]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
drm/i915: Allocate intel_engine_cs structure only for the enabled engines
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34
35 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
36
37 /**
38 * DOC: Global GTT views
39 *
40 * Background and previous state
41 *
42 * Historically objects could exists (be bound) in global GTT space only as
43 * singular instances with a view representing all of the object's backing pages
44 * in a linear fashion. This view will be called a normal view.
45 *
46 * To support multiple views of the same object, where the number of mapped
47 * pages is not equal to the backing store, or where the layout of the pages
48 * is not linear, concept of a GGTT view was added.
49 *
50 * One example of an alternative view is a stereo display driven by a single
51 * image. In this case we would have a framebuffer looking like this
52 * (2x2 pages):
53 *
54 * 12
55 * 34
56 *
57 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
58 * rendering. In contrast, fed to the display engine would be an alternative
59 * view which could look something like this:
60 *
61 * 1212
62 * 3434
63 *
64 * In this example both the size and layout of pages in the alternative view is
65 * different from the normal view.
66 *
67 * Implementation and usage
68 *
69 * GGTT views are implemented using VMAs and are distinguished via enum
70 * i915_ggtt_view_type and struct i915_ggtt_view.
71 *
72 * A new flavour of core GEM functions which work with GGTT bound objects were
73 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
74 * renaming in large amounts of code. They take the struct i915_ggtt_view
75 * parameter encapsulating all metadata required to implement a view.
76 *
77 * As a helper for callers which are only interested in the normal view,
78 * globally const i915_ggtt_view_normal singleton instance exists. All old core
79 * GEM API functions, the ones not taking the view parameter, are operating on,
80 * or with the normal GGTT view.
81 *
82 * Code wanting to add or use a new GGTT view needs to:
83 *
84 * 1. Add a new enum with a suitable name.
85 * 2. Extend the metadata in the i915_ggtt_view structure if required.
86 * 3. Add support to i915_get_vma_pages().
87 *
88 * New views are required to build a scatter-gather table from within the
89 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
90 * exists for the lifetime of an VMA.
91 *
92 * Core API is designed to have copy semantics which means that passed in
93 * struct i915_ggtt_view does not need to be persistent (left around after
94 * calling the core API functions).
95 *
96 */
97
98 static inline struct i915_ggtt *
99 i915_vm_to_ggtt(struct i915_address_space *vm)
100 {
101 GEM_BUG_ON(!i915_is_ggtt(vm));
102 return container_of(vm, struct i915_ggtt, base);
103 }
104
105 static int
106 i915_get_ggtt_vma_pages(struct i915_vma *vma);
107
108 const struct i915_ggtt_view i915_ggtt_view_normal = {
109 .type = I915_GGTT_VIEW_NORMAL,
110 };
111 const struct i915_ggtt_view i915_ggtt_view_rotated = {
112 .type = I915_GGTT_VIEW_ROTATED,
113 };
114
115 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
116 int enable_ppgtt)
117 {
118 bool has_aliasing_ppgtt;
119 bool has_full_ppgtt;
120 bool has_full_48bit_ppgtt;
121
122 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
123 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
124 has_full_48bit_ppgtt =
125 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
126
127 if (intel_vgpu_active(dev_priv)) {
128 /* emulation is too hard */
129 has_full_ppgtt = false;
130 has_full_48bit_ppgtt = false;
131 }
132
133 if (!has_aliasing_ppgtt)
134 return 0;
135
136 /*
137 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
138 * execlists, the sole mechanism available to submit work.
139 */
140 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
141 return 0;
142
143 if (enable_ppgtt == 1)
144 return 1;
145
146 if (enable_ppgtt == 2 && has_full_ppgtt)
147 return 2;
148
149 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
150 return 3;
151
152 #ifdef CONFIG_INTEL_IOMMU
153 /* Disable ppgtt on SNB if VT-d is on. */
154 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
155 DRM_INFO("Disabling PPGTT because VT-d is on\n");
156 return 0;
157 }
158 #endif
159
160 /* Early VLV doesn't have this */
161 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
162 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
163 return 0;
164 }
165
166 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
167 return has_full_48bit_ppgtt ? 3 : 2;
168 else
169 return has_aliasing_ppgtt ? 1 : 0;
170 }
171
172 static int ppgtt_bind_vma(struct i915_vma *vma,
173 enum i915_cache_level cache_level,
174 u32 unused)
175 {
176 u32 pte_flags = 0;
177
178 vma->pages = vma->obj->pages;
179
180 /* Currently applicable only to VLV */
181 if (vma->obj->gt_ro)
182 pte_flags |= PTE_READ_ONLY;
183
184 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
185 cache_level, pte_flags);
186
187 return 0;
188 }
189
190 static void ppgtt_unbind_vma(struct i915_vma *vma)
191 {
192 vma->vm->clear_range(vma->vm,
193 vma->node.start,
194 vma->size,
195 true);
196 }
197
198 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
199 enum i915_cache_level level,
200 bool valid)
201 {
202 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
203 pte |= addr;
204
205 switch (level) {
206 case I915_CACHE_NONE:
207 pte |= PPAT_UNCACHED_INDEX;
208 break;
209 case I915_CACHE_WT:
210 pte |= PPAT_DISPLAY_ELLC_INDEX;
211 break;
212 default:
213 pte |= PPAT_CACHED_INDEX;
214 break;
215 }
216
217 return pte;
218 }
219
220 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
221 const enum i915_cache_level level)
222 {
223 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
224 pde |= addr;
225 if (level != I915_CACHE_NONE)
226 pde |= PPAT_CACHED_PDE_INDEX;
227 else
228 pde |= PPAT_UNCACHED_INDEX;
229 return pde;
230 }
231
232 #define gen8_pdpe_encode gen8_pde_encode
233 #define gen8_pml4e_encode gen8_pde_encode
234
235 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
236 enum i915_cache_level level,
237 bool valid, u32 unused)
238 {
239 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
240 pte |= GEN6_PTE_ADDR_ENCODE(addr);
241
242 switch (level) {
243 case I915_CACHE_L3_LLC:
244 case I915_CACHE_LLC:
245 pte |= GEN6_PTE_CACHE_LLC;
246 break;
247 case I915_CACHE_NONE:
248 pte |= GEN6_PTE_UNCACHED;
249 break;
250 default:
251 MISSING_CASE(level);
252 }
253
254 return pte;
255 }
256
257 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
258 enum i915_cache_level level,
259 bool valid, u32 unused)
260 {
261 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262 pte |= GEN6_PTE_ADDR_ENCODE(addr);
263
264 switch (level) {
265 case I915_CACHE_L3_LLC:
266 pte |= GEN7_PTE_CACHE_L3_LLC;
267 break;
268 case I915_CACHE_LLC:
269 pte |= GEN6_PTE_CACHE_LLC;
270 break;
271 case I915_CACHE_NONE:
272 pte |= GEN6_PTE_UNCACHED;
273 break;
274 default:
275 MISSING_CASE(level);
276 }
277
278 return pte;
279 }
280
281 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
282 enum i915_cache_level level,
283 bool valid, u32 flags)
284 {
285 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
286 pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288 if (!(flags & PTE_READ_ONLY))
289 pte |= BYT_PTE_WRITEABLE;
290
291 if (level != I915_CACHE_NONE)
292 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
293
294 return pte;
295 }
296
297 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
298 enum i915_cache_level level,
299 bool valid, u32 unused)
300 {
301 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
302 pte |= HSW_PTE_ADDR_ENCODE(addr);
303
304 if (level != I915_CACHE_NONE)
305 pte |= HSW_WB_LLC_AGE3;
306
307 return pte;
308 }
309
310 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
311 enum i915_cache_level level,
312 bool valid, u32 unused)
313 {
314 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
315 pte |= HSW_PTE_ADDR_ENCODE(addr);
316
317 switch (level) {
318 case I915_CACHE_NONE:
319 break;
320 case I915_CACHE_WT:
321 pte |= HSW_WT_ELLC_LLC_AGE3;
322 break;
323 default:
324 pte |= HSW_WB_ELLC_LLC_AGE3;
325 break;
326 }
327
328 return pte;
329 }
330
331 static int __setup_page_dma(struct drm_device *dev,
332 struct i915_page_dma *p, gfp_t flags)
333 {
334 struct device *kdev = &dev->pdev->dev;
335
336 p->page = alloc_page(flags);
337 if (!p->page)
338 return -ENOMEM;
339
340 p->daddr = dma_map_page(kdev,
341 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
342
343 if (dma_mapping_error(kdev, p->daddr)) {
344 __free_page(p->page);
345 return -EINVAL;
346 }
347
348 return 0;
349 }
350
351 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
352 {
353 return __setup_page_dma(dev, p, I915_GFP_DMA);
354 }
355
356 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
357 {
358 struct pci_dev *pdev = dev->pdev;
359
360 if (WARN_ON(!p->page))
361 return;
362
363 dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
364 __free_page(p->page);
365 memset(p, 0, sizeof(*p));
366 }
367
368 static void *kmap_page_dma(struct i915_page_dma *p)
369 {
370 return kmap_atomic(p->page);
371 }
372
373 /* We use the flushing unmap only with ppgtt structures:
374 * page directories, page tables and scratch pages.
375 */
376 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
377 {
378 /* There are only few exceptions for gen >=6. chv and bxt.
379 * And we are not sure about the latter so play safe for now.
