]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
Merge remote-tracking branches 'asoc/fix/mtk', 'asoc/fix/psc', 'asoc/fix/pxa', 'asoc...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196 const enum i915_cache_level level)
197 {
198 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199 pde |= addr;
200 if (level != I915_CACHE_NONE)
201 pde |= PPAT_CACHED_PDE_INDEX;
202 else
203 pde |= PPAT_UNCACHED_INDEX;
204 return pde;
205 }
206
207 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
208 enum i915_cache_level level,
209 bool valid, u32 unused)
210 {
211 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
212 pte |= GEN6_PTE_ADDR_ENCODE(addr);
213
214 switch (level) {
215 case I915_CACHE_L3_LLC:
216 case I915_CACHE_LLC:
217 pte |= GEN6_PTE_CACHE_LLC;
218 break;
219 case I915_CACHE_NONE:
220 pte |= GEN6_PTE_UNCACHED;
221 break;
222 default:
223 MISSING_CASE(level);
224 }
225
226 return pte;
227 }
228
229 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
230 enum i915_cache_level level,
231 bool valid, u32 unused)
232 {
233 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
234 pte |= GEN6_PTE_ADDR_ENCODE(addr);
235
236 switch (level) {
237 case I915_CACHE_L3_LLC:
238 pte |= GEN7_PTE_CACHE_L3_LLC;
239 break;
240 case I915_CACHE_LLC:
241 pte |= GEN6_PTE_CACHE_LLC;
242 break;
243 case I915_CACHE_NONE:
244 pte |= GEN6_PTE_UNCACHED;
245 break;
246 default:
247 MISSING_CASE(level);
248 }
249
250 return pte;
251 }
252
253 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
254 enum i915_cache_level level,
255 bool valid, u32 flags)
256 {
257 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
258 pte |= GEN6_PTE_ADDR_ENCODE(addr);
259
260 if (!(flags & PTE_READ_ONLY))
261 pte |= BYT_PTE_WRITEABLE;
262
263 if (level != I915_CACHE_NONE)
264 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
265
266 return pte;
267 }
268
269 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
270 enum i915_cache_level level,
271 bool valid, u32 unused)
272 {
273 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
274 pte |= HSW_PTE_ADDR_ENCODE(addr);
275
276 if (level != I915_CACHE_NONE)
277 pte |= HSW_WB_LLC_AGE3;
278
279 return pte;
280 }
281
282 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
283 enum i915_cache_level level,
284 bool valid, u32 unused)
285 {
286 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
287 pte |= HSW_PTE_ADDR_ENCODE(addr);
288
289 switch (level) {
290 case I915_CACHE_NONE:
291 break;
292 case I915_CACHE_WT:
293 pte |= HSW_WT_ELLC_LLC_AGE3;
294 break;
295 default:
296 pte |= HSW_WB_ELLC_LLC_AGE3;
297 break;
298 }
299
300 return pte;
301 }
302
303 static int __setup_page_dma(struct drm_device *dev,
304 struct i915_page_dma *p, gfp_t flags)
305 {
306 struct device *device = &dev->pdev->dev;
307
308 p->page = alloc_page(flags);
309 if (!p->page)
310 return -ENOMEM;
311
312 p->daddr = dma_map_page(device,
313 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
314
315 if (dma_mapping_error(device, p->daddr)) {
316 __free_page(p->page);
317 return -EINVAL;
318 }
319
320 return 0;
321 }
322
323 static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
324 {
325 return __setup_page_dma(dev, p, GFP_KERNEL);
326 }
327
328 static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
329 {
330 if (WARN_ON(!p->page))
331 return;
332
333 dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
334 __free_page(p->page);
335 memset(p, 0, sizeof(*p));
336 }
337
338 static void *kmap_page_dma(struct i915_page_dma *p)
339 {
340 return kmap_atomic(p->page);
341 }
342
343 /* We use the flushing unmap only with ppgtt structures:
344 * page directories, page tables and scratch pages.
345 */
346 static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
347 {
348 /* There are only few exceptions for gen >=6. chv and bxt.
349 * And we are not sure about the latter so play safe for now.
350 */
351 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
352 drm_clflush_virt_range(vaddr, PAGE_SIZE);
353
354 kunmap_atomic(vaddr);
355 }
356
357 #define kmap_px(px) kmap_page_dma(px_base(px))
358 #define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
359
360 #define setup_px(dev, px) setup_page_dma((dev), px_base(px))
361 #define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
362 #define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
363 #define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
364
365 static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
366 const uint64_t val)
367 {
368 int i;
369 uint64_t * const vaddr = kmap_page_dma(p);
370
371 for (i = 0; i < 512; i++)
372 vaddr[i] = val;
373
374 kunmap_page_dma(dev, vaddr);
375 }
376
377 static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
378 const uint32_t val32)
379 {
380 uint64_t v = val32;
381
382 v = v << 32 | val32;
383
384 fill_page_dma(dev, p, v);
385 }
386
387 static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
388 {
389 struct i915_page_scratch *sp;
390 int ret;
391
392 sp = kzalloc(sizeof(*sp), GFP_KERNEL);
393 if (sp == NULL)
394 return ERR_PTR(-ENOMEM);
395
396 ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
397 if (ret) {
398 kfree(sp);
399 return ERR_PTR(ret);
400 }
401
402 set_pages_uc(px_page(sp), 1);
403
404 return sp;
405 }
406
407 static void free_scratch_page(struct drm_device *dev,
408 struct i915_page_scratch *sp)
409 {
410 set_pages_wb(px_page(sp), 1);
411
412 cleanup_px(dev, sp);
413 kfree(sp);
414 }
415
416 static struct i915_page_table *alloc_pt(struct drm_device *dev)
417 {
418 struct i915_page_table *pt;
419 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
420 GEN8_PTES : GEN6_PTES;
421 int ret = -ENOMEM;
422
423 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
424 if (!pt)
425 return ERR_PTR(-ENOMEM);
426
427 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
428 GFP_KERNEL);
429
430 if (!pt->used_ptes)
431 goto fail_bitmap;
432
433 ret = setup_px(dev, pt);
434 if (ret)
435 goto fail_page_m;
436
437 return pt;
438
439 fail_page_m:
440 kfree(pt->used_ptes);
441 fail_bitmap:
442 kfree(pt);
443
444 return ERR_PTR(ret);
445 }
446
447 static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
448 {
449 cleanup_px(dev, pt);
450 kfree(pt->used_ptes);
451 kfree(pt);
452 }
453
454 static void gen8_initialize_pt(struct i915_address_space *vm,
455 struct i915_page_table *pt)
456 {
457 gen8_pte_t scratch_pte;
458
459 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
460 I915_CACHE_LLC, true);
461
462 fill_px(vm->dev, pt, scratch_pte);
463 }
464
465 static void gen6_initialize_pt(struct i915_address_space *vm,
466 struct i915_page_table *pt)
467 {
468 gen6_pte_t scratch_pte;
469
470 WARN_ON(px_dma(vm->scratch_page) == 0);
471
472 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
473 I915_CACHE_LLC, true, 0);
474
475 fill32_px(vm->dev, pt, scratch_pte);
476 }
477
478 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
479 {
480 struct i915_page_directory *pd;
481 int ret = -ENOMEM;
482
483 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
484 if (!pd)
485 return ERR_PTR(-ENOMEM);
486
487 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
488 sizeof(*pd->used_pdes), GFP_KERNEL);
489 if (!pd->used_pdes)
490 goto fail_bitmap;
491
492 ret = setup_px(dev, pd);
493 if (ret)
494 goto fail_page_m;
495
496 return pd;
497
498 fail_page_m:
499 kfree(pd->used_pdes);
500 fail_bitmap:
501 kfree(pd);
502
503 return ERR_PTR(ret);
504 }
505
506 static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
507 {
508 if (px_page(pd)) {
509 cleanup_px(dev, pd);
510 kfree(pd->used_pdes);
511 kfree(pd);
512 }
513 }
514
515 static void gen8_initialize_pd(struct i915_address_space *vm,
516 struct i915_page_directory *pd)
517 {
518 gen8_pde_t scratch_pde;
519
520 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
521
522 fill_px(vm->dev, pd, scratch_pde);
523 }
524
525 /* Broadwell Page Directory Pointer Descriptors */
526 static int gen8_write_pdp(struct drm_i915_gem_request *req,
527 unsigned entry,
528 dma_addr_t addr)
529 {
530 struct intel_engine_cs *ring = req->ring;
531 int ret;
532
533 BUG_ON(entry >= 4);
534
535 ret = intel_ring_begin(req, 6);
536 if (ret)
537 return ret;
538
539 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
540 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
541 intel_ring_emit(ring, upper_32_bits(addr));
542 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
543 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
544 intel_ring_emit(ring, lower_32_bits(addr));
545 intel_ring_advance(ring);
546
547 return 0;
548 }
549
550 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
551 struct drm_i915_gem_request *req)
552 {
553 int i, ret;
554
555 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
556 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
557
558 ret = gen8_write_pdp(req, i, pd_daddr);
559 if (ret)
560 return ret;
561 }
562
563 return 0;
564 }
565
566 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
567 uint64_t start,
568 uint64_t length,
569 bool use_scratch)
570 {
571 struct i915_hw_ppgtt *ppgtt =
572 container_of(vm, struct i915_hw_ppgtt, base);
573 gen8_pte_t *pt_vaddr, scratch_pte;
574 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
575 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
576 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
577 unsigned num_entries = length >> PAGE_SHIFT;
578 unsigned last_pte, i;
