]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_execbuffer.c
Merge tag 'zxdrm-4.10' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2 * Copyright © 2008,2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
26 *
27 */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39 #include "intel_frontbuffer.h"
40
41 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
42
43 #define __EXEC_OBJECT_HAS_PIN (1<<31)
44 #define __EXEC_OBJECT_HAS_FENCE (1<<30)
45 #define __EXEC_OBJECT_NEEDS_MAP (1<<29)
46 #define __EXEC_OBJECT_NEEDS_BIAS (1<<28)
47 #define __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
48
49 #define BATCH_OFFSET_BIAS (256*1024)
50
51 struct i915_execbuffer_params {
52 struct drm_device *dev;
53 struct drm_file *file;
54 struct i915_vma *batch;
55 u32 dispatch_flags;
56 u32 args_batch_start_offset;
57 struct intel_engine_cs *engine;
58 struct i915_gem_context *ctx;
59 struct drm_i915_gem_request *request;
60 };
61
62 struct eb_vmas {
63 struct drm_i915_private *i915;
64 struct list_head vmas;
65 int and;
66 union {
67 struct i915_vma *lut[0];
68 struct hlist_head buckets[0];
69 };
70 };
71
72 static struct eb_vmas *
73 eb_create(struct drm_i915_private *i915,
74 struct drm_i915_gem_execbuffer2 *args)
75 {
76 struct eb_vmas *eb = NULL;
77
78 if (args->flags & I915_EXEC_HANDLE_LUT) {
79 unsigned size = args->buffer_count;
80 size *= sizeof(struct i915_vma *);
81 size += sizeof(struct eb_vmas);
82 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
83 }
84
85 if (eb == NULL) {
86 unsigned size = args->buffer_count;
87 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
88 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
89 while (count > 2*size)
90 count >>= 1;
91 eb = kzalloc(count*sizeof(struct hlist_head) +
92 sizeof(struct eb_vmas),
93 GFP_TEMPORARY);
94 if (eb == NULL)
95 return eb;
96
97 eb->and = count - 1;
98 } else
99 eb->and = -args->buffer_count;
100
101 eb->i915 = i915;
102 INIT_LIST_HEAD(&eb->vmas);
103 return eb;
104 }
105
106 static void
107 eb_reset(struct eb_vmas *eb)
108 {
109 if (eb->and >= 0)
110 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
111 }
112
113 static struct i915_vma *
114 eb_get_batch(struct eb_vmas *eb)
115 {
116 struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
117
118 /*
119 * SNA is doing fancy tricks with compressing batch buffers, which leads
120 * to negative relocation deltas. Usually that works out ok since the
121 * relocate address is still positive, except when the batch is placed
122 * very low in the GTT. Ensure this doesn't happen.
123 *
124 * Note that actual hangs have only been observed on gen7, but for
125 * paranoia do it everywhere.
126 */
127 if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
128 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
129
130 return vma;
131 }
132
133 static int
134 eb_lookup_vmas(struct eb_vmas *eb,
135 struct drm_i915_gem_exec_object2 *exec,
136 const struct drm_i915_gem_execbuffer2 *args,
137 struct i915_address_space *vm,
138 struct drm_file *file)
139 {
140 struct drm_i915_gem_object *obj;
141 struct list_head objects;
142 int i, ret;
143
144 INIT_LIST_HEAD(&objects);
145 spin_lock(&file->table_lock);
146 /* Grab a reference to the object and release the lock so we can lookup
147 * or create the VMA without using GFP_ATOMIC */
148 for (i = 0; i < args->buffer_count; i++) {
149 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
150 if (obj == NULL) {
151 spin_unlock(&file->table_lock);
152 DRM_DEBUG("Invalid object handle %d at index %d\n",
153 exec[i].handle, i);
154 ret = -ENOENT;
155 goto err;
156 }
157
158 if (!list_empty(&obj->obj_exec_link)) {
159 spin_unlock(&file->table_lock);
160 DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
161 obj, exec[i].handle, i);
162 ret = -EINVAL;
163 goto err;
164 }
165
166 i915_gem_object_get(obj);
167 list_add_tail(&obj->obj_exec_link, &objects);
168 }
169 spin_unlock(&file->table_lock);
170
171 i = 0;
172 while (!list_empty(&objects)) {
173 struct i915_vma *vma;
174
175 obj = list_first_entry(&objects,
176 struct drm_i915_gem_object,
177 obj_exec_link);
178
179 /*
180 * NOTE: We can leak any vmas created here when something fails
181 * later on. But that's no issue since vma_unbind can deal with
182 * vmas which are not actually bound. And since only
183 * lookup_or_create exists as an interface to get at the vma
184 * from the (obj, vm) we don't run the risk of creating
185 * duplicated vmas for the same vm.
186 */
187 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
188 if (unlikely(IS_ERR(vma))) {
189 DRM_DEBUG("Failed to lookup VMA\n");
190 ret = PTR_ERR(vma);
191 goto err;
192 }
193
194 /* Transfer ownership from the objects list to the vmas list. */
195 list_add_tail(&vma->exec_list, &eb->vmas);
196 list_del_init(&obj->obj_exec_link);
197
198 vma->exec_entry = &exec[i];
199 if (eb->and < 0) {
200 eb->lut[i] = vma;
201 } else {
202 uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
203 vma->exec_handle = handle;
204 hlist_add_head(&vma->exec_node,
205 &eb->buckets[handle & eb->and]);
206 }
207 ++i;
208 }
209
210 return 0;
211
212
213 err:
214 while (!list_empty(&objects)) {
215 obj = list_first_entry(&objects,
216 struct drm_i915_gem_object,
217 obj_exec_link);
218 list_del_init(&obj->obj_exec_link);
219 i915_gem_object_put(obj);
220 }
221 /*
222 * Objects already transfered to the vmas list will be unreferenced by
223 * eb_destroy.
224 */
225
226 return ret;
227 }
228
229 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
230 {
231 if (eb->and < 0) {
232 if (handle >= -eb->and)
233 return NULL;
234 return eb->lut[handle];
235 } else {
236 struct hlist_head *head;
237 struct i915_vma *vma;
238
239 head = &eb->buckets[handle & eb->and];
240 hlist_for_each_entry(vma, head, exec_node) {
241 if (vma->exec_handle == handle)
242 return vma;
243 }
244 return NULL;
245 }
246 }
247
248 static void
249 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
250 {
251 struct drm_i915_gem_exec_object2 *entry;
252
253 if (!drm_mm_node_allocated(&vma->node))
254 return;
255
256 entry = vma->exec_entry;
257
258 if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
259 i915_vma_unpin_fence(vma);
260
261 if (entry->flags & __EXEC_OBJECT_HAS_PIN)
262 __i915_vma_unpin(vma);
263
264 entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
265 }
266
267 static void eb_destroy(struct eb_vmas *eb)
268 {
269 while (!list_empty(&eb->vmas)) {
270 struct i915_vma *vma;
271
272 vma = list_first_entry(&eb->vmas,
273 struct i915_vma,
274 exec_list);
275 list_del_init(&vma->exec_list);
276 i915_gem_execbuffer_unreserve_vma(vma);
277 i915_vma_put(vma);
278 }
279 kfree(eb);
280 }
281
282 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
283 {
284 if (!i915_gem_object_has_struct_page(obj))
285 return false;
286
287 if (DBG_USE_CPU_RELOC)
288 return DBG_USE_CPU_RELOC > 0;
289
290 return (HAS_LLC(obj->base.dev) ||
291 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
292 obj->cache_level != I915_CACHE_NONE);
293 }
294
295 /* Used to convert any address to canonical form.
