]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35
36 #include "i915_drv.h"
37 #include "i915_gem_dmabuf.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include "intel_frontbuffer.h"
41
42 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
43
44 #define __EXEC_OBJECT_HAS_PIN (1<<31)
45 #define __EXEC_OBJECT_HAS_FENCE (1<<30)
46 #define __EXEC_OBJECT_NEEDS_MAP (1<<29)
47 #define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
48 #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
49
50 #define BATCH_OFFSET_BIAS (256*1024)
51
52 struct i915_execbuffer_params {
53 struct drm_device *dev;
54 struct drm_file *file;
55 struct i915_vma *batch;
56 u32 dispatch_flags;
57 u32 args_batch_start_offset;
58 struct intel_engine_cs *engine;
59 struct i915_gem_context *ctx;
60 struct drm_i915_gem_request *request;
61 };
62
63 struct eb_vmas {
64 struct drm_i915_private *i915;
65 struct list_head vmas;
66 int and;
67 union {
68 struct i915_vma *lut[0];
69 struct hlist_head buckets[0];
70 };
71 };
72
73 static struct eb_vmas *
74 eb_create(struct drm_i915_private *i915,
75 struct drm_i915_gem_execbuffer2 *args)
76 {
77 struct eb_vmas *eb = NULL;
78
79 if (args->flags & I915_EXEC_HANDLE_LUT) {
80 unsigned size = args->buffer_count;
81 size *= sizeof(struct i915_vma *);
82 size += sizeof(struct eb_vmas);
83 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
84 }
85
86 if (eb == NULL) {
87 unsigned size = args->buffer_count;
88 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
89 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
90 while (count > 2*size)
91 count >>= 1;
92 eb = kzalloc(count*sizeof(struct hlist_head) +
93 sizeof(struct eb_vmas),
94 GFP_TEMPORARY);
95 if (eb == NULL)
96 return eb;
97
98 eb->and = count - 1;
99 } else
100 eb->and = -args->buffer_count;
101
102 eb->i915 = i915;
103 INIT_LIST_HEAD(&eb->vmas);
104 return eb;
105 }
106
107 static void
108 eb_reset(struct eb_vmas *eb)
109 {
110 if (eb->and >= 0)
111 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
112 }
113
114 static struct i915_vma *
115 eb_get_batch(struct eb_vmas *eb)
116 {
117 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
118
119 /*
120 * SNA is doing fancy tricks with compressing batch buffers, which leads
121 * to negative relocation deltas. Usually that works out ok since the
122 * relocate address is still positive, except when the batch is placed
123 * very low in the GTT. Ensure this doesn't happen.
124 *
125 * Note that actual hangs have only been observed on gen7, but for
126 * paranoia do it everywhere.
127 */
128 if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
129 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
130
131 return vma;
132 }
133
134 static int
135 eb_lookup_vmas(struct eb_vmas *eb,
136 struct drm_i915_gem_exec_object2 *exec,
137 const struct drm_i915_gem_execbuffer2 *args,
138 struct i915_address_space *vm,
139 struct drm_file *file)
140 {
141 struct drm_i915_gem_object *obj;
142 struct list_head objects;
143 int i, ret;
144
145 INIT_LIST_HEAD(&objects);
146 spin_lock(&file->table_lock);
147 /* Grab a reference to the object and release the lock so we can lookup
148 * or create the VMA without using GFP_ATOMIC */
149 for (i = 0; i < args->buffer_count; i++) {
150 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
151 if (obj == NULL) {
152 spin_unlock(&file->table_lock);
153 DRM_DEBUG("Invalid object handle %d at index %d\n",
154 exec[i].handle, i);
155 ret = -ENOENT;
156 goto err;
157 }
158
159 if (!list_empty(&obj->obj_exec_link)) {
160 spin_unlock(&file->table_lock);
161 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
162 obj, exec[i].handle, i);
163 ret = -EINVAL;
164 goto err;
165 }
166
167 i915_gem_object_get(obj);
168 list_add_tail(&obj->obj_exec_link, &objects);
169 }
170 spin_unlock(&file->table_lock);
171
172 i = 0;
173 while (!list_empty(&objects)) {
174 struct i915_vma *vma;
175
176 obj = list_first_entry(&objects,
177 struct drm_i915_gem_object,
178 obj_exec_link);
179
180 /*
181 * NOTE: We can leak any vmas created here when something fails
182 * later on. But that's no issue since vma_unbind can deal with
183 * vmas which are not actually bound. And since only
184 * lookup_or_create exists as an interface to get at the vma
185 * from the (obj, vm) we don't run the risk of creating
186 * duplicated vmas for the same vm.
187 */
188 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
189 if (unlikely(IS_ERR(vma))) {
190 DRM_DEBUG("Failed to lookup VMA\n");
191 ret = PTR_ERR(vma);
192 goto err;
193 }
194
195 /* Transfer ownership from the objects list to the vmas list. */
196 list_add_tail(&vma->exec_list, &eb->vmas);
197 list_del_init(&obj->obj_exec_link);
198
199 vma->exec_entry = &exec[i];
200 if (eb->and < 0) {
201 eb->lut[i] = vma;
202 } else {
203 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
204 vma->exec_handle = handle;
205 hlist_add_head(&vma->exec_node,
206 &eb->buckets[handle & eb->and]);
207 }
208 ++i;
209 }
210
211 return 0;
212
213
214 err:
215 while (!list_empty(&objects)) {
216 obj = list_first_entry(&objects,
217 struct drm_i915_gem_object,
218 obj_exec_link);
219 list_del_init(&obj->obj_exec_link);
220 i915_gem_object_put(obj);
221 }
222 /*
223 * Objects already transfered to the vmas list will be unreferenced by
224 * eb_destroy.
225 */
226
227 return ret;
228 }
229
230 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
231 {
232 if (eb->and < 0) {
233 if (handle >= -eb->and)
234 return NULL;
235 return eb->lut[handle];
236 } else {
237 struct hlist_head *head;
238 struct i915_vma *vma;
239
240 head = &eb->buckets[handle & eb->and];
241 hlist_for_each_entry(vma, head, exec_node) {
242 if (vma->exec_handle == handle)
243 return vma;
244 }
245 return NULL;
246 }
247 }
248
249 static void
250 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
251 {
252 struct drm_i915_gem_exec_object2 *entry;
253
254 if (!drm_mm_node_allocated(&vma->node))
255 return;
256
257 entry = vma->exec_entry;
258
259 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
260 i915_vma_unpin_fence(vma);
261
262 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
263 __i915_vma_unpin(vma);
264
265 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
266 }
267
268 static void eb_destroy(struct eb_vmas *eb)
269 {
270 while (!list_empty(&eb->vmas)) {
271 struct i915_vma *vma;
272
273 vma = list_first_entry(&eb->vmas,
274 struct i915_vma,
275 exec_list);
276 list_del_init(&vma->exec_list);
277 i915_gem_execbuffer_unreserve_vma(vma);
278 i915_vma_put(vma);
279 }
280 kfree(eb);
281 }
282
283 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
284 {
285 if (!i915_gem_object_has_struct_page(obj))
286 return false;
287
288 if (DBG_USE_CPU_RELOC)
289 return DBG_USE_CPU_RELOC > 0;
290
291 return (HAS_LLC(obj->base.dev) ||
292 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
293 obj->cache_level != I915_CACHE_NONE);
294 }
295
296 /* Used to convert any address to canonical form.
297 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
298 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
299 * addresses to be in a canonical form:
300 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
301 * canonical form [63:48] == [47]."
