]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
drm/i915/glk: Reuse broxton code for geminilake
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include "intel_frontbuffer.h"
35
36 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
37
38 /**
39 * DOC: Global GTT views
40 *
41 * Background and previous state
42 *
43 * Historically objects could exists (be bound) in global GTT space only as
44 * singular instances with a view representing all of the object's backing pages
45 * in a linear fashion. This view will be called a normal view.
46 *
47 * To support multiple views of the same object, where the number of mapped
48 * pages is not equal to the backing store, or where the layout of the pages
49 * is not linear, concept of a GGTT view was added.
50 *
51 * One example of an alternative view is a stereo display driven by a single
52 * image. In this case we would have a framebuffer looking like this
53 * (2x2 pages):
54 *
55 * 12
56 * 34
57 *
58 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59 * rendering. In contrast, fed to the display engine would be an alternative
60 * view which could look something like this:
61 *
62 * 1212
63 * 3434
64 *
65 * In this example both the size and layout of pages in the alternative view is
66 * different from the normal view.
67 *
68 * Implementation and usage
69 *
70 * GGTT views are implemented using VMAs and are distinguished via enum
71 * i915_ggtt_view_type and struct i915_ggtt_view.
72 *
73 * A new flavour of core GEM functions which work with GGTT bound objects were
74 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75 * renaming in large amounts of code. They take the struct i915_ggtt_view
76 * parameter encapsulating all metadata required to implement a view.
77 *
78 * As a helper for callers which are only interested in the normal view,
79 * globally const i915_ggtt_view_normal singleton instance exists. All old core
80 * GEM API functions, the ones not taking the view parameter, are operating on,
81 * or with the normal GGTT view.
82 *
83 * Code wanting to add or use a new GGTT view needs to:
84 *
85 * 1. Add a new enum with a suitable name.
86 * 2. Extend the metadata in the i915_ggtt_view structure if required.
87 * 3. Add support to i915_get_vma_pages().
88 *
89 * New views are required to build a scatter-gather table from within the
90 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91 * exists for the lifetime of an VMA.
92 *
93 * Core API is designed to have copy semantics which means that passed in
94 * struct i915_ggtt_view does not need to be persistent (left around after
95 * calling the core API functions).
96 *
97 */
98
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103 .type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106 .type = I915_GGTT_VIEW_ROTATED,
107 };
108
109 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
110 int enable_ppgtt)
111 {
112 bool has_aliasing_ppgtt;
113 bool has_full_ppgtt;
114 bool has_full_48bit_ppgtt;
115
116 has_aliasing_ppgtt = INTEL_GEN(dev_priv) >= 6;
117 has_full_ppgtt = INTEL_GEN(dev_priv) >= 7;
118 has_full_48bit_ppgtt =
119 IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9;
120
121 if (intel_vgpu_active(dev_priv)) {
122 /* emulation is too hard */
123 has_full_ppgtt = false;
124 has_full_48bit_ppgtt = false;
125 }
126
127 if (!has_aliasing_ppgtt)
128 return 0;
129
130 /*
131 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
132 * execlists, the sole mechanism available to submit work.
133 */
134 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
135 return 0;
136
137 if (enable_ppgtt == 1)
138 return 1;
139
140 if (enable_ppgtt == 2 && has_full_ppgtt)
141 return 2;
142
143 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
144 return 3;
145
146 #ifdef CONFIG_INTEL_IOMMU
147 /* Disable ppgtt on SNB if VT-d is on. */
148 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
149 DRM_INFO("Disabling PPGTT because VT-d is on\n");
150 return 0;
151 }
152 #endif
153
154 /* Early VLV doesn't have this */
155 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
156 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
157 return 0;
158 }
159
160 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
161 return has_full_48bit_ppgtt ? 3 : 2;
162 else
163 return has_aliasing_ppgtt ? 1 : 0;
164 }
165
166 static int ppgtt_bind_vma(struct i915_vma *vma,
167 enum i915_cache_level cache_level,
168 u32 unused)
169 {
170 u32 pte_flags = 0;
171
172 vma->pages = vma->obj->mm.pages;
173
174 /* Currently applicable only to VLV */
175 if (vma->obj->gt_ro)
176 pte_flags |= PTE_READ_ONLY;
177
178 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
179 cache_level, pte_flags);
180
181 return 0;
182 }
183
184 static void ppgtt_unbind_vma(struct i915_vma *vma)
185 {
186 vma->vm->clear_range(vma->vm,
187 vma->node.start,
188 vma->size);
189 }
190
191 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
192 enum i915_cache_level level)
193 {
194 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
195 pte |= addr;
196
197 switch (level) {
198 case I915_CACHE_NONE:
199 pte |= PPAT_UNCACHED_INDEX;
200 break;
201 case I915_CACHE_WT:
202 pte |= PPAT_DISPLAY_ELLC_INDEX;
203 break;
204 default:
205 pte |= PPAT_CACHED_INDEX;
206 break;
207 }
208
209 return pte;
210 }
211
212 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
213 const enum i915_cache_level level)
214 {
215 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
216 pde |= addr;
217 if (level != I915_CACHE_NONE)
218 pde |= PPAT_CACHED_PDE_INDEX;
219 else
220 pde |= PPAT_UNCACHED_INDEX;
221 return pde;
222 }
223
224 #define gen8_pdpe_encode gen8_pde_encode
225 #define gen8_pml4e_encode gen8_pde_encode
226
227 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
228 enum i915_cache_level level,
229 u32 unused)
230 {
231 gen6_pte_t pte = GEN6_PTE_VALID;
232 pte |= GEN6_PTE_ADDR_ENCODE(addr);
233
234 switch (level) {
235 case I915_CACHE_L3_LLC:
236 case I915_CACHE_LLC:
237 pte |= GEN6_PTE_CACHE_LLC;
238 break;
239 case I915_CACHE_NONE:
240 pte |= GEN6_PTE_UNCACHED;
241 break;
242 default:
243 MISSING_CASE(level);
244 }
245
246 return pte;
247 }
248
249 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
250 enum i915_cache_level level,
251 u32 unused)
252 {
253 gen6_pte_t pte = GEN6_PTE_VALID;
254 pte |= GEN6_PTE_ADDR_ENCODE(addr);
255
256 switch (level) {
257 case I915_CACHE_L3_LLC:
258 pte |= GEN7_PTE_CACHE_L3_LLC;
259 break;
260 case I915_CACHE_LLC:
261 pte |= GEN6_PTE_CACHE_LLC;
262 break;
263 case I915_CACHE_NONE:
264 pte |= GEN6_PTE_UNCACHED;
265 break;
266 default:
267 MISSING_CASE(level);
268 }
269
270 return pte;
271 }
272
273 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
274 enum i915_cache_level level,
275 u32 flags)
276 {
277 gen6_pte_t pte = GEN6_PTE_VALID;
278 pte |= GEN6_PTE_ADDR_ENCODE(addr);
279
280 if (!(flags & PTE_READ_ONLY))
281 pte |= BYT_PTE_WRITEABLE;
282
283 if (level != I915_CACHE_NONE)
284 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
285
286 return pte;
287 }
288
289 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
290 enum i915_cache_level level,
291 u32 unused)
292 {
293 gen6_pte_t pte = GEN6_PTE_VALID;
294 pte |= HSW_PTE_ADDR_ENCODE(addr);
295
296 if (level != I915_CACHE_NONE)
297 pte |= HSW_WB_LLC_AGE3;
298
299 return pte;
300 }
301
302 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
303 enum i915_cache_level level,
304 u32 unused)
305 {
306 gen6_pte_t pte = GEN6_PTE_VALID;
307 pte |= HSW_PTE_ADDR_ENCODE(addr);
308
309 switch (level) {
310 case I915_CACHE_NONE:
311 break;
312 case I915_CACHE_WT:
313 pte |= HSW_WT_ELLC_LLC_AGE3;
314 break;
315 default:
316 pte |= HSW_WB_ELLC_LLC_AGE3;
317 break;
318 }
319
320 return pte;
321 }
322
323 static int __setup_page_dma(struct drm_i915_private *dev_priv,
324 struct i915_page_dma *p, gfp_t flags)
325 {
326 struct device *kdev = &dev_priv->drm.pdev->dev;
327
328 p->page = alloc_page(flags);
329 if (!p->page)
330 return -ENOMEM;
331
332 p->daddr = dma_map_page(kdev,
333 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
334
335 if (dma_mapping_error(kdev, p->daddr)) {
336 __free_page(p->page);
337 return -EINVAL;
338 }
339
340 return 0;
341 }
342
343 static int setup_page_dma(struct drm_i915_private *dev_priv,
344 struct i915_page_dma *p)
345 {
346 return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
347 }
348
349 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
350 struct i915_page_dma *p)
351 {
352 struct pci_dev *pdev = dev_priv->drm.pdev;
353
354 if (WARN_ON(!p->page))
355 return;
356
357 dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
358 __free_page(p->page);
359 memset(p, 0, sizeof(*p));
360 }
361
362 static void *kmap_page_dma(struct i915_page_dma *p)
363 {
364 return kmap_atomic(p->page);
365 }
366
367 /* We use the flushing unmap only with ppgtt structures:
368 * page directories, page tables and scratch pages.
369 */
370 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
371 {
372 /* There are only few exceptions for gen >=6. chv and bxt.
373 * And we are not sure about the latter so play safe for now.
