]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48 * DOC: Global GTT views
49 *
50 * Background and previous state
51 *
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
55 *
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
59 *
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
63 *
64 * 12
65 * 34
66 *
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
70 *
71 * 1212
72 * 3434
73 *
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
76 *
77 * Implementation and usage
78 *
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
81 *
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
86 *
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
91 *
92 * Code wanting to add or use a new GGTT view needs to:
93 *
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
97 *
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
101 *
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
105 *
106 */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 /* Note that as an uncached mmio write, this should flush the
114 * WCB of the writes into the GGTT before it triggers the invalidate.
115 */
116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121 gen6_ggtt_invalidate(dev_priv);
122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127 intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132 i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 int enable_ppgtt)
137 {
138 bool has_aliasing_ppgtt;
139 bool has_full_ppgtt;
140 bool has_full_48bit_ppgtt;
141
142 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146 if (intel_vgpu_active(dev_priv)) {
147 /* emulation is too hard */
148 has_full_ppgtt = false;
149 has_full_48bit_ppgtt = false;
150 }
151
152 if (!has_aliasing_ppgtt)
153 return 0;
154
155 /*
156 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157 * execlists, the sole mechanism available to submit work.
158 */
159 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160 return 0;
161
162 if (enable_ppgtt == 1)
163 return 1;
164
165 if (enable_ppgtt == 2 && has_full_ppgtt)
166 return 2;
167
168 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169 return 3;
170
171 #ifdef CONFIG_INTEL_IOMMU
172 /* Disable ppgtt on SNB if VT-d is on. */
173 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
174 DRM_INFO("Disabling PPGTT because VT-d is on\n");
175 return 0;
176 }
177 #endif
178
179 /* Early VLV doesn't have this */
180 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
181 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
182 return 0;
183 }
184
185 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
186 return has_full_48bit_ppgtt ? 3 : 2;
187 else
188 return has_aliasing_ppgtt ? 1 : 0;
189 }
190
191 static int ppgtt_bind_vma(struct i915_vma *vma,
192 enum i915_cache_level cache_level,
193 u32 unused)
194 {
195 u32 pte_flags;
196 int ret;
197
198 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size);
199 if (ret)
200 return ret;
201
202 vma->pages = vma->obj->mm.pages;
203
204 /* Currently applicable only to VLV */
205 pte_flags = 0;
206 if (vma->obj->gt_ro)
207 pte_flags |= PTE_READ_ONLY;
208
209 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
210 cache_level, pte_flags);
211
212 return 0;
213 }
214
215 static void ppgtt_unbind_vma(struct i915_vma *vma)
216 {
217 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
218 }
219
220 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
221 enum i915_cache_level level)
222 {
223 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
224 pte |= addr;
225
226 switch (level) {
227 case I915_CACHE_NONE:
228 pte |= PPAT_UNCACHED_INDEX;
229 break;
230 case I915_CACHE_WT:
231 pte |= PPAT_DISPLAY_ELLC_INDEX;
232 break;
233 default:
234 pte |= PPAT_CACHED_INDEX;
235 break;
236 }
237
238 return pte;
239 }
240
241 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
242 const enum i915_cache_level level)
243 {
244 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
245 pde |= addr;
246 if (level != I915_CACHE_NONE)
247 pde |= PPAT_CACHED_PDE_INDEX;
248 else
249 pde |= PPAT_UNCACHED_INDEX;
250 return pde;
251 }
252
253 #define gen8_pdpe_encode gen8_pde_encode
254 #define gen8_pml4e_encode gen8_pde_encode
255
256 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
257 enum i915_cache_level level,
258 u32 unused)
259 {
260 gen6_pte_t pte = GEN6_PTE_VALID;
261 pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263 switch (level) {
264 case I915_CACHE_L3_LLC:
265 case I915_CACHE_LLC:
266 pte |= GEN6_PTE_CACHE_LLC;
267 break;
268 case I915_CACHE_NONE:
269 pte |= GEN6_PTE_UNCACHED;
270 break;
271 default:
272 MISSING_CASE(level);
273 }
274
275 return pte;
276 }
277
278 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
279 enum i915_cache_level level,
280 u32 unused)
281 {
282 gen6_pte_t pte = GEN6_PTE_VALID;
283 pte |= GEN6_PTE_ADDR_ENCODE(addr);
284
285 switch (level) {
286 case I915_CACHE_L3_LLC:
287 pte |= GEN7_PTE_CACHE_L3_LLC;
288 break;
289 case I915_CACHE_LLC:
290 pte |= GEN6_PTE_CACHE_LLC;
291 break;
292 case I915_CACHE_NONE:
293 pte |= GEN6_PTE_UNCACHED;
294 break;
295 default:
296 MISSING_CASE(level);
297 }
298
299 return pte;
300 }
301
302 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
303 enum i915_cache_level level,
304 u32 flags)
305 {
306 gen6_pte_t pte = GEN6_PTE_VALID;
307 pte |= GEN6_PTE_ADDR_ENCODE(addr);
308
309 if (!(flags & PTE_READ_ONLY))
310 pte |= BYT_PTE_WRITEABLE;
311
312 if (level != I915_CACHE_NONE)
313 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
314
315 return pte;
316 }
317
318 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
319 enum i915_cache_level level,
320 u32 unused)
321 {
322 gen6_pte_t pte = GEN6_PTE_VALID;
323 pte |= HSW_PTE_ADDR_ENCODE(addr);
324
325 if (level != I915_CACHE_NONE)
326 pte |= HSW_WB_LLC_AGE3;
327
328 return pte;
329 }
330
331 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
332 enum i915_cache_level level,
333 u32 unused)
334 {
335 gen6_pte_t pte = GEN6_PTE_VALID;
336 pte |= HSW_PTE_ADDR_ENCODE(addr);
337
338 switch (level) {
339 case I915_CACHE_NONE:
340 break;
341 case I915_CACHE_WT:
342 pte |= HSW_WT_ELLC_LLC_AGE3;
343 break;
344 default:
345 pte |= HSW_WB_ELLC_LLC_AGE3;
346 break;
347 }
348
349 return pte;
350 }
351
352 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
353 {
354 struct page *page;
355
356 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
357 i915_gem_shrink_all(vm->i915);
358
359 if (vm->free_pages.nr)
360 return vm->free_pages.pages[--vm->free_pages.nr];
361
362 page = alloc_page(gfp);
363 if (!page)
364 return NULL;
365
366 if (vm->pt_kmap_wc)
367 set_pages_array_wc(&page, 1);
368
369 return page;
370 }
371
372 static void vm_free_pages_release(struct i915_address_space *vm)
373 {
374 GEM_BUG_ON(!pagevec_count(&vm->free_pages));
375
376 if (vm->pt_kmap_wc)
377 set_pages_array_wb(vm->free_pages.pages,
378 pagevec_count(&vm->free_pages));
379
380 __pagevec_release(&vm->free_pages);
381 }
382
383 static void vm_free_page(struct i915_address_space *vm, struct page *page)
384 {
385 if (!pagevec_add(&vm->free_pages, page))
386 vm_free_pages_release(vm);
387 }
388
389 static int __setup_page_dma(struct i915_address_space *vm,
390 struct i915_page_dma *p,
391 gfp_t gfp)
392 {
393 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
394 if (unlikely(!p->page))
395 return -ENOMEM;
396
397 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
398 PCI_DMA_BIDIRECTIONAL);
399 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
400 vm_free_page(vm, p->page);
401 return -ENOMEM;
402 }
403
404 return 0;
405 }
406
407 static int setup_page_dma(struct i915_address_space *vm,
408 struct i915_page_dma *p)
409 {
410 return __setup_page_dma(vm, p, I915_GFP_DMA);
411 }
412
413 static void cleanup_page_dma(struct i915_address_space *vm,
414 struct i915_page_dma *p)
415 {
416 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
417 vm_free_page(vm, p->page);
418 }
419
420 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
421
422 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
423 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
424 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
425 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
426
427 static void fill_page_dma(struct i915_address_space *vm,
428 struct i915_page_dma *p,
429 const u64 val)
430 {
431 u64 * const vaddr = kmap_atomic(p->page);
432 int i;
433
434 for (i = 0; i < 512; i++)
435 vaddr[i] = val;
436
437 kunmap_atomic(vaddr);
438 }
439
440 static void fill_page_dma_32(struct i915_address_space *vm,
441 struct i915_page_dma *p,
442 const u32 v)
443 {
444 fill_page_dma(vm, p, (u64)v << 32 | v);
445 }
446
447 static int
448 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
449 {
450 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
451 }
452
453 static void cleanup_scratch_page(struct i915_address_space *vm)
454 {
455 cleanup_page_dma(vm, &vm->scratch_page);
456 }
457
458 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
459 {
460 struct i915_page_table *pt;
461
462 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
463 if (unlikely(!pt))
464 return ERR_PTR(-ENOMEM);
465
466 if (unlikely(setup_px(vm, pt))) {
467 kfree(pt);
468 return ERR_PTR(-ENOMEM);
469 }
470
471 pt->used_ptes = 0;
472 return pt;
473 }
474
475 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
476 {
477 cleanup_px(vm, pt);
478 kfree(pt);
479 }
480
481 static void gen8_initialize_pt(struct i915_address_space *vm,
482 struct i915_page_table *pt)
483 {
484 fill_px(vm, pt,
485 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
486 }
487
488 static void gen6_initialize_pt(struct i915_address_space *vm,
489 struct i915_page_table *pt)
490 {
491 fill32_px(vm, pt,
492 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
493 }
494
495 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
496 {
497 struct i915_page_directory *pd;
498
499 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
500 if (unlikely(!pd))
501 return ERR_PTR(-ENOMEM);
502
503 if (unlikely(setup_px(vm, pd))) {
504 kfree(pd);
505 return ERR_PTR(-ENOMEM);
506 }
507
508 pd->used_pdes = 0;
509 return pd;
510 }
511
512 static void free_pd(struct i915_address_space *vm,
513 struct i915_page_directory *pd)
514 {
515 cleanup_px(vm, pd);
516 kfree(pd);
517 }
518
519 static void gen8_initialize_pd(struct i915_address_space *vm,
520 struct i915_page_directory *pd)
521 {
522 unsigned int i;
523
524 fill_px(vm, pd,
525 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
526 for (i = 0; i < I915_PDES; i++)
527 pd->page_table[i] = vm->scratch_pt;
528 }
529
530 static int __pdp_init(struct i915_address_space *vm,
531 struct i915_page_directory_pointer *pdp)
532 {
533 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
534 unsigned int i;
535
536 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
537 GFP_KERNEL | __GFP_NOWARN);
538 if (unlikely(!pdp->page_directory))
539 return -ENOMEM;
540
541 for (i = 0; i < pdpes; i++)
542 pdp->page_directory[i] = vm->scratch_pd;
543
544 return 0;
545 }
546
547 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
548 {
549 kfree(pdp->page_directory);
550 pdp->page_directory = NULL;
551 }
552
553 static inline bool use_4lvl(const struct i915_address_space *vm)
554 {
555 return i915_vm_is_48bit(vm);
556 }
557
558 static struct i915_page_directory_pointer *
559 alloc_pdp(struct i915_address_space *vm)
560 {
561 struct i915_page_directory_pointer *pdp;
562 int ret = -ENOMEM;
563
564 WARN_ON(!use_4lvl(vm));
565
566 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
567 if (!pdp)
568 return ERR_PTR(-ENOMEM);
569
570 ret = __pdp_init(vm, pdp);
571 if (ret)
572 goto fail_bitmap;
573
574 ret = setup_px(vm, pdp);
575 if (ret)
576 goto fail_page_m;
577
578 return pdp;
579
580 fail_page_m:
581 __pdp_fini(pdp);
582 fail_bitmap:
583 kfree(pdp);
584
585 return ERR_PTR(ret);
586 }
587
588 static void free_pdp(struct i915_address_space *vm,
589 struct i915_page_directory_pointer *pdp)
590 {
591 __pdp_fini(pdp);
592
593 if (!use_4lvl(vm))
594 return;
595
596 cleanup_px(vm, pdp);
597 kfree(pdp);
598 }
599
600 static void gen8_initialize_pdp(struct i915_address_space *vm,
601 struct i915_page_directory_pointer *pdp)
602 {
603 gen8_ppgtt_pdpe_t scratch_pdpe;
604
605 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
606
607 fill_px(vm, pdp, scratch_pdpe);
608 }
609
610 static void gen8_initialize_pml4(struct i915_address_space *vm,
611 struct i915_pml4 *pml4)
612 {
613 unsigned int i;
614
615 fill_px(vm, pml4,
616 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
617 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
618 pml4->pdps[i] = vm->scratch_pdp;
619 }
620
621 /* Broadwell Page Directory Pointer Descriptors */
622 static int gen8_write_pdp(struct drm_i915_gem_request *req,
623 unsigned entry,
624 dma_addr_t addr)
625 {
626 struct intel_engine_cs *engine = req->engine;
627 u32 *cs;
628
629 BUG_ON(entry >= 4);
630
631 cs = intel_ring_begin(req, 6);
632 if (IS_ERR(cs))
633 return PTR_ERR(cs);
634
635 *cs++ = MI_LOAD_REGISTER_IMM(1);
636 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
637 *cs++ = upper_32_bits(addr);
638 *cs++ = MI_LOAD_REGISTER_IMM(1);
639 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
640 *cs++ = lower_32_bits(addr);
641 intel_ring_advance(req, cs);
642
643 return 0;
644 }
645
646 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
647 struct drm_i915_gem_request *req)
648 {
649 int i, ret;
650
651 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
652 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
653
654 ret = gen8_write_pdp(req, i, pd_daddr);
655 if (ret)
656 return ret;
657 }
658
659 return 0;
660 }
661
662 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
663 struct drm_i915_gem_request *req)
664 {
665 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
666 }
667
668 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
669 * the page table structures, we mark them dirty so that
670 * context switching/execlist queuing code takes extra steps
671 * to ensure that tlbs are flushed.
