178 i915_gem_detect_bit_6_swizzle(dev);
4179 init_waitqueue_head(&dev_priv->pending_flip_queue);
4180
4181 dev_priv->mm.interruptible = true;
4182
4183 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4184 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4185 register_shrinker(&dev_priv->mm.inactive_shrinker);
4186 }
4187
4188 /*
4189 * Create a physically contiguous memory object for this object
4190 * e.g. for cursor + overlay regs
4191 */
4192 static int i915_gem_init_phys_object(struct drm_device *dev,
4193 int id, int size, int align)
4194 {
4195 drm_i915_private_t *dev_priv = dev->dev_private;
4196 struct drm_i915_gem_phys_object *phys_obj;
4197 int ret;
4198
4199 if (dev_priv->mm.phys_objs[id - 1] || !size)
4200 return 0;
4201
4202 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4203 if (!phys_obj)
4204 return -ENOMEM;
4205
4206 phys_obj->id = id;
4207
4208 phys_obj->handle = drm_pci_alloc(dev, size, align);
4209 if (!phys_obj->handle) {
4210 ret = -ENOMEM;
4211 goto kfree_obj;
4212 }
4213 #ifdef CONFIG_X86
4214 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4215 #endif
4216
4217 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4218
4219 return 0;
4220 kfree_obj:
4221 kfree(phys_obj);
4222 return ret;
4223 }
4224
4225 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4226 {
4227 drm_i915_private_t *dev_priv = dev->dev_private;
4228 struct drm_i915_gem_phys_object *phys_obj;
4229
4230 if (!dev_priv->mm.phys_objs[id - 1])
4231 return;
4232
4233 phys_obj = dev_priv->mm.phys_objs[id - 1];
4234 if (phys_obj->cur_obj) {
4235 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4236 }
4237
4238 #ifdef CONFIG_X86
4239 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4240 #endif
4241 drm_pci_free(dev, phys_obj->handle);
4242 kfree(phys_obj);
4243 dev_priv->mm.phys_objs[id - 1] = NULL;
4244 }
4245
4246 void i915_gem_free_all_phys_object(struct drm_device *dev)
4247 {
4248 int i;
4249
4250 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4251 i915_gem_free_phys_object(dev, i);
4252 }
4253
4254 void i915_gem_detach_phys_object(struct drm_device *dev,
4255 struct drm_i915_gem_object *obj)
4256 {
4257 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4258 char *vaddr;
4259 int i;
4260 int page_count;
4261
4262 if (!obj->phys_obj)
4263 return;
4264 vaddr = obj->phys_obj->handle->vaddr;
4265
4266 page_count = obj->base.size / PAGE_SIZE;
4267 for (i = 0; i < page_count; i++) {
4268 struct page *page = shmem_read_mapping_page(mapping, i);
4269 if (!IS_ERR(page)) {
4270 char *dst = kmap_atomic(page);
4271 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4272 kunmap_atomic(dst);
4273
4274 drm_clflush_pages(&page, 1);
4275
4276 set_page_dirty(page);
4277 mark_page_accessed(page);
4278 page_cache_release(page);
4279 }
4280 }
4281 i915_gem_chipset_flush(dev);
4282
4283 obj->phys_obj->cur_obj = NULL;
4284 obj->phys_obj = NULL;
4285 }
4286
4287 int
4288 i915_gem_attach_phys_object(struct drm_device *dev,
4289 struct drm_i915_gem_object *obj,
4290 int id,
4291 int align)
4292 {
4293 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
4294 drm_i915_private_t *dev_priv = dev->dev_private;
4295 int ret = 0;
4296 int page_count;
4297 int i;
4298
4299 if (id > I915_MAX_PHYS_OBJECT)
4300 return -EINVAL;
4301
4302 if (obj->phys_obj) {
4303 if (obj->phys_obj->id == id)
4304 return 0;
4305 i915_gem_detach_phys_object(dev, obj);
4306 }
4307
4308 /* create a new object */
4309 if (!dev_priv->mm.phys_objs[id - 1]) {
4310 ret = i915_gem_init_phys_object(dev, id,
4311 obj->base.size, align);
4312 if (ret) {
4313 DRM_ERROR("failed to init phys object %d size: %zu\n",
