]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
Merge tag 'drm-intel-next-2012-02-07' of git://people.freedesktop.org/~danvet/drm...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
36
37 struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
42 };
43
44 /*
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
48 *
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
55 *
56 * Case 1: the batch buffer
57 *
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
64 *
65 * Let's take these a step at a time
66 *
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
91 *
92 * Case 2: The shared render buffer
93 *
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
100 *
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
123 *
124 * Case 3: The constant buffer
125 *
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
131 *
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
154 */
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
159 {
160 uint32_t invalidate_domains = 0, flush_domains = 0;
161
162 /*
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
165 */
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
168
169 /*
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
174 */
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
182 }
183 /*
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
186 */
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
190
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
193
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
199 */
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
202
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= intel_ring_flag(obj->ring);
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= intel_ring_flag(ring);
209 }
210
211 struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
214 };
215
216 static struct eb_objects *
217 eb_create(int size)
218 {
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
228
229 eb->and = count - 1;
230 return eb;
231 }
232
233 static void
234 eb_reset(struct eb_objects *eb)
235 {
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
237 }
238
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
241 {
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
244 }
245
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
248 {
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
252
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
258 }
259
260 return NULL;
261 }
262
263 static void
264 eb_destroy(struct eb_objects *eb)
265 {
266 kfree(eb);
267 }
268
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271 struct eb_objects *eb,
272 struct drm_i915_gem_relocation_entry *reloc)
273 {
274 struct drm_device *dev = obj->base.dev;
275 struct drm_gem_object *target_obj;
276 uint32_t target_offset;
277 int ret = -EINVAL;
278
279 /* we've already hold a reference to all valid objects */
280 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281 if (unlikely(target_obj == NULL))
282 return -ENOENT;
283
284 target_offset = to_intel_bo(target_obj)->gtt_offset;
285
286 /* The target buffer should have appeared before us in the
287 * exec_object list, so it should have a GTT space bound by now.
288 */
289 if (unlikely(target_offset == 0)) {
290 DRM_ERROR("No GTT space found for object %d\n",
291 reloc->target_handle);
292 return ret;
293 }
294
295 /* Validate that the target is in a valid r/w GPU domain */
296 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297 DRM_ERROR("reloc with multiple write domains: "
298 "obj %p target %d offset %d "
299 "read %08x write %08x",
300 obj, reloc->target_handle,
301 (int) reloc->offset,
302 reloc->read_domains,
303 reloc->write_domain);
304 return ret;
305 }
306 if (unlikely((reloc->write_domain | reloc->read_domains)
307 & ~I915_GEM_GPU_DOMAINS)) {
308 DRM_ERROR("reloc with read/write non-GPU domains: "
309 "obj %p target %d offset %d "
310 "read %08x write %08x",
311 obj, reloc->target_handle,
312 (int) reloc->offset,
313 reloc->read_domains,
314 reloc->write_domain);
315 return ret;
316 }
317 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
318 reloc->write_domain != target_obj->pending_write_domain)) {
319 DRM_ERROR("Write domain conflict: "
320 "obj %p target %d offset %d "
321 "new %08x old %08x\n",
322 obj, reloc->target_handle,
323 (int) reloc->offset,
324 reloc->write_domain,
325 target_obj->pending_write_domain);
326 return ret;
327 }
328
329 target_obj->pending_read_domains |= reloc->read_domains;
330 target_obj->pending_write_domain |= reloc->write_domain;
331
332 /* If the relocation already has the right value in it, no
333 * more work needs to be done.