302 */
303 #define GEN8_HIGH_ADDRESS_BIT 47
304 static inline uint64_t gen8_canonical_addr(uint64_t address)
305 {
306 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
307 }
308
309 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
310 {
311 return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
312 }
313
314 static inline uint64_t
315 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
316 uint64_t target_offset)
317 {
318 return gen8_canonical_addr((int)reloc->delta + target_offset);
319 }
320
321 struct reloc_cache {
322 struct drm_i915_private *i915;
323 struct drm_mm_node node;
324 unsigned long vaddr;
325 unsigned int page;
326 bool use_64bit_reloc;
327 };
328
329 static void reloc_cache_init(struct reloc_cache *cache,
330 struct drm_i915_private *i915)
331 {
332 cache->page = -1;
333 cache->vaddr = 0;
334 cache->i915 = i915;
335 cache->use_64bit_reloc = INTEL_GEN(cache->i915) >= 8;
336 cache->node.allocated = false;
337 }
338
339 static inline void *unmask_page(unsigned long p)
340 {
341 return (void *)(uintptr_t)(p & PAGE_MASK);
342 }
343
344 static inline unsigned int unmask_flags(unsigned long p)
345 {
346 return p & ~PAGE_MASK;
347 }
348
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
350
351 static void reloc_cache_fini(struct reloc_cache *cache)
352 {
353 void *vaddr;
354
355 if (!cache->vaddr)
356 return;
357
358 vaddr = unmask_page(cache->vaddr);
359 if (cache->vaddr & KMAP) {
360 if (cache->vaddr & CLFLUSH_AFTER)
361 mb();
362
363 kunmap_atomic(vaddr);
364 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
365 } else {
366 wmb();
367 io_mapping_unmap_atomic((void __iomem *)vaddr);
368 if (cache->node.allocated) {
369 struct i915_ggtt *ggtt = &cache->i915->ggtt;
370
371 ggtt->base.clear_range(&ggtt->base,
372 cache->node.start,
373 cache->node.size,
374 true);
375 drm_mm_remove_node(&cache->node);
376 } else {
377 i915_vma_unpin((struct i915_vma *)cache->node.mm);
378 }
379 }
380 }
381
382 static void *reloc_kmap(struct drm_i915_gem_object *obj,
383 struct reloc_cache *cache,
384 int page)
385 {
386 void *vaddr;
387
388 if (cache->vaddr) {
389 kunmap_atomic(unmask_page(cache->vaddr));
390 } else {
391 unsigned int flushes;
392 int ret;
393
394 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
395 if (ret)
396 return ERR_PTR(ret);
397
398 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
399 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
400
401 cache->vaddr = flushes | KMAP;
402 cache->node.mm = (void *)obj;
403 if (flushes)
404 mb();
405 }
406
407 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
408 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
409 cache->page = page;
410
411 return vaddr;
412 }
413
414 static void *reloc_iomap(struct drm_i915_gem_object *obj,
415 struct reloc_cache *cache,
416 int page)
417 {
418 struct i915_ggtt *ggtt = &cache->i915->ggtt;
419 unsigned long offset;
420 void *vaddr;
421
422 if (cache->node.allocated) {
423 wmb();
424 ggtt->base.insert_page(&ggtt->base,
425 i915_gem_object_get_dma_address(obj, page),
426 cache->node.start, I915_CACHE_NONE, 0);
427 cache->page = page;
428 return unmask_page(cache->vaddr);
429 }
430
431 if (cache->vaddr) {
432 io_mapping_unmap_atomic(unmask_page(cache->vaddr));
433 } else {
434 struct i915_vma *vma;
435 int ret;
436
437 if (use_cpu_reloc(obj))
438 return NULL;
439
440 ret = i915_gem_object_set_to_gtt_domain(obj, true);
441 if (ret)
442 return ERR_PTR(ret);
443
444 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
445 PIN_MAPPABLE | PIN_NONBLOCK);
446 if (IS_ERR(vma)) {
447 memset(&cache->node, 0, sizeof(cache->node));
448 ret = drm_mm_insert_node_in_range_generic
449 (&ggtt->base.mm, &cache->node,
450 4096, 0, 0,
451 0, ggtt->mappable_end,
452 DRM_MM_SEARCH_DEFAULT,
453 DRM_MM_CREATE_DEFAULT);
454 if (ret) /* no inactive aperture space, use cpu reloc */
455 return NULL;
456 } else {
457 ret = i915_vma_put_fence(vma);
458 if (ret) {
459 i915_vma_unpin(vma);
460 return ERR_PTR(ret);
461 }
462
463 cache->node.start = vma->node.start;
464 cache->node.mm = (void *)vma;
465 }
466 }
467
468 offset = cache->node.start;
469 if (cache->node.allocated) {
470 ggtt->base.insert_page(&ggtt->base,
471 i915_gem_object_get_dma_address(obj, page),
472 offset, I915_CACHE_NONE, 0);
473 } else {
474 offset += page << PAGE_SHIFT;
475 }
476
477 vaddr = io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
478 cache->page = page;
479 cache->vaddr = (unsigned long)vaddr;
480
481 return vaddr;
482 }
483
484 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
485 struct reloc_cache *cache,
486 int page)
487 {
488 void *vaddr;
489
490 if (cache->page == page) {
491 vaddr = unmask_page(cache->vaddr);
492 } else {
493 vaddr = NULL;
494 if ((cache->vaddr & KMAP) == 0)
495 vaddr = reloc_iomap(obj, cache, page);
496 if (!vaddr)
497 vaddr = reloc_kmap(obj, cache, page);
498 }
499
500 return vaddr;
501 }
502
503 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
504 {
505 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
506 if (flushes & CLFLUSH_BEFORE) {
507 clflushopt(addr);
508 mb();
509 }
510
511 *addr = value;
512
513 /* Writes to the same cacheline are serialised by the CPU
514 * (including clflush). On the write path, we only require
515 * that it hits memory in an orderly fashion and place
516 * mb barriers at the start and end of the relocation phase
517 * to ensure ordering of clflush wrt to the system.