579
580 scratch_pte = gen8_pte_encode(px_dma(ppgtt->base.scratch_page),
581 I915_CACHE_LLC, use_scratch);
582
583 while (num_entries) {
584 struct i915_page_directory *pd;
585 struct i915_page_table *pt;
586
587 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
588 break;
589
590 pd = ppgtt->pdp.page_directory[pdpe];
591
592 if (WARN_ON(!pd->page_table[pde]))
593 break;
594
595 pt = pd->page_table[pde];
596
597 if (WARN_ON(!px_page(pt)))
598 break;
599
600 last_pte = pte + num_entries;
601 if (last_pte > GEN8_PTES)
602 last_pte = GEN8_PTES;
603
604 pt_vaddr = kmap_px(pt);
605
606 for (i = pte; i < last_pte; i++) {
607 pt_vaddr[i] = scratch_pte;
608 num_entries--;
609 }
610
611 kunmap_px(ppgtt, pt);
612
613 pte = 0;
614 if (++pde == I915_PDES) {
615 pdpe++;
616 pde = 0;
617 }
618 }
619 }
620
621 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
622 struct sg_table *pages,
623 uint64_t start,
624 enum i915_cache_level cache_level, u32 unused)
625 {
626 struct i915_hw_ppgtt *ppgtt =
627 container_of(vm, struct i915_hw_ppgtt, base);
628 gen8_pte_t *pt_vaddr;
629 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
630 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
631 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
632 struct sg_page_iter sg_iter;
633
634 pt_vaddr = NULL;
635
636 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
637 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
638 break;
639
640 if (pt_vaddr == NULL) {
641 struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
642 struct i915_page_table *pt = pd->page_table[pde];
643 pt_vaddr = kmap_px(pt);
644 }
645
646 pt_vaddr[pte] =
647 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
648 cache_level, true);
649 if (++pte == GEN8_PTES) {
650 kunmap_px(ppgtt, pt_vaddr);
651 pt_vaddr = NULL;
652 if (++pde == I915_PDES) {
653 pdpe++;
654 pde = 0;
655 }
656 pte = 0;
657 }
658 }
659
660 if (pt_vaddr)
661 kunmap_px(ppgtt, pt_vaddr);
662 }
663
664 static void gen8_free_page_tables(struct drm_device *dev,
665 struct i915_page_directory *pd)
666 {
667 int i;
668
669 if (!px_page(pd))
670 return;
671
672 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
673 if (WARN_ON(!pd->page_table[i]))
674 continue;
675
676 free_pt(dev, pd->page_table[i]);
677 pd->page_table[i] = NULL;
678 }
679 }
680
681 static int gen8_init_scratch(struct i915_address_space *vm)
682 {
683 struct drm_device *dev = vm->dev;
684
685 vm->scratch_page = alloc_scratch_page(dev);
686 if (IS_ERR(vm->scratch_page))
687 return PTR_ERR(vm->scratch_page);
688
689 vm->scratch_pt = alloc_pt(dev);
690 if (IS_ERR(vm->scratch_pt)) {
691 free_scratch_page(dev, vm->scratch_page);
692 return PTR_ERR(vm->scratch_pt);
693 }
694
695 vm->scratch_pd = alloc_pd(dev);
696 if (IS_ERR(vm->scratch_pd)) {
697 free_pt(dev, vm->scratch_pt);
698 free_scratch_page(dev, vm->scratch_page);
699 return PTR_ERR(vm->scratch_pd);
700 }
701
702 gen8_initialize_pt(vm, vm->scratch_pt);
703 gen8_initialize_pd(vm, vm->scratch_pd);
704
705 return 0;
706 }
707
708 static void gen8_free_scratch(struct i915_address_space *vm)
709 {
710 struct drm_device *dev = vm->dev;
711
712 free_pd(dev, vm->scratch_pd);
713 free_pt(dev, vm->scratch_pt);
714 free_scratch_page(dev, vm->scratch_page);
715 }
716
717 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
718 {
719 struct i915_hw_ppgtt *ppgtt =
720 container_of(vm, struct i915_hw_ppgtt, base);
721 int i;
722
723 for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
724 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
725 continue;
726
727 gen8_free_page_tables(ppgtt->base.dev,
728 ppgtt->pdp.page_directory[i]);
729 free_pd(ppgtt->base.dev, ppgtt->pdp.page_directory[i]);
730 }
731
732 gen8_free_scratch(vm);
733 }
734
735 /**
736 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
737 * @ppgtt: Master ppgtt structure.
738 * @pd: Page directory for this address range.
739 * @start: Starting virtual address to begin allocations.
740 * @length Size of the allocations.
741 * @new_pts: Bitmap set by function with new allocations. Likely used by the
742 * caller to free on error.
743 *
744 * Allocate the required number of page tables. Extremely similar to
745 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
746 * the page directory boundary (instead of the page directory pointer). That
747 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
748 * possible, and likely that the caller will need to use multiple calls of this
749 * function to achieve the appropriate allocation.
750 *
751 * Return: 0 if success; negative error code otherwise.
752 */
753 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
754 struct i915_page_directory *pd,
755 uint64_t start,
756 uint64_t length,
757 unsigned long *new_pts)
758 {
759 struct drm_device *dev = ppgtt->base.dev;
760 struct i915_page_table *pt;
761 uint64_t temp;
762 uint32_t pde;
763
764 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
765 /* Don't reallocate page tables */
766 if (pt) {
767 /* Scratch is never allocated this way */
768 WARN_ON(pt == ppgtt->base.scratch_pt);
769 continue;
770 }
771
772 pt = alloc_pt(dev);
773 if (IS_ERR(pt))
774 goto unwind_out;
775
776 gen8_initialize_pt(&ppgtt->base, pt);
777 pd->page_table[pde] = pt;
778 __set_bit(pde, new_pts);
779 }
780
781 return 0;
782
783 unwind_out:
784 for_each_set_bit(pde, new_pts, I915_PDES)
785 free_pt(dev, pd->page_table[pde]);
786
787 return -ENOMEM;
788 }
789
790 /**
791 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
792 * @ppgtt: Master ppgtt structure.
793 * @pdp: Page directory pointer for this address range.
794 * @start: Starting virtual address to begin allocations.
795 * @length Size of the allocations.
796 * @new_pds Bitmap set by function with new allocations. Likely used by the
797 * caller to free on error.
798 *
799 * Allocate the required number of page directories starting at the pde index of
800 * @start, and ending at the pde index @start + @length. This function will skip
801 * over already allocated page directories within the range, and only allocate
802 * new ones, setting the appropriate pointer within the pdp as well as the
803 * correct position in the bitmap @new_pds.
804 *
805 * The function will only allocate the pages within the range for a give page
806 * directory pointer. In other words, if @start + @length straddles a virtually
807 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
808 * required by the caller, This is not currently possible, and the BUG in the
809 * code will prevent it.
810 *
811 * Return: 0 if success; negative error code otherwise.
812 */
813 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
814 struct i915_page_directory_pointer *pdp,
815 uint64_t start,
816 uint64_t length,
817 unsigned long *new_pds)
818 {
819 struct drm_device *dev = ppgtt->base.dev;
820 struct i915_page_directory *pd;
821 uint64_t temp;
822 uint32_t pdpe;
823
824 WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
825
826 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
827 if (pd)
828 continue;
829
830 pd = alloc_pd(dev);
831 if (IS_ERR(pd))
832 goto unwind_out;
833
834 gen8_initialize_pd(&ppgtt->base, pd);
835 pdp->page_directory[pdpe] = pd;
836 __set_bit(pdpe, new_pds);
837 }
838
839 return 0;
840
841 unwind_out:
842 for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
843 free_pd(dev, pdp->page_directory[pdpe]);
844
845 return -ENOMEM;
846 }
847
848 static void
849 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
850 {
851 int i;
852
853 for (i = 0; i < GEN8_LEGACY_PDPES; i++)
854 kfree(new_pts[i]);
855 kfree(new_pts);
856 kfree(new_pds);
857 }
858
859 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
860 * of these are based on the number of PDPEs in the system.
861 */
862 static
863 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
864 unsigned long ***new_pts)
865 {
866 int i;
867 unsigned long *pds;
868 unsigned long **pts;
869
870 pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
871 if (!pds)
872 return -ENOMEM;
873
874 pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
875 if (!pts) {
876 kfree(pds);
877 return -ENOMEM;
878 }
879
880 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
881 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
882 sizeof(unsigned long), GFP_KERNEL);
883 if (!pts[i])
884 goto err_out;
885 }
886
887 *new_pds = pds;
888 *new_pts = pts;
889
890 return 0;
891
892 err_out:
893 free_gen8_temp_bitmaps(pds, pts);
894 return -ENOMEM;
895 }
896
897 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
898 * the page table structures, we mark them dirty so that
899 * context switching/execlist queuing code takes extra steps
900 * to ensure that tlbs are flushed.
901 */
902 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
903 {
904 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
905 }
906
907 static int gen8_alloc_va_range(struct i915_address_space *vm,
908 uint64_t start,
909 uint64_t length)
910 {
911 struct i915_hw_ppgtt *ppgtt =
912 container_of(vm, struct i915_hw_ppgtt, base);
913 unsigned long *new_page_dirs, **new_page_tables;
914 struct i915_page_directory *pd;
915 const uint64_t orig_start = start;
916 const uint64_t orig_length = length;
917 uint64_t temp;
918 uint32_t pdpe;
919 int ret;
920
921 /* Wrap is never okay since we can only represent 48b, and we don't
922 * actually use the other side of the canonical address space.