672 */
673 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
674 {
675 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
676 }
677
678 /* Removes entries from a single page table, releasing it if it's empty.
679 * Caller can use the return value to update higher-level entries.
680 */
681 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
682 struct i915_page_table *pt,
683 u64 start, u64 length)
684 {
685 unsigned int num_entries = gen8_pte_count(start, length);
686 unsigned int pte = gen8_pte_index(start);
687 unsigned int pte_end = pte + num_entries;
688 const gen8_pte_t scratch_pte =
689 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
690 gen8_pte_t *vaddr;
691
692 GEM_BUG_ON(num_entries > pt->used_ptes);
693
694 pt->used_ptes -= num_entries;
695 if (!pt->used_ptes)
696 return true;
697
698 vaddr = kmap_atomic_px(pt);
699 while (pte < pte_end)
700 vaddr[pte++] = scratch_pte;
701 kunmap_atomic(vaddr);
702
703 return false;
704 }
705
706 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
707 struct i915_page_directory *pd,
708 struct i915_page_table *pt,
709 unsigned int pde)
710 {
711 gen8_pde_t *vaddr;
712
713 pd->page_table[pde] = pt;
714
715 vaddr = kmap_atomic_px(pd);
716 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
717 kunmap_atomic(vaddr);
718 }
719
720 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
721 struct i915_page_directory *pd,
722 u64 start, u64 length)
723 {
724 struct i915_page_table *pt;
725 u32 pde;
726
727 gen8_for_each_pde(pt, pd, start, length, pde) {
728 GEM_BUG_ON(pt == vm->scratch_pt);
729
730 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
731 continue;
732
733 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
734 GEM_BUG_ON(!pd->used_pdes);
735 pd->used_pdes--;
736
737 free_pt(vm, pt);
738 }
739
740 return !pd->used_pdes;
741 }
742
743 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
744 struct i915_page_directory_pointer *pdp,
745 struct i915_page_directory *pd,
746 unsigned int pdpe)
747 {
748 gen8_ppgtt_pdpe_t *vaddr;
749
750 pdp->page_directory[pdpe] = pd;
751 if (!use_4lvl(vm))
752 return;
753
754 vaddr = kmap_atomic_px(pdp);
755 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
756 kunmap_atomic(vaddr);
757 }
758
759 /* Removes entries from a single page dir pointer, releasing it if it's empty.
760 * Caller can use the return value to update higher-level entries
761 */
762 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
763 struct i915_page_directory_pointer *pdp,
764 u64 start, u64 length)
765 {
766 struct i915_page_directory *pd;
767 unsigned int pdpe;
768
769 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
770 GEM_BUG_ON(pd == vm->scratch_pd);
771
772 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
773 continue;
774
775 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
776 GEM_BUG_ON(!pdp->used_pdpes);
777 pdp->used_pdpes--;
778
779 free_pd(vm, pd);
780 }
781
782 return !pdp->used_pdpes;
783 }
784
785 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
786 u64 start, u64 length)
787 {
788 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
789 }
790
791 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
792 struct i915_page_directory_pointer *pdp,
793 unsigned int pml4e)
794 {
795 gen8_ppgtt_pml4e_t *vaddr;
796
797 pml4->pdps[pml4e] = pdp;
798
799 vaddr = kmap_atomic_px(pml4);
800 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
801 kunmap_atomic(vaddr);
802 }
803
804 /* Removes entries from a single pml4.
805 * This is the top-level structure in 4-level page tables used on gen8+.
806 * Empty entries are always scratch pml4e.
807 */
808 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
809 u64 start, u64 length)
810 {
811 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
812 struct i915_pml4 *pml4 = &ppgtt->pml4;
813 struct i915_page_directory_pointer *pdp;
814 unsigned int pml4e;
815
816 GEM_BUG_ON(!use_4lvl(vm));
817
818 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
819 GEM_BUG_ON(pdp == vm->scratch_pdp);
820
821 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
822 continue;
823
824 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
825
826 free_pdp(vm, pdp);
827 }
828 }
829
830 struct sgt_dma {
831 struct scatterlist *sg;
832 dma_addr_t dma, max;
833 };
834
835 struct gen8_insert_pte {
836 u16 pml4e;
837 u16 pdpe;
838 u16 pde;
839 u16 pte;
840 };
841
842 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
843 {
844 return (struct gen8_insert_pte) {
845 gen8_pml4e_index(start),
846 gen8_pdpe_index(start),
847 gen8_pde_index(start),
848 gen8_pte_index(start),
849 };
850 }
851
852 static __always_inline bool
853 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
854 struct i915_page_directory_pointer *pdp,
855 struct sgt_dma *iter,
856 struct gen8_insert_pte *idx,
857 enum i915_cache_level cache_level)
858 {
859 struct i915_page_directory *pd;
860 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
861 gen8_pte_t *vaddr;
862 bool ret;
863
864 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
865 pd = pdp->page_directory[idx->pdpe];
866 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
867 do {
868 vaddr[idx->pte] = pte_encode | iter->dma;
869
870 iter->dma += PAGE_SIZE;
871 if (iter->dma >= iter->max) {
872 iter->sg = __sg_next(iter->sg);
873 if (!iter->sg) {
874 ret = false;
875 break;
876 }
877
878 iter->dma = sg_dma_address(iter->sg);
879 iter->max = iter->dma + iter->sg->length;
880 }
881
882 if (++idx->pte == GEN8_PTES) {
883 idx->pte = 0;
884
885 if (++idx->pde == I915_PDES) {
886 idx->pde = 0;
887
888 /* Limited by sg length for 3lvl */
889 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
890 idx->pdpe = 0;
891 ret = true;
892 break;
893 }
894
895 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
896 pd = pdp->page_directory[idx->pdpe];
897 }
898
899 kunmap_atomic(vaddr);
900 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
901 }
902 } while (1);
903 kunmap_atomic(vaddr);
904
905 return ret;
906 }
907
908 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
909 struct sg_table *pages,
910 u64 start,
911 enum i915_cache_level cache_level,
912 u32 unused)
913 {
914 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
915 struct sgt_dma iter = {
916 .sg = pages->sgl,
917 .dma = sg_dma_address(iter.sg),
918 .max = iter.dma + iter.sg->length,
919 };
920 struct gen8_insert_pte idx = gen8_insert_pte(start);
921
922 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
923 cache_level);
924 }
925
926 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
927 struct sg_table *pages,
928 u64 start,
929 enum i915_cache_level cache_level,
930 u32 unused)
931 {
932 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
933 struct sgt_dma iter = {
934 .sg = pages->sgl,
935 .dma = sg_dma_address(iter.sg),
936 .max = iter.dma + iter.sg->length,
937 };
938 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
939 struct gen8_insert_pte idx = gen8_insert_pte(start);
940
941 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
942 &idx, cache_level))
943 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
944 }
945
946 static void gen8_free_page_tables(struct i915_address_space *vm,
947 struct i915_page_directory *pd)
948 {
949 int i;
950
951 if (!px_page(pd))
952 return;
953
954 for (i = 0; i < I915_PDES; i++) {
955 if (pd->page_table[i] != vm->scratch_pt)
956 free_pt(vm, pd->page_table[i]);
957 }
958 }
959
960 static int gen8_init_scratch(struct i915_address_space *vm)
961 {
962 int ret;
963
964 ret = setup_scratch_page(vm, I915_GFP_DMA);
965 if (ret)
966 return ret;
967
968 vm->scratch_pt = alloc_pt(vm);
969 if (IS_ERR(vm->scratch_pt)) {
970 ret = PTR_ERR(vm->scratch_pt);
971 goto free_scratch_page;
972 }
973
974 vm->scratch_pd = alloc_pd(vm);
975 if (IS_ERR(vm->scratch_pd)) {
976 ret = PTR_ERR(vm->scratch_pd);
977 goto free_pt;
978 }
979
980 if (use_4lvl(vm)) {
981 vm->scratch_pdp = alloc_pdp(vm);
982 if (IS_ERR(vm->scratch_pdp)) {
983 ret = PTR_ERR(vm->scratch_pdp);
984 goto free_pd;
985 }
986 }
987
988 gen8_initialize_pt(vm, vm->scratch_pt);
989 gen8_initialize_pd(vm, vm->scratch_pd);
990 if (use_4lvl(vm))
991 gen8_initialize_pdp(vm, vm->scratch_pdp);
992
993 return 0;
994
995 free_pd:
996 free_pd(vm, vm->scratch_pd);
997 free_pt:
998 free_pt(vm, vm->scratch_pt);
999 free_scratch_page:
1000 cleanup_scratch_page(vm);
1001
1002 return ret;
1003 }
1004
1005 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1006 {
1007 struct i915_address_space *vm = &ppgtt->base;
1008 struct drm_i915_private *dev_priv = vm->i915;
1009 enum vgt_g2v_type msg;
1010 int i;
1011
1012 if (use_4lvl(vm)) {
1013 const u64 daddr = px_dma(&ppgtt->pml4);
1014
1015 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1016 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1017
1018 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1019 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1020 } else {
1021 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1022 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1023
1024 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1025 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1026 }
1027
1028 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1029 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1030 }
1031
1032 I915_WRITE(vgtif_reg(g2v_notify), msg);
1033
1034 return 0;
1035 }
1036
1037 static void gen8_free_scratch(struct i915_address_space *vm)
1038 {
1039 if (use_4lvl(vm))
1040 free_pdp(vm, vm->scratch_pdp);
1041 free_pd(vm, vm->scratch_pd);
1042 free_pt(vm, vm->scratch_pt);
1043 cleanup_scratch_page(vm);
1044 }
1045
1046 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1047 struct i915_page_directory_pointer *pdp)
1048 {
1049 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1050 int i;
1051
1052 for (i = 0; i < pdpes; i++) {
1053 if (pdp->page_directory[i] == vm->scratch_pd)
1054 continue;
1055
1056 gen8_free_page_tables(vm, pdp->page_directory[i]);
1057 free_pd(vm, pdp->page_directory[i]);
1058 }
1059
1060 free_pdp(vm, pdp);
1061 }
1062
1063 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1064 {
1065 int i;
1066
1067 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1068 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1069 continue;
1070
1071 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1072 }
1073
1074 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1075 }
1076
1077 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1078 {
1079 struct drm_i915_private *dev_priv = vm->i915;
1080 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1081
1082 if (intel_vgpu_active(dev_priv))
1083 gen8_ppgtt_notify_vgt(ppgtt, false);
1084
1085 if (use_4lvl(vm))
1086 gen8_ppgtt_cleanup_4lvl(ppgtt);
1087 else
1088 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1089
1090 gen8_free_scratch(vm);
1091 }
1092
1093 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1094 struct i915_page_directory *pd,
1095 u64 start, u64 length)
1096 {
1097 struct i915_page_table *pt;
1098 u64 from = start;
1099 unsigned int pde;
1100
1101 gen8_for_each_pde(pt, pd, start, length, pde) {
1102 if (pt == vm->scratch_pt) {
