]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
dccdc8aad2e24c2351766a1ec591f5a57dd3940b
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_trace.h"
31 #include "intel_drv.h"
32
33 /**
34 * DOC: Global GTT views
35 *
36 * Background and previous state
37 *
38 * Historically objects could exists (be bound) in global GTT space only as
39 * singular instances with a view representing all of the object's backing pages
40 * in a linear fashion. This view will be called a normal view.
41 *
42 * To support multiple views of the same object, where the number of mapped
43 * pages is not equal to the backing store, or where the layout of the pages
44 * is not linear, concept of a GGTT view was added.
45 *
46 * One example of an alternative view is a stereo display driven by a single
47 * image. In this case we would have a framebuffer looking like this
48 * (2x2 pages):
49 *
50 * 12
51 * 34
52 *
53 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
54 * rendering. In contrast, fed to the display engine would be an alternative
55 * view which could look something like this:
56 *
57 * 1212
58 * 3434
59 *
60 * In this example both the size and layout of pages in the alternative view is
61 * different from the normal view.
62 *
63 * Implementation and usage
64 *
65 * GGTT views are implemented using VMAs and are distinguished via enum
66 * i915_ggtt_view_type and struct i915_ggtt_view.
67 *
68 * A new flavour of core GEM functions which work with GGTT bound objects were
69 * added with the _view suffix. They take the struct i915_ggtt_view parameter
70 * encapsulating all metadata required to implement a view.
71 *
72 * As a helper for callers which are only interested in the normal view,
73 * globally const i915_ggtt_view_normal singleton instance exists. All old core
74 * GEM API functions, the ones not taking the view parameter, are operating on,
75 * or with the normal GGTT view.
76 *
77 * Code wanting to add or use a new GGTT view needs to:
78 *
79 * 1. Add a new enum with a suitable name.
80 * 2. Extend the metadata in the i915_ggtt_view structure if required.
81 * 3. Add support to i915_get_vma_pages().
82 *
83 * New views are required to build a scatter-gather table from within the
84 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
85 * exists for the lifetime of an VMA.
86 *
87 * Core API is designed to have copy semantics which means that passed in
88 * struct i915_ggtt_view does not need to be persistent (left around after
89 * calling the core API functions).
90 *
91 */
92
93 const struct i915_ggtt_view i915_ggtt_view_normal;
94
95 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
96 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
97
98 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
99 {
100 bool has_aliasing_ppgtt;
101 bool has_full_ppgtt;
102
103 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
104 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
105
106 /*
107 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
108 * execlists, the sole mechanism available to submit work.
109 */
110 if (INTEL_INFO(dev)->gen < 9 &&
111 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
112 return 0;
113
114 if (enable_ppgtt == 1)
115 return 1;
116
117 if (enable_ppgtt == 2 && has_full_ppgtt)
118 return 2;
119
120 #ifdef CONFIG_INTEL_IOMMU
121 /* Disable ppgtt on SNB if VT-d is on. */
122 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
123 DRM_INFO("Disabling PPGTT because VT-d is on\n");
124 return 0;
125 }
126 #endif
127
128 /* Early VLV doesn't have this */
129 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
130 dev->pdev->revision < 0xb) {
131 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
132 return 0;
133 }
134
135 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
136 return 2;
137 else
138 return has_aliasing_ppgtt ? 1 : 0;
139 }
140
141
142 static void ppgtt_bind_vma(struct i915_vma *vma,
143 enum i915_cache_level cache_level,
144 u32 flags);
145 static void ppgtt_unbind_vma(struct i915_vma *vma);
146
147 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
148 enum i915_cache_level level,
149 bool valid)
150 {
151 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
152 pte |= addr;
153
154 switch (level) {
155 case I915_CACHE_NONE:
156 pte |= PPAT_UNCACHED_INDEX;
157 break;
158 case I915_CACHE_WT:
159 pte |= PPAT_DISPLAY_ELLC_INDEX;
160 break;
161 default:
162 pte |= PPAT_CACHED_INDEX;
163 break;
164 }
165
166 return pte;
167 }
168
169 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
170 dma_addr_t addr,
171 enum i915_cache_level level)
172 {
173 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
174 pde |= addr;
175 if (level != I915_CACHE_NONE)
176 pde |= PPAT_CACHED_PDE_INDEX;
177 else
178 pde |= PPAT_UNCACHED_INDEX;
179 return pde;
180 }
181
182 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
183 enum i915_cache_level level,
184 bool valid, u32 unused)
185 {
186 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
187 pte |= GEN6_PTE_ADDR_ENCODE(addr);
188
189 switch (level) {
190 case I915_CACHE_L3_LLC:
191 case I915_CACHE_LLC:
192 pte |= GEN6_PTE_CACHE_LLC;
193 break;
194 case I915_CACHE_NONE:
195 pte |= GEN6_PTE_UNCACHED;
196 break;
197 default:
198 MISSING_CASE(level);
199 }
200
201 return pte;
202 }
203
204 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
205 enum i915_cache_level level,
206 bool valid, u32 unused)
207 {
208 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
209 pte |= GEN6_PTE_ADDR_ENCODE(addr);
210
211 switch (level) {
212 case I915_CACHE_L3_LLC:
213 pte |= GEN7_PTE_CACHE_L3_LLC;
214 break;
215 case I915_CACHE_LLC:
216 pte |= GEN6_PTE_CACHE_LLC;
217 break;
218 case I915_CACHE_NONE:
219 pte |= GEN6_PTE_UNCACHED;
220 break;
221 default:
222 MISSING_CASE(level);
223 }
224
225 return pte;
226 }
227
228 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
229 enum i915_cache_level level,
230 bool valid, u32 flags)
231 {
232 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
233 pte |= GEN6_PTE_ADDR_ENCODE(addr);
234
235 if (!(flags & PTE_READ_ONLY))
236 pte |= BYT_PTE_WRITEABLE;
237
238 if (level != I915_CACHE_NONE)
239 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
240
241 return pte;
242 }
243
244 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
245 enum i915_cache_level level,
246 bool valid, u32 unused)
247 {
248 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
249 pte |= HSW_PTE_ADDR_ENCODE(addr);
250
251 if (level != I915_CACHE_NONE)
252 pte |= HSW_WB_LLC_AGE3;
253
254 return pte;
255 }
256
257 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
258 enum i915_cache_level level,
259 bool valid, u32 unused)
260 {
261 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
262 pte |= HSW_PTE_ADDR_ENCODE(addr);
263
264 switch (level) {
265 case I915_CACHE_NONE:
266 break;
267 case I915_CACHE_WT:
268 pte |= HSW_WT_ELLC_LLC_AGE3;
269 break;
270 default:
271 pte |= HSW_WB_ELLC_LLC_AGE3;
272 break;
273 }
274
275 return pte;
276 }
277
278 /* Broadwell Page Directory Pointer Descriptors */
279 static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
280 uint64_t val)
281 {
282 int ret;
283
284 BUG_ON(entry >= 4);
285
286 ret = intel_ring_begin(ring, 6);
287 if (ret)
288 return ret;
289
290 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
291 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
292 intel_ring_emit(ring, (u32)(val >> 32));
293 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
294 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
295 intel_ring_emit(ring, (u32)(val));
296 intel_ring_advance(ring);
297
298 return 0;
299 }
300
301 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
302 struct intel_engine_cs *ring)
303 {
304 int i, ret;
305
306 /* bit of a hack to find the actual last used pd */
307 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
308
309 for (i = used_pd - 1; i >= 0; i--) {
310 dma_addr_t addr = ppgtt->pd_dma_addr[i];
311 ret = gen8_write_pdp(ring, i, addr);
312 if (ret)
313 return ret;
314 }
315
316 return 0;
317 }
318
319 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
320 uint64_t start,
321 uint64_t length,
322 bool use_scratch)
323 {
324 struct i915_hw_ppgtt *ppgtt =
325 container_of(vm, struct i915_hw_ppgtt, base);
326 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
327 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
328 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