518 */
519 if (flushes & CLFLUSH_AFTER)
520 clflushopt(addr);
521 } else
522 *addr = value;
523 }
524
525 static int
526 relocate_entry(struct drm_i915_gem_object *obj,
527 const struct drm_i915_gem_relocation_entry *reloc,
528 struct reloc_cache *cache,
529 u64 target_offset)
530 {
531 u64 offset = reloc->offset;
532 bool wide = cache->use_64bit_reloc;
533 void *vaddr;
534
535 target_offset = relocation_target(reloc, target_offset);
536 repeat:
537 vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
538 if (IS_ERR(vaddr))
539 return PTR_ERR(vaddr);
540
541 clflush_write32(vaddr + offset_in_page(offset),
542 lower_32_bits(target_offset),
543 cache->vaddr);
544
545 if (wide) {
546 offset += sizeof(u32);
547 target_offset >>= 32;
548 wide = false;
549 goto repeat;
550 }
551
552 return 0;
553 }
554
555 static bool object_is_idle(struct drm_i915_gem_object *obj)
556 {
557 unsigned long active = i915_gem_object_get_active(obj);
558 int idx;
559
560 for_each_active(active, idx) {
561 if (!i915_gem_active_is_idle(&obj->last_read[idx],
562 &obj->base.dev->struct_mutex))
563 return false;
564 }
565
566 return true;
567 }
568
569 static int
570 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
571 struct eb_vmas *eb,
572 struct drm_i915_gem_relocation_entry *reloc,
573 struct reloc_cache *cache)
574 {
575 struct drm_device *dev = obj->base.dev;
576 struct drm_gem_object *target_obj;
577 struct drm_i915_gem_object *target_i915_obj;
578 struct i915_vma *target_vma;
579 uint64_t target_offset;
580 int ret;
581
582 /* we've already hold a reference to all valid objects */
583 target_vma = eb_get_vma(eb, reloc->target_handle);
584 if (unlikely(target_vma == NULL))
585 return -ENOENT;
586 target_i915_obj = target_vma->obj;
587 target_obj = &target_vma->obj->base;
588
589 target_offset = gen8_canonical_addr(target_vma->node.start);
590
591 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
592 * pipe_control writes because the gpu doesn't properly redirect them
593 * through the ppgtt for non_secure batchbuffers. */
594 if (unlikely(IS_GEN6(dev) &&
595 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
596 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
597 PIN_GLOBAL);
598 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
599 return ret;
600 }
601
602 /* Validate that the target is in a valid r/w GPU domain */
603 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
604 DRM_DEBUG("reloc with multiple write domains: "
605 "obj %p target %d offset %d "
606 "read %08x write %08x",
607 obj, reloc->target_handle,
608 (int) reloc->offset,
609 reloc->read_domains,
610 reloc->write_domain);
611 return -EINVAL;
612 }
613 if (unlikely((reloc->write_domain | reloc->read_domains)
614 & ~I915_GEM_GPU_DOMAINS)) {
615 DRM_DEBUG("reloc with read/write non-GPU domains: "
616 "obj %p target %d offset %d "
617 "read %08x write %08x",
618 obj, reloc->target_handle,
619 (int) reloc->offset,
620 reloc->read_domains,
621 reloc->write_domain);
622 return -EINVAL;
623 }
624
625 target_obj->pending_read_domains |= reloc->read_domains;
626 target_obj->pending_write_domain |= reloc->write_domain;
627
628 /* If the relocation already has the right value in it, no
629 * more work needs to be done.
630 */
631 if (target_offset == reloc->presumed_offset)
632 return 0;
633
634 /* Check that the relocation address is valid... */
635 if (unlikely(reloc->offset >
636 obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
637 DRM_DEBUG("Relocation beyond object bounds: "
638 "obj %p target %d offset %d size %d.\n",
639 obj, reloc->target_handle,
640 (int) reloc->offset,
641 (int) obj->base.size);
642 return -EINVAL;
643 }
644 if (unlikely(reloc->offset & 3)) {
645 DRM_DEBUG("Relocation not 4-byte aligned: "
646 "obj %p target %d offset %d.\n",
647 obj, reloc->target_handle,
648 (int) reloc->offset);
649 return -EINVAL;
650 }
651
652 /* We can't wait for rendering with pagefaults disabled */
653 if (pagefault_disabled() && !object_is_idle(obj))
654 return -EFAULT;
655
656 ret = relocate_entry(obj, reloc, cache, target_offset);
657 if (ret)
658 return ret;
659
660 /* and update the user's relocation entry */
661 reloc->presumed_offset = target_offset;
662 return 0;
663 }
664
665 static int
666 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
667 struct eb_vmas *eb)
668 {
669 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
670 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
671 struct drm_i915_gem_relocation_entry __user *user_relocs;
672 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
673 struct reloc_cache cache;
674 int remain, ret = 0;
675
676 user_relocs = u64_to_user_ptr(entry->relocs_ptr);
677 reloc_cache_init(&cache, eb->i915);
678
679 remain = entry->relocation_count;
680 while (remain) {
681 struct drm_i915_gem_relocation_entry *r = stack_reloc;
682 int count = remain;
683 if (count > ARRAY_SIZE(stack_reloc))
684 count = ARRAY_SIZE(stack_reloc);
685 remain -= count;
686
687 if (__copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]))) {
688 ret = -EFAULT;
689 goto out;
690 }
691
692 do {
693 u64 offset = r->presumed_offset;
694
695 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
696 if (ret)
697 goto out;
698
699 if (r->presumed_offset != offset &&
700 __put_user(r->presumed_offset,
701 &user_relocs->presumed_offset)) {
702 ret = -EFAULT;
703 goto out;
704 }
705
706 user_relocs++;
707 r++;
708 } while (--count);
709 }
710
711 out:
712 reloc_cache_fini(&cache);
713 return ret;
714 #undef N_RELOC
715 }
716
717 static int
718 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
719 struct eb_vmas *eb,
720 struct drm_i915_gem_relocation_entry *relocs)
721 {
722 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
723 struct reloc_cache cache;
724 int i, ret = 0;
725
726 reloc_cache_init(&cache, eb->i915);
727 for (i = 0; i < entry->relocation_count; i++) {
728 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
729 if (ret)
730 break;
731 }
732 reloc_cache_fini(&cache);
733
734 return ret;
735 }
736
737 static int
738 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
739 {
740 struct i915_vma *vma;
741 int ret = 0;
742
743 /* This is the fast path and we cannot handle a pagefault whilst
744 * holding the struct mutex lest the user pass in the relocations
745 * contained within a mmaped bo. For in such a case we, the page
746 * fault handler would call i915_gem_fault() and we would try to
747 * acquire the struct mutex again. Obviously this is bad and so
748 * lockdep complains vehemently.
749 */
750 pagefault_disable();
751 list_for_each_entry(vma, &eb->vmas, exec_list) {
752 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
753 if (ret)
754 break;
755 }
756 pagefault_enable();
757
758 return ret;
759 }
760
761 static bool only_mappable_for_reloc(unsigned int flags)
762 {
763 return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
764 __EXEC_OBJECT_NEEDS_MAP;
765 }
766
767 static int
768 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
769 struct intel_engine_cs *engine,
770 bool *need_reloc)
771 {
772 struct drm_i915_gem_object *obj = vma->obj;
773 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
774 uint64_t flags;
775 int ret;
776
777 flags = PIN_USER;
778 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
779 flags |= PIN_GLOBAL;
780
781 if (!drm_mm_node_allocated(&vma->node)) {
782 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
783 * limit address to the first 4GBs for unflagged objects.