374 */
375 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
376 drm_clflush_virt_range(vaddr, PAGE_SIZE);
377
378 kunmap_atomic(vaddr);
379 }
380
381 #define kmap_px(px) kmap_page_dma(px_base(px))
382 #define kunmap_px(ppgtt, vaddr) \
383 kunmap_page_dma((ppgtt)->base.i915, (vaddr))
384
385 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
386 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
387 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
388 #define fill32_px(dev_priv, px, v) \
389 fill_page_dma_32((dev_priv), px_base(px), (v))
390
391 static void fill_page_dma(struct drm_i915_private *dev_priv,
392 struct i915_page_dma *p, const uint64_t val)
393 {
394 int i;
395 uint64_t * const vaddr = kmap_page_dma(p);
396
397 for (i = 0; i < 512; i++)
398 vaddr[i] = val;
399
400 kunmap_page_dma(dev_priv, vaddr);
401 }
402
403 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
404 struct i915_page_dma *p, const uint32_t val32)
405 {
406 uint64_t v = val32;
407
408 v = v << 32 | val32;
409
410 fill_page_dma(dev_priv, p, v);
411 }
412
413 static int
414 setup_scratch_page(struct drm_i915_private *dev_priv,
415 struct i915_page_dma *scratch,
416 gfp_t gfp)
417 {
418 return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
419 }
420
421 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
422 struct i915_page_dma *scratch)
423 {
424 cleanup_page_dma(dev_priv, scratch);
425 }
426
427 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
428 {
429 struct i915_page_table *pt;
430 const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
431 int ret = -ENOMEM;
432
433 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
434 if (!pt)
435 return ERR_PTR(-ENOMEM);
436
437 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
438 GFP_KERNEL);
439
440 if (!pt->used_ptes)
441 goto fail_bitmap;
442
443 ret = setup_px(dev_priv, pt);
444 if (ret)
445 goto fail_page_m;
446
447 return pt;
448
449 fail_page_m:
450 kfree(pt->used_ptes);
451 fail_bitmap:
452 kfree(pt);
453
454 return ERR_PTR(ret);
455 }
456
457 static void free_pt(struct drm_i915_private *dev_priv,
458 struct i915_page_table *pt)
459 {
460 cleanup_px(dev_priv, pt);
461 kfree(pt->used_ptes);
462 kfree(pt);
463 }
464
465 static void gen8_initialize_pt(struct i915_address_space *vm,
466 struct i915_page_table *pt)
467 {
468 gen8_pte_t scratch_pte;
469
470 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
471 I915_CACHE_LLC);
472
473 fill_px(vm->i915, pt, scratch_pte);
474 }
475
476 static void gen6_initialize_pt(struct i915_address_space *vm,
477 struct i915_page_table *pt)
478 {
479 gen6_pte_t scratch_pte;
480
481 WARN_ON(vm->scratch_page.daddr == 0);
482
483 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
484 I915_CACHE_LLC, 0);
485
486 fill32_px(vm->i915, pt, scratch_pte);
487 }
488
489 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
490 {
491 struct i915_page_directory *pd;
492 int ret = -ENOMEM;
493
494 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
495 if (!pd)
496 return ERR_PTR(-ENOMEM);
497
498 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
499 sizeof(*pd->used_pdes), GFP_KERNEL);
500 if (!pd->used_pdes)
501 goto fail_bitmap;
502
503 ret = setup_px(dev_priv, pd);
504 if (ret)
505 goto fail_page_m;
506
507 return pd;
508
509 fail_page_m:
510 kfree(pd->used_pdes);
511 fail_bitmap:
512 kfree(pd);
513
514 return ERR_PTR(ret);
515 }
516
517 static void free_pd(struct drm_i915_private *dev_priv,
518 struct i915_page_directory *pd)
519 {
520 if (px_page(pd)) {
521 cleanup_px(dev_priv, pd);
522 kfree(pd->used_pdes);
523 kfree(pd);
524 }
525 }
526
527 static void gen8_initialize_pd(struct i915_address_space *vm,
528 struct i915_page_directory *pd)
529 {
530 gen8_pde_t scratch_pde;
531
532 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
533
534 fill_px(vm->i915, pd, scratch_pde);
535 }
536
537 static int __pdp_init(struct drm_i915_private *dev_priv,
538 struct i915_page_directory_pointer *pdp)
539 {
540 size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
541
542 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
543 sizeof(unsigned long),
544 GFP_KERNEL);
545 if (!pdp->used_pdpes)
546 return -ENOMEM;
547
548 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
549 GFP_KERNEL);
550 if (!pdp->page_directory) {
551 kfree(pdp->used_pdpes);
552 /* the PDP might be the statically allocated top level. Keep it
553 * as clean as possible */
554 pdp->used_pdpes = NULL;
555 return -ENOMEM;
556 }
557
558 return 0;
559 }
560
561 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
562 {
563 kfree(pdp->used_pdpes);
564 kfree(pdp->page_directory);
565 pdp->page_directory = NULL;
566 }
567
568 static struct
569 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
570 {
571 struct i915_page_directory_pointer *pdp;
572 int ret = -ENOMEM;
573
574 WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
575
576 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
577 if (!pdp)
578 return ERR_PTR(-ENOMEM);
579
580 ret = __pdp_init(dev_priv, pdp);
581 if (ret)
582 goto fail_bitmap;
583
584 ret = setup_px(dev_priv, pdp);
585 if (ret)
586 goto fail_page_m;
587
588 return pdp;
589
590 fail_page_m:
591 __pdp_fini(pdp);
592 fail_bitmap:
593 kfree(pdp);
594
595 return ERR_PTR(ret);
596 }
597
598 static void free_pdp(struct drm_i915_private *dev_priv,
599 struct i915_page_directory_pointer *pdp)
600 {
601 __pdp_fini(pdp);
602 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
603 cleanup_px(dev_priv, pdp);
604 kfree(pdp);
605 }
606 }
607
608 static void gen8_initialize_pdp(struct i915_address_space *vm,
609 struct i915_page_directory_pointer *pdp)
610 {
611 gen8_ppgtt_pdpe_t scratch_pdpe;
612
613 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
614
615 fill_px(vm->i915, pdp, scratch_pdpe);
616 }
617
618 static void gen8_initialize_pml4(struct i915_address_space *vm,
619 struct i915_pml4 *pml4)
620 {
621 gen8_ppgtt_pml4e_t scratch_pml4e;
622
623 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
624 I915_CACHE_LLC);
625
626 fill_px(vm->i915, pml4, scratch_pml4e);
627 }
628
629 static void
630 gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
631 struct i915_page_directory_pointer *pdp,
632 struct i915_page_directory *pd,
633 int index)
634 {
635 gen8_ppgtt_pdpe_t *page_directorypo;
636
637 if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
638 return;
639
640 page_directorypo = kmap_px(pdp);
641 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
642 kunmap_px(ppgtt, page_directorypo);
643 }
644
645 static void
646 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
647 struct i915_pml4 *pml4,
648 struct i915_page_directory_pointer *pdp,
649 int index)
650 {
651 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
652
653 WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
654 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
655 kunmap_px(ppgtt, pagemap);
656 }
657
658 /* Broadwell Page Directory Pointer Descriptors */
659 static int gen8_write_pdp(struct drm_i915_gem_request *req,
660 unsigned entry,
661 dma_addr_t addr)
662 {
663 struct intel_ring *ring = req->ring;
664 struct intel_engine_cs *engine = req->engine;
665 int ret;
666
667 BUG_ON(entry >= 4);
668
669 ret = intel_ring_begin(req, 6);
670 if (ret)
671 return ret;
672
673 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
674 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
675 intel_ring_emit(ring, upper_32_bits(addr));
676 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
677 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
678 intel_ring_emit(ring, lower_32_bits(addr));
679 intel_ring_advance(ring);
680
681 return 0;
682 }
683
684 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
685 struct drm_i915_gem_request *req)
686 {
687 int i, ret;
688
689 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
690 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
691
692 ret = gen8_write_pdp(req, i, pd_daddr);
693 if (ret)
694 return ret;
695 }
696
697 return 0;
698 }
699
700 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
701 struct drm_i915_gem_request *req)
702 {
703 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
704 }
705
706 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
707 * the page table structures, we mark them dirty so that
708 * context switching/execlist queuing code takes extra steps
709 * to ensure that tlbs are flushed.
710 */
711 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
712 {
713 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
714 }
715
716 /* Removes entries from a single page table, releasing it if it's empty.
717 * Caller can use the return value to update higher-level entries.
718 */
719 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
720 struct i915_page_table *pt,
721 uint64_t start,
722 uint64_t length)
723 {
724 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
725 unsigned int num_entries = gen8_pte_count(start, length);
726 unsigned int pte = gen8_pte_index(start);
727 unsigned int pte_end = pte + num_entries;
728 gen8_pte_t *pt_vaddr;
729 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
730 I915_CACHE_LLC);
731
732 if (WARN_ON(!px_page(pt)))
733 return false;
734
735 GEM_BUG_ON(pte_end > GEN8_PTES);
736
737 bitmap_clear(pt->used_ptes, pte, num_entries);
738
739 if (bitmap_empty(pt->used_ptes, GEN8_PTES))
740 return true;
741
742 pt_vaddr = kmap_px(pt);
743
744 while (pte < pte_end)
745 pt_vaddr[pte++] = scratch_pte;
746
747 kunmap_px(ppgtt, pt_vaddr);
748
749 return false;
750 }
751
752 /* Removes entries from a single page dir, releasing it if it's empty.
753 * Caller can use the return value to update higher-level entries
754 */
755 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
756 struct i915_page_directory *pd,
757 uint64_t start,
758 uint64_t length)
759 {
760 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
761 struct i915_page_table *pt;
762 uint64_t pde;
763 gen8_pde_t *pde_vaddr;
764 gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
765 I915_CACHE_LLC);
766
767 gen8_for_each_pde(pt, pd, start, length, pde) {
768 if (WARN_ON(!pd->page_table[pde]))
769 break;
770
771 if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
772 __clear_bit(pde, pd->used_pdes);
773 pde_vaddr = kmap_px(pd);
774 pde_vaddr[pde] = scratch_pde;
775 kunmap_px(ppgtt, pde_vaddr);
776 free_pt(vm->i915, pt);
777 }
778 }
779
780 if (bitmap_empty(pd->used_pdes, I915_PDES))
781 return true;
782
783 return false;
784 }
785
786 /* Removes entries from a single page dir pointer, releasing it if it's empty.
787 * Caller can use the return value to update higher-level entries
788 */
789 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
790 struct i915_page_directory_pointer *pdp,
791 uint64_t start,
792 uint64_t length)
793 {
794 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
795 struct i915_page_directory *pd;
796 uint64_t pdpe;
797 gen8_ppgtt_pdpe_t *pdpe_vaddr;
798 gen8_ppgtt_pdpe_t scratch_pdpe =
799 gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
800
801 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
802 if (WARN_ON(!pdp->page_directory[pdpe]))
803 break;
804
805 if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
806 __clear_bit(pdpe, pdp->used_pdpes);
807 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
808 pdpe_vaddr = kmap_px(pdp);
809 pdpe_vaddr[pdpe] = scratch_pdpe;
810 kunmap_px(ppgtt, pdpe_vaddr);
811 }
812 free_pd(vm->i915, pd);
813 }
814 }
815
816 mark_tlbs_dirty(ppgtt);
817
818 if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
819 return true;
820
821 return false;
822 }
823
824 /* Removes entries from a single pml4.
825 * This is the top-level structure in 4-level page tables used on gen8+.
826 * Empty entries are always scratch pml4e.
827 */
828 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
829 struct i915_pml4 *pml4,
830 uint64_t start,
831 uint64_t length)
832 {
833 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
834 struct i915_page_directory_pointer *pdp;
835 uint64_t pml4e;
836 gen8_ppgtt_pml4e_t *pml4e_vaddr;
837 gen8_ppgtt_pml4e_t scratch_pml4e =
838 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
839
840 GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915));
841
842 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
843 if (WARN_ON(!pml4->pdps[pml4e]))
844 break;
845
846 if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
847 __clear_bit(pml4e, pml4->used_pml4es);
848 pml4e_vaddr = kmap_px(pml4);
849 pml4e_vaddr[pml4e] = scratch_pml4e;
850 kunmap_px(ppgtt, pml4e_vaddr);
851 free_pdp(vm->i915, pdp);
852 }
853 }
854 }
855
856 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
857 uint64_t start, uint64_t length)
858 {
859 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
860
861 if (USES_FULL_48BIT_PPGTT(vm->i915))
862 gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
863 else
864 gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
865 }
866
867 static void
868 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
869 struct i915_page_directory_pointer *pdp,
870 struct sg_page_iter *sg_iter,
871 uint64_t start,
872 enum i915_cache_level cache_level)
873 {
874 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
875 gen8_pte_t *pt_vaddr;
876 unsigned pdpe = gen8_pdpe_index(start);
877 unsigned pde = gen8_pde_index(start);
878 unsigned pte = gen8_pte_index(start);
879
880 pt_vaddr = NULL;
881
882 while (__sg_page_iter_next(sg_iter)) {
883 if (pt_vaddr == NULL) {
884 struct i915_page_directory *pd = pdp->page_directory[pdpe];
885 struct i915_page_table *pt = pd->page_table[pde];
886 pt_vaddr = kmap_px(pt);
887 }
888
889 pt_vaddr[pte] =
890 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
891 cache_level);
892 if (++pte == GEN8_PTES) {
893 kunmap_px(ppgtt, pt_vaddr);
894 pt_vaddr = NULL;
895 if (++pde == I915_PDES) {
896 if (++pdpe == I915_PDPES_PER_PDP(vm->i915))
897 break;
898 pde = 0;
899 }
900 pte = 0;
901 }
902 }
903
904 if (pt_vaddr)
905 kunmap_px(ppgtt, pt_vaddr);
906 }
907
908 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
909 struct sg_table *pages,
910 uint64_t start,
911 enum i915_cache_level cache_level,
912 u32 unused)
913 {
914 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
915 struct sg_page_iter sg_iter;
916
917 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
918
919 if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
920 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
921 cache_level);
922 } else {
923 struct i915_page_directory_pointer *pdp;
924 uint64_t pml4e;
925 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
926
927 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
928 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
929 start, cache_level);
930 }
931 }
932 }
933
934 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
935 struct i915_page_directory *pd)
936 {
937 int i;
938
939 if (!px_page(pd))
940 return;
941
942 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
943 if (WARN_ON(!pd->page_table[i]))
944 continue;
945
946 free_pt(dev_priv, pd->page_table[i]);
947 pd->page_table[i] = NULL;
948 }
949 }
950
951 static int gen8_init_scratch(struct i915_address_space *vm)
952 {
953 struct drm_i915_private *dev_priv = vm->i915;
954 int ret;
955
956 ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
957 if (ret)
958 return ret;
959
960 vm->scratch_pt = alloc_pt(dev_priv);
961 if (IS_ERR(vm->scratch_pt)) {
962 ret = PTR_ERR(vm->scratch_pt);
963 goto free_scratch_page;
964 }
965
966 vm->scratch_pd = alloc_pd(dev_priv);
967 if (IS_ERR(vm->scratch_pd)) {
968 ret = PTR_ERR(vm->scratch_pd);
969 goto free_pt;
970 }
971
972 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
973 vm->scratch_pdp = alloc_pdp(dev_priv);
974 if (IS_ERR(vm->scratch_pdp)) {
975 ret = PTR_ERR(vm->scratch_pdp);
976 goto free_pd;
977 }
978 }
979
980 gen8_initialize_pt(vm, vm->scratch_pt);
981 gen8_initialize_pd(vm, vm->scratch_pd);
982 if (USES_FULL_48BIT_PPGTT(dev_priv))
983 gen8_initialize_pdp(vm, vm->scratch_pdp);
984
985 return 0;
986
987 free_pd:
988 free_pd(dev_priv, vm->scratch_pd);
989 free_pt:
990 free_pt(dev_priv, vm->scratch_pt);
991 free_scratch_page:
992 cleanup_scratch_page(dev_priv, &vm->scratch_page);
993
994 return ret;
995 }
996
997 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
998 {
999 enum vgt_g2v_type msg;
1000 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1001 int i;
1002
1003 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1004 u64 daddr = px_dma(&ppgtt->pml4);
1005
1006 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1007 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1008
1009 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1010 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1011 } else {
1012 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1013 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1014
1015 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1016 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1017 }
1018
1019 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1020 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1021 }
1022
1023 I915_WRITE(vgtif_reg(g2v_notify), msg);
1024
1025 return 0;
1026 }
1027
1028 static void gen8_free_scratch(struct i915_address_space *vm)
1029 {
1030 struct drm_i915_private *dev_priv = vm->i915;
1031
1032 if (USES_FULL_48BIT_PPGTT(dev_priv))
1033 free_pdp(dev_priv, vm->scratch_pdp);
1034 free_pd(dev_priv, vm->scratch_pd);
1035 free_pt(dev_priv, vm->scratch_pt);
1036 cleanup_scratch_page(dev_priv, &vm->scratch_page);
1037 }
1038
1039 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1040 struct i915_page_directory_pointer *pdp)
1041 {
1042 int i;
1043
1044 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1045 if (WARN_ON(!pdp->page_directory[i]))
1046 continue;
1047
1048 gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1049 free_pd(dev_priv, pdp->page_directory[i]);
1050 }
1051
1052 free_pdp(dev_priv, pdp);
1053 }
1054
1055 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1056 {
1057 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1058 int i;
1059
1060 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1061 if (WARN_ON(!ppgtt->pml4.pdps[i]))
1062 continue;
1063
1064 gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1065 }
1066
1067 cleanup_px(dev_priv, &ppgtt->pml4);
1068 }
1069
1070 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1071 {
1072 struct drm_i915_private *dev_priv = vm->i915;
1073 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1074
1075 if (intel_vgpu_active(dev_priv))
1076 gen8_ppgtt_notify_vgt(ppgtt, false);
1077
1078 if (!USES_FULL_48BIT_PPGTT(dev_priv))
1079 gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1080 else
1081 gen8_ppgtt_cleanup_4lvl(ppgtt);
1082
1083 gen8_free_scratch(vm);
1084 }
1085
1086 /**
1087 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1088 * @vm: Master vm structure.