923 */
924 if (WARN_ON(start + length < start))
925 return -ENODEV;
926
927 if (WARN_ON(start + length > ppgtt->base.total))
928 return -ENODEV;
929
930 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
931 if (ret)
932 return ret;
933
934 /* Do the allocations first so we can easily bail out */
935 ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
936 new_page_dirs);
937 if (ret) {
938 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
939 return ret;
940 }
941
942 /* For every page directory referenced, allocate page tables */
943 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
944 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
945 new_page_tables[pdpe]);
946 if (ret)
947 goto err_out;
948 }
949
950 start = orig_start;
951 length = orig_length;
952
953 /* Allocations have completed successfully, so set the bitmaps, and do
954 * the mappings. */
955 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
956 gen8_pde_t *const page_directory = kmap_px(pd);
957 struct i915_page_table *pt;
958 uint64_t pd_len = gen8_clamp_pd(start, length);
959 uint64_t pd_start = start;
960 uint32_t pde;
961
962 /* Every pd should be allocated, we just did that above. */
963 WARN_ON(!pd);
964
965 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
966 /* Same reasoning as pd */
967 WARN_ON(!pt);
968 WARN_ON(!pd_len);
969 WARN_ON(!gen8_pte_count(pd_start, pd_len));
970
971 /* Set our used ptes within the page table */
972 bitmap_set(pt->used_ptes,
973 gen8_pte_index(pd_start),
974 gen8_pte_count(pd_start, pd_len));
975
976 /* Our pde is now pointing to the pagetable, pt */
977 __set_bit(pde, pd->used_pdes);
978
979 /* Map the PDE to the page table */
980 page_directory[pde] = gen8_pde_encode(px_dma(pt),
981 I915_CACHE_LLC);
982
983 /* NB: We haven't yet mapped ptes to pages. At this
984 * point we're still relying on insert_entries() */
985 }
986
987 kunmap_px(ppgtt, page_directory);
988
989 __set_bit(pdpe, ppgtt->pdp.used_pdpes);
990 }
991
992 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
993 mark_tlbs_dirty(ppgtt);
994 return 0;
995
996 err_out:
997 while (pdpe--) {
998 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
999 free_pt(vm->dev, ppgtt->pdp.page_directory[pdpe]->page_table[temp]);
1000 }
1001
1002 for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
1003 free_pd(vm->dev, ppgtt->pdp.page_directory[pdpe]);
1004
1005 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1006 mark_tlbs_dirty(ppgtt);
1007 return ret;
1008 }
1009
1010 /*
1011 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1012 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1013 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1014 * space.
1015 *
1016 */
1017 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1018 {
1019 int ret;
1020
1021 ret = gen8_init_scratch(&ppgtt->base);
1022 if (ret)
1023 return ret;
1024
1025 ppgtt->base.start = 0;
1026 ppgtt->base.total = 1ULL << 32;
1027 if (IS_ENABLED(CONFIG_X86_32))
1028 /* While we have a proliferation of size_t variables
1029 * we cannot represent the full ppgtt size on 32bit,
1030 * so limit it to the same size as the GGTT (currently
1031 * 2GiB).
1032 */
1033 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
1034 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1035 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1036 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1037 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1038 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1039 ppgtt->base.bind_vma = ppgtt_bind_vma;
1040
1041 ppgtt->switch_mm = gen8_mm_switch;
1042
1043 return 0;
1044 }
1045
1046 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1047 {
1048 struct i915_address_space *vm = &ppgtt->base;
1049 struct i915_page_table *unused;
1050 gen6_pte_t scratch_pte;
1051 uint32_t pd_entry;
1052 uint32_t pte, pde, temp;
1053 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1054
1055 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1056 I915_CACHE_LLC, true, 0);
1057
1058 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1059 u32 expected;
1060 gen6_pte_t *pt_vaddr;
1061 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1062 pd_entry = readl(ppgtt->pd_addr + pde);
1063 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1064
1065 if (pd_entry != expected)
1066 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1067 pde,
1068 pd_entry,
1069 expected);
1070 seq_printf(m, "\tPDE: %x\n", pd_entry);
1071
1072 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1073
1074 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1075 unsigned long va =
1076 (pde * PAGE_SIZE * GEN6_PTES) +
1077 (pte * PAGE_SIZE);
1078 int i;
1079 bool found = false;
1080 for (i = 0; i < 4; i++)
1081 if (pt_vaddr[pte + i] != scratch_pte)
1082 found = true;
1083 if (!found)
1084 continue;
1085
1086 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1087 for (i = 0; i < 4; i++) {
1088 if (pt_vaddr[pte + i] != scratch_pte)
1089 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1090 else
1091 seq_puts(m, " SCRATCH ");
1092 }
1093 seq_puts(m, "\n");
1094 }
1095 kunmap_px(ppgtt, pt_vaddr);
1096 }
1097 }
1098
1099 /* Write pde (index) from the page directory @pd to the page table @pt */
1100 static void gen6_write_pde(struct i915_page_directory *pd,
1101 const int pde, struct i915_page_table *pt)
1102 {
1103 /* Caller needs to make sure the write completes if necessary */
1104 struct i915_hw_ppgtt *ppgtt =
1105 container_of(pd, struct i915_hw_ppgtt, pd);
1106 u32 pd_entry;
1107
1108 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1109 pd_entry |= GEN6_PDE_VALID;
1110
1111 writel(pd_entry, ppgtt->pd_addr + pde);
1112 }
1113
1114 /* Write all the page tables found in the ppgtt structure to incrementing page
1115 * directories. */
1116 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1117 struct i915_page_directory *pd,
1118 uint32_t start, uint32_t length)
1119 {
1120 struct i915_page_table *pt;
1121 uint32_t pde, temp;
1122
1123 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1124 gen6_write_pde(pd, pde, pt);
1125
1126 /* Make sure write is complete before other code can use this page
1127 * table. Also require for WC mapped PTEs */
1128 readl(dev_priv->gtt.gsm);
1129 }
1130
1131 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1132 {
1133 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1134
1135 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1136 }
1137
1138 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1139 struct drm_i915_gem_request *req)
1140 {
1141 struct intel_engine_cs *ring = req->ring;
1142 int ret;
1143
1144 /* NB: TLBs must be flushed and invalidated before a switch */
1145 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1146 if (ret)
1147 return ret;
1148
1149 ret = intel_ring_begin(req, 6);
1150 if (ret)
1151 return ret;
1152
1153 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1154 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1155 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1156 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1157 intel_ring_emit(ring, get_pd_offset(ppgtt));
1158 intel_ring_emit(ring, MI_NOOP);
1159 intel_ring_advance(ring);
1160
1161 return 0;
1162 }
1163
1164 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1165 struct drm_i915_gem_request *req)
1166 {
1167 struct intel_engine_cs *ring = req->ring;
1168 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1169
1170 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1171 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1172 return 0;
1173 }
1174
1175 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1176 struct drm_i915_gem_request *req)
1177 {
1178 struct intel_engine_cs *ring = req->ring;
1179 int ret;
1180
1181 /* NB: TLBs must be flushed and invalidated before a switch */
1182 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1183 if (ret)
1184 return ret;
1185
1186 ret = intel_ring_begin(req, 6);
1187 if (ret)
1188 return ret;
1189
1190 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1191 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1192 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1193 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1194 intel_ring_emit(ring, get_pd_offset(ppgtt));
1195 intel_ring_emit(ring, MI_NOOP);
1196 intel_ring_advance(ring);
1197
1198 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1199 if (ring->id != RCS) {
1200 ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1201 if (ret)
1202 return ret;
1203 }
1204
1205 return 0;
1206 }
1207
1208 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1209 struct drm_i915_gem_request *req)
1210 {
1211 struct intel_engine_cs *ring = req->ring;
1212 struct drm_device *dev = ppgtt->base.dev;
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214
1215
1216 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1217 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1218
1219 POSTING_READ(RING_PP_DIR_DCLV(ring));
1220
1221 return 0;
1222 }
1223
1224 static void gen8_ppgtt_enable(struct drm_device *dev)
1225 {
1226 struct drm_i915_private *dev_priv = dev->dev_private;
1227 struct intel_engine_cs *ring;
1228 int j;
1229
1230 for_each_ring(ring, dev_priv, j) {
1231 I915_WRITE(RING_MODE_GEN7(ring),
1232 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1233 }
1234 }
1235
1236 static void gen7_ppgtt_enable(struct drm_device *dev)
1237 {
1238 struct drm_i915_private *dev_priv = dev->dev_private;
1239 struct intel_engine_cs *ring;
1240 uint32_t ecochk, ecobits;
1241 int i;
1242
1243 ecobits = I915_READ(GAC_ECO_BITS);
1244 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1245
1246 ecochk = I915_READ(GAM_ECOCHK);
1247 if (IS_HASWELL(dev)) {
1248 ecochk |= ECOCHK_PPGTT_WB_HSW;
1249 } else {
1250 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1251 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1252 }
1253 I915_WRITE(GAM_ECOCHK, ecochk);
1254
1255 for_each_ring(ring, dev_priv, i) {
1256 /* GFX_MODE is per-ring on gen7+ */
1257 I915_WRITE(RING_MODE_GEN7(ring),
1258 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1259 }
1260 }
1261
1262 static void gen6_ppgtt_enable(struct drm_device *dev)
1263 {
1264 struct drm_i915_private *dev_priv = dev->dev_private;
1265 uint32_t ecochk, gab_ctl, ecobits;
1266
1267 ecobits = I915_READ(GAC_ECO_BITS);
1268 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1269 ECOBITS_PPGTT_CACHE64B);
1270
1271 gab_ctl = I915_READ(GAB_CTL);
1272 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1273
1274 ecochk = I915_READ(GAM_ECOCHK);
1275 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1276
1277 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1278 }
1279
1280 /* PPGTT support for Sandybdrige/Gen6 and later */
1281 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1282 uint64_t start,
1283 uint64_t length,
1284 bool use_scratch)
1285 {
1286 struct i915_hw_ppgtt *ppgtt =
1287 container_of(vm, struct i915_hw_ppgtt, base);
1288 gen6_pte_t *pt_vaddr, scratch_pte;
1289 unsigned first_entry = start >> PAGE_SHIFT;
1290 unsigned num_entries = length >> PAGE_SHIFT;
1291 unsigned act_pt = first_entry / GEN6_PTES;
1292 unsigned first_pte = first_entry % GEN6_PTES;
1293 unsigned last_pte, i;
1294
1295 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1296 I915_CACHE_LLC, true, 0);
1297
1298 while (num_entries) {
1299 last_pte = first_pte + num_entries;
1300 if (last_pte > GEN6_PTES)
1301 last_pte = GEN6_PTES;
1302
1303 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1304
1305 for (i = first_pte; i < last_pte; i++)
1306 pt_vaddr[i] = scratch_pte;
1307
1308 kunmap_px(ppgtt, pt_vaddr);
1309
1310 num_entries -= last_pte - first_pte;
1311 first_pte = 0;
1312 act_pt++;
1313 }
1314 }
1315
1316 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1317 struct sg_table *pages,
1318 uint64_t start,
1319 enum i915_cache_level cache_level, u32 flags)
1320 {
1321 struct i915_hw_ppgtt *ppgtt =
1322 container_of(vm, struct i915_hw_ppgtt, base);
1323 gen6_pte_t *pt_vaddr;
1324 unsigned first_entry = start >> PAGE_SHIFT;
1325 unsigned act_pt = first_entry / GEN6_PTES;
1326 unsigned act_pte = first_entry % GEN6_PTES;
1327 struct sg_page_iter sg_iter;
1328
1329 pt_vaddr = NULL;
1330 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1331 if (pt_vaddr == NULL)
1332 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1333
1334 pt_vaddr[act_pte] =
1335 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1336 cache_level, true, flags);
1337
1338 if (++act_pte == GEN6_PTES) {
1339 kunmap_px(ppgtt, pt_vaddr);
1340 pt_vaddr = NULL;
1341 act_pt++;
1342 act_pte = 0;
1343 }
1344 }
1345 if (pt_vaddr)
1346 kunmap_px(ppgtt, pt_vaddr);
1347 }
1348
1349 static int gen6_alloc_va_range(struct i915_address_space *vm,
1350 uint64_t start_in, uint64_t length_in)
1351 {
1352 DECLARE_BITMAP(new_page_tables, I915_PDES);
1353 struct drm_device *dev = vm->dev;
1354 struct drm_i915_private *dev_priv = dev->dev_private;
1355 struct i915_hw_ppgtt *ppgtt =
1356 container_of(vm, struct i915_hw_ppgtt, base);
1357 struct i915_page_table *pt;
1358 uint32_t start, length, start_save, length_save;
1359 uint32_t pde, temp;
1360 int ret;
1361
1362 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1363 return -ENODEV;
1364
1365 start = start_save = start_in;
1366 length = length_save = length_in;
1367
1368 bitmap_zero(new_page_tables, I915_PDES);
1369
1370 /* The allocation is done in two stages so that we can bail out with
1371 * minimal amount of pain. The first stage finds new page tables that
1372 * need allocation. The second stage marks use ptes within the page
1373 * tables.