296 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
297 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
298 * addresses to be in a canonical form:
299 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
300 * canonical form [63:48] == [47]."
301 */
302 #define GEN8_HIGH_ADDRESS_BIT 47
303 static inline uint64_t gen8_canonical_addr(uint64_t address)
304 {
305 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
306 }
307
308 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
309 {
310 return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
311 }
312
313 static inline uint64_t
314 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
315 uint64_t target_offset)
316 {
317 return gen8_canonical_addr((int)reloc->delta + target_offset);
318 }
319
320 struct reloc_cache {
321 struct drm_i915_private *i915;
322 struct drm_mm_node node;
323 unsigned long vaddr;
324 unsigned int page;
325 bool use_64bit_reloc;
326 };
327
328 static void reloc_cache_init(struct reloc_cache *cache,
329 struct drm_i915_private *i915)
330 {
331 cache->page = -1;
332 cache->vaddr = 0;
333 cache->i915 = i915;
334 /* Must be a variable in the struct to allow GCC to unroll. */
335 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
336 cache->node.allocated = false;
337 }
338
339 static inline void *unmask_page(unsigned long p)
340 {
341 return (void *)(uintptr_t)(p & PAGE_MASK);
342 }
343
344 static inline unsigned int unmask_flags(unsigned long p)
345 {
346 return p & ~PAGE_MASK;
347 }
348
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
350
351 static void reloc_cache_fini(struct reloc_cache *cache)
352 {
353 void *vaddr;
354
355 if (!cache->vaddr)
356 return;
357
358 vaddr = unmask_page(cache->vaddr);
359 if (cache->vaddr & KMAP) {
360 if (cache->vaddr & CLFLUSH_AFTER)
361 mb();
362
363 kunmap_atomic(vaddr);
364 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
365 } else {
366 wmb();
367 io_mapping_unmap_atomic((void __iomem *)vaddr);
368 if (cache->node.allocated) {
369 struct i915_ggtt *ggtt = &cache->i915->ggtt;
370
371 ggtt->base.clear_range(&ggtt->base,
372 cache->node.start,
373 cache->node.size);
374 drm_mm_remove_node(&cache->node);
375 } else {
376 i915_vma_unpin((struct i915_vma *)cache->node.mm);
377 }
378 }
379 }
380
381 static void *reloc_kmap(struct drm_i915_gem_object *obj,
382 struct reloc_cache *cache,
383 int page)
384 {
385 void *vaddr;
386
387 if (cache->vaddr) {
388 kunmap_atomic(unmask_page(cache->vaddr));
389 } else {
390 unsigned int flushes;
391 int ret;
392
393 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
394 if (ret)
395 return ERR_PTR(ret);
396
397 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
398 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
399
400 cache->vaddr = flushes | KMAP;
401 cache->node.mm = (void *)obj;
402 if (flushes)
403 mb();
404 }
405
406 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
407 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
408 cache->page = page;
409
410 return vaddr;
411 }
412
413 static void *reloc_iomap(struct drm_i915_gem_object *obj,
414 struct reloc_cache *cache,
415 int page)
416 {
417 struct i915_ggtt *ggtt = &cache->i915->ggtt;
418 unsigned long offset;
419 void *vaddr;
420
421 if (cache->vaddr) {
422 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
423 } else {
424 struct i915_vma *vma;
425 int ret;
426
427 if (use_cpu_reloc(obj))
428 return NULL;
429
430 ret = i915_gem_object_set_to_gtt_domain(obj, true);
431 if (ret)
432 return ERR_PTR(ret);
433
434 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
435 PIN_MAPPABLE | PIN_NONBLOCK);
436 if (IS_ERR(vma)) {
437 memset(&cache->node, 0, sizeof(cache->node));
438 ret = drm_mm_insert_node_in_range_generic
439 (&ggtt->base.mm, &cache->node,
440 4096, 0, 0,
441 0, ggtt->mappable_end,
442 DRM_MM_SEARCH_DEFAULT,
443 DRM_MM_CREATE_DEFAULT);
444 if (ret) /* no inactive aperture space, use cpu reloc */
445 return NULL;
446 } else {
447 ret = i915_vma_put_fence(vma);
448 if (ret) {
449 i915_vma_unpin(vma);
450 return ERR_PTR(ret);
451 }
452
453 cache->node.start = vma->node.start;
454 cache->node.mm = (void *)vma;
455 }
456 }
457
458 offset = cache->node.start;
459 if (cache->node.allocated) {
460 wmb();
461 ggtt->base.insert_page(&ggtt->base,
462 i915_gem_object_get_dma_address(obj, page),
463 offset, I915_CACHE_NONE, 0);
464 } else {
465 offset += page << PAGE_SHIFT;
466 }
467
468 vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
469 cache->page = page;
470 cache->vaddr = (unsigned long)vaddr;
471
472 return vaddr;
473 }
474
475 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
476 struct reloc_cache *cache,
477 int page)
478 {
479 void *vaddr;
480
481 if (cache->page == page) {
482 vaddr = unmask_page(cache->vaddr);
483 } else {
484 vaddr = NULL;
485 if ((cache->vaddr & KMAP) == 0)
486 vaddr = reloc_iomap(obj, cache, page);
487 if (!vaddr)
488 vaddr = reloc_kmap(obj, cache, page);
489 }
490
491 return vaddr;
492 }
493
494 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
495 {
496 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
497 if (flushes & CLFLUSH_BEFORE) {
498 clflushopt(addr);
499 mb();
500 }
501
502 *addr = value;
503
504 /* Writes to the same cacheline are serialised by the CPU
505 * (including clflush). On the write path, we only require
506 * that it hits memory in an orderly fashion and place
507 * mb barriers at the start and end of the relocation phase
508 * to ensure ordering of clflush wrt to the system.