1089 * @pd: Page directory for this address range.
1090 * @start: Starting virtual address to begin allocations.
1091 * @length: Size of the allocations.
1092 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1093 * caller to free on error.
1094 *
1095 * Allocate the required number of page tables. Extremely similar to
1096 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1097 * the page directory boundary (instead of the page directory pointer). That
1098 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1099 * possible, and likely that the caller will need to use multiple calls of this
1100 * function to achieve the appropriate allocation.
1101 *
1102 * Return: 0 if success; negative error code otherwise.
1103 */
1104 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1105 struct i915_page_directory *pd,
1106 uint64_t start,
1107 uint64_t length,
1108 unsigned long *new_pts)
1109 {
1110 struct drm_i915_private *dev_priv = vm->i915;
1111 struct i915_page_table *pt;
1112 uint32_t pde;
1113
1114 gen8_for_each_pde(pt, pd, start, length, pde) {
1115 /* Don't reallocate page tables */
1116 if (test_bit(pde, pd->used_pdes)) {
1117 /* Scratch is never allocated this way */
1118 WARN_ON(pt == vm->scratch_pt);
1119 continue;
1120 }
1121
1122 pt = alloc_pt(dev_priv);
1123 if (IS_ERR(pt))
1124 goto unwind_out;
1125
1126 gen8_initialize_pt(vm, pt);
1127 pd->page_table[pde] = pt;
1128 __set_bit(pde, new_pts);
1129 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1130 }
1131
1132 return 0;
1133
1134 unwind_out:
1135 for_each_set_bit(pde, new_pts, I915_PDES)
1136 free_pt(dev_priv, pd->page_table[pde]);
1137
1138 return -ENOMEM;
1139 }
1140
1141 /**
1142 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1143 * @vm: Master vm structure.
1144 * @pdp: Page directory pointer for this address range.
1145 * @start: Starting virtual address to begin allocations.
1146 * @length: Size of the allocations.
1147 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1148 * caller to free on error.
1149 *
1150 * Allocate the required number of page directories starting at the pde index of
1151 * @start, and ending at the pde index @start + @length. This function will skip
1152 * over already allocated page directories within the range, and only allocate
1153 * new ones, setting the appropriate pointer within the pdp as well as the
1154 * correct position in the bitmap @new_pds.
1155 *
1156 * The function will only allocate the pages within the range for a give page
1157 * directory pointer. In other words, if @start + @length straddles a virtually
1158 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1159 * required by the caller, This is not currently possible, and the BUG in the
1160 * code will prevent it.
1161 *
1162 * Return: 0 if success; negative error code otherwise.
1163 */
1164 static int
1165 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1166 struct i915_page_directory_pointer *pdp,
1167 uint64_t start,
1168 uint64_t length,
1169 unsigned long *new_pds)
1170 {
1171 struct drm_i915_private *dev_priv = vm->i915;
1172 struct i915_page_directory *pd;
1173 uint32_t pdpe;
1174 uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1175
1176 WARN_ON(!bitmap_empty(new_pds, pdpes));
1177
1178 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1179 if (test_bit(pdpe, pdp->used_pdpes))
1180 continue;
1181
1182 pd = alloc_pd(dev_priv);
1183 if (IS_ERR(pd))
1184 goto unwind_out;
1185
1186 gen8_initialize_pd(vm, pd);
1187 pdp->page_directory[pdpe] = pd;
1188 __set_bit(pdpe, new_pds);
1189 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1190 }
1191
1192 return 0;
1193
1194 unwind_out:
1195 for_each_set_bit(pdpe, new_pds, pdpes)
1196 free_pd(dev_priv, pdp->page_directory[pdpe]);
1197
1198 return -ENOMEM;
1199 }
1200
1201 /**
1202 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1203 * @vm: Master vm structure.
1204 * @pml4: Page map level 4 for this address range.
1205 * @start: Starting virtual address to begin allocations.
1206 * @length: Size of the allocations.
1207 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1208 * caller to free on error.
1209 *
1210 * Allocate the required number of page directory pointers. Extremely similar to
1211 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1212 * The main difference is here we are limited by the pml4 boundary (instead of
1213 * the page directory pointer).
1214 *
1215 * Return: 0 if success; negative error code otherwise.
1216 */
1217 static int
1218 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1219 struct i915_pml4 *pml4,
1220 uint64_t start,
1221 uint64_t length,
1222 unsigned long *new_pdps)
1223 {
1224 struct drm_i915_private *dev_priv = vm->i915;
1225 struct i915_page_directory_pointer *pdp;
1226 uint32_t pml4e;
1227
1228 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1229
1230 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1231 if (!test_bit(pml4e, pml4->used_pml4es)) {
1232 pdp = alloc_pdp(dev_priv);
1233 if (IS_ERR(pdp))
1234 goto unwind_out;
1235
1236 gen8_initialize_pdp(vm, pdp);
1237 pml4->pdps[pml4e] = pdp;
1238 __set_bit(pml4e, new_pdps);
1239 trace_i915_page_directory_pointer_entry_alloc(vm,
1240 pml4e,
1241 start,
1242 GEN8_PML4E_SHIFT);
1243 }
1244 }
1245
1246 return 0;
1247
1248 unwind_out:
1249 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1250 free_pdp(dev_priv, pml4->pdps[pml4e]);
1251
1252 return -ENOMEM;
1253 }
1254
1255 static void
1256 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1257 {
1258 kfree(new_pts);
1259 kfree(new_pds);
1260 }
1261
1262 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1263 * of these are based on the number of PDPEs in the system.
1264 */
1265 static
1266 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1267 unsigned long **new_pts,
1268 uint32_t pdpes)
1269 {
1270 unsigned long *pds;
1271 unsigned long *pts;
1272
1273 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1274 if (!pds)
1275 return -ENOMEM;
1276
1277 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1278 GFP_TEMPORARY);
1279 if (!pts)
1280 goto err_out;
1281
1282 *new_pds = pds;
1283 *new_pts = pts;
1284
1285 return 0;
1286
1287 err_out:
1288 free_gen8_temp_bitmaps(pds, pts);
1289 return -ENOMEM;
1290 }
1291
1292 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1293 struct i915_page_directory_pointer *pdp,
1294 uint64_t start,
1295 uint64_t length)
1296 {
1297 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1298 unsigned long *new_page_dirs, *new_page_tables;
1299 struct drm_i915_private *dev_priv = vm->i915;
1300 struct i915_page_directory *pd;
1301 const uint64_t orig_start = start;
1302 const uint64_t orig_length = length;
1303 uint32_t pdpe;
1304 uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1305 int ret;
1306
1307 /* Wrap is never okay since we can only represent 48b, and we don't
1308 * actually use the other side of the canonical address space.
1309 */
1310 if (WARN_ON(start + length < start))
1311 return -ENODEV;
1312
1313 if (WARN_ON(start + length > vm->total))
1314 return -ENODEV;
1315
1316 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1317 if (ret)
1318 return ret;
1319
1320 /* Do the allocations first so we can easily bail out */
1321 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1322 new_page_dirs);
1323 if (ret) {
1324 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1325 return ret;
1326 }
1327
1328 /* For every page directory referenced, allocate page tables */
1329 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1330 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1331 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1332 if (ret)
1333 goto err_out;
1334 }
1335
1336 start = orig_start;
1337 length = orig_length;
1338
1339 /* Allocations have completed successfully, so set the bitmaps, and do
1340 * the mappings. */
1341 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1342 gen8_pde_t *const page_directory = kmap_px(pd);
1343 struct i915_page_table *pt;
1344 uint64_t pd_len = length;
1345 uint64_t pd_start = start;
1346 uint32_t pde;
1347
1348 /* Every pd should be allocated, we just did that above. */
1349 WARN_ON(!pd);
1350
1351 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1352 /* Same reasoning as pd */
1353 WARN_ON(!pt);
1354 WARN_ON(!pd_len);
1355 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1356
1357 /* Set our used ptes within the page table */
1358 bitmap_set(pt->used_ptes,
1359 gen8_pte_index(pd_start),
1360 gen8_pte_count(pd_start, pd_len));
1361
1362 /* Our pde is now pointing to the pagetable, pt */
1363 __set_bit(pde, pd->used_pdes);
1364
1365 /* Map the PDE to the page table */
1366 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1367 I915_CACHE_LLC);
1368 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1369 gen8_pte_index(start),
1370 gen8_pte_count(start, length),
1371 GEN8_PTES);
1372
1373 /* NB: We haven't yet mapped ptes to pages. At this
1374 * point we're still relying on insert_entries() */
1375 }
1376
1377 kunmap_px(ppgtt, page_directory);
1378 __set_bit(pdpe, pdp->used_pdpes);
1379 gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1380 }
1381
1382 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1383 mark_tlbs_dirty(ppgtt);
1384 return 0;
1385
1386 err_out:
1387 while (pdpe--) {
1388 unsigned long temp;
1389
1390 for_each_set_bit(temp, new_page_tables + pdpe *
1391 BITS_TO_LONGS(I915_PDES), I915_PDES)
1392 free_pt(dev_priv,
1393 pdp->page_directory[pdpe]->page_table[temp]);
1394 }
1395
1396 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1397 free_pd(dev_priv, pdp->page_directory[pdpe]);
1398
1399 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1400 mark_tlbs_dirty(ppgtt);
1401 return ret;
1402 }
1403
1404 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1405 struct i915_pml4 *pml4,
1406 uint64_t start,
1407 uint64_t length)
1408 {
1409 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1410 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1411 struct i915_page_directory_pointer *pdp;
1412 uint64_t pml4e;
1413 int ret = 0;
1414
1415 /* Do the pml4 allocations first, so we don't need to track the newly
1416 * allocated tables below the pdp */
1417 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1418
1419 /* The pagedirectory and pagetable allocations are done in the shared 3
1420 * and 4 level code. Just allocate the pdps.