329 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
330 unsigned num_entries = length >> PAGE_SHIFT;
331 unsigned last_pte, i;
332
333 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
334 I915_CACHE_LLC, use_scratch);
335
336 while (num_entries) {
337 struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
338
339 last_pte = pte + num_entries;
340 if (last_pte > GEN8_PTES_PER_PAGE)
341 last_pte = GEN8_PTES_PER_PAGE;
342
343 pt_vaddr = kmap_atomic(page_table);
344
345 for (i = pte; i < last_pte; i++) {
346 pt_vaddr[i] = scratch_pte;
347 num_entries--;
348 }
349
350 if (!HAS_LLC(ppgtt->base.dev))
351 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
352 kunmap_atomic(pt_vaddr);
353
354 pte = 0;
355 if (++pde == GEN8_PDES_PER_PAGE) {
356 pdpe++;
357 pde = 0;
358 }
359 }
360 }
361
362 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
363 struct sg_table *pages,
364 uint64_t start,
365 enum i915_cache_level cache_level, u32 unused)
366 {
367 struct i915_hw_ppgtt *ppgtt =
368 container_of(vm, struct i915_hw_ppgtt, base);
369 gen8_gtt_pte_t *pt_vaddr;
370 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
371 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
372 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
373 struct sg_page_iter sg_iter;
374
375 pt_vaddr = NULL;
376
377 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
378 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
379 break;
380
381 if (pt_vaddr == NULL)
382 pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
383
384 pt_vaddr[pte] =
385 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
386 cache_level, true);
387 if (++pte == GEN8_PTES_PER_PAGE) {
388 if (!HAS_LLC(ppgtt->base.dev))
389 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
390 kunmap_atomic(pt_vaddr);
391 pt_vaddr = NULL;
392 if (++pde == GEN8_PDES_PER_PAGE) {
393 pdpe++;
394 pde = 0;
395 }
396 pte = 0;
397 }
398 }
399 if (pt_vaddr) {
400 if (!HAS_LLC(ppgtt->base.dev))
401 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
402 kunmap_atomic(pt_vaddr);
403 }
404 }
405
406 static void gen8_free_page_tables(struct page **pt_pages)
407 {
408 int i;
409
410 if (pt_pages == NULL)
411 return;
412
413 for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
414 if (pt_pages[i])
415 __free_pages(pt_pages[i], 0);
416 }
417
418 static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
419 {
420 int i;
421
422 for (i = 0; i < ppgtt->num_pd_pages; i++) {
423 gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
424 kfree(ppgtt->gen8_pt_pages[i]);
425 kfree(ppgtt->gen8_pt_dma_addr[i]);
426 }
427
428 __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
429 }
430
431 static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
432 {
433 struct pci_dev *hwdev = ppgtt->base.dev->pdev;
434 int i, j;
435
436 for (i = 0; i < ppgtt->num_pd_pages; i++) {
437 /* TODO: In the future we'll support sparse mappings, so this
438 * will have to change. */
439 if (!ppgtt->pd_dma_addr[i])
440 continue;
441
442 pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
443 PCI_DMA_BIDIRECTIONAL);
444
445 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
446 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
447 if (addr)
448 pci_unmap_page(hwdev, addr, PAGE_SIZE,
449 PCI_DMA_BIDIRECTIONAL);
450 }
451 }
452 }
453
454 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
455 {
456 struct i915_hw_ppgtt *ppgtt =
457 container_of(vm, struct i915_hw_ppgtt, base);
458
459 gen8_ppgtt_unmap_pages(ppgtt);
460 gen8_ppgtt_free(ppgtt);
461 }
462
463 static struct page **__gen8_alloc_page_tables(void)
464 {
465 struct page **pt_pages;
466 int i;
467
468 pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
469 if (!pt_pages)
470 return ERR_PTR(-ENOMEM);
471
472 for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
473 pt_pages[i] = alloc_page(GFP_KERNEL);
474 if (!pt_pages[i])
475 goto bail;
476 }
477
478 return pt_pages;
479
480 bail:
481 gen8_free_page_tables(pt_pages);
482 kfree(pt_pages);
483 return ERR_PTR(-ENOMEM);
484 }
485
486 static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
487 const int max_pdp)
488 {
489 struct page **pt_pages[GEN8_LEGACY_PDPS];
490 int i, ret;
491
492 for (i = 0; i < max_pdp; i++) {
493 pt_pages[i] = __gen8_alloc_page_tables();
494 if (IS_ERR(pt_pages[i])) {
495 ret = PTR_ERR(pt_pages[i]);
496 goto unwind_out;
497 }
498 }
499
500 /* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
501 * "atomic" - for cleanup purposes.
502 */
503 for (i = 0; i < max_pdp; i++)
504 ppgtt->gen8_pt_pages[i] = pt_pages[i];
505
506 return 0;
507
508 unwind_out:
509 while (i--) {
510 gen8_free_page_tables(pt_pages[i]);
511 kfree(pt_pages[i]);
512 }
513
514 return ret;
515 }
516
517 static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
518 {
519 int i;
520
521 for (i = 0; i < ppgtt->num_pd_pages; i++) {
522 ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
523 sizeof(dma_addr_t),
524 GFP_KERNEL);
525 if (!ppgtt->gen8_pt_dma_addr[i])
526 return -ENOMEM;
527 }
528
529 return 0;
530 }
531
532 static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
533 const int max_pdp)
534 {
535 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
536 if (!ppgtt->pd_pages)
537 return -ENOMEM;
538
539 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
540 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
541
542 return 0;
543 }
544
545 static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
546 const int max_pdp)
547 {
548 int ret;
549
550 ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
551 if (ret)
552 return ret;
553
554 ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
555 if (ret) {
556 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
557 return ret;
558 }
559
560 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
561
562 ret = gen8_ppgtt_allocate_dma(ppgtt);
563 if (ret)
564 gen8_ppgtt_free(ppgtt);
565
566 return ret;
567 }
568
569 static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
570 const int pd)
571 {
572 dma_addr_t pd_addr;
573 int ret;
574
575 pd_addr = pci_map_page(ppgtt->base.dev->pdev,
576 &ppgtt->pd_pages[pd], 0,
577 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
578
579 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
580 if (ret)
581 return ret;
582
583 ppgtt->pd_dma_addr[pd] = pd_addr;
584
585 return 0;
586 }
587
588 static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
589 const int pd,
590 const int pt)
591 {
592 dma_addr_t pt_addr;
593 struct page *p;
594 int ret;
595
596 p = ppgtt->gen8_pt_pages[pd][pt];
597 pt_addr = pci_map_page(ppgtt->base.dev->pdev,
598 p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
599 ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
600 if (ret)
601 return ret;
602
603 ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
604
605 return 0;
606 }
607
608 /**
609 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
610 * with a net effect resembling a 2-level page table in normal x86 terms. Each
611 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
612 * space.
613 *
614 * FIXME: split allocation into smaller pieces. For now we only ever do this
615 * once, but with full PPGTT, the multiple contiguous allocations will be bad.
616 * TODO: Do something with the size parameter
617 */
618 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
619 {
620 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
621 const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
622 int i, j, ret;
623
624 if (size % (1<<30))
625 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
626
627 /* 1. Do all our allocations for page directories and page tables. */
628 ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
629 if (ret)
630 return ret;
631
632 /*
633 * 2. Create DMA mappings for the page directories and page tables.
634 */
635 for (i = 0; i < max_pdp; i++) {
636 ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
637 if (ret)
638 goto bail;
639
640 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
641 ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
642 if (ret)
643 goto bail;
644 }
645 }
646
647 /*
648 * 3. Map all the page directory entires to point to the page tables
649 * we've allocated.
650 *
651 * For now, the PPGTT helper functions all require that the PDEs are
652 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
653 * will never need to touch the PDEs again.