509 */
510 if (flushes & CLFLUSH_AFTER)
511 clflushopt(addr);
512 } else
513 *addr = value;
514 }
515
516 static int
517 relocate_entry(struct drm_i915_gem_object *obj,
518 const struct drm_i915_gem_relocation_entry *reloc,
519 struct reloc_cache *cache,
520 u64 target_offset)
521 {
522 u64 offset = reloc->offset;
523 bool wide = cache->use_64bit_reloc;
524 void *vaddr;
525
526 target_offset = relocation_target(reloc, target_offset);
527 repeat:
528 vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
529 if (IS_ERR(vaddr))
530 return PTR_ERR(vaddr);
531
532 clflush_write32(vaddr + offset_in_page(offset),
533 lower_32_bits(target_offset),
534 cache->vaddr);
535
536 if (wide) {
537 offset += sizeof(u32);
538 target_offset >>= 32;
539 wide = false;
540 goto repeat;
541 }
542
543 return 0;
544 }
545
546 static int
547 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
548 struct eb_vmas *eb,
549 struct drm_i915_gem_relocation_entry *reloc,
550 struct reloc_cache *cache)
551 {
552 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
553 struct drm_gem_object *target_obj;
554 struct drm_i915_gem_object *target_i915_obj;
555 struct i915_vma *target_vma;
556 uint64_t target_offset;
557 int ret;
558
559 /* we've already hold a reference to all valid objects */
560 target_vma = eb_get_vma(eb, reloc->target_handle);
561 if (unlikely(target_vma == NULL))
562 return -ENOENT;
563 target_i915_obj = target_vma->obj;
564 target_obj = &target_vma->obj->base;
565
566 target_offset = gen8_canonical_addr(target_vma->node.start);
567
568 /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
569 * pipe_control writes because the gpu doesn't properly redirect them
570 * through the ppgtt for non_secure batchbuffers. */
571 if (unlikely(IS_GEN6(dev_priv) &&
572 reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
573 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
574 PIN_GLOBAL);
575 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
576 return ret;
577 }
578
579 /* Validate that the target is in a valid r/w GPU domain */
580 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
581 DRM_DEBUG("reloc with multiple write domains: "
582 "obj %p target %d offset %d "
583 "read %08x write %08x",
584 obj, reloc->target_handle,
585 (int) reloc->offset,
586 reloc->read_domains,
587 reloc->write_domain);
588 return -EINVAL;
589 }
590 if (unlikely((reloc->write_domain | reloc->read_domains)
591 & ~I915_GEM_GPU_DOMAINS)) {
592 DRM_DEBUG("reloc with read/write non-GPU domains: "
593 "obj %p target %d offset %d "
594 "read %08x write %08x",
595 obj, reloc->target_handle,
596 (int) reloc->offset,
597 reloc->read_domains,
598 reloc->write_domain);
599 return -EINVAL;
600 }
601
602 target_obj->pending_read_domains |= reloc->read_domains;
603 target_obj->pending_write_domain |= reloc->write_domain;
604
605 /* If the relocation already has the right value in it, no
606 * more work needs to be done.
607 */
608 if (target_offset == reloc->presumed_offset)
609 return 0;
610
611 /* Check that the relocation address is valid... */
612 if (unlikely(reloc->offset >
613 obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
614 DRM_DEBUG("Relocation beyond object bounds: "
615 "obj %p target %d offset %d size %d.\n",
616 obj, reloc->target_handle,
617 (int) reloc->offset,
618 (int) obj->base.size);
619 return -EINVAL;
620 }
621 if (unlikely(reloc->offset & 3)) {
622 DRM_DEBUG("Relocation not 4-byte aligned: "
623 "obj %p target %d offset %d.\n",
624 obj, reloc->target_handle,
625 (int) reloc->offset);
626 return -EINVAL;
627 }
628
629 ret = relocate_entry(obj, reloc, cache, target_offset);
630 if (ret)
631 return ret;
632
633 /* and update the user's relocation entry */
634 reloc->presumed_offset = target_offset;
635 return 0;
636 }
637
638 static int
639 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
640 struct eb_vmas *eb)
641 {
642 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
643 struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
644 struct drm_i915_gem_relocation_entry __user *user_relocs;
645 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
646 struct reloc_cache cache;
647 int remain, ret = 0;
648
649 user_relocs = u64_to_user_ptr(entry->relocs_ptr);
650 reloc_cache_init(&cache, eb->i915);
651
652 remain = entry->relocation_count;
653 while (remain) {
654 struct drm_i915_gem_relocation_entry *r = stack_reloc;
655 unsigned long unwritten;
656 unsigned int count;
657
658 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
659 remain -= count;
660
661 /* This is the fast path and we cannot handle a pagefault
662 * whilst holding the struct mutex lest the user pass in the
663 * relocations contained within a mmaped bo. For in such a case
664 * we, the page fault handler would call i915_gem_fault() and
665 * we would try to acquire the struct mutex again. Obviously
666 * this is bad and so lockdep complains vehemently.
667 */
668 pagefault_disable();
669 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
670 pagefault_enable();
671 if (unlikely(unwritten)) {
672 ret = -EFAULT;
673 goto out;
674 }
675
676 do {
677 u64 offset = r->presumed_offset;
678
679 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
680 if (ret)
681 goto out;
682
683 if (r->presumed_offset != offset) {
684 pagefault_disable();
685 unwritten = __put_user(r->presumed_offset,
686 &user_relocs->presumed_offset);
687 pagefault_enable();
688 if (unlikely(unwritten)) {
689 /* Note that reporting an error now
690 * leaves everything in an inconsistent
691 * state as we have *already* changed
692 * the relocation value inside the
693 * object. As we have not changed the
694 * reloc.presumed_offset or will not
695 * change the execobject.offset, on the
696 * call we may not rewrite the value
697 * inside the object, leaving it
698 * dangling and causing a GPU hang.
699 */
700 ret = -EFAULT;
701 goto out;
702 }
703 }
704
705 user_relocs++;
706 r++;
707 } while (--count);
708 }
709
710 out:
711 reloc_cache_fini(&cache);
712 return ret;
713 #undef N_RELOC
714 }
715
716 static int
717 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
718 struct eb_vmas *eb,
719 struct drm_i915_gem_relocation_entry *relocs)
720 {
721 const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
722 struct reloc_cache cache;
723 int i, ret = 0;
724
725 reloc_cache_init(&cache, eb->i915);
726 for (i = 0; i < entry->relocation_count; i++) {
727 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
728 if (ret)
729 break;
730 }
731 reloc_cache_fini(&cache);
732
733 return ret;
734 }
735
736 static int
737 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
738 {
739 struct i915_vma *vma;
740 int ret = 0;
741
742 list_for_each_entry(vma, &eb->vmas, exec_list) {
743 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
744 if (ret)
745 break;
746 }
747
748 return ret;
749 }
750
751 static bool only_mappable_for_reloc(unsigned int flags)
752 {
753 return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
754 __EXEC_OBJECT_NEEDS_MAP;
755 }
756
757 static int
758 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
759 struct intel_engine_cs *engine,
760 bool *need_reloc)
761 {
762 struct drm_i915_gem_object *obj = vma->obj;
763 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
764 uint64_t flags;
765 int ret;
766
767 flags = PIN_USER;
768 if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
769 flags |= PIN_GLOBAL;
770
771 if (!drm_mm_node_allocated(&vma->node)) {
772 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
773 * limit address to the first 4GBs for unflagged objects.