1103 pt = alloc_pt(vm);
1104 if (IS_ERR(pt))
1105 goto unwind;
1106
1107 gen8_initialize_pt(vm, pt);
1108
1109 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1110 pd->used_pdes++;
1111 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1112 }
1113
1114 pt->used_ptes += gen8_pte_count(start, length);
1115 }
1116 return 0;
1117
1118 unwind:
1119 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1120 return -ENOMEM;
1121 }
1122
1123 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1124 struct i915_page_directory_pointer *pdp,
1125 u64 start, u64 length)
1126 {
1127 struct i915_page_directory *pd;
1128 u64 from = start;
1129 unsigned int pdpe;
1130 int ret;
1131
1132 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1133 if (pd == vm->scratch_pd) {
1134 pd = alloc_pd(vm);
1135 if (IS_ERR(pd))
1136 goto unwind;
1137
1138 gen8_initialize_pd(vm, pd);
1139 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1140 pdp->used_pdpes++;
1141 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1142
1143 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1144 }
1145
1146 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1147 if (unlikely(ret))
1148 goto unwind_pd;
1149 }
1150
1151 return 0;
1152
1153 unwind_pd:
1154 if (!pd->used_pdes) {
1155 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1156 GEM_BUG_ON(!pdp->used_pdpes);
1157 pdp->used_pdpes--;
1158 free_pd(vm, pd);
1159 }
1160 unwind:
1161 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1162 return -ENOMEM;
1163 }
1164
1165 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1166 u64 start, u64 length)
1167 {
1168 return gen8_ppgtt_alloc_pdp(vm,
1169 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1170 }
1171
1172 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1173 u64 start, u64 length)
1174 {
1175 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176 struct i915_pml4 *pml4 = &ppgtt->pml4;
1177 struct i915_page_directory_pointer *pdp;
1178 u64 from = start;
1179 u32 pml4e;
1180 int ret;
1181
1182 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1183 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1184 pdp = alloc_pdp(vm);
1185 if (IS_ERR(pdp))
1186 goto unwind;
1187
1188 gen8_initialize_pdp(vm, pdp);
1189 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1190 }
1191
1192 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1193 if (unlikely(ret))
1194 goto unwind_pdp;
1195 }
1196
1197 return 0;
1198
1199 unwind_pdp:
1200 if (!pdp->used_pdpes) {
1201 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1202 free_pdp(vm, pdp);
1203 }
1204 unwind:
1205 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1206 return -ENOMEM;
1207 }
1208
1209 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1210 struct i915_page_directory_pointer *pdp,
1211 u64 start, u64 length,
1212 gen8_pte_t scratch_pte,
1213 struct seq_file *m)
1214 {
1215 struct i915_address_space *vm = &ppgtt->base;
1216 struct i915_page_directory *pd;
1217 u32 pdpe;
1218
1219 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1220 struct i915_page_table *pt;
1221 u64 pd_len = length;
1222 u64 pd_start = start;
1223 u32 pde;
1224
1225 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1226 continue;
1227
1228 seq_printf(m, "\tPDPE #%d\n", pdpe);
1229 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1230 u32 pte;
1231 gen8_pte_t *pt_vaddr;
1232
1233 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1234 continue;
1235
1236 pt_vaddr = kmap_atomic_px(pt);
1237 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1238 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1239 pde << GEN8_PDE_SHIFT |
1240 pte << GEN8_PTE_SHIFT);
1241 int i;
1242 bool found = false;
1243
1244 for (i = 0; i < 4; i++)
1245 if (pt_vaddr[pte + i] != scratch_pte)
1246 found = true;
1247 if (!found)
1248 continue;
1249
1250 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1251 for (i = 0; i < 4; i++) {
1252 if (pt_vaddr[pte + i] != scratch_pte)
1253 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1254 else
1255 seq_puts(m, " SCRATCH ");
1256 }
1257 seq_puts(m, "\n");
1258 }
1259 kunmap_atomic(pt_vaddr);
1260 }
1261 }
1262 }
1263
1264 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1265 {
1266 struct i915_address_space *vm = &ppgtt->base;
1267 const gen8_pte_t scratch_pte =
1268 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1269 u64 start = 0, length = ppgtt->base.total;
1270
1271 if (use_4lvl(vm)) {
1272 u64 pml4e;
1273 struct i915_pml4 *pml4 = &ppgtt->pml4;
1274 struct i915_page_directory_pointer *pdp;
1275
1276 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1277 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1278 continue;
1279
1280 seq_printf(m, " PML4E #%llu\n", pml4e);
1281 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1282 }
1283 } else {
1284 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1285 }
1286 }
1287
1288 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1289 {
1290 struct i915_address_space *vm = &ppgtt->base;
1291 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1292 struct i915_page_directory *pd;
1293 u64 start = 0, length = ppgtt->base.total;
1294 u64 from = start;
1295 unsigned int pdpe;
1296
1297 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1298 pd = alloc_pd(vm);
1299 if (IS_ERR(pd))
1300 goto unwind;
1301
1302 gen8_initialize_pd(vm, pd);
1303 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1304 pdp->used_pdpes++;
1305 }
1306
1307 pdp->used_pdpes++; /* never remove */
1308 return 0;
1309
1310 unwind:
1311 start -= from;
1312 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1313 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1314 free_pd(vm, pd);
1315 }
1316 pdp->used_pdpes = 0;
1317 return -ENOMEM;
1318 }
1319
1320 /*
1321 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1322 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1323 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1324 * space.
1325 *
1326 */
1327 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1328 {
1329 struct i915_address_space *vm = &ppgtt->base;
1330 struct drm_i915_private *dev_priv = vm->i915;
1331 int ret;
1332
1333 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1334 1ULL << 48 :
1335 1ULL << 32;
1336
1337 ret = gen8_init_scratch(&ppgtt->base);
1338 if (ret) {
1339 ppgtt->base.total = 0;
1340 return ret;
1341 }
1342
1343 /* There are only few exceptions for gen >=6. chv and bxt.
1344 * And we are not sure about the latter so play safe for now.
1345 */
1346 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1347 ppgtt->base.pt_kmap_wc = true;
1348
1349 if (use_4lvl(vm)) {
1350 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1351 if (ret)
1352 goto free_scratch;
1353
1354 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1355
1356 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1357 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1358 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1359 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1360 } else {
1361 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1362 if (ret)
1363 goto free_scratch;
1364
1365 if (intel_vgpu_active(dev_priv)) {
1366 ret = gen8_preallocate_top_level_pdp(ppgtt);
1367 if (ret) {
1368 __pdp_fini(&ppgtt->pdp);
1369 goto free_scratch;
1370 }
1371 }
1372
1373 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1374 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1375 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1376 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1377 }
1378
1379 if (intel_vgpu_active(dev_priv))
1380 gen8_ppgtt_notify_vgt(ppgtt, true);
1381
1382 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1383 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1384 ppgtt->base.bind_vma = ppgtt_bind_vma;
1385 ppgtt->debug_dump = gen8_dump_ppgtt;
1386
1387 return 0;
1388
1389 free_scratch:
1390 gen8_free_scratch(&ppgtt->base);
1391 return ret;
1392 }
1393
1394 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1395 {
1396 struct i915_address_space *vm = &ppgtt->base;
1397 struct i915_page_table *unused;
1398 gen6_pte_t scratch_pte;
1399 u32 pd_entry, pte, pde;
1400 u32 start = 0, length = ppgtt->base.total;
1401
1402 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1403 I915_CACHE_LLC, 0);
1404
1405 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1406 u32 expected;
1407 gen6_pte_t *pt_vaddr;
1408 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1409 pd_entry = readl(ppgtt->pd_addr + pde);
1410 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1411
1412 if (pd_entry != expected)
1413 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1414 pde,
1415 pd_entry,
1416 expected);
1417 seq_printf(m, "\tPDE: %x\n", pd_entry);
1418
1419 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1420
1421 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1422 unsigned long va =
1423 (pde * PAGE_SIZE * GEN6_PTES) +
1424 (pte * PAGE_SIZE);
1425 int i;
1426 bool found = false;
1427 for (i = 0; i < 4; i++)
1428 if (pt_vaddr[pte + i] != scratch_pte)
1429 found = true;
1430 if (!found)
1431 continue;
1432
1433 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1434 for (i = 0; i < 4; i++) {
1435 if (pt_vaddr[pte + i] != scratch_pte)
1436 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1437 else
1438 seq_puts(m, " SCRATCH ");
1439 }
1440 seq_puts(m, "\n");
1441 }
1442 kunmap_atomic(pt_vaddr);
1443 }
1444 }
1445
1446 /* Write pde (index) from the page directory @pd to the page table @pt */
1447 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1448 const unsigned int pde,
1449 const struct i915_page_table *pt)
1450 {
1451 /* Caller needs to make sure the write completes if necessary */
1452 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1453 ppgtt->pd_addr + pde);
1454 }
1455
1456 /* Write all the page tables found in the ppgtt structure to incrementing page
1457 * directories. */
1458 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1459 u32 start, u32 length)
1460 {
1461 struct i915_page_table *pt;
1462 unsigned int pde;
1463
1464 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1465 gen6_write_pde(ppgtt, pde, pt);
1466
1467 mark_tlbs_dirty(ppgtt);
1468 wmb();
1469 }
1470
1471 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1472 {
1473 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1474 return ppgtt->pd.base.ggtt_offset << 10;
1475 }
1476
1477 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1478 struct drm_i915_gem_request *req)
1479 {
1480 struct intel_engine_cs *engine = req->engine;
1481 u32 *cs;
1482
1483 /* NB: TLBs must be flushed and invalidated before a switch */
1484 cs = intel_ring_begin(req, 6);
1485 if (IS_ERR(cs))
1486 return PTR_ERR(cs);
1487
1488 *cs++ = MI_LOAD_REGISTER_IMM(2);
1489 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1490 *cs++ = PP_DIR_DCLV_2G;
1491 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1492 *cs++ = get_pd_offset(ppgtt);
1493 *cs++ = MI_NOOP;
1494 intel_ring_advance(req, cs);
1495
1496 return 0;
1497 }
1498
1499 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1500 struct drm_i915_gem_request *req)