334 */
335 if (target_offset == reloc->presumed_offset)
336 return 0;
337
338 /* Check that the relocation address is valid... */
339 if (unlikely(reloc->offset > obj->base.size - 4)) {
340 DRM_ERROR("Relocation beyond object bounds: "
341 "obj %p target %d offset %d size %d.\n",
342 obj, reloc->target_handle,
343 (int) reloc->offset,
344 (int) obj->base.size);
345 return ret;
346 }
347 if (unlikely(reloc->offset & 3)) {
348 DRM_ERROR("Relocation not 4-byte aligned: "
349 "obj %p target %d offset %d.\n",
350 obj, reloc->target_handle,
351 (int) reloc->offset);
352 return ret;
353 }
354
355 reloc->delta += target_offset;
356 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
357 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
358 char *vaddr;
359
360 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
361 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
362 kunmap_atomic(vaddr);
363 } else {
364 struct drm_i915_private *dev_priv = dev->dev_private;
365 uint32_t __iomem *reloc_entry;
366 void __iomem *reloc_page;
367
368 /* We can't wait for rendering with pagefaults disabled */
369 if (obj->active && in_atomic())
370 return -EFAULT;
371
372 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
373 if (ret)
374 return ret;
375
376 /* Map the page containing the relocation we're going to perform. */
377 reloc->offset += obj->gtt_offset;
378 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
379 reloc->offset & PAGE_MASK);
380 reloc_entry = (uint32_t __iomem *)
381 (reloc_page + (reloc->offset & ~PAGE_MASK));
382 iowrite32(reloc->delta, reloc_entry);
383 io_mapping_unmap_atomic(reloc_page);
384 }
385
386 /* and update the user's relocation entry */
387 reloc->presumed_offset = target_offset;
388
389 return 0;
390 }
391
392 static int
393 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
394 struct eb_objects *eb)
395 {
396 struct drm_i915_gem_relocation_entry __user *user_relocs;
397 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
398 int i, ret;
399
400 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
401 for (i = 0; i < entry->relocation_count; i++) {
402 struct drm_i915_gem_relocation_entry reloc;
403
404 if (__copy_from_user_inatomic(&reloc,
405 user_relocs+i,
406 sizeof(reloc)))
407 return -EFAULT;
408
409 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
410 if (ret)
411 return ret;
412
413 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
414 &reloc.presumed_offset,
415 sizeof(reloc.presumed_offset)))
416 return -EFAULT;
417 }
418
419 return 0;
420 }
421
422 static int
423 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
424 struct eb_objects *eb,
425 struct drm_i915_gem_relocation_entry *relocs)
426 {
427 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
428 int i, ret;
429
430 for (i = 0; i < entry->relocation_count; i++) {
431 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
432 if (ret)
433 return ret;
434 }
435
436 return 0;
437 }
438
439 static int
440 i915_gem_execbuffer_relocate(struct drm_device *dev,
441 struct eb_objects *eb,
442 struct list_head *objects)
443 {
444 struct drm_i915_gem_object *obj;
445 int ret = 0;
446
447 /* This is the fast path and we cannot handle a pagefault whilst
448 * holding the struct mutex lest the user pass in the relocations
449 * contained within a mmaped bo. For in such a case we, the page
450 * fault handler would call i915_gem_fault() and we would try to
451 * acquire the struct mutex again. Obviously this is bad and so
452 * lockdep complains vehemently.
453 */
454 pagefault_disable();
455 list_for_each_entry(obj, objects, exec_list) {
456 ret = i915_gem_execbuffer_relocate_object(obj, eb);
457 if (ret)
458 break;
459 }
460 pagefault_enable();
461
462 return ret;
463 }
464
465 #define __EXEC_OBJECT_HAS_FENCE (1<<31)
466
467 static int
468 pin_and_fence_object(struct drm_i915_gem_object *obj,
469 struct intel_ring_buffer *ring)
470 {
471 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
472 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
473 bool need_fence, need_mappable;
474 int ret;
475
476 need_fence =
477 has_fenced_gpu_access &&
478 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
479 obj->tiling_mode != I915_TILING_NONE;
480 need_mappable =
481 entry->relocation_count ? true : need_fence;
482
483 ret = i915_gem_object_pin(obj, entry->alignment, need_mappable);
484 if (ret)
485 return ret;
486
487 if (has_fenced_gpu_access) {
488 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
489 if (obj->tiling_mode) {
490 ret = i915_gem_object_get_fence(obj, ring);
491 if (ret)
492 goto err_unpin;
493
494 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
495 i915_gem_object_pin_fence(obj);
496 } else {
497 ret = i915_gem_object_put_fence(obj);
498 if (ret)
499 goto err_unpin;
500 }
501 }
502 obj->pending_fenced_gpu_access = need_fence;
503 }
504
505 entry->offset = obj->gtt_offset;
506 return 0;
507
508 err_unpin:
509 i915_gem_object_unpin(obj);
510 return ret;
511 }
512
513 static int
514 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
515 struct drm_file *file,
516 struct list_head *objects)
517 {
518 struct drm_i915_gem_object *obj;
519 int ret, retry;
520 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
521 struct list_head ordered_objects;
522
523 INIT_LIST_HEAD(&ordered_objects);
524 while (!list_empty(objects)) {
525 struct drm_i915_gem_exec_object2 *entry;
526 bool need_fence, need_mappable;
527
528 obj = list_first_entry(objects,
529 struct drm_i915_gem_object,
530 exec_list);
531 entry = obj->exec_entry;
532
533 need_fence =
534 has_fenced_gpu_access &&
535 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
536 obj->tiling_mode != I915_TILING_NONE;
537 need_mappable =
538 entry->relocation_count ? true : need_fence;
539
540 if (need_mappable)
541 list_move(&obj->exec_list, &ordered_objects);
542 else
543 list_move_tail(&obj->exec_list, &ordered_objects);
544
545 obj->base.pending_read_domains = 0;
546 obj->base.pending_write_domain = 0;
547 }
548 list_splice(&ordered_objects, objects);
549
550 /* Attempt to pin all of the buffers into the GTT.