774 */
775 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
776 flags |= PIN_ZONE_4G;
777 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
778 flags |= PIN_GLOBAL | PIN_MAPPABLE;
779 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
780 flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
781 if (entry->flags & EXEC_OBJECT_PINNED)
782 flags |= entry->offset | PIN_OFFSET_FIXED;
783 if ((flags & PIN_MAPPABLE) == 0)
784 flags |= PIN_HIGH;
785 }
786
787 ret = i915_vma_pin(vma,
788 entry->pad_to_size,
789 entry->alignment,
790 flags);
791 if ((ret == -ENOSPC || ret == -E2BIG) &&
792 only_mappable_for_reloc(entry->flags))
793 ret = i915_vma_pin(vma,
794 entry->pad_to_size,
795 entry->alignment,
796 flags & ~PIN_MAPPABLE);
797 if (ret)
798 return ret;
799
800 entry->flags |= __EXEC_OBJECT_HAS_PIN;
801
802 if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
803 ret = i915_vma_get_fence(vma);
804 if (ret)
805 return ret;
806
807 if (i915_vma_pin_fence(vma))
808 entry->flags |= __EXEC_OBJECT_HAS_FENCE;
809 }
810
811 if (entry->offset != vma->node.start) {
812 entry->offset = vma->node.start;
813 *need_reloc = true;
814 }
815
816 if (entry->flags & EXEC_OBJECT_WRITE) {
817 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
818 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
819 }
820
821 return 0;
822 }
823
824 static bool
825 need_reloc_mappable(struct i915_vma *vma)
826 {
827 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
828
829 if (entry->relocation_count == 0)
830 return false;
831
832 if (!i915_vma_is_ggtt(vma))
833 return false;
834
835 /* See also use_cpu_reloc() */
836 if (HAS_LLC(vma->obj->base.dev))
837 return false;
838
839 if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
840 return false;
841
842 return true;
843 }
844
845 static bool
846 eb_vma_misplaced(struct i915_vma *vma)
847 {
848 struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
849
850 WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
851 !i915_vma_is_ggtt(vma));
852
853 if (entry->alignment &&
854 vma->node.start & (entry->alignment - 1))
855 return true;
856
857 if (vma->node.size < entry->pad_to_size)
858 return true;
859
860 if (entry->flags & EXEC_OBJECT_PINNED &&
861 vma->node.start != entry->offset)
862 return true;
863
864 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
865 vma->node.start < BATCH_OFFSET_BIAS)
866 return true;
867
868 /* avoid costly ping-pong once a batch bo ended up non-mappable */
869 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
870 !i915_vma_is_map_and_fenceable(vma))
871 return !only_mappable_for_reloc(entry->flags);
872
873 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
874 (vma->node.start + vma->node.size - 1) >> 32)
875 return true;
876
877 return false;
878 }
879
880 static int
881 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
882 struct list_head *vmas,
883 struct i915_gem_context *ctx,
884 bool *need_relocs)
885 {
886 struct drm_i915_gem_object *obj;
887 struct i915_vma *vma;
888 struct i915_address_space *vm;
889 struct list_head ordered_vmas;
890 struct list_head pinned_vmas;
891 bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
892 int retry;
893
894 vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
895
896 INIT_LIST_HEAD(&ordered_vmas);
897 INIT_LIST_HEAD(&pinned_vmas);
898 while (!list_empty(vmas)) {
899 struct drm_i915_gem_exec_object2 *entry;
900 bool need_fence, need_mappable;
901
902 vma = list_first_entry(vmas, struct i915_vma, exec_list);
903 obj = vma->obj;
904 entry = vma->exec_entry;
905
906 if (ctx->flags & CONTEXT_NO_ZEROMAP)
907 entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
908
909 if (!has_fenced_gpu_access)
910 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
911 need_fence =
912 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
913 i915_gem_object_is_tiled(obj);
914 need_mappable = need_fence || need_reloc_mappable(vma);
915
916 if (entry->flags & EXEC_OBJECT_PINNED)
917 list_move_tail(&vma->exec_list, &pinned_vmas);
918 else if (need_mappable) {
919 entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
920 list_move(&vma->exec_list, &ordered_vmas);
921 } else
922 list_move_tail(&vma->exec_list, &ordered_vmas);
923
924 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
925 obj->base.pending_write_domain = 0;
926 }
927 list_splice(&ordered_vmas, vmas);
928 list_splice(&pinned_vmas, vmas);
929
930 /* Attempt to pin all of the buffers into the GTT.
931 * This is done in 3 phases:
932 *
933 * 1a. Unbind all objects that do not match the GTT constraints for
934 * the execbuffer (fenceable, mappable, alignment etc).
935 * 1b. Increment pin count for already bound objects.
936 * 2. Bind new objects.
937 * 3. Decrement pin count.
938 *
939 * This avoid unnecessary unbinding of later objects in order to make
940 * room for the earlier objects *unless* we need to defragment.
941 */
942 retry = 0;
943 do {
944 int ret = 0;
945
946 /* Unbind any ill-fitting objects or pin. */
947 list_for_each_entry(vma, vmas, exec_list) {
948 if (!drm_mm_node_allocated(&vma->node))
949 continue;
950
951 if (eb_vma_misplaced(vma))
952 ret = i915_vma_unbind(vma);
953 else
954 ret = i915_gem_execbuffer_reserve_vma(vma,
955 engine,
956 need_relocs);
957 if (ret)
958 goto err;
959 }
960
961 /* Bind fresh objects */
962 list_for_each_entry(vma, vmas, exec_list) {
963 if (drm_mm_node_allocated(&vma->node))
964 continue;
965
966 ret = i915_gem_execbuffer_reserve_vma(vma, engine,
967 need_relocs);
968 if (ret)
969 goto err;
970 }
971
972 err:
973 if (ret != -ENOSPC || retry++)
974 return ret;
975
976 /* Decrement pin count for bound objects */
977 list_for_each_entry(vma, vmas, exec_list)
978 i915_gem_execbuffer_unreserve_vma(vma);
979
980 ret = i915_gem_evict_vm(vm, true);
981 if (ret)
982 return ret;
983 } while (1);
984 }
985
986 static int
987 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
988 struct drm_i915_gem_execbuffer2 *args,
989 struct drm_file *file,
990 struct intel_engine_cs *engine,
991 struct eb_vmas *eb,
992 struct drm_i915_gem_exec_object2 *exec,
993 struct i915_gem_context *ctx)
994 {
995 struct drm_i915_gem_relocation_entry *reloc;
996 struct i915_address_space *vm;
997 struct i915_vma *vma;
998 bool need_relocs;
999 int *reloc_offset;
1000 int i, total, ret;
1001 unsigned count = args->buffer_count;
1002
1003 vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1004
1005 /* We may process another execbuffer during the unlock... */
1006 while (!list_empty(&eb->vmas)) {
1007 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1008 list_del_init(&vma->exec_list);
1009 i915_gem_execbuffer_unreserve_vma(vma);
1010 i915_vma_put(vma);
1011 }
1012
1013 mutex_unlock(&dev->struct_mutex);
1014
1015 total = 0;
1016 for (i = 0; i < count; i++)
1017 total += exec[i].relocation_count;
1018
1019 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1020 reloc = drm_malloc_ab(total, sizeof(*reloc));
1021 if (reloc == NULL || reloc_offset == NULL) {
1022 drm_free_large(reloc);
1023 drm_free_large(reloc_offset);
1024 mutex_lock(&dev->struct_mutex);
1025 return -ENOMEM;
1026 }
1027
1028 total = 0;
1029 for (i = 0; i < count; i++) {
1030 struct drm_i915_gem_relocation_entry __user *user_relocs;
1031 u64 invalid_offset = (u64)-1;
1032 int j;
1033
1034 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1035
1036 if (copy_from_user(reloc+total, user_relocs,
1037 exec[i].relocation_count * sizeof(*reloc))) {
1038 ret = -EFAULT;
1039 mutex_lock(&dev->struct_mutex);
1040 goto err;
1041 }
1042
1043 /* As we do not update the known relocation offsets after
1044 * relocating (due to the complexities in lock handling),
1045 * we need to mark them as invalid now so that we force the
1046 * relocation processing next time. Just in case the target
1047 * object is evicted and then rebound into its old
1048 * presumed_offset before the next execbuffer - if that
1049 * happened we would make the mistake of assuming that the
1050 * relocations were valid.