784 */
785 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
786 flags |= PIN_ZONE_4G;
787 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
788 flags |= PIN_GLOBAL | PIN_MAPPABLE;
789 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
790 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
791 if (entry->flags & EXEC_OBJECT_PINNED)
792 flags |= entry->offset | PIN_OFFSET_FIXED;
793 if ((flags & PIN_MAPPABLE) == 0)
794 flags |= PIN_HIGH;
795 }
796
797 ret = i915_vma_pin(vma,
798 entry->pad_to_size,
799 entry->alignment,
800 flags);
801 if ((ret == -ENOSPC || ret == -E2BIG) &&
802 only_mappable_for_reloc(entry->flags))
803 ret = i915_vma_pin(vma,
804 entry->pad_to_size,
805 entry->alignment,
806 flags & ~PIN_MAPPABLE);
807 if (ret)
808 return ret;
809
810 entry->flags |= __EXEC_OBJECT_HAS_PIN;
811
812 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
813 ret = i915_vma_get_fence(vma);
814 if (ret)
815 return ret;
816
817 if (i915_vma_pin_fence(vma))
818 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
819 }
820
821 if (entry->offset != vma->node.start) {
822 entry->offset = vma->node.start;
823 *need_reloc = true;
824 }
825
826 if (entry->flags & EXEC_OBJECT_WRITE) {
827 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
828 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
829 }
830
831 return 0;
832 }
833
834 static bool
835 need_reloc_mappable(struct i915_vma *vma)
836 {
837 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
838
839 if (entry->relocation_count == 0)
840 return false;
841
842 if (!i915_vma_is_ggtt(vma))
843 return false;
844
845 /* See also use_cpu_reloc() */
846 if (HAS_LLC(vma->obj->base.dev))
847 return false;
848
849 if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
850 return false;
851
852 return true;
853 }
854
855 static bool
856 eb_vma_misplaced(struct i915_vma *vma)
857 {
858 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
859
860 WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
861 !i915_vma_is_ggtt(vma));
862
863 if (entry->alignment &&
864 vma->node.start & (entry->alignment - 1))
865 return true;
866
867 if (vma->node.size < entry->pad_to_size)
868 return true;
869
870 if (entry->flags & EXEC_OBJECT_PINNED &&
871 vma->node.start != entry->offset)
872 return true;
873
874 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
875 vma->node.start < BATCH_OFFSET_BIAS)
876 return true;
877
878 /* avoid costly ping-pong once a batch bo ended up non-mappable */
879 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
880 !i915_vma_is_map_and_fenceable(vma))
881 return !only_mappable_for_reloc(entry->flags);
882
883 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
884 (vma->node.start + vma->node.size - 1) >> 32)
885 return true;
886
887 return false;
888 }
889
890 static int
891 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
892 struct list_head *vmas,
893 struct i915_gem_context *ctx,
894 bool *need_relocs)
895 {
896 struct drm_i915_gem_object *obj;
897 struct i915_vma *vma;
898 struct i915_address_space *vm;
899 struct list_head ordered_vmas;
900 struct list_head pinned_vmas;
901 bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
902 int retry;
903
904 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
905
906 INIT_LIST_HEAD(&ordered_vmas);
907 INIT_LIST_HEAD(&pinned_vmas);
908 while (!list_empty(vmas)) {
909 struct drm_i915_gem_exec_object2 *entry;
910 bool need_fence, need_mappable;
911
912 vma = list_first_entry(vmas, struct i915_vma, exec_list);
913 obj = vma->obj;
914 entry = vma->exec_entry;
915
916 if (ctx->flags & CONTEXT_NO_ZEROMAP)
917 entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
918
919 if (!has_fenced_gpu_access)
920 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
921 need_fence =
922 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
923 i915_gem_object_is_tiled(obj);
924 need_mappable = need_fence || need_reloc_mappable(vma);
925
926 if (entry->flags & EXEC_OBJECT_PINNED)
927 list_move_tail(&vma->exec_list, &pinned_vmas);
928 else if (need_mappable) {
929 entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
930 list_move(&vma->exec_list, &ordered_vmas);
931 } else
932 list_move_tail(&vma->exec_list, &ordered_vmas);
933
934 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
935 obj->base.pending_write_domain = 0;
936 }
937 list_splice(&ordered_vmas, vmas);
938 list_splice(&pinned_vmas, vmas);
939
940 /* Attempt to pin all of the buffers into the GTT.
941 * This is done in 3 phases:
942 *
943 * 1a. Unbind all objects that do not match the GTT constraints for
944 * the execbuffer (fenceable, mappable, alignment etc).
945 * 1b. Increment pin count for already bound objects.
946 * 2. Bind new objects.
947 * 3. Decrement pin count.
948 *
949 * This avoid unnecessary unbinding of later objects in order to make
950 * room for the earlier objects *unless* we need to defragment.
951 */
952 retry = 0;
953 do {
954 int ret = 0;
955
956 /* Unbind any ill-fitting objects or pin. */
957 list_for_each_entry(vma, vmas, exec_list) {
958 if (!drm_mm_node_allocated(&vma->node))
959 continue;
960
961 if (eb_vma_misplaced(vma))
962 ret = i915_vma_unbind(vma);
963 else
964 ret = i915_gem_execbuffer_reserve_vma(vma,
965 engine,
966 need_relocs);
967 if (ret)
968 goto err;
969 }
970
971 /* Bind fresh objects */
972 list_for_each_entry(vma, vmas, exec_list) {
973 if (drm_mm_node_allocated(&vma->node))
974 continue;
975
976 ret = i915_gem_execbuffer_reserve_vma(vma, engine,
977 need_relocs);
978 if (ret)
979 goto err;
980 }
981
982 err:
983 if (ret != -ENOSPC || retry++)
984 return ret;
985
986 /* Decrement pin count for bound objects */
987 list_for_each_entry(vma, vmas, exec_list)
988 i915_gem_execbuffer_unreserve_vma(vma);
989
990 ret = i915_gem_evict_vm(vm, true);
991 if (ret)
992 return ret;
993 } while (1);
994 }
995
996 static int
997 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
998 struct drm_i915_gem_execbuffer2 *args,
999 struct drm_file *file,
1000 struct intel_engine_cs *engine,
1001 struct eb_vmas *eb,
1002 struct drm_i915_gem_exec_object2 *exec,
1003 struct i915_gem_context *ctx)
1004 {
1005 struct drm_i915_gem_relocation_entry *reloc;
1006 struct i915_address_space *vm;
1007 struct i915_vma *vma;
1008 bool need_relocs;
1009 int *reloc_offset;
1010 int i, total, ret;
1011 unsigned count = args->buffer_count;
1012
1013 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1014
1015 /* We may process another execbuffer during the unlock... */
1016 while (!list_empty(&eb->vmas)) {
1017 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1018 list_del_init(&vma->exec_list);
1019 i915_gem_execbuffer_unreserve_vma(vma);
1020 i915_vma_put(vma);
1021 }
1022
1023 mutex_unlock(&dev->struct_mutex);
1024
1025 total = 0;
1026 for (i = 0; i < count; i++)
1027 total += exec[i].relocation_count;
1028
1029 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1030 reloc = drm_malloc_ab(total, sizeof(*reloc));
1031 if (reloc == NULL || reloc_offset == NULL) {
1032 drm_free_large(reloc);
1033 drm_free_large(reloc_offset);
1034 mutex_lock(&dev->struct_mutex);
1035 return -ENOMEM;
1036 }
1037
1038 total = 0;
1039 for (i = 0; i < count; i++) {
1040 struct drm_i915_gem_relocation_entry __user *user_relocs;
1041 u64 invalid_offset = (u64)-1;
1042 int j;
1043
1044 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1045
1046 if (copy_from_user(reloc+total, user_relocs,
1047 exec[i].relocation_count * sizeof(*reloc))) {
1048 ret = -EFAULT;
1049 mutex_lock(&dev->struct_mutex);
1050 goto err;
1051 }
1052
1053 /* As we do not update the known relocation offsets after
1054 * relocating (due to the complexities in lock handling),
1055 * we need to mark them as invalid now so that we force the
1056 * relocation processing next time. Just in case the target
1057 * object is evicted and then rebound into its old
1058 * presumed_offset before the next execbuffer - if that
1059 * happened we would make the mistake of assuming that the
1060 * relocations were valid.