551 * This is done in 3 phases:
552 *
553 * 1a. Unbind all objects that do not match the GTT constraints for
554 * the execbuffer (fenceable, mappable, alignment etc).
555 * 1b. Increment pin count for already bound objects.
556 * 2. Bind new objects.
557 * 3. Decrement pin count.
558 *
559 * This avoid unnecessary unbinding of later objects in order to makr
560 * room for the earlier objects *unless* we need to defragment.
561 */
562 retry = 0;
563 do {
564 ret = 0;
565
566 /* Unbind any ill-fitting objects or pin. */
567 list_for_each_entry(obj, objects, exec_list) {
568 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
569 bool need_fence, need_mappable;
570
571 if (!obj->gtt_space)
572 continue;
573
574 need_fence =
575 has_fenced_gpu_access &&
576 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
577 obj->tiling_mode != I915_TILING_NONE;
578 need_mappable =
579 entry->relocation_count ? true : need_fence;
580
581 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
582 (need_mappable && !obj->map_and_fenceable))
583 ret = i915_gem_object_unbind(obj);
584 else
585 ret = pin_and_fence_object(obj, ring);
586 if (ret)
587 goto err;
588 }
589
590 /* Bind fresh objects */
591 list_for_each_entry(obj, objects, exec_list) {
592 if (obj->gtt_space)
593 continue;
594
595 ret = pin_and_fence_object(obj, ring);
596 if (ret) {
597 int ret_ignore;
598
599 /* This can potentially raise a harmless
600 * -EINVAL if we failed to bind in the above
601 * call. It cannot raise -EINTR since we know
602 * that the bo is freshly bound and so will
603 * not need to be flushed or waited upon.
604 */
605 ret_ignore = i915_gem_object_unbind(obj);
606 (void)ret_ignore;
607 WARN_ON(obj->gtt_space);
608 break;
609 }
610 }
611
612 /* Decrement pin count for bound objects */
613 list_for_each_entry(obj, objects, exec_list) {
614 struct drm_i915_gem_exec_object2 *entry;
615
616 if (!obj->gtt_space)
617 continue;
618
619 entry = obj->exec_entry;
620 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
621 i915_gem_object_unpin_fence(obj);
622 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
623 }
624
625 i915_gem_object_unpin(obj);
626 }
627
628 if (ret != -ENOSPC || retry > 1)
629 return ret;
630
631 /* First attempt, just clear anything that is purgeable.
632 * Second attempt, clear the entire GTT.
633 */
634 ret = i915_gem_evict_everything(ring->dev, retry == 0);
635 if (ret)
636 return ret;
637
638 retry++;
639 } while (1);
640
641 err:
642 list_for_each_entry_continue_reverse(obj, objects, exec_list) {
643 struct drm_i915_gem_exec_object2 *entry;
644
645 if (!obj->gtt_space)
646 continue;
647
648 entry = obj->exec_entry;
649 if (entry->flags & __EXEC_OBJECT_HAS_FENCE) {
650 i915_gem_object_unpin_fence(obj);
651 entry->flags &= ~__EXEC_OBJECT_HAS_FENCE;
652 }
653
654 i915_gem_object_unpin(obj);
655 }
656
657 return ret;
658 }
659
660 static int
661 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
662 struct drm_file *file,
663 struct intel_ring_buffer *ring,
664 struct list_head *objects,
665 struct eb_objects *eb,
666 struct drm_i915_gem_exec_object2 *exec,
667 int count)
668 {
669 struct drm_i915_gem_relocation_entry *reloc;
670 struct drm_i915_gem_object *obj;
671 int *reloc_offset;
672 int i, total, ret;
673
674 /* We may process another execbuffer during the unlock... */
675 while (!list_empty(objects)) {
676 obj = list_first_entry(objects,
677 struct drm_i915_gem_object,
678 exec_list);
679 list_del_init(&obj->exec_list);
680 drm_gem_object_unreference(&obj->base);
681 }
682
683 mutex_unlock(&dev->struct_mutex);
684
685 total = 0;
686 for (i = 0; i < count; i++)
687 total += exec[i].relocation_count;
688
689 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
690 reloc = drm_malloc_ab(total, sizeof(*reloc));
691 if (reloc == NULL || reloc_offset == NULL) {
692 drm_free_large(reloc);
693 drm_free_large(reloc_offset);
694 mutex_lock(&dev->struct_mutex);
695 return -ENOMEM;
696 }
697
698 total = 0;