1501 {
1502 struct intel_engine_cs *engine = req->engine;
1503 u32 *cs;
1504
1505 /* NB: TLBs must be flushed and invalidated before a switch */
1506 cs = intel_ring_begin(req, 6);
1507 if (IS_ERR(cs))
1508 return PTR_ERR(cs);
1509
1510 *cs++ = MI_LOAD_REGISTER_IMM(2);
1511 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1512 *cs++ = PP_DIR_DCLV_2G;
1513 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1514 *cs++ = get_pd_offset(ppgtt);
1515 *cs++ = MI_NOOP;
1516 intel_ring_advance(req, cs);
1517
1518 return 0;
1519 }
1520
1521 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1522 struct drm_i915_gem_request *req)
1523 {
1524 struct intel_engine_cs *engine = req->engine;
1525 struct drm_i915_private *dev_priv = req->i915;
1526
1527 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1528 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1529 return 0;
1530 }
1531
1532 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1533 {
1534 struct intel_engine_cs *engine;
1535 enum intel_engine_id id;
1536
1537 for_each_engine(engine, dev_priv, id) {
1538 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1539 GEN8_GFX_PPGTT_48B : 0;
1540 I915_WRITE(RING_MODE_GEN7(engine),
1541 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1542 }
1543 }
1544
1545 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1546 {
1547 struct intel_engine_cs *engine;
1548 u32 ecochk, ecobits;
1549 enum intel_engine_id id;
1550
1551 ecobits = I915_READ(GAC_ECO_BITS);
1552 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1553
1554 ecochk = I915_READ(GAM_ECOCHK);
1555 if (IS_HASWELL(dev_priv)) {
1556 ecochk |= ECOCHK_PPGTT_WB_HSW;
1557 } else {
1558 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1559 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1560 }
1561 I915_WRITE(GAM_ECOCHK, ecochk);
1562
1563 for_each_engine(engine, dev_priv, id) {
1564 /* GFX_MODE is per-ring on gen7+ */
1565 I915_WRITE(RING_MODE_GEN7(engine),
1566 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1567 }
1568 }
1569
1570 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1571 {
1572 u32 ecochk, gab_ctl, ecobits;
1573
1574 ecobits = I915_READ(GAC_ECO_BITS);
1575 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1576 ECOBITS_PPGTT_CACHE64B);
1577
1578 gab_ctl = I915_READ(GAB_CTL);
1579 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1580
1581 ecochk = I915_READ(GAM_ECOCHK);
1582 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1583
1584 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1585 }
1586
1587 /* PPGTT support for Sandybdrige/Gen6 and later */
1588 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1589 u64 start, u64 length)
1590 {
1591 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1592 unsigned int first_entry = start >> PAGE_SHIFT;
1593 unsigned int pde = first_entry / GEN6_PTES;
1594 unsigned int pte = first_entry % GEN6_PTES;
1595 unsigned int num_entries = length >> PAGE_SHIFT;
1596 gen6_pte_t scratch_pte =
1597 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1598
1599 while (num_entries) {
1600 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1601 unsigned int end = min(pte + num_entries, GEN6_PTES);
1602 gen6_pte_t *vaddr;
1603
1604 num_entries -= end - pte;
1605
1606 /* Note that the hw doesn't support removing PDE on the fly
1607 * (they are cached inside the context with no means to
1608 * invalidate the cache), so we can only reset the PTE
1609 * entries back to scratch.
1610 */
1611
1612 vaddr = kmap_atomic_px(pt);
1613 do {
1614 vaddr[pte++] = scratch_pte;
1615 } while (pte < end);
1616 kunmap_atomic(vaddr);
1617
1618 pte = 0;
1619 }
1620 }
1621
1622 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1623 struct sg_table *pages,
1624 u64 start,
1625 enum i915_cache_level cache_level,
1626 u32 flags)
1627 {
1628 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1629 unsigned first_entry = start >> PAGE_SHIFT;
1630 unsigned act_pt = first_entry / GEN6_PTES;
1631 unsigned act_pte = first_entry % GEN6_PTES;
1632 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1633 struct sgt_dma iter;
1634 gen6_pte_t *vaddr;
1635
1636 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1637 iter.sg = pages->sgl;
1638 iter.dma = sg_dma_address(iter.sg);
1639 iter.max = iter.dma + iter.sg->length;
1640 do {
1641 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1642
1643 iter.dma += PAGE_SIZE;
1644 if (iter.dma == iter.max) {
1645 iter.sg = __sg_next(iter.sg);
1646 if (!iter.sg)
1647 break;
1648
1649 iter.dma = sg_dma_address(iter.sg);
1650 iter.max = iter.dma + iter.sg->length;
1651 }
1652
1653 if (++act_pte == GEN6_PTES) {
1654 kunmap_atomic(vaddr);
1655 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1656 act_pte = 0;
1657 }
1658 } while (1);
1659 kunmap_atomic(vaddr);
1660 }
1661
1662 static int gen6_alloc_va_range(struct i915_address_space *vm,
1663 u64 start, u64 length)
1664 {
1665 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1666 struct i915_page_table *pt;
1667 u64 from = start;
1668 unsigned int pde;
1669 bool flush = false;
1670
1671 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1672 if (pt == vm->scratch_pt) {
1673 pt = alloc_pt(vm);
1674 if (IS_ERR(pt))
1675 goto unwind_out;
1676
1677 gen6_initialize_pt(vm, pt);
1678 ppgtt->pd.page_table[pde] = pt;
1679 gen6_write_pde(ppgtt, pde, pt);
1680 flush = true;
1681 }
1682 }
1683
1684 if (flush) {
1685 mark_tlbs_dirty(ppgtt);
1686 wmb();
1687 }
1688
1689 return 0;
1690
1691 unwind_out:
1692 gen6_ppgtt_clear_range(vm, from, start);
1693 return -ENOMEM;
1694 }
1695
1696 static int gen6_init_scratch(struct i915_address_space *vm)
1697 {
1698 int ret;
1699
1700 ret = setup_scratch_page(vm, I915_GFP_DMA);
1701 if (ret)
1702 return ret;
1703
1704 vm->scratch_pt = alloc_pt(vm);
1705 if (IS_ERR(vm->scratch_pt)) {
1706 cleanup_scratch_page(vm);
1707 return PTR_ERR(vm->scratch_pt);
1708 }
1709
1710 gen6_initialize_pt(vm, vm->scratch_pt);
1711
1712 return 0;
1713 }
1714
1715 static void gen6_free_scratch(struct i915_address_space *vm)
1716 {
1717 free_pt(vm, vm->scratch_pt);
1718 cleanup_scratch_page(vm);
1719 }
1720
1721 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1722 {
1723 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1724 struct i915_page_directory *pd = &ppgtt->pd;
1725 struct i915_page_table *pt;
1726 u32 pde;
1727
1728 drm_mm_remove_node(&ppgtt->node);
1729
1730 gen6_for_all_pdes(pt, pd, pde)
1731 if (pt != vm->scratch_pt)
1732 free_pt(vm, pt);
1733
1734 gen6_free_scratch(vm);
1735 }
1736
1737 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1738 {
1739 struct i915_address_space *vm = &ppgtt->base;
1740 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1741 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1742 int ret;
1743
1744 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1745 * allocator works in address space sizes, so it's multiplied by page
1746 * size. We allocate at the top of the GTT to avoid fragmentation.
1747 */
1748 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1749
1750 ret = gen6_init_scratch(vm);
1751 if (ret)
1752 return ret;
1753
1754 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1755 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1756 I915_COLOR_UNEVICTABLE,
1757 0, ggtt->base.total,
1758 PIN_HIGH);
1759 if (ret)
1760 goto err_out;
1761
1762 if (ppgtt->node.start < ggtt->mappable_end)
1763 DRM_DEBUG("Forced to use aperture for PDEs\n");
1764
1765 ppgtt->pd.base.ggtt_offset =
1766 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1767
1768 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1769 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1770
1771 return 0;
1772
1773 err_out:
1774 gen6_free_scratch(vm);
1775 return ret;
1776 }
1777
1778 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1779 {
1780 return gen6_ppgtt_allocate_page_directories(ppgtt);
1781 }
1782
1783 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1784 u64 start, u64 length)
1785 {
1786 struct i915_page_table *unused;
1787 u32 pde;
1788
1789 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1790 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1791 }
1792
1793 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1794 {
1795 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1796 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1797 int ret;
1798
1799 ppgtt->base.pte_encode = ggtt->base.pte_encode;
1800 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1801 ppgtt->switch_mm = gen6_mm_switch;
1802 else if (IS_HASWELL(dev_priv))
1803 ppgtt->switch_mm = hsw_mm_switch;
1804 else if (IS_GEN7(dev_priv))
1805 ppgtt->switch_mm = gen7_mm_switch;
1806 else
1807 BUG();
1808
1809 ret = gen6_ppgtt_alloc(ppgtt);
1810 if (ret)
1811 return ret;
1812
1813 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1814
1815 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1816 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1817
1818 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1819 if (ret) {
1820 gen6_ppgtt_cleanup(&ppgtt->base);
1821 return ret;
1822 }
1823
1824 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1825 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1826 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1827 ppgtt->base.bind_vma = ppgtt_bind_vma;
1828 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1829 ppgtt->debug_dump = gen6_dump_ppgtt;
1830
1831 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1832 ppgtt->node.size >> 20,
1833 ppgtt->node.start / PAGE_SIZE);
1834
1835 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1836 ppgtt->pd.base.ggtt_offset << 10);
1837
1838 return 0;
1839 }
1840
1841 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1842 struct drm_i915_private *dev_priv)
1843 {
1844 ppgtt->base.i915 = dev_priv;
1845 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1846
1847 if (INTEL_INFO(dev_priv)->gen < 8)
1848 return gen6_ppgtt_init(ppgtt);
1849 else
1850 return gen8_ppgtt_init(ppgtt);
1851 }
1852
1853 static void i915_address_space_init(struct i915_address_space *vm,
1854 struct drm_i915_private *dev_priv,
1855 const char *name)
1856 {
1857 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1858
1859 drm_mm_init(&vm->mm, 0, vm->total);
1860 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1861
1862 INIT_LIST_HEAD(&vm->active_list);
1863 INIT_LIST_HEAD(&vm->inactive_list);
1864 INIT_LIST_HEAD(&vm->unbound_list);
1865
1866 list_add_tail(&vm->global_link, &dev_priv->vm_list);
1867 pagevec_init(&vm->free_pages, false);
1868 }
1869
1870 static void i915_address_space_fini(struct i915_address_space *vm)
1871 {
1872 if (pagevec_count(&vm->free_pages))
1873 vm_free_pages_release(vm);
1874
1875 i915_gem_timeline_fini(&vm->timeline);
1876 drm_mm_takedown(&vm->mm);
1877 list_del(&vm->global_link);
1878 }
1879
1880 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1881 {
1882 /* This function is for gtt related workarounds. This function is
1883 * called on driver load and after a GPU reset, so you can place
1884 * workarounds here even if they get overwritten by GPU reset.