1061 */
1062 for (j = 0; j < exec[i].relocation_count; j++) {
1063 if (__copy_to_user(&user_relocs[j].presumed_offset,
1064 &invalid_offset,
1065 sizeof(invalid_offset))) {
1066 ret = -EFAULT;
1067 mutex_lock(&dev->struct_mutex);
1068 goto err;
1069 }
1070 }
1071
1072 reloc_offset[i] = total;
1073 total += exec[i].relocation_count;
1074 }
1075
1076 ret = i915_mutex_lock_interruptible(dev);
1077 if (ret) {
1078 mutex_lock(&dev->struct_mutex);
1079 goto err;
1080 }
1081
1082 /* reacquire the objects */
1083 eb_reset(eb);
1084 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1085 if (ret)
1086 goto err;
1087
1088 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1089 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1090 &need_relocs);
1091 if (ret)
1092 goto err;
1093
1094 list_for_each_entry(vma, &eb->vmas, exec_list) {
1095 int offset = vma->exec_entry - exec;
1096 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1097 reloc + reloc_offset[offset]);
1098 if (ret)
1099 goto err;
1100 }
1101
1102 /* Leave the user relocations as are, this is the painfully slow path,
1103 * and we want to avoid the complication of dropping the lock whilst
1104 * having buffers reserved in the aperture and so causing spurious
1105 * ENOSPC for random operations.
1106 */
1107
1108 err:
1109 drm_free_large(reloc);
1110 drm_free_large(reloc_offset);
1111 return ret;
1112 }
1113
1114 static unsigned int eb_other_engines(struct drm_i915_gem_request *req)
1115 {
1116 unsigned int mask;
1117
1118 mask = ~intel_engine_flag(req->engine) & I915_BO_ACTIVE_MASK;
1119 mask <<= I915_BO_ACTIVE_SHIFT;
1120
1121 return mask;
1122 }
1123
1124 static int
1125 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1126 struct list_head *vmas)
1127 {
1128 const unsigned int other_rings = eb_other_engines(req);
1129 struct i915_vma *vma;
1130 int ret;
1131
1132 list_for_each_entry(vma, vmas, exec_list) {
1133 struct drm_i915_gem_object *obj = vma->obj;
1134 struct reservation_object *resv;
1135
1136 if (obj->flags & other_rings) {
1137 ret = i915_gem_request_await_object
1138 (req, obj, obj->base.pending_write_domain);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 resv = i915_gem_object_get_dmabuf_resv(obj);
1144 if (resv) {
1145 ret = i915_sw_fence_await_reservation
1146 (&req->submit, resv, &i915_fence_ops,
1147 obj->base.pending_write_domain, 10*HZ,
1148 GFP_KERNEL | __GFP_NOWARN);
1149 if (ret < 0)
1150 return ret;
1151 }
1152
1153 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1154 i915_gem_clflush_object(obj, false);
1155 }
1156
1157 /* Unconditionally flush any chipset caches (for streaming writes). */
1158 i915_gem_chipset_flush(req->engine->i915);
1159
1160 /* Unconditionally invalidate GPU caches and TLBs. */
1161 return req->engine->emit_flush(req, EMIT_INVALIDATE);
1162 }
1163
1164 static bool
1165 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1166 {
1167 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1168 return false;
1169
1170 /* Kernel clipping was a DRI1 misfeature */
1171 if (exec->num_cliprects || exec->cliprects_ptr)
1172 return false;
1173
1174 if (exec->DR4 == 0xffffffff) {
1175 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1176 exec->DR4 = 0;
1177 }
1178 if (exec->DR1 || exec->DR4)
1179 return false;
1180
1181 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1182 return false;
1183
1184 return true;
1185 }
1186
1187 static int
1188 validate_exec_list(struct drm_device *dev,
1189 struct drm_i915_gem_exec_object2 *exec,
1190 int count)
1191 {
1192 unsigned relocs_total = 0;
1193 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1194 unsigned invalid_flags;
1195 int i;
1196
1197 /* INTERNAL flags must not overlap with external ones */
1198 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1199
1200 invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1201 if (USES_FULL_PPGTT(dev))
1202 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1203
1204 for (i = 0; i < count; i++) {
1205 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1206 int length; /* limited by fault_in_pages_readable() */
1207
1208 if (exec[i].flags & invalid_flags)
1209 return -EINVAL;
1210
1211 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1212 * any non-page-aligned or non-canonical addresses.
1213 */
1214 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1215 if (exec[i].offset !=
1216 gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1217 return -EINVAL;
1218
1219 /* From drm_mm perspective address space is continuous,
1220 * so from this point we're always using non-canonical
1221 * form internally.
1222 */
1223 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1224 }
1225
1226 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1227 return -EINVAL;
1228
1229 /* pad_to_size was once a reserved field, so sanitize it */
1230 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1231 if (offset_in_page(exec[i].pad_to_size))
1232 return -EINVAL;
1233 } else {
1234 exec[i].pad_to_size = 0;
1235 }
1236
1237 /* First check for malicious input causing overflow in
1238 * the worst case where we need to allocate the entire
1239 * relocation tree as a single array.
1240 */
1241 if (exec[i].relocation_count > relocs_max - relocs_total)
1242 return -EINVAL;
1243 relocs_total += exec[i].relocation_count;
1244
1245 length = exec[i].relocation_count *
1246 sizeof(struct drm_i915_gem_relocation_entry);
1247 /*
1248 * We must check that the entire relocation array is safe
1249 * to read, but since we may need to update the presumed
1250 * offsets during execution, check for full write access.
1251 */
1252 if (!access_ok(VERIFY_WRITE, ptr, length))
1253 return -EFAULT;
1254
1255 if (likely(!i915.prefault_disable)) {
1256 if (fault_in_pages_readable(ptr, length))
1257 return -EFAULT;
1258 }
1259 }
1260
1261 return 0;
1262 }
1263
1264 static struct i915_gem_context *
1265 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1266 struct intel_engine_cs *engine, const u32 ctx_id)
1267 {
1268 struct i915_gem_context *ctx;
1269 struct i915_ctx_hang_stats *hs;
1270
1271 ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1272 if (IS_ERR(ctx))
1273 return ctx;
1274
1275 hs = &ctx->hang_stats;
1276 if (hs->banned) {
1277 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1278 return ERR_PTR(-EIO);
1279 }
1280
1281 return ctx;
1282 }
1283
1284 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1285 {
1286 return !(obj->cache_level == I915_CACHE_NONE ||
1287 obj->cache_level == I915_CACHE_WT);
1288 }
1289
1290 void i915_vma_move_to_active(struct i915_vma *vma,
1291 struct drm_i915_gem_request *req,
1292 unsigned int flags)
1293 {
1294 struct drm_i915_gem_object *obj = vma->obj;
1295 const unsigned int idx = req->engine->id;
1296
1297 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1298
1299 obj->dirty = 1; /* be paranoid */
1300
1301 /* Add a reference if we're newly entering the active list.
1302 * The order in which we add operations to the retirement queue is
1303 * vital here: mark_active adds to the start of the callback list,
1304 * such that subsequent callbacks are called first. Therefore we
1305 * add the active reference first and queue for it to be dropped
1306 * *last*.
1307 */
1308 if (!i915_gem_object_is_active(obj))
1309 i915_gem_object_get(obj);
1310 i915_gem_object_set_active(obj, idx);
1311 i915_gem_active_set(&obj->last_read[idx], req);
1312
1313 if (flags & EXEC_OBJECT_WRITE) {
1314 i915_gem_active_set(&obj->last_write, req);
1315
1316 intel_fb_obj_invalidate(obj, ORIGIN_CS);
1317
1318 /* update for the implicit flush after a batch */
1319 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1320 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1321 obj->cache_dirty = true;
1322 }
1323
1324 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1325 i915_gem_active_set(&vma->last_fence, req);
1326
1327 i915_vma_set_active(vma, idx);
1328 i915_gem_active_set(&vma->last_read[idx], req);
1329 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1330 }
1331
1332 static void eb_export_fence(struct drm_i915_gem_object *obj,
1333 struct drm_i915_gem_request *req,
1334 unsigned int flags)
1335 {
1336 struct reservation_object *resv;
1337
1338 resv = i915_gem_object_get_dmabuf_resv(obj);
1339 if (!resv)
1340 return;
1341
1342 /* Ignore errors from failing to allocate the new fence, we can't
1343 * handle an error right now. Worst case should be missed
1344 * synchronisation leading to rendering corruption.