699 for (i = 0; i < count; i++) {
700 struct drm_i915_gem_relocation_entry __user *user_relocs;
701
702 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
703
704 if (copy_from_user(reloc+total, user_relocs,
705 exec[i].relocation_count * sizeof(*reloc))) {
706 ret = -EFAULT;
707 mutex_lock(&dev->struct_mutex);
708 goto err;
709 }
710
711 reloc_offset[i] = total;
712 total += exec[i].relocation_count;
713 }
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret) {
717 mutex_lock(&dev->struct_mutex);
718 goto err;
719 }
720
721 /* reacquire the objects */
722 eb_reset(eb);
723 for (i = 0; i < count; i++) {
724 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
725 exec[i].handle));
726 if (&obj->base == NULL) {
727 DRM_ERROR("Invalid object handle %d at index %d\n",
728 exec[i].handle, i);
729 ret = -ENOENT;
730 goto err;
731 }
732
733 list_add_tail(&obj->exec_list, objects);
734 obj->exec_handle = exec[i].handle;
735 obj->exec_entry = &exec[i];
736 eb_add_object(eb, obj);
737 }
738
739 ret = i915_gem_execbuffer_reserve(ring, file, objects);
740 if (ret)
741 goto err;
742
743 list_for_each_entry(obj, objects, exec_list) {
744 int offset = obj->exec_entry - exec;
745 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
746 reloc + reloc_offset[offset]);
747 if (ret)
748 goto err;
749 }
750
751 /* Leave the user relocations as are, this is the painfully slow path,
752 * and we want to avoid the complication of dropping the lock whilst
753 * having buffers reserved in the aperture and so causing spurious
754 * ENOSPC for random operations.
755 */
756
757 err:
758 drm_free_large(reloc);
759 drm_free_large(reloc_offset);
760 return ret;
761 }
762
763 static int
764 i915_gem_execbuffer_flush(struct drm_device *dev,
765 uint32_t invalidate_domains,
766 uint32_t flush_domains,
767 uint32_t flush_rings)
768 {
769 drm_i915_private_t *dev_priv = dev->dev_private;
770 int i, ret;
771
772 if (flush_domains & I915_GEM_DOMAIN_CPU)
773 intel_gtt_chipset_flush();
774
775 if (flush_domains & I915_GEM_DOMAIN_GTT)
776 wmb();
777
778 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
779 for (i = 0; i < I915_NUM_RINGS; i++)
780 if (flush_rings & (1 << i)) {
781 ret = i915_gem_flush_ring(&dev_priv->ring[i],
782 invalidate_domains,
783 flush_domains);
784 if (ret)
785 return ret;
786 }
787 }
788
789 return 0;
790 }
791
792 static bool
793 intel_enable_semaphores(struct drm_device *dev)
794 {
795 if (INTEL_INFO(dev)->gen < 6)
796 return 0;
797
798 if (i915_semaphores >= 0)
799 return i915_semaphores;
800
801 /* Disable semaphores on SNB */
802 if (INTEL_INFO(dev)->gen == 6)
803 return 0;
804
805 return 1;
806 }
807
808 static int
809 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
810 struct intel_ring_buffer *to)
811 {
812 struct intel_ring_buffer *from = obj->ring;
813 u32 seqno;
814 int ret, idx;
815
816 if (from == NULL || to == from)
817 return 0;
818
819 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
820 if (!intel_enable_semaphores(obj->base.dev))
821 return i915_gem_object_wait_rendering(obj);
822
823 idx = intel_ring_sync_index(from, to);
824
825 seqno = obj->last_rendering_seqno;
826 if (seqno <= from->sync_seqno[idx])
827 return 0;
828
829 if (seqno == from->outstanding_lazy_request) {
830 struct drm_i915_gem_request *request;
831
832 request = kzalloc(sizeof(*request), GFP_KERNEL);
833 if (request == NULL)
834 return -ENOMEM;
835
836 ret = i915_add_request(from, NULL, request);
837 if (ret) {
838 kfree(request);
839 return ret;
840 }
841
842 seqno = request->seqno;
843 }
844
845 from->sync_seqno[idx] = seqno;
846
847 return to->sync_to(to, from, seqno - 1);
848 }
849
850 static int
851 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
852 {
853 u32 plane, flip_mask;
854 int ret;
855
856 /* Check for any pending flips. As we only maintain a flip queue depth
857 * of 1, we can simply insert a WAIT for the next display flip prior
858 * to executing the batch and avoid stalling the CPU.