1051 */
1052 for (j = 0; j < exec[i].relocation_count; j++) {
1053 if (__copy_to_user(&user_relocs[j].presumed_offset,
1054 &invalid_offset,
1055 sizeof(invalid_offset))) {
1056 ret = -EFAULT;
1057 mutex_lock(&dev->struct_mutex);
1058 goto err;
1059 }
1060 }
1061
1062 reloc_offset[i] = total;
1063 total += exec[i].relocation_count;
1064 }
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret) {
1068 mutex_lock(&dev->struct_mutex);
1069 goto err;
1070 }
1071
1072 /* reacquire the objects */
1073 eb_reset(eb);
1074 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1075 if (ret)
1076 goto err;
1077
1078 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1079 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1080 &need_relocs);
1081 if (ret)
1082 goto err;
1083
1084 list_for_each_entry(vma, &eb->vmas, exec_list) {
1085 int offset = vma->exec_entry - exec;
1086 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1087 reloc + reloc_offset[offset]);
1088 if (ret)
1089 goto err;
1090 }
1091
1092 /* Leave the user relocations as are, this is the painfully slow path,
1093 * and we want to avoid the complication of dropping the lock whilst
1094 * having buffers reserved in the aperture and so causing spurious
1095 * ENOSPC for random operations.
1096 */
1097
1098 err:
1099 drm_free_large(reloc);
1100 drm_free_large(reloc_offset);
1101 return ret;
1102 }
1103
1104 static int
1105 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1106 struct list_head *vmas)
1107 {
1108 struct i915_vma *vma;
1109 int ret;
1110
1111 list_for_each_entry(vma, vmas, exec_list) {
1112 struct drm_i915_gem_object *obj = vma->obj;
1113
1114 ret = i915_gem_request_await_object
1115 (req, obj, obj->base.pending_write_domain);
1116 if (ret)
1117 return ret;
1118
1119 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1120 i915_gem_clflush_object(obj, false);
1121 }
1122
1123 /* Unconditionally flush any chipset caches (for streaming writes). */
1124 i915_gem_chipset_flush(req->engine->i915);
1125
1126 /* Unconditionally invalidate GPU caches and TLBs. */
1127 return req->engine->emit_flush(req, EMIT_INVALIDATE);
1128 }
1129
1130 static bool
1131 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1132 {
1133 if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1134 return false;
1135
1136 /* Kernel clipping was a DRI1 misfeature */
1137 if (exec->num_cliprects || exec->cliprects_ptr)
1138 return false;
1139
1140 if (exec->DR4 == 0xffffffff) {
1141 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1142 exec->DR4 = 0;
1143 }
1144 if (exec->DR1 || exec->DR4)
1145 return false;
1146
1147 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1148 return false;
1149
1150 return true;
1151 }
1152
1153 static int
1154 validate_exec_list(struct drm_device *dev,
1155 struct drm_i915_gem_exec_object2 *exec,
1156 int count)
1157 {
1158 unsigned relocs_total = 0;
1159 unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1160 unsigned invalid_flags;
1161 int i;
1162
1163 /* INTERNAL flags must not overlap with external ones */
1164 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1165
1166 invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1167 if (USES_FULL_PPGTT(dev))
1168 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1169
1170 for (i = 0; i < count; i++) {
1171 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1172 int length; /* limited by fault_in_pages_readable() */
1173
1174 if (exec[i].flags & invalid_flags)
1175 return -EINVAL;
1176
1177 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1178 * any non-page-aligned or non-canonical addresses.
1179 */
1180 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1181 if (exec[i].offset !=
1182 gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1183 return -EINVAL;
1184
1185 /* From drm_mm perspective address space is continuous,
1186 * so from this point we're always using non-canonical
1187 * form internally.
1188 */
1189 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1190 }
1191
1192 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1193 return -EINVAL;
1194
1195 /* pad_to_size was once a reserved field, so sanitize it */
1196 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1197 if (offset_in_page(exec[i].pad_to_size))
1198 return -EINVAL;
1199 } else {
1200 exec[i].pad_to_size = 0;
1201 }
1202
1203 /* First check for malicious input causing overflow in
1204 * the worst case where we need to allocate the entire
1205 * relocation tree as a single array.
1206 */
1207 if (exec[i].relocation_count > relocs_max - relocs_total)
1208 return -EINVAL;
1209 relocs_total += exec[i].relocation_count;
1210
1211 length = exec[i].relocation_count *
1212 sizeof(struct drm_i915_gem_relocation_entry);
1213 /*
1214 * We must check that the entire relocation array is safe
1215 * to read, but since we may need to update the presumed
1216 * offsets during execution, check for full write access.
1217 */
1218 if (!access_ok(VERIFY_WRITE, ptr, length))
1219 return -EFAULT;
1220
1221 if (likely(!i915.prefault_disable)) {
1222 if (fault_in_pages_readable(ptr, length))
1223 return -EFAULT;
1224 }
1225 }
1226
1227 return 0;
1228 }
1229
1230 static struct i915_gem_context *
1231 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1232 struct intel_engine_cs *engine, const u32 ctx_id)
1233 {
1234 struct i915_gem_context *ctx;
1235 struct i915_ctx_hang_stats *hs;
1236
1237 ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1238 if (IS_ERR(ctx))
1239 return ctx;
1240
1241 hs = &ctx->hang_stats;
1242 if (hs->banned) {
1243 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1244 return ERR_PTR(-EIO);
1245 }
1246
1247 return ctx;
1248 }
1249
1250 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1251 {
1252 return !(obj->cache_level == I915_CACHE_NONE ||
1253 obj->cache_level == I915_CACHE_WT);
1254 }
1255
1256 void i915_vma_move_to_active(struct i915_vma *vma,
1257 struct drm_i915_gem_request *req,
1258 unsigned int flags)
1259 {
1260 struct drm_i915_gem_object *obj = vma->obj;
1261 const unsigned int idx = req->engine->id;
1262
1263 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1264
1265 /* Add a reference if we're newly entering the active list.
1266 * The order in which we add operations to the retirement queue is
1267 * vital here: mark_active adds to the start of the callback list,
1268 * such that subsequent callbacks are called first. Therefore we
1269 * add the active reference first and queue for it to be dropped
1270 * *last*.
1271 */
1272 if (!i915_vma_is_active(vma))
1273 obj->active_count++;
1274 i915_vma_set_active(vma, idx);
1275 i915_gem_active_set(&vma->last_read[idx], req);
1276 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1277
1278 if (flags & EXEC_OBJECT_WRITE) {
1279 i915_gem_active_set(&vma->last_write, req);
1280
1281 intel_fb_obj_invalidate(obj, ORIGIN_CS);
1282
1283 /* update for the implicit flush after a batch */
1284 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1285 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1286 obj->cache_dirty = true;
1287 }
1288
1289 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1290 i915_gem_active_set(&vma->last_fence, req);
1291 }
1292
1293 static void eb_export_fence(struct drm_i915_gem_object *obj,
1294 struct drm_i915_gem_request *req,
1295 unsigned int flags)
1296 {
1297 struct reservation_object *resv = obj->resv;
1298
1299 /* Ignore errors from failing to allocate the new fence, we can't
1300 * handle an error right now. Worst case should be missed
1301 * synchronisation leading to rendering corruption.