1345 */
1346 ww_mutex_lock(&resv->lock, NULL);
1347 if (flags & EXEC_OBJECT_WRITE)
1348 reservation_object_add_excl_fence(resv, &req->fence);
1349 else if (reservation_object_reserve_shared(resv) == 0)
1350 reservation_object_add_shared_fence(resv, &req->fence);
1351 ww_mutex_unlock(&resv->lock);
1352 }
1353
1354 static void
1355 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1356 struct drm_i915_gem_request *req)
1357 {
1358 struct i915_vma *vma;
1359
1360 list_for_each_entry(vma, vmas, exec_list) {
1361 struct drm_i915_gem_object *obj = vma->obj;
1362 u32 old_read = obj->base.read_domains;
1363 u32 old_write = obj->base.write_domain;
1364
1365 obj->base.write_domain = obj->base.pending_write_domain;
1366 if (obj->base.write_domain)
1367 vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1368 else
1369 obj->base.pending_read_domains |= obj->base.read_domains;
1370 obj->base.read_domains = obj->base.pending_read_domains;
1371
1372 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1373 eb_export_fence(obj, req, vma->exec_entry->flags);
1374 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1375 }
1376 }
1377
1378 static int
1379 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1380 {
1381 struct intel_ring *ring = req->ring;
1382 int ret, i;
1383
1384 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1385 DRM_DEBUG("sol reset is gen7/rcs only\n");
1386 return -EINVAL;
1387 }
1388
1389 ret = intel_ring_begin(req, 4 * 3);
1390 if (ret)
1391 return ret;
1392
1393 for (i = 0; i < 4; i++) {
1394 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1395 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1396 intel_ring_emit(ring, 0);
1397 }
1398
1399 intel_ring_advance(ring);
1400
1401 return 0;
1402 }
1403
1404 static struct i915_vma *
1405 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1406 struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1407 struct drm_i915_gem_object *batch_obj,
1408 struct eb_vmas *eb,
1409 u32 batch_start_offset,
1410 u32 batch_len,
1411 bool is_master)
1412 {
1413 struct drm_i915_gem_object *shadow_batch_obj;
1414 struct i915_vma *vma;
1415 int ret;
1416
1417 shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1418 PAGE_ALIGN(batch_len));
1419 if (IS_ERR(shadow_batch_obj))
1420 return ERR_CAST(shadow_batch_obj);
1421
1422 ret = intel_engine_cmd_parser(engine,
1423 batch_obj,
1424 shadow_batch_obj,
1425 batch_start_offset,
1426 batch_len,
1427 is_master);
1428 if (ret) {
1429 if (ret == -EACCES) /* unhandled chained batch */
1430 vma = NULL;
1431 else
1432 vma = ERR_PTR(ret);
1433 goto out;
1434 }
1435
1436 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1437 if (IS_ERR(vma))
1438 goto out;
1439
1440 memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1441
1442 vma->exec_entry = shadow_exec_entry;
1443 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1444 i915_gem_object_get(shadow_batch_obj);
1445 list_add_tail(&vma->exec_list, &eb->vmas);
1446
1447 out:
1448 i915_gem_object_unpin_pages(shadow_batch_obj);
1449 return vma;
1450 }
1451
1452 static int
1453 execbuf_submit(struct i915_execbuffer_params *params,
1454 struct drm_i915_gem_execbuffer2 *args,
1455 struct list_head *vmas)
1456 {
1457 struct drm_i915_private *dev_priv = params->request->i915;
1458 u64 exec_start, exec_len;
1459 int instp_mode;
1460 u32 instp_mask;
1461 int ret;
1462
1463 ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1464 if (ret)
1465 return ret;
1466
1467 ret = i915_switch_context(params->request);
1468 if (ret)
1469 return ret;
1470
1471 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1472 instp_mask = I915_EXEC_CONSTANTS_MASK;
1473 switch (instp_mode) {
1474 case I915_EXEC_CONSTANTS_REL_GENERAL:
1475 case I915_EXEC_CONSTANTS_ABSOLUTE:
1476 case I915_EXEC_CONSTANTS_REL_SURFACE:
1477 if (instp_mode != 0 && params->engine->id != RCS) {
1478 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1479 return -EINVAL;
1480 }
1481
1482 if (instp_mode != dev_priv->relative_constants_mode) {
1483 if (INTEL_INFO(dev_priv)->gen < 4) {
1484 DRM_DEBUG("no rel constants on pre-gen4\n");
1485 return -EINVAL;
1486 }
1487
1488 if (INTEL_INFO(dev_priv)->gen > 5 &&
1489 instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1490 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1491 return -EINVAL;
1492 }
1493
1494 /* The HW changed the meaning on this bit on gen6 */
1495 if (INTEL_INFO(dev_priv)->gen >= 6)
1496 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1497 }
1498 break;
1499 default:
1500 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1501 return -EINVAL;
1502 }
1503
1504 if (params->engine->id == RCS &&
1505 instp_mode != dev_priv->relative_constants_mode) {
1506 struct intel_ring *ring = params->request->ring;
1507
1508 ret = intel_ring_begin(params->request, 4);
1509 if (ret)
1510 return ret;
1511
1512 intel_ring_emit(ring, MI_NOOP);
1513 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1514 intel_ring_emit_reg(ring, INSTPM);
1515 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1516 intel_ring_advance(ring);
1517
1518 dev_priv->relative_constants_mode = instp_mode;
1519 }
1520
1521 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1522 ret = i915_reset_gen7_sol_offsets(params->request);
1523 if (ret)
1524 return ret;
1525 }
1526
1527 exec_len = args->batch_len;
1528 exec_start = params->batch->node.start +
1529 params->args_batch_start_offset;
1530
1531 if (exec_len == 0)
1532 exec_len = params->batch->size - params->args_batch_start_offset;
1533
1534 ret = params->engine->emit_bb_start(params->request,
1535 exec_start, exec_len,
1536 params->dispatch_flags);
1537 if (ret)
1538 return ret;
1539
1540 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1541
1542 i915_gem_execbuffer_move_to_active(vmas, params->request);
1543
1544 return 0;
1545 }
1546
1547 /**
1548 * Find one BSD ring to dispatch the corresponding BSD command.
1549 * The engine index is returned.
