]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
84fa24e6cca84cbb8807d5cd2cb5aea272832da8
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35
36 struct change_domains {
37 uint32_t invalidate_domains;
38 uint32_t flush_domains;
39 uint32_t flush_rings;
40 };
41
42 /*
43 * Set the next domain for the specified object. This
44 * may not actually perform the necessary flushing/invaliding though,
45 * as that may want to be batched with other set_domain operations
46 *
47 * This is (we hope) the only really tricky part of gem. The goal
48 * is fairly simple -- track which caches hold bits of the object
49 * and make sure they remain coherent. A few concrete examples may
50 * help to explain how it works. For shorthand, we use the notation
51 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
52 * a pair of read and write domain masks.
53 *
54 * Case 1: the batch buffer
55 *
56 * 1. Allocated
57 * 2. Written by CPU
58 * 3. Mapped to GTT
59 * 4. Read by GPU
60 * 5. Unmapped from GTT
61 * 6. Freed
62 *
63 * Let's take these a step at a time
64 *
65 * 1. Allocated
66 * Pages allocated from the kernel may still have
67 * cache contents, so we set them to (CPU, CPU) always.
68 * 2. Written by CPU (using pwrite)
69 * The pwrite function calls set_domain (CPU, CPU) and
70 * this function does nothing (as nothing changes)
71 * 3. Mapped by GTT
72 * This function asserts that the object is not
73 * currently in any GPU-based read or write domains
74 * 4. Read by GPU
75 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
76 * As write_domain is zero, this function adds in the
77 * current read domains (CPU+COMMAND, 0).
78 * flush_domains is set to CPU.
79 * invalidate_domains is set to COMMAND
80 * clflush is run to get data out of the CPU caches
81 * then i915_dev_set_domain calls i915_gem_flush to
82 * emit an MI_FLUSH and drm_agp_chipset_flush
83 * 5. Unmapped from GTT
84 * i915_gem_object_unbind calls set_domain (CPU, CPU)
85 * flush_domains and invalidate_domains end up both zero
86 * so no flushing/invalidating happens
87 * 6. Freed
88 * yay, done
89 *
90 * Case 2: The shared render buffer
91 *
92 * 1. Allocated
93 * 2. Mapped to GTT
94 * 3. Read/written by GPU
95 * 4. set_domain to (CPU,CPU)
96 * 5. Read/written by CPU
97 * 6. Read/written by GPU
98 *
99 * 1. Allocated
100 * Same as last example, (CPU, CPU)
101 * 2. Mapped to GTT
102 * Nothing changes (assertions find that it is not in the GPU)
103 * 3. Read/written by GPU
104 * execbuffer calls set_domain (RENDER, RENDER)
105 * flush_domains gets CPU
106 * invalidate_domains gets GPU
107 * clflush (obj)
108 * MI_FLUSH and drm_agp_chipset_flush
109 * 4. set_domain (CPU, CPU)
110 * flush_domains gets GPU
111 * invalidate_domains gets CPU
112 * wait_rendering (obj) to make sure all drawing is complete.
113 * This will include an MI_FLUSH to get the data from GPU
114 * to memory
115 * clflush (obj) to invalidate the CPU cache
116 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
117 * 5. Read/written by CPU
118 * cache lines are loaded and dirtied
119 * 6. Read written by GPU
120 * Same as last GPU access
121 *
122 * Case 3: The constant buffer
123 *
124 * 1. Allocated
125 * 2. Written by CPU
126 * 3. Read by GPU
127 * 4. Updated (written) by CPU again
128 * 5. Read by GPU
129 *
130 * 1. Allocated
131 * (CPU, CPU)
132 * 2. Written by CPU
133 * (CPU, CPU)
134 * 3. Read by GPU
135 * (CPU+RENDER, 0)
136 * flush_domains = CPU
137 * invalidate_domains = RENDER
138 * clflush (obj)
139 * MI_FLUSH
140 * drm_agp_chipset_flush
141 * 4. Updated (written) by CPU again
142 * (CPU, CPU)
143 * flush_domains = 0 (no previous write domain)
144 * invalidate_domains = 0 (no new read domains)
145 * 5. Read by GPU
146 * (CPU+RENDER, 0)
147 * flush_domains = CPU
148 * invalidate_domains = RENDER
149 * clflush (obj)
150 * MI_FLUSH
151 * drm_agp_chipset_flush
152 */
153 static void
154 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
155 struct intel_ring_buffer *ring,
156 struct change_domains *cd)
157 {
158 uint32_t invalidate_domains = 0, flush_domains = 0;
159
160 /*
161 * If the object isn't moving to a new write domain,
162 * let the object stay in multiple read domains
163 */
164 if (obj->base.pending_write_domain == 0)
165 obj->base.pending_read_domains |= obj->base.read_domains;
166
167 /*
168 * Flush the current write domain if
169 * the new read domains don't match. Invalidate
170 * any read domains which differ from the old
171 * write domain
172 */
173 if (obj->base.write_domain &&
174 (((obj->base.write_domain != obj->base.pending_read_domains ||
175 obj->ring != ring)) ||
176 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
177 flush_domains |= obj->base.write_domain;
178 invalidate_domains |=
179 obj->base.pending_read_domains & ~obj->base.write_domain;
180 }
181 /*
182 * Invalidate any read caches which may have
183 * stale data. That is, any new read domains.