654 */
655 for (i = 0; i < max_pdp; i++) {
656 gen8_ppgtt_pde_t *pd_vaddr;
657 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
658 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
659 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
660 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
661 I915_CACHE_LLC);
662 }
663 if (!HAS_LLC(ppgtt->base.dev))
664 drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
665 kunmap_atomic(pd_vaddr);
666 }
667
668 ppgtt->switch_mm = gen8_mm_switch;
669 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
670 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
671 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
672 ppgtt->base.start = 0;
673 ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
674
675 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
676
677 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
678 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
679 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
680 ppgtt->num_pd_entries,
681 (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
682 return 0;
683
684 bail:
685 gen8_ppgtt_unmap_pages(ppgtt);
686 gen8_ppgtt_free(ppgtt);
687 return ret;
688 }
689
690 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
691 {
692 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
693 struct i915_address_space *vm = &ppgtt->base;
694 gen6_gtt_pte_t __iomem *pd_addr;
695 gen6_gtt_pte_t scratch_pte;
696 uint32_t pd_entry;
697 int pte, pde;
698
699 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
700
701 pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
702 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
703
704 seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
705 ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
706 for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
707 u32 expected;
708 gen6_gtt_pte_t *pt_vaddr;
709 dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
710 pd_entry = readl(pd_addr + pde);
711 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
712
713 if (pd_entry != expected)
714 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
715 pde,
716 pd_entry,
717 expected);
718 seq_printf(m, "\tPDE: %x\n", pd_entry);
719
720 pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
721 for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
722 unsigned long va =
723 (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
724 (pte * PAGE_SIZE);
725 int i;
726 bool found = false;
727 for (i = 0; i < 4; i++)
728 if (pt_vaddr[pte + i] != scratch_pte)
729 found = true;
730 if (!found)
731 continue;
732
733 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
734 for (i = 0; i < 4; i++) {
735 if (pt_vaddr[pte + i] != scratch_pte)
736 seq_printf(m, " %08x", pt_vaddr[pte + i]);
737 else
738 seq_puts(m, " SCRATCH ");
739 }
740 seq_puts(m, "\n");
741 }
742 kunmap_atomic(pt_vaddr);
743 }
744 }
745
746 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
747 {
748 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
749 gen6_gtt_pte_t __iomem *pd_addr;
750 uint32_t pd_entry;
751 int i;
752
753 WARN_ON(ppgtt->pd_offset & 0x3f);
754 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
755 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
756 for (i = 0; i < ppgtt->num_pd_entries; i++) {
757 dma_addr_t pt_addr;
758
759 pt_addr = ppgtt->pt_dma_addr[i];
760 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
761 pd_entry |= GEN6_PDE_VALID;
762
763 writel(pd_entry, pd_addr + i);
764 }
765 readl(pd_addr);
766 }
767
768 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
769 {
770 BUG_ON(ppgtt->pd_offset & 0x3f);
771
772 return (ppgtt->pd_offset / 64) << 16;
773 }
774
775 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
776 struct intel_engine_cs *ring)
777 {
778 int ret;
779
780 /* NB: TLBs must be flushed and invalidated before a switch */
781 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
782 if (ret)
783 return ret;
784
785 ret = intel_ring_begin(ring, 6);
786 if (ret)
787 return ret;
788
789 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
790 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
791 intel_ring_emit(ring, PP_DIR_DCLV_2G);
792 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
793 intel_ring_emit(ring, get_pd_offset(ppgtt));
794 intel_ring_emit(ring, MI_NOOP);
795 intel_ring_advance(ring);
796
797 return 0;
798 }
799
800 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
801 struct intel_engine_cs *ring)
802 {
803 int ret;
804
805 /* NB: TLBs must be flushed and invalidated before a switch */
806 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
807 if (ret)
808 return ret;
809
810 ret = intel_ring_begin(ring, 6);
811 if (ret)
812 return ret;
813
814 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
815 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
816 intel_ring_emit(ring, PP_DIR_DCLV_2G);
817 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
818 intel_ring_emit(ring, get_pd_offset(ppgtt));
819 intel_ring_emit(ring, MI_NOOP);
820 intel_ring_advance(ring);
821
822 /* XXX: RCS is the only one to auto invalidate the TLBs? */
823 if (ring->id != RCS) {
824 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
825 if (ret)
826 return ret;
827 }
828
829 return 0;
830 }
831
832 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
833 struct intel_engine_cs *ring)
834 {
835 struct drm_device *dev = ppgtt->base.dev;
836 struct drm_i915_private *dev_priv = dev->dev_private;
837
838
839 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
840 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
841
842 POSTING_READ(RING_PP_DIR_DCLV(ring));
843
844 return 0;
845 }
846
847 static void gen8_ppgtt_enable(struct drm_device *dev)
848 {
849 struct drm_i915_private *dev_priv = dev->dev_private;
850 struct intel_engine_cs *ring;
851 int j;
852
853 for_each_ring(ring, dev_priv, j) {
854 I915_WRITE(RING_MODE_GEN7(ring),
855 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
856 }
857 }
858
859 static void gen7_ppgtt_enable(struct drm_device *dev)
860 {
861 struct drm_i915_private *dev_priv = dev->dev_private;
862 struct intel_engine_cs *ring;
863 uint32_t ecochk, ecobits;
864 int i;
865
866 ecobits = I915_READ(GAC_ECO_BITS);
867 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
868
869 ecochk = I915_READ(GAM_ECOCHK);
870 if (IS_HASWELL(dev)) {
871 ecochk |= ECOCHK_PPGTT_WB_HSW;
872 } else {
873 ecochk |= ECOCHK_PPGTT_LLC_IVB;
874 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
875 }
876 I915_WRITE(GAM_ECOCHK, ecochk);
877
878 for_each_ring(ring, dev_priv, i) {
879 /* GFX_MODE is per-ring on gen7+ */
880 I915_WRITE(RING_MODE_GEN7(ring),
881 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
882 }
883 }
884
885 static void gen6_ppgtt_enable(struct drm_device *dev)
886 {
887 struct drm_i915_private *dev_priv = dev->dev_private;
888 uint32_t ecochk, gab_ctl, ecobits;
889
890 ecobits = I915_READ(GAC_ECO_BITS);
891 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
892 ECOBITS_PPGTT_CACHE64B);
893
894 gab_ctl = I915_READ(GAB_CTL);
895 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
896
897 ecochk = I915_READ(GAM_ECOCHK);
898 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
899
900 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
901 }
902
903 /* PPGTT support for Sandybdrige/Gen6 and later */
904 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
905 uint64_t start,
906 uint64_t length,
907 bool use_scratch)
908 {
909 struct i915_hw_ppgtt *ppgtt =
910 container_of(vm, struct i915_hw_ppgtt, base);
911 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
912 unsigned first_entry = start >> PAGE_SHIFT;
913 unsigned num_entries = length >> PAGE_SHIFT;
914 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
915 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
916 unsigned last_pte, i;
917
918 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
919
920 while (num_entries) {
921 last_pte = first_pte + num_entries;
922 if (last_pte > I915_PPGTT_PT_ENTRIES)
923 last_pte = I915_PPGTT_PT_ENTRIES;
924
925 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
926
927 for (i = first_pte; i < last_pte; i++)
928 pt_vaddr[i] = scratch_pte;
929
930 kunmap_atomic(pt_vaddr);
931
932 num_entries -= last_pte - first_pte;
933 first_pte = 0;
934 act_pt++;
935 }
936 }
937
938 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
939 struct sg_table *pages,
940 uint64_t start,
941 enum i915_cache_level cache_level, u32 flags)
942 {
943 struct i915_hw_ppgtt *ppgtt =
944 container_of(vm, struct i915_hw_ppgtt, base);
945 gen6_gtt_pte_t *pt_vaddr;
946 unsigned first_entry = start >> PAGE_SHIFT;
947 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
948 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
949 struct sg_page_iter sg_iter;
950
951 pt_vaddr = NULL;
952 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
953 if (pt_vaddr == NULL)
954 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
955
956 pt_vaddr[act_pte] =
957 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
958 cache_level, true, flags);
959
960 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
961 kunmap_atomic(pt_vaddr);
962 pt_vaddr = NULL;
963 act_pt++;
964 act_pte = 0;
965 }
966 }
967 if (pt_vaddr)
968 kunmap_atomic(pt_vaddr);
969 }
970
971 static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
972 {
973 int i;
974
975 if (ppgtt->pt_dma_addr) {
976 for (i = 0; i < ppgtt->num_pd_entries; i++)
977 pci_unmap_page(ppgtt->base.dev->pdev,
978 ppgtt->pt_dma_addr[i],
979 4096, PCI_DMA_BIDIRECTIONAL);
980 }
981 }
982
983 static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
984 {
985 int i;
986
987 kfree(ppgtt->pt_dma_addr);
988 for (i = 0; i < ppgtt->num_pd_entries; i++)
989 __free_page(ppgtt->pt_pages[i]);
990 kfree(ppgtt->pt_pages);
991 }
992
993 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
994 {
995 struct i915_hw_ppgtt *ppgtt =
996 container_of(vm, struct i915_hw_ppgtt, base);
997
998 drm_mm_remove_node(&ppgtt->node);
999
1000 gen6_ppgtt_unmap_pages(ppgtt);
1001 gen6_ppgtt_free(ppgtt);
1002 }
1003
1004 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1005 {
1006 struct drm_device *dev = ppgtt->base.dev;
1007 struct drm_i915_private *dev_priv = dev->dev_private;
1008 bool retried = false;
1009 int ret;
1010
1011 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1012 * allocator works in address space sizes, so it's multiplied by page
1013 * size. We allocate at the top of the GTT to avoid fragmentation.