1885 */
1886 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */
1887 if (IS_BROADWELL(dev_priv))
1888 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1889 else if (IS_CHERRYVIEW(dev_priv))
1890 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1891 else if (IS_GEN9_BC(dev_priv))
1892 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1893 else if (IS_GEN9_LP(dev_priv))
1894 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1895 }
1896
1897 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1898 {
1899 gtt_write_workarounds(dev_priv);
1900
1901 /* In the case of execlists, PPGTT is enabled by the context descriptor
1902 * and the PDPs are contained within the context itself. We don't
1903 * need to do anything here. */
1904 if (i915.enable_execlists)
1905 return 0;
1906
1907 if (!USES_PPGTT(dev_priv))
1908 return 0;
1909
1910 if (IS_GEN6(dev_priv))
1911 gen6_ppgtt_enable(dev_priv);
1912 else if (IS_GEN7(dev_priv))
1913 gen7_ppgtt_enable(dev_priv);
1914 else if (INTEL_GEN(dev_priv) >= 8)
1915 gen8_ppgtt_enable(dev_priv);
1916 else
1917 MISSING_CASE(INTEL_GEN(dev_priv));
1918
1919 return 0;
1920 }
1921
1922 struct i915_hw_ppgtt *
1923 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1924 struct drm_i915_file_private *fpriv,
1925 const char *name)
1926 {
1927 struct i915_hw_ppgtt *ppgtt;
1928 int ret;
1929
1930 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1931 if (!ppgtt)
1932 return ERR_PTR(-ENOMEM);
1933
1934 ret = __hw_ppgtt_init(ppgtt, dev_priv);
1935 if (ret) {
1936 kfree(ppgtt);
1937 return ERR_PTR(ret);
1938 }
1939
1940 kref_init(&ppgtt->ref);
1941 i915_address_space_init(&ppgtt->base, dev_priv, name);
1942 ppgtt->base.file = fpriv;
1943
1944 trace_i915_ppgtt_create(&ppgtt->base);
1945
1946 return ppgtt;
1947 }
1948
1949 void i915_ppgtt_close(struct i915_address_space *vm)
1950 {
1951 struct list_head *phases[] = {
1952 &vm->active_list,
1953 &vm->inactive_list,
1954 &vm->unbound_list,
1955 NULL,
1956 }, **phase;
1957
1958 GEM_BUG_ON(vm->closed);
1959 vm->closed = true;
1960
1961 for (phase = phases; *phase; phase++) {
1962 struct i915_vma *vma, *vn;
1963
1964 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1965 if (!i915_vma_is_closed(vma))
1966 i915_vma_close(vma);
1967 }
1968 }
1969
1970 void i915_ppgtt_release(struct kref *kref)
1971 {
1972 struct i915_hw_ppgtt *ppgtt =
1973 container_of(kref, struct i915_hw_ppgtt, ref);
1974
1975 trace_i915_ppgtt_release(&ppgtt->base);
1976
1977 /* vmas should already be unbound and destroyed */
1978 WARN_ON(!list_empty(&ppgtt->base.active_list));
1979 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1980 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1981
1982 ppgtt->base.cleanup(&ppgtt->base);
1983 i915_address_space_fini(&ppgtt->base);
1984 kfree(ppgtt);
1985 }
1986
1987 /* Certain Gen5 chipsets require require idling the GPU before
1988 * unmapping anything from the GTT when VT-d is enabled.
1989 */
1990 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1991 {
1992 #ifdef CONFIG_INTEL_IOMMU
1993 /* Query intel_iommu to see if we need the workaround. Presumably that
1994 * was loaded first.
1995 */
1996 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
1997 return true;
1998 #endif
1999 return false;
2000 }
2001
2002 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2003 {
2004 struct intel_engine_cs *engine;
2005 enum intel_engine_id id;
2006
2007 if (INTEL_INFO(dev_priv)->gen < 6)
2008 return;
2009
2010 for_each_engine(engine, dev_priv, id) {
2011 u32 fault_reg;
2012 fault_reg = I915_READ(RING_FAULT_REG(engine));
2013 if (fault_reg & RING_FAULT_VALID) {
2014 DRM_DEBUG_DRIVER("Unexpected fault\n"
2015 "\tAddr: 0x%08lx\n"
2016 "\tAddress space: %s\n"
2017 "\tSource ID: %d\n"
2018 "\tType: %d\n",
2019 fault_reg & PAGE_MASK,
2020 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2021 RING_FAULT_SRCID(fault_reg),
2022 RING_FAULT_FAULT_TYPE(fault_reg));
2023 I915_WRITE(RING_FAULT_REG(engine),
2024 fault_reg & ~RING_FAULT_VALID);
2025 }
2026 }
2027
2028 /* Engine specific init may not have been done till this point. */
2029 if (dev_priv->engine[RCS])
2030 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2031 }
2032
2033 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2034 {
2035 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2036
2037 /* Don't bother messing with faults pre GEN6 as we have little
2038 * documentation supporting that it's a good idea.
2039 */
2040 if (INTEL_GEN(dev_priv) < 6)
2041 return;
2042
2043 i915_check_and_clear_faults(dev_priv);
2044
2045 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2046
2047 i915_ggtt_invalidate(dev_priv);
2048 }
2049
2050 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2051 struct sg_table *pages)
2052 {
2053 do {
2054 if (dma_map_sg(&obj->base.dev->pdev->dev,
2055 pages->sgl, pages->nents,
2056 PCI_DMA_BIDIRECTIONAL))
2057 return 0;
2058
2059 /* If the DMA remap fails, one cause can be that we have
2060 * too many objects pinned in a small remapping table,
2061 * such as swiotlb. Incrementally purge all other objects and
2062 * try again - if there are no more pages to remove from
2063 * the DMA remapper, i915_gem_shrink will return 0.
2064 */
2065 GEM_BUG_ON(obj->mm.pages == pages);
2066 } while (i915_gem_shrink(to_i915(obj->base.dev),
2067 obj->base.size >> PAGE_SHIFT,
2068 I915_SHRINK_BOUND |
2069 I915_SHRINK_UNBOUND |
2070 I915_SHRINK_ACTIVE));
2071
2072 return -ENOSPC;
2073 }
2074
2075 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2076 {
2077 writeq(pte, addr);
2078 }
2079
2080 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2081 dma_addr_t addr,
2082 u64 offset,
2083 enum i915_cache_level level,
2084 u32 unused)
2085 {
2086 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2087 gen8_pte_t __iomem *pte =
2088 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2089
2090 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2091
2092 ggtt->invalidate(vm->i915);
2093 }
2094
2095 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2096 struct sg_table *st,
2097 u64 start,
2098 enum i915_cache_level level,
2099 u32 unused)
2100 {
2101 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2102 struct sgt_iter sgt_iter;
2103 gen8_pte_t __iomem *gtt_entries;
2104 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2105 dma_addr_t addr;
2106
2107 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2108 gtt_entries += start >> PAGE_SHIFT;
2109 for_each_sgt_dma(addr, sgt_iter, st)
2110 gen8_set_pte(gtt_entries++, pte_encode | addr);
2111
2112 wmb();
2113
2114 /* This next bit makes the above posting read even more important. We
2115 * want to flush the TLBs only after we're certain all the PTE updates
2116 * have finished.
2117 */
2118 ggtt->invalidate(vm->i915);
2119 }
2120
2121 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2122 dma_addr_t addr,
2123 u64 offset,
2124 enum i915_cache_level level,
2125 u32 flags)
2126 {
2127 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2128 gen6_pte_t __iomem *pte =
2129 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2130
2131 iowrite32(vm->pte_encode(addr, level, flags), pte);
2132
2133 ggtt->invalidate(vm->i915);
2134 }
2135
2136 /*
2137 * Binds an object into the global gtt with the specified cache level. The object
2138 * will be accessible to the GPU via commands whose operands reference offsets
2139 * within the global GTT as well as accessible by the GPU through the GMADR
2140 * mapped BAR (dev_priv->mm.gtt->gtt).
2141 */
2142 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2143 struct sg_table *st,
2144 u64 start,
2145 enum i915_cache_level level,
2146 u32 flags)
2147 {
2148 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2149 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2150 unsigned int i = start >> PAGE_SHIFT;
2151 struct sgt_iter iter;
2152 dma_addr_t addr;
2153 for_each_sgt_dma(addr, iter, st)
2154 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2155 wmb();
2156
2157 /* This next bit makes the above posting read even more important. We
2158 * want to flush the TLBs only after we're certain all the PTE updates
2159 * have finished.
2160 */
2161 ggtt->invalidate(vm->i915);
2162 }
2163
2164 static void nop_clear_range(struct i915_address_space *vm,
2165 u64 start, u64 length)
2166 {
2167 }
2168
2169 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2170 u64 start, u64 length)
2171 {
2172 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2173 unsigned first_entry = start >> PAGE_SHIFT;
2174 unsigned num_entries = length >> PAGE_SHIFT;
2175 const gen8_pte_t scratch_pte =
2176 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2177 gen8_pte_t __iomem *gtt_base =
2178 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2179 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2180 int i;
2181
2182 if (WARN(num_entries > max_entries,
2183 "First entry = %d; Num entries = %d (max=%d)\n",
2184 first_entry, num_entries, max_entries))
2185 num_entries = max_entries;
2186
2187 for (i = 0; i < num_entries; i++)
2188 gen8_set_pte(&gtt_base[i], scratch_pte);
2189 }
2190
2191 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2192 u64 start, u64 length)
2193 {
2194 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2195 unsigned first_entry = start >> PAGE_SHIFT;
2196 unsigned num_entries = length >> PAGE_SHIFT;
2197 gen6_pte_t scratch_pte, __iomem *gtt_base =
2198 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2199 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2200 int i;
2201
2202 if (WARN(num_entries > max_entries,
2203 "First entry = %d; Num entries = %d (max=%d)\n",
2204 first_entry, num_entries, max_entries))
2205 num_entries = max_entries;
2206
2207 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2208 I915_CACHE_LLC, 0);
2209
2210 for (i = 0; i < num_entries; i++)
2211 iowrite32(scratch_pte, &gtt_base[i]);
2212 }
2213
2214 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2215 dma_addr_t addr,
2216 u64 offset,
2217 enum i915_cache_level cache_level,
2218 u32 unused)
2219 {
2220 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2221 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2222
2223 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2224 }
2225
2226 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2227 struct sg_table *pages,
2228 u64 start,
2229 enum i915_cache_level cache_level,
2230 u32 unused)
2231 {
2232 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2233 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2234
2235 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2236 }
2237
2238 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2239 u64 start, u64 length)
2240 {
2241 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2242 }
2243
2244 static int ggtt_bind_vma(struct i915_vma *vma,
2245 enum i915_cache_level cache_level,
2246 u32 flags)
2247 {
2248 struct drm_i915_private *i915 = vma->vm->i915;
2249 struct drm_i915_gem_object *obj = vma->obj;
2250 u32 pte_flags;
2251
2252 if (unlikely(!vma->pages)) {
2253 int ret = i915_get_ggtt_vma_pages(vma);
2254 if (ret)
2255 return ret;
2256 }
2257
2258 /* Currently applicable only to VLV */
2259 pte_flags = 0;
2260 if (obj->gt_ro)
2261 pte_flags |= PTE_READ_ONLY;
2262
2263 intel_runtime_pm_get(i915);
2264 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2265 cache_level, pte_flags);
2266 intel_runtime_pm_put(i915);
2267
2268 /*
2269 * Without aliasing PPGTT there's no difference between
2270 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2271 * upgrade to both bound if we bind either to avoid double-binding.