184 */
185 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
186 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
187 i915_gem_clflush_object(obj);
188
189 /* blow away mappings if mapped through GTT */
190 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
191 i915_gem_release_mmap(obj);
192
193 /* The actual obj->write_domain will be updated with
194 * pending_write_domain after we emit the accumulated flush for all
195 * of our domain changes in execbuffers (which clears objects'
196 * write_domains). So if we have a current write domain that we
197 * aren't changing, set pending_write_domain to that.
198 */
199 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
200 obj->base.pending_write_domain = obj->base.write_domain;
201
202 cd->invalidate_domains |= invalidate_domains;
203 cd->flush_domains |= flush_domains;
204 if (flush_domains & I915_GEM_GPU_DOMAINS)
205 cd->flush_rings |= obj->ring->id;
206 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
207 cd->flush_rings |= ring->id;
208 }
209
210 struct eb_objects {
211 int and;
212 struct hlist_head buckets[0];
213 };
214
215 static struct eb_objects *
216 eb_create(int size)
217 {
218 struct eb_objects *eb;
219 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
220 while (count > size)
221 count >>= 1;
222 eb = kzalloc(count*sizeof(struct hlist_head) +
223 sizeof(struct eb_objects),
224 GFP_KERNEL);
225 if (eb == NULL)
226 return eb;
227
228 eb->and = count - 1;
229 return eb;
230 }
231
232 static void
233 eb_reset(struct eb_objects *eb)
234 {
235 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
236 }
237
238 static void
239 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
240 {
241 hlist_add_head(&obj->exec_node,
242 &eb->buckets[obj->exec_handle & eb->and]);
243 }
244
245 static struct drm_i915_gem_object *
246 eb_get_object(struct eb_objects *eb, unsigned long handle)
247 {
248 struct hlist_head *head;
249 struct hlist_node *node;
250 struct drm_i915_gem_object *obj;
251
252 head = &eb->buckets[handle & eb->and];
253 hlist_for_each(node, head) {
254 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
255 if (obj->exec_handle == handle)
256 return obj;
257 }
258
259 return NULL;
260 }
261
262 static void
263 eb_destroy(struct eb_objects *eb)
264 {
265 kfree(eb);
266 }
267
268 static int
269 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
270 struct eb_objects *eb,
271 struct drm_i915_gem_relocation_entry *reloc)
272 {
273 struct drm_device *dev = obj->base.dev;
274 struct drm_gem_object *target_obj;
275 uint32_t target_offset;
276 int ret = -EINVAL;
277
278 /* we've already hold a reference to all valid objects */
279 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
280 if (unlikely(target_obj == NULL))
281 return -ENOENT;
282
283 target_offset = to_intel_bo(target_obj)->gtt_offset;
284
285 /* The target buffer should have appeared before us in the
286 * exec_object list, so it should have a GTT space bound by now.
287 */
288 if (unlikely(target_offset == 0)) {
289 DRM_ERROR("No GTT space found for object %d\n",
290 reloc->target_handle);
291 return ret;
292 }
293
294 /* Validate that the target is in a valid r/w GPU domain */
295 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
296 DRM_ERROR("reloc with multiple write domains: "
297 "obj %p target %d offset %d "
298 "read %08x write %08x",
299 obj, reloc->target_handle,
300 (int) reloc->offset,
301 reloc->read_domains,
302 reloc->write_domain);
303 return ret;
304 }
305 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
306 DRM_ERROR("reloc with read/write CPU domains: "
307 "obj %p target %d offset %d "
308 "read %08x write %08x",
309 obj, reloc->target_handle,
310 (int) reloc->offset,
311 reloc->read_domains,
312 reloc->write_domain);
313 return ret;
314 }
315 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
316 reloc->write_domain != target_obj->pending_write_domain)) {
317 DRM_ERROR("Write domain conflict: "
318 "obj %p target %d offset %d "
319 "new %08x old %08x\n",
320 obj, reloc->target_handle,
321 (int) reloc->offset,
322 reloc->write_domain,
323 target_obj->pending_write_domain);
324 return ret;
325 }
326
327 target_obj->pending_read_domains |= reloc->read_domains;
328 target_obj->pending_write_domain |= reloc->write_domain;
329
330 /* If the relocation already has the right value in it, no
331 * more work needs to be done.