1014 */
1015 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1016 alloc:
1017 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1018 &ppgtt->node, GEN6_PD_SIZE,
1019 GEN6_PD_ALIGN, 0,
1020 0, dev_priv->gtt.base.total,
1021 DRM_MM_TOPDOWN);
1022 if (ret == -ENOSPC && !retried) {
1023 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1024 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1025 I915_CACHE_NONE,
1026 0, dev_priv->gtt.base.total,
1027 0);
1028 if (ret)
1029 return ret;
1030
1031 retried = true;
1032 goto alloc;
1033 }
1034
1035 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1036 DRM_DEBUG("Forced to use aperture for PDEs\n");
1037
1038 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
1039 return ret;
1040 }
1041
1042 static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
1043 {
1044 int i;
1045
1046 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
1047 GFP_KERNEL);
1048
1049 if (!ppgtt->pt_pages)
1050 return -ENOMEM;
1051
1052 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1053 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
1054 if (!ppgtt->pt_pages[i]) {
1055 gen6_ppgtt_free(ppgtt);
1056 return -ENOMEM;
1057 }
1058 }
1059
1060 return 0;
1061 }
1062
1063 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1064 {
1065 int ret;
1066
1067 ret = gen6_ppgtt_allocate_page_directories(ppgtt);
1068 if (ret)
1069 return ret;
1070
1071 ret = gen6_ppgtt_allocate_page_tables(ppgtt);
1072 if (ret) {
1073 drm_mm_remove_node(&ppgtt->node);
1074 return ret;
1075 }
1076
1077 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
1078 GFP_KERNEL);
1079 if (!ppgtt->pt_dma_addr) {
1080 drm_mm_remove_node(&ppgtt->node);
1081 gen6_ppgtt_free(ppgtt);
1082 return -ENOMEM;
1083 }
1084
1085 return 0;
1086 }
1087
1088 static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
1089 {
1090 struct drm_device *dev = ppgtt->base.dev;
1091 int i;
1092
1093 for (i = 0; i < ppgtt->num_pd_entries; i++) {
1094 dma_addr_t pt_addr;
1095
1096 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
1097 PCI_DMA_BIDIRECTIONAL);
1098
1099 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
1100 gen6_ppgtt_unmap_pages(ppgtt);
1101 return -EIO;
1102 }
1103
1104 ppgtt->pt_dma_addr[i] = pt_addr;
1105 }
1106
1107 return 0;
1108 }
1109
1110 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1111 {
1112 struct drm_device *dev = ppgtt->base.dev;
1113 struct drm_i915_private *dev_priv = dev->dev_private;
1114 int ret;
1115
1116 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1117 if (IS_GEN6(dev)) {
1118 ppgtt->switch_mm = gen6_mm_switch;
1119 } else if (IS_HASWELL(dev)) {
1120 ppgtt->switch_mm = hsw_mm_switch;
1121 } else if (IS_GEN7(dev)) {
1122 ppgtt->switch_mm = gen7_mm_switch;
1123 } else
1124 BUG();
1125
1126 ret = gen6_ppgtt_alloc(ppgtt);
1127 if (ret)
1128 return ret;
1129
1130 ret = gen6_ppgtt_setup_page_tables(ppgtt);
1131 if (ret) {
1132 gen6_ppgtt_free(ppgtt);
1133 return ret;
1134 }
1135
1136 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1137 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1138 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1139 ppgtt->base.start = 0;
1140 ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
1141 ppgtt->debug_dump = gen6_dump_ppgtt;
1142
1143 ppgtt->pd_offset =
1144 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
1145
1146 ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
1147
1148 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1149 ppgtt->node.size >> 20,
1150 ppgtt->node.start / PAGE_SIZE);
1151
1152 gen6_write_pdes(ppgtt);
1153 DRM_DEBUG("Adding PPGTT at offset %x\n",
1154 ppgtt->pd_offset << 10);
1155
1156 return 0;
1157 }
1158
1159 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1160 {
1161 struct drm_i915_private *dev_priv = dev->dev_private;
1162
1163 ppgtt->base.dev = dev;
1164 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1165
1166 if (INTEL_INFO(dev)->gen < 8)
1167 return gen6_ppgtt_init(ppgtt);
1168 else
1169 return gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
1170 }
1171 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1172 {
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 int ret = 0;
1175
1176 ret = __hw_ppgtt_init(dev, ppgtt);
1177 if (ret == 0) {
1178 kref_init(&ppgtt->ref);
1179 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1180 ppgtt->base.total);
1181 i915_init_vm(dev_priv, &ppgtt->base);
1182 }
1183
1184 return ret;
1185 }
1186
1187 int i915_ppgtt_init_hw(struct drm_device *dev)
1188 {
1189 struct drm_i915_private *dev_priv = dev->dev_private;
1190 struct intel_engine_cs *ring;
1191 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1192 int i, ret = 0;
1193
1194 /* In the case of execlists, PPGTT is enabled by the context descriptor
1195 * and the PDPs are contained within the context itself. We don't
1196 * need to do anything here. */
1197 if (i915.enable_execlists)
1198 return 0;
1199
1200 if (!USES_PPGTT(dev))
1201 return 0;
1202
1203 if (IS_GEN6(dev))
1204 gen6_ppgtt_enable(dev);
1205 else if (IS_GEN7(dev))
1206 gen7_ppgtt_enable(dev);
1207 else if (INTEL_INFO(dev)->gen >= 8)
1208 gen8_ppgtt_enable(dev);
1209 else
1210 MISSING_CASE(INTEL_INFO(dev)->gen);
1211
1212 if (ppgtt) {
1213 for_each_ring(ring, dev_priv, i) {
1214 ret = ppgtt->switch_mm(ppgtt, ring);
1215 if (ret != 0)
1216 return ret;
1217 }
1218 }
1219
1220 return ret;
1221 }
1222 struct i915_hw_ppgtt *
1223 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1224 {
1225 struct i915_hw_ppgtt *ppgtt;
1226 int ret;
1227
1228 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1229 if (!ppgtt)
1230 return ERR_PTR(-ENOMEM);
1231
1232 ret = i915_ppgtt_init(dev, ppgtt);
1233 if (ret) {
1234 kfree(ppgtt);
1235 return ERR_PTR(ret);
1236 }
1237
1238 ppgtt->file_priv = fpriv;
1239
1240 trace_i915_ppgtt_create(&ppgtt->base);
1241
1242 return ppgtt;
1243 }
1244
1245 void i915_ppgtt_release(struct kref *kref)
1246 {
1247 struct i915_hw_ppgtt *ppgtt =
1248 container_of(kref, struct i915_hw_ppgtt, ref);
1249
1250 trace_i915_ppgtt_release(&ppgtt->base);
1251
1252 /* vmas should already be unbound */
1253 WARN_ON(!list_empty(&ppgtt->base.active_list));
1254 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1255
1256 list_del(&ppgtt->base.global_link);
1257 drm_mm_takedown(&ppgtt->base.mm);
1258
1259 ppgtt->base.cleanup(&ppgtt->base);
1260 kfree(ppgtt);
1261 }
1262
1263 static void
1264 ppgtt_bind_vma(struct i915_vma *vma,
1265 enum i915_cache_level cache_level,
1266 u32 flags)
1267 {
1268 /* Currently applicable only to VLV */
1269 if (vma->obj->gt_ro)
1270 flags |= PTE_READ_ONLY;
1271
1272 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
1273 cache_level, flags);
1274 }
1275
1276 static void ppgtt_unbind_vma(struct i915_vma *vma)
1277 {
1278 vma->vm->clear_range(vma->vm,
1279 vma->node.start,
1280 vma->obj->base.size,
1281 true);
1282 }
1283
1284 extern int intel_iommu_gfx_mapped;
1285 /* Certain Gen5 chipsets require require idling the GPU before
1286 * unmapping anything from the GTT when VT-d is enabled.