380 */
381 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
382 drm_clflush_virt_range(vaddr, PAGE_SIZE);
383
384 kunmap_atomic(vaddr);
385 }
386
387 #define kmap_px(px) kmap_page_dma(px_base(px))
388 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
389
390 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
391 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
392 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
393 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
394
395 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
396 const uint64_t val)
397 {
398 int i;
399 uint64_t * const vaddr = kmap_page_dma(p);
400
401 for (i = 0; i < 512; i++)
402 vaddr[i] = val;
403
404 kunmap_page_dma(dev, vaddr);
405 }
406
407 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
408 const uint32_t val32)
409 {
410 uint64_t v = val32;
411
412 v = v << 32 | val32;
413
414 fill_page_dma(dev, p, v);
415 }
416
417 static int
418 setup_scratch_page(struct drm_device *dev,
419 struct i915_page_dma *scratch,
420 gfp_t gfp)
421 {
422 return __setup_page_dma(dev, scratch, gfp | __GFP_ZERO);
423 }
424
425 static void cleanup_scratch_page(struct drm_device *dev,
426 struct i915_page_dma *scratch)
427 {
428 cleanup_page_dma(dev, scratch);
429 }
430
431 static struct i915_page_table *alloc_pt(struct drm_device *dev)
432 {
433 struct i915_page_table *pt;
434 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
435 GEN8_PTES : GEN6_PTES;
436 int ret = -ENOMEM;
437
438 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
439 if (!pt)
440 return ERR_PTR(-ENOMEM);
441
442 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
443 GFP_KERNEL);
444
445 if (!pt->used_ptes)
446 goto fail_bitmap;
447
448 ret = setup_px(dev, pt);
449 if (ret)
450 goto fail_page_m;
451
452 return pt;
453
454 fail_page_m:
455 kfree(pt->used_ptes);
456 fail_bitmap:
457 kfree(pt);
458
459 return ERR_PTR(ret);
460 }
461
462 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
463 {
464 cleanup_px(dev, pt);
465 kfree(pt->used_ptes);
466 kfree(pt);
467 }
468
469 static void gen8_initialize_pt(struct i915_address_space *vm,
470 struct i915_page_table *pt)
471 {
472 gen8_pte_t scratch_pte;
473
474 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
475 I915_CACHE_LLC, true);
476
477 fill_px(vm->dev, pt, scratch_pte);
478 }
479
480 static void gen6_initialize_pt(struct i915_address_space *vm,
481 struct i915_page_table *pt)
482 {
483 gen6_pte_t scratch_pte;
484
485 WARN_ON(vm->scratch_page.daddr == 0);
486
487 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
488 I915_CACHE_LLC, true, 0);
489
490 fill32_px(vm->dev, pt, scratch_pte);
491 }
492
493 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
494 {
495 struct i915_page_directory *pd;
496 int ret = -ENOMEM;
497
498 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
499 if (!pd)
500 return ERR_PTR(-ENOMEM);
501
502 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
503 sizeof(*pd->used_pdes), GFP_KERNEL);
504 if (!pd->used_pdes)
505 goto fail_bitmap;
506
507 ret = setup_px(dev, pd);
508 if (ret)
509 goto fail_page_m;
510
511 return pd;
512
513 fail_page_m:
514 kfree(pd->used_pdes);
515 fail_bitmap:
516 kfree(pd);
517
518 return ERR_PTR(ret);
519 }
520
521 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
522 {
523 if (px_page(pd)) {
524 cleanup_px(dev, pd);
525 kfree(pd->used_pdes);
526 kfree(pd);
527 }
528 }
529
530 static void gen8_initialize_pd(struct i915_address_space *vm,
531 struct i915_page_directory *pd)
532 {
533 gen8_pde_t scratch_pde;
534
535 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
536
537 fill_px(vm->dev, pd, scratch_pde);
538 }
539
540 static int __pdp_init(struct drm_device *dev,
541 struct i915_page_directory_pointer *pdp)
542 {
543 size_t pdpes = I915_PDPES_PER_PDP(dev);
544
545 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
546 sizeof(unsigned long),
547 GFP_KERNEL);
548 if (!pdp->used_pdpes)
549 return -ENOMEM;
550
551 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
552 GFP_KERNEL);
553 if (!pdp->page_directory) {
554 kfree(pdp->used_pdpes);
555 /* the PDP might be the statically allocated top level. Keep it
556 * as clean as possible */
557 pdp->used_pdpes = NULL;
558 return -ENOMEM;
559 }
560
561 return 0;
562 }
563
564 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
565 {
566 kfree(pdp->used_pdpes);
567 kfree(pdp->page_directory);
568 pdp->page_directory = NULL;
569 }
570
571 static struct
572 i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
573 {
574 struct i915_page_directory_pointer *pdp;
575 int ret = -ENOMEM;
576
577 WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
578
579 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
580 if (!pdp)
581 return ERR_PTR(-ENOMEM);
582
583 ret = __pdp_init(dev, pdp);
584 if (ret)
585 goto fail_bitmap;
586
587 ret = setup_px(dev, pdp);
588 if (ret)
589 goto fail_page_m;
590
591 return pdp;
592
593 fail_page_m:
594 __pdp_fini(pdp);
595 fail_bitmap:
596 kfree(pdp);
597
598 return ERR_PTR(ret);
599 }
600
601 static void free_pdp(struct drm_device *dev,
602 struct i915_page_directory_pointer *pdp)
603 {
604 __pdp_fini(pdp);
605 if (USES_FULL_48BIT_PPGTT(dev)) {
606 cleanup_px(dev, pdp);
607 kfree(pdp);
608 }
609 }
610
611 static void gen8_initialize_pdp(struct i915_address_space *vm,
612 struct i915_page_directory_pointer *pdp)
613 {
614 gen8_ppgtt_pdpe_t scratch_pdpe;
615
616 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
617
618 fill_px(vm->dev, pdp, scratch_pdpe);
619 }
620
621 static void gen8_initialize_pml4(struct i915_address_space *vm,
622 struct i915_pml4 *pml4)
623 {
624 gen8_ppgtt_pml4e_t scratch_pml4e;
625
626 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
627 I915_CACHE_LLC);
628
629 fill_px(vm->dev, pml4, scratch_pml4e);
630 }
631
632 static void
633 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
634 struct i915_page_directory_pointer *pdp,
635 struct i915_page_directory *pd,
636 int index)
637 {
638 gen8_ppgtt_pdpe_t *page_directorypo;
639
640 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
641 return;
642
643 page_directorypo = kmap_px(pdp);
644 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
645 kunmap_px(ppgtt, page_directorypo);
646 }
647
648 static void
649 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
650 struct i915_pml4 *pml4,
651 struct i915_page_directory_pointer *pdp,
652 int index)
653 {
654 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
655
656 WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
657 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
658 kunmap_px(ppgtt, pagemap);
659 }
660
661 /* Broadwell Page Directory Pointer Descriptors */
662 static int gen8_write_pdp(struct drm_i915_gem_request *req,
663 unsigned entry,
664 dma_addr_t addr)
665 {
666 struct intel_ring *ring = req->ring;
667 struct intel_engine_cs *engine = req->engine;
668 int ret;
669
670 BUG_ON(entry >= 4);
671
672 ret = intel_ring_begin(req, 6);
673 if (ret)
674 return ret;
675
676 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
678 intel_ring_emit(ring, upper_32_bits(addr));
679 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
680 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
681 intel_ring_emit(ring, lower_32_bits(addr));
682 intel_ring_advance(ring);
683
684 return 0;
685 }
686
687 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
688 struct drm_i915_gem_request *req)
689 {
690 int i, ret;
691
692 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
693 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
694
695 ret = gen8_write_pdp(req, i, pd_daddr);
696 if (ret)
697 return ret;
698 }
699
700 return 0;
701 }
702
703 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
704 struct drm_i915_gem_request *req)
705 {
706 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
707 }
708
709 static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
710 struct i915_page_directory_pointer *pdp,
711 uint64_t start,
712 uint64_t length,
713 gen8_pte_t scratch_pte)
714 {
715 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
716 gen8_pte_t *pt_vaddr;
717 unsigned pdpe = gen8_pdpe_index(start);
718 unsigned pde = gen8_pde_index(start);
719 unsigned pte = gen8_pte_index(start);
720 unsigned num_entries = length >> PAGE_SHIFT;
721 unsigned last_pte, i;
722
723 if (WARN_ON(!pdp))
724 return;
725
726 while (num_entries) {
727 struct i915_page_directory *pd;
728 struct i915_page_table *pt;
729
730 if (WARN_ON(!pdp->page_directory[pdpe]))
731 break;
732
733 pd = pdp->page_directory[pdpe];
734
735 if (WARN_ON(!pd->page_table[pde]))
736 break;
737
738 pt = pd->page_table[pde];
739
740 if (WARN_ON(!px_page(pt)))
741 break;
742
743 last_pte = pte + num_entries;
744 if (last_pte > GEN8_PTES)
745 last_pte = GEN8_PTES;
746
747 pt_vaddr = kmap_px(pt);
748
749 for (i = pte; i < last_pte; i++) {
750 pt_vaddr[i] = scratch_pte;
751 num_entries--;
752 }
753
754 kunmap_px(ppgtt, pt_vaddr);
755
756 pte = 0;
757 if (++pde == I915_PDES) {
758 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
759 break;
760 pde = 0;
761 }
762 }
763 }
764
765 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
766 uint64_t start,
767 uint64_t length,
768 bool use_scratch)
769 {
770 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
771 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
772 I915_CACHE_LLC, use_scratch);
773
774 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
775 gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
776 scratch_pte);
777 } else {
778 uint64_t pml4e;
779 struct i915_page_directory_pointer *pdp;
780
781 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
782 gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
783 scratch_pte);
784 }
785 }
786 }
787
788 static void
789 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
790 struct i915_page_directory_pointer *pdp,
791 struct sg_page_iter *sg_iter,
792 uint64_t start,
793 enum i915_cache_level cache_level)
794 {
795 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
796 gen8_pte_t *pt_vaddr;
797 unsigned pdpe = gen8_pdpe_index(start);
798 unsigned pde = gen8_pde_index(start);
799 unsigned pte = gen8_pte_index(start);
800
801 pt_vaddr = NULL;
802
803 while (__sg_page_iter_next(sg_iter)) {
804 if (pt_vaddr == NULL) {
805 struct i915_page_directory *pd = pdp->page_directory[pdpe];
806 struct i915_page_table *pt = pd->page_table[pde];
807 pt_vaddr = kmap_px(pt);
808 }
809
810 pt_vaddr[pte] =
811 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
812 cache_level, true);
813 if (++pte == GEN8_PTES) {
814 kunmap_px(ppgtt, pt_vaddr);
815 pt_vaddr = NULL;
816 if (++pde == I915_PDES) {
817 if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
818 break;
819 pde = 0;
820 }
821 pte = 0;
822 }
823 }
824
825 if (pt_vaddr)
826 kunmap_px(ppgtt, pt_vaddr);
827 }
828
829 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
830 struct sg_table *pages,
831 uint64_t start,
832 enum i915_cache_level cache_level,
833 u32 unused)
834 {
835 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
836 struct sg_page_iter sg_iter;
837
838 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
839
840 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
841 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
842 cache_level);
843 } else {
844 struct i915_page_directory_pointer *pdp;
845 uint64_t pml4e;
846 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
847
848 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
849 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
850 start, cache_level);
851 }
852 }
853 }
854
855 static void gen8_free_page_tables(struct drm_device *dev,
856 struct i915_page_directory *pd)
857 {
858 int i;
859
860 if (!px_page(pd))
861 return;
862
863 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
864 if (WARN_ON(!pd->page_table[i]))
865 continue;
866
867 free_pt(dev, pd->page_table[i]);
868 pd->page_table[i] = NULL;
869 }
870 }
871
872 static int gen8_init_scratch(struct i915_address_space *vm)
873 {
874 struct drm_device *dev = vm->dev;
875 int ret;
876
877 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
878 if (ret)
879 return ret;
880
881 vm->scratch_pt = alloc_pt(dev);
882 if (IS_ERR(vm->scratch_pt)) {
883 ret = PTR_ERR(vm->scratch_pt);
884 goto free_scratch_page;
885 }
886
887 vm->scratch_pd = alloc_pd(dev);
888 if (IS_ERR(vm->scratch_pd)) {
889 ret = PTR_ERR(vm->scratch_pd);
890 goto free_pt;
891 }
892
893 if (USES_FULL_48BIT_PPGTT(dev)) {
894 vm->scratch_pdp = alloc_pdp(dev);
895 if (IS_ERR(vm->scratch_pdp)) {
896 ret = PTR_ERR(vm->scratch_pdp);
897 goto free_pd;
898 }
899 }
900
901 gen8_initialize_pt(vm, vm->scratch_pt);
902 gen8_initialize_pd(vm, vm->scratch_pd);
903 if (USES_FULL_48BIT_PPGTT(dev))
904 gen8_initialize_pdp(vm, vm->scratch_pdp);
905
906 return 0;
907
908 free_pd:
909 free_pd(dev, vm->scratch_pd);
910 free_pt:
911 free_pt(dev, vm->scratch_pt);
912 free_scratch_page:
913 cleanup_scratch_page(dev, &vm->scratch_page);
914
915 return ret;
916 }
917
918 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
919 {
920 enum vgt_g2v_type msg;
921 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
922 int i;
923
924 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
925 u64 daddr = px_dma(&ppgtt->pml4);
926
927 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
928 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
929
930 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
931 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
932 } else {
933 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
934 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
935
936 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
937 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
938 }
939
940 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
941 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
942 }
943
944 I915_WRITE(vgtif_reg(g2v_notify), msg);
945
946 return 0;
947 }
948
949 static void gen8_free_scratch(struct i915_address_space *vm)
950 {
951 struct drm_device *dev = vm->dev;
952
953 if (USES_FULL_48BIT_PPGTT(dev))
954 free_pdp(dev, vm->scratch_pdp);
955 free_pd(dev, vm->scratch_pd);
956 free_pt(dev, vm->scratch_pt);
957 cleanup_scratch_page(dev, &vm->scratch_page);
958 }
959
960 static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
961 struct i915_page_directory_pointer *pdp)
962 {
963 int i;
964
965 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
966 if (WARN_ON(!pdp->page_directory[i]))
967 continue;
968
969 gen8_free_page_tables(dev, pdp->page_directory[i]);
970 free_pd(dev, pdp->page_directory[i]);
971 }
972
973 free_pdp(dev, pdp);
974 }
975
976 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
977 {
978 int i;
979
980 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
981 if (WARN_ON(!ppgtt->pml4.pdps[i]))
982 continue;
983
984 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
985 }
986
987 cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
988 }
989
990 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
991 {
992 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
993
994 if (intel_vgpu_active(to_i915(vm->dev)))
995 gen8_ppgtt_notify_vgt(ppgtt, false);
996
997 if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
998 gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
999 else
1000 gen8_ppgtt_cleanup_4lvl(ppgtt);
1001
1002 gen8_free_scratch(vm);
1003 }
1004
1005 /**
1006 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1007 * @vm: Master vm structure.
1008 * @pd: Page directory for this address range.
1009 * @start: Starting virtual address to begin allocations.
1010 * @length: Size of the allocations.
1011 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1012 * caller to free on error.
1013 *
1014 * Allocate the required number of page tables. Extremely similar to
1015 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1016 * the page directory boundary (instead of the page directory pointer). That
1017 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1018 * possible, and likely that the caller will need to use multiple calls of this
1019 * function to achieve the appropriate allocation.
1020 *
1021 * Return: 0 if success; negative error code otherwise.
1022 */
1023 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1024 struct i915_page_directory *pd,
1025 uint64_t start,
1026 uint64_t length,
1027 unsigned long *new_pts)
1028 {
1029 struct drm_device *dev = vm->dev;
1030 struct i915_page_table *pt;
1031 uint32_t pde;
1032
1033 gen8_for_each_pde(pt, pd, start, length, pde) {
1034 /* Don't reallocate page tables */
1035 if (test_bit(pde, pd->used_pdes)) {
1036 /* Scratch is never allocated this way */
1037 WARN_ON(pt == vm->scratch_pt);
1038 continue;
1039 }
1040
1041 pt = alloc_pt(dev);
1042 if (IS_ERR(pt))
1043 goto unwind_out;
1044
1045 gen8_initialize_pt(vm, pt);
1046 pd->page_table[pde] = pt;
1047 __set_bit(pde, new_pts);
1048 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1049 }
1050
1051 return 0;
1052
1053 unwind_out:
1054 for_each_set_bit(pde, new_pts, I915_PDES)
1055 free_pt(dev, pd->page_table[pde]);
1056
1057 return -ENOMEM;
1058 }
1059
1060 /**
1061 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1062 * @vm: Master vm structure.