1374 */
1375 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1376 if (pt != vm->scratch_pt) {
1377 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1378 continue;
1379 }
1380
1381 /* We've already allocated a page table */
1382 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1383
1384 pt = alloc_pt(dev);
1385 if (IS_ERR(pt)) {
1386 ret = PTR_ERR(pt);
1387 goto unwind_out;
1388 }
1389
1390 gen6_initialize_pt(vm, pt);
1391
1392 ppgtt->pd.page_table[pde] = pt;
1393 __set_bit(pde, new_page_tables);
1394 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1395 }
1396
1397 start = start_save;
1398 length = length_save;
1399
1400 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1401 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1402
1403 bitmap_zero(tmp_bitmap, GEN6_PTES);
1404 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1405 gen6_pte_count(start, length));
1406
1407 if (__test_and_clear_bit(pde, new_page_tables))
1408 gen6_write_pde(&ppgtt->pd, pde, pt);
1409
1410 trace_i915_page_table_entry_map(vm, pde, pt,
1411 gen6_pte_index(start),
1412 gen6_pte_count(start, length),
1413 GEN6_PTES);
1414 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1415 GEN6_PTES);
1416 }
1417
1418 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1419
1420 /* Make sure write is complete before other code can use this page
1421 * table. Also require for WC mapped PTEs */
1422 readl(dev_priv->gtt.gsm);
1423
1424 mark_tlbs_dirty(ppgtt);
1425 return 0;
1426
1427 unwind_out:
1428 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1429 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1430
1431 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1432 free_pt(vm->dev, pt);
1433 }
1434
1435 mark_tlbs_dirty(ppgtt);
1436 return ret;
1437 }
1438
1439 static int gen6_init_scratch(struct i915_address_space *vm)
1440 {
1441 struct drm_device *dev = vm->dev;
1442
1443 vm->scratch_page = alloc_scratch_page(dev);
1444 if (IS_ERR(vm->scratch_page))
1445 return PTR_ERR(vm->scratch_page);
1446
1447 vm->scratch_pt = alloc_pt(dev);
1448 if (IS_ERR(vm->scratch_pt)) {
1449 free_scratch_page(dev, vm->scratch_page);
1450 return PTR_ERR(vm->scratch_pt);
1451 }
1452
1453 gen6_initialize_pt(vm, vm->scratch_pt);
1454
1455 return 0;
1456 }
1457
1458 static void gen6_free_scratch(struct i915_address_space *vm)
1459 {
1460 struct drm_device *dev = vm->dev;
1461
1462 free_pt(dev, vm->scratch_pt);
1463 free_scratch_page(dev, vm->scratch_page);
1464 }
1465
1466 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1467 {
1468 struct i915_hw_ppgtt *ppgtt =
1469 container_of(vm, struct i915_hw_ppgtt, base);
1470 struct i915_page_table *pt;
1471 uint32_t pde;
1472
1473 drm_mm_remove_node(&ppgtt->node);
1474
1475 gen6_for_all_pdes(pt, ppgtt, pde) {
1476 if (pt != vm->scratch_pt)
1477 free_pt(ppgtt->base.dev, pt);
1478 }
1479
1480 gen6_free_scratch(vm);
1481 }
1482
1483 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1484 {
1485 struct i915_address_space *vm = &ppgtt->base;
1486 struct drm_device *dev = ppgtt->base.dev;
1487 struct drm_i915_private *dev_priv = dev->dev_private;
1488 bool retried = false;
1489 int ret;
1490
1491 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1492 * allocator works in address space sizes, so it's multiplied by page
1493 * size. We allocate at the top of the GTT to avoid fragmentation.
1494 */
1495 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1496
1497 ret = gen6_init_scratch(vm);
1498 if (ret)
1499 return ret;
1500
1501 alloc:
1502 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1503 &ppgtt->node, GEN6_PD_SIZE,
1504 GEN6_PD_ALIGN, 0,
1505 0, dev_priv->gtt.base.total,
1506 DRM_MM_TOPDOWN);
1507 if (ret == -ENOSPC && !retried) {
1508 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1509 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1510 I915_CACHE_NONE,
1511 0, dev_priv->gtt.base.total,
1512 0);
1513 if (ret)
1514 goto err_out;
1515
1516 retried = true;
1517 goto alloc;
1518 }
1519
1520 if (ret)
1521 goto err_out;
1522
1523
1524 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1525 DRM_DEBUG("Forced to use aperture for PDEs\n");
1526
1527 return 0;
1528
1529 err_out:
1530 gen6_free_scratch(vm);
1531 return ret;
1532 }
1533
1534 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1535 {
1536 return gen6_ppgtt_allocate_page_directories(ppgtt);
1537 }
1538
1539 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1540 uint64_t start, uint64_t length)
1541 {
1542 struct i915_page_table *unused;
1543 uint32_t pde, temp;
1544
1545 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1546 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1547 }
1548
1549 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1550 {
1551 struct drm_device *dev = ppgtt->base.dev;
1552 struct drm_i915_private *dev_priv = dev->dev_private;
1553 int ret;
1554
1555 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1556 if (IS_GEN6(dev)) {
1557 ppgtt->switch_mm = gen6_mm_switch;
1558 } else if (IS_HASWELL(dev)) {
1559 ppgtt->switch_mm = hsw_mm_switch;
1560 } else if (IS_GEN7(dev)) {
1561 ppgtt->switch_mm = gen7_mm_switch;
1562 } else
1563 BUG();
1564
1565 if (intel_vgpu_active(dev))
1566 ppgtt->switch_mm = vgpu_mm_switch;
1567
1568 ret = gen6_ppgtt_alloc(ppgtt);
1569 if (ret)
1570 return ret;
1571
1572 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1573 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1574 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1575 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1576 ppgtt->base.bind_vma = ppgtt_bind_vma;
1577 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1578 ppgtt->base.start = 0;
1579 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1580 ppgtt->debug_dump = gen6_dump_ppgtt;
1581
1582 ppgtt->pd.base.ggtt_offset =
1583 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1584
1585 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1586 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1587
1588 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1589
1590 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1591
1592 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1593 ppgtt->node.size >> 20,
1594 ppgtt->node.start / PAGE_SIZE);
1595
1596 DRM_DEBUG("Adding PPGTT at offset %x\n",
1597 ppgtt->pd.base.ggtt_offset << 10);
1598
1599 return 0;
1600 }
1601
1602 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1603 {
1604 ppgtt->base.dev = dev;
1605
1606 if (INTEL_INFO(dev)->gen < 8)
1607 return gen6_ppgtt_init(ppgtt);
1608 else
1609 return gen8_ppgtt_init(ppgtt);
1610 }
1611
1612 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1613 {
1614 struct drm_i915_private *dev_priv = dev->dev_private;
1615 int ret = 0;
1616
1617 ret = __hw_ppgtt_init(dev, ppgtt);
1618 if (ret == 0) {
1619 kref_init(&ppgtt->ref);
1620 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1621 ppgtt->base.total);
1622 i915_init_vm(dev_priv, &ppgtt->base);
1623 }
1624
1625 return ret;
1626 }
1627
1628 int i915_ppgtt_init_hw(struct drm_device *dev)
1629 {
1630 /* In the case of execlists, PPGTT is enabled by the context descriptor
1631 * and the PDPs are contained within the context itself. We don't
1632 * need to do anything here. */
1633 if (i915.enable_execlists)
1634 return 0;
1635
1636 if (!USES_PPGTT(dev))
1637 return 0;
1638
1639 if (IS_GEN6(dev))
1640 gen6_ppgtt_enable(dev);
1641 else if (IS_GEN7(dev))
1642 gen7_ppgtt_enable(dev);
1643 else if (INTEL_INFO(dev)->gen >= 8)
1644 gen8_ppgtt_enable(dev);
1645 else
1646 MISSING_CASE(INTEL_INFO(dev)->gen);
1647
1648 return 0;
1649 }
1650
1651 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
1652 {
1653 struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
1654 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1655
1656 if (i915.enable_execlists)
1657 return 0;
1658
1659 if (!ppgtt)
1660 return 0;
1661
1662 return ppgtt->switch_mm(ppgtt, req);
1663 }
1664
1665 struct i915_hw_ppgtt *
1666 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1667 {
1668 struct i915_hw_ppgtt *ppgtt;
1669 int ret;
1670
1671 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1672 if (!ppgtt)
1673 return ERR_PTR(-ENOMEM);
1674
1675 ret = i915_ppgtt_init(dev, ppgtt);
1676 if (ret) {
1677 kfree(ppgtt);
1678 return ERR_PTR(ret);
1679 }
1680
1681 ppgtt->file_priv = fpriv;
1682
1683 trace_i915_ppgtt_create(&ppgtt->base);
1684
1685 return ppgtt;
1686 }
1687
1688 void i915_ppgtt_release(struct kref *kref)
1689 {
1690 struct i915_hw_ppgtt *ppgtt =
1691 container_of(kref, struct i915_hw_ppgtt, ref);
1692
1693 trace_i915_ppgtt_release(&ppgtt->base);
1694
1695 /* vmas should already be unbound */
1696 WARN_ON(!list_empty(&ppgtt->base.active_list));
1697 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1698
1699 list_del(&ppgtt->base.global_link);
1700 drm_mm_takedown(&ppgtt->base.mm);
1701
1702 ppgtt->base.cleanup(&ppgtt->base);
1703 kfree(ppgtt);
1704 }
1705
1706 extern int intel_iommu_gfx_mapped;
1707 /* Certain Gen5 chipsets require require idling the GPU before
1708 * unmapping anything from the GTT when VT-d is enabled.