1287 */
1288 static inline bool needs_idle_maps(struct drm_device *dev)
1289 {
1290 #ifdef CONFIG_INTEL_IOMMU
1291 /* Query intel_iommu to see if we need the workaround. Presumably that
1292 * was loaded first.
1293 */
1294 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1295 return true;
1296 #endif
1297 return false;
1298 }
1299
1300 static bool do_idling(struct drm_i915_private *dev_priv)
1301 {
1302 bool ret = dev_priv->mm.interruptible;
1303
1304 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1305 dev_priv->mm.interruptible = false;
1306 if (i915_gpu_idle(dev_priv->dev)) {
1307 DRM_ERROR("Couldn't idle GPU\n");
1308 /* Wait a bit, in hopes it avoids the hang */
1309 udelay(10);
1310 }
1311 }
1312
1313 return ret;
1314 }
1315
1316 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1317 {
1318 if (unlikely(dev_priv->gtt.do_idle_maps))
1319 dev_priv->mm.interruptible = interruptible;
1320 }
1321
1322 void i915_check_and_clear_faults(struct drm_device *dev)
1323 {
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 struct intel_engine_cs *ring;
1326 int i;
1327
1328 if (INTEL_INFO(dev)->gen < 6)
1329 return;
1330
1331 for_each_ring(ring, dev_priv, i) {
1332 u32 fault_reg;
1333 fault_reg = I915_READ(RING_FAULT_REG(ring));
1334 if (fault_reg & RING_FAULT_VALID) {
1335 DRM_DEBUG_DRIVER("Unexpected fault\n"
1336 "\tAddr: 0x%08lx\n"
1337 "\tAddress space: %s\n"
1338 "\tSource ID: %d\n"
1339 "\tType: %d\n",
1340 fault_reg & PAGE_MASK,
1341 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1342 RING_FAULT_SRCID(fault_reg),
1343 RING_FAULT_FAULT_TYPE(fault_reg));
1344 I915_WRITE(RING_FAULT_REG(ring),
1345 fault_reg & ~RING_FAULT_VALID);
1346 }
1347 }
1348 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1349 }
1350
1351 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1352 {
1353 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1354 intel_gtt_chipset_flush();
1355 } else {
1356 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1357 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1358 }
1359 }
1360
1361 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1362 {
1363 struct drm_i915_private *dev_priv = dev->dev_private;
1364
1365 /* Don't bother messing with faults pre GEN6 as we have little
1366 * documentation supporting that it's a good idea.
1367 */
1368 if (INTEL_INFO(dev)->gen < 6)
1369 return;
1370
1371 i915_check_and_clear_faults(dev);
1372
1373 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1374 dev_priv->gtt.base.start,
1375 dev_priv->gtt.base.total,
1376 true);
1377
1378 i915_ggtt_flush(dev_priv);
1379 }
1380
1381 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1382 {
1383 struct drm_i915_private *dev_priv = dev->dev_private;
1384 struct drm_i915_gem_object *obj;
1385 struct i915_address_space *vm;
1386
1387 i915_check_and_clear_faults(dev);
1388
1389 /* First fill our portion of the GTT with scratch pages */
1390 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1391 dev_priv->gtt.base.start,
1392 dev_priv->gtt.base.total,
1393 true);
1394
1395 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1396 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1397 &dev_priv->gtt.base);
1398 if (!vma)
1399 continue;
1400
1401 i915_gem_clflush_object(obj, obj->pin_display);
1402 /* The bind_vma code tries to be smart about tracking mappings.
1403 * Unfortunately above, we've just wiped out the mappings
1404 * without telling our object about it. So we need to fake it.
1405 *
1406 * Bind is not expected to fail since this is only called on
1407 * resume and assumption is all requirements exist already.
1408 */
1409 vma->bound &= ~GLOBAL_BIND;
1410 WARN_ON(i915_vma_bind(vma, obj->cache_level, GLOBAL_BIND));
1411 }
1412
1413
1414 if (INTEL_INFO(dev)->gen >= 8) {
1415 if (IS_CHERRYVIEW(dev))
1416 chv_setup_private_ppat(dev_priv);
1417 else
1418 bdw_setup_private_ppat(dev_priv);
1419
1420 return;
1421 }
1422
1423 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1424 /* TODO: Perhaps it shouldn't be gen6 specific */
1425 if (i915_is_ggtt(vm)) {
1426 if (dev_priv->mm.aliasing_ppgtt)
1427 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1428 continue;
1429 }
1430
1431 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1432 }
1433
1434 i915_ggtt_flush(dev_priv);
1435 }
1436
1437 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1438 {
1439 if (obj->has_dma_mapping)
1440 return 0;
1441
1442 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1443 obj->pages->sgl, obj->pages->nents,
1444 PCI_DMA_BIDIRECTIONAL))
1445 return -ENOSPC;
1446
1447 return 0;
1448 }
1449
1450 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1451 {
1452 #ifdef writeq
1453 writeq(pte, addr);
1454 #else
1455 iowrite32((u32)pte, addr);
1456 iowrite32(pte >> 32, addr + 4);
1457 #endif
1458 }
1459
1460 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1461 struct sg_table *st,
1462 uint64_t start,
1463 enum i915_cache_level level, u32 unused)
1464 {
1465 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1466 unsigned first_entry = start >> PAGE_SHIFT;
1467 gen8_gtt_pte_t __iomem *gtt_entries =
1468 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1469 int i = 0;
1470 struct sg_page_iter sg_iter;
1471 dma_addr_t addr = 0; /* shut up gcc */
1472
1473 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1474 addr = sg_dma_address(sg_iter.sg) +
1475 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1476 gen8_set_pte(&gtt_entries[i],
1477 gen8_pte_encode(addr, level, true));
1478 i++;
1479 }
1480
1481 /*
1482 * XXX: This serves as a posting read to make sure that the PTE has
1483 * actually been updated. There is some concern that even though
1484 * registers and PTEs are within the same BAR that they are potentially
1485 * of NUMA access patterns. Therefore, even with the way we assume
1486 * hardware should work, we must keep this posting read for paranoia.
1487 */
1488 if (i != 0)
1489 WARN_ON(readq(&gtt_entries[i-1])
1490 != gen8_pte_encode(addr, level, true));
1491
1492 /* This next bit makes the above posting read even more important. We
1493 * want to flush the TLBs only after we're certain all the PTE updates
1494 * have finished.
1495 */
1496 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1497 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1498 }
1499
1500 /*
1501 * Binds an object into the global gtt with the specified cache level. The object
1502 * will be accessible to the GPU via commands whose operands reference offsets
1503 * within the global GTT as well as accessible by the GPU through the GMADR
1504 * mapped BAR (dev_priv->mm.gtt->gtt).