1063 * @pdp: Page directory pointer for this address range.
1064 * @start: Starting virtual address to begin allocations.
1065 * @length: Size of the allocations.
1066 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1067 * caller to free on error.
1068 *
1069 * Allocate the required number of page directories starting at the pde index of
1070 * @start, and ending at the pde index @start + @length. This function will skip
1071 * over already allocated page directories within the range, and only allocate
1072 * new ones, setting the appropriate pointer within the pdp as well as the
1073 * correct position in the bitmap @new_pds.
1074 *
1075 * The function will only allocate the pages within the range for a give page
1076 * directory pointer. In other words, if @start + @length straddles a virtually
1077 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1078 * required by the caller, This is not currently possible, and the BUG in the
1079 * code will prevent it.
1080 *
1081 * Return: 0 if success; negative error code otherwise.
1082 */
1083 static int
1084 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1085 struct i915_page_directory_pointer *pdp,
1086 uint64_t start,
1087 uint64_t length,
1088 unsigned long *new_pds)
1089 {
1090 struct drm_device *dev = vm->dev;
1091 struct i915_page_directory *pd;
1092 uint32_t pdpe;
1093 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1094
1095 WARN_ON(!bitmap_empty(new_pds, pdpes));
1096
1097 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1098 if (test_bit(pdpe, pdp->used_pdpes))
1099 continue;
1100
1101 pd = alloc_pd(dev);
1102 if (IS_ERR(pd))
1103 goto unwind_out;
1104
1105 gen8_initialize_pd(vm, pd);
1106 pdp->page_directory[pdpe] = pd;
1107 __set_bit(pdpe, new_pds);
1108 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1109 }
1110
1111 return 0;
1112
1113 unwind_out:
1114 for_each_set_bit(pdpe, new_pds, pdpes)
1115 free_pd(dev, pdp->page_directory[pdpe]);
1116
1117 return -ENOMEM;
1118 }
1119
1120 /**
1121 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1122 * @vm: Master vm structure.
1123 * @pml4: Page map level 4 for this address range.
1124 * @start: Starting virtual address to begin allocations.
1125 * @length: Size of the allocations.
1126 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1127 * caller to free on error.
1128 *
1129 * Allocate the required number of page directory pointers. Extremely similar to
1130 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1131 * The main difference is here we are limited by the pml4 boundary (instead of
1132 * the page directory pointer).
1133 *
1134 * Return: 0 if success; negative error code otherwise.
1135 */
1136 static int
1137 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1138 struct i915_pml4 *pml4,
1139 uint64_t start,
1140 uint64_t length,
1141 unsigned long *new_pdps)
1142 {
1143 struct drm_device *dev = vm->dev;
1144 struct i915_page_directory_pointer *pdp;
1145 uint32_t pml4e;
1146
1147 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1148
1149 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1150 if (!test_bit(pml4e, pml4->used_pml4es)) {
1151 pdp = alloc_pdp(dev);
1152 if (IS_ERR(pdp))
1153 goto unwind_out;
1154
1155 gen8_initialize_pdp(vm, pdp);
1156 pml4->pdps[pml4e] = pdp;
1157 __set_bit(pml4e, new_pdps);
1158 trace_i915_page_directory_pointer_entry_alloc(vm,
1159 pml4e,
1160 start,
1161 GEN8_PML4E_SHIFT);
1162 }
1163 }
1164
1165 return 0;
1166
1167 unwind_out:
1168 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1169 free_pdp(dev, pml4->pdps[pml4e]);
1170
1171 return -ENOMEM;
1172 }
1173
1174 static void
1175 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1176 {
1177 kfree(new_pts);
1178 kfree(new_pds);
1179 }
1180
1181 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1182 * of these are based on the number of PDPEs in the system.
1183 */
1184 static
1185 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1186 unsigned long **new_pts,
1187 uint32_t pdpes)
1188 {
1189 unsigned long *pds;
1190 unsigned long *pts;
1191
1192 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1193 if (!pds)
1194 return -ENOMEM;
1195
1196 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1197 GFP_TEMPORARY);
1198 if (!pts)
1199 goto err_out;
1200
1201 *new_pds = pds;
1202 *new_pts = pts;
1203
1204 return 0;
1205
1206 err_out:
1207 free_gen8_temp_bitmaps(pds, pts);
1208 return -ENOMEM;
1209 }
1210
1211 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1212 * the page table structures, we mark them dirty so that
1213 * context switching/execlist queuing code takes extra steps
1214 * to ensure that tlbs are flushed.
1215 */
1216 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1217 {
1218 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1219 }
1220
1221 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1222 struct i915_page_directory_pointer *pdp,
1223 uint64_t start,
1224 uint64_t length)
1225 {
1226 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1227 unsigned long *new_page_dirs, *new_page_tables;
1228 struct drm_device *dev = vm->dev;
1229 struct i915_page_directory *pd;
1230 const uint64_t orig_start = start;
1231 const uint64_t orig_length = length;
1232 uint32_t pdpe;
1233 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1234 int ret;
1235
1236 /* Wrap is never okay since we can only represent 48b, and we don't
1237 * actually use the other side of the canonical address space.
1238 */
1239 if (WARN_ON(start + length < start))
1240 return -ENODEV;
1241
1242 if (WARN_ON(start + length > vm->total))
1243 return -ENODEV;
1244
1245 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1246 if (ret)
1247 return ret;
1248
1249 /* Do the allocations first so we can easily bail out */
1250 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1251 new_page_dirs);
1252 if (ret) {
1253 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1254 return ret;
1255 }
1256
1257 /* For every page directory referenced, allocate page tables */
1258 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1259 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1260 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1261 if (ret)
1262 goto err_out;
1263 }
1264
1265 start = orig_start;
1266 length = orig_length;
1267
1268 /* Allocations have completed successfully, so set the bitmaps, and do
1269 * the mappings. */
1270 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1271 gen8_pde_t *const page_directory = kmap_px(pd);
1272 struct i915_page_table *pt;
1273 uint64_t pd_len = length;
1274 uint64_t pd_start = start;
1275 uint32_t pde;
1276
1277 /* Every pd should be allocated, we just did that above. */
1278 WARN_ON(!pd);
1279
1280 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1281 /* Same reasoning as pd */
1282 WARN_ON(!pt);
1283 WARN_ON(!pd_len);
1284 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1285
1286 /* Set our used ptes within the page table */
1287 bitmap_set(pt->used_ptes,
1288 gen8_pte_index(pd_start),
1289 gen8_pte_count(pd_start, pd_len));
1290
1291 /* Our pde is now pointing to the pagetable, pt */
1292 __set_bit(pde, pd->used_pdes);
1293
1294 /* Map the PDE to the page table */
1295 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1296 I915_CACHE_LLC);
1297 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1298 gen8_pte_index(start),
1299 gen8_pte_count(start, length),
1300 GEN8_PTES);
1301
1302 /* NB: We haven't yet mapped ptes to pages. At this
1303 * point we're still relying on insert_entries() */
1304 }
1305
1306 kunmap_px(ppgtt, page_directory);
1307 __set_bit(pdpe, pdp->used_pdpes);
1308 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1309 }
1310
1311 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1312 mark_tlbs_dirty(ppgtt);
1313 return 0;
1314
1315 err_out:
1316 while (pdpe--) {
1317 unsigned long temp;
1318
1319 for_each_set_bit(temp, new_page_tables + pdpe *
1320 BITS_TO_LONGS(I915_PDES), I915_PDES)
1321 free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1322 }
1323
1324 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1325 free_pd(dev, pdp->page_directory[pdpe]);
1326
1327 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1328 mark_tlbs_dirty(ppgtt);
1329 return ret;
1330 }
1331
1332 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1333 struct i915_pml4 *pml4,
1334 uint64_t start,
1335 uint64_t length)
1336 {
1337 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1338 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1339 struct i915_page_directory_pointer *pdp;
1340 uint64_t pml4e;
1341 int ret = 0;
1342
1343 /* Do the pml4 allocations first, so we don't need to track the newly
1344 * allocated tables below the pdp */
1345 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1346
1347 /* The pagedirectory and pagetable allocations are done in the shared 3
1348 * and 4 level code. Just allocate the pdps.
1349 */
1350 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1351 new_pdps);
1352 if (ret)
1353 return ret;
1354
1355 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1356 "The allocation has spanned more than 512GB. "
1357 "It is highly likely this is incorrect.");
1358
1359 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1360 WARN_ON(!pdp);
1361
1362 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1363 if (ret)
1364 goto err_out;
1365
1366 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1367 }
1368
1369 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1370 GEN8_PML4ES_PER_PML4);
1371
1372 return 0;
1373
1374 err_out:
1375 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1376 gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1377
1378 return ret;
1379 }
1380
1381 static int gen8_alloc_va_range(struct i915_address_space *vm,
1382 uint64_t start, uint64_t length)
1383 {
1384 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1385
1386 if (USES_FULL_48BIT_PPGTT(vm->dev))
1387 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1388 else
1389 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1390 }
1391
1392 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1393 uint64_t start, uint64_t length,
1394 gen8_pte_t scratch_pte,
1395 struct seq_file *m)
1396 {
1397 struct i915_page_directory *pd;
1398 uint32_t pdpe;
1399
1400 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1401 struct i915_page_table *pt;
1402 uint64_t pd_len = length;
1403 uint64_t pd_start = start;
1404 uint32_t pde;
1405
1406 if (!test_bit(pdpe, pdp->used_pdpes))
1407 continue;
1408
1409 seq_printf(m, "\tPDPE #%d\n", pdpe);
1410 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1411 uint32_t pte;
1412 gen8_pte_t *pt_vaddr;
1413
1414 if (!test_bit(pde, pd->used_pdes))
1415 continue;
1416
1417 pt_vaddr = kmap_px(pt);
1418 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1419 uint64_t va =
1420 (pdpe << GEN8_PDPE_SHIFT) |
1421 (pde << GEN8_PDE_SHIFT) |
1422 (pte << GEN8_PTE_SHIFT);
1423 int i;
1424 bool found = false;
1425
1426 for (i = 0; i < 4; i++)
1427 if (pt_vaddr[pte + i] != scratch_pte)
1428 found = true;
1429 if (!found)
1430 continue;
1431
1432 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1433 for (i = 0; i < 4; i++) {
1434 if (pt_vaddr[pte + i] != scratch_pte)
1435 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1436 else
1437 seq_puts(m, " SCRATCH ");
1438 }
1439 seq_puts(m, "\n");
1440 }
1441 /* don't use kunmap_px, it could trigger
1442 * an unnecessary flush.
1443 */
1444 kunmap_atomic(pt_vaddr);
1445 }
1446 }
1447 }
1448
1449 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1450 {
1451 struct i915_address_space *vm = &ppgtt->base;
1452 uint64_t start = ppgtt->base.start;
1453 uint64_t length = ppgtt->base.total;
1454 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1455 I915_CACHE_LLC, true);
1456
1457 if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1458 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1459 } else {
1460 uint64_t pml4e;
1461 struct i915_pml4 *pml4 = &ppgtt->pml4;
1462 struct i915_page_directory_pointer *pdp;
1463
1464 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465 if (!test_bit(pml4e, pml4->used_pml4es))
1466 continue;
1467
1468 seq_printf(m, " PML4E #%llu\n", pml4e);
1469 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1470 }
1471 }
1472 }
1473
1474 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1475 {
1476 unsigned long *new_page_dirs, *new_page_tables;
1477 uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1478 int ret;
1479
1480 /* We allocate temp bitmap for page tables for no gain
1481 * but as this is for init only, lets keep the things simple
1482 */
1483 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1484 if (ret)
1485 return ret;
1486
1487 /* Allocate for all pdps regardless of how the ppgtt
1488 * was defined.
1489 */
1490 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1491 0, 1ULL << 32,
1492 new_page_dirs);
1493 if (!ret)
1494 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1495
1496 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1497
1498 return ret;
1499 }
1500
1501 /*
1502 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1503 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1504 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1505 * space.