2272 */
2273 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2274
2275 return 0;
2276 }
2277
2278 static void ggtt_unbind_vma(struct i915_vma *vma)
2279 {
2280 struct drm_i915_private *i915 = vma->vm->i915;
2281
2282 intel_runtime_pm_get(i915);
2283 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2284 intel_runtime_pm_put(i915);
2285 }
2286
2287 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2288 enum i915_cache_level cache_level,
2289 u32 flags)
2290 {
2291 struct drm_i915_private *i915 = vma->vm->i915;
2292 u32 pte_flags;
2293 int ret;
2294
2295 if (unlikely(!vma->pages)) {
2296 ret = i915_get_ggtt_vma_pages(vma);
2297 if (ret)
2298 return ret;
2299 }
2300
2301 /* Currently applicable only to VLV */
2302 pte_flags = 0;
2303 if (vma->obj->gt_ro)
2304 pte_flags |= PTE_READ_ONLY;
2305
2306 if (flags & I915_VMA_LOCAL_BIND) {
2307 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2308
2309 if (appgtt->base.allocate_va_range) {
2310 ret = appgtt->base.allocate_va_range(&appgtt->base,
2311 vma->node.start,
2312 vma->node.size);
2313 if (ret)
2314 goto err_pages;
2315 }
2316
2317 appgtt->base.insert_entries(&appgtt->base,
2318 vma->pages, vma->node.start,
2319 cache_level, pte_flags);
2320 }
2321
2322 if (flags & I915_VMA_GLOBAL_BIND) {
2323 intel_runtime_pm_get(i915);
2324 vma->vm->insert_entries(vma->vm,
2325 vma->pages, vma->node.start,
2326 cache_level, pte_flags);
2327 intel_runtime_pm_put(i915);
2328 }
2329
2330 return 0;
2331
2332 err_pages:
2333 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2334 if (vma->pages != vma->obj->mm.pages) {
2335 GEM_BUG_ON(!vma->pages);
2336 sg_free_table(vma->pages);
2337 kfree(vma->pages);
2338 }
2339 vma->pages = NULL;
2340 }
2341 return ret;
2342 }
2343
2344 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2345 {
2346 struct drm_i915_private *i915 = vma->vm->i915;
2347
2348 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2349 intel_runtime_pm_get(i915);
2350 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2351 intel_runtime_pm_put(i915);
2352 }
2353
2354 if (vma->flags & I915_VMA_LOCAL_BIND) {
2355 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2356
2357 vm->clear_range(vm, vma->node.start, vma->size);
2358 }
2359 }
2360
2361 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2362 struct sg_table *pages)
2363 {
2364 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2365 struct device *kdev = &dev_priv->drm.pdev->dev;
2366 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2367
2368 if (unlikely(ggtt->do_idle_maps)) {
2369 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2370 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2371 /* Wait a bit, in hopes it avoids the hang */
2372 udelay(10);
2373 }
2374 }
2375
2376 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2377 }
2378
2379 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2380 unsigned long color,
2381 u64 *start,
2382 u64 *end)
2383 {
2384 if (node->allocated && node->color != color)
2385 *start += I915_GTT_PAGE_SIZE;
2386
2387 /* Also leave a space between the unallocated reserved node after the
2388 * GTT and any objects within the GTT, i.e. we use the color adjustment
2389 * to insert a guard page to prevent prefetches crossing over the
2390 * GTT boundary.
2391 */
2392 node = list_next_entry(node, node_list);
2393 if (node->color != color)
2394 *end -= I915_GTT_PAGE_SIZE;
2395 }
2396
2397 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2398 {
2399 struct i915_ggtt *ggtt = &i915->ggtt;
2400 struct i915_hw_ppgtt *ppgtt;
2401 int err;
2402
2403 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2404 if (IS_ERR(ppgtt))
2405 return PTR_ERR(ppgtt);
2406
2407 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2408 err = -ENODEV;
2409 goto err_ppgtt;
2410 }
2411
2412 if (ppgtt->base.allocate_va_range) {
2413 /* Note we only pre-allocate as far as the end of the global
2414 * GTT. On 48b / 4-level page-tables, the difference is very,
2415 * very significant! We have to preallocate as GVT/vgpu does
2416 * not like the page directory disappearing.
2417 */
2418 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2419 0, ggtt->base.total);
2420 if (err)
2421 goto err_ppgtt;
2422 }
2423
2424 i915->mm.aliasing_ppgtt = ppgtt;
2425
2426 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2427 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2428
2429 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2430 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2431
2432 return 0;
2433
2434 err_ppgtt:
2435 i915_ppgtt_put(ppgtt);
2436 return err;
2437 }
2438
2439 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2440 {
2441 struct i915_ggtt *ggtt = &i915->ggtt;
2442 struct i915_hw_ppgtt *ppgtt;
2443
2444 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2445 if (!ppgtt)
2446 return;
2447
2448 i915_ppgtt_put(ppgtt);
2449
2450 ggtt->base.bind_vma = ggtt_bind_vma;
2451 ggtt->base.unbind_vma = ggtt_unbind_vma;
2452 }
2453
2454 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2455 {
2456 /* Let GEM Manage all of the aperture.
2457 *
2458 * However, leave one page at the end still bound to the scratch page.
2459 * There are a number of places where the hardware apparently prefetches
2460 * past the end of the object, and we've seen multiple hangs with the
2461 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2462 * aperture. One page should be enough to keep any prefetching inside
2463 * of the aperture.
2464 */
2465 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2466 unsigned long hole_start, hole_end;
2467 struct drm_mm_node *entry;
2468 int ret;
2469
2470 ret = intel_vgt_balloon(dev_priv);
2471 if (ret)
2472 return ret;
2473
2474 /* Reserve a mappable slot for our lockless error capture */
2475 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2476 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2477 0, ggtt->mappable_end,
2478 DRM_MM_INSERT_LOW);
2479 if (ret)
2480 return ret;
2481
2482 /* Clear any non-preallocated blocks */
2483 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2484 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2485 hole_start, hole_end);
2486 ggtt->base.clear_range(&ggtt->base, hole_start,
2487 hole_end - hole_start);
2488 }
2489
2490 /* And finally clear the reserved guard page */
2491 ggtt->base.clear_range(&ggtt->base,
2492 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2493
2494 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2495 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2496 if (ret)
2497 goto err;
2498 }
2499
2500 return 0;
2501
2502 err:
2503 drm_mm_remove_node(&ggtt->error_capture);
2504 return ret;
2505 }
2506
2507 /**
2508 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2509 * @dev_priv: i915 device
2510 */
2511 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2512 {
2513 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2514 struct i915_vma *vma, *vn;
2515
2516 ggtt->base.closed = true;
2517
2518 mutex_lock(&dev_priv->drm.struct_mutex);
2519 WARN_ON(!list_empty(&ggtt->base.active_list));
2520 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2521 WARN_ON(i915_vma_unbind(vma));
2522 mutex_unlock(&dev_priv->drm.struct_mutex);
2523
2524 i915_gem_cleanup_stolen(&dev_priv->drm);
2525
2526 mutex_lock(&dev_priv->drm.struct_mutex);
2527 i915_gem_fini_aliasing_ppgtt(dev_priv);
2528
2529 if (drm_mm_node_allocated(&ggtt->error_capture))
2530 drm_mm_remove_node(&ggtt->error_capture);
2531
2532 if (drm_mm_initialized(&ggtt->base.mm)) {
2533 intel_vgt_deballoon(dev_priv);
2534 i915_address_space_fini(&ggtt->base);
2535 }
2536
2537 ggtt->base.cleanup(&ggtt->base);
2538 mutex_unlock(&dev_priv->drm.struct_mutex);
2539
2540 arch_phys_wc_del(ggtt->mtrr);
2541 io_mapping_fini(&ggtt->mappable);
2542 }
2543
2544 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2545 {
2546 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2547 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2548 return snb_gmch_ctl << 20;
2549 }
2550
2551 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2552 {
2553 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2554 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2555 if (bdw_gmch_ctl)
2556 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2557
2558 #ifdef CONFIG_X86_32
2559 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2560 if (bdw_gmch_ctl > 4)
2561 bdw_gmch_ctl = 4;
2562 #endif
2563
2564 return bdw_gmch_ctl << 20;
2565 }
2566
2567 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2568 {
2569 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2570 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2571
2572 if (gmch_ctrl)
2573 return 1 << (20 + gmch_ctrl);
2574
2575 return 0;
2576 }
2577
2578 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2579 {
2580 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2581 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2582 return snb_gmch_ctl << 25; /* 32 MB units */
2583 }
2584
2585 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2586 {
2587 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2588 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2589 return bdw_gmch_ctl << 25; /* 32 MB units */
2590 }
2591
2592 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2593 {
2594 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2595 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2596
2597 /*
2598 * 0x0 to 0x10: 32MB increments starting at 0MB
2599 * 0x11 to 0x16: 4MB increments starting at 8MB
2600 * 0x17 to 0x1d: 4MB increments start at 36MB
2601 */
2602 if (gmch_ctrl < 0x11)
2603 return gmch_ctrl << 25;
2604 else if (gmch_ctrl < 0x17)
2605 return (gmch_ctrl - 0x11 + 2) << 22;
2606 else
2607 return (gmch_ctrl - 0x17 + 9) << 22;
2608 }
2609
2610 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2611 {
2612 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2613 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2614
2615 if (gen9_gmch_ctl < 0xf0)
2616 return gen9_gmch_ctl << 25; /* 32 MB units */
2617 else
2618 /* 4MB increments starting at 0xf0 for 4MB */
2619 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2620 }
2621
2622 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2623 {
2624 struct drm_i915_private *dev_priv = ggtt->base.i915;
2625 struct pci_dev *pdev = dev_priv->drm.pdev;
2626 phys_addr_t phys_addr;
2627 int ret;
2628
2629 /* For Modern GENs the PTEs and register space are split in the BAR */
2630 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2631
2632 /*
2633 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2634 * dropped. For WC mappings in general we have 64 byte burst writes
2635 * when the WC buffer is flushed, so we can't use it, but have to
2636 * resort to an uncached mapping. The WC issue is easily caught by the
2637 * readback check when writing GTT PTE entries.
2638 */
2639 if (IS_GEN9_LP(dev_priv))
2640 ggtt->gsm = ioremap_nocache(phys_addr, size);
2641 else
2642 ggtt->gsm = ioremap_wc(phys_addr, size);
2643 if (!ggtt->gsm) {
2644 DRM_ERROR("Failed to map the ggtt page table\n");
2645 return -ENOMEM;
2646 }
2647
2648 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2649 if (ret) {
2650 DRM_ERROR("Scratch setup failed\n");
2651 /* iounmap will also get called at remove, but meh */
2652 iounmap(ggtt->gsm);
2653 return ret;
2654 }
2655
2656 return 0;
2657 }
2658
2659 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2660 * bits. When using advanced contexts each context stores its own PAT, but
2661 * writing this data shouldn't be harmful even in those cases. */
2662 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2663 {
2664 u64 pat;
2665
2666 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2667 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2668 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2669 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2670 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2671 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2672 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2673 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2674
2675 if (!USES_PPGTT(dev_priv))
2676 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2677 * so RTL will always use the value corresponding to
2678 * pat_sel = 000".
2679 * So let's disable cache for GGTT to avoid screen corruptions.
2680 * MOCS still can be used though.
2681 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2682 * before this patch, i.e. the same uncached + snooping access
2683 * like on gen6/7 seems to be in effect.
2684 * - So this just fixes blitter/render access. Again it looks
2685 * like it's not just uncached access, but uncached + snooping.
2686 * So we can still hold onto all our assumptions wrt cpu
2687 * clflushing on LLC machines.
2688 */
2689 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2690
2691 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2692 * write would work. */
2693 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2694 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2695 }
2696
2697 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2698 {
2699 u64 pat;
2700
2701 /*
2702 * Map WB on BDW to snooped on CHV.
2703 *
2704 * Only the snoop bit has meaning for CHV, the rest is
2705 * ignored.