1505 */
1506 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1507 struct sg_table *st,
1508 uint64_t start,
1509 enum i915_cache_level level, u32 flags)
1510 {
1511 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1512 unsigned first_entry = start >> PAGE_SHIFT;
1513 gen6_gtt_pte_t __iomem *gtt_entries =
1514 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1515 int i = 0;
1516 struct sg_page_iter sg_iter;
1517 dma_addr_t addr = 0;
1518
1519 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1520 addr = sg_page_iter_dma_address(&sg_iter);
1521 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1522 i++;
1523 }
1524
1525 /* XXX: This serves as a posting read to make sure that the PTE has
1526 * actually been updated. There is some concern that even though
1527 * registers and PTEs are within the same BAR that they are potentially
1528 * of NUMA access patterns. Therefore, even with the way we assume
1529 * hardware should work, we must keep this posting read for paranoia.
1530 */
1531 if (i != 0) {
1532 unsigned long gtt = readl(&gtt_entries[i-1]);
1533 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1534 }
1535
1536 /* This next bit makes the above posting read even more important. We
1537 * want to flush the TLBs only after we're certain all the PTE updates
1538 * have finished.
1539 */
1540 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1541 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1542 }
1543
1544 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1545 uint64_t start,
1546 uint64_t length,
1547 bool use_scratch)
1548 {
1549 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1550 unsigned first_entry = start >> PAGE_SHIFT;
1551 unsigned num_entries = length >> PAGE_SHIFT;
1552 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1553 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1554 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1555 int i;
1556
1557 if (WARN(num_entries > max_entries,
1558 "First entry = %d; Num entries = %d (max=%d)\n",
1559 first_entry, num_entries, max_entries))
1560 num_entries = max_entries;
1561
1562 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1563 I915_CACHE_LLC,
1564 use_scratch);
1565 for (i = 0; i < num_entries; i++)
1566 gen8_set_pte(&gtt_base[i], scratch_pte);
1567 readl(gtt_base);
1568 }
1569
1570 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1571 uint64_t start,
1572 uint64_t length,
1573 bool use_scratch)
1574 {
1575 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1576 unsigned first_entry = start >> PAGE_SHIFT;
1577 unsigned num_entries = length >> PAGE_SHIFT;
1578 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1579 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1580 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1581 int i;
1582
1583 if (WARN(num_entries > max_entries,
1584 "First entry = %d; Num entries = %d (max=%d)\n",
1585 first_entry, num_entries, max_entries))
1586 num_entries = max_entries;
1587
1588 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1589
1590 for (i = 0; i < num_entries; i++)
1591 iowrite32(scratch_pte, &gtt_base[i]);
1592 readl(gtt_base);
1593 }
1594
1595
1596 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1597 enum i915_cache_level cache_level,
1598 u32 unused)
1599 {
1600 const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1601 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1602 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1603
1604 BUG_ON(!i915_is_ggtt(vma->vm));
1605 intel_gtt_insert_sg_entries(vma->ggtt_view.pages, entry, flags);
1606 vma->bound = GLOBAL_BIND;
1607 }
1608
1609 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1610 uint64_t start,
1611 uint64_t length,
1612 bool unused)
1613 {
1614 unsigned first_entry = start >> PAGE_SHIFT;
1615 unsigned num_entries = length >> PAGE_SHIFT;
1616 intel_gtt_clear_range(first_entry, num_entries);
1617 }
1618
1619 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1620 {
1621 const unsigned int first = vma->node.start >> PAGE_SHIFT;
1622 const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1623
1624 BUG_ON(!i915_is_ggtt(vma->vm));
1625 vma->bound = 0;
1626 intel_gtt_clear_range(first, size);
1627 }
1628
1629 static void ggtt_bind_vma(struct i915_vma *vma,
1630 enum i915_cache_level cache_level,
1631 u32 flags)
1632 {
1633 struct drm_device *dev = vma->vm->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635 struct drm_i915_gem_object *obj = vma->obj;
1636
1637 /* Currently applicable only to VLV */
1638 if (obj->gt_ro)
1639 flags |= PTE_READ_ONLY;
1640
1641 /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1642 * or we have a global mapping already but the cacheability flags have
1643 * changed, set the global PTEs.
1644 *
1645 * If there is an aliasing PPGTT it is anecdotally faster, so use that
1646 * instead if none of the above hold true.
1647 *
1648 * NB: A global mapping should only be needed for special regions like
1649 * "gtt mappable", SNB errata, or if specified via special execbuf
1650 * flags. At all other times, the GPU will use the aliasing PPGTT.
1651 */
1652 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1653 if (!(vma->bound & GLOBAL_BIND) ||
1654 (cache_level != obj->cache_level)) {
1655 vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
1656 vma->node.start,
1657 cache_level, flags);
1658 vma->bound |= GLOBAL_BIND;
1659 }
1660 }
1661
1662 if (dev_priv->mm.aliasing_ppgtt &&
1663 (!(vma->bound & LOCAL_BIND) ||
1664 (cache_level != obj->cache_level))) {
1665 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1666 appgtt->base.insert_entries(&appgtt->base,
1667 vma->ggtt_view.pages,
1668 vma->node.start,
1669 cache_level, flags);
1670 vma->bound |= LOCAL_BIND;
1671 }
1672 }
1673
1674 static void ggtt_unbind_vma(struct i915_vma *vma)
1675 {
1676 struct drm_device *dev = vma->vm->dev;
1677 struct drm_i915_private *dev_priv = dev->dev_private;
1678 struct drm_i915_gem_object *obj = vma->obj;
1679
1680 if (vma->bound & GLOBAL_BIND) {
1681 vma->vm->clear_range(vma->vm,
1682 vma->node.start,
1683 obj->base.size,
1684 true);
1685 vma->bound &= ~GLOBAL_BIND;
1686 }
1687
1688 if (vma->bound & LOCAL_BIND) {
1689 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1690 appgtt->base.clear_range(&appgtt->base,
1691 vma->node.start,
1692 obj->base.size,
1693 true);
1694 vma->bound &= ~LOCAL_BIND;
1695 }
1696 }
1697
1698 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1699 {
1700 struct drm_device *dev = obj->base.dev;
1701 struct drm_i915_private *dev_priv = dev->dev_private;
1702 bool interruptible;
1703
1704 interruptible = do_idling(dev_priv);
1705
1706 if (!obj->has_dma_mapping)
1707 dma_unmap_sg(&dev->pdev->dev,
1708 obj->pages->sgl, obj->pages->nents,
1709 PCI_DMA_BIDIRECTIONAL);
1710
1711 undo_idling(dev_priv, interruptible);
1712 }
1713
1714 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1715 unsigned long color,
1716 u64 *start,
1717 u64 *end)
1718 {
1719 if (node->color != color)
1720 *start += 4096;
1721
1722 if (!list_empty(&node->node_list)) {
1723 node = list_entry(node->node_list.next,
1724 struct drm_mm_node,
1725 node_list);
1726 if (node->allocated && node->color != color)
1727 *end -= 4096;
1728 }
1729 }
1730
1731 static int i915_gem_setup_global_gtt(struct drm_device *dev,
1732 unsigned long start,
1733 unsigned long mappable_end,
1734 unsigned long end)
1735 {
1736 /* Let GEM Manage all of the aperture.
1737 *
1738 * However, leave one page at the end still bound to the scratch page.
1739 * There are a number of places where the hardware apparently prefetches
1740 * past the end of the object, and we've seen multiple hangs with the
1741 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1742 * aperture. One page should be enough to keep any prefetching inside
1743 * of the aperture.