1506 *
1507 */
1508 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1509 {
1510 int ret;
1511
1512 ret = gen8_init_scratch(&ppgtt->base);
1513 if (ret)
1514 return ret;
1515
1516 ppgtt->base.start = 0;
1517 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1518 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1519 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1520 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1521 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1522 ppgtt->base.bind_vma = ppgtt_bind_vma;
1523 ppgtt->debug_dump = gen8_dump_ppgtt;
1524
1525 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1526 ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1527 if (ret)
1528 goto free_scratch;
1529
1530 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1531
1532 ppgtt->base.total = 1ULL << 48;
1533 ppgtt->switch_mm = gen8_48b_mm_switch;
1534 } else {
1535 ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1536 if (ret)
1537 goto free_scratch;
1538
1539 ppgtt->base.total = 1ULL << 32;
1540 ppgtt->switch_mm = gen8_legacy_mm_switch;
1541 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1542 0, 0,
1543 GEN8_PML4E_SHIFT);
1544
1545 if (intel_vgpu_active(to_i915(ppgtt->base.dev))) {
1546 ret = gen8_preallocate_top_level_pdps(ppgtt);
1547 if (ret)
1548 goto free_scratch;
1549 }
1550 }
1551
1552 if (intel_vgpu_active(to_i915(ppgtt->base.dev)))
1553 gen8_ppgtt_notify_vgt(ppgtt, true);
1554
1555 return 0;
1556
1557 free_scratch:
1558 gen8_free_scratch(&ppgtt->base);
1559 return ret;
1560 }
1561
1562 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1563 {
1564 struct i915_address_space *vm = &ppgtt->base;
1565 struct i915_page_table *unused;
1566 gen6_pte_t scratch_pte;
1567 uint32_t pd_entry;
1568 uint32_t pte, pde;
1569 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1570
1571 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1572 I915_CACHE_LLC, true, 0);
1573
1574 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1575 u32 expected;
1576 gen6_pte_t *pt_vaddr;
1577 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1578 pd_entry = readl(ppgtt->pd_addr + pde);
1579 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1580
1581 if (pd_entry != expected)
1582 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1583 pde,
1584 pd_entry,
1585 expected);
1586 seq_printf(m, "\tPDE: %x\n", pd_entry);
1587
1588 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1589
1590 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1591 unsigned long va =
1592 (pde * PAGE_SIZE * GEN6_PTES) +
1593 (pte * PAGE_SIZE);
1594 int i;
1595 bool found = false;
1596 for (i = 0; i < 4; i++)
1597 if (pt_vaddr[pte + i] != scratch_pte)
1598 found = true;
1599 if (!found)
1600 continue;
1601
1602 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1603 for (i = 0; i < 4; i++) {
1604 if (pt_vaddr[pte + i] != scratch_pte)
1605 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1606 else
1607 seq_puts(m, " SCRATCH ");
1608 }
1609 seq_puts(m, "\n");
1610 }
1611 kunmap_px(ppgtt, pt_vaddr);
1612 }
1613 }
1614
1615 /* Write pde (index) from the page directory @pd to the page table @pt */
1616 static void gen6_write_pde(struct i915_page_directory *pd,
1617 const int pde, struct i915_page_table *pt)
1618 {
1619 /* Caller needs to make sure the write completes if necessary */
1620 struct i915_hw_ppgtt *ppgtt =
1621 container_of(pd, struct i915_hw_ppgtt, pd);
1622 u32 pd_entry;
1623
1624 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1625 pd_entry |= GEN6_PDE_VALID;
1626
1627 writel(pd_entry, ppgtt->pd_addr + pde);
1628 }
1629
1630 /* Write all the page tables found in the ppgtt structure to incrementing page
1631 * directories. */
1632 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1633 struct i915_page_directory *pd,
1634 uint32_t start, uint32_t length)
1635 {
1636 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1637 struct i915_page_table *pt;
1638 uint32_t pde;
1639
1640 gen6_for_each_pde(pt, pd, start, length, pde)
1641 gen6_write_pde(pd, pde, pt);
1642
1643 /* Make sure write is complete before other code can use this page
1644 * table. Also require for WC mapped PTEs */
1645 readl(ggtt->gsm);
1646 }
1647
1648 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1649 {
1650 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1651
1652 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1653 }
1654
1655 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1656 struct drm_i915_gem_request *req)
1657 {
1658 struct intel_ring *ring = req->ring;
1659 struct intel_engine_cs *engine = req->engine;
1660 int ret;
1661
1662 /* NB: TLBs must be flushed and invalidated before a switch */
1663 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1664 if (ret)
1665 return ret;
1666
1667 ret = intel_ring_begin(req, 6);
1668 if (ret)
1669 return ret;
1670
1671 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1672 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1673 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1674 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1675 intel_ring_emit(ring, get_pd_offset(ppgtt));
1676 intel_ring_emit(ring, MI_NOOP);
1677 intel_ring_advance(ring);
1678
1679 return 0;
1680 }
1681
1682 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1683 struct drm_i915_gem_request *req)
1684 {
1685 struct intel_ring *ring = req->ring;
1686 struct intel_engine_cs *engine = req->engine;
1687 int ret;
1688
1689 /* NB: TLBs must be flushed and invalidated before a switch */
1690 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1691 if (ret)
1692 return ret;
1693
1694 ret = intel_ring_begin(req, 6);
1695 if (ret)
1696 return ret;
1697
1698 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1699 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1700 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1701 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1702 intel_ring_emit(ring, get_pd_offset(ppgtt));
1703 intel_ring_emit(ring, MI_NOOP);
1704 intel_ring_advance(ring);
1705
1706 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1707 if (engine->id != RCS) {
1708 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1709 if (ret)
1710 return ret;
1711 }
1712
1713 return 0;
1714 }
1715
1716 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1717 struct drm_i915_gem_request *req)
1718 {
1719 struct intel_engine_cs *engine = req->engine;
1720 struct drm_i915_private *dev_priv = req->i915;
1721
1722 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1723 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1724 return 0;
1725 }
1726
1727 static void gen8_ppgtt_enable(struct drm_device *dev)
1728 {
1729 struct drm_i915_private *dev_priv = to_i915(dev);
1730 struct intel_engine_cs *engine;
1731 enum intel_engine_id id;
1732
1733 for_each_engine(engine, dev_priv, id) {
1734 u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1735 I915_WRITE(RING_MODE_GEN7(engine),
1736 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1737 }
1738 }
1739
1740 static void gen7_ppgtt_enable(struct drm_device *dev)
1741 {
1742 struct drm_i915_private *dev_priv = to_i915(dev);
1743 struct intel_engine_cs *engine;
1744 uint32_t ecochk, ecobits;
1745 enum intel_engine_id id;
1746
1747 ecobits = I915_READ(GAC_ECO_BITS);
1748 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1749
1750 ecochk = I915_READ(GAM_ECOCHK);
1751 if (IS_HASWELL(dev)) {
1752 ecochk |= ECOCHK_PPGTT_WB_HSW;
1753 } else {
1754 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1755 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1756 }
1757 I915_WRITE(GAM_ECOCHK, ecochk);
1758
1759 for_each_engine(engine, dev_priv, id) {
1760 /* GFX_MODE is per-ring on gen7+ */
1761 I915_WRITE(RING_MODE_GEN7(engine),
1762 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1763 }
1764 }
1765
1766 static void gen6_ppgtt_enable(struct drm_device *dev)
1767 {
1768 struct drm_i915_private *dev_priv = to_i915(dev);
1769 uint32_t ecochk, gab_ctl, ecobits;
1770
1771 ecobits = I915_READ(GAC_ECO_BITS);
1772 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1773 ECOBITS_PPGTT_CACHE64B);
1774
1775 gab_ctl = I915_READ(GAB_CTL);
1776 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1777
1778 ecochk = I915_READ(GAM_ECOCHK);
1779 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1780
1781 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1782 }
1783
1784 /* PPGTT support for Sandybdrige/Gen6 and later */
1785 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1786 uint64_t start,
1787 uint64_t length,
1788 bool use_scratch)
1789 {
1790 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1791 gen6_pte_t *pt_vaddr, scratch_pte;
1792 unsigned first_entry = start >> PAGE_SHIFT;
1793 unsigned num_entries = length >> PAGE_SHIFT;
1794 unsigned act_pt = first_entry / GEN6_PTES;
1795 unsigned first_pte = first_entry % GEN6_PTES;
1796 unsigned last_pte, i;
1797
1798 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1799 I915_CACHE_LLC, true, 0);
1800
1801 while (num_entries) {
1802 last_pte = first_pte + num_entries;
1803 if (last_pte > GEN6_PTES)
1804 last_pte = GEN6_PTES;
1805
1806 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1807
1808 for (i = first_pte; i < last_pte; i++)
1809 pt_vaddr[i] = scratch_pte;
1810
1811 kunmap_px(ppgtt, pt_vaddr);
1812
1813 num_entries -= last_pte - first_pte;
1814 first_pte = 0;
1815 act_pt++;
1816 }
1817 }
1818
1819 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1820 struct sg_table *pages,
1821 uint64_t start,
1822 enum i915_cache_level cache_level, u32 flags)
1823 {
1824 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1825 unsigned first_entry = start >> PAGE_SHIFT;
1826 unsigned act_pt = first_entry / GEN6_PTES;
1827 unsigned act_pte = first_entry % GEN6_PTES;
1828 gen6_pte_t *pt_vaddr = NULL;
1829 struct sgt_iter sgt_iter;
1830 dma_addr_t addr;
1831
1832 for_each_sgt_dma(addr, sgt_iter, pages) {
1833 if (pt_vaddr == NULL)
1834 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1835
1836 pt_vaddr[act_pte] =
1837 vm->pte_encode(addr, cache_level, true, flags);
1838
1839 if (++act_pte == GEN6_PTES) {
1840 kunmap_px(ppgtt, pt_vaddr);
1841 pt_vaddr = NULL;
1842 act_pt++;
1843 act_pte = 0;
1844 }
1845 }
1846
1847 if (pt_vaddr)
1848 kunmap_px(ppgtt, pt_vaddr);
1849 }
1850
1851 static int gen6_alloc_va_range(struct i915_address_space *vm,
1852 uint64_t start_in, uint64_t length_in)
1853 {
1854 DECLARE_BITMAP(new_page_tables, I915_PDES);
1855 struct drm_device *dev = vm->dev;
1856 struct drm_i915_private *dev_priv = to_i915(dev);
1857 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1858 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1859 struct i915_page_table *pt;
1860 uint32_t start, length, start_save, length_save;
1861 uint32_t pde;
1862 int ret;
1863
1864 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1865 return -ENODEV;
1866
1867 start = start_save = start_in;
1868 length = length_save = length_in;
1869
1870 bitmap_zero(new_page_tables, I915_PDES);
1871
1872 /* The allocation is done in two stages so that we can bail out with
1873 * minimal amount of pain. The first stage finds new page tables that
1874 * need allocation. The second stage marks use ptes within the page
1875 * tables.
1876 */
1877 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1878 if (pt != vm->scratch_pt) {
1879 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1880 continue;
1881 }
1882
1883 /* We've already allocated a page table */
1884 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1885
1886 pt = alloc_pt(dev);
1887 if (IS_ERR(pt)) {
1888 ret = PTR_ERR(pt);
1889 goto unwind_out;
1890 }
1891
1892 gen6_initialize_pt(vm, pt);
1893
1894 ppgtt->pd.page_table[pde] = pt;
1895 __set_bit(pde, new_page_tables);
1896 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1897 }
1898
1899 start = start_save;
1900 length = length_save;
1901
1902 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1903 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1904
1905 bitmap_zero(tmp_bitmap, GEN6_PTES);
1906 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1907 gen6_pte_count(start, length));
1908
1909 if (__test_and_clear_bit(pde, new_page_tables))
1910 gen6_write_pde(&ppgtt->pd, pde, pt);
1911
1912 trace_i915_page_table_entry_map(vm, pde, pt,
1913 gen6_pte_index(start),
1914 gen6_pte_count(start, length),
1915 GEN6_PTES);
1916 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1917 GEN6_PTES);
1918 }
1919
1920 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1921
1922 /* Make sure write is complete before other code can use this page
1923 * table. Also require for WC mapped PTEs */
1924 readl(ggtt->gsm);
1925
1926 mark_tlbs_dirty(ppgtt);
1927 return 0;
1928
1929 unwind_out:
1930 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1931 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1932
1933 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1934 free_pt(vm->dev, pt);
1935 }
1936
1937 mark_tlbs_dirty(ppgtt);
1938 return ret;
1939 }
1940
1941 static int gen6_init_scratch(struct i915_address_space *vm)
1942 {
1943 struct drm_device *dev = vm->dev;
1944 int ret;
1945
1946 ret = setup_scratch_page(dev, &vm->scratch_page, I915_GFP_DMA);
1947 if (ret)
1948 return ret;
1949
1950 vm->scratch_pt = alloc_pt(dev);
1951 if (IS_ERR(vm->scratch_pt)) {
1952 cleanup_scratch_page(dev, &vm->scratch_page);
1953 return PTR_ERR(vm->scratch_pt);
1954 }
1955
1956 gen6_initialize_pt(vm, vm->scratch_pt);
1957
1958 return 0;
1959 }
1960
1961 static void gen6_free_scratch(struct i915_address_space *vm)
1962 {
1963 struct drm_device *dev = vm->dev;
1964
1965 free_pt(dev, vm->scratch_pt);
1966 cleanup_scratch_page(dev, &vm->scratch_page);
1967 }
1968
1969 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1970 {
1971 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1972 struct i915_page_directory *pd = &ppgtt->pd;
1973 struct drm_device *dev = vm->dev;
1974 struct i915_page_table *pt;
1975 uint32_t pde;
1976
1977 drm_mm_remove_node(&ppgtt->node);
1978
1979 gen6_for_all_pdes(pt, pd, pde)
1980 if (pt != vm->scratch_pt)
1981 free_pt(dev, pt);
1982
1983 gen6_free_scratch(vm);
1984 }
1985
1986 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1987 {
1988 struct i915_address_space *vm = &ppgtt->base;
1989 struct drm_device *dev = ppgtt->base.dev;
1990 struct drm_i915_private *dev_priv = to_i915(dev);
1991 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1992 bool retried = false;
1993 int ret;
1994
1995 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1996 * allocator works in address space sizes, so it's multiplied by page
1997 * size. We allocate at the top of the GTT to avoid fragmentation.