1709 */
1710 static bool needs_idle_maps(struct drm_device *dev)
1711 {
1712 #ifdef CONFIG_INTEL_IOMMU
1713 /* Query intel_iommu to see if we need the workaround. Presumably that
1714 * was loaded first.
1715 */
1716 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1717 return true;
1718 #endif
1719 return false;
1720 }
1721
1722 static bool do_idling(struct drm_i915_private *dev_priv)
1723 {
1724 bool ret = dev_priv->mm.interruptible;
1725
1726 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1727 dev_priv->mm.interruptible = false;
1728 if (i915_gpu_idle(dev_priv->dev)) {
1729 DRM_ERROR("Couldn't idle GPU\n");
1730 /* Wait a bit, in hopes it avoids the hang */
1731 udelay(10);
1732 }
1733 }
1734
1735 return ret;
1736 }
1737
1738 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1739 {
1740 if (unlikely(dev_priv->gtt.do_idle_maps))
1741 dev_priv->mm.interruptible = interruptible;
1742 }
1743
1744 void i915_check_and_clear_faults(struct drm_device *dev)
1745 {
1746 struct drm_i915_private *dev_priv = dev->dev_private;
1747 struct intel_engine_cs *ring;
1748 int i;
1749
1750 if (INTEL_INFO(dev)->gen < 6)
1751 return;
1752
1753 for_each_ring(ring, dev_priv, i) {
1754 u32 fault_reg;
1755 fault_reg = I915_READ(RING_FAULT_REG(ring));
1756 if (fault_reg & RING_FAULT_VALID) {
1757 DRM_DEBUG_DRIVER("Unexpected fault\n"
1758 "\tAddr: 0x%08lx\n"
1759 "\tAddress space: %s\n"
1760 "\tSource ID: %d\n"
1761 "\tType: %d\n",
1762 fault_reg & PAGE_MASK,
1763 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1764 RING_FAULT_SRCID(fault_reg),
1765 RING_FAULT_FAULT_TYPE(fault_reg));
1766 I915_WRITE(RING_FAULT_REG(ring),
1767 fault_reg & ~RING_FAULT_VALID);
1768 }
1769 }
1770 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1771 }
1772
1773 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1774 {
1775 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1776 intel_gtt_chipset_flush();
1777 } else {
1778 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1779 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1780 }
1781 }
1782
1783 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1784 {
1785 struct drm_i915_private *dev_priv = dev->dev_private;
1786
1787 /* Don't bother messing with faults pre GEN6 as we have little
1788 * documentation supporting that it's a good idea.
1789 */
1790 if (INTEL_INFO(dev)->gen < 6)
1791 return;
1792
1793 i915_check_and_clear_faults(dev);
1794
1795 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1796 dev_priv->gtt.base.start,
1797 dev_priv->gtt.base.total,
1798 true);
1799
1800 i915_ggtt_flush(dev_priv);
1801 }
1802
1803 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1804 {
1805 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1806 obj->pages->sgl, obj->pages->nents,
1807 PCI_DMA_BIDIRECTIONAL))
1808 return -ENOSPC;
1809
1810 return 0;
1811 }
1812
1813 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1814 {
1815 #ifdef writeq
1816 writeq(pte, addr);
1817 #else
1818 iowrite32((u32)pte, addr);
1819 iowrite32(pte >> 32, addr + 4);
1820 #endif
1821 }
1822
1823 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1824 struct sg_table *st,
1825 uint64_t start,
1826 enum i915_cache_level level, u32 unused)
1827 {
1828 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1829 unsigned first_entry = start >> PAGE_SHIFT;
1830 gen8_pte_t __iomem *gtt_entries =
1831 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1832 int i = 0;
1833 struct sg_page_iter sg_iter;
1834 dma_addr_t addr = 0; /* shut up gcc */
1835
1836 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1837 addr = sg_dma_address(sg_iter.sg) +
1838 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1839 gen8_set_pte(&gtt_entries[i],
1840 gen8_pte_encode(addr, level, true));
1841 i++;
1842 }
1843
1844 /*
1845 * XXX: This serves as a posting read to make sure that the PTE has
1846 * actually been updated. There is some concern that even though
1847 * registers and PTEs are within the same BAR that they are potentially
1848 * of NUMA access patterns. Therefore, even with the way we assume
1849 * hardware should work, we must keep this posting read for paranoia.
1850 */
1851 if (i != 0)
1852 WARN_ON(readq(&gtt_entries[i-1])
1853 != gen8_pte_encode(addr, level, true));
1854
1855 /* This next bit makes the above posting read even more important. We
1856 * want to flush the TLBs only after we're certain all the PTE updates
1857 * have finished.
1858 */
1859 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1860 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1861 }
1862
1863 /*
1864 * Binds an object into the global gtt with the specified cache level. The object
1865 * will be accessible to the GPU via commands whose operands reference offsets
1866 * within the global GTT as well as accessible by the GPU through the GMADR
1867 * mapped BAR (dev_priv->mm.gtt->gtt).
1868 */
1869 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1870 struct sg_table *st,
1871 uint64_t start,
1872 enum i915_cache_level level, u32 flags)
1873 {
1874 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1875 unsigned first_entry = start >> PAGE_SHIFT;
1876 gen6_pte_t __iomem *gtt_entries =
1877 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1878 int i = 0;
1879 struct sg_page_iter sg_iter;
1880 dma_addr_t addr = 0;
1881
1882 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1883 addr = sg_page_iter_dma_address(&sg_iter);
1884 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1885 i++;
1886 }
1887
1888 /* XXX: This serves as a posting read to make sure that the PTE has
1889 * actually been updated. There is some concern that even though
1890 * registers and PTEs are within the same BAR that they are potentially
1891 * of NUMA access patterns. Therefore, even with the way we assume
1892 * hardware should work, we must keep this posting read for paranoia.
1893 */
1894 if (i != 0) {
1895 unsigned long gtt = readl(&gtt_entries[i-1]);
1896 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1897 }
1898
1899 /* This next bit makes the above posting read even more important. We
1900 * want to flush the TLBs only after we're certain all the PTE updates
1901 * have finished.