332 */
333 if (target_offset == reloc->presumed_offset)
334 return 0;
335
336 /* Check that the relocation address is valid... */
337 if (unlikely(reloc->offset > obj->base.size - 4)) {
338 DRM_ERROR("Relocation beyond object bounds: "
339 "obj %p target %d offset %d size %d.\n",
340 obj, reloc->target_handle,
341 (int) reloc->offset,
342 (int) obj->base.size);
343 return ret;
344 }
345 if (unlikely(reloc->offset & 3)) {
346 DRM_ERROR("Relocation not 4-byte aligned: "
347 "obj %p target %d offset %d.\n",
348 obj, reloc->target_handle,
349 (int) reloc->offset);
350 return ret;
351 }
352
353 /* and points to somewhere within the target object. */
354 if (unlikely(reloc->delta >= target_obj->size)) {
355 DRM_ERROR("Relocation beyond target object bounds: "
356 "obj %p target %d delta %d size %d.\n",
357 obj, reloc->target_handle,
358 (int) reloc->delta,
359 (int) target_obj->size);
360 return ret;
361 }
362
363 reloc->delta += target_offset;
364 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
365 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
366 char *vaddr;
367
368 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
369 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
370 kunmap_atomic(vaddr);
371 } else {
372 struct drm_i915_private *dev_priv = dev->dev_private;
373 uint32_t __iomem *reloc_entry;
374 void __iomem *reloc_page;
375
376 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
377 if (ret)
378 return ret;
379
380 /* Map the page containing the relocation we're going to perform. */
381 reloc->offset += obj->gtt_offset;
382 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
383 reloc->offset & PAGE_MASK);
384 reloc_entry = (uint32_t __iomem *)
385 (reloc_page + (reloc->offset & ~PAGE_MASK));
386 iowrite32(reloc->delta, reloc_entry);
387 io_mapping_unmap_atomic(reloc_page);
388 }
389
390 /* and update the user's relocation entry */
391 reloc->presumed_offset = target_offset;
392
393 return 0;
394 }
395
396 static int
397 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
398 struct eb_objects *eb)
399 {
400 struct drm_i915_gem_relocation_entry __user *user_relocs;
401 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
402 int i, ret;
403
404 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
405 for (i = 0; i < entry->relocation_count; i++) {
406 struct drm_i915_gem_relocation_entry reloc;
407
408 if (__copy_from_user_inatomic(&reloc,
409 user_relocs+i,
410 sizeof(reloc)))
411 return -EFAULT;
412
413 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
414 if (ret)
415 return ret;
416
417 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
418 &reloc.presumed_offset,
419 sizeof(reloc.presumed_offset)))
420 return -EFAULT;
421 }
422
423 return 0;
424 }
425
426 static int
427 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
428 struct eb_objects *eb,
429 struct drm_i915_gem_relocation_entry *relocs)
430 {
431 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
432 int i, ret;
433
434 for (i = 0; i < entry->relocation_count; i++) {
435 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
436 if (ret)
437 return ret;
438 }
439
440 return 0;
441 }
442
443 static int
444 i915_gem_execbuffer_relocate(struct drm_device *dev,
445 struct eb_objects *eb,
446 struct list_head *objects)
447 {
448 struct drm_i915_gem_object *obj;
449 int ret;
450
451 list_for_each_entry(obj, objects, exec_list) {
452 ret = i915_gem_execbuffer_relocate_object(obj, eb);
453 if (ret)
454 return ret;
455 }
456
457 return 0;
458 }
459
460 static int
461 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
462 struct drm_file *file,
463 struct list_head *objects)
464 {
465 struct drm_i915_gem_object *obj;
466 int ret, retry;
467 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
468 struct list_head ordered_objects;
469
470 INIT_LIST_HEAD(&ordered_objects);
471 while (!list_empty(objects)) {
472 struct drm_i915_gem_exec_object2 *entry;
473 bool need_fence, need_mappable;
474
475 obj = list_first_entry(objects,
476 struct drm_i915_gem_object,
477 exec_list);
478 entry = obj->exec_entry;
479
480 need_fence =
481 has_fenced_gpu_access &&
482 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
483 obj->tiling_mode != I915_TILING_NONE;
484 need_mappable =
485 entry->relocation_count ? true : need_fence;
486
487 if (need_mappable)
488 list_move(&obj->exec_list, &ordered_objects);
489 else
490 list_move_tail(&obj->exec_list, &ordered_objects);
491
492 obj->base.pending_read_domains = 0;
493 obj->base.pending_write_domain = 0;
494 }
495 list_splice(&ordered_objects, objects);
496
497 /* Attempt to pin all of the buffers into the GTT.
498 * This is done in 3 phases:
499 *
500 * 1a. Unbind all objects that do not match the GTT constraints for
501 * the execbuffer (fenceable, mappable, alignment etc).
502 * 1b. Increment pin count for already bound objects.
503 * 2. Bind new objects.
504 * 3. Decrement pin count.
505 *
506 * This avoid unnecessary unbinding of later objects in order to makr
507 * room for the earlier objects *unless* we need to defragment.