1998 */
1999 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2000
2001 ret = gen6_init_scratch(vm);
2002 if (ret)
2003 return ret;
2004
2005 alloc:
2006 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2007 &ppgtt->node, GEN6_PD_SIZE,
2008 GEN6_PD_ALIGN, 0,
2009 0, ggtt->base.total,
2010 DRM_MM_TOPDOWN);
2011 if (ret == -ENOSPC && !retried) {
2012 ret = i915_gem_evict_something(&ggtt->base,
2013 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2014 I915_CACHE_NONE,
2015 0, ggtt->base.total,
2016 0);
2017 if (ret)
2018 goto err_out;
2019
2020 retried = true;
2021 goto alloc;
2022 }
2023
2024 if (ret)
2025 goto err_out;
2026
2027
2028 if (ppgtt->node.start < ggtt->mappable_end)
2029 DRM_DEBUG("Forced to use aperture for PDEs\n");
2030
2031 return 0;
2032
2033 err_out:
2034 gen6_free_scratch(vm);
2035 return ret;
2036 }
2037
2038 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2039 {
2040 return gen6_ppgtt_allocate_page_directories(ppgtt);
2041 }
2042
2043 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2044 uint64_t start, uint64_t length)
2045 {
2046 struct i915_page_table *unused;
2047 uint32_t pde;
2048
2049 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2050 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2051 }
2052
2053 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2054 {
2055 struct drm_device *dev = ppgtt->base.dev;
2056 struct drm_i915_private *dev_priv = to_i915(dev);
2057 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2058 int ret;
2059
2060 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2061 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev))
2062 ppgtt->switch_mm = gen6_mm_switch;
2063 else if (IS_HASWELL(dev))
2064 ppgtt->switch_mm = hsw_mm_switch;
2065 else if (IS_GEN7(dev))
2066 ppgtt->switch_mm = gen7_mm_switch;
2067 else
2068 BUG();
2069
2070 ret = gen6_ppgtt_alloc(ppgtt);
2071 if (ret)
2072 return ret;
2073
2074 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2075 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2076 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2077 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2078 ppgtt->base.bind_vma = ppgtt_bind_vma;
2079 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2080 ppgtt->base.start = 0;
2081 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2082 ppgtt->debug_dump = gen6_dump_ppgtt;
2083
2084 ppgtt->pd.base.ggtt_offset =
2085 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2086
2087 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2088 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2089
2090 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2091
2092 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2093
2094 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2095 ppgtt->node.size >> 20,
2096 ppgtt->node.start / PAGE_SIZE);
2097
2098 DRM_DEBUG("Adding PPGTT at offset %x\n",
2099 ppgtt->pd.base.ggtt_offset << 10);
2100
2101 return 0;
2102 }
2103
2104 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2105 struct drm_i915_private *dev_priv)
2106 {
2107 ppgtt->base.dev = &dev_priv->drm;
2108
2109 if (INTEL_INFO(dev_priv)->gen < 8)
2110 return gen6_ppgtt_init(ppgtt);
2111 else
2112 return gen8_ppgtt_init(ppgtt);
2113 }
2114
2115 static void i915_address_space_init(struct i915_address_space *vm,
2116 struct drm_i915_private *dev_priv)
2117 {
2118 drm_mm_init(&vm->mm, vm->start, vm->total);
2119 INIT_LIST_HEAD(&vm->active_list);
2120 INIT_LIST_HEAD(&vm->inactive_list);
2121 INIT_LIST_HEAD(&vm->unbound_list);
2122 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2123 }
2124
2125 static void gtt_write_workarounds(struct drm_device *dev)
2126 {
2127 struct drm_i915_private *dev_priv = to_i915(dev);
2128
2129 /* This function is for gtt related workarounds. This function is
2130 * called on driver load and after a GPU reset, so you can place
2131 * workarounds here even if they get overwritten by GPU reset.
2132 */
2133 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2134 if (IS_BROADWELL(dev))
2135 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2136 else if (IS_CHERRYVIEW(dev))
2137 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2138 else if (IS_SKYLAKE(dev))
2139 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2140 else if (IS_BROXTON(dev))
2141 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2142 }
2143
2144 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2145 struct drm_i915_private *dev_priv,
2146 struct drm_i915_file_private *file_priv)
2147 {
2148 int ret;
2149
2150 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2151 if (ret == 0) {
2152 kref_init(&ppgtt->ref);
2153 i915_address_space_init(&ppgtt->base, dev_priv);
2154 ppgtt->base.file = file_priv;
2155 }
2156
2157 return ret;
2158 }
2159
2160 int i915_ppgtt_init_hw(struct drm_device *dev)
2161 {
2162 gtt_write_workarounds(dev);
2163
2164 /* In the case of execlists, PPGTT is enabled by the context descriptor
2165 * and the PDPs are contained within the context itself. We don't
2166 * need to do anything here. */
2167 if (i915.enable_execlists)
2168 return 0;
2169
2170 if (!USES_PPGTT(dev))
2171 return 0;
2172
2173 if (IS_GEN6(dev))
2174 gen6_ppgtt_enable(dev);
2175 else if (IS_GEN7(dev))
2176 gen7_ppgtt_enable(dev);
2177 else if (INTEL_INFO(dev)->gen >= 8)
2178 gen8_ppgtt_enable(dev);
2179 else
2180 MISSING_CASE(INTEL_INFO(dev)->gen);
2181
2182 return 0;
2183 }
2184
2185 struct i915_hw_ppgtt *
2186 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2187 struct drm_i915_file_private *fpriv)
2188 {
2189 struct i915_hw_ppgtt *ppgtt;
2190 int ret;
2191
2192 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2193 if (!ppgtt)
2194 return ERR_PTR(-ENOMEM);
2195
2196 ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv);
2197 if (ret) {
2198 kfree(ppgtt);
2199 return ERR_PTR(ret);
2200 }
2201
2202 trace_i915_ppgtt_create(&ppgtt->base);
2203
2204 return ppgtt;
2205 }
2206
2207 void i915_ppgtt_release(struct kref *kref)
2208 {
2209 struct i915_hw_ppgtt *ppgtt =
2210 container_of(kref, struct i915_hw_ppgtt, ref);
2211
2212 trace_i915_ppgtt_release(&ppgtt->base);
2213
2214 /* vmas should already be unbound and destroyed */
2215 WARN_ON(!list_empty(&ppgtt->base.active_list));
2216 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2217 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2218
2219 list_del(&ppgtt->base.global_link);
2220 drm_mm_takedown(&ppgtt->base.mm);
2221
2222 ppgtt->base.cleanup(&ppgtt->base);
2223 kfree(ppgtt);
2224 }
2225
2226 /* Certain Gen5 chipsets require require idling the GPU before
2227 * unmapping anything from the GTT when VT-d is enabled.
2228 */
2229 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2230 {
2231 #ifdef CONFIG_INTEL_IOMMU
2232 /* Query intel_iommu to see if we need the workaround. Presumably that
2233 * was loaded first.
2234 */
2235 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2236 return true;
2237 #endif
2238 return false;
2239 }
2240
2241 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2242 {
2243 struct intel_engine_cs *engine;
2244 enum intel_engine_id id;
2245
2246 if (INTEL_INFO(dev_priv)->gen < 6)
2247 return;
2248
2249 for_each_engine(engine, dev_priv, id) {
2250 u32 fault_reg;
2251 fault_reg = I915_READ(RING_FAULT_REG(engine));
2252 if (fault_reg & RING_FAULT_VALID) {
2253 DRM_DEBUG_DRIVER("Unexpected fault\n"
2254 "\tAddr: 0x%08lx\n"
2255 "\tAddress space: %s\n"
2256 "\tSource ID: %d\n"
2257 "\tType: %d\n",
2258 fault_reg & PAGE_MASK,
2259 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2260 RING_FAULT_SRCID(fault_reg),
2261 RING_FAULT_FAULT_TYPE(fault_reg));
2262 I915_WRITE(RING_FAULT_REG(engine),
2263 fault_reg & ~RING_FAULT_VALID);
2264 }
2265 }
2266
2267 /* Engine specific init may not have been done till this point. */
2268 if (dev_priv->engine[RCS])
2269 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2270 }
2271
2272 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2273 {
2274 if (INTEL_INFO(dev_priv)->gen < 6) {
2275 intel_gtt_chipset_flush();
2276 } else {
2277 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2278 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2279 }
2280 }
2281
2282 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2283 {
2284 struct drm_i915_private *dev_priv = to_i915(dev);
2285 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2286
2287 /* Don't bother messing with faults pre GEN6 as we have little
2288 * documentation supporting that it's a good idea.
2289 */
2290 if (INTEL_INFO(dev)->gen < 6)
2291 return;
2292
2293 i915_check_and_clear_faults(dev_priv);
2294
2295 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
2296 true);
2297
2298 i915_ggtt_flush(dev_priv);
2299 }
2300
2301 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2302 {
2303 if (!dma_map_sg(&obj->base.dev->pdev->dev,
2304 obj->pages->sgl, obj->pages->nents,
2305 PCI_DMA_BIDIRECTIONAL))
2306 return -ENOSPC;
2307
2308 return 0;
2309 }
2310
2311 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2312 {
2313 writeq(pte, addr);
2314 }
2315
2316 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2317 dma_addr_t addr,
2318 uint64_t offset,
2319 enum i915_cache_level level,
2320 u32 unused)
2321 {
2322 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2323 gen8_pte_t __iomem *pte =
2324 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2325 (offset >> PAGE_SHIFT);
2326 int rpm_atomic_seq;
2327
2328 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2329
2330 gen8_set_pte(pte, gen8_pte_encode(addr, level, true));
2331
2332 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2333 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2334
2335 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2336 }
2337
2338 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2339 struct sg_table *st,
2340 uint64_t start,
2341 enum i915_cache_level level, u32 unused)
2342 {
2343 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2344 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2345 struct sgt_iter sgt_iter;
2346 gen8_pte_t __iomem *gtt_entries;
2347 gen8_pte_t gtt_entry;
2348 dma_addr_t addr;
2349 int rpm_atomic_seq;
2350 int i = 0;
2351
2352 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2353
2354 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2355
2356 for_each_sgt_dma(addr, sgt_iter, st) {
2357 gtt_entry = gen8_pte_encode(addr, level, true);
2358 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2359 }
2360
2361 /*
2362 * XXX: This serves as a posting read to make sure that the PTE has
2363 * actually been updated. There is some concern that even though
2364 * registers and PTEs are within the same BAR that they are potentially
2365 * of NUMA access patterns. Therefore, even with the way we assume
2366 * hardware should work, we must keep this posting read for paranoia.
2367 */
2368 if (i != 0)
2369 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2370
2371 /* This next bit makes the above posting read even more important. We
2372 * want to flush the TLBs only after we're certain all the PTE updates
2373 * have finished.