859 */
860
861 for (plane = 0; flips >> plane; plane++) {
862 if (((flips >> plane) & 1) == 0)
863 continue;
864
865 if (plane)
866 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
867 else
868 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
869
870 ret = intel_ring_begin(ring, 2);
871 if (ret)
872 return ret;
873
874 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
875 intel_ring_emit(ring, MI_NOOP);
876 intel_ring_advance(ring);
877 }
878
879 return 0;
880 }
881
882
883 static int
884 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
885 struct list_head *objects)
886 {
887 struct drm_i915_gem_object *obj;
888 struct change_domains cd;
889 int ret;
890
891 memset(&cd, 0, sizeof(cd));
892 list_for_each_entry(obj, objects, exec_list)
893 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
894
895 if (cd.invalidate_domains | cd.flush_domains) {
896 ret = i915_gem_execbuffer_flush(ring->dev,
897 cd.invalidate_domains,
898 cd.flush_domains,
899 cd.flush_rings);
900 if (ret)
901 return ret;
902 }
903
904 if (cd.flips) {
905 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
906 if (ret)
907 return ret;
908 }
909
910 list_for_each_entry(obj, objects, exec_list) {
911 ret = i915_gem_execbuffer_sync_rings(obj, ring);
912 if (ret)
913 return ret;
914 }
915
916 return 0;
917 }
918
919 static bool
920 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
921 {
922 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
923 }
924
925 static int
926 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
927 int count)
928 {
929 int i;
930
931 for (i = 0; i < count; i++) {
932 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
933 int length; /* limited by fault_in_pages_readable() */
934
935 /* First check for malicious input causing overflow */
936 if (exec[i].relocation_count >
937 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
938 return -EINVAL;
939
940 length = exec[i].relocation_count *
941 sizeof(struct drm_i915_gem_relocation_entry);
942 if (!access_ok(VERIFY_READ, ptr, length))
943 return -EFAULT;
944
945 /* we may also need to update the presumed offsets */
946 if (!access_ok(VERIFY_WRITE, ptr, length))
947 return -EFAULT;
948
949 if (fault_in_pages_readable(ptr, length))
950 return -EFAULT;
951 }
952
953 return 0;
954 }
955
956 static void
957 i915_gem_execbuffer_move_to_active(struct list_head *objects,
958 struct intel_ring_buffer *ring,
959 u32 seqno)
960 {
961 struct drm_i915_gem_object *obj;
962
963 list_for_each_entry(obj, objects, exec_list) {
964 u32 old_read = obj->base.read_domains;
965 u32 old_write = obj->base.write_domain;
966
967
968 obj->base.read_domains = obj->base.pending_read_domains;
969 obj->base.write_domain = obj->base.pending_write_domain;
970 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
971
972 i915_gem_object_move_to_active(obj, ring, seqno);
973 if (obj->base.write_domain) {
974 obj->dirty = 1;
975 obj->pending_gpu_write = true;
976 list_move_tail(&obj->gpu_write_list,
977 &ring->gpu_write_list);
978 intel_mark_busy(ring->dev, obj);
979 }
980
981 trace_i915_gem_object_change_domain(obj, old_read, old_write);
982 }
983 }
984
985 static void
986 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
987 struct drm_file *file,
988 struct intel_ring_buffer *ring)
989 {
990 struct drm_i915_gem_request *request;
991 u32 invalidate;
992
993 /*
994 * Ensure that the commands in the batch buffer are
995 * finished before the interrupt fires.
996 *
997 * The sampler always gets flushed on i965 (sigh).