1550 */
1551 static unsigned int
1552 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1553 struct drm_file *file)
1554 {
1555 struct drm_i915_file_private *file_priv = file->driver_priv;
1556
1557 /* Check whether the file_priv has already selected one ring. */
1558 if ((int)file_priv->bsd_engine < 0)
1559 file_priv->bsd_engine = atomic_fetch_xor(1,
1560 &dev_priv->mm.bsd_engine_dispatch_index);
1561
1562 return file_priv->bsd_engine;
1563 }
1564
1565 #define I915_USER_RINGS (4)
1566
1567 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1568 [I915_EXEC_DEFAULT] = RCS,
1569 [I915_EXEC_RENDER] = RCS,
1570 [I915_EXEC_BLT] = BCS,
1571 [I915_EXEC_BSD] = VCS,
1572 [I915_EXEC_VEBOX] = VECS
1573 };
1574
1575 static struct intel_engine_cs *
1576 eb_select_engine(struct drm_i915_private *dev_priv,
1577 struct drm_file *file,
1578 struct drm_i915_gem_execbuffer2 *args)
1579 {
1580 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1581 struct intel_engine_cs *engine;
1582
1583 if (user_ring_id > I915_USER_RINGS) {
1584 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1585 return NULL;
1586 }
1587
1588 if ((user_ring_id != I915_EXEC_BSD) &&
1589 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1590 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1591 "bsd dispatch flags: %d\n", (int)(args->flags));
1592 return NULL;
1593 }
1594
1595 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1596 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1597
1598 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1599 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1600 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1601 bsd_idx <= I915_EXEC_BSD_RING2) {
1602 bsd_idx >>= I915_EXEC_BSD_SHIFT;
1603 bsd_idx--;
1604 } else {
1605 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1606 bsd_idx);
1607 return NULL;
1608 }
1609
1610 engine = &dev_priv->engine[_VCS(bsd_idx)];
1611 } else {
1612 engine = &dev_priv->engine[user_ring_map[user_ring_id]];
1613 }
1614
1615 if (!intel_engine_initialized(engine)) {
1616 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1617 return NULL;
1618 }
1619
1620 return engine;
1621 }
1622
1623 static int
1624 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1625 struct drm_file *file,
1626 struct drm_i915_gem_execbuffer2 *args,
1627 struct drm_i915_gem_exec_object2 *exec)
1628 {
1629 struct drm_i915_private *dev_priv = to_i915(dev);
1630 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1631 struct eb_vmas *eb;
1632 struct drm_i915_gem_exec_object2 shadow_exec_entry;
1633 struct intel_engine_cs *engine;
1634 struct i915_gem_context *ctx;
1635 struct i915_address_space *vm;
1636 struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1637 struct i915_execbuffer_params *params = &params_master;
1638 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1639 u32 dispatch_flags;
1640 int ret;
1641 bool need_relocs;
1642
1643 if (!i915_gem_check_execbuffer(args))
1644 return -EINVAL;
1645
1646 ret = validate_exec_list(dev, exec, args->buffer_count);
1647 if (ret)
1648 return ret;
1649
1650 dispatch_flags = 0;
1651 if (args->flags & I915_EXEC_SECURE) {
1652 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1653 return -EPERM;
1654
1655 dispatch_flags |= I915_DISPATCH_SECURE;
1656 }
1657 if (args->flags & I915_EXEC_IS_PINNED)
1658 dispatch_flags |= I915_DISPATCH_PINNED;
1659
1660 engine = eb_select_engine(dev_priv, file, args);
1661 if (!engine)
1662 return -EINVAL;
1663
1664 if (args->buffer_count < 1) {
1665 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1666 return -EINVAL;
1667 }
1668
1669 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1670 if (!HAS_RESOURCE_STREAMER(dev)) {
1671 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1672 return -EINVAL;
1673 }
1674 if (engine->id != RCS) {
1675 DRM_DEBUG("RS is not available on %s\n",
1676 engine->name);
1677 return -EINVAL;
1678 }
1679
1680 dispatch_flags |= I915_DISPATCH_RS;
1681 }
1682
1683 /* Take a local wakeref for preparing to dispatch the execbuf as
1684 * we expect to access the hardware fairly frequently in the
1685 * process. Upon first dispatch, we acquire another prolonged
1686 * wakeref that we hold until the GPU has been idle for at least
1687 * 100ms.
1688 */
1689 intel_runtime_pm_get(dev_priv);
1690
1691 ret = i915_mutex_lock_interruptible(dev);
1692 if (ret)
1693 goto pre_mutex_err;
1694
1695 ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1696 if (IS_ERR(ctx)) {
1697 mutex_unlock(&dev->struct_mutex);
1698 ret = PTR_ERR(ctx);
1699 goto pre_mutex_err;
1700 }
1701
1702 i915_gem_context_get(ctx);
1703
1704 if (ctx->ppgtt)
1705 vm = &ctx->ppgtt->base;
1706 else
1707 vm = &ggtt->base;
1708
1709 memset(&params_master, 0x00, sizeof(params_master));
1710
1711 eb = eb_create(dev_priv, args);
1712 if (eb == NULL) {
1713 i915_gem_context_put(ctx);
1714 mutex_unlock(&dev->struct_mutex);
1715 ret = -ENOMEM;
1716 goto pre_mutex_err;
1717 }
1718
1719 /* Look up object handles */
1720 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1721 if (ret)
1722 goto err;
1723
1724 /* take note of the batch buffer before we might reorder the lists */
1725 params->batch = eb_get_batch(eb);
1726
1727 /* Move the objects en-masse into the GTT, evicting if necessary. */
1728 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1729 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1730 &need_relocs);
1731 if (ret)
1732 goto err;
1733
1734 /* The objects are in their final locations, apply the relocations. */
1735 if (need_relocs)
1736 ret = i915_gem_execbuffer_relocate(eb);
1737 if (ret) {
1738 if (ret == -EFAULT) {
1739 ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1740 engine,
1741 eb, exec, ctx);
1742 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1743 }
1744 if (ret)
1745 goto err;
1746 }
1747
1748 /* Set the pending read domains for the batch buffer to COMMAND */
1749 if (params->batch->obj->base.pending_write_domain) {
1750 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1751 ret = -EINVAL;
1752 goto err;
1753 }
1754 if (args->batch_start_offset > params->batch->size ||
1755 args->batch_len > params->batch->size - args->batch_start_offset) {
1756 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1757 ret = -EINVAL;
1758 goto err;
1759 }
1760
1761 params->args_batch_start_offset = args->batch_start_offset;
1762 if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1763 struct i915_vma *vma;
1764
1765 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1766 params->batch->obj,
1767 eb,
1768 args->batch_start_offset,
1769 args->batch_len,
1770 drm_is_current_master(file));
1771 if (IS_ERR(vma)) {
1772 ret = PTR_ERR(vma);
1773 goto err;
1774 }
1775
1776 if (vma) {
1777 /*
1778 * Batch parsed and accepted:
1779 *
1780 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1781 * bit from MI_BATCH_BUFFER_START commands issued in
1782 * the dispatch_execbuffer implementations. We
1783 * specifically don't want that set on batches the
1784 * command parser has accepted.
1785 */
1786 dispatch_flags |= I915_DISPATCH_SECURE;
1787 params->args_batch_start_offset = 0;
1788 params->batch = vma;
1789 }
1790 }
1791
1792 params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1793
1794 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1795 * batch" bit. Hence we need to pin secure batches into the global gtt.
1796 * hsw should have this fixed, but bdw mucks it up again. */
1797 if (dispatch_flags & I915_DISPATCH_SECURE) {
1798 struct drm_i915_gem_object *obj = params->batch->obj;
1799 struct i915_vma *vma;
1800
1801 /*
1802 * So on first glance it looks freaky that we pin the batch here
1803 * outside of the reservation loop. But:
1804 * - The batch is already pinned into the relevant ppgtt, so we
1805 * already have the backing storage fully allocated.
1806 * - No other BO uses the global gtt (well contexts, but meh),
1807 * so we don't really have issues with multiple objects not
1808 * fitting due to fragmentation.
1809 * So this is actually safe.