2374 */
2375 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2376 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2377
2378 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2379 }
2380
2381 struct insert_entries {
2382 struct i915_address_space *vm;
2383 struct sg_table *st;
2384 uint64_t start;
2385 enum i915_cache_level level;
2386 u32 flags;
2387 };
2388
2389 static int gen8_ggtt_insert_entries__cb(void *_arg)
2390 {
2391 struct insert_entries *arg = _arg;
2392 gen8_ggtt_insert_entries(arg->vm, arg->st,
2393 arg->start, arg->level, arg->flags);
2394 return 0;
2395 }
2396
2397 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2398 struct sg_table *st,
2399 uint64_t start,
2400 enum i915_cache_level level,
2401 u32 flags)
2402 {
2403 struct insert_entries arg = { vm, st, start, level, flags };
2404 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2405 }
2406
2407 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2408 dma_addr_t addr,
2409 uint64_t offset,
2410 enum i915_cache_level level,
2411 u32 flags)
2412 {
2413 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2414 gen6_pte_t __iomem *pte =
2415 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2416 (offset >> PAGE_SHIFT);
2417 int rpm_atomic_seq;
2418
2419 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2420
2421 iowrite32(vm->pte_encode(addr, level, true, flags), pte);
2422
2423 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2424 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2425
2426 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2427 }
2428
2429 /*
2430 * Binds an object into the global gtt with the specified cache level. The object
2431 * will be accessible to the GPU via commands whose operands reference offsets
2432 * within the global GTT as well as accessible by the GPU through the GMADR
2433 * mapped BAR (dev_priv->mm.gtt->gtt).
2434 */
2435 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2436 struct sg_table *st,
2437 uint64_t start,
2438 enum i915_cache_level level, u32 flags)
2439 {
2440 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2441 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2442 struct sgt_iter sgt_iter;
2443 gen6_pte_t __iomem *gtt_entries;
2444 gen6_pte_t gtt_entry;
2445 dma_addr_t addr;
2446 int rpm_atomic_seq;
2447 int i = 0;
2448
2449 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2450
2451 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2452
2453 for_each_sgt_dma(addr, sgt_iter, st) {
2454 gtt_entry = vm->pte_encode(addr, level, true, flags);
2455 iowrite32(gtt_entry, &gtt_entries[i++]);
2456 }
2457
2458 /* XXX: This serves as a posting read to make sure that the PTE has
2459 * actually been updated. There is some concern that even though
2460 * registers and PTEs are within the same BAR that they are potentially
2461 * of NUMA access patterns. Therefore, even with the way we assume
2462 * hardware should work, we must keep this posting read for paranoia.
2463 */
2464 if (i != 0)
2465 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2466
2467 /* This next bit makes the above posting read even more important. We
2468 * want to flush the TLBs only after we're certain all the PTE updates
2469 * have finished.
2470 */
2471 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2472 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2473
2474 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2475 }
2476
2477 static void nop_clear_range(struct i915_address_space *vm,
2478 uint64_t start,
2479 uint64_t length,
2480 bool use_scratch)
2481 {
2482 }
2483
2484 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2485 uint64_t start,
2486 uint64_t length,
2487 bool use_scratch)
2488 {
2489 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2490 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2491 unsigned first_entry = start >> PAGE_SHIFT;
2492 unsigned num_entries = length >> PAGE_SHIFT;
2493 gen8_pte_t scratch_pte, __iomem *gtt_base =
2494 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2495 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2496 int i;
2497 int rpm_atomic_seq;
2498
2499 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2500
2501 if (WARN(num_entries > max_entries,
2502 "First entry = %d; Num entries = %d (max=%d)\n",
2503 first_entry, num_entries, max_entries))
2504 num_entries = max_entries;
2505
2506 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2507 I915_CACHE_LLC,
2508 use_scratch);
2509 for (i = 0; i < num_entries; i++)
2510 gen8_set_pte(&gtt_base[i], scratch_pte);
2511 readl(gtt_base);
2512
2513 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2514 }
2515
2516 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2517 uint64_t start,
2518 uint64_t length,
2519 bool use_scratch)
2520 {
2521 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2522 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2523 unsigned first_entry = start >> PAGE_SHIFT;
2524 unsigned num_entries = length >> PAGE_SHIFT;
2525 gen6_pte_t scratch_pte, __iomem *gtt_base =
2526 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2527 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2528 int i;
2529 int rpm_atomic_seq;
2530
2531 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2532
2533 if (WARN(num_entries > max_entries,
2534 "First entry = %d; Num entries = %d (max=%d)\n",
2535 first_entry, num_entries, max_entries))
2536 num_entries = max_entries;
2537
2538 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2539 I915_CACHE_LLC, use_scratch, 0);
2540
2541 for (i = 0; i < num_entries; i++)
2542 iowrite32(scratch_pte, &gtt_base[i]);
2543 readl(gtt_base);
2544
2545 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2546 }
2547
2548 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2549 dma_addr_t addr,
2550 uint64_t offset,
2551 enum i915_cache_level cache_level,
2552 u32 unused)
2553 {
2554 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2555 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2556 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2557 int rpm_atomic_seq;
2558
2559 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2560
2561 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2562
2563 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2564 }
2565
2566 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2567 struct sg_table *pages,
2568 uint64_t start,
2569 enum i915_cache_level cache_level, u32 unused)
2570 {
2571 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2572 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2573 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2574 int rpm_atomic_seq;
2575
2576 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2577
2578 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2579
2580 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2581
2582 }
2583
2584 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2585 uint64_t start,
2586 uint64_t length,
2587 bool unused)
2588 {
2589 struct drm_i915_private *dev_priv = to_i915(vm->dev);
2590 unsigned first_entry = start >> PAGE_SHIFT;
2591 unsigned num_entries = length >> PAGE_SHIFT;
2592 int rpm_atomic_seq;
2593
2594 rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2595
2596 intel_gtt_clear_range(first_entry, num_entries);
2597
2598 assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2599 }
2600
2601 static int ggtt_bind_vma(struct i915_vma *vma,
2602 enum i915_cache_level cache_level,
2603 u32 flags)
2604 {
2605 struct drm_i915_gem_object *obj = vma->obj;
2606 u32 pte_flags = 0;
2607 int ret;
2608
2609 ret = i915_get_ggtt_vma_pages(vma);
2610 if (ret)
2611 return ret;
2612
2613 /* Currently applicable only to VLV */
2614 if (obj->gt_ro)
2615 pte_flags |= PTE_READ_ONLY;
2616
2617 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2618 cache_level, pte_flags);
2619
2620 /*
2621 * Without aliasing PPGTT there's no difference between
2622 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2623 * upgrade to both bound if we bind either to avoid double-binding.
2624 */
2625 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2626
2627 return 0;
2628 }
2629
2630 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2631 enum i915_cache_level cache_level,
2632 u32 flags)
2633 {
2634 u32 pte_flags;
2635 int ret;
2636
2637 ret = i915_get_ggtt_vma_pages(vma);
2638 if (ret)
2639 return ret;
2640
2641 /* Currently applicable only to VLV */
2642 pte_flags = 0;
2643 if (vma->obj->gt_ro)
2644 pte_flags |= PTE_READ_ONLY;
2645
2646
2647 if (flags & I915_VMA_GLOBAL_BIND) {
2648 vma->vm->insert_entries(vma->vm,
2649 vma->pages, vma->node.start,
2650 cache_level, pte_flags);
2651 }
2652
2653 if (flags & I915_VMA_LOCAL_BIND) {
2654 struct i915_hw_ppgtt *appgtt =
2655 to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2656 appgtt->base.insert_entries(&appgtt->base,
2657 vma->pages, vma->node.start,
2658 cache_level, pte_flags);
2659 }
2660
2661 return 0;
2662 }
2663
2664 static void ggtt_unbind_vma(struct i915_vma *vma)
2665 {
2666 struct i915_hw_ppgtt *appgtt = to_i915(vma->vm->dev)->mm.aliasing_ppgtt;
2667 const u64 size = min(vma->size, vma->node.size);
2668
2669 if (vma->flags & I915_VMA_GLOBAL_BIND)
2670 vma->vm->clear_range(vma->vm,
2671 vma->node.start, size,
2672 true);
2673
2674 if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2675 appgtt->base.clear_range(&appgtt->base,
2676 vma->node.start, size,
2677 true);
2678 }
2679
2680 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2681 {
2682 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2683 struct device *kdev = &dev_priv->drm.pdev->dev;
2684 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2685
2686 if (unlikely(ggtt->do_idle_maps)) {
2687 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2688 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2689 /* Wait a bit, in hopes it avoids the hang */
2690 udelay(10);
2691 }
2692 }
2693
2694 dma_unmap_sg(kdev, obj->pages->sgl, obj->pages->nents,
2695 PCI_DMA_BIDIRECTIONAL);
2696 }
2697
2698 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2699 unsigned long color,
2700 u64 *start,
2701 u64 *end)
2702 {
2703 if (node->color != color)
2704 *start += 4096;
2705
2706 node = list_first_entry_or_null(&node->node_list,
2707 struct drm_mm_node,
2708 node_list);
2709 if (node && node->allocated && node->color != color)
2710 *end -= 4096;
2711 }
2712
2713 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2714 {
2715 /* Let GEM Manage all of the aperture.
2716 *
2717 * However, leave one page at the end still bound to the scratch page.
2718 * There are a number of places where the hardware apparently prefetches
2719 * past the end of the object, and we've seen multiple hangs with the
2720 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2721 * aperture. One page should be enough to keep any prefetching inside
2722 * of the aperture.
2723 */
2724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2725 unsigned long hole_start, hole_end;
2726 struct i915_hw_ppgtt *ppgtt;
2727 struct drm_mm_node *entry;
2728 int ret;
2729
2730 ret = intel_vgt_balloon(dev_priv);
2731 if (ret)
2732 return ret;
2733
2734 /* Reserve a mappable slot for our lockless error capture */
2735 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2736 &ggtt->error_capture,
2737 4096, 0, -1,
2738 0, ggtt->mappable_end,
2739 0, 0);
2740 if (ret)
2741 return ret;
2742
2743 /* Clear any non-preallocated blocks */
2744 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2745 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2746 hole_start, hole_end);
2747 ggtt->base.clear_range(&ggtt->base, hole_start,
2748 hole_end - hole_start, true);
2749 }
2750
2751 /* And finally clear the reserved guard page */
2752 ggtt->base.clear_range(&ggtt->base,
2753 ggtt->base.total - PAGE_SIZE, PAGE_SIZE,
2754 true);
2755
2756 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2757 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2758 if (!ppgtt) {
2759 ret = -ENOMEM;
2760 goto err;
2761 }
2762
2763 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2764 if (ret)
2765 goto err_ppgtt;
2766
2767 if (ppgtt->base.allocate_va_range) {
2768 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2769 ppgtt->base.total);
2770 if (ret)
2771 goto err_ppgtt_cleanup;
2772 }
2773
2774 ppgtt->base.clear_range(&ppgtt->base,
2775 ppgtt->base.start,
2776 ppgtt->base.total,
2777 true);
2778
2779 dev_priv->mm.aliasing_ppgtt = ppgtt;
2780 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2781 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2782 }
2783
2784 return 0;
2785
2786 err_ppgtt_cleanup:
2787 ppgtt->base.cleanup(&ppgtt->base);
2788 err_ppgtt:
2789 kfree(ppgtt);
2790 err:
2791 drm_mm_remove_node(&ggtt->error_capture);
2792 return ret;
2793 }
2794
2795 /**
2796 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2797 * @dev_priv: i915 device
2798 */
2799 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2800 {
2801 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2802
2803 if (dev_priv->mm.aliasing_ppgtt) {
2804 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2805 ppgtt->base.cleanup(&ppgtt->base);
2806 kfree(ppgtt);
2807 }
2808
2809 i915_gem_cleanup_stolen(&dev_priv->drm);
2810
2811 if (drm_mm_node_allocated(&ggtt->error_capture))
2812 drm_mm_remove_node(&ggtt->error_capture);
2813
2814 if (drm_mm_initialized(&ggtt->base.mm)) {
2815 intel_vgt_deballoon(dev_priv);
2816
2817 drm_mm_takedown(&ggtt->base.mm);
2818 list_del(&ggtt->base.global_link);
2819 }
2820
2821 ggtt->base.cleanup(&ggtt->base);
2822
2823 arch_phys_wc_del(ggtt->mtrr);
2824 io_mapping_fini(&ggtt->mappable);
2825 }
2826
2827 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2828 {
2829 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2830 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2831 return snb_gmch_ctl << 20;
2832 }
2833
2834 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2835 {
2836 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2837 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2838 if (bdw_gmch_ctl)
2839 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2840
2841 #ifdef CONFIG_X86_32
2842 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2843 if (bdw_gmch_ctl > 4)
2844 bdw_gmch_ctl = 4;
2845 #endif
2846
2847 return bdw_gmch_ctl << 20;
2848 }
2849
2850 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2851 {
2852 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2853 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2854
2855 if (gmch_ctrl)
2856 return 1 << (20 + gmch_ctrl);
2857
2858 return 0;
2859 }
2860
2861 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2862 {
2863 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2864 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2865 return snb_gmch_ctl << 25; /* 32 MB units */
2866 }
2867
2868 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2869 {
2870 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2871 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2872 return bdw_gmch_ctl << 25; /* 32 MB units */
2873 }
2874
2875 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2876 {
2877 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2878 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2879
2880 /*
2881 * 0x0 to 0x10: 32MB increments starting at 0MB
2882 * 0x11 to 0x16: 4MB increments starting at 8MB
2883 * 0x17 to 0x1d: 4MB increments start at 36MB
2884 */
2885 if (gmch_ctrl < 0x11)
2886 return gmch_ctrl << 25;
2887 else if (gmch_ctrl < 0x17)
2888 return (gmch_ctrl - 0x11 + 2) << 22;
2889 else
2890 return (gmch_ctrl - 0x17 + 9) << 22;
2891 }
2892
2893 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2894 {
2895 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2896 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2897
2898 if (gen9_gmch_ctl < 0xf0)
2899 return gen9_gmch_ctl << 25; /* 32 MB units */
2900 else
2901 /* 4MB increments starting at 0xf0 for 4MB */
2902 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2903 }
2904
2905 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2906 {
2907 struct pci_dev *pdev = ggtt->base.dev->pdev;
2908 phys_addr_t phys_addr;
2909 int ret;
2910
2911 /* For Modern GENs the PTEs and register space are split in the BAR */
2912 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2913
2914 /*
2915 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2916 * dropped. For WC mappings in general we have 64 byte burst writes
2917 * when the WC buffer is flushed, so we can't use it, but have to
2918 * resort to an uncached mapping. The WC issue is easily caught by the
2919 * readback check when writing GTT PTE entries.