998 */
999 invalidate = I915_GEM_DOMAIN_COMMAND;
1000 if (INTEL_INFO(dev)->gen >= 4)
1001 invalidate |= I915_GEM_DOMAIN_SAMPLER;
1002 if (ring->flush(ring, invalidate, 0)) {
1003 i915_gem_next_request_seqno(ring);
1004 return;
1005 }
1006
1007 /* Add a breadcrumb for the completion of the batch buffer */
1008 request = kzalloc(sizeof(*request), GFP_KERNEL);
1009 if (request == NULL || i915_add_request(ring, file, request)) {
1010 i915_gem_next_request_seqno(ring);
1011 kfree(request);
1012 }
1013 }
1014
1015 static int
1016 i915_reset_gen7_sol_offsets(struct drm_device *dev,
1017 struct intel_ring_buffer *ring)
1018 {
1019 drm_i915_private_t *dev_priv = dev->dev_private;
1020 int ret, i;
1021
1022 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
1023 return 0;
1024
1025 ret = intel_ring_begin(ring, 4 * 3);
1026 if (ret)
1027 return ret;
1028
1029 for (i = 0; i < 4; i++) {
1030 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1031 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
1032 intel_ring_emit(ring, 0);
1033 }
1034
1035 intel_ring_advance(ring);
1036
1037 return 0;
1038 }
1039
1040 static int
1041 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1042 struct drm_file *file,
1043 struct drm_i915_gem_execbuffer2 *args,
1044 struct drm_i915_gem_exec_object2 *exec)
1045 {
1046 drm_i915_private_t *dev_priv = dev->dev_private;
1047 struct list_head objects;
1048 struct eb_objects *eb;
1049 struct drm_i915_gem_object *batch_obj;
1050 struct drm_clip_rect *cliprects = NULL;
1051 struct intel_ring_buffer *ring;
1052 u32 exec_start, exec_len;
1053 u32 seqno;
1054 u32 mask;
1055 int ret, mode, i;
1056
1057 if (!i915_gem_check_execbuffer(args)) {
1058 DRM_ERROR("execbuf with invalid offset/length\n");
1059 return -EINVAL;
1060 }
1061
1062 ret = validate_exec_list(exec, args->buffer_count);
1063 if (ret)
1064 return ret;
1065
1066 switch (args->flags & I915_EXEC_RING_MASK) {
1067 case I915_EXEC_DEFAULT:
1068 case I915_EXEC_RENDER:
1069 ring = &dev_priv->ring[RCS];
1070 break;
1071 case I915_EXEC_BSD:
1072 if (!HAS_BSD(dev)) {
1073 DRM_ERROR("execbuf with invalid ring (BSD)\n");
1074 return -EINVAL;
1075 }
1076 ring = &dev_priv->ring[VCS];
1077 break;
1078 case I915_EXEC_BLT:
1079 if (!HAS_BLT(dev)) {
1080 DRM_ERROR("execbuf with invalid ring (BLT)\n");
1081 return -EINVAL;
1082 }
1083 ring = &dev_priv->ring[BCS];
1084 break;
1085 default:
1086 DRM_ERROR("execbuf with unknown ring: %d\n",
1087 (int)(args->flags & I915_EXEC_RING_MASK));
1088 return -EINVAL;
1089 }
1090
1091 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1092 mask = I915_EXEC_CONSTANTS_MASK;
1093 switch (mode) {
1094 case I915_EXEC_CONSTANTS_REL_GENERAL:
1095 case I915_EXEC_CONSTANTS_ABSOLUTE:
1096 case I915_EXEC_CONSTANTS_REL_SURFACE:
1097 if (ring == &dev_priv->ring[RCS] &&
1098 mode != dev_priv->relative_constants_mode) {
1099 if (INTEL_INFO(dev)->gen < 4)
1100 return -EINVAL;
1101
1102 if (INTEL_INFO(dev)->gen > 5 &&
1103 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1104 return -EINVAL;
1105
1106 /* The HW changed the meaning on this bit on gen6 */
1107 if (INTEL_INFO(dev)->gen >= 6)
1108 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1109 }
1110 break;
1111 default:
1112 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1113 return -EINVAL;
1114 }
1115
1116 if (args->buffer_count < 1) {
1117 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1118 return -EINVAL;
1119 }
1120
1121 if (args->num_cliprects != 0) {
1122 if (ring != &dev_priv->ring[RCS]) {
1123 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1124 return -EINVAL;
1125 }
1126
1127 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1128 GFP_KERNEL);
1129 if (cliprects == NULL) {
1130 ret = -ENOMEM;
1131 goto pre_mutex_err;
1132 }
1133
1134 if (copy_from_user(cliprects,
1135 (struct drm_clip_rect __user *)(uintptr_t)
1136 args->cliprects_ptr,
1137 sizeof(*cliprects)*args->num_cliprects)) {
1138 ret = -EFAULT;
1139 goto pre_mutex_err;
1140 }
1141 }
1142
1143 ret = i915_mutex_lock_interruptible(dev);
1144 if (ret)
1145 goto pre_mutex_err;
1146
1147 if (dev_priv->mm.suspended) {
1148 mutex_unlock(&dev->struct_mutex);
1149 ret = -EBUSY;
1150 goto pre_mutex_err;
1151 }
1152
1153 eb = eb_create(args->buffer_count);