508 */
509 retry = 0;
510 do {
511 ret = 0;
512
513 /* Unbind any ill-fitting objects or pin. */
514 list_for_each_entry(obj, objects, exec_list) {
515 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
516 bool need_fence, need_mappable;
517 if (!obj->gtt_space)
518 continue;
519
520 need_fence =
521 has_fenced_gpu_access &&
522 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
523 obj->tiling_mode != I915_TILING_NONE;
524 need_mappable =
525 entry->relocation_count ? true : need_fence;
526
527 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
528 (need_mappable && !obj->map_and_fenceable))
529 ret = i915_gem_object_unbind(obj);
530 else
531 ret = i915_gem_object_pin(obj,
532 entry->alignment,
533 need_mappable);
534 if (ret)
535 goto err;
536
537 entry++;
538 }
539
540 /* Bind fresh objects */
541 list_for_each_entry(obj, objects, exec_list) {
542 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
543 bool need_fence;
544
545 need_fence =
546 has_fenced_gpu_access &&
547 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
548 obj->tiling_mode != I915_TILING_NONE;
549
550 if (!obj->gtt_space) {
551 bool need_mappable =
552 entry->relocation_count ? true : need_fence;
553
554 ret = i915_gem_object_pin(obj,
555 entry->alignment,
556 need_mappable);
557 if (ret)
558 break;
559 }
560
561 if (has_fenced_gpu_access) {
562 if (need_fence) {
563 ret = i915_gem_object_get_fence(obj, ring, 1);
564 if (ret)
565 break;
566 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
567 obj->tiling_mode == I915_TILING_NONE) {
568 /* XXX pipelined! */
569 ret = i915_gem_object_put_fence(obj);
570 if (ret)
571 break;
572 }
573 obj->pending_fenced_gpu_access = need_fence;
574 }
575
576 entry->offset = obj->gtt_offset;
577 }
578
579 /* Decrement pin count for bound objects */
580 list_for_each_entry(obj, objects, exec_list) {
581 if (obj->gtt_space)
582 i915_gem_object_unpin(obj);
583 }
584
585 if (ret != -ENOSPC || retry > 1)
586 return ret;
587
588 /* First attempt, just clear anything that is purgeable.
589 * Second attempt, clear the entire GTT.
590 */
591 ret = i915_gem_evict_everything(ring->dev, retry == 0);
592 if (ret)
593 return ret;
594
595 retry++;
596 } while (1);
597
598 err:
599 obj = list_entry(obj->exec_list.prev,
600 struct drm_i915_gem_object,
601 exec_list);
602 while (objects != &obj->exec_list) {
603 if (obj->gtt_space)
604 i915_gem_object_unpin(obj);
605
606 obj = list_entry(obj->exec_list.prev,
607 struct drm_i915_gem_object,
608 exec_list);
609 }
610
611 return ret;
612 }
613
614 static int
615 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
616 struct drm_file *file,
617 struct intel_ring_buffer *ring,
618 struct list_head *objects,
619 struct eb_objects *eb,
620 struct drm_i915_gem_exec_object2 *exec,
621 int count)
622 {
623 struct drm_i915_gem_relocation_entry *reloc;
624 struct drm_i915_gem_object *obj;
625 int *reloc_offset;
626 int i, total, ret;
627
628 /* We may process another execbuffer during the unlock... */
629 while (!list_empty(objects)) {
630 obj = list_first_entry(objects,
631 struct drm_i915_gem_object,
632 exec_list);
633 list_del_init(&obj->exec_list);
634 drm_gem_object_unreference(&obj->base);
635 }
636
637 mutex_unlock(&dev->struct_mutex);
638
639 total = 0;
640 for (i = 0; i < count; i++)
641 total += exec[i].relocation_count;
642
643 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
644 reloc = drm_malloc_ab(total, sizeof(*reloc));
645 if (reloc == NULL || reloc_offset == NULL) {
646 drm_free_large(reloc);
647 drm_free_large(reloc_offset);
648 mutex_lock(&dev->struct_mutex);
649 return -ENOMEM;
650 }
651
652 total = 0;
653 for (i = 0; i < count; i++) {
654 struct drm_i915_gem_relocation_entry __user *user_relocs;
655
656 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
657
658 if (copy_from_user(reloc+total, user_relocs,
659 exec[i].relocation_count * sizeof(*reloc))) {
660 ret = -EFAULT;
661 mutex_lock(&dev->struct_mutex);
662 goto err;
663 }
664
665 reloc_offset[i] = total;
666 total += exec[i].relocation_count;
667 }
668
669 ret = i915_mutex_lock_interruptible(dev);
670 if (ret) {
671 mutex_lock(&dev->struct_mutex);
672 goto err;
673 }
674
675 /* reacquire the objects */
676 eb_reset(eb);
677 for (i = 0; i < count; i++) {
678 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
679 exec[i].handle));
680 if (obj == NULL) {
681 DRM_ERROR("Invalid object handle %d at index %d\n",
682 exec[i].handle, i);
683 ret = -ENOENT;
684 goto err;
685 }
686
687 list_add_tail(&obj->exec_list, objects);
688 obj->exec_handle = exec[i].handle;
689 obj->exec_entry = &exec[i];
690 eb_add_object(eb, obj);
691 }
692
693 ret = i915_gem_execbuffer_reserve(ring, file, objects);
694 if (ret)
695 goto err;
696
697 list_for_each_entry(obj, objects, exec_list) {
698 int offset = obj->exec_entry - exec;
699 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
700 reloc + reloc_offset[offset]);
701 if (ret)
702 goto err;
703 }
704
705 /* Leave the user relocations as are, this is the painfully slow path,
706 * and we want to avoid the complication of dropping the lock whilst
707 * having buffers reserved in the aperture and so causing spurious
708 * ENOSPC for random operations.
