]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
drm/i915: s/gen8_setup_page_directory/gen8_setup_pdpe/
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <linux/stop_machine.h>
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_vgpu.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include "intel_frontbuffer.h"
35
36 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
37
38 /**
39 * DOC: Global GTT views
40 *
41 * Background and previous state
42 *
43 * Historically objects could exists (be bound) in global GTT space only as
44 * singular instances with a view representing all of the object's backing pages
45 * in a linear fashion. This view will be called a normal view.
46 *
47 * To support multiple views of the same object, where the number of mapped
48 * pages is not equal to the backing store, or where the layout of the pages
49 * is not linear, concept of a GGTT view was added.
50 *
51 * One example of an alternative view is a stereo display driven by a single
52 * image. In this case we would have a framebuffer looking like this
53 * (2x2 pages):
54 *
55 * 12
56 * 34
57 *
58 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
59 * rendering. In contrast, fed to the display engine would be an alternative
60 * view which could look something like this:
61 *
62 * 1212
63 * 3434
64 *
65 * In this example both the size and layout of pages in the alternative view is
66 * different from the normal view.
67 *
68 * Implementation and usage
69 *
70 * GGTT views are implemented using VMAs and are distinguished via enum
71 * i915_ggtt_view_type and struct i915_ggtt_view.
72 *
73 * A new flavour of core GEM functions which work with GGTT bound objects were
74 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
75 * renaming in large amounts of code. They take the struct i915_ggtt_view
76 * parameter encapsulating all metadata required to implement a view.
77 *
78 * As a helper for callers which are only interested in the normal view,
79 * globally const i915_ggtt_view_normal singleton instance exists. All old core
80 * GEM API functions, the ones not taking the view parameter, are operating on,
81 * or with the normal GGTT view.
82 *
83 * Code wanting to add or use a new GGTT view needs to:
84 *
85 * 1. Add a new enum with a suitable name.
86 * 2. Extend the metadata in the i915_ggtt_view structure if required.
87 * 3. Add support to i915_get_vma_pages().
88 *
89 * New views are required to build a scatter-gather table from within the
90 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
91 * exists for the lifetime of an VMA.
92 *
93 * Core API is designed to have copy semantics which means that passed in
94 * struct i915_ggtt_view does not need to be persistent (left around after
95 * calling the core API functions).
96 *
97 */
98
99 static int
100 i915_get_ggtt_vma_pages(struct i915_vma *vma);
101
102 const struct i915_ggtt_view i915_ggtt_view_normal = {
103 .type = I915_GGTT_VIEW_NORMAL,
104 };
105 const struct i915_ggtt_view i915_ggtt_view_rotated = {
106 .type = I915_GGTT_VIEW_ROTATED,
107 };
108
109 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
110 int enable_ppgtt)
111 {
112 bool has_aliasing_ppgtt;
113 bool has_full_ppgtt;
114 bool has_full_48bit_ppgtt;
115
116 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
117 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
118 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
119
120 if (intel_vgpu_active(dev_priv)) {
121 /* emulation is too hard */
122 has_full_ppgtt = false;
123 has_full_48bit_ppgtt = false;
124 }
125
126 if (!has_aliasing_ppgtt)
127 return 0;
128
129 /*
130 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
131 * execlists, the sole mechanism available to submit work.