1421 */
1422 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1423 new_pdps);
1424 if (ret)
1425 return ret;
1426
1427 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1428 "The allocation has spanned more than 512GB. "
1429 "It is highly likely this is incorrect.");
1430
1431 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1432 WARN_ON(!pdp);
1433
1434 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1435 if (ret)
1436 goto err_out;
1437
1438 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1439 }
1440
1441 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1442 GEN8_PML4ES_PER_PML4);
1443
1444 return 0;
1445
1446 err_out:
1447 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1448 gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]);
1449
1450 return ret;
1451 }
1452
1453 static int gen8_alloc_va_range(struct i915_address_space *vm,
1454 uint64_t start, uint64_t length)
1455 {
1456 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1457
1458 if (USES_FULL_48BIT_PPGTT(vm->i915))
1459 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1460 else
1461 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1462 }
1463
1464 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1465 uint64_t start, uint64_t length,
1466 gen8_pte_t scratch_pte,
1467 struct seq_file *m)
1468 {
1469 struct i915_page_directory *pd;
1470 uint32_t pdpe;
1471
1472 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1473 struct i915_page_table *pt;
1474 uint64_t pd_len = length;
1475 uint64_t pd_start = start;
1476 uint32_t pde;
1477
1478 if (!test_bit(pdpe, pdp->used_pdpes))
1479 continue;
1480
1481 seq_printf(m, "\tPDPE #%d\n", pdpe);
1482 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1483 uint32_t pte;
1484 gen8_pte_t *pt_vaddr;
1485
1486 if (!test_bit(pde, pd->used_pdes))
1487 continue;
1488
1489 pt_vaddr = kmap_px(pt);
1490 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1491 uint64_t va =
1492 (pdpe << GEN8_PDPE_SHIFT) |
1493 (pde << GEN8_PDE_SHIFT) |
1494 (pte << GEN8_PTE_SHIFT);
1495 int i;
1496 bool found = false;
1497
1498 for (i = 0; i < 4; i++)
1499 if (pt_vaddr[pte + i] != scratch_pte)
1500 found = true;
1501 if (!found)
1502 continue;
1503
1504 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1505 for (i = 0; i < 4; i++) {
1506 if (pt_vaddr[pte + i] != scratch_pte)
1507 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1508 else
1509 seq_puts(m, " SCRATCH ");
1510 }
1511 seq_puts(m, "\n");
1512 }
1513 /* don't use kunmap_px, it could trigger
1514 * an unnecessary flush.
1515 */
1516 kunmap_atomic(pt_vaddr);
1517 }
1518 }
1519 }
1520
1521 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1522 {
1523 struct i915_address_space *vm = &ppgtt->base;
1524 uint64_t start = ppgtt->base.start;
1525 uint64_t length = ppgtt->base.total;
1526 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1527 I915_CACHE_LLC);
1528
1529 if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
1530 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1531 } else {
1532 uint64_t pml4e;
1533 struct i915_pml4 *pml4 = &ppgtt->pml4;
1534 struct i915_page_directory_pointer *pdp;
1535
1536 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1537 if (!test_bit(pml4e, pml4->used_pml4es))
1538 continue;
1539
1540 seq_printf(m, " PML4E #%llu\n", pml4e);
1541 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1542 }
1543 }
1544 }
1545
1546 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1547 {
1548 unsigned long *new_page_dirs, *new_page_tables;
1549 uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1550 int ret;
1551
1552 /* We allocate temp bitmap for page tables for no gain
1553 * but as this is for init only, lets keep the things simple
1554 */
1555 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1556 if (ret)
1557 return ret;
1558
1559 /* Allocate for all pdps regardless of how the ppgtt
1560 * was defined.
1561 */
1562 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1563 0, 1ULL << 32,
1564 new_page_dirs);
1565 if (!ret)
1566 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1567
1568 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1569
1570 return ret;
1571 }
1572
1573 /*
1574 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1575 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1576 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1577 * space.
1578 *
1579 */
1580 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1581 {
1582 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1583 int ret;
1584
1585 ret = gen8_init_scratch(&ppgtt->base);
1586 if (ret)
1587 return ret;
1588
1589 ppgtt->base.start = 0;
1590 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1591 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1592 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1593 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1594 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1595 ppgtt->base.bind_vma = ppgtt_bind_vma;
1596 ppgtt->debug_dump = gen8_dump_ppgtt;
1597
1598 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1599 ret = setup_px(dev_priv, &ppgtt->pml4);
1600 if (ret)
1601 goto free_scratch;
1602
1603 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1604
1605 ppgtt->base.total = 1ULL << 48;
1606 ppgtt->switch_mm = gen8_48b_mm_switch;
1607 } else {
1608 ret = __pdp_init(dev_priv, &ppgtt->pdp);
1609 if (ret)
1610 goto free_scratch;
1611
1612 ppgtt->base.total = 1ULL << 32;
1613 ppgtt->switch_mm = gen8_legacy_mm_switch;
1614 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1615 0, 0,
1616 GEN8_PML4E_SHIFT);
1617
1618 if (intel_vgpu_active(dev_priv)) {
1619 ret = gen8_preallocate_top_level_pdps(ppgtt);
1620 if (ret)
1621 goto free_scratch;
1622 }
1623 }
1624
1625 if (intel_vgpu_active(dev_priv))
1626 gen8_ppgtt_notify_vgt(ppgtt, true);
1627
1628 return 0;
1629
1630 free_scratch:
1631 gen8_free_scratch(&ppgtt->base);
1632 return ret;
1633 }
1634
1635 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1636 {
1637 struct i915_address_space *vm = &ppgtt->base;
1638 struct i915_page_table *unused;
1639 gen6_pte_t scratch_pte;
1640 uint32_t pd_entry;
1641 uint32_t pte, pde;
1642 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1643
1644 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1645 I915_CACHE_LLC, 0);
1646
1647 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1648 u32 expected;
1649 gen6_pte_t *pt_vaddr;
1650 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1651 pd_entry = readl(ppgtt->pd_addr + pde);
1652 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1653
1654 if (pd_entry != expected)
1655 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1656 pde,
1657 pd_entry,
1658 expected);
1659 seq_printf(m, "\tPDE: %x\n", pd_entry);
1660
1661 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1662
1663 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1664 unsigned long va =
1665 (pde * PAGE_SIZE * GEN6_PTES) +
1666 (pte * PAGE_SIZE);
1667 int i;
1668 bool found = false;
1669 for (i = 0; i < 4; i++)
1670 if (pt_vaddr[pte + i] != scratch_pte)
1671 found = true;
1672 if (!found)
1673 continue;
1674
1675 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1676 for (i = 0; i < 4; i++) {
1677 if (pt_vaddr[pte + i] != scratch_pte)
1678 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1679 else
1680 seq_puts(m, " SCRATCH ");
1681 }
1682 seq_puts(m, "\n");
1683 }
1684 kunmap_px(ppgtt, pt_vaddr);
1685 }
1686 }
1687
1688 /* Write pde (index) from the page directory @pd to the page table @pt */
1689 static void gen6_write_pde(struct i915_page_directory *pd,
1690 const int pde, struct i915_page_table *pt)
1691 {
1692 /* Caller needs to make sure the write completes if necessary */
1693 struct i915_hw_ppgtt *ppgtt =
1694 container_of(pd, struct i915_hw_ppgtt, pd);
1695 u32 pd_entry;
1696
1697 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1698 pd_entry |= GEN6_PDE_VALID;
1699
1700 writel(pd_entry, ppgtt->pd_addr + pde);
1701 }
1702
1703 /* Write all the page tables found in the ppgtt structure to incrementing page
1704 * directories. */
1705 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1706 struct i915_page_directory *pd,
1707 uint32_t start, uint32_t length)
1708 {
1709 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1710 struct i915_page_table *pt;
1711 uint32_t pde;
1712
1713 gen6_for_each_pde(pt, pd, start, length, pde)
1714 gen6_write_pde(pd, pde, pt);
1715
1716 /* Make sure write is complete before other code can use this page
1717 * table. Also require for WC mapped PTEs */
1718 readl(ggtt->gsm);
1719 }
1720
1721 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1722 {
1723 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1724
1725 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1726 }
1727
1728 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1729 struct drm_i915_gem_request *req)
1730 {
1731 struct intel_ring *ring = req->ring;
1732 struct intel_engine_cs *engine = req->engine;
1733 int ret;
1734
1735 /* NB: TLBs must be flushed and invalidated before a switch */
1736 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1737 if (ret)
1738 return ret;
1739
1740 ret = intel_ring_begin(req, 6);
1741 if (ret)
1742 return ret;
1743
1744 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1745 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1746 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1747 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1748 intel_ring_emit(ring, get_pd_offset(ppgtt));
1749 intel_ring_emit(ring, MI_NOOP);
1750 intel_ring_advance(ring);
1751
1752 return 0;
1753 }
1754
1755 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1756 struct drm_i915_gem_request *req)
1757 {
1758 struct intel_ring *ring = req->ring;
1759 struct intel_engine_cs *engine = req->engine;
1760 int ret;
1761
1762 /* NB: TLBs must be flushed and invalidated before a switch */
1763 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1764 if (ret)
1765 return ret;
1766
1767 ret = intel_ring_begin(req, 6);
1768 if (ret)
1769 return ret;
1770
1771 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1772 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1773 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1774 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1775 intel_ring_emit(ring, get_pd_offset(ppgtt));
1776 intel_ring_emit(ring, MI_NOOP);
1777 intel_ring_advance(ring);
1778
1779 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1780 if (engine->id != RCS) {
1781 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1782 if (ret)
1783 return ret;
1784 }
1785
1786 return 0;
1787 }
1788
1789 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1790 struct drm_i915_gem_request *req)
1791 {
1792 struct intel_engine_cs *engine = req->engine;
1793 struct drm_i915_private *dev_priv = req->i915;
1794
1795 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1796 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1797 return 0;
1798 }
1799
1800 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1801 {
1802 struct intel_engine_cs *engine;
1803 enum intel_engine_id id;
1804
1805 for_each_engine(engine, dev_priv, id) {
1806 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1807 GEN8_GFX_PPGTT_48B : 0;
1808 I915_WRITE(RING_MODE_GEN7(engine),
1809 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1810 }
1811 }
1812
1813 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1814 {
1815 struct intel_engine_cs *engine;
1816 uint32_t ecochk, ecobits;
1817 enum intel_engine_id id;
1818
1819 ecobits = I915_READ(GAC_ECO_BITS);
1820 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1821
1822 ecochk = I915_READ(GAM_ECOCHK);
1823 if (IS_HASWELL(dev_priv)) {
1824 ecochk |= ECOCHK_PPGTT_WB_HSW;
1825 } else {
1826 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1827 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1828 }
1829 I915_WRITE(GAM_ECOCHK, ecochk);
1830
1831 for_each_engine(engine, dev_priv, id) {
1832 /* GFX_MODE is per-ring on gen7+ */
1833 I915_WRITE(RING_MODE_GEN7(engine),
1834 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1835 }
1836 }
1837
1838 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1839 {
1840 uint32_t ecochk, gab_ctl, ecobits;
1841
1842 ecobits = I915_READ(GAC_ECO_BITS);
1843 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1844 ECOBITS_PPGTT_CACHE64B);
1845
1846 gab_ctl = I915_READ(GAB_CTL);
1847 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1848
1849 ecochk = I915_READ(GAM_ECOCHK);
1850 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1851
1852 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1853 }
1854
1855 /* PPGTT support for Sandybdrige/Gen6 and later */
1856 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1857 uint64_t start,
1858 uint64_t length)
1859 {
1860 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1861 gen6_pte_t *pt_vaddr, scratch_pte;
1862 unsigned first_entry = start >> PAGE_SHIFT;
1863 unsigned num_entries = length >> PAGE_SHIFT;
1864 unsigned act_pt = first_entry / GEN6_PTES;
1865 unsigned first_pte = first_entry % GEN6_PTES;
1866 unsigned last_pte, i;
1867
1868 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1869 I915_CACHE_LLC, 0);
1870
1871 while (num_entries) {
1872 last_pte = first_pte + num_entries;
1873 if (last_pte > GEN6_PTES)
1874 last_pte = GEN6_PTES;
1875
1876 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1877
1878 for (i = first_pte; i < last_pte; i++)
1879 pt_vaddr[i] = scratch_pte;
1880
1881 kunmap_px(ppgtt, pt_vaddr);
1882
1883 num_entries -= last_pte - first_pte;
1884 first_pte = 0;
1885 act_pt++;
1886 }
1887 }
1888
1889 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1890 struct sg_table *pages,
1891 uint64_t start,
1892 enum i915_cache_level cache_level, u32 flags)
1893 {
1894 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1895 unsigned first_entry = start >> PAGE_SHIFT;
1896 unsigned act_pt = first_entry / GEN6_PTES;
1897 unsigned act_pte = first_entry % GEN6_PTES;
1898 gen6_pte_t *pt_vaddr = NULL;
1899 struct sgt_iter sgt_iter;
1900 dma_addr_t addr;
1901
1902 for_each_sgt_dma(addr, sgt_iter, pages) {
1903 if (pt_vaddr == NULL)
1904 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1905
1906 pt_vaddr[act_pte] =
1907 vm->pte_encode(addr, cache_level, flags);
1908
1909 if (++act_pte == GEN6_PTES) {
1910 kunmap_px(ppgtt, pt_vaddr);
1911 pt_vaddr = NULL;
1912 act_pt++;
1913 act_pte = 0;
1914 }
1915 }
1916
1917 if (pt_vaddr)
1918 kunmap_px(ppgtt, pt_vaddr);
1919 }
1920
1921 static int gen6_alloc_va_range(struct i915_address_space *vm,
1922 uint64_t start_in, uint64_t length_in)
1923 {
1924 DECLARE_BITMAP(new_page_tables, I915_PDES);
1925 struct drm_i915_private *dev_priv = vm->i915;
1926 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1927 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1928 struct i915_page_table *pt;
1929 uint32_t start, length, start_save, length_save;
1930 uint32_t pde;
1931 int ret;
1932
1933 if (WARN_ON(start_in + length_in > ppgtt->base.total))
1934 return -ENODEV;
1935
1936 start = start_save = start_in;
1937 length = length_save = length_in;
1938
1939 bitmap_zero(new_page_tables, I915_PDES);
1940
1941 /* The allocation is done in two stages so that we can bail out with
1942 * minimal amount of pain. The first stage finds new page tables that
1943 * need allocation. The second stage marks use ptes within the page
1944 * tables.