1302 */
1303 ww_mutex_lock(&resv->lock, NULL);
1304 if (flags & EXEC_OBJECT_WRITE)
1305 reservation_object_add_excl_fence(resv, &req->fence);
1306 else if (reservation_object_reserve_shared(resv) == 0)
1307 reservation_object_add_shared_fence(resv, &req->fence);
1308 ww_mutex_unlock(&resv->lock);
1309 }
1310
1311 static void
1312 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1313 struct drm_i915_gem_request *req)
1314 {
1315 struct i915_vma *vma;
1316
1317 list_for_each_entry(vma, vmas, exec_list) {
1318 struct drm_i915_gem_object *obj = vma->obj;
1319 u32 old_read = obj->base.read_domains;
1320 u32 old_write = obj->base.write_domain;
1321
1322 obj->base.write_domain = obj->base.pending_write_domain;
1323 if (obj->base.write_domain)
1324 vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1325 else
1326 obj->base.pending_read_domains |= obj->base.read_domains;
1327 obj->base.read_domains = obj->base.pending_read_domains;
1328
1329 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1330 eb_export_fence(obj, req, vma->exec_entry->flags);
1331 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1332 }
1333 }
1334
1335 static int
1336 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1337 {
1338 struct intel_ring *ring = req->ring;
1339 int ret, i;
1340
1341 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1342 DRM_DEBUG("sol reset is gen7/rcs only\n");
1343 return -EINVAL;
1344 }
1345
1346 ret = intel_ring_begin(req, 4 * 3);
1347 if (ret)
1348 return ret;
1349
1350 for (i = 0; i < 4; i++) {
1351 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1352 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1353 intel_ring_emit(ring, 0);
1354 }
1355
1356 intel_ring_advance(ring);
1357
1358 return 0;
1359 }
1360
1361 static struct i915_vma *
1362 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1363 struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1364 struct drm_i915_gem_object *batch_obj,
1365 struct eb_vmas *eb,
1366 u32 batch_start_offset,
1367 u32 batch_len,
1368 bool is_master)
1369 {
1370 struct drm_i915_gem_object *shadow_batch_obj;
1371 struct i915_vma *vma;
1372 int ret;
1373
1374 shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1375 PAGE_ALIGN(batch_len));
1376 if (IS_ERR(shadow_batch_obj))
1377 return ERR_CAST(shadow_batch_obj);
1378
1379 ret = intel_engine_cmd_parser(engine,
1380 batch_obj,
1381 shadow_batch_obj,
1382 batch_start_offset,
1383 batch_len,
1384 is_master);
1385 if (ret) {
1386 if (ret == -EACCES) /* unhandled chained batch */
1387 vma = NULL;
1388 else
1389 vma = ERR_PTR(ret);
1390 goto out;
1391 }
1392
1393 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1394 if (IS_ERR(vma))
1395 goto out;
1396
1397 memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1398
1399 vma->exec_entry = shadow_exec_entry;
1400 vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1401 i915_gem_object_get(shadow_batch_obj);
1402 list_add_tail(&vma->exec_list, &eb->vmas);
1403
1404 out:
1405 i915_gem_object_unpin_pages(shadow_batch_obj);
1406 return vma;
1407 }
1408
1409 static int
1410 execbuf_submit(struct i915_execbuffer_params *params,
1411 struct drm_i915_gem_execbuffer2 *args,
1412 struct list_head *vmas)
1413 {
1414 struct drm_i915_private *dev_priv = params->request->i915;
1415 u64 exec_start, exec_len;
1416 int instp_mode;
1417 u32 instp_mask;
1418 int ret;
1419
1420 ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1421 if (ret)
1422 return ret;
1423
1424 ret = i915_switch_context(params->request);
1425 if (ret)
1426 return ret;
1427
1428 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1429 instp_mask = I915_EXEC_CONSTANTS_MASK;
1430 switch (instp_mode) {
1431 case I915_EXEC_CONSTANTS_REL_GENERAL:
1432 case I915_EXEC_CONSTANTS_ABSOLUTE:
1433 case I915_EXEC_CONSTANTS_REL_SURFACE:
1434 if (instp_mode != 0 && params->engine->id != RCS) {
1435 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1436 return -EINVAL;
1437 }
1438
1439 if (instp_mode != dev_priv->relative_constants_mode) {
1440 if (INTEL_INFO(dev_priv)->gen < 4) {
1441 DRM_DEBUG("no rel constants on pre-gen4\n");
1442 return -EINVAL;
1443 }
1444
1445 if (INTEL_INFO(dev_priv)->gen > 5 &&
1446 instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1447 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1448 return -EINVAL;
1449 }
1450
1451 /* The HW changed the meaning on this bit on gen6 */
1452 if (INTEL_INFO(dev_priv)->gen >= 6)
1453 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1454 }
1455 break;
1456 default:
1457 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1458 return -EINVAL;
1459 }
1460
1461 if (params->engine->id == RCS &&
1462 instp_mode != dev_priv->relative_constants_mode) {
1463 struct intel_ring *ring = params->request->ring;
1464
1465 ret = intel_ring_begin(params->request, 4);
1466 if (ret)
1467 return ret;
1468
1469 intel_ring_emit(ring, MI_NOOP);
1470 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1471 intel_ring_emit_reg(ring, INSTPM);
1472 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1473 intel_ring_advance(ring);
1474
1475 dev_priv->relative_constants_mode = instp_mode;
1476 }
1477
1478 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1479 ret = i915_reset_gen7_sol_offsets(params->request);
1480 if (ret)
1481 return ret;
1482 }
1483
1484 exec_len = args->batch_len;
1485 exec_start = params->batch->node.start +
1486 params->args_batch_start_offset;
1487
1488 if (exec_len == 0)
1489 exec_len = params->batch->size - params->args_batch_start_offset;
1490
1491 ret = params->engine->emit_bb_start(params->request,
1492 exec_start, exec_len,
1493 params->dispatch_flags);
1494 if (ret)
1495 return ret;
1496
1497 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1498
1499 i915_gem_execbuffer_move_to_active(vmas, params->request);
1500
1501 return 0;
1502 }
1503
1504 /**
1505 * Find one BSD ring to dispatch the corresponding BSD command.
1506 * The engine index is returned.