1744 */
1745 struct drm_i915_private *dev_priv = dev->dev_private;
1746 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1747 struct drm_mm_node *entry;
1748 struct drm_i915_gem_object *obj;
1749 unsigned long hole_start, hole_end;
1750 int ret;
1751
1752 BUG_ON(mappable_end > end);
1753
1754 /* Subtract the guard page ... */
1755 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1756 if (!HAS_LLC(dev))
1757 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1758
1759 /* Mark any preallocated objects as occupied */
1760 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1761 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1762
1763 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1764 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1765
1766 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1767 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1768 if (ret) {
1769 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
1770 return ret;
1771 }
1772 vma->bound |= GLOBAL_BIND;
1773 }
1774
1775 dev_priv->gtt.base.start = start;
1776 dev_priv->gtt.base.total = end - start;
1777
1778 /* Clear any non-preallocated blocks */
1779 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1780 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1781 hole_start, hole_end);
1782 ggtt_vm->clear_range(ggtt_vm, hole_start,
1783 hole_end - hole_start, true);
1784 }
1785
1786 /* And finally clear the reserved guard page */
1787 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
1788
1789 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
1790 struct i915_hw_ppgtt *ppgtt;
1791
1792 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1793 if (!ppgtt)
1794 return -ENOMEM;
1795
1796 ret = __hw_ppgtt_init(dev, ppgtt);
1797 if (ret != 0)
1798 return ret;
1799
1800 dev_priv->mm.aliasing_ppgtt = ppgtt;
1801 }
1802
1803 return 0;
1804 }
1805
1806 void i915_gem_init_global_gtt(struct drm_device *dev)
1807 {
1808 struct drm_i915_private *dev_priv = dev->dev_private;
1809 unsigned long gtt_size, mappable_size;
1810
1811 gtt_size = dev_priv->gtt.base.total;
1812 mappable_size = dev_priv->gtt.mappable_end;
1813
1814 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1815 }
1816
1817 void i915_global_gtt_cleanup(struct drm_device *dev)
1818 {
1819 struct drm_i915_private *dev_priv = dev->dev_private;
1820 struct i915_address_space *vm = &dev_priv->gtt.base;
1821
1822 if (dev_priv->mm.aliasing_ppgtt) {
1823 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1824
1825 ppgtt->base.cleanup(&ppgtt->base);
1826 }
1827
1828 if (drm_mm_initialized(&vm->mm)) {
1829 drm_mm_takedown(&vm->mm);
1830 list_del(&vm->global_link);
1831 }
1832
1833 vm->cleanup(vm);
1834 }
1835
1836 static int setup_scratch_page(struct drm_device *dev)
1837 {
1838 struct drm_i915_private *dev_priv = dev->dev_private;
1839 struct page *page;
1840 dma_addr_t dma_addr;
1841
1842 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1843 if (page == NULL)
1844 return -ENOMEM;
1845 set_pages_uc(page, 1);
1846
1847 #ifdef CONFIG_INTEL_IOMMU
1848 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1849 PCI_DMA_BIDIRECTIONAL);
1850 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1851 return -EINVAL;
1852 #else
1853 dma_addr = page_to_phys(page);
1854 #endif
1855 dev_priv->gtt.base.scratch.page = page;
1856 dev_priv->gtt.base.scratch.addr = dma_addr;
1857
1858 return 0;
1859 }
1860
1861 static void teardown_scratch_page(struct drm_device *dev)
1862 {
1863 struct drm_i915_private *dev_priv = dev->dev_private;
1864 struct page *page = dev_priv->gtt.base.scratch.page;
1865
1866 set_pages_wb(page, 1);
1867 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1868 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1869 __free_page(page);
1870 }
1871
1872 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1873 {
1874 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1875 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1876 return snb_gmch_ctl << 20;
1877 }
1878
1879 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1880 {
1881 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1882 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1883 if (bdw_gmch_ctl)
1884 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1885
1886 #ifdef CONFIG_X86_32
1887 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
1888 if (bdw_gmch_ctl > 4)
1889 bdw_gmch_ctl = 4;
1890 #endif
1891
1892 return bdw_gmch_ctl << 20;
1893 }
1894
1895 static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1896 {
1897 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1898 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1899
1900 if (gmch_ctrl)
1901 return 1 << (20 + gmch_ctrl);
1902
1903 return 0;
1904 }
1905
1906 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1907 {
1908 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1909 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1910 return snb_gmch_ctl << 25; /* 32 MB units */
1911 }
1912
1913 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1914 {
1915 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1916 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1917 return bdw_gmch_ctl << 25; /* 32 MB units */
1918 }
1919
1920 static size_t chv_get_stolen_size(u16 gmch_ctrl)
1921 {
1922 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
1923 gmch_ctrl &= SNB_GMCH_GMS_MASK;
1924
1925 /*
1926 * 0x0 to 0x10: 32MB increments starting at 0MB
1927 * 0x11 to 0x16: 4MB increments starting at 8MB
1928 * 0x17 to 0x1d: 4MB increments start at 36MB
1929 */
1930 if (gmch_ctrl < 0x11)
1931 return gmch_ctrl << 25;
1932 else if (gmch_ctrl < 0x17)
1933 return (gmch_ctrl - 0x11 + 2) << 22;
1934 else
1935 return (gmch_ctrl - 0x17 + 9) << 22;
1936 }
1937
1938 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
1939 {
1940 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1941 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
1942
1943 if (gen9_gmch_ctl < 0xf0)
1944 return gen9_gmch_ctl << 25; /* 32 MB units */
1945 else
1946 /* 4MB increments starting at 0xf0 for 4MB */
1947 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
1948 }
1949
1950 static int ggtt_probe_common(struct drm_device *dev,
1951 size_t gtt_size)
1952 {
1953 struct drm_i915_private *dev_priv = dev->dev_private;
1954 phys_addr_t gtt_phys_addr;
1955 int ret;
1956
1957 /* For Modern GENs the PTEs and register space are split in the BAR */
1958 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
1959 (pci_resource_len(dev->pdev, 0) / 2);
1960
1961 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
1962 if (!dev_priv->gtt.gsm) {
1963 DRM_ERROR("Failed to map the gtt page table\n");
1964 return -ENOMEM;
1965 }
1966
1967 ret = setup_scratch_page(dev);
1968 if (ret) {
1969 DRM_ERROR("Scratch setup failed\n");
1970 /* iounmap will also get called at remove, but meh */
1971 iounmap(dev_priv->gtt.gsm);
1972 }
1973
1974 return ret;
1975 }
1976
1977 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1978 * bits. When using advanced contexts each context stores its own PAT, but
1979 * writing this data shouldn't be harmful even in those cases. */
1980 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
1981 {
1982 uint64_t pat;
1983
1984 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1985 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1986 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1987 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1988 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1989 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1990 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1991 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1992
1993 if (!USES_PPGTT(dev_priv->dev))
1994 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
1995 * so RTL will always use the value corresponding to
1996 * pat_sel = 000".
1997 * So let's disable cache for GGTT to avoid screen corruptions.
1998 * MOCS still can be used though.
1999 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2000 * before this patch, i.e. the same uncached + snooping access
2001 * like on gen6/7 seems to be in effect.
2002 * - So this just fixes blitter/render access. Again it looks
2003 * like it's not just uncached access, but uncached + snooping.
2004 * So we can still hold onto all our assumptions wrt cpu
2005 * clflushing on LLC machines.
2006 */
2007 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2008
2009 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2010 * write would work. */
2011 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2012 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2013 }
2014
2015 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2016 {
2017 uint64_t pat;
2018
2019 /*
2020 * Map WB on BDW to snooped on CHV.
2021 *
2022 * Only the snoop bit has meaning for CHV, the rest is
2023 * ignored.
2024 *
2025 * The hardware will never snoop for certain types of accesses:
2026 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2027 * - PPGTT page tables
2028 * - some other special cycles
2029 *
2030 * As with BDW, we also need to consider the following for GT accesses:
2031 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2032 * so RTL will always use the value corresponding to
2033 * pat_sel = 000".
2034 * Which means we must set the snoop bit in PAT entry 0
2035 * in order to keep the global status page working.