1154 if (eb == NULL) {
1155 mutex_unlock(&dev->struct_mutex);
1156 ret = -ENOMEM;
1157 goto pre_mutex_err;
1158 }
1159
1160 /* Look up object handles */
1161 INIT_LIST_HEAD(&objects);
1162 for (i = 0; i < args->buffer_count; i++) {
1163 struct drm_i915_gem_object *obj;
1164
1165 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1166 exec[i].handle));
1167 if (&obj->base == NULL) {
1168 DRM_ERROR("Invalid object handle %d at index %d\n",
1169 exec[i].handle, i);
1170 /* prevent error path from reading uninitialized data */
1171 ret = -ENOENT;
1172 goto err;
1173 }
1174
1175 if (!list_empty(&obj->exec_list)) {
1176 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1177 obj, exec[i].handle, i);
1178 ret = -EINVAL;
1179 goto err;
1180 }
1181
1182 list_add_tail(&obj->exec_list, &objects);
1183 obj->exec_handle = exec[i].handle;
1184 obj->exec_entry = &exec[i];
1185 eb_add_object(eb, obj);
1186 }
1187
1188 /* take note of the batch buffer before we might reorder the lists */
1189 batch_obj = list_entry(objects.prev,
1190 struct drm_i915_gem_object,
1191 exec_list);
1192
1193 /* Move the objects en-masse into the GTT, evicting if necessary. */
1194 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1195 if (ret)
1196 goto err;
1197
1198 /* The objects are in their final locations, apply the relocations. */
1199 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1200 if (ret) {
1201 if (ret == -EFAULT) {
1202 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1203 &objects, eb,
1204 exec,
1205 args->buffer_count);
1206 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1207 }
1208 if (ret)
1209 goto err;
1210 }
1211
1212 /* Set the pending read domains for the batch buffer to COMMAND */
1213 if (batch_obj->base.pending_write_domain) {
1214 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1215 ret = -EINVAL;
1216 goto err;
1217 }
1218 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1219
1220 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1221 if (ret)
1222 goto err;
1223
1224 seqno = i915_gem_next_request_seqno(ring);
1225 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1226 if (seqno < ring->sync_seqno[i]) {
1227 /* The GPU can not handle its semaphore value wrapping,
1228 * so every billion or so execbuffers, we need to stall
1229 * the GPU in order to reset the counters.
1230 */
1231 ret = i915_gpu_idle(dev, true);
1232 if (ret)
1233 goto err;
1234
1235 BUG_ON(ring->sync_seqno[i]);
1236 }
1237 }
1238
1239 if (ring == &dev_priv->ring[RCS] &&
1240 mode != dev_priv->relative_constants_mode) {
1241 ret = intel_ring_begin(ring, 4);
1242 if (ret)
1243 goto err;
1244
1245 intel_ring_emit(ring, MI_NOOP);
1246 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1247 intel_ring_emit(ring, INSTPM);
1248 intel_ring_emit(ring, mask << 16 | mode);
1249 intel_ring_advance(ring);
1250
1251 dev_priv->relative_constants_mode = mode;
1252 }
1253
1254 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1255 ret = i915_reset_gen7_sol_offsets(dev, ring);
1256 if (ret)
1257 goto err;
1258 }
1259
1260 trace_i915_gem_ring_dispatch(ring, seqno);
1261
1262 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1263 exec_len = args->batch_len;
1264 if (cliprects) {
1265 for (i = 0; i < args->num_cliprects; i++) {
1266 ret = i915_emit_box(dev, &cliprects[i],
1267 args->DR1, args->DR4);
1268 if (ret)
1269 goto err;
1270
1271 ret = ring->dispatch_execbuffer(ring,
1272 exec_start, exec_len);
1273 if (ret)
1274 goto err;
1275 }
1276 } else {
1277 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1278 if (ret)
1279 goto err;
1280 }
1281
1282 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1283 i915_gem_execbuffer_retire_commands(dev, file, ring);
1284
1285 err:
1286 eb_destroy(eb);
1287 while (!list_empty(&objects)) {
1288 struct drm_i915_gem_object *obj;
1289
1290 obj = list_first_entry(&objects,
1291 struct drm_i915_gem_object,
1292 exec_list);
1293 list_del_init(&obj->exec_list);
1294 drm_gem_object_unreference(&obj->base);
1295 }
1296
1297 mutex_unlock(&dev->struct_mutex);
1298
1299 pre_mutex_err:
1300 kfree(cliprects);
1301 return ret;
1302 }
1303
1304 /*
1305 * Legacy execbuffer just creates an exec2 list from the original exec object
1306 * list array and passes it to the real function.