1810 */
1811 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1812 if (IS_ERR(vma)) {
1813 ret = PTR_ERR(vma);
1814 goto err;
1815 }
1816
1817 params->batch = vma;
1818 }
1819
1820 /* Allocate a request for this batch buffer nice and early. */
1821 params->request = i915_gem_request_alloc(engine, ctx);
1822 if (IS_ERR(params->request)) {
1823 ret = PTR_ERR(params->request);
1824 goto err_batch_unpin;
1825 }
1826
1827 /* Whilst this request exists, batch_obj will be on the
1828 * active_list, and so will hold the active reference. Only when this
1829 * request is retired will the the batch_obj be moved onto the
1830 * inactive_list and lose its active reference. Hence we do not need
1831 * to explicitly hold another reference here.
1832 */
1833 params->request->batch = params->batch;
1834
1835 ret = i915_gem_request_add_to_client(params->request, file);
1836 if (ret)
1837 goto err_request;
1838
1839 /*
1840 * Save assorted stuff away to pass through to *_submission().
1841 * NB: This data should be 'persistent' and not local as it will
1842 * kept around beyond the duration of the IOCTL once the GPU
1843 * scheduler arrives.
1844 */
1845 params->dev = dev;
1846 params->file = file;
1847 params->engine = engine;
1848 params->dispatch_flags = dispatch_flags;
1849 params->ctx = ctx;
1850
1851 ret = execbuf_submit(params, args, &eb->vmas);
1852 err_request:
1853 __i915_add_request(params->request, ret == 0);
1854
1855 err_batch_unpin:
1856 /*
1857 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1858 * batch vma for correctness. For less ugly and less fragility this
1859 * needs to be adjusted to also track the ggtt batch vma properly as
1860 * active.
1861 */
1862 if (dispatch_flags & I915_DISPATCH_SECURE)
1863 i915_vma_unpin(params->batch);
1864 err:
1865 /* the request owns the ref now */
1866 i915_gem_context_put(ctx);
1867 eb_destroy(eb);
1868
1869 mutex_unlock(&dev->struct_mutex);
1870
1871 pre_mutex_err:
1872 /* intel_gpu_busy should also get a ref, so it will free when the device
1873 * is really idle. */
1874 intel_runtime_pm_put(dev_priv);
1875 return ret;
1876 }
1877
1878 /*
1879 * Legacy execbuffer just creates an exec2 list from the original exec object
1880 * list array and passes it to the real function.
1881 */
1882 int
1883 i915_gem_execbuffer(struct drm_device *dev, void *data,
1884 struct drm_file *file)
1885 {
1886 struct drm_i915_gem_execbuffer *args = data;
1887 struct drm_i915_gem_execbuffer2 exec2;
1888 struct drm_i915_gem_exec_object *exec_list = NULL;
1889 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1890 int ret, i;
1891
1892 if (args->buffer_count < 1) {
1893 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1894 return -EINVAL;
1895 }
1896
1897 /* Copy in the exec list from userland */
1898 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1899 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1900 if (exec_list == NULL || exec2_list == NULL) {
1901 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1902 args->buffer_count);
1903 drm_free_large(exec_list);
1904 drm_free_large(exec2_list);
1905 return -ENOMEM;
1906 }
1907 ret = copy_from_user(exec_list,
1908 u64_to_user_ptr(args->buffers_ptr),
1909 sizeof(*exec_list) * args->buffer_count);
1910 if (ret != 0) {
1911 DRM_DEBUG("copy %d exec entries failed %d\n",
1912 args->buffer_count, ret);
1913 drm_free_large(exec_list);
1914 drm_free_large(exec2_list);
1915 return -EFAULT;
1916 }
1917
1918 for (i = 0; i < args->buffer_count; i++) {
1919 exec2_list[i].handle = exec_list[i].handle;
1920 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1921 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1922 exec2_list[i].alignment = exec_list[i].alignment;
1923 exec2_list[i].offset = exec_list[i].offset;
1924 if (INTEL_INFO(dev)->gen < 4)
1925 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1926 else
1927 exec2_list[i].flags = 0;
1928 }
1929
1930 exec2.buffers_ptr = args->buffers_ptr;
1931 exec2.buffer_count = args->buffer_count;
1932 exec2.batch_start_offset = args->batch_start_offset;
1933 exec2.batch_len = args->batch_len;
1934 exec2.DR1 = args->DR1;
1935 exec2.DR4 = args->DR4;
1936 exec2.num_cliprects = args->num_cliprects;
1937 exec2.cliprects_ptr = args->cliprects_ptr;
1938 exec2.flags = I915_EXEC_RENDER;
1939 i915_execbuffer2_set_context_id(exec2, 0);
1940
1941 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1942 if (!ret) {
1943 struct drm_i915_gem_exec_object __user *user_exec_list =
1944 u64_to_user_ptr(args->buffers_ptr);
1945
1946 /* Copy the new buffer offsets back to the user's exec list. */
1947 for (i = 0; i < args->buffer_count; i++) {
1948 exec2_list[i].offset =
1949 gen8_canonical_addr(exec2_list[i].offset);
1950 ret = __copy_to_user(&user_exec_list[i].offset,
1951 &exec2_list[i].offset,
1952 sizeof(user_exec_list[i].offset));
1953 if (ret) {
1954 ret = -EFAULT;
1955 DRM_DEBUG("failed to copy %d exec entries "
1956 "back to user (%d)\n",
1957 args->buffer_count, ret);
1958 break;
1959 }
1960 }
1961 }
1962
1963 drm_free_large(exec_list);
1964 drm_free_large(exec2_list);
1965 return ret;
1966 }
1967
1968 int
1969 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1970 struct drm_file *file)
1971 {
1972 struct drm_i915_gem_execbuffer2 *args = data;
1973 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1974 int ret;
1975
1976 if (args->buffer_count < 1 ||
1977 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1978 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1979 return -EINVAL;
1980 }
1981
1982 if (args->rsvd2 != 0) {
1983 DRM_DEBUG("dirty rvsd2 field\n");
1984 return -EINVAL;
1985 }
1986
1987 exec2_list = drm_malloc_gfp(args->buffer_count,
1988 sizeof(*exec2_list),
1989 GFP_TEMPORARY);
1990 if (exec2_list == NULL) {
1991 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1992 args->buffer_count);
1993 return -ENOMEM;
1994 }
1995 ret = copy_from_user(exec2_list,
1996 u64_to_user_ptr(args->buffers_ptr),
1997 sizeof(*exec2_list) * args->buffer_count);
1998 if (ret != 0) {
1999 DRM_DEBUG("copy %d exec entries failed %d\n",
2000 args->buffer_count, ret);
2001 drm_free_large(exec2_list);
2002 return -EFAULT;
2003 }
2004
2005 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
2006 if (!ret) {
2007 /* Copy the new buffer offsets back to the user's exec list. */
2008 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2009 u64_to_user_ptr(args->buffers_ptr);
2010 int i;
2011
2012 for (i = 0; i < args->buffer_count; i++) {
2013 exec2_list[i].offset =
2014 gen8_canonical_addr(exec2_list[i].offset);
2015 ret = __copy_to_user(&user_exec_list[i].offset,
2016 &exec2_list[i].offset,
2017 sizeof(user_exec_list[i].offset));
2018 if (ret) {
2019 ret = -EFAULT;
2020 DRM_DEBUG("failed to copy %d exec entries "
2021 "back to user\n",
2022 args->buffer_count);
2023 break;
2024 }
2025 }
2026 }
2027
2028 drm_free_large(exec2_list);
2029 return ret;
2030 }