709 */
710
711 err:
712 drm_free_large(reloc);
713 drm_free_large(reloc_offset);
714 return ret;
715 }
716
717 static int
718 i915_gem_execbuffer_flush(struct drm_device *dev,
719 uint32_t invalidate_domains,
720 uint32_t flush_domains,
721 uint32_t flush_rings)
722 {
723 drm_i915_private_t *dev_priv = dev->dev_private;
724 int i, ret;
725
726 if (flush_domains & I915_GEM_DOMAIN_CPU)
727 intel_gtt_chipset_flush();
728
729 if (flush_domains & I915_GEM_DOMAIN_GTT)
730 wmb();
731
732 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
733 for (i = 0; i < I915_NUM_RINGS; i++)
734 if (flush_rings & (1 << i)) {
735 ret = i915_gem_flush_ring(&dev_priv->ring[i],
736 invalidate_domains,
737 flush_domains);
738 if (ret)
739 return ret;
740 }
741 }
742
743 return 0;
744 }
745
746 static int
747 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
748 struct intel_ring_buffer *to)
749 {
750 struct intel_ring_buffer *from = obj->ring;
751 u32 seqno;
752 int ret, idx;
753
754 if (from == NULL || to == from)
755 return 0;
756
757 /* XXX gpu semaphores are currently causing hard hangs on SNB mobile */
758 if (INTEL_INFO(obj->base.dev)->gen < 6 || IS_MOBILE(obj->base.dev))
759 return i915_gem_object_wait_rendering(obj, true);
760
761 idx = intel_ring_sync_index(from, to);
762
763 seqno = obj->last_rendering_seqno;
764 if (seqno <= from->sync_seqno[idx])
765 return 0;
766
767 if (seqno == from->outstanding_lazy_request) {
768 struct drm_i915_gem_request *request;
769
770 request = kzalloc(sizeof(*request), GFP_KERNEL);
771 if (request == NULL)
772 return -ENOMEM;
773
774 ret = i915_add_request(from, NULL, request);
775 if (ret) {
776 kfree(request);
777 return ret;
778 }
779
780 seqno = request->seqno;
781 }
782
783 from->sync_seqno[idx] = seqno;
784 return intel_ring_sync(to, from, seqno - 1);
785 }
786
787 static int
788 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
789 struct list_head *objects)
790 {
791 struct drm_i915_gem_object *obj;
792 struct change_domains cd;
793 int ret;
794
795 cd.invalidate_domains = 0;
796 cd.flush_domains = 0;
797 cd.flush_rings = 0;
798 list_for_each_entry(obj, objects, exec_list)
799 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
800
801 if (cd.invalidate_domains | cd.flush_domains) {
802 ret = i915_gem_execbuffer_flush(ring->dev,
803 cd.invalidate_domains,
804 cd.flush_domains,
805 cd.flush_rings);
806 if (ret)
807 return ret;
808 }
809
810 list_for_each_entry(obj, objects, exec_list) {
811 ret = i915_gem_execbuffer_sync_rings(obj, ring);
812 if (ret)
813 return ret;
814 }
815
816 return 0;
817 }
818
819 static bool
820 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
821 {
822 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
823 }
824
825 static int
826 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
827 int count)
828 {
829 int i;
830
831 for (i = 0; i < count; i++) {
832 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
833 int length; /* limited by fault_in_pages_readable() */
834
835 /* First check for malicious input causing overflow */
836 if (exec[i].relocation_count >
837 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
838 return -EINVAL;
839
840 length = exec[i].relocation_count *
841 sizeof(struct drm_i915_gem_relocation_entry);
842 if (!access_ok(VERIFY_READ, ptr, length))
843 return -EFAULT;
844
845 /* we may also need to update the presumed offsets */
846 if (!access_ok(VERIFY_WRITE, ptr, length))
847 return -EFAULT;
848
849 if (fault_in_pages_readable(ptr, length))
850 return -EFAULT;
851 }
852
853 return 0;
854 }
855
856 static int
857 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring,
858 struct list_head *objects)
859 {
860 struct drm_i915_gem_object *obj;
861 int flips;
862
863 /* Check for any pending flips. As we only maintain a flip queue depth
864 * of 1, we can simply insert a WAIT for the next display flip prior
865 * to executing the batch and avoid stalling the CPU.