2036 */
2037 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2038 GEN8_PPAT(1, 0) |
2039 GEN8_PPAT(2, 0) |
2040 GEN8_PPAT(3, 0) |
2041 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2042 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2043 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2044 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2045
2046 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2047 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2048 }
2049
2050 static int gen8_gmch_probe(struct drm_device *dev,
2051 size_t *gtt_total,
2052 size_t *stolen,
2053 phys_addr_t *mappable_base,
2054 unsigned long *mappable_end)
2055 {
2056 struct drm_i915_private *dev_priv = dev->dev_private;
2057 unsigned int gtt_size;
2058 u16 snb_gmch_ctl;
2059 int ret;
2060
2061 /* TODO: We're not aware of mappable constraints on gen8 yet */
2062 *mappable_base = pci_resource_start(dev->pdev, 2);
2063 *mappable_end = pci_resource_len(dev->pdev, 2);
2064
2065 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2066 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2067
2068 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2069
2070 if (INTEL_INFO(dev)->gen >= 9) {
2071 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2072 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2073 } else if (IS_CHERRYVIEW(dev)) {
2074 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2075 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2076 } else {
2077 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2078 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2079 }
2080
2081 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
2082
2083 if (IS_CHERRYVIEW(dev))
2084 chv_setup_private_ppat(dev_priv);
2085 else
2086 bdw_setup_private_ppat(dev_priv);
2087
2088 ret = ggtt_probe_common(dev, gtt_size);
2089
2090 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2091 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2092
2093 return ret;
2094 }
2095
2096 static int gen6_gmch_probe(struct drm_device *dev,
2097 size_t *gtt_total,
2098 size_t *stolen,
2099 phys_addr_t *mappable_base,
2100 unsigned long *mappable_end)
2101 {
2102 struct drm_i915_private *dev_priv = dev->dev_private;
2103 unsigned int gtt_size;
2104 u16 snb_gmch_ctl;
2105 int ret;
2106
2107 *mappable_base = pci_resource_start(dev->pdev, 2);
2108 *mappable_end = pci_resource_len(dev->pdev, 2);
2109
2110 /* 64/512MB is the current min/max we actually know of, but this is just
2111 * a coarse sanity check.
2112 */
2113 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2114 DRM_ERROR("Unknown GMADR size (%lx)\n",
2115 dev_priv->gtt.mappable_end);
2116 return -ENXIO;
2117 }
2118
2119 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2120 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2121 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2122
2123 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2124
2125 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2126 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
2127
2128 ret = ggtt_probe_common(dev, gtt_size);
2129
2130 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2131 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2132
2133 return ret;
2134 }
2135
2136 static void gen6_gmch_remove(struct i915_address_space *vm)
2137 {
2138
2139 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2140
2141 iounmap(gtt->gsm);
2142 teardown_scratch_page(vm->dev);
2143 }
2144
2145 static int i915_gmch_probe(struct drm_device *dev,
2146 size_t *gtt_total,
2147 size_t *stolen,
2148 phys_addr_t *mappable_base,
2149 unsigned long *mappable_end)
2150 {
2151 struct drm_i915_private *dev_priv = dev->dev_private;
2152 int ret;
2153
2154 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2155 if (!ret) {
2156 DRM_ERROR("failed to set up gmch\n");
2157 return -EIO;
2158 }
2159
2160 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2161
2162 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2163 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2164
2165 if (unlikely(dev_priv->gtt.do_idle_maps))
2166 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2167
2168 return 0;
2169 }
2170
2171 static void i915_gmch_remove(struct i915_address_space *vm)
2172 {
2173 intel_gmch_remove();
2174 }
2175
2176 int i915_gem_gtt_init(struct drm_device *dev)
2177 {
2178 struct drm_i915_private *dev_priv = dev->dev_private;
2179 struct i915_gtt *gtt = &dev_priv->gtt;
2180 int ret;
2181
2182 if (INTEL_INFO(dev)->gen <= 5) {
2183 gtt->gtt_probe = i915_gmch_probe;
2184 gtt->base.cleanup = i915_gmch_remove;
2185 } else if (INTEL_INFO(dev)->gen < 8) {
2186 gtt->gtt_probe = gen6_gmch_probe;
2187 gtt->base.cleanup = gen6_gmch_remove;
2188 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2189 gtt->base.pte_encode = iris_pte_encode;
2190 else if (IS_HASWELL(dev))
2191 gtt->base.pte_encode = hsw_pte_encode;
2192 else if (IS_VALLEYVIEW(dev))
2193 gtt->base.pte_encode = byt_pte_encode;
2194 else if (INTEL_INFO(dev)->gen >= 7)
2195 gtt->base.pte_encode = ivb_pte_encode;
2196 else
2197 gtt->base.pte_encode = snb_pte_encode;
2198 } else {
2199 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2200 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2201 }
2202
2203 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2204 &gtt->mappable_base, &gtt->mappable_end);
2205 if (ret)
2206 return ret;
2207
2208 gtt->base.dev = dev;
2209
2210 /* GMADR is the PCI mmio aperture into the global GTT. */
2211 DRM_INFO("Memory usable by graphics device = %zdM\n",
2212 gtt->base.total >> 20);
2213 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2214 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2215 #ifdef CONFIG_INTEL_IOMMU
2216 if (intel_iommu_gfx_mapped)
2217 DRM_INFO("VT-d active for gfx access\n");
2218 #endif
2219 /*
2220 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2221 * user's requested state against the hardware/driver capabilities. We
2222 * do this now so that we can print out any log messages once rather
2223 * than every time we check intel_enable_ppgtt().
2224 */
2225 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2226 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2227
2228 return 0;
2229 }
2230
2231 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
2232 struct i915_address_space *vm,
2233 const struct i915_ggtt_view *view)
2234 {
2235 struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
2236 if (vma == NULL)
2237 return ERR_PTR(-ENOMEM);
2238
2239 INIT_LIST_HEAD(&vma->vma_link);
2240 INIT_LIST_HEAD(&vma->mm_list);
2241 INIT_LIST_HEAD(&vma->exec_list);
2242 vma->vm = vm;
2243 vma->obj = obj;
2244 vma->ggtt_view = *view;
2245
2246 if (INTEL_INFO(vm->dev)->gen >= 6) {
2247 if (i915_is_ggtt(vm)) {
2248 vma->unbind_vma = ggtt_unbind_vma;
2249 vma->bind_vma = ggtt_bind_vma;
2250 } else {
2251 vma->unbind_vma = ppgtt_unbind_vma;
2252 vma->bind_vma = ppgtt_bind_vma;
2253 }
2254 } else {
2255 BUG_ON(!i915_is_ggtt(vm));
2256 vma->unbind_vma = i915_ggtt_unbind_vma;
2257 vma->bind_vma = i915_ggtt_bind_vma;
2258 }
2259
2260 list_add_tail(&vma->vma_link, &obj->vma_list);
2261 if (!i915_is_ggtt(vm))
2262 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2263
2264 return vma;
2265 }
2266
2267 struct i915_vma *
2268 i915_gem_obj_lookup_or_create_vma_view(struct drm_i915_gem_object *obj,
2269 struct i915_address_space *vm,
2270 const struct i915_ggtt_view *view)
2271 {
2272 struct i915_vma *vma;
2273
2274 vma = i915_gem_obj_to_vma_view(obj, vm, view);
2275 if (!vma)
2276 vma = __i915_gem_vma_create(obj, vm, view);
2277
2278 return vma;
2279 }
2280
2281 static inline
2282 int i915_get_vma_pages(struct i915_vma *vma)
2283 {
2284 if (vma->ggtt_view.pages)
2285 return 0;
2286
2287 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2288 vma->ggtt_view.pages = vma->obj->pages;
2289 else
2290 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2291 vma->ggtt_view.type);
2292
2293 if (!vma->ggtt_view.pages) {
2294 DRM_ERROR("Failed to get pages for VMA view type %u!\n",
2295 vma->ggtt_view.type);
2296 return -EINVAL;
2297 }
2298
2299 return 0;
2300 }
2301
2302 /**
2303 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2304 * @vma: VMA to map
2305 * @cache_level: mapping cache level
2306 * @flags: flags like global or local mapping
2307 *
2308 * DMA addresses are taken from the scatter-gather table of this object (or of
2309 * this VMA in case of non-default GGTT views) and PTE entries set up.
2310 * Note that DMA addresses are also the only part of the SG table we care about.
2311 */
2312 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2313 u32 flags)
2314 {
2315 int ret = i915_get_vma_pages(vma);
2316
2317 if (ret)
2318 return ret;
2319
2320 vma->bind_vma(vma, cache_level, flags);
2321
2322 return 0;
2323 }