1507 */
1508 static unsigned int
1509 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1510 struct drm_file *file)
1511 {
1512 struct drm_i915_file_private *file_priv = file->driver_priv;
1513
1514 /* Check whether the file_priv has already selected one ring. */
1515 if ((int)file_priv->bsd_engine < 0)
1516 file_priv->bsd_engine = atomic_fetch_xor(1,
1517 &dev_priv->mm.bsd_engine_dispatch_index);
1518
1519 return file_priv->bsd_engine;
1520 }
1521
1522 #define I915_USER_RINGS (4)
1523
1524 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1525 [I915_EXEC_DEFAULT] = RCS,
1526 [I915_EXEC_RENDER] = RCS,
1527 [I915_EXEC_BLT] = BCS,
1528 [I915_EXEC_BSD] = VCS,
1529 [I915_EXEC_VEBOX] = VECS
1530 };
1531
1532 static struct intel_engine_cs *
1533 eb_select_engine(struct drm_i915_private *dev_priv,
1534 struct drm_file *file,
1535 struct drm_i915_gem_execbuffer2 *args)
1536 {
1537 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1538 struct intel_engine_cs *engine;
1539
1540 if (user_ring_id > I915_USER_RINGS) {
1541 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1542 return NULL;
1543 }
1544
1545 if ((user_ring_id != I915_EXEC_BSD) &&
1546 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1547 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1548 "bsd dispatch flags: %d\n", (int)(args->flags));
1549 return NULL;
1550 }
1551
1552 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1553 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1554
1555 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1556 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1557 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1558 bsd_idx <= I915_EXEC_BSD_RING2) {
1559 bsd_idx >>= I915_EXEC_BSD_SHIFT;
1560 bsd_idx--;
1561 } else {
1562 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1563 bsd_idx);
1564 return NULL;
1565 }
1566
1567 engine = dev_priv->engine[_VCS(bsd_idx)];
1568 } else {
1569 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1570 }
1571
1572 if (!engine) {
1573 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1574 return NULL;
1575 }
1576
1577 return engine;
1578 }
1579
1580 static int
1581 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1582 struct drm_file *file,
1583 struct drm_i915_gem_execbuffer2 *args,
1584 struct drm_i915_gem_exec_object2 *exec)
1585 {
1586 struct drm_i915_private *dev_priv = to_i915(dev);
1587 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1588 struct eb_vmas *eb;
1589 struct drm_i915_gem_exec_object2 shadow_exec_entry;
1590 struct intel_engine_cs *engine;
1591 struct i915_gem_context *ctx;
1592 struct i915_address_space *vm;
1593 struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1594 struct i915_execbuffer_params *params = &params_master;
1595 const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1596 u32 dispatch_flags;
1597 int ret;
1598 bool need_relocs;
1599
1600 if (!i915_gem_check_execbuffer(args))
1601 return -EINVAL;
1602
1603 ret = validate_exec_list(dev, exec, args->buffer_count);
1604 if (ret)
1605 return ret;
1606
1607 dispatch_flags = 0;
1608 if (args->flags & I915_EXEC_SECURE) {
1609 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1610 return -EPERM;
1611
1612 dispatch_flags |= I915_DISPATCH_SECURE;
1613 }
1614 if (args->flags & I915_EXEC_IS_PINNED)
1615 dispatch_flags |= I915_DISPATCH_PINNED;
1616
1617 engine = eb_select_engine(dev_priv, file, args);
1618 if (!engine)
1619 return -EINVAL;
1620
1621 if (args->buffer_count < 1) {
1622 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1623 return -EINVAL;
1624 }
1625
1626 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1627 if (!HAS_RESOURCE_STREAMER(dev)) {
1628 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1629 return -EINVAL;
1630 }
1631 if (engine->id != RCS) {
1632 DRM_DEBUG("RS is not available on %s\n",
1633 engine->name);
1634 return -EINVAL;
1635 }
1636
1637 dispatch_flags |= I915_DISPATCH_RS;
1638 }
1639
1640 /* Take a local wakeref for preparing to dispatch the execbuf as
1641 * we expect to access the hardware fairly frequently in the
1642 * process. Upon first dispatch, we acquire another prolonged
1643 * wakeref that we hold until the GPU has been idle for at least
1644 * 100ms.
1645 */
1646 intel_runtime_pm_get(dev_priv);
1647
1648 ret = i915_mutex_lock_interruptible(dev);
1649 if (ret)
1650 goto pre_mutex_err;
1651
1652 ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1653 if (IS_ERR(ctx)) {
1654 mutex_unlock(&dev->struct_mutex);
1655 ret = PTR_ERR(ctx);
1656 goto pre_mutex_err;
1657 }
1658
1659 i915_gem_context_get(ctx);
1660
1661 if (ctx->ppgtt)
1662 vm = &ctx->ppgtt->base;
1663 else
1664 vm = &ggtt->base;
1665
1666 memset(&params_master, 0x00, sizeof(params_master));
1667
1668 eb = eb_create(dev_priv, args);
1669 if (eb == NULL) {
1670 i915_gem_context_put(ctx);
1671 mutex_unlock(&dev->struct_mutex);
1672 ret = -ENOMEM;
1673 goto pre_mutex_err;
1674 }
1675
1676 /* Look up object handles */
1677 ret = eb_lookup_vmas(eb, exec, args, vm, file);
1678 if (ret)
1679 goto err;
1680
1681 /* take note of the batch buffer before we might reorder the lists */
1682 params->batch = eb_get_batch(eb);
1683
1684 /* Move the objects en-masse into the GTT, evicting if necessary. */
1685 need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1686 ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1687 &need_relocs);
1688 if (ret)
1689 goto err;
1690
1691 /* The objects are in their final locations, apply the relocations. */
1692 if (need_relocs)
1693 ret = i915_gem_execbuffer_relocate(eb);
1694 if (ret) {
1695 if (ret == -EFAULT) {
1696 ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1697 engine,
1698 eb, exec, ctx);
1699 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1700 }
1701 if (ret)
1702 goto err;
1703 }
1704
1705 /* Set the pending read domains for the batch buffer to COMMAND */
1706 if (params->batch->obj->base.pending_write_domain) {
1707 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1708 ret = -EINVAL;
1709 goto err;
1710 }
1711 if (args->batch_start_offset > params->batch->size ||
1712 args->batch_len > params->batch->size - args->batch_start_offset) {
1713 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1714 ret = -EINVAL;
1715 goto err;
1716 }
1717
1718 params->args_batch_start_offset = args->batch_start_offset;
1719 if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1720 struct i915_vma *vma;
1721
1722 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1723 params->batch->obj,
1724 eb,
1725 args->batch_start_offset,
1726 args->batch_len,
1727 drm_is_current_master(file));
1728 if (IS_ERR(vma)) {
1729 ret = PTR_ERR(vma);
1730 goto err;
1731 }
1732
1733 if (vma) {
1734 /*
1735 * Batch parsed and accepted:
1736 *
1737 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1738 * bit from MI_BATCH_BUFFER_START commands issued in
1739 * the dispatch_execbuffer implementations. We
1740 * specifically don't want that set on batches the
1741 * command parser has accepted.
1742 */
1743 dispatch_flags |= I915_DISPATCH_SECURE;
1744 params->args_batch_start_offset = 0;
1745 params->batch = vma;
1746 }
1747 }
1748
1749 params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1750
1751 /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1752 * batch" bit. Hence we need to pin secure batches into the global gtt.
1753 * hsw should have this fixed, but bdw mucks it up again. */
1754 if (dispatch_flags & I915_DISPATCH_SECURE) {
1755 struct drm_i915_gem_object *obj = params->batch->obj;
1756 struct i915_vma *vma;
1757
1758 /*
1759 * So on first glance it looks freaky that we pin the batch here
1760 * outside of the reservation loop. But:
1761 * - The batch is already pinned into the relevant ppgtt, so we
1762 * already have the backing storage fully allocated.
1763 * - No other BO uses the global gtt (well contexts, but meh),
1764 * so we don't really have issues with multiple objects not
1765 * fitting due to fragmentation.
1766 * So this is actually safe.