1945 */
1946 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1947 if (pt != vm->scratch_pt) {
1948 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1949 continue;
1950 }
1951
1952 /* We've already allocated a page table */
1953 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1954
1955 pt = alloc_pt(dev_priv);
1956 if (IS_ERR(pt)) {
1957 ret = PTR_ERR(pt);
1958 goto unwind_out;
1959 }
1960
1961 gen6_initialize_pt(vm, pt);
1962
1963 ppgtt->pd.page_table[pde] = pt;
1964 __set_bit(pde, new_page_tables);
1965 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1966 }
1967
1968 start = start_save;
1969 length = length_save;
1970
1971 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1972 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1973
1974 bitmap_zero(tmp_bitmap, GEN6_PTES);
1975 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1976 gen6_pte_count(start, length));
1977
1978 if (__test_and_clear_bit(pde, new_page_tables))
1979 gen6_write_pde(&ppgtt->pd, pde, pt);
1980
1981 trace_i915_page_table_entry_map(vm, pde, pt,
1982 gen6_pte_index(start),
1983 gen6_pte_count(start, length),
1984 GEN6_PTES);
1985 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1986 GEN6_PTES);
1987 }
1988
1989 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1990
1991 /* Make sure write is complete before other code can use this page
1992 * table. Also require for WC mapped PTEs */
1993 readl(ggtt->gsm);
1994
1995 mark_tlbs_dirty(ppgtt);
1996 return 0;
1997
1998 unwind_out:
1999 for_each_set_bit(pde, new_page_tables, I915_PDES) {
2000 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
2001
2002 ppgtt->pd.page_table[pde] = vm->scratch_pt;
2003 free_pt(dev_priv, pt);
2004 }
2005
2006 mark_tlbs_dirty(ppgtt);
2007 return ret;
2008 }
2009
2010 static int gen6_init_scratch(struct i915_address_space *vm)
2011 {
2012 struct drm_i915_private *dev_priv = vm->i915;
2013 int ret;
2014
2015 ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2016 if (ret)
2017 return ret;
2018
2019 vm->scratch_pt = alloc_pt(dev_priv);
2020 if (IS_ERR(vm->scratch_pt)) {
2021 cleanup_scratch_page(dev_priv, &vm->scratch_page);
2022 return PTR_ERR(vm->scratch_pt);
2023 }
2024
2025 gen6_initialize_pt(vm, vm->scratch_pt);
2026
2027 return 0;
2028 }
2029
2030 static void gen6_free_scratch(struct i915_address_space *vm)
2031 {
2032 struct drm_i915_private *dev_priv = vm->i915;
2033
2034 free_pt(dev_priv, vm->scratch_pt);
2035 cleanup_scratch_page(dev_priv, &vm->scratch_page);
2036 }
2037
2038 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2039 {
2040 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2041 struct i915_page_directory *pd = &ppgtt->pd;
2042 struct drm_i915_private *dev_priv = vm->i915;
2043 struct i915_page_table *pt;
2044 uint32_t pde;
2045
2046 drm_mm_remove_node(&ppgtt->node);
2047
2048 gen6_for_all_pdes(pt, pd, pde)
2049 if (pt != vm->scratch_pt)
2050 free_pt(dev_priv, pt);
2051
2052 gen6_free_scratch(vm);
2053 }
2054
2055 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2056 {
2057 struct i915_address_space *vm = &ppgtt->base;
2058 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2059 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2060 bool retried = false;
2061 int ret;
2062
2063 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2064 * allocator works in address space sizes, so it's multiplied by page
2065 * size. We allocate at the top of the GTT to avoid fragmentation.
2066 */
2067 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2068
2069 ret = gen6_init_scratch(vm);
2070 if (ret)
2071 return ret;
2072
2073 alloc:
2074 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2075 &ppgtt->node, GEN6_PD_SIZE,
2076 GEN6_PD_ALIGN, 0,
2077 0, ggtt->base.total,
2078 DRM_MM_TOPDOWN);
2079 if (ret == -ENOSPC && !retried) {
2080 ret = i915_gem_evict_something(&ggtt->base,
2081 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2082 I915_CACHE_NONE,
2083 0, ggtt->base.total,
2084 0);
2085 if (ret)
2086 goto err_out;
2087
2088 retried = true;
2089 goto alloc;
2090 }
2091
2092 if (ret)
2093 goto err_out;
2094
2095
2096 if (ppgtt->node.start < ggtt->mappable_end)
2097 DRM_DEBUG("Forced to use aperture for PDEs\n");
2098
2099 return 0;
2100
2101 err_out:
2102 gen6_free_scratch(vm);
2103 return ret;
2104 }
2105
2106 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2107 {
2108 return gen6_ppgtt_allocate_page_directories(ppgtt);
2109 }
2110
2111 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2112 uint64_t start, uint64_t length)
2113 {
2114 struct i915_page_table *unused;
2115 uint32_t pde;
2116
2117 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2118 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2119 }
2120
2121 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2122 {
2123 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2124 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2125 int ret;
2126
2127 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2128 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2129 ppgtt->switch_mm = gen6_mm_switch;
2130 else if (IS_HASWELL(dev_priv))
2131 ppgtt->switch_mm = hsw_mm_switch;
2132 else if (IS_GEN7(dev_priv))
2133 ppgtt->switch_mm = gen7_mm_switch;
2134 else
2135 BUG();
2136
2137 ret = gen6_ppgtt_alloc(ppgtt);
2138 if (ret)
2139 return ret;
2140
2141 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2142 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2143 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2144 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2145 ppgtt->base.bind_vma = ppgtt_bind_vma;
2146 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2147 ppgtt->base.start = 0;
2148 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2149 ppgtt->debug_dump = gen6_dump_ppgtt;
2150
2151 ppgtt->pd.base.ggtt_offset =
2152 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2153
2154 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2155 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2156
2157 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2158
2159 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2160
2161 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2162 ppgtt->node.size >> 20,
2163 ppgtt->node.start / PAGE_SIZE);
2164
2165 DRM_DEBUG("Adding PPGTT at offset %x\n",
2166 ppgtt->pd.base.ggtt_offset << 10);
2167
2168 return 0;
2169 }
2170
2171 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2172 struct drm_i915_private *dev_priv)
2173 {
2174 ppgtt->base.i915 = dev_priv;
2175
2176 if (INTEL_INFO(dev_priv)->gen < 8)
2177 return gen6_ppgtt_init(ppgtt);
2178 else
2179 return gen8_ppgtt_init(ppgtt);
2180 }
2181
2182 static void i915_address_space_init(struct i915_address_space *vm,
2183 struct drm_i915_private *dev_priv,
2184 const char *name)
2185 {
2186 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2187 drm_mm_init(&vm->mm, vm->start, vm->total);
2188 INIT_LIST_HEAD(&vm->active_list);
2189 INIT_LIST_HEAD(&vm->inactive_list);
2190 INIT_LIST_HEAD(&vm->unbound_list);
2191 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2192 }
2193
2194 static void i915_address_space_fini(struct i915_address_space *vm)
2195 {
2196 i915_gem_timeline_fini(&vm->timeline);
2197 drm_mm_takedown(&vm->mm);
2198 list_del(&vm->global_link);
2199 }
2200
2201 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2202 {
2203 /* This function is for gtt related workarounds. This function is
2204 * called on driver load and after a GPU reset, so you can place
2205 * workarounds here even if they get overwritten by GPU reset.
2206 */
2207 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2208 if (IS_BROADWELL(dev_priv))
2209 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2210 else if (IS_CHERRYVIEW(dev_priv))
2211 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2212 else if (IS_SKYLAKE(dev_priv))
2213 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2214 else if (IS_BROXTON(dev_priv))
2215 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2216 }
2217
2218 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2219 struct drm_i915_private *dev_priv,
2220 struct drm_i915_file_private *file_priv,
2221 const char *name)
2222 {
2223 int ret;
2224
2225 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2226 if (ret == 0) {
2227 kref_init(&ppgtt->ref);
2228 i915_address_space_init(&ppgtt->base, dev_priv, name);
2229 ppgtt->base.file = file_priv;
2230 }
2231
2232 return ret;
2233 }
2234
2235 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2236 {
2237 gtt_write_workarounds(dev_priv);
2238
2239 /* In the case of execlists, PPGTT is enabled by the context descriptor
2240 * and the PDPs are contained within the context itself. We don't
2241 * need to do anything here. */
2242 if (i915.enable_execlists)
2243 return 0;
2244
2245 if (!USES_PPGTT(dev_priv))
2246 return 0;
2247
2248 if (IS_GEN6(dev_priv))
2249 gen6_ppgtt_enable(dev_priv);
2250 else if (IS_GEN7(dev_priv))
2251 gen7_ppgtt_enable(dev_priv);
2252 else if (INTEL_GEN(dev_priv) >= 8)
2253 gen8_ppgtt_enable(dev_priv);
2254 else
2255 MISSING_CASE(INTEL_GEN(dev_priv));
2256
2257 return 0;
2258 }
2259
2260 struct i915_hw_ppgtt *
2261 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2262 struct drm_i915_file_private *fpriv,
2263 const char *name)
2264 {
2265 struct i915_hw_ppgtt *ppgtt;
2266 int ret;
2267
2268 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2269 if (!ppgtt)
2270 return ERR_PTR(-ENOMEM);
2271
2272 ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2273 if (ret) {
2274 kfree(ppgtt);
2275 return ERR_PTR(ret);
2276 }
2277
2278 trace_i915_ppgtt_create(&ppgtt->base);
2279
2280 return ppgtt;
2281 }
2282
2283 void i915_ppgtt_release(struct kref *kref)
2284 {
2285 struct i915_hw_ppgtt *ppgtt =
2286 container_of(kref, struct i915_hw_ppgtt, ref);
2287
2288 trace_i915_ppgtt_release(&ppgtt->base);
2289
2290 /* vmas should already be unbound and destroyed */
2291 WARN_ON(!list_empty(&ppgtt->base.active_list));
2292 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2293 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2294
2295 i915_address_space_fini(&ppgtt->base);
2296
2297 ppgtt->base.cleanup(&ppgtt->base);
2298 kfree(ppgtt);
2299 }
2300
2301 /* Certain Gen5 chipsets require require idling the GPU before
2302 * unmapping anything from the GTT when VT-d is enabled.