1902 */
1903 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1904 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1905 }
1906
1907 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1908 uint64_t start,
1909 uint64_t length,
1910 bool use_scratch)
1911 {
1912 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1913 unsigned first_entry = start >> PAGE_SHIFT;
1914 unsigned num_entries = length >> PAGE_SHIFT;
1915 gen8_pte_t scratch_pte, __iomem *gtt_base =
1916 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1917 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1918 int i;
1919
1920 if (WARN(num_entries > max_entries,
1921 "First entry = %d; Num entries = %d (max=%d)\n",
1922 first_entry, num_entries, max_entries))
1923 num_entries = max_entries;
1924
1925 scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1926 I915_CACHE_LLC,
1927 use_scratch);
1928 for (i = 0; i < num_entries; i++)
1929 gen8_set_pte(&gtt_base[i], scratch_pte);
1930 readl(gtt_base);
1931 }
1932
1933 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1934 uint64_t start,
1935 uint64_t length,
1936 bool use_scratch)
1937 {
1938 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1939 unsigned first_entry = start >> PAGE_SHIFT;
1940 unsigned num_entries = length >> PAGE_SHIFT;
1941 gen6_pte_t scratch_pte, __iomem *gtt_base =
1942 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1943 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1944 int i;
1945
1946 if (WARN(num_entries > max_entries,
1947 "First entry = %d; Num entries = %d (max=%d)\n",
1948 first_entry, num_entries, max_entries))
1949 num_entries = max_entries;
1950
1951 scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1952 I915_CACHE_LLC, use_scratch, 0);
1953
1954 for (i = 0; i < num_entries; i++)
1955 iowrite32(scratch_pte, &gtt_base[i]);
1956 readl(gtt_base);
1957 }
1958
1959 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1960 struct sg_table *pages,
1961 uint64_t start,
1962 enum i915_cache_level cache_level, u32 unused)
1963 {
1964 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1965 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1966
1967 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1968
1969 }
1970
1971 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1972 uint64_t start,
1973 uint64_t length,
1974 bool unused)
1975 {
1976 unsigned first_entry = start >> PAGE_SHIFT;
1977 unsigned num_entries = length >> PAGE_SHIFT;
1978 intel_gtt_clear_range(first_entry, num_entries);
1979 }
1980
1981 static int ggtt_bind_vma(struct i915_vma *vma,
1982 enum i915_cache_level cache_level,
1983 u32 flags)
1984 {
1985 struct drm_device *dev = vma->vm->dev;
1986 struct drm_i915_private *dev_priv = dev->dev_private;
1987 struct drm_i915_gem_object *obj = vma->obj;
1988 struct sg_table *pages = obj->pages;
1989 u32 pte_flags = 0;
1990 int ret;
1991
1992 ret = i915_get_ggtt_vma_pages(vma);
1993 if (ret)
1994 return ret;
1995 pages = vma->ggtt_view.pages;
1996
1997 /* Currently applicable only to VLV */
1998 if (obj->gt_ro)
1999 pte_flags |= PTE_READ_ONLY;
2000
2001
2002 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
2003 vma->vm->insert_entries(vma->vm, pages,
2004 vma->node.start,
2005 cache_level, pte_flags);
2006
2007 /* Note the inconsistency here is due to absence of the
2008 * aliasing ppgtt on gen4 and earlier. Though we always
2009 * request PIN_USER for execbuffer (translated to LOCAL_BIND),
2010 * without the appgtt, we cannot honour that request and so
2011 * must substitute it with a global binding. Since we do this
2012 * behind the upper layers back, we need to explicitly set
2013 * the bound flag ourselves.
2014 */
2015 vma->bound |= GLOBAL_BIND;
2016
2017 }
2018
2019 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
2020 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2021 appgtt->base.insert_entries(&appgtt->base, pages,
2022 vma->node.start,
2023 cache_level, pte_flags);
2024 }
2025
2026 return 0;
2027 }
2028
2029 static void ggtt_unbind_vma(struct i915_vma *vma)
2030 {
2031 struct drm_device *dev = vma->vm->dev;
2032 struct drm_i915_private *dev_priv = dev->dev_private;
2033 struct drm_i915_gem_object *obj = vma->obj;
2034 const uint64_t size = min_t(uint64_t,
2035 obj->base.size,
2036 vma->node.size);
2037
2038 if (vma->bound & GLOBAL_BIND) {
2039 vma->vm->clear_range(vma->vm,
2040 vma->node.start,
2041 size,
2042 true);
2043 }
2044
2045 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2046 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2047
2048 appgtt->base.clear_range(&appgtt->base,
2049 vma->node.start,
2050 size,
2051 true);
2052 }
2053 }
2054
2055 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2056 {
2057 struct drm_device *dev = obj->base.dev;
2058 struct drm_i915_private *dev_priv = dev->dev_private;
2059 bool interruptible;
2060
2061 interruptible = do_idling(dev_priv);
2062
2063 dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2064 PCI_DMA_BIDIRECTIONAL);
2065
2066 undo_idling(dev_priv, interruptible);
2067 }
2068
2069 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2070 unsigned long color,
2071 u64 *start,
2072 u64 *end)
2073 {
2074 if (node->color != color)
2075 *start += 4096;
2076
2077 if (!list_empty(&node->node_list)) {
2078 node = list_entry(node->node_list.next,
2079 struct drm_mm_node,
2080 node_list);
2081 if (node->allocated && node->color != color)
2082 *end -= 4096;
2083 }
2084 }
2085
2086 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2087 unsigned long start,
2088 unsigned long mappable_end,
2089 unsigned long end)
2090 {
2091 /* Let GEM Manage all of the aperture.
2092 *
2093 * However, leave one page at the end still bound to the scratch page.
2094 * There are a number of places where the hardware apparently prefetches
2095 * past the end of the object, and we've seen multiple hangs with the
2096 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2097 * aperture. One page should be enough to keep any prefetching inside
2098 * of the aperture.
2099 */
2100 struct drm_i915_private *dev_priv = dev->dev_private;
2101 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2102 struct drm_mm_node *entry;
2103 struct drm_i915_gem_object *obj;
2104 unsigned long hole_start, hole_end;
2105 int ret;
2106
2107 BUG_ON(mappable_end > end);
2108
2109 /* Subtract the guard page ... */
2110 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2111
2112 dev_priv->gtt.base.start = start;
2113 dev_priv->gtt.base.total = end - start;
2114
2115 if (intel_vgpu_active(dev)) {
2116 ret = intel_vgt_balloon(dev);
2117 if (ret)
2118 return ret;
2119 }
2120
2121 if (!HAS_LLC(dev))
2122 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2123
2124 /* Mark any preallocated objects as occupied */
2125 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2126 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2127
2128 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2129 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2130
2131 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2132 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2133 if (ret) {
2134 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2135 return ret;
2136 }
2137 vma->bound |= GLOBAL_BIND;
2138 }
2139
2140 /* Clear any non-preallocated blocks */
2141 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2142 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2143 hole_start, hole_end);
2144 ggtt_vm->clear_range(ggtt_vm, hole_start,
2145 hole_end - hole_start, true);
2146 }
2147
2148 /* And finally clear the reserved guard page */
2149 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2150
2151 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2152 struct i915_hw_ppgtt *ppgtt;
2153
2154 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2155 if (!ppgtt)
2156 return -ENOMEM;
2157
2158 ret = __hw_ppgtt_init(dev, ppgtt);
2159 if (ret) {
2160 ppgtt->base.cleanup(&ppgtt->base);
2161 kfree(ppgtt);
2162 return ret;
2163 }
2164
2165 if (ppgtt->base.allocate_va_range)
2166 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2167 ppgtt->base.total);
2168 if (ret) {
2169 ppgtt->base.cleanup(&ppgtt->base);
2170 kfree(ppgtt);
2171 return ret;
2172 }
2173
2174 ppgtt->base.clear_range(&ppgtt->base,
2175 ppgtt->base.start,
2176 ppgtt->base.total,
2177 true);
2178
2179 dev_priv->mm.aliasing_ppgtt = ppgtt;
2180 }
2181
2182 return 0;
2183 }
2184
2185 void i915_gem_init_global_gtt(struct drm_device *dev)
2186 {
2187 struct drm_i915_private *dev_priv = dev->dev_private;
2188 u64 gtt_size, mappable_size;
2189
2190 gtt_size = dev_priv->gtt.base.total;
2191 mappable_size = dev_priv->gtt.mappable_end;
2192
2193 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2194 }
2195
2196 void i915_global_gtt_cleanup(struct drm_device *dev)
2197 {
2198 struct drm_i915_private *dev_priv = dev->dev_private;
2199 struct i915_address_space *vm = &dev_priv->gtt.base;
2200
2201 if (dev_priv->mm.aliasing_ppgtt) {
2202 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2203
2204 ppgtt->base.cleanup(&ppgtt->base);
2205 }
2206
2207 if (drm_mm_initialized(&vm->mm)) {
2208 if (intel_vgpu_active(dev))
2209 intel_vgt_deballoon();
2210
2211 drm_mm_takedown(&vm->mm);
2212 list_del(&vm->global_link);
2213 }
2214
2215 vm->cleanup(vm);
2216 }
2217
2218 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2219 {
2220 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2221 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2222 return snb_gmch_ctl << 20;
2223 }
2224
2225 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2226 {
2227 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2228 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2229 if (bdw_gmch_ctl)
2230 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2231
2232 #ifdef CONFIG_X86_32
2233 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2234 if (bdw_gmch_ctl > 4)
2235 bdw_gmch_ctl = 4;
2236 #endif
2237
2238 return bdw_gmch_ctl << 20;
2239 }
2240
2241 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2242 {
2243 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2244 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2245
2246 if (gmch_ctrl)
2247 return 1 << (20 + gmch_ctrl);
2248
2249 return 0;
2250 }
2251
2252 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2253 {
2254 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2255 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2256 return snb_gmch_ctl << 25; /* 32 MB units */
2257 }
2258
2259 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2260 {
2261 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2262 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2263 return bdw_gmch_ctl << 25; /* 32 MB units */
2264 }
2265
2266 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2267 {
2268 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2269 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2270
2271 /*
2272 * 0x0 to 0x10: 32MB increments starting at 0MB
2273 * 0x11 to 0x16: 4MB increments starting at 8MB
2274 * 0x17 to 0x1d: 4MB increments start at 36MB
2275 */
2276 if (gmch_ctrl < 0x11)
2277 return gmch_ctrl << 25;
2278 else if (gmch_ctrl < 0x17)
2279 return (gmch_ctrl - 0x11 + 2) << 22;
2280 else
2281 return (gmch_ctrl - 0x17 + 9) << 22;
2282 }
2283
2284 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2285 {
2286 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2287 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2288
2289 if (gen9_gmch_ctl < 0xf0)
2290 return gen9_gmch_ctl << 25; /* 32 MB units */
2291 else
2292 /* 4MB increments starting at 0xf0 for 4MB */
2293 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2294 }
2295
2296 static int ggtt_probe_common(struct drm_device *dev,
2297 size_t gtt_size)
2298 {
2299 struct drm_i915_private *dev_priv = dev->dev_private;
2300 struct i915_page_scratch *scratch_page;
2301 phys_addr_t gtt_phys_addr;
2302
2303 /* For Modern GENs the PTEs and register space are split in the BAR */
2304 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2305 (pci_resource_len(dev->pdev, 0) / 2);
2306
2307 /*
2308 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2309 * dropped. For WC mappings in general we have 64 byte burst writes
2310 * when the WC buffer is flushed, so we can't use it, but have to
2311 * resort to an uncached mapping. The WC issue is easily caught by the
2312 * readback check when writing GTT PTE entries.