1767 */
1768 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1769 if (IS_ERR(vma)) {
1770 ret = PTR_ERR(vma);
1771 goto err;
1772 }
1773
1774 params->batch = vma;
1775 }
1776
1777 /* Allocate a request for this batch buffer nice and early. */
1778 params->request = i915_gem_request_alloc(engine, ctx);
1779 if (IS_ERR(params->request)) {
1780 ret = PTR_ERR(params->request);
1781 goto err_batch_unpin;
1782 }
1783
1784 /* Whilst this request exists, batch_obj will be on the
1785 * active_list, and so will hold the active reference. Only when this
1786 * request is retired will the the batch_obj be moved onto the
1787 * inactive_list and lose its active reference. Hence we do not need
1788 * to explicitly hold another reference here.
1789 */
1790 params->request->batch = params->batch;
1791
1792 ret = i915_gem_request_add_to_client(params->request, file);
1793 if (ret)
1794 goto err_request;
1795
1796 /*
1797 * Save assorted stuff away to pass through to *_submission().
1798 * NB: This data should be 'persistent' and not local as it will
1799 * kept around beyond the duration of the IOCTL once the GPU
1800 * scheduler arrives.
1801 */
1802 params->dev = dev;
1803 params->file = file;
1804 params->engine = engine;
1805 params->dispatch_flags = dispatch_flags;
1806 params->ctx = ctx;
1807
1808 ret = execbuf_submit(params, args, &eb->vmas);
1809 err_request:
1810 __i915_add_request(params->request, ret == 0);
1811
1812 err_batch_unpin:
1813 /*
1814 * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1815 * batch vma for correctness. For less ugly and less fragility this
1816 * needs to be adjusted to also track the ggtt batch vma properly as
1817 * active.
1818 */
1819 if (dispatch_flags & I915_DISPATCH_SECURE)
1820 i915_vma_unpin(params->batch);
1821 err:
1822 /* the request owns the ref now */
1823 i915_gem_context_put(ctx);
1824 eb_destroy(eb);
1825
1826 mutex_unlock(&dev->struct_mutex);
1827
1828 pre_mutex_err:
1829 /* intel_gpu_busy should also get a ref, so it will free when the device
1830 * is really idle. */
1831 intel_runtime_pm_put(dev_priv);
1832 return ret;
1833 }
1834
1835 /*
1836 * Legacy execbuffer just creates an exec2 list from the original exec object
1837 * list array and passes it to the real function.
1838 */
1839 int
1840 i915_gem_execbuffer(struct drm_device *dev, void *data,
1841 struct drm_file *file)
1842 {
1843 struct drm_i915_gem_execbuffer *args = data;
1844 struct drm_i915_gem_execbuffer2 exec2;
1845 struct drm_i915_gem_exec_object *exec_list = NULL;
1846 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1847 int ret, i;
1848
1849 if (args->buffer_count < 1) {
1850 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1851 return -EINVAL;
1852 }
1853
1854 /* Copy in the exec list from userland */
1855 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1856 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1857 if (exec_list == NULL || exec2_list == NULL) {
1858 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1859 args->buffer_count);
1860 drm_free_large(exec_list);
1861 drm_free_large(exec2_list);
1862 return -ENOMEM;
1863 }
1864 ret = copy_from_user(exec_list,
1865 u64_to_user_ptr(args->buffers_ptr),
1866 sizeof(*exec_list) * args->buffer_count);
1867 if (ret != 0) {
1868 DRM_DEBUG("copy %d exec entries failed %d\n",
1869 args->buffer_count, ret);
1870 drm_free_large(exec_list);
1871 drm_free_large(exec2_list);
1872 return -EFAULT;
1873 }
1874
1875 for (i = 0; i < args->buffer_count; i++) {
1876 exec2_list[i].handle = exec_list[i].handle;
1877 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1878 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1879 exec2_list[i].alignment = exec_list[i].alignment;
1880 exec2_list[i].offset = exec_list[i].offset;
1881 if (INTEL_INFO(dev)->gen < 4)
1882 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1883 else
1884 exec2_list[i].flags = 0;
1885 }
1886
1887 exec2.buffers_ptr = args->buffers_ptr;
1888 exec2.buffer_count = args->buffer_count;
1889 exec2.batch_start_offset = args->batch_start_offset;
1890 exec2.batch_len = args->batch_len;
1891 exec2.DR1 = args->DR1;
1892 exec2.DR4 = args->DR4;
1893 exec2.num_cliprects = args->num_cliprects;
1894 exec2.cliprects_ptr = args->cliprects_ptr;
1895 exec2.flags = I915_EXEC_RENDER;
1896 i915_execbuffer2_set_context_id(exec2, 0);
1897
1898 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1899 if (!ret) {
1900 struct drm_i915_gem_exec_object __user *user_exec_list =
1901 u64_to_user_ptr(args->buffers_ptr);
1902
1903 /* Copy the new buffer offsets back to the user's exec list. */
1904 for (i = 0; i < args->buffer_count; i++) {
1905 exec2_list[i].offset =
1906 gen8_canonical_addr(exec2_list[i].offset);
1907 ret = __copy_to_user(&user_exec_list[i].offset,
1908 &exec2_list[i].offset,
1909 sizeof(user_exec_list[i].offset));
1910 if (ret) {
1911 ret = -EFAULT;
1912 DRM_DEBUG("failed to copy %d exec entries "
1913 "back to user (%d)\n",
1914 args->buffer_count, ret);
1915 break;
1916 }
1917 }
1918 }
1919
1920 drm_free_large(exec_list);
1921 drm_free_large(exec2_list);
1922 return ret;
1923 }
1924
1925 int
1926 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1927 struct drm_file *file)
1928 {
1929 struct drm_i915_gem_execbuffer2 *args = data;
1930 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1931 int ret;
1932
1933 if (args->buffer_count < 1 ||
1934 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1935 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1936 return -EINVAL;
1937 }
1938
1939 if (args->rsvd2 != 0) {
1940 DRM_DEBUG("dirty rvsd2 field\n");
1941 return -EINVAL;
1942 }
1943
1944 exec2_list = drm_malloc_gfp(args->buffer_count,
1945 sizeof(*exec2_list),
1946 GFP_TEMPORARY);
1947 if (exec2_list == NULL) {
1948 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1949 args->buffer_count);
1950 return -ENOMEM;
1951 }
1952 ret = copy_from_user(exec2_list,
1953 u64_to_user_ptr(args->buffers_ptr),
1954 sizeof(*exec2_list) * args->buffer_count);
1955 if (ret != 0) {
1956 DRM_DEBUG("copy %d exec entries failed %d\n",
1957 args->buffer_count, ret);
1958 drm_free_large(exec2_list);
1959 return -EFAULT;
1960 }
1961
1962 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1963 if (!ret) {
1964 /* Copy the new buffer offsets back to the user's exec list. */
1965 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1966 u64_to_user_ptr(args->buffers_ptr);
1967 int i;
1968
1969 for (i = 0; i < args->buffer_count; i++) {
1970 exec2_list[i].offset =
1971 gen8_canonical_addr(exec2_list[i].offset);
1972 ret = __copy_to_user(&user_exec_list[i].offset,
1973 &exec2_list[i].offset,
1974 sizeof(user_exec_list[i].offset));
1975 if (ret) {
1976 ret = -EFAULT;
1977 DRM_DEBUG("failed to copy %d exec entries "
1978 "back to user\n",
1979 args->buffer_count);
1980 break;
1981 }
1982 }
1983 }
1984
1985 drm_free_large(exec2_list);
1986 return ret;
1987 }