2303 */
2304 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2305 {
2306 #ifdef CONFIG_INTEL_IOMMU
2307 /* Query intel_iommu to see if we need the workaround. Presumably that
2308 * was loaded first.
2309 */
2310 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2311 return true;
2312 #endif
2313 return false;
2314 }
2315
2316 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2317 {
2318 struct intel_engine_cs *engine;
2319 enum intel_engine_id id;
2320
2321 if (INTEL_INFO(dev_priv)->gen < 6)
2322 return;
2323
2324 for_each_engine(engine, dev_priv, id) {
2325 u32 fault_reg;
2326 fault_reg = I915_READ(RING_FAULT_REG(engine));
2327 if (fault_reg & RING_FAULT_VALID) {
2328 DRM_DEBUG_DRIVER("Unexpected fault\n"
2329 "\tAddr: 0x%08lx\n"
2330 "\tAddress space: %s\n"
2331 "\tSource ID: %d\n"
2332 "\tType: %d\n",
2333 fault_reg & PAGE_MASK,
2334 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2335 RING_FAULT_SRCID(fault_reg),
2336 RING_FAULT_FAULT_TYPE(fault_reg));
2337 I915_WRITE(RING_FAULT_REG(engine),
2338 fault_reg & ~RING_FAULT_VALID);
2339 }
2340 }
2341
2342 /* Engine specific init may not have been done till this point. */
2343 if (dev_priv->engine[RCS])
2344 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2345 }
2346
2347 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2348 {
2349 if (INTEL_INFO(dev_priv)->gen < 6) {
2350 intel_gtt_chipset_flush();
2351 } else {
2352 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2353 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2354 }
2355 }
2356
2357 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2358 {
2359 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2360
2361 /* Don't bother messing with faults pre GEN6 as we have little
2362 * documentation supporting that it's a good idea.
2363 */
2364 if (INTEL_GEN(dev_priv) < 6)
2365 return;
2366
2367 i915_check_and_clear_faults(dev_priv);
2368
2369 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2370
2371 i915_ggtt_flush(dev_priv);
2372 }
2373
2374 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2375 struct sg_table *pages)
2376 {
2377 if (dma_map_sg(&obj->base.dev->pdev->dev,
2378 pages->sgl, pages->nents,
2379 PCI_DMA_BIDIRECTIONAL))
2380 return 0;
2381
2382 return -ENOSPC;
2383 }
2384
2385 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2386 {
2387 writeq(pte, addr);
2388 }
2389
2390 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2391 dma_addr_t addr,
2392 uint64_t offset,
2393 enum i915_cache_level level,
2394 u32 unused)
2395 {
2396 struct drm_i915_private *dev_priv = vm->i915;
2397 gen8_pte_t __iomem *pte =
2398 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2399 (offset >> PAGE_SHIFT);
2400
2401 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2402
2403 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2404 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2405 }
2406
2407 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2408 struct sg_table *st,
2409 uint64_t start,
2410 enum i915_cache_level level, u32 unused)
2411 {
2412 struct drm_i915_private *dev_priv = vm->i915;
2413 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2414 struct sgt_iter sgt_iter;
2415 gen8_pte_t __iomem *gtt_entries;
2416 gen8_pte_t gtt_entry;
2417 dma_addr_t addr;
2418 int i = 0;
2419
2420 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2421
2422 for_each_sgt_dma(addr, sgt_iter, st) {
2423 gtt_entry = gen8_pte_encode(addr, level);
2424 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2425 }
2426
2427 /*
2428 * XXX: This serves as a posting read to make sure that the PTE has
2429 * actually been updated. There is some concern that even though
2430 * registers and PTEs are within the same BAR that they are potentially
2431 * of NUMA access patterns. Therefore, even with the way we assume
2432 * hardware should work, we must keep this posting read for paranoia.
2433 */
2434 if (i != 0)
2435 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2436
2437 /* This next bit makes the above posting read even more important. We
2438 * want to flush the TLBs only after we're certain all the PTE updates
2439 * have finished.
2440 */
2441 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2442 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2443 }
2444
2445 struct insert_entries {
2446 struct i915_address_space *vm;
2447 struct sg_table *st;
2448 uint64_t start;
2449 enum i915_cache_level level;
2450 u32 flags;
2451 };
2452
2453 static int gen8_ggtt_insert_entries__cb(void *_arg)
2454 {
2455 struct insert_entries *arg = _arg;
2456 gen8_ggtt_insert_entries(arg->vm, arg->st,
2457 arg->start, arg->level, arg->flags);
2458 return 0;
2459 }
2460
2461 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2462 struct sg_table *st,
2463 uint64_t start,
2464 enum i915_cache_level level,
2465 u32 flags)
2466 {
2467 struct insert_entries arg = { vm, st, start, level, flags };
2468 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2469 }
2470
2471 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2472 dma_addr_t addr,
2473 uint64_t offset,
2474 enum i915_cache_level level,
2475 u32 flags)
2476 {
2477 struct drm_i915_private *dev_priv = vm->i915;
2478 gen6_pte_t __iomem *pte =
2479 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2480 (offset >> PAGE_SHIFT);
2481
2482 iowrite32(vm->pte_encode(addr, level, flags), pte);
2483
2484 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2485 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2486 }
2487
2488 /*
2489 * Binds an object into the global gtt with the specified cache level. The object
2490 * will be accessible to the GPU via commands whose operands reference offsets
2491 * within the global GTT as well as accessible by the GPU through the GMADR
2492 * mapped BAR (dev_priv->mm.gtt->gtt).
2493 */
2494 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2495 struct sg_table *st,
2496 uint64_t start,
2497 enum i915_cache_level level, u32 flags)
2498 {
2499 struct drm_i915_private *dev_priv = vm->i915;
2500 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2501 struct sgt_iter sgt_iter;
2502 gen6_pte_t __iomem *gtt_entries;
2503 gen6_pte_t gtt_entry;
2504 dma_addr_t addr;
2505 int i = 0;
2506
2507 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2508
2509 for_each_sgt_dma(addr, sgt_iter, st) {
2510 gtt_entry = vm->pte_encode(addr, level, flags);
2511 iowrite32(gtt_entry, &gtt_entries[i++]);
2512 }
2513
2514 /* XXX: This serves as a posting read to make sure that the PTE has
2515 * actually been updated. There is some concern that even though
2516 * registers and PTEs are within the same BAR that they are potentially
2517 * of NUMA access patterns. Therefore, even with the way we assume
2518 * hardware should work, we must keep this posting read for paranoia.
2519 */
2520 if (i != 0)
2521 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2522
2523 /* This next bit makes the above posting read even more important. We
2524 * want to flush the TLBs only after we're certain all the PTE updates
2525 * have finished.
2526 */
2527 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2528 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2529 }
2530
2531 static void nop_clear_range(struct i915_address_space *vm,
2532 uint64_t start, uint64_t length)
2533 {
2534 }
2535
2536 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2537 uint64_t start, uint64_t length)
2538 {
2539 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2540 unsigned first_entry = start >> PAGE_SHIFT;
2541 unsigned num_entries = length >> PAGE_SHIFT;
2542 gen8_pte_t scratch_pte, __iomem *gtt_base =
2543 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2544 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2545 int i;
2546
2547 if (WARN(num_entries > max_entries,
2548 "First entry = %d; Num entries = %d (max=%d)\n",
2549 first_entry, num_entries, max_entries))
2550 num_entries = max_entries;
2551
2552 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2553 I915_CACHE_LLC);
2554 for (i = 0; i < num_entries; i++)
2555 gen8_set_pte(&gtt_base[i], scratch_pte);
2556 readl(gtt_base);
2557 }
2558
2559 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2560 uint64_t start,
2561 uint64_t length)
2562 {
2563 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2564 unsigned first_entry = start >> PAGE_SHIFT;
2565 unsigned num_entries = length >> PAGE_SHIFT;
2566 gen6_pte_t scratch_pte, __iomem *gtt_base =
2567 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2568 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2569 int i;
2570
2571 if (WARN(num_entries > max_entries,
2572 "First entry = %d; Num entries = %d (max=%d)\n",
2573 first_entry, num_entries, max_entries))
2574 num_entries = max_entries;
2575
2576 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2577 I915_CACHE_LLC, 0);
2578
2579 for (i = 0; i < num_entries; i++)
2580 iowrite32(scratch_pte, &gtt_base[i]);
2581 readl(gtt_base);
2582 }
2583
2584 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2585 dma_addr_t addr,
2586 uint64_t offset,
2587 enum i915_cache_level cache_level,
2588 u32 unused)
2589 {
2590 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2591 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2592
2593 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2594 }
2595
2596 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2597 struct sg_table *pages,
2598 uint64_t start,
2599 enum i915_cache_level cache_level, u32 unused)
2600 {
2601 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2602 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2603
2604 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2605
2606 }
2607
2608 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2609 uint64_t start,
2610 uint64_t length)
2611 {
2612 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2613 }
2614
2615 static int ggtt_bind_vma(struct i915_vma *vma,
2616 enum i915_cache_level cache_level,
2617 u32 flags)
2618 {
2619 struct drm_i915_private *i915 = vma->vm->i915;
2620 struct drm_i915_gem_object *obj = vma->obj;
2621 u32 pte_flags = 0;
2622 int ret;
2623
2624 ret = i915_get_ggtt_vma_pages(vma);
2625 if (ret)
2626 return ret;
2627
2628 /* Currently applicable only to VLV */
2629 if (obj->gt_ro)
2630 pte_flags |= PTE_READ_ONLY;
2631
2632 intel_runtime_pm_get(i915);
2633 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2634 cache_level, pte_flags);
2635 intel_runtime_pm_put(i915);
2636
2637 /*
2638 * Without aliasing PPGTT there's no difference between
2639 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2640 * upgrade to both bound if we bind either to avoid double-binding.
2641 */
2642 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2643
2644 return 0;
2645 }
2646
2647 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2648 enum i915_cache_level cache_level,
2649 u32 flags)
2650 {
2651 struct drm_i915_private *i915 = vma->vm->i915;
2652 u32 pte_flags;
2653 int ret;
2654
2655 ret = i915_get_ggtt_vma_pages(vma);
2656 if (ret)
2657 return ret;
2658
2659 /* Currently applicable only to VLV */
2660 pte_flags = 0;
2661 if (vma->obj->gt_ro)
2662 pte_flags |= PTE_READ_ONLY;
2663
2664
2665 if (flags & I915_VMA_GLOBAL_BIND) {
2666 intel_runtime_pm_get(i915);
2667 vma->vm->insert_entries(vma->vm,
2668 vma->pages, vma->node.start,
2669 cache_level, pte_flags);
2670 intel_runtime_pm_put(i915);
2671 }
2672
2673 if (flags & I915_VMA_LOCAL_BIND) {
2674 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2675 appgtt->base.insert_entries(&appgtt->base,
2676 vma->pages, vma->node.start,
2677 cache_level, pte_flags);
2678 }
2679
2680 return 0;
2681 }
2682
2683 static void ggtt_unbind_vma(struct i915_vma *vma)
2684 {
2685 struct drm_i915_private *i915 = vma->vm->i915;
2686 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2687 const u64 size = min(vma->size, vma->node.size);
2688
2689 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2690 intel_runtime_pm_get(i915);
2691 vma->vm->clear_range(vma->vm,
2692 vma->node.start, size);
2693 intel_runtime_pm_put(i915);
2694 }
2695
2696 if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2697 appgtt->base.clear_range(&appgtt->base,
2698 vma->node.start, size);
2699 }
2700
2701 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2702 struct sg_table *pages)
2703 {
2704 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2705 struct device *kdev = &dev_priv->drm.pdev->dev;
2706 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2707
2708 if (unlikely(ggtt->do_idle_maps)) {
2709 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2710 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2711 /* Wait a bit, in hopes it avoids the hang */
2712 udelay(10);
2713 }
2714 }
2715
2716 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2717 }
2718
2719 static void i915_gtt_color_adjust(struct drm_mm_node *node,
2720 unsigned long color,
2721 u64 *start,
2722 u64 *end)
2723 {
2724 if (node->color != color)
2725 *start += 4096;
2726
2727 node = list_first_entry_or_null(&node->node_list,
2728 struct drm_mm_node,
2729 node_list);
2730 if (node && node->allocated && node->color != color)
2731 *end -= 4096;
2732 }
2733
2734 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2735 {
2736 /* Let GEM Manage all of the aperture.