2706 *
2707 * The hardware will never snoop for certain types of accesses:
2708 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2709 * - PPGTT page tables
2710 * - some other special cycles
2711 *
2712 * As with BDW, we also need to consider the following for GT accesses:
2713 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2714 * so RTL will always use the value corresponding to
2715 * pat_sel = 000".
2716 * Which means we must set the snoop bit in PAT entry 0
2717 * in order to keep the global status page working.
2718 */
2719 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2720 GEN8_PPAT(1, 0) |
2721 GEN8_PPAT(2, 0) |
2722 GEN8_PPAT(3, 0) |
2723 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2724 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2725 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2726 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2727
2728 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2729 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2730 }
2731
2732 static void gen6_gmch_remove(struct i915_address_space *vm)
2733 {
2734 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2735
2736 iounmap(ggtt->gsm);
2737 cleanup_scratch_page(vm);
2738 }
2739
2740 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2741 {
2742 struct drm_i915_private *dev_priv = ggtt->base.i915;
2743 struct pci_dev *pdev = dev_priv->drm.pdev;
2744 unsigned int size;
2745 u16 snb_gmch_ctl;
2746
2747 /* TODO: We're not aware of mappable constraints on gen8 yet */
2748 ggtt->mappable_base = pci_resource_start(pdev, 2);
2749 ggtt->mappable_end = pci_resource_len(pdev, 2);
2750
2751 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
2752 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2753
2754 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2755
2756 if (INTEL_GEN(dev_priv) >= 9) {
2757 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2758 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2759 } else if (IS_CHERRYVIEW(dev_priv)) {
2760 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2761 size = chv_get_total_gtt_size(snb_gmch_ctl);
2762 } else {
2763 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2764 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2765 }
2766
2767 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2768
2769 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2770 chv_setup_private_ppat(dev_priv);
2771 else
2772 bdw_setup_private_ppat(dev_priv);
2773
2774 ggtt->base.cleanup = gen6_gmch_remove;
2775 ggtt->base.bind_vma = ggtt_bind_vma;
2776 ggtt->base.unbind_vma = ggtt_unbind_vma;
2777 ggtt->base.insert_page = gen8_ggtt_insert_page;
2778 ggtt->base.clear_range = nop_clear_range;
2779 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2780 ggtt->base.clear_range = gen8_ggtt_clear_range;
2781
2782 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2783
2784 ggtt->invalidate = gen6_ggtt_invalidate;
2785
2786 return ggtt_probe_common(ggtt, size);
2787 }
2788
2789 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2790 {
2791 struct drm_i915_private *dev_priv = ggtt->base.i915;
2792 struct pci_dev *pdev = dev_priv->drm.pdev;
2793 unsigned int size;
2794 u16 snb_gmch_ctl;
2795
2796 ggtt->mappable_base = pci_resource_start(pdev, 2);
2797 ggtt->mappable_end = pci_resource_len(pdev, 2);
2798
2799 /* 64/512MB is the current min/max we actually know of, but this is just
2800 * a coarse sanity check.
2801 */
2802 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2803 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2804 return -ENXIO;
2805 }
2806
2807 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
2808 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2809 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2810
2811 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2812
2813 size = gen6_get_total_gtt_size(snb_gmch_ctl);
2814 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2815
2816 ggtt->base.clear_range = gen6_ggtt_clear_range;
2817 ggtt->base.insert_page = gen6_ggtt_insert_page;
2818 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2819 ggtt->base.bind_vma = ggtt_bind_vma;
2820 ggtt->base.unbind_vma = ggtt_unbind_vma;
2821 ggtt->base.cleanup = gen6_gmch_remove;
2822
2823 ggtt->invalidate = gen6_ggtt_invalidate;
2824
2825 if (HAS_EDRAM(dev_priv))
2826 ggtt->base.pte_encode = iris_pte_encode;
2827 else if (IS_HASWELL(dev_priv))
2828 ggtt->base.pte_encode = hsw_pte_encode;
2829 else if (IS_VALLEYVIEW(dev_priv))
2830 ggtt->base.pte_encode = byt_pte_encode;
2831 else if (INTEL_GEN(dev_priv) >= 7)
2832 ggtt->base.pte_encode = ivb_pte_encode;
2833 else
2834 ggtt->base.pte_encode = snb_pte_encode;
2835
2836 return ggtt_probe_common(ggtt, size);
2837 }
2838
2839 static void i915_gmch_remove(struct i915_address_space *vm)
2840 {
2841 intel_gmch_remove();
2842 }
2843
2844 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2845 {
2846 struct drm_i915_private *dev_priv = ggtt->base.i915;
2847 int ret;
2848
2849 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2850 if (!ret) {
2851 DRM_ERROR("failed to set up gmch\n");
2852 return -EIO;
2853 }
2854
2855 intel_gtt_get(&ggtt->base.total,
2856 &ggtt->stolen_size,
2857 &ggtt->mappable_base,
2858 &ggtt->mappable_end);
2859
2860 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2861 ggtt->base.insert_page = i915_ggtt_insert_page;
2862 ggtt->base.insert_entries = i915_ggtt_insert_entries;
2863 ggtt->base.clear_range = i915_ggtt_clear_range;
2864 ggtt->base.bind_vma = ggtt_bind_vma;
2865 ggtt->base.unbind_vma = ggtt_unbind_vma;
2866 ggtt->base.cleanup = i915_gmch_remove;
2867
2868 ggtt->invalidate = gmch_ggtt_invalidate;
2869
2870 if (unlikely(ggtt->do_idle_maps))
2871 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2872
2873 return 0;
2874 }
2875
2876 /**
2877 * i915_ggtt_probe_hw - Probe GGTT hardware location
2878 * @dev_priv: i915 device
2879 */
2880 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2881 {
2882 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2883 int ret;
2884
2885 ggtt->base.i915 = dev_priv;
2886 ggtt->base.dma = &dev_priv->drm.pdev->dev;
2887
2888 if (INTEL_GEN(dev_priv) <= 5)
2889 ret = i915_gmch_probe(ggtt);
2890 else if (INTEL_GEN(dev_priv) < 8)
2891 ret = gen6_gmch_probe(ggtt);
2892 else
2893 ret = gen8_gmch_probe(ggtt);
2894 if (ret)
2895 return ret;
2896
2897 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
2898 * This is easier than doing range restriction on the fly, as we
2899 * currently don't have any bits spare to pass in this upper
2900 * restriction!
2901 */
2902 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
2903 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
2904 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2905 }
2906
2907 if ((ggtt->base.total - 1) >> 32) {
2908 DRM_ERROR("We never expected a Global GTT with more than 32bits"
2909 " of address space! Found %lldM!\n",
2910 ggtt->base.total >> 20);
2911 ggtt->base.total = 1ULL << 32;
2912 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2913 }
2914
2915 if (ggtt->mappable_end > ggtt->base.total) {
2916 DRM_ERROR("mappable aperture extends past end of GGTT,"
2917 " aperture=%llx, total=%llx\n",
2918 ggtt->mappable_end, ggtt->base.total);
2919 ggtt->mappable_end = ggtt->base.total;
2920 }
2921
2922 /* GMADR is the PCI mmio aperture into the global GTT. */
2923 DRM_INFO("Memory usable by graphics device = %lluM\n",
2924 ggtt->base.total >> 20);
2925 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
2926 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
2927 #ifdef CONFIG_INTEL_IOMMU
2928 if (intel_iommu_gfx_mapped)
2929 DRM_INFO("VT-d active for gfx access\n");
2930 #endif
2931
2932 return 0;
2933 }
2934
2935 /**
2936 * i915_ggtt_init_hw - Initialize GGTT hardware
2937 * @dev_priv: i915 device
2938 */
2939 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
2940 {
2941 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2942 int ret;
2943
2944 INIT_LIST_HEAD(&dev_priv->vm_list);
2945
2946 /* Note that we use page colouring to enforce a guard page at the
2947 * end of the address space. This is required as the CS may prefetch
2948 * beyond the end of the batch buffer, across the page boundary,
2949 * and beyond the end of the GTT if we do not provide a guard.
2950 */
2951 mutex_lock(&dev_priv->drm.struct_mutex);
2952 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
2953 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
2954 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2955 mutex_unlock(&dev_priv->drm.struct_mutex);
2956
2957 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
2958 dev_priv->ggtt.mappable_base,
2959 dev_priv->ggtt.mappable_end)) {
2960 ret = -EIO;
2961 goto out_gtt_cleanup;
2962 }
2963
2964 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
2965
2966 /*
2967 * Initialise stolen early so that we may reserve preallocated
2968 * objects for the BIOS to KMS transition.
2969 */
2970 ret = i915_gem_init_stolen(dev_priv);
2971 if (ret)
2972 goto out_gtt_cleanup;
2973
2974 return 0;
2975
2976 out_gtt_cleanup:
2977 ggtt->base.cleanup(&ggtt->base);
2978 return ret;
2979 }
2980
2981 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
2982 {
2983 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
2984 return -EIO;
2985
2986 return 0;
2987 }
2988
2989 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
2990 {
2991 i915->ggtt.invalidate = guc_ggtt_invalidate;
2992 }
2993
2994 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
2995 {
2996 i915->ggtt.invalidate = gen6_ggtt_invalidate;
2997 }
2998
2999 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3000 {
3001 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3002 struct drm_i915_gem_object *obj, *on;
3003
3004 i915_check_and_clear_faults(dev_priv);
3005
3006 /* First fill our portion of the GTT with scratch pages */
3007 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3008
3009 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3010
3011 /* clflush objects bound into the GGTT and rebind them. */
3012 list_for_each_entry_safe(obj, on,
3013 &dev_priv->mm.bound_list, global_link) {
3014 bool ggtt_bound = false;
3015 struct i915_vma *vma;
3016
3017 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3018 if (vma->vm != &ggtt->base)
3019 continue;
3020
3021 if (!i915_vma_unbind(vma))
3022 continue;
3023
3024 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3025 PIN_UPDATE));
3026 ggtt_bound = true;
3027 }
3028
3029 if (ggtt_bound)
3030 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3031 }
3032
3033 ggtt->base.closed = false;
3034
3035 if (INTEL_GEN(dev_priv) >= 8) {
3036 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3037 chv_setup_private_ppat(dev_priv);
3038 else
3039 bdw_setup_private_ppat(dev_priv);
3040
3041 return;
3042 }
3043
3044 if (USES_PPGTT(dev_priv)) {
3045 struct i915_address_space *vm;
3046
3047 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3048 struct i915_hw_ppgtt *ppgtt;
3049
3050 if (i915_is_ggtt(vm))
3051 ppgtt = dev_priv->mm.aliasing_ppgtt;
3052 else
3053 ppgtt = i915_vm_to_ppgtt(vm);
3054
3055 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3056 }
3057 }
3058
3059 i915_ggtt_invalidate(dev_priv);
3060 }
3061
3062 static struct scatterlist *
3063 rotate_pages(const dma_addr_t *in, unsigned int offset,
3064 unsigned int width, unsigned int height,
3065 unsigned int stride,
3066 struct sg_table *st, struct scatterlist *sg)
3067 {
3068 unsigned int column, row;
3069 unsigned int src_idx;
3070
3071 for (column = 0; column < width; column++) {
3072 src_idx = stride * (height - 1) + column;
3073 for (row = 0; row < height; row++) {
3074 st->nents++;
3075 /* We don't need the pages, but need to initialize
3076 * the entries so the sg list can be happily traversed.
3077 * The only thing we need are DMA addresses.