866 */
867 flips = 0;
868 list_for_each_entry(obj, objects, exec_list) {
869 if (obj->base.write_domain)
870 flips |= atomic_read(&obj->pending_flip);
871 }
872 if (flips) {
873 int plane, flip_mask, ret;
874
875 for (plane = 0; flips >> plane; plane++) {
876 if (((flips >> plane) & 1) == 0)
877 continue;
878
879 if (plane)
880 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
881 else
882 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
883
884 ret = intel_ring_begin(ring, 2);
885 if (ret)
886 return ret;
887
888 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
889 intel_ring_emit(ring, MI_NOOP);
890 intel_ring_advance(ring);
891 }
892 }
893
894 return 0;
895 }
896
897 static void
898 i915_gem_execbuffer_move_to_active(struct list_head *objects,
899 struct intel_ring_buffer *ring,
900 u32 seqno)
901 {
902 struct drm_i915_gem_object *obj;
903
904 list_for_each_entry(obj, objects, exec_list) {
905 u32 old_read = obj->base.read_domains;
906 u32 old_write = obj->base.write_domain;
907
908
909 obj->base.read_domains = obj->base.pending_read_domains;
910 obj->base.write_domain = obj->base.pending_write_domain;
911 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
912
913 i915_gem_object_move_to_active(obj, ring, seqno);
914 if (obj->base.write_domain) {
915 obj->dirty = 1;
916 obj->pending_gpu_write = true;
917 list_move_tail(&obj->gpu_write_list,
918 &ring->gpu_write_list);
919 intel_mark_busy(ring->dev, obj);
920 }
921
922 trace_i915_gem_object_change_domain(obj, old_read, old_write);
923 }
924 }
925
926 static void
927 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
928 struct drm_file *file,
929 struct intel_ring_buffer *ring)
930 {
931 struct drm_i915_gem_request *request;
932 u32 invalidate;
933
934 /*
935 * Ensure that the commands in the batch buffer are
936 * finished before the interrupt fires.
937 *
938 * The sampler always gets flushed on i965 (sigh).
939 */
940 invalidate = I915_GEM_DOMAIN_COMMAND;
941 if (INTEL_INFO(dev)->gen >= 4)
942 invalidate |= I915_GEM_DOMAIN_SAMPLER;
943 if (ring->flush(ring, invalidate, 0)) {
944 i915_gem_next_request_seqno(ring);
945 return;
946 }
947
948 /* Add a breadcrumb for the completion of the batch buffer */
949 request = kzalloc(sizeof(*request), GFP_KERNEL);
950 if (request == NULL || i915_add_request(ring, file, request)) {
951 i915_gem_next_request_seqno(ring);
952 kfree(request);
953 }
954 }
955
956 static int
957 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
958 struct drm_file *file,
959 struct drm_i915_gem_execbuffer2 *args,
960 struct drm_i915_gem_exec_object2 *exec)
961 {
962 drm_i915_private_t *dev_priv = dev->dev_private;
963 struct list_head objects;
964 struct eb_objects *eb;
965 struct drm_i915_gem_object *batch_obj;
966 struct drm_clip_rect *cliprects = NULL;
967 struct intel_ring_buffer *ring;
968 u32 exec_start, exec_len;
969 u32 seqno;
970 int ret, mode, i;
971
972 if (!i915_gem_check_execbuffer(args)) {
973 DRM_ERROR("execbuf with invalid offset/length\n");
974 return -EINVAL;
975 }
976
977 ret = validate_exec_list(exec, args->buffer_count);
978 if (ret)
979 return ret;
980
981 switch (args->flags & I915_EXEC_RING_MASK) {
982 case I915_EXEC_DEFAULT:
983 case I915_EXEC_RENDER:
984 ring = &dev_priv->ring[RCS];
985 break;
986 case I915_EXEC_BSD:
987 if (!HAS_BSD(dev)) {
988 DRM_ERROR("execbuf with invalid ring (BSD)\n");
989 return -EINVAL;
990 }
991 ring = &dev_priv->ring[VCS];
992 break;
993 case I915_EXEC_BLT:
994 if (!HAS_BLT(dev)) {
995 DRM_ERROR("execbuf with invalid ring (BLT)\n");
996 return -EINVAL;
997 }
998 ring = &dev_priv->ring[BCS];
999 break;
1000 default:
1001 DRM_ERROR("execbuf with unknown ring: %d\n",
1002 (int)(args->flags & I915_EXEC_RING_MASK));
1003 return -EINVAL;
1004 }
1005
1006 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1007 switch (mode) {
1008 case I915_EXEC_CONSTANTS_REL_GENERAL:
1009 case I915_EXEC_CONSTANTS_ABSOLUTE:
1010 case I915_EXEC_CONSTANTS_REL_SURFACE:
1011 if (ring == &dev_priv->ring[RCS] &&
1012 mode != dev_priv->relative_constants_mode) {
1013 if (INTEL_INFO(dev)->gen < 4)
1014 return -EINVAL;
1015
1016 if (INTEL_INFO(dev)->gen > 5 &&
1017 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1018 return -EINVAL;
1019
1020 ret = intel_ring_begin(ring, 4);
1021 if (ret)
1022 return ret;
1023
1024 intel_ring_emit(ring, MI_NOOP);
1025 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1026 intel_ring_emit(ring, INSTPM);
1027 intel_ring_emit(ring,
1028 I915_EXEC_CONSTANTS_MASK << 16 | mode);
1029 intel_ring_advance(ring);
1030
1031 dev_priv->relative_constants_mode = mode;
1032 }
1033 break;
1034 default:
1035 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1036 return -EINVAL;