1307 */
1308 int
1309 i915_gem_execbuffer(struct drm_device *dev, void *data,
1310 struct drm_file *file)
1311 {
1312 struct drm_i915_gem_execbuffer *args = data;
1313 struct drm_i915_gem_execbuffer2 exec2;
1314 struct drm_i915_gem_exec_object *exec_list = NULL;
1315 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1316 int ret, i;
1317
1318 if (args->buffer_count < 1) {
1319 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1320 return -EINVAL;
1321 }
1322
1323 /* Copy in the exec list from userland */
1324 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1325 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1326 if (exec_list == NULL || exec2_list == NULL) {
1327 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1328 args->buffer_count);
1329 drm_free_large(exec_list);
1330 drm_free_large(exec2_list);
1331 return -ENOMEM;
1332 }
1333 ret = copy_from_user(exec_list,
1334 (struct drm_i915_relocation_entry __user *)
1335 (uintptr_t) args->buffers_ptr,
1336 sizeof(*exec_list) * args->buffer_count);
1337 if (ret != 0) {
1338 DRM_ERROR("copy %d exec entries failed %d\n",
1339 args->buffer_count, ret);
1340 drm_free_large(exec_list);
1341 drm_free_large(exec2_list);
1342 return -EFAULT;
1343 }
1344
1345 for (i = 0; i < args->buffer_count; i++) {
1346 exec2_list[i].handle = exec_list[i].handle;
1347 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1348 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1349 exec2_list[i].alignment = exec_list[i].alignment;
1350 exec2_list[i].offset = exec_list[i].offset;
1351 if (INTEL_INFO(dev)->gen < 4)
1352 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1353 else
1354 exec2_list[i].flags = 0;
1355 }
1356
1357 exec2.buffers_ptr = args->buffers_ptr;
1358 exec2.buffer_count = args->buffer_count;
1359 exec2.batch_start_offset = args->batch_start_offset;
1360 exec2.batch_len = args->batch_len;
1361 exec2.DR1 = args->DR1;
1362 exec2.DR4 = args->DR4;
1363 exec2.num_cliprects = args->num_cliprects;
1364 exec2.cliprects_ptr = args->cliprects_ptr;
1365 exec2.flags = I915_EXEC_RENDER;
1366
1367 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1368 if (!ret) {
1369 /* Copy the new buffer offsets back to the user's exec list. */
1370 for (i = 0; i < args->buffer_count; i++)
1371 exec_list[i].offset = exec2_list[i].offset;
1372 /* ... and back out to userspace */
1373 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1374 (uintptr_t) args->buffers_ptr,
1375 exec_list,
1376 sizeof(*exec_list) * args->buffer_count);
1377 if (ret) {
1378 ret = -EFAULT;
1379 DRM_ERROR("failed to copy %d exec entries "
1380 "back to user (%d)\n",
1381 args->buffer_count, ret);
1382 }
1383 }
1384
1385 drm_free_large(exec_list);
1386 drm_free_large(exec2_list);
1387 return ret;
1388 }
1389
1390 int
1391 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1392 struct drm_file *file)
1393 {
1394 struct drm_i915_gem_execbuffer2 *args = data;
1395 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1396 int ret;
1397
1398 if (args->buffer_count < 1) {
1399 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1400 return -EINVAL;
1401 }
1402
1403 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1404 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1405 if (exec2_list == NULL)
1406 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1407 args->buffer_count);
1408 if (exec2_list == NULL) {
1409 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1410 args->buffer_count);
1411 return -ENOMEM;
1412 }
1413 ret = copy_from_user(exec2_list,
1414 (struct drm_i915_relocation_entry __user *)
1415 (uintptr_t) args->buffers_ptr,
1416 sizeof(*exec2_list) * args->buffer_count);
1417 if (ret != 0) {
1418 DRM_ERROR("copy %d exec entries failed %d\n",
1419 args->buffer_count, ret);
1420 drm_free_large(exec2_list);
1421 return -EFAULT;
1422 }
1423
1424 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1425 if (!ret) {
1426 /* Copy the new buffer offsets back to the user's exec list. */
1427 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1428 (uintptr_t) args->buffers_ptr,
1429 exec2_list,
1430 sizeof(*exec2_list) * args->buffer_count);
1431 if (ret) {
1432 ret = -EFAULT;
1433 DRM_ERROR("failed to copy %d exec entries "
1434 "back to user (%d)\n",
1435 args->buffer_count, ret);
1436 }
1437 }
1438
1439 drm_free_large(exec2_list);
1440 return ret;
1441 }