2737 *
2738 * However, leave one page at the end still bound to the scratch page.
2739 * There are a number of places where the hardware apparently prefetches
2740 * past the end of the object, and we've seen multiple hangs with the
2741 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2742 * aperture. One page should be enough to keep any prefetching inside
2743 * of the aperture.
2744 */
2745 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2746 unsigned long hole_start, hole_end;
2747 struct i915_hw_ppgtt *ppgtt;
2748 struct drm_mm_node *entry;
2749 int ret;
2750
2751 ret = intel_vgt_balloon(dev_priv);
2752 if (ret)
2753 return ret;
2754
2755 /* Reserve a mappable slot for our lockless error capture */
2756 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2757 &ggtt->error_capture,
2758 4096, 0, -1,
2759 0, ggtt->mappable_end,
2760 0, 0);
2761 if (ret)
2762 return ret;
2763
2764 /* Clear any non-preallocated blocks */
2765 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2766 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767 hole_start, hole_end);
2768 ggtt->base.clear_range(&ggtt->base, hole_start,
2769 hole_end - hole_start);
2770 }
2771
2772 /* And finally clear the reserved guard page */
2773 ggtt->base.clear_range(&ggtt->base,
2774 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2775
2776 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2777 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2778 if (!ppgtt) {
2779 ret = -ENOMEM;
2780 goto err;
2781 }
2782
2783 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2784 if (ret)
2785 goto err_ppgtt;
2786
2787 if (ppgtt->base.allocate_va_range) {
2788 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2789 ppgtt->base.total);
2790 if (ret)
2791 goto err_ppgtt_cleanup;
2792 }
2793
2794 ppgtt->base.clear_range(&ppgtt->base,
2795 ppgtt->base.start,
2796 ppgtt->base.total);
2797
2798 dev_priv->mm.aliasing_ppgtt = ppgtt;
2799 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2800 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2801 }
2802
2803 return 0;
2804
2805 err_ppgtt_cleanup:
2806 ppgtt->base.cleanup(&ppgtt->base);
2807 err_ppgtt:
2808 kfree(ppgtt);
2809 err:
2810 drm_mm_remove_node(&ggtt->error_capture);
2811 return ret;
2812 }
2813
2814 /**
2815 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2816 * @dev_priv: i915 device
2817 */
2818 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2819 {
2820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2821
2822 if (dev_priv->mm.aliasing_ppgtt) {
2823 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2824 ppgtt->base.cleanup(&ppgtt->base);
2825 kfree(ppgtt);
2826 }
2827
2828 i915_gem_cleanup_stolen(&dev_priv->drm);
2829
2830 if (drm_mm_node_allocated(&ggtt->error_capture))
2831 drm_mm_remove_node(&ggtt->error_capture);
2832
2833 if (drm_mm_initialized(&ggtt->base.mm)) {
2834 intel_vgt_deballoon(dev_priv);
2835
2836 mutex_lock(&dev_priv->drm.struct_mutex);
2837 i915_address_space_fini(&ggtt->base);
2838 mutex_unlock(&dev_priv->drm.struct_mutex);
2839 }
2840
2841 ggtt->base.cleanup(&ggtt->base);
2842
2843 arch_phys_wc_del(ggtt->mtrr);
2844 io_mapping_fini(&ggtt->mappable);
2845 }
2846
2847 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2848 {
2849 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2850 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2851 return snb_gmch_ctl << 20;
2852 }
2853
2854 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2855 {
2856 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2857 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2858 if (bdw_gmch_ctl)
2859 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2860
2861 #ifdef CONFIG_X86_32
2862 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2863 if (bdw_gmch_ctl > 4)
2864 bdw_gmch_ctl = 4;
2865 #endif
2866
2867 return bdw_gmch_ctl << 20;
2868 }
2869
2870 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2871 {
2872 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2873 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2874
2875 if (gmch_ctrl)
2876 return 1 << (20 + gmch_ctrl);
2877
2878 return 0;
2879 }
2880
2881 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2882 {
2883 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2884 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2885 return snb_gmch_ctl << 25; /* 32 MB units */
2886 }
2887
2888 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2889 {
2890 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2891 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2892 return bdw_gmch_ctl << 25; /* 32 MB units */
2893 }
2894
2895 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2896 {
2897 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2898 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2899
2900 /*
2901 * 0x0 to 0x10: 32MB increments starting at 0MB
2902 * 0x11 to 0x16: 4MB increments starting at 8MB
2903 * 0x17 to 0x1d: 4MB increments start at 36MB
2904 */
2905 if (gmch_ctrl < 0x11)
2906 return gmch_ctrl << 25;
2907 else if (gmch_ctrl < 0x17)
2908 return (gmch_ctrl - 0x11 + 2) << 22;
2909 else
2910 return (gmch_ctrl - 0x17 + 9) << 22;
2911 }
2912
2913 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2914 {
2915 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2916 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2917
2918 if (gen9_gmch_ctl < 0xf0)
2919 return gen9_gmch_ctl << 25; /* 32 MB units */
2920 else
2921 /* 4MB increments starting at 0xf0 for 4MB */
2922 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2923 }
2924
2925 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2926 {
2927 struct drm_i915_private *dev_priv = ggtt->base.i915;
2928 struct pci_dev *pdev = dev_priv->drm.pdev;
2929 phys_addr_t phys_addr;
2930 int ret;
2931
2932 /* For Modern GENs the PTEs and register space are split in the BAR */
2933 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2934
2935 /*
2936 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937 * dropped. For WC mappings in general we have 64 byte burst writes
2938 * when the WC buffer is flushed, so we can't use it, but have to
2939 * resort to an uncached mapping. The WC issue is easily caught by the
2940 * readback check when writing GTT PTE entries.
2941 */
2942 if (IS_GEN9_LP(dev_priv))
2943 ggtt->gsm = ioremap_nocache(phys_addr, size);
2944 else
2945 ggtt->gsm = ioremap_wc(phys_addr, size);
2946 if (!ggtt->gsm) {
2947 DRM_ERROR("Failed to map the ggtt page table\n");
2948 return -ENOMEM;
2949 }
2950
2951 ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2952 if (ret) {
2953 DRM_ERROR("Scratch setup failed\n");
2954 /* iounmap will also get called at remove, but meh */
2955 iounmap(ggtt->gsm);
2956 return ret;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2963 * bits. When using advanced contexts each context stores its own PAT, but
2964 * writing this data shouldn't be harmful even in those cases. */
2965 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2966 {
2967 uint64_t pat;
2968
2969 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2970 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2971 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2972 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2973 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2974 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2975 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2976 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2977
2978 if (!USES_PPGTT(dev_priv))
2979 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2980 * so RTL will always use the value corresponding to
2981 * pat_sel = 000".
2982 * So let's disable cache for GGTT to avoid screen corruptions.
2983 * MOCS still can be used though.
2984 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2985 * before this patch, i.e. the same uncached + snooping access
2986 * like on gen6/7 seems to be in effect.
2987 * - So this just fixes blitter/render access. Again it looks
2988 * like it's not just uncached access, but uncached + snooping.
2989 * So we can still hold onto all our assumptions wrt cpu
2990 * clflushing on LLC machines.
2991 */
2992 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2993
2994 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2995 * write would work. */
2996 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2997 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2998 }
2999
3000 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3001 {
3002 uint64_t pat;
3003
3004 /*
3005 * Map WB on BDW to snooped on CHV.
3006 *
3007 * Only the snoop bit has meaning for CHV, the rest is
3008 * ignored.
3009 *
3010 * The hardware will never snoop for certain types of accesses:
3011 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3012 * - PPGTT page tables
3013 * - some other special cycles
3014 *
3015 * As with BDW, we also need to consider the following for GT accesses:
3016 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3017 * so RTL will always use the value corresponding to
3018 * pat_sel = 000".
3019 * Which means we must set the snoop bit in PAT entry 0
3020 * in order to keep the global status page working.
3021 */
3022 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3023 GEN8_PPAT(1, 0) |
3024 GEN8_PPAT(2, 0) |
3025 GEN8_PPAT(3, 0) |
3026 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3027 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3028 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3029 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3030
3031 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3032 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3033 }
3034
3035 static void gen6_gmch_remove(struct i915_address_space *vm)
3036 {
3037 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3038
3039 iounmap(ggtt->gsm);
3040 cleanup_scratch_page(vm->i915, &vm->scratch_page);
3041 }
3042
3043 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3044 {
3045 struct drm_i915_private *dev_priv = ggtt->base.i915;
3046 struct pci_dev *pdev = dev_priv->drm.pdev;
3047 unsigned int size;
3048 u16 snb_gmch_ctl;
3049
3050 /* TODO: We're not aware of mappable constraints on gen8 yet */
3051 ggtt->mappable_base = pci_resource_start(pdev, 2);
3052 ggtt->mappable_end = pci_resource_len(pdev, 2);
3053
3054 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3055 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3056
3057 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3058
3059 if (INTEL_GEN(dev_priv) >= 9) {
3060 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3061 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062 } else if (IS_CHERRYVIEW(dev_priv)) {
3063 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3064 size = chv_get_total_gtt_size(snb_gmch_ctl);
3065 } else {
3066 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3067 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3068 }
3069
3070 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3071
3072 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3073 chv_setup_private_ppat(dev_priv);
3074 else
3075 bdw_setup_private_ppat(dev_priv);
3076
3077 ggtt->base.cleanup = gen6_gmch_remove;
3078 ggtt->base.bind_vma = ggtt_bind_vma;
3079 ggtt->base.unbind_vma = ggtt_unbind_vma;
3080 ggtt->base.insert_page = gen8_ggtt_insert_page;
3081 ggtt->base.clear_range = nop_clear_range;
3082 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3083 ggtt->base.clear_range = gen8_ggtt_clear_range;
3084
3085 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3086 if (IS_CHERRYVIEW(dev_priv))
3087 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3088
3089 return ggtt_probe_common(ggtt, size);
3090 }
3091
3092 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3093 {
3094 struct drm_i915_private *dev_priv = ggtt->base.i915;
3095 struct pci_dev *pdev = dev_priv->drm.pdev;
3096 unsigned int size;
3097 u16 snb_gmch_ctl;
3098
3099 ggtt->mappable_base = pci_resource_start(pdev, 2);
3100 ggtt->mappable_end = pci_resource_len(pdev, 2);
3101
3102 /* 64/512MB is the current min/max we actually know of, but this is just
3103 * a coarse sanity check.