2920 */
2921 if (IS_BROXTON(ggtt->base.dev))
2922 ggtt->gsm = ioremap_nocache(phys_addr, size);
2923 else
2924 ggtt->gsm = ioremap_wc(phys_addr, size);
2925 if (!ggtt->gsm) {
2926 DRM_ERROR("Failed to map the ggtt page table\n");
2927 return -ENOMEM;
2928 }
2929
2930 ret = setup_scratch_page(ggtt->base.dev,
2931 &ggtt->base.scratch_page,
2932 GFP_DMA32);
2933 if (ret) {
2934 DRM_ERROR("Scratch setup failed\n");
2935 /* iounmap will also get called at remove, but meh */
2936 iounmap(ggtt->gsm);
2937 return ret;
2938 }
2939
2940 return 0;
2941 }
2942
2943 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2944 * bits. When using advanced contexts each context stores its own PAT, but
2945 * writing this data shouldn't be harmful even in those cases. */
2946 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2947 {
2948 uint64_t pat;
2949
2950 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2951 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2952 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2953 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2954 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2955 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2956 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2957 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2958
2959 if (!USES_PPGTT(dev_priv))
2960 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2961 * so RTL will always use the value corresponding to
2962 * pat_sel = 000".
2963 * So let's disable cache for GGTT to avoid screen corruptions.
2964 * MOCS still can be used though.
2965 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2966 * before this patch, i.e. the same uncached + snooping access
2967 * like on gen6/7 seems to be in effect.
2968 * - So this just fixes blitter/render access. Again it looks
2969 * like it's not just uncached access, but uncached + snooping.
2970 * So we can still hold onto all our assumptions wrt cpu
2971 * clflushing on LLC machines.
2972 */
2973 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2974
2975 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2976 * write would work. */
2977 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2978 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2979 }
2980
2981 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2982 {
2983 uint64_t pat;
2984
2985 /*
2986 * Map WB on BDW to snooped on CHV.
2987 *
2988 * Only the snoop bit has meaning for CHV, the rest is
2989 * ignored.
2990 *
2991 * The hardware will never snoop for certain types of accesses:
2992 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2993 * - PPGTT page tables
2994 * - some other special cycles
2995 *
2996 * As with BDW, we also need to consider the following for GT accesses:
2997 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2998 * so RTL will always use the value corresponding to
2999 * pat_sel = 000".
3000 * Which means we must set the snoop bit in PAT entry 0
3001 * in order to keep the global status page working.
3002 */
3003 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3004 GEN8_PPAT(1, 0) |
3005 GEN8_PPAT(2, 0) |
3006 GEN8_PPAT(3, 0) |
3007 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3008 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3009 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3010 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3011
3012 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3013 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3014 }
3015
3016 static void gen6_gmch_remove(struct i915_address_space *vm)
3017 {
3018 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3019
3020 iounmap(ggtt->gsm);
3021 cleanup_scratch_page(vm->dev, &vm->scratch_page);
3022 }
3023
3024 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3025 {
3026 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3027 struct pci_dev *pdev = dev_priv->drm.pdev;
3028 unsigned int size;
3029 u16 snb_gmch_ctl;
3030
3031 /* TODO: We're not aware of mappable constraints on gen8 yet */
3032 ggtt->mappable_base = pci_resource_start(pdev, 2);
3033 ggtt->mappable_end = pci_resource_len(pdev, 2);
3034
3035 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3036 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3037
3038 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3039
3040 if (INTEL_GEN(dev_priv) >= 9) {
3041 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3042 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3043 } else if (IS_CHERRYVIEW(dev_priv)) {
3044 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3045 size = chv_get_total_gtt_size(snb_gmch_ctl);
3046 } else {
3047 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3048 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3049 }
3050
3051 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3052
3053 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
3054 chv_setup_private_ppat(dev_priv);
3055 else
3056 bdw_setup_private_ppat(dev_priv);
3057
3058 ggtt->base.cleanup = gen6_gmch_remove;
3059 ggtt->base.bind_vma = ggtt_bind_vma;
3060 ggtt->base.unbind_vma = ggtt_unbind_vma;
3061 ggtt->base.insert_page = gen8_ggtt_insert_page;
3062 ggtt->base.clear_range = nop_clear_range;
3063 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3064 ggtt->base.clear_range = gen8_ggtt_clear_range;
3065
3066 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3067 if (IS_CHERRYVIEW(dev_priv))
3068 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3069
3070 return ggtt_probe_common(ggtt, size);
3071 }
3072
3073 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3074 {
3075 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3076 struct pci_dev *pdev = dev_priv->drm.pdev;
3077 unsigned int size;
3078 u16 snb_gmch_ctl;
3079
3080 ggtt->mappable_base = pci_resource_start(pdev, 2);
3081 ggtt->mappable_end = pci_resource_len(pdev, 2);
3082
3083 /* 64/512MB is the current min/max we actually know of, but this is just
3084 * a coarse sanity check.
3085 */
3086 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3087 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3088 return -ENXIO;
3089 }
3090
3091 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3092 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3093 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3094
3095 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3096
3097 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3098 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3099
3100 ggtt->base.clear_range = gen6_ggtt_clear_range;
3101 ggtt->base.insert_page = gen6_ggtt_insert_page;
3102 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3103 ggtt->base.bind_vma = ggtt_bind_vma;
3104 ggtt->base.unbind_vma = ggtt_unbind_vma;
3105 ggtt->base.cleanup = gen6_gmch_remove;
3106
3107 if (HAS_EDRAM(dev_priv))
3108 ggtt->base.pte_encode = iris_pte_encode;
3109 else if (IS_HASWELL(dev_priv))
3110 ggtt->base.pte_encode = hsw_pte_encode;
3111 else if (IS_VALLEYVIEW(dev_priv))
3112 ggtt->base.pte_encode = byt_pte_encode;
3113 else if (INTEL_GEN(dev_priv) >= 7)
3114 ggtt->base.pte_encode = ivb_pte_encode;
3115 else
3116 ggtt->base.pte_encode = snb_pte_encode;
3117
3118 return ggtt_probe_common(ggtt, size);
3119 }
3120
3121 static void i915_gmch_remove(struct i915_address_space *vm)
3122 {
3123 intel_gmch_remove();
3124 }
3125
3126 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3127 {
3128 struct drm_i915_private *dev_priv = to_i915(ggtt->base.dev);
3129 int ret;
3130
3131 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3132 if (!ret) {
3133 DRM_ERROR("failed to set up gmch\n");
3134 return -EIO;
3135 }
3136
3137 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3138 &ggtt->mappable_base, &ggtt->mappable_end);
3139
3140 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3141 ggtt->base.insert_page = i915_ggtt_insert_page;
3142 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3143 ggtt->base.clear_range = i915_ggtt_clear_range;
3144 ggtt->base.bind_vma = ggtt_bind_vma;
3145 ggtt->base.unbind_vma = ggtt_unbind_vma;
3146 ggtt->base.cleanup = i915_gmch_remove;
3147
3148 if (unlikely(ggtt->do_idle_maps))
3149 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3150
3151 return 0;
3152 }
3153
3154 /**
3155 * i915_ggtt_probe_hw - Probe GGTT hardware location
3156 * @dev_priv: i915 device
3157 */
3158 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3159 {
3160 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3161 int ret;
3162
3163 ggtt->base.dev = &dev_priv->drm;
3164
3165 if (INTEL_GEN(dev_priv) <= 5)
3166 ret = i915_gmch_probe(ggtt);
3167 else if (INTEL_GEN(dev_priv) < 8)
3168 ret = gen6_gmch_probe(ggtt);
3169 else
3170 ret = gen8_gmch_probe(ggtt);
3171 if (ret)
3172 return ret;
3173
3174 if ((ggtt->base.total - 1) >> 32) {
3175 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3176 " of address space! Found %lldM!\n",
3177 ggtt->base.total >> 20);
3178 ggtt->base.total = 1ULL << 32;
3179 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3180 }
3181
3182 if (ggtt->mappable_end > ggtt->base.total) {
3183 DRM_ERROR("mappable aperture extends past end of GGTT,"
3184 " aperture=%llx, total=%llx\n",
3185 ggtt->mappable_end, ggtt->base.total);
3186 ggtt->mappable_end = ggtt->base.total;
3187 }
3188
3189 /* GMADR is the PCI mmio aperture into the global GTT. */
3190 DRM_INFO("Memory usable by graphics device = %lluM\n",
3191 ggtt->base.total >> 20);
3192 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3193 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3194 #ifdef CONFIG_INTEL_IOMMU
3195 if (intel_iommu_gfx_mapped)
3196 DRM_INFO("VT-d active for gfx access\n");
3197 #endif
3198
3199 return 0;
3200 }
3201
3202 /**
3203 * i915_ggtt_init_hw - Initialize GGTT hardware
3204 * @dev_priv: i915 device
3205 */
3206 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3207 {
3208 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3209 int ret;
3210
3211 INIT_LIST_HEAD(&dev_priv->vm_list);
3212
3213 /* Subtract the guard page before address space initialization to
3214 * shrink the range used by drm_mm.
3215 */
3216 ggtt->base.total -= PAGE_SIZE;
3217 i915_address_space_init(&ggtt->base, dev_priv);
3218 ggtt->base.total += PAGE_SIZE;
3219 if (!HAS_LLC(dev_priv))
3220 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3221
3222 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3223 dev_priv->ggtt.mappable_base,
3224 dev_priv->ggtt.mappable_end)) {
3225 ret = -EIO;
3226 goto out_gtt_cleanup;
3227 }
3228
3229 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3230
3231 /*
3232 * Initialise stolen early so that we may reserve preallocated
3233 * objects for the BIOS to KMS transition.