4314 id, obj->base.size);
4315 return ret;
4316 }
4317 }
4318
4319 /* bind to the object */
4320 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4321 obj->phys_obj->cur_obj = obj;
4322
4323 page_count = obj->base.size / PAGE_SIZE;
4324
4325 for (i = 0; i < page_count; i++) {
4326 struct page *page;
4327 char *dst, *src;
4328
4329 page = shmem_read_mapping_page(mapping, i);
4330 if (IS_ERR(page))
4331 return PTR_ERR(page);
4332
4333 src = kmap_atomic(page);
4334 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4335 memcpy(dst, src, PAGE_SIZE);
4336 kunmap_atomic(src);
4337
4338 mark_page_accessed(page);
4339 page_cache_release(page);
4340 }
4341
4342 return 0;
4343 }
4344
4345 static int
4346 i915_gem_phys_pwrite(struct drm_device *dev,
4347 struct drm_i915_gem_object *obj,
4348 struct drm_i915_gem_pwrite *args,
4349 struct drm_file *file_priv)
4350 {
4351 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4352 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4353
4354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4355 unsigned long unwritten;
4356
4357 /* The physical object once assigned is fixed for the lifetime
4358 * of the obj, so we can safely drop the lock and continue
4359 * to access vaddr.
4360 */
4361 mutex_unlock(&dev->struct_mutex);
4362 unwritten = copy_from_user(vaddr, user_data, args->size);
4363 mutex_lock(&dev->struct_mutex);
4364 if (unwritten)
4365 return -EFAULT;
4366 }
4367
4368 i915_gem_chipset_flush(dev);
4369 return 0;
4370 }
4371
4372 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4373 {
4374 struct drm_i915_file_private *file_priv = file->driver_priv;
4375
4376 /* Clean up our request list when the client is going away, so that
4377 * later retire_requests won't dereference our soon-to-be-gone
4378 * file_priv.
4379 */
4380 spin_lock(&file_priv->mm.lock);
4381 while (!list_empty(&file_priv->mm.request_list)) {
4382 struct drm_i915_gem_request *request;
4383
4384 request = list_first_entry(&file_priv->mm.request_list,
4385 struct drm_i915_gem_request,
4386 client_list);
4387 list_del(&request->client_list);
4388 request->file_priv = NULL;
4389 }
4390 spin_unlock(&file_priv->mm.lock);
4391 }
4392
4393 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4394 {
4395 if (!mutex_is_locked(mutex))
4396 return false;
4397
4398 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4399 return mutex->owner == task;
4400 #else
4401 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4402 return false;
4403 #endif
4404 }
4405
4406 static int
4407 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4408 {
4409 struct drm_i915_private *dev_priv =
4410 container_of(shrinker,
4411 struct drm_i915_private,
4412 mm.inactive_shrinker);
4413 struct drm_device *dev = dev_priv->dev;
4414 struct drm_i915_gem_object *obj;
4415 int nr_to_scan = sc->nr_to_scan;
4416 bool unlock = true;
4417 int cnt;
4418
4419 if (!mutex_trylock(&dev->struct_mutex)) {
4420 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4421 return 0;
4422
4423 unlock = false;
4424 }
4425
4426 if (nr_to_scan) {
4427 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4428 if (nr_to_scan > 0)
4429 i915_gem_shrink_all(dev_priv);
4430 }
4431
4432 cnt = 0;
4433 list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4434 if (obj->pages_pin_count == 0)
4435 cnt += obj->base.size >> PAGE_SHIFT;
4436 list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
4437 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4438 cnt += obj->base.size >> PAGE_SHIFT;
4439
4440 if (unlock)
4441 mutex_unlock(&dev->struct_mutex);
4442 return cnt;
4443 }