2313 */
2314 if (IS_BROXTON(dev))
2315 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2316 else
2317 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2318 if (!dev_priv->gtt.gsm) {
2319 DRM_ERROR("Failed to map the gtt page table\n");
2320 return -ENOMEM;
2321 }
2322
2323 scratch_page = alloc_scratch_page(dev);
2324 if (IS_ERR(scratch_page)) {
2325 DRM_ERROR("Scratch setup failed\n");
2326 /* iounmap will also get called at remove, but meh */
2327 iounmap(dev_priv->gtt.gsm);
2328 return PTR_ERR(scratch_page);
2329 }
2330
2331 dev_priv->gtt.base.scratch_page = scratch_page;
2332
2333 return 0;
2334 }
2335
2336 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2337 * bits. When using advanced contexts each context stores its own PAT, but
2338 * writing this data shouldn't be harmful even in those cases. */
2339 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2340 {
2341 uint64_t pat;
2342
2343 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2344 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2345 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2346 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2347 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2348 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2349 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2350 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2351
2352 if (!USES_PPGTT(dev_priv->dev))
2353 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2354 * so RTL will always use the value corresponding to
2355 * pat_sel = 000".
2356 * So let's disable cache for GGTT to avoid screen corruptions.
2357 * MOCS still can be used though.
2358 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2359 * before this patch, i.e. the same uncached + snooping access
2360 * like on gen6/7 seems to be in effect.
2361 * - So this just fixes blitter/render access. Again it looks
2362 * like it's not just uncached access, but uncached + snooping.
2363 * So we can still hold onto all our assumptions wrt cpu
2364 * clflushing on LLC machines.
2365 */
2366 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2367
2368 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2369 * write would work. */
2370 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2371 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2372 }
2373
2374 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2375 {
2376 uint64_t pat;
2377
2378 /*
2379 * Map WB on BDW to snooped on CHV.
2380 *
2381 * Only the snoop bit has meaning for CHV, the rest is
2382 * ignored.
2383 *
2384 * The hardware will never snoop for certain types of accesses:
2385 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2386 * - PPGTT page tables
2387 * - some other special cycles
2388 *
2389 * As with BDW, we also need to consider the following for GT accesses:
2390 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2391 * so RTL will always use the value corresponding to
2392 * pat_sel = 000".
2393 * Which means we must set the snoop bit in PAT entry 0
2394 * in order to keep the global status page working.
2395 */
2396 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2397 GEN8_PPAT(1, 0) |
2398 GEN8_PPAT(2, 0) |
2399 GEN8_PPAT(3, 0) |
2400 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2401 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2402 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2403 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2404
2405 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2406 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2407 }
2408
2409 static int gen8_gmch_probe(struct drm_device *dev,
2410 u64 *gtt_total,
2411 size_t *stolen,
2412 phys_addr_t *mappable_base,
2413 u64 *mappable_end)
2414 {
2415 struct drm_i915_private *dev_priv = dev->dev_private;
2416 u64 gtt_size;
2417 u16 snb_gmch_ctl;
2418 int ret;
2419
2420 /* TODO: We're not aware of mappable constraints on gen8 yet */
2421 *mappable_base = pci_resource_start(dev->pdev, 2);
2422 *mappable_end = pci_resource_len(dev->pdev, 2);
2423
2424 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2425 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2426
2427 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2428
2429 if (INTEL_INFO(dev)->gen >= 9) {
2430 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2431 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2432 } else if (IS_CHERRYVIEW(dev)) {
2433 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2434 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2435 } else {
2436 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2437 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2438 }
2439
2440 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2441
2442 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2443 chv_setup_private_ppat(dev_priv);
2444 else
2445 bdw_setup_private_ppat(dev_priv);
2446
2447 ret = ggtt_probe_common(dev, gtt_size);
2448
2449 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2450 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2451 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2452 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2453
2454 return ret;
2455 }
2456
2457 static int gen6_gmch_probe(struct drm_device *dev,
2458 u64 *gtt_total,
2459 size_t *stolen,
2460 phys_addr_t *mappable_base,
2461 u64 *mappable_end)
2462 {
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 unsigned int gtt_size;
2465 u16 snb_gmch_ctl;
2466 int ret;
2467
2468 *mappable_base = pci_resource_start(dev->pdev, 2);
2469 *mappable_end = pci_resource_len(dev->pdev, 2);
2470
2471 /* 64/512MB is the current min/max we actually know of, but this is just
2472 * a coarse sanity check.
2473 */
2474 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2475 DRM_ERROR("Unknown GMADR size (%llx)\n",
2476 dev_priv->gtt.mappable_end);
2477 return -ENXIO;
2478 }
2479
2480 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2481 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2482 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2483
2484 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2485
2486 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2487 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2488
2489 ret = ggtt_probe_common(dev, gtt_size);
2490
2491 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2492 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2493 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2494 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2495
2496 return ret;
2497 }
2498
2499 static void gen6_gmch_remove(struct i915_address_space *vm)
2500 {
2501
2502 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2503
2504 iounmap(gtt->gsm);
2505 free_scratch_page(vm->dev, vm->scratch_page);
2506 }
2507
2508 static int i915_gmch_probe(struct drm_device *dev,
2509 u64 *gtt_total,
2510 size_t *stolen,
2511 phys_addr_t *mappable_base,
2512 u64 *mappable_end)
2513 {
2514 struct drm_i915_private *dev_priv = dev->dev_private;
2515 int ret;
2516
2517 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2518 if (!ret) {
2519 DRM_ERROR("failed to set up gmch\n");
2520 return -EIO;
2521 }
2522
2523 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2524
2525 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2526 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2527 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2528 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2529 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2530
2531 if (unlikely(dev_priv->gtt.do_idle_maps))
2532 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2533
2534 return 0;
2535 }
2536
2537 static void i915_gmch_remove(struct i915_address_space *vm)
2538 {
2539 intel_gmch_remove();
2540 }
2541
2542 int i915_gem_gtt_init(struct drm_device *dev)
2543 {
2544 struct drm_i915_private *dev_priv = dev->dev_private;
2545 struct i915_gtt *gtt = &dev_priv->gtt;
2546 int ret;
2547
2548 if (INTEL_INFO(dev)->gen <= 5) {
2549 gtt->gtt_probe = i915_gmch_probe;
2550 gtt->base.cleanup = i915_gmch_remove;
2551 } else if (INTEL_INFO(dev)->gen < 8) {
2552 gtt->gtt_probe = gen6_gmch_probe;
2553 gtt->base.cleanup = gen6_gmch_remove;
2554 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2555 gtt->base.pte_encode = iris_pte_encode;
2556 else if (IS_HASWELL(dev))
2557 gtt->base.pte_encode = hsw_pte_encode;
2558 else if (IS_VALLEYVIEW(dev))
2559 gtt->base.pte_encode = byt_pte_encode;
2560 else if (INTEL_INFO(dev)->gen >= 7)
2561 gtt->base.pte_encode = ivb_pte_encode;
2562 else
2563 gtt->base.pte_encode = snb_pte_encode;
2564 } else {
2565 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2566 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2567 }
2568
2569 gtt->base.dev = dev;
2570
2571 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2572 &gtt->mappable_base, &gtt->mappable_end);
2573 if (ret)
2574 return ret;
2575
2576 /* GMADR is the PCI mmio aperture into the global GTT. */
2577 DRM_INFO("Memory usable by graphics device = %lluM\n",
2578 gtt->base.total >> 20);
2579 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
2580 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2581 #ifdef CONFIG_INTEL_IOMMU
2582 if (intel_iommu_gfx_mapped)
2583 DRM_INFO("VT-d active for gfx access\n");
2584 #endif
2585 /*
2586 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2587 * user's requested state against the hardware/driver capabilities. We
2588 * do this now so that we can print out any log messages once rather
2589 * than every time we check intel_enable_ppgtt().