3234 */
3235 ret = i915_gem_init_stolen(&dev_priv->drm);
3236 if (ret)
3237 goto out_gtt_cleanup;
3238
3239 return 0;
3240
3241 out_gtt_cleanup:
3242 ggtt->base.cleanup(&ggtt->base);
3243 return ret;
3244 }
3245
3246 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3247 {
3248 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3249 return -EIO;
3250
3251 return 0;
3252 }
3253
3254 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3255 {
3256 struct drm_i915_private *dev_priv = to_i915(dev);
3257 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3258 struct drm_i915_gem_object *obj, *on;
3259
3260 i915_check_and_clear_faults(dev_priv);
3261
3262 /* First fill our portion of the GTT with scratch pages */
3263 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total,
3264 true);
3265
3266 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3267
3268 /* clflush objects bound into the GGTT and rebind them. */
3269 list_for_each_entry_safe(obj, on,
3270 &dev_priv->mm.bound_list, global_list) {
3271 bool ggtt_bound = false;
3272 struct i915_vma *vma;
3273
3274 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3275 if (vma->vm != &ggtt->base)
3276 continue;
3277
3278 if (!i915_vma_unbind(vma))
3279 continue;
3280
3281 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3282 PIN_UPDATE));
3283 ggtt_bound = true;
3284 }
3285
3286 if (ggtt_bound)
3287 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3288 }
3289
3290 ggtt->base.closed = false;
3291
3292 if (INTEL_INFO(dev)->gen >= 8) {
3293 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3294 chv_setup_private_ppat(dev_priv);
3295 else
3296 bdw_setup_private_ppat(dev_priv);
3297
3298 return;
3299 }
3300
3301 if (USES_PPGTT(dev)) {
3302 struct i915_address_space *vm;
3303
3304 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3305 /* TODO: Perhaps it shouldn't be gen6 specific */
3306
3307 struct i915_hw_ppgtt *ppgtt;
3308
3309 if (i915_is_ggtt(vm))
3310 ppgtt = dev_priv->mm.aliasing_ppgtt;
3311 else
3312 ppgtt = i915_vm_to_ppgtt(vm);
3313
3314 gen6_write_page_range(dev_priv, &ppgtt->pd,
3315 0, ppgtt->base.total);
3316 }
3317 }
3318
3319 i915_ggtt_flush(dev_priv);
3320 }
3321
3322 static void
3323 i915_vma_retire(struct i915_gem_active *active,
3324 struct drm_i915_gem_request *rq)
3325 {
3326 const unsigned int idx = rq->engine->id;
3327 struct i915_vma *vma =
3328 container_of(active, struct i915_vma, last_read[idx]);
3329
3330 GEM_BUG_ON(!i915_vma_has_active_engine(vma, idx));
3331
3332 i915_vma_clear_active(vma, idx);
3333 if (i915_vma_is_active(vma))
3334 return;
3335
3336 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3337 if (unlikely(i915_vma_is_closed(vma) && !i915_vma_is_pinned(vma)))
3338 WARN_ON(i915_vma_unbind(vma));
3339 }
3340
3341 void i915_vma_destroy(struct i915_vma *vma)
3342 {
3343 GEM_BUG_ON(vma->node.allocated);
3344 GEM_BUG_ON(i915_vma_is_active(vma));
3345 GEM_BUG_ON(!i915_vma_is_closed(vma));
3346 GEM_BUG_ON(vma->fence);
3347
3348 list_del(&vma->vm_link);
3349 if (!i915_vma_is_ggtt(vma))
3350 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
3351
3352 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
3353 }
3354
3355 void i915_vma_close(struct i915_vma *vma)
3356 {
3357 GEM_BUG_ON(i915_vma_is_closed(vma));
3358 vma->flags |= I915_VMA_CLOSED;
3359
3360 list_del_init(&vma->obj_link);
3361 if (!i915_vma_is_active(vma) && !i915_vma_is_pinned(vma))
3362 WARN_ON(i915_vma_unbind(vma));
3363 }
3364
3365 static struct i915_vma *
3366 __i915_vma_create(struct drm_i915_gem_object *obj,
3367 struct i915_address_space *vm,
3368 const struct i915_ggtt_view *view)
3369 {
3370 struct i915_vma *vma;
3371 int i;
3372
3373 GEM_BUG_ON(vm->closed);
3374
3375 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3376 if (vma == NULL)
3377 return ERR_PTR(-ENOMEM);
3378
3379 INIT_LIST_HEAD(&vma->exec_list);
3380 for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
3381 init_request_active(&vma->last_read[i], i915_vma_retire);
3382 init_request_active(&vma->last_fence, NULL);
3383 list_add(&vma->vm_link, &vm->unbound_list);
3384 vma->vm = vm;
3385 vma->obj = obj;
3386 vma->size = obj->base.size;
3387
3388 if (view) {
3389 vma->ggtt_view = *view;
3390 if (view->type == I915_GGTT_VIEW_PARTIAL) {
3391 vma->size = view->params.partial.size;
3392 vma->size <<= PAGE_SHIFT;
3393 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
3394 vma->size =
3395 intel_rotation_info_size(&view->params.rotated);
3396 vma->size <<= PAGE_SHIFT;
3397 }
3398 }
3399
3400 if (i915_is_ggtt(vm)) {
3401 vma->flags |= I915_VMA_GGTT;
3402 } else {
3403 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3404 }
3405
3406 list_add_tail(&vma->obj_link, &obj->vma_list);
3407 return vma;
3408 }
3409
3410 static inline bool vma_matches(struct i915_vma *vma,
3411 struct i915_address_space *vm,
3412 const struct i915_ggtt_view *view)
3413 {
3414 if (vma->vm != vm)
3415 return false;
3416
3417 if (!i915_vma_is_ggtt(vma))
3418 return true;
3419
3420 if (!view)
3421 return vma->ggtt_view.type == 0;
3422
3423 if (vma->ggtt_view.type != view->type)
3424 return false;
3425
3426 return memcmp(&vma->ggtt_view.params,
3427 &view->params,
3428 sizeof(view->params)) == 0;
3429 }
3430
3431 struct i915_vma *
3432 i915_vma_create(struct drm_i915_gem_object *obj,
3433 struct i915_address_space *vm,
3434 const struct i915_ggtt_view *view)
3435 {
3436 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3437 GEM_BUG_ON(i915_gem_obj_to_vma(obj, vm, view));
3438
3439 return __i915_vma_create(obj, vm, view);
3440 }
3441
3442 struct i915_vma *
3443 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3444 struct i915_address_space *vm,
3445 const struct i915_ggtt_view *view)
3446 {
3447 struct i915_vma *vma;
3448
3449 list_for_each_entry_reverse(vma, &obj->vma_list, obj_link)
3450 if (vma_matches(vma, vm, view))
3451 return vma;
3452
3453 return NULL;
3454 }
3455
3456 struct i915_vma *
3457 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3458 struct i915_address_space *vm,
3459 const struct i915_ggtt_view *view)
3460 {
3461 struct i915_vma *vma;
3462
3463 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3464
3465 vma = i915_gem_obj_to_vma(obj, vm, view);
3466 if (!vma)
3467 vma = __i915_vma_create(obj, vm, view);
3468
3469 GEM_BUG_ON(i915_vma_is_closed(vma));
3470 return vma;
3471 }
3472
3473 static struct scatterlist *
3474 rotate_pages(const dma_addr_t *in, unsigned int offset,
3475 unsigned int width, unsigned int height,
3476 unsigned int stride,
3477 struct sg_table *st, struct scatterlist *sg)
3478 {
3479 unsigned int column, row;
3480 unsigned int src_idx;
3481
3482 for (column = 0; column < width; column++) {
3483 src_idx = stride * (height - 1) + column;
3484 for (row = 0; row < height; row++) {
3485 st->nents++;
3486 /* We don't need the pages, but need to initialize
3487 * the entries so the sg list can be happily traversed.
3488 * The only thing we need are DMA addresses.
3489 */
3490 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3491 sg_dma_address(sg) = in[offset + src_idx];
3492 sg_dma_len(sg) = PAGE_SIZE;
3493 sg = sg_next(sg);
3494 src_idx -= stride;
3495 }
3496 }
3497
3498 return sg;
3499 }
3500
3501 static struct sg_table *
3502 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3503 struct drm_i915_gem_object *obj)
3504 {
3505 const size_t n_pages = obj->base.size / PAGE_SIZE;
3506 unsigned int size = intel_rotation_info_size(rot_info);
3507 struct sgt_iter sgt_iter;
3508 dma_addr_t dma_addr;
3509 unsigned long i;
3510 dma_addr_t *page_addr_list;
3511 struct sg_table *st;
3512 struct scatterlist *sg;
3513 int ret = -ENOMEM;
3514
3515 /* Allocate a temporary list of source pages for random access. */
3516 page_addr_list = drm_malloc_gfp(n_pages,
3517 sizeof(dma_addr_t),
3518 GFP_TEMPORARY);
3519 if (!page_addr_list)
3520 return ERR_PTR(ret);
3521
3522 /* Allocate target SG list. */
3523 st = kmalloc(sizeof(*st), GFP_KERNEL);
3524 if (!st)
3525 goto err_st_alloc;
3526
3527 ret = sg_alloc_table(st, size, GFP_KERNEL);
3528 if (ret)
3529 goto err_sg_alloc;
3530
3531 /* Populate source page list from the object. */
3532 i = 0;
3533 for_each_sgt_dma(dma_addr, sgt_iter, obj->pages)
3534 page_addr_list[i++] = dma_addr;
3535
3536 GEM_BUG_ON(i != n_pages);
3537 st->nents = 0;
3538 sg = st->sgl;
3539
3540 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3541 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3542 rot_info->plane[i].width, rot_info->plane[i].height,
3543 rot_info->plane[i].stride, st, sg);
3544 }
3545
3546 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3547 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3548
3549 drm_free_large(page_addr_list);
3550
3551 return st;
3552
3553 err_sg_alloc:
3554 kfree(st);
3555 err_st_alloc:
3556 drm_free_large(page_addr_list);
3557
3558 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3559 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3560
3561 return ERR_PTR(ret);
3562 }
3563
3564 static struct sg_table *
3565 intel_partial_pages(const struct i915_ggtt_view *view,
3566 struct drm_i915_gem_object *obj)
3567 {
3568 struct sg_table *st;
3569 struct scatterlist *sg;
3570 struct sg_page_iter obj_sg_iter;
3571 int ret = -ENOMEM;
3572
3573 st = kmalloc(sizeof(*st), GFP_KERNEL);
3574 if (!st)
3575 goto err_st_alloc;
3576
3577 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3578 if (ret)
3579 goto err_sg_alloc;
3580
3581 sg = st->sgl;
3582 st->nents = 0;
3583 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3584 view->params.partial.offset)
3585 {
3586 if (st->nents >= view->params.partial.size)
3587 break;
3588
3589 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3590 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3591 sg_dma_len(sg) = PAGE_SIZE;
3592
3593 sg = sg_next(sg);
3594 st->nents++;
3595 }
3596
3597 return st;
3598
3599 err_sg_alloc:
3600 kfree(st);
3601 err_st_alloc:
3602 return ERR_PTR(ret);
3603 }
3604
3605 static int
3606 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3607 {
3608 int ret = 0;
3609
3610 if (vma->pages)
3611 return 0;
3612
3613 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3614 vma->pages = vma->obj->pages;
3615 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3616 vma->pages =
3617 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3618 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3619 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3620 else
3621 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3622 vma->ggtt_view.type);
3623
3624 if (!vma->pages) {
3625 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3626 vma->ggtt_view.type);
3627 ret = -EINVAL;
3628 } else if (IS_ERR(vma->pages)) {
3629 ret = PTR_ERR(vma->pages);
3630 vma->pages = NULL;
3631 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3632 vma->ggtt_view.type, ret);
3633 }
3634
3635 return ret;
3636 }
3637
3638 /**
3639 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3640 * @vma: VMA to map
3641 * @cache_level: mapping cache level
3642 * @flags: flags like global or local mapping
3643 *
3644 * DMA addresses are taken from the scatter-gather table of this object (or of
3645 * this VMA in case of non-default GGTT views) and PTE entries set up.
3646 * Note that DMA addresses are also the only part of the SG table we care about.
3647 */
3648 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3649 u32 flags)
3650 {
3651 u32 bind_flags;
3652 u32 vma_flags;
3653 int ret;
3654
3655 if (WARN_ON(flags == 0))
3656 return -EINVAL;
3657
3658 bind_flags = 0;
3659 if (flags & PIN_GLOBAL)
3660 bind_flags |= I915_VMA_GLOBAL_BIND;
3661 if (flags & PIN_USER)
3662 bind_flags |= I915_VMA_LOCAL_BIND;
3663
3664 vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3665 if (flags & PIN_UPDATE)
3666 bind_flags |= vma_flags;
3667 else
3668 bind_flags &= ~vma_flags;
3669 if (bind_flags == 0)
3670 return 0;
3671
3672 if (vma_flags == 0 && vma->vm->allocate_va_range) {
3673 trace_i915_va_alloc(vma);
3674 ret = vma->vm->allocate_va_range(vma->vm,
3675 vma->node.start,
3676 vma->node.size);
3677 if (ret)
3678 return ret;
3679 }
3680
3681 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3682 if (ret)
3683 return ret;
3684
3685 vma->flags |= bind_flags;
3686 return 0;
3687 }
3688
3689 void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
3690 {
3691 void __iomem *ptr;
3692
3693 /* Access through the GTT requires the device to be awake. */
3694 assert_rpm_wakelock_held(to_i915(vma->vm->dev));
3695
3696 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3697 if (WARN_ON(!i915_vma_is_map_and_fenceable(vma)))
3698 return IO_ERR_PTR(-ENODEV);
3699
3700 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
3701 GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0);
3702
3703 ptr = vma->iomap;
3704 if (ptr == NULL) {
3705 ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->mappable,
3706 vma->node.start,
3707 vma->node.size);
3708 if (ptr == NULL)
3709 return IO_ERR_PTR(-ENOMEM);
3710
3711 vma->iomap = ptr;
3712 }
3713
3714 __i915_vma_pin(vma);
3715 return ptr;
3716 }
3717
3718 void i915_vma_unpin_and_release(struct i915_vma **p_vma)
3719 {
3720 struct i915_vma *vma;
3721
3722 vma = fetch_and_zero(p_vma);
3723 if (!vma)
3724 return;
3725
3726 i915_vma_unpin(vma);
3727 i915_vma_put(vma);
3728 }