1037 }
1038
1039 if (args->buffer_count < 1) {
1040 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1041 return -EINVAL;
1042 }
1043
1044 if (args->num_cliprects != 0) {
1045 if (ring != &dev_priv->ring[RCS]) {
1046 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1047 return -EINVAL;
1048 }
1049
1050 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1051 GFP_KERNEL);
1052 if (cliprects == NULL) {
1053 ret = -ENOMEM;
1054 goto pre_mutex_err;
1055 }
1056
1057 if (copy_from_user(cliprects,
1058 (struct drm_clip_rect __user *)(uintptr_t)
1059 args->cliprects_ptr,
1060 sizeof(*cliprects)*args->num_cliprects)) {
1061 ret = -EFAULT;
1062 goto pre_mutex_err;
1063 }
1064 }
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto pre_mutex_err;
1069
1070 if (dev_priv->mm.suspended) {
1071 mutex_unlock(&dev->struct_mutex);
1072 ret = -EBUSY;
1073 goto pre_mutex_err;
1074 }
1075
1076 eb = eb_create(args->buffer_count);
1077 if (eb == NULL) {
1078 mutex_unlock(&dev->struct_mutex);
1079 ret = -ENOMEM;
1080 goto pre_mutex_err;
1081 }
1082
1083 /* Look up object handles */
1084 INIT_LIST_HEAD(&objects);
1085 for (i = 0; i < args->buffer_count; i++) {
1086 struct drm_i915_gem_object *obj;
1087
1088 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1089 exec[i].handle));
1090 if (obj == NULL) {
1091 DRM_ERROR("Invalid object handle %d at index %d\n",
1092 exec[i].handle, i);
1093 /* prevent error path from reading uninitialized data */
1094 ret = -ENOENT;
1095 goto err;
1096 }
1097
1098 if (!list_empty(&obj->exec_list)) {
1099 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1100 obj, exec[i].handle, i);
1101 ret = -EINVAL;
1102 goto err;
1103 }
1104
1105 list_add_tail(&obj->exec_list, &objects);
1106 obj->exec_handle = exec[i].handle;
1107 obj->exec_entry = &exec[i];
1108 eb_add_object(eb, obj);
1109 }
1110
1111 /* take note of the batch buffer before we might reorder the lists */
1112 batch_obj = list_entry(objects.prev,
1113 struct drm_i915_gem_object,
1114 exec_list);
1115
1116 /* Move the objects en-masse into the GTT, evicting if necessary. */
1117 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1118 if (ret)
1119 goto err;
1120
1121 /* The objects are in their final locations, apply the relocations. */
1122 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1123 if (ret) {
1124 if (ret == -EFAULT) {
1125 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1126 &objects, eb,
1127 exec,
1128 args->buffer_count);
1129 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1130 }
1131 if (ret)
1132 goto err;
1133 }
1134
1135 /* Set the pending read domains for the batch buffer to COMMAND */
1136 if (batch_obj->base.pending_write_domain) {
1137 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1138 ret = -EINVAL;
1139 goto err;
1140 }
1141 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1142
1143 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1144 if (ret)
1145 goto err;
1146
1147 ret = i915_gem_execbuffer_wait_for_flips(ring, &objects);
1148 if (ret)
1149 goto err;
1150
1151 seqno = i915_gem_next_request_seqno(ring);
1152 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1153 if (seqno < ring->sync_seqno[i]) {
1154 /* The GPU can not handle its semaphore value wrapping,
1155 * so every billion or so execbuffers, we need to stall
1156 * the GPU in order to reset the counters.
1157 */
1158 ret = i915_gpu_idle(dev);
1159 if (ret)
1160 goto err;
1161
1162 BUG_ON(ring->sync_seqno[i]);
1163 }
1164 }
1165
1166 trace_i915_gem_ring_dispatch(ring, seqno);
1167
1168 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1169 exec_len = args->batch_len;
1170 if (cliprects) {
1171 for (i = 0; i < args->num_cliprects; i++) {
1172 ret = i915_emit_box(dev, &cliprects[i],
1173 args->DR1, args->DR4);
1174 if (ret)
1175 goto err;
1176
1177 ret = ring->dispatch_execbuffer(ring,
1178 exec_start, exec_len);
1179 if (ret)
1180 goto err;
1181 }
1182 } else {
1183 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1184 if (ret)
1185 goto err;
1186 }
1187
1188 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1189 i915_gem_execbuffer_retire_commands(dev, file, ring);
1190
1191 err:
1192 eb_destroy(eb);
1193 while (!list_empty(&objects)) {
1194 struct drm_i915_gem_object *obj;
1195
1196 obj = list_first_entry(&objects,
1197 struct drm_i915_gem_object,
1198 exec_list);
1199 list_del_init(&obj->exec_list);
1200 drm_gem_object_unreference(&obj->base);
1201 }
1202
1203 mutex_unlock(&dev->struct_mutex);
1204
1205 pre_mutex_err:
1206 kfree(cliprects);
1207 return ret;
1208 }
1209
1210 /*
1211 * Legacy execbuffer just creates an exec2 list from the original exec object
1212 * list array and passes it to the real function.