2590 */
2591 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2592 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2593
2594 return 0;
2595 }
2596
2597 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2598 {
2599 struct drm_i915_private *dev_priv = dev->dev_private;
2600 struct drm_i915_gem_object *obj;
2601 struct i915_address_space *vm;
2602 struct i915_vma *vma;
2603 bool flush;
2604
2605 i915_check_and_clear_faults(dev);
2606
2607 /* First fill our portion of the GTT with scratch pages */
2608 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2609 dev_priv->gtt.base.start,
2610 dev_priv->gtt.base.total,
2611 true);
2612
2613 /* Cache flush objects bound into GGTT and rebind them. */
2614 vm = &dev_priv->gtt.base;
2615 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2616 flush = false;
2617 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2618 if (vma->vm != vm)
2619 continue;
2620
2621 WARN_ON(i915_vma_bind(vma, obj->cache_level,
2622 PIN_UPDATE));
2623
2624 flush = true;
2625 }
2626
2627 if (flush)
2628 i915_gem_clflush_object(obj, obj->pin_display);
2629 }
2630
2631 if (INTEL_INFO(dev)->gen >= 8) {
2632 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2633 chv_setup_private_ppat(dev_priv);
2634 else
2635 bdw_setup_private_ppat(dev_priv);
2636
2637 return;
2638 }
2639
2640 if (USES_PPGTT(dev)) {
2641 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2642 /* TODO: Perhaps it shouldn't be gen6 specific */
2643
2644 struct i915_hw_ppgtt *ppgtt =
2645 container_of(vm, struct i915_hw_ppgtt,
2646 base);
2647
2648 if (i915_is_ggtt(vm))
2649 ppgtt = dev_priv->mm.aliasing_ppgtt;
2650
2651 gen6_write_page_range(dev_priv, &ppgtt->pd,
2652 0, ppgtt->base.total);
2653 }
2654 }
2655
2656 i915_ggtt_flush(dev_priv);
2657 }
2658
2659 static struct i915_vma *
2660 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2661 struct i915_address_space *vm,
2662 const struct i915_ggtt_view *ggtt_view)
2663 {
2664 struct i915_vma *vma;
2665
2666 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2667 return ERR_PTR(-EINVAL);
2668
2669 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2670 if (vma == NULL)
2671 return ERR_PTR(-ENOMEM);
2672
2673 INIT_LIST_HEAD(&vma->vma_link);
2674 INIT_LIST_HEAD(&vma->mm_list);
2675 INIT_LIST_HEAD(&vma->exec_list);
2676 vma->vm = vm;
2677 vma->obj = obj;
2678
2679 if (i915_is_ggtt(vm))
2680 vma->ggtt_view = *ggtt_view;
2681
2682 list_add_tail(&vma->vma_link, &obj->vma_list);
2683 if (!i915_is_ggtt(vm))
2684 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2685
2686 return vma;
2687 }
2688
2689 struct i915_vma *
2690 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2691 struct i915_address_space *vm)
2692 {
2693 struct i915_vma *vma;
2694
2695 vma = i915_gem_obj_to_vma(obj, vm);
2696 if (!vma)
2697 vma = __i915_gem_vma_create(obj, vm,
2698 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2699
2700 return vma;
2701 }
2702
2703 struct i915_vma *
2704 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2705 const struct i915_ggtt_view *view)
2706 {
2707 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2708 struct i915_vma *vma;
2709
2710 if (WARN_ON(!view))
2711 return ERR_PTR(-EINVAL);
2712
2713 vma = i915_gem_obj_to_ggtt_view(obj, view);
2714
2715 if (IS_ERR(vma))
2716 return vma;
2717
2718 if (!vma)
2719 vma = __i915_gem_vma_create(obj, ggtt, view);
2720
2721 return vma;
2722
2723 }
2724
2725 static void
2726 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2727 struct sg_table *st)
2728 {
2729 unsigned int column, row;
2730 unsigned int src_idx;
2731 struct scatterlist *sg = st->sgl;
2732
2733 st->nents = 0;
2734
2735 for (column = 0; column < width; column++) {
2736 src_idx = width * (height - 1) + column;
2737 for (row = 0; row < height; row++) {
2738 st->nents++;
2739 /* We don't need the pages, but need to initialize
2740 * the entries so the sg list can be happily traversed.
2741 * The only thing we need are DMA addresses.
2742 */
2743 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2744 sg_dma_address(sg) = in[src_idx];
2745 sg_dma_len(sg) = PAGE_SIZE;
2746 sg = sg_next(sg);
2747 src_idx -= width;
2748 }
2749 }
2750 }
2751
2752 static struct sg_table *
2753 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2754 struct drm_i915_gem_object *obj)
2755 {
2756 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2757 unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
2758 struct sg_page_iter sg_iter;
2759 unsigned long i;
2760 dma_addr_t *page_addr_list;
2761 struct sg_table *st;
2762 int ret = -ENOMEM;
2763
2764 /* Allocate a temporary list of source pages for random access. */
2765 page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
2766 sizeof(dma_addr_t));
2767 if (!page_addr_list)
2768 return ERR_PTR(ret);
2769
2770 /* Allocate target SG list. */
2771 st = kmalloc(sizeof(*st), GFP_KERNEL);
2772 if (!st)
2773 goto err_st_alloc;
2774
2775 ret = sg_alloc_table(st, size_pages, GFP_KERNEL);
2776 if (ret)
2777 goto err_sg_alloc;
2778
2779 /* Populate source page list from the object. */
2780 i = 0;
2781 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2782 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2783 i++;
2784 }
2785
2786 /* Rotate the pages. */
2787 rotate_pages(page_addr_list,
2788 rot_info->width_pages, rot_info->height_pages,
2789 st);
2790
2791 DRM_DEBUG_KMS(
2792 "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages).\n",
2793 obj->base.size, rot_info->pitch, rot_info->height,
2794 rot_info->pixel_format, rot_info->width_pages,
2795 rot_info->height_pages, size_pages);
2796
2797 drm_free_large(page_addr_list);
2798
2799 return st;
2800
2801 err_sg_alloc:
2802 kfree(st);
2803 err_st_alloc:
2804 drm_free_large(page_addr_list);
2805
2806 DRM_DEBUG_KMS(
2807 "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages)\n",
2808 obj->base.size, ret, rot_info->pitch, rot_info->height,
2809 rot_info->pixel_format, rot_info->width_pages,
2810 rot_info->height_pages, size_pages);
2811 return ERR_PTR(ret);
2812 }
2813
2814 static struct sg_table *
2815 intel_partial_pages(const struct i915_ggtt_view *view,
2816 struct drm_i915_gem_object *obj)
2817 {
2818 struct sg_table *st;
2819 struct scatterlist *sg;
2820 struct sg_page_iter obj_sg_iter;
2821 int ret = -ENOMEM;
2822
2823 st = kmalloc(sizeof(*st), GFP_KERNEL);
2824 if (!st)
2825 goto err_st_alloc;
2826
2827 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2828 if (ret)
2829 goto err_sg_alloc;
2830
2831 sg = st->sgl;
2832 st->nents = 0;
2833 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2834 view->params.partial.offset)
2835 {
2836 if (st->nents >= view->params.partial.size)
2837 break;
2838
2839 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2840 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2841 sg_dma_len(sg) = PAGE_SIZE;
2842
2843 sg = sg_next(sg);
2844 st->nents++;
2845 }
2846
2847 return st;
2848
2849 err_sg_alloc:
2850 kfree(st);
2851 err_st_alloc:
2852 return ERR_PTR(ret);
2853 }
2854
2855 static int
2856 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2857 {
2858 int ret = 0;
2859
2860 if (vma->ggtt_view.pages)
2861 return 0;
2862
2863 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2864 vma->ggtt_view.pages = vma->obj->pages;
2865 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2866 vma->ggtt_view.pages =
2867 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2868 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2869 vma->ggtt_view.pages =
2870 intel_partial_pages(&vma->ggtt_view, vma->obj);
2871 else
2872 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2873 vma->ggtt_view.type);
2874
2875 if (!vma->ggtt_view.pages) {
2876 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2877 vma->ggtt_view.type);
2878 ret = -EINVAL;
2879 } else if (IS_ERR(vma->ggtt_view.pages)) {
2880 ret = PTR_ERR(vma->ggtt_view.pages);
2881 vma->ggtt_view.pages = NULL;
2882 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2883 vma->ggtt_view.type, ret);
2884 }
2885
2886 return ret;
2887 }
2888
2889 /**
2890 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2891 * @vma: VMA to map
2892 * @cache_level: mapping cache level
2893 * @flags: flags like global or local mapping
2894 *
2895 * DMA addresses are taken from the scatter-gather table of this object (or of
2896 * this VMA in case of non-default GGTT views) and PTE entries set up.
2897 * Note that DMA addresses are also the only part of the SG table we care about.
2898 */
2899 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2900 u32 flags)
2901 {
2902 int ret;
2903 u32 bind_flags;
2904
2905 if (WARN_ON(flags == 0))
2906 return -EINVAL;
2907
2908 bind_flags = 0;
2909 if (flags & PIN_GLOBAL)
2910 bind_flags |= GLOBAL_BIND;
2911 if (flags & PIN_USER)
2912 bind_flags |= LOCAL_BIND;
2913
2914 if (flags & PIN_UPDATE)
2915 bind_flags |= vma->bound;
2916 else
2917 bind_flags &= ~vma->bound;
2918
2919 if (bind_flags == 0)
2920 return 0;
2921
2922 if (vma->bound == 0 && vma->vm->allocate_va_range) {
2923 trace_i915_va_alloc(vma->vm,
2924 vma->node.start,
2925 vma->node.size,
2926 VM_TO_TRACE_NAME(vma->vm));
2927
2928 /* XXX: i915_vma_pin() will fix this +- hack */
2929 vma->pin_count++;
2930 ret = vma->vm->allocate_va_range(vma->vm,
2931 vma->node.start,
2932 vma->node.size);
2933 vma->pin_count--;
2934 if (ret)
2935 return ret;
2936 }
2937
2938 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2939 if (ret)
2940 return ret;
2941
2942 vma->bound |= bind_flags;
2943
2944 return 0;
2945 }
2946
2947 /**
2948 * i915_ggtt_view_size - Get the size of a GGTT view.
2949 * @obj: Object the view is of.
2950 * @view: The view in question.
2951 *
2952 * @return The size of the GGTT view in bytes.
2953 */
2954 size_t
2955 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2956 const struct i915_ggtt_view *view)
2957 {
2958 if (view->type == I915_GGTT_VIEW_NORMAL) {
2959 return obj->base.size;
2960 } else if (view->type == I915_GGTT_VIEW_ROTATED) {
2961 return view->rotation_info.size;
2962 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2963 return view->params.partial.size << PAGE_SHIFT;
2964 } else {
2965 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2966 return obj->base.size;
2967 }
2968 }