3078 */
3079 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3080 sg_dma_address(sg) = in[offset + src_idx];
3081 sg_dma_len(sg) = PAGE_SIZE;
3082 sg = sg_next(sg);
3083 src_idx -= stride;
3084 }
3085 }
3086
3087 return sg;
3088 }
3089
3090 static noinline struct sg_table *
3091 intel_rotate_pages(struct intel_rotation_info *rot_info,
3092 struct drm_i915_gem_object *obj)
3093 {
3094 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3095 unsigned int size = intel_rotation_info_size(rot_info);
3096 struct sgt_iter sgt_iter;
3097 dma_addr_t dma_addr;
3098 unsigned long i;
3099 dma_addr_t *page_addr_list;
3100 struct sg_table *st;
3101 struct scatterlist *sg;
3102 int ret = -ENOMEM;
3103
3104 /* Allocate a temporary list of source pages for random access. */
3105 page_addr_list = drm_malloc_gfp(n_pages,
3106 sizeof(dma_addr_t),
3107 GFP_TEMPORARY);
3108 if (!page_addr_list)
3109 return ERR_PTR(ret);
3110
3111 /* Allocate target SG list. */
3112 st = kmalloc(sizeof(*st), GFP_KERNEL);
3113 if (!st)
3114 goto err_st_alloc;
3115
3116 ret = sg_alloc_table(st, size, GFP_KERNEL);
3117 if (ret)
3118 goto err_sg_alloc;
3119
3120 /* Populate source page list from the object. */
3121 i = 0;
3122 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3123 page_addr_list[i++] = dma_addr;
3124
3125 GEM_BUG_ON(i != n_pages);
3126 st->nents = 0;
3127 sg = st->sgl;
3128
3129 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3130 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3131 rot_info->plane[i].width, rot_info->plane[i].height,
3132 rot_info->plane[i].stride, st, sg);
3133 }
3134
3135 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3136 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3137
3138 drm_free_large(page_addr_list);
3139
3140 return st;
3141
3142 err_sg_alloc:
3143 kfree(st);
3144 err_st_alloc:
3145 drm_free_large(page_addr_list);
3146
3147 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3148 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3149
3150 return ERR_PTR(ret);
3151 }
3152
3153 static noinline struct sg_table *
3154 intel_partial_pages(const struct i915_ggtt_view *view,
3155 struct drm_i915_gem_object *obj)
3156 {
3157 struct sg_table *st;
3158 struct scatterlist *sg, *iter;
3159 unsigned int count = view->partial.size;
3160 unsigned int offset;
3161 int ret = -ENOMEM;
3162
3163 st = kmalloc(sizeof(*st), GFP_KERNEL);
3164 if (!st)
3165 goto err_st_alloc;
3166
3167 ret = sg_alloc_table(st, count, GFP_KERNEL);
3168 if (ret)
3169 goto err_sg_alloc;
3170
3171 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3172 GEM_BUG_ON(!iter);
3173
3174 sg = st->sgl;
3175 st->nents = 0;
3176 do {
3177 unsigned int len;
3178
3179 len = min(iter->length - (offset << PAGE_SHIFT),
3180 count << PAGE_SHIFT);
3181 sg_set_page(sg, NULL, len, 0);
3182 sg_dma_address(sg) =
3183 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3184 sg_dma_len(sg) = len;
3185
3186 st->nents++;
3187 count -= len >> PAGE_SHIFT;
3188 if (count == 0) {
3189 sg_mark_end(sg);
3190 return st;
3191 }
3192
3193 sg = __sg_next(sg);
3194 iter = __sg_next(iter);
3195 offset = 0;
3196 } while (1);
3197
3198 err_sg_alloc:
3199 kfree(st);
3200 err_st_alloc:
3201 return ERR_PTR(ret);
3202 }
3203
3204 static int
3205 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3206 {
3207 int ret;
3208
3209 /* The vma->pages are only valid within the lifespan of the borrowed
3210 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3211 * must be the vma->pages. A simple rule is that vma->pages must only
3212 * be accessed when the obj->mm.pages are pinned.
3213 */
3214 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3215
3216 switch (vma->ggtt_view.type) {
3217 case I915_GGTT_VIEW_NORMAL:
3218 vma->pages = vma->obj->mm.pages;
3219 return 0;
3220
3221 case I915_GGTT_VIEW_ROTATED:
3222 vma->pages =
3223 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3224 break;
3225
3226 case I915_GGTT_VIEW_PARTIAL:
3227 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3228 break;
3229
3230 default:
3231 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3232 vma->ggtt_view.type);
3233 return -EINVAL;
3234 }
3235
3236 ret = 0;
3237 if (unlikely(IS_ERR(vma->pages))) {
3238 ret = PTR_ERR(vma->pages);
3239 vma->pages = NULL;
3240 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3241 vma->ggtt_view.type, ret);
3242 }
3243 return ret;
3244 }
3245
3246 /**
3247 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3248 * @vm: the &struct i915_address_space
3249 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3250 * @size: how much space to allocate inside the GTT,
3251 * must be #I915_GTT_PAGE_SIZE aligned
3252 * @offset: where to insert inside the GTT,
3253 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3254 * (@offset + @size) must fit within the address space
3255 * @color: color to apply to node, if this node is not from a VMA,
3256 * color must be #I915_COLOR_UNEVICTABLE
3257 * @flags: control search and eviction behaviour
3258 *
3259 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3260 * the address space (using @size and @color). If the @node does not fit, it
3261 * tries to evict any overlapping nodes from the GTT, including any
3262 * neighbouring nodes if the colors do not match (to ensure guard pages between
3263 * differing domains). See i915_gem_evict_for_node() for the gory details
3264 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3265 * evicting active overlapping objects, and any overlapping node that is pinned
3266 * or marked as unevictable will also result in failure.
3267 *
3268 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3269 * asked to wait for eviction and interrupted.
3270 */
3271 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3272 struct drm_mm_node *node,
3273 u64 size, u64 offset, unsigned long color,
3274 unsigned int flags)
3275 {
3276 int err;
3277
3278 GEM_BUG_ON(!size);
3279 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3280 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3281 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3282 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3283 GEM_BUG_ON(drm_mm_node_allocated(node));
3284
3285 node->size = size;
3286 node->start = offset;
3287 node->color = color;
3288
3289 err = drm_mm_reserve_node(&vm->mm, node);
3290 if (err != -ENOSPC)
3291 return err;
3292
3293 err = i915_gem_evict_for_node(vm, node, flags);
3294 if (err == 0)
3295 err = drm_mm_reserve_node(&vm->mm, node);
3296
3297 return err;
3298 }
3299
3300 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3301 {
3302 u64 range, addr;
3303
3304 GEM_BUG_ON(range_overflows(start, len, end));
3305 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3306
3307 range = round_down(end - len, align) - round_up(start, align);
3308 if (range) {
3309 if (sizeof(unsigned long) == sizeof(u64)) {
3310 addr = get_random_long();
3311 } else {
3312 addr = get_random_int();
3313 if (range > U32_MAX) {
3314 addr <<= 32;
3315 addr |= get_random_int();
3316 }
3317 }
3318 div64_u64_rem(addr, range, &addr);
3319 start += addr;
3320 }
3321
3322 return round_up(start, align);
3323 }
3324
3325 /**
3326 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3327 * @vm: the &struct i915_address_space
3328 * @node: the &struct drm_mm_node (typically i915_vma.node)
3329 * @size: how much space to allocate inside the GTT,
3330 * must be #I915_GTT_PAGE_SIZE aligned
3331 * @alignment: required alignment of starting offset, may be 0 but
3332 * if specified, this must be a power-of-two and at least
3333 * #I915_GTT_MIN_ALIGNMENT
3334 * @color: color to apply to node
3335 * @start: start of any range restriction inside GTT (0 for all),
3336 * must be #I915_GTT_PAGE_SIZE aligned
3337 * @end: end of any range restriction inside GTT (U64_MAX for all),
3338 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3339 * @flags: control search and eviction behaviour
3340 *
3341 * i915_gem_gtt_insert() first searches for an available hole into which
3342 * is can insert the node. The hole address is aligned to @alignment and
3343 * its @size must then fit entirely within the [@start, @end] bounds. The
3344 * nodes on either side of the hole must match @color, or else a guard page
3345 * will be inserted between the two nodes (or the node evicted). If no
3346 * suitable hole is found, first a victim is randomly selected and tested
3347 * for eviction, otherwise then the LRU list of objects within the GTT
3348 * is scanned to find the first set of replacement nodes to create the hole.
3349 * Those old overlapping nodes are evicted from the GTT (and so must be
3350 * rebound before any future use). Any node that is currently pinned cannot
3351 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3352 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3353 * searching for an eviction candidate. See i915_gem_evict_something() for
3354 * the gory details on the eviction algorithm.
3355 *
3356 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3357 * asked to wait for eviction and interrupted.
3358 */
3359 int i915_gem_gtt_insert(struct i915_address_space *vm,
3360 struct drm_mm_node *node,
3361 u64 size, u64 alignment, unsigned long color,
3362 u64 start, u64 end, unsigned int flags)
3363 {
3364 enum drm_mm_insert_mode mode;
3365 u64 offset;
3366 int err;
3367
3368 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3369 GEM_BUG_ON(!size);
3370 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3371 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3372 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3373 GEM_BUG_ON(start >= end);
3374 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3375 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3376 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3377 GEM_BUG_ON(drm_mm_node_allocated(node));
3378
3379 if (unlikely(range_overflows(start, size, end)))
3380 return -ENOSPC;
3381
3382 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3383 return -ENOSPC;
3384
3385 mode = DRM_MM_INSERT_BEST;
3386 if (flags & PIN_HIGH)
3387 mode = DRM_MM_INSERT_HIGH;
3388 if (flags & PIN_MAPPABLE)
3389 mode = DRM_MM_INSERT_LOW;
3390
3391 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3392 * so we know that we always have a minimum alignment of 4096.
3393 * The drm_mm range manager is optimised to return results
3394 * with zero alignment, so where possible use the optimal
3395 * path.
3396 */
3397 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3398 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3399 alignment = 0;
3400
3401 err = drm_mm_insert_node_in_range(&vm->mm, node,
3402 size, alignment, color,
3403 start, end, mode);
3404 if (err != -ENOSPC)
3405 return err;
3406
3407 /* No free space, pick a slot at random.
3408 *
3409 * There is a pathological case here using a GTT shared between
3410 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3411 *
3412 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3413 * (64k objects) (448k objects)
3414 *
3415 * Now imagine that the eviction LRU is ordered top-down (just because
3416 * pathology meets real life), and that we need to evict an object to
3417 * make room inside the aperture. The eviction scan then has to walk
3418 * the 448k list before it finds one within range. And now imagine that
3419 * it has to search for a new hole between every byte inside the memcpy,
3420 * for several simultaneous clients.
3421 *
3422 * On a full-ppgtt system, if we have run out of available space, there
3423 * will be lots and lots of objects in the eviction list! Again,
3424 * searching that LRU list may be slow if we are also applying any
3425 * range restrictions (e.g. restriction to low 4GiB) and so, for
3426 * simplicity and similarilty between different GTT, try the single
3427 * random replacement first.
3428 */
3429 offset = random_offset(start, end,
3430 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3431 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3432 if (err != -ENOSPC)
3433 return err;
3434
3435 /* Randomly selected placement is pinned, do a search */
3436 err = i915_gem_evict_something(vm, size, alignment, color,
3437 start, end, flags);
3438 if (err)
3439 return err;
3440
3441 return drm_mm_insert_node_in_range(&vm->mm, node,
3442 size, alignment, color,
3443 start, end, DRM_MM_INSERT_EVICT);
3444 }
3445
3446 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3447 #include "selftests/mock_gtt.c"
3448 #include "selftests/i915_gem_gtt.c"
3449 #endif