1213 */
1214 int
1215 i915_gem_execbuffer(struct drm_device *dev, void *data,
1216 struct drm_file *file)
1217 {
1218 struct drm_i915_gem_execbuffer *args = data;
1219 struct drm_i915_gem_execbuffer2 exec2;
1220 struct drm_i915_gem_exec_object *exec_list = NULL;
1221 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1222 int ret, i;
1223
1224 if (args->buffer_count < 1) {
1225 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1226 return -EINVAL;
1227 }
1228
1229 /* Copy in the exec list from userland */
1230 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1231 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1232 if (exec_list == NULL || exec2_list == NULL) {
1233 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1234 args->buffer_count);
1235 drm_free_large(exec_list);
1236 drm_free_large(exec2_list);
1237 return -ENOMEM;
1238 }
1239 ret = copy_from_user(exec_list,
1240 (struct drm_i915_relocation_entry __user *)
1241 (uintptr_t) args->buffers_ptr,
1242 sizeof(*exec_list) * args->buffer_count);
1243 if (ret != 0) {
1244 DRM_ERROR("copy %d exec entries failed %d\n",
1245 args->buffer_count, ret);
1246 drm_free_large(exec_list);
1247 drm_free_large(exec2_list);
1248 return -EFAULT;
1249 }
1250
1251 for (i = 0; i < args->buffer_count; i++) {
1252 exec2_list[i].handle = exec_list[i].handle;
1253 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1254 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1255 exec2_list[i].alignment = exec_list[i].alignment;
1256 exec2_list[i].offset = exec_list[i].offset;
1257 if (INTEL_INFO(dev)->gen < 4)
1258 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1259 else
1260 exec2_list[i].flags = 0;
1261 }
1262
1263 exec2.buffers_ptr = args->buffers_ptr;
1264 exec2.buffer_count = args->buffer_count;
1265 exec2.batch_start_offset = args->batch_start_offset;
1266 exec2.batch_len = args->batch_len;
1267 exec2.DR1 = args->DR1;
1268 exec2.DR4 = args->DR4;
1269 exec2.num_cliprects = args->num_cliprects;
1270 exec2.cliprects_ptr = args->cliprects_ptr;
1271 exec2.flags = I915_EXEC_RENDER;
1272
1273 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1274 if (!ret) {
1275 /* Copy the new buffer offsets back to the user's exec list. */
1276 for (i = 0; i < args->buffer_count; i++)
1277 exec_list[i].offset = exec2_list[i].offset;
1278 /* ... and back out to userspace */
1279 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1280 (uintptr_t) args->buffers_ptr,
1281 exec_list,
1282 sizeof(*exec_list) * args->buffer_count);
1283 if (ret) {
1284 ret = -EFAULT;
1285 DRM_ERROR("failed to copy %d exec entries "
1286 "back to user (%d)\n",
1287 args->buffer_count, ret);
1288 }
1289 }
1290
1291 drm_free_large(exec_list);
1292 drm_free_large(exec2_list);
1293 return ret;
1294 }
1295
1296 int
1297 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1298 struct drm_file *file)
1299 {
1300 struct drm_i915_gem_execbuffer2 *args = data;
1301 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1302 int ret;
1303
1304 if (args->buffer_count < 1) {
1305 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1306 return -EINVAL;
1307 }
1308
1309 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1310 if (exec2_list == NULL) {
1311 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1312 args->buffer_count);
1313 return -ENOMEM;
1314 }
1315 ret = copy_from_user(exec2_list,
1316 (struct drm_i915_relocation_entry __user *)
1317 (uintptr_t) args->buffers_ptr,
1318 sizeof(*exec2_list) * args->buffer_count);
1319 if (ret != 0) {
1320 DRM_ERROR("copy %d exec entries failed %d\n",
1321 args->buffer_count, ret);
1322 drm_free_large(exec2_list);
1323 return -EFAULT;
1324 }
1325
1326 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1327 if (!ret) {
1328 /* Copy the new buffer offsets back to the user's exec list. */
1329 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1330 (uintptr_t) args->buffers_ptr,
1331 exec2_list,
1332 sizeof(*exec2_list) * args->buffer_count);
1333 if (ret) {
1334 ret = -EFAULT;
1335 DRM_ERROR("failed to copy %d exec entries "
1336 "back to user (%d)\n",
1337 args->buffer_count, ret);
1338 }
1339 }
1340
1341 drm_free_large(exec2_list);
1342 return ret;
1343 }