3104 */
3105 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3106 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3107 return -ENXIO;
3108 }
3109
3110 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3111 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3112 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3113
3114 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3115
3116 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3117 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3118
3119 ggtt->base.clear_range = gen6_ggtt_clear_range;
3120 ggtt->base.insert_page = gen6_ggtt_insert_page;
3121 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3122 ggtt->base.bind_vma = ggtt_bind_vma;
3123 ggtt->base.unbind_vma = ggtt_unbind_vma;
3124 ggtt->base.cleanup = gen6_gmch_remove;
3125
3126 if (HAS_EDRAM(dev_priv))
3127 ggtt->base.pte_encode = iris_pte_encode;
3128 else if (IS_HASWELL(dev_priv))
3129 ggtt->base.pte_encode = hsw_pte_encode;
3130 else if (IS_VALLEYVIEW(dev_priv))
3131 ggtt->base.pte_encode = byt_pte_encode;
3132 else if (INTEL_GEN(dev_priv) >= 7)
3133 ggtt->base.pte_encode = ivb_pte_encode;
3134 else
3135 ggtt->base.pte_encode = snb_pte_encode;
3136
3137 return ggtt_probe_common(ggtt, size);
3138 }
3139
3140 static void i915_gmch_remove(struct i915_address_space *vm)
3141 {
3142 intel_gmch_remove();
3143 }
3144
3145 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3146 {
3147 struct drm_i915_private *dev_priv = ggtt->base.i915;
3148 int ret;
3149
3150 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3151 if (!ret) {
3152 DRM_ERROR("failed to set up gmch\n");
3153 return -EIO;
3154 }
3155
3156 intel_gtt_get(&ggtt->base.total, &ggtt->stolen_size,
3157 &ggtt->mappable_base, &ggtt->mappable_end);
3158
3159 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3160 ggtt->base.insert_page = i915_ggtt_insert_page;
3161 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3162 ggtt->base.clear_range = i915_ggtt_clear_range;
3163 ggtt->base.bind_vma = ggtt_bind_vma;
3164 ggtt->base.unbind_vma = ggtt_unbind_vma;
3165 ggtt->base.cleanup = i915_gmch_remove;
3166
3167 if (unlikely(ggtt->do_idle_maps))
3168 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3169
3170 return 0;
3171 }
3172
3173 /**
3174 * i915_ggtt_probe_hw - Probe GGTT hardware location
3175 * @dev_priv: i915 device
3176 */
3177 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3178 {
3179 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3180 int ret;
3181
3182 ggtt->base.i915 = dev_priv;
3183
3184 if (INTEL_GEN(dev_priv) <= 5)
3185 ret = i915_gmch_probe(ggtt);
3186 else if (INTEL_GEN(dev_priv) < 8)
3187 ret = gen6_gmch_probe(ggtt);
3188 else
3189 ret = gen8_gmch_probe(ggtt);
3190 if (ret)
3191 return ret;
3192
3193 if ((ggtt->base.total - 1) >> 32) {
3194 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3195 " of address space! Found %lldM!\n",
3196 ggtt->base.total >> 20);
3197 ggtt->base.total = 1ULL << 32;
3198 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3199 }
3200
3201 if (ggtt->mappable_end > ggtt->base.total) {
3202 DRM_ERROR("mappable aperture extends past end of GGTT,"
3203 " aperture=%llx, total=%llx\n",
3204 ggtt->mappable_end, ggtt->base.total);
3205 ggtt->mappable_end = ggtt->base.total;
3206 }
3207
3208 /* GMADR is the PCI mmio aperture into the global GTT. */
3209 DRM_INFO("Memory usable by graphics device = %lluM\n",
3210 ggtt->base.total >> 20);
3211 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3212 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", ggtt->stolen_size >> 20);
3213 #ifdef CONFIG_INTEL_IOMMU
3214 if (intel_iommu_gfx_mapped)
3215 DRM_INFO("VT-d active for gfx access\n");
3216 #endif
3217
3218 return 0;
3219 }
3220
3221 /**
3222 * i915_ggtt_init_hw - Initialize GGTT hardware
3223 * @dev_priv: i915 device
3224 */
3225 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3226 {
3227 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3228 int ret;
3229
3230 INIT_LIST_HEAD(&dev_priv->vm_list);
3231
3232 /* Subtract the guard page before address space initialization to
3233 * shrink the range used by drm_mm.
3234 */
3235 mutex_lock(&dev_priv->drm.struct_mutex);
3236 ggtt->base.total -= PAGE_SIZE;
3237 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3238 ggtt->base.total += PAGE_SIZE;
3239 if (!HAS_LLC(dev_priv))
3240 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3241 mutex_unlock(&dev_priv->drm.struct_mutex);
3242
3243 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3244 dev_priv->ggtt.mappable_base,
3245 dev_priv->ggtt.mappable_end)) {
3246 ret = -EIO;
3247 goto out_gtt_cleanup;
3248 }
3249
3250 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3251
3252 /*
3253 * Initialise stolen early so that we may reserve preallocated
3254 * objects for the BIOS to KMS transition.
3255 */
3256 ret = i915_gem_init_stolen(dev_priv);
3257 if (ret)
3258 goto out_gtt_cleanup;
3259
3260 return 0;
3261
3262 out_gtt_cleanup:
3263 ggtt->base.cleanup(&ggtt->base);
3264 return ret;
3265 }
3266
3267 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3268 {
3269 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3270 return -EIO;
3271
3272 return 0;
3273 }
3274
3275 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3276 {
3277 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3278 struct drm_i915_gem_object *obj, *on;
3279
3280 i915_check_and_clear_faults(dev_priv);
3281
3282 /* First fill our portion of the GTT with scratch pages */
3283 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3284
3285 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3286
3287 /* clflush objects bound into the GGTT and rebind them. */
3288 list_for_each_entry_safe(obj, on,
3289 &dev_priv->mm.bound_list, global_link) {
3290 bool ggtt_bound = false;
3291 struct i915_vma *vma;
3292
3293 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3294 if (vma->vm != &ggtt->base)
3295 continue;
3296
3297 if (!i915_vma_unbind(vma))
3298 continue;
3299
3300 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3301 PIN_UPDATE));
3302 ggtt_bound = true;
3303 }
3304
3305 if (ggtt_bound)
3306 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3307 }
3308
3309 ggtt->base.closed = false;
3310
3311 if (INTEL_GEN(dev_priv) >= 8) {
3312 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3313 chv_setup_private_ppat(dev_priv);
3314 else
3315 bdw_setup_private_ppat(dev_priv);
3316
3317 return;
3318 }
3319
3320 if (USES_PPGTT(dev_priv)) {
3321 struct i915_address_space *vm;
3322
3323 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3324 /* TODO: Perhaps it shouldn't be gen6 specific */
3325
3326 struct i915_hw_ppgtt *ppgtt;
3327
3328 if (i915_is_ggtt(vm))
3329 ppgtt = dev_priv->mm.aliasing_ppgtt;
3330 else
3331 ppgtt = i915_vm_to_ppgtt(vm);
3332
3333 gen6_write_page_range(dev_priv, &ppgtt->pd,
3334 0, ppgtt->base.total);
3335 }
3336 }
3337
3338 i915_ggtt_flush(dev_priv);
3339 }
3340
3341 struct i915_vma *
3342 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3343 struct i915_address_space *vm,
3344 const struct i915_ggtt_view *view)
3345 {
3346 struct rb_node *rb;
3347
3348 rb = obj->vma_tree.rb_node;
3349 while (rb) {
3350 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3351 long cmp;
3352
3353 cmp = i915_vma_compare(vma, vm, view);
3354 if (cmp == 0)
3355 return vma;
3356
3357 if (cmp < 0)
3358 rb = rb->rb_right;
3359 else
3360 rb = rb->rb_left;
3361 }
3362
3363 return NULL;
3364 }
3365
3366 struct i915_vma *
3367 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3368 struct i915_address_space *vm,
3369 const struct i915_ggtt_view *view)
3370 {
3371 struct i915_vma *vma;
3372
3373 lockdep_assert_held(&obj->base.dev->struct_mutex);
3374 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3375
3376 vma = i915_gem_obj_to_vma(obj, vm, view);
3377 if (!vma) {
3378 vma = i915_vma_create(obj, vm, view);
3379 GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3380 }
3381
3382 GEM_BUG_ON(i915_vma_is_closed(vma));
3383 return vma;
3384 }
3385
3386 static struct scatterlist *
3387 rotate_pages(const dma_addr_t *in, unsigned int offset,
3388 unsigned int width, unsigned int height,
3389 unsigned int stride,
3390 struct sg_table *st, struct scatterlist *sg)
3391 {
3392 unsigned int column, row;
3393 unsigned int src_idx;
3394
3395 for (column = 0; column < width; column++) {
3396 src_idx = stride * (height - 1) + column;
3397 for (row = 0; row < height; row++) {
3398 st->nents++;
3399 /* We don't need the pages, but need to initialize
3400 * the entries so the sg list can be happily traversed.
3401 * The only thing we need are DMA addresses.
3402 */
3403 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3404 sg_dma_address(sg) = in[offset + src_idx];
3405 sg_dma_len(sg) = PAGE_SIZE;
3406 sg = sg_next(sg);
3407 src_idx -= stride;
3408 }
3409 }
3410
3411 return sg;
3412 }
3413
3414 static struct sg_table *
3415 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3416 struct drm_i915_gem_object *obj)
3417 {
3418 const size_t n_pages = obj->base.size / PAGE_SIZE;
3419 unsigned int size = intel_rotation_info_size(rot_info);
3420 struct sgt_iter sgt_iter;
3421 dma_addr_t dma_addr;
3422 unsigned long i;
3423 dma_addr_t *page_addr_list;
3424 struct sg_table *st;
3425 struct scatterlist *sg;
3426 int ret = -ENOMEM;
3427
3428 /* Allocate a temporary list of source pages for random access. */
3429 page_addr_list = drm_malloc_gfp(n_pages,
3430 sizeof(dma_addr_t),
3431 GFP_TEMPORARY);
3432 if (!page_addr_list)
3433 return ERR_PTR(ret);
3434
3435 /* Allocate target SG list. */
3436 st = kmalloc(sizeof(*st), GFP_KERNEL);
3437 if (!st)
3438 goto err_st_alloc;
3439
3440 ret = sg_alloc_table(st, size, GFP_KERNEL);
3441 if (ret)
3442 goto err_sg_alloc;
3443
3444 /* Populate source page list from the object. */
3445 i = 0;
3446 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3447 page_addr_list[i++] = dma_addr;
3448
3449 GEM_BUG_ON(i != n_pages);
3450 st->nents = 0;
3451 sg = st->sgl;
3452
3453 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3454 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3455 rot_info->plane[i].width, rot_info->plane[i].height,
3456 rot_info->plane[i].stride, st, sg);
3457 }
3458
3459 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3460 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3461
3462 drm_free_large(page_addr_list);
3463
3464 return st;
3465
3466 err_sg_alloc:
3467 kfree(st);
3468 err_st_alloc:
3469 drm_free_large(page_addr_list);
3470
3471 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3472 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3473
3474 return ERR_PTR(ret);
3475 }
3476
3477 static struct sg_table *
3478 intel_partial_pages(const struct i915_ggtt_view *view,
3479 struct drm_i915_gem_object *obj)
3480 {
3481 struct sg_table *st;
3482 struct scatterlist *sg, *iter;
3483 unsigned int count = view->params.partial.size;
3484 unsigned int offset;
3485 int ret = -ENOMEM;
3486
3487 st = kmalloc(sizeof(*st), GFP_KERNEL);
3488 if (!st)
3489 goto err_st_alloc;
3490
3491 ret = sg_alloc_table(st, count, GFP_KERNEL);
3492 if (ret)
3493 goto err_sg_alloc;
3494
3495 iter = i915_gem_object_get_sg(obj,
3496 view->params.partial.offset,
3497 &offset);
3498 GEM_BUG_ON(!iter);
3499
3500 sg = st->sgl;
3501 st->nents = 0;
3502 do {
3503 unsigned int len;
3504
3505 len = min(iter->length - (offset << PAGE_SHIFT),
3506 count << PAGE_SHIFT);
3507 sg_set_page(sg, NULL, len, 0);
3508 sg_dma_address(sg) =
3509 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3510 sg_dma_len(sg) = len;
3511
3512 st->nents++;
3513 count -= len >> PAGE_SHIFT;
3514 if (count == 0) {
3515 sg_mark_end(sg);
3516 return st;
3517 }
3518
3519 sg = __sg_next(sg);
3520 iter = __sg_next(iter);
3521 offset = 0;
3522 } while (1);
3523
3524 err_sg_alloc:
3525 kfree(st);
3526 err_st_alloc:
3527 return ERR_PTR(ret);
3528 }
3529
3530 static int
3531 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3532 {
3533 int ret = 0;
3534
3535 /* The vma->pages are only valid within the lifespan of the borrowed
3536 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3537 * must be the vma->pages. A simple rule is that vma->pages must only
3538 * be accessed when the obj->mm.pages are pinned.
3539 */
3540 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3541
3542 if (vma->pages)
3543 return 0;
3544
3545 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3546 vma->pages = vma->obj->mm.pages;
3547 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3548 vma->pages =
3549 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3550 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3551 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3552 else
3553 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3554 vma->ggtt_view.type);
3555
3556 if (!vma->pages) {
3557 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3558 vma->ggtt_view.type);
3559 ret = -EINVAL;
3560 } else if (IS_ERR(vma->pages)) {
3561 ret = PTR_ERR(vma->pages);
3562 vma->pages = NULL;
3563 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3564 vma->ggtt_view.type, ret);
3565 }
3566
3567 return ret;
3568 }
3569