132 */
133 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
134 return 0;
135
136 if (enable_ppgtt == 1)
137 return 1;
138
139 if (enable_ppgtt == 2 && has_full_ppgtt)
140 return 2;
141
142 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
143 return 3;
144
145 #ifdef CONFIG_INTEL_IOMMU
146 /* Disable ppgtt on SNB if VT-d is on. */
147 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
148 DRM_INFO("Disabling PPGTT because VT-d is on\n");
149 return 0;
150 }
151 #endif
152
153 /* Early VLV doesn't have this */
154 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
155 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
156 return 0;
157 }
158
159 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
160 return has_full_48bit_ppgtt ? 3 : 2;
161 else
162 return has_aliasing_ppgtt ? 1 : 0;
163 }
164
165 static int ppgtt_bind_vma(struct i915_vma *vma,
166 enum i915_cache_level cache_level,
167 u32 unused)
168 {
169 u32 pte_flags = 0;
170
171 vma->pages = vma->obj->mm.pages;
172
173 /* Currently applicable only to VLV */
174 if (vma->obj->gt_ro)
175 pte_flags |= PTE_READ_ONLY;
176
177 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
178 cache_level, pte_flags);
179
180 return 0;
181 }
182
183 static void ppgtt_unbind_vma(struct i915_vma *vma)
184 {
185 vma->vm->clear_range(vma->vm,
186 vma->node.start,
187 vma->size);
188 }
189
190 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
191 enum i915_cache_level level)
192 {
193 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
194 pte |= addr;
195
196 switch (level) {
197 case I915_CACHE_NONE:
198 pte |= PPAT_UNCACHED_INDEX;
199 break;
200 case I915_CACHE_WT:
201 pte |= PPAT_DISPLAY_ELLC_INDEX;
202 break;
203 default:
204 pte |= PPAT_CACHED_INDEX;
205 break;
206 }
207
208 return pte;
209 }
210
211 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
212 const enum i915_cache_level level)
213 {
214 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
215 pde |= addr;
216 if (level != I915_CACHE_NONE)
217 pde |= PPAT_CACHED_PDE_INDEX;
218 else
219 pde |= PPAT_UNCACHED_INDEX;
220 return pde;
221 }
222
223 #define gen8_pdpe_encode gen8_pde_encode
224 #define gen8_pml4e_encode gen8_pde_encode
225
226 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
227 enum i915_cache_level level,
228 u32 unused)
229 {
230 gen6_pte_t pte = GEN6_PTE_VALID;
231 pte |= GEN6_PTE_ADDR_ENCODE(addr);
232
233 switch (level) {
234 case I915_CACHE_L3_LLC:
235 case I915_CACHE_LLC:
236 pte |= GEN6_PTE_CACHE_LLC;
237 break;
238 case I915_CACHE_NONE:
239 pte |= GEN6_PTE_UNCACHED;
240 break;
241 default:
242 MISSING_CASE(level);
243 }
244
245 return pte;
246 }
247
248 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
249 enum i915_cache_level level,
250 u32 unused)
251 {
252 gen6_pte_t pte = GEN6_PTE_VALID;
253 pte |= GEN6_PTE_ADDR_ENCODE(addr);
254
255 switch (level) {
256 case I915_CACHE_L3_LLC:
257 pte |= GEN7_PTE_CACHE_L3_LLC;
258 break;
259 case I915_CACHE_LLC:
260 pte |= GEN6_PTE_CACHE_LLC;
261 break;
262 case I915_CACHE_NONE:
263 pte |= GEN6_PTE_UNCACHED;
264 break;
265 default:
266 MISSING_CASE(level);
267 }
268
269 return pte;
270 }
271
272 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
273 enum i915_cache_level level,
274 u32 flags)
275 {
276 gen6_pte_t pte = GEN6_PTE_VALID;
277 pte |= GEN6_PTE_ADDR_ENCODE(addr);
278
279 if (!(flags & PTE_READ_ONLY))
280 pte |= BYT_PTE_WRITEABLE;
281
282 if (level != I915_CACHE_NONE)
283 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
284
285 return pte;
286 }
287
288 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
289 enum i915_cache_level level,
290 u32 unused)
291 {
292 gen6_pte_t pte = GEN6_PTE_VALID;
293 pte |= HSW_PTE_ADDR_ENCODE(addr);
294
295 if (level != I915_CACHE_NONE)
296 pte |= HSW_WB_LLC_AGE3;
297
298 return pte;
299 }
300
301 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
302 enum i915_cache_level level,
303 u32 unused)
304 {
305 gen6_pte_t pte = GEN6_PTE_VALID;
306 pte |= HSW_PTE_ADDR_ENCODE(addr);
307
308 switch (level) {
309 case I915_CACHE_NONE:
310 break;
311 case I915_CACHE_WT:
312 pte |= HSW_WT_ELLC_LLC_AGE3;
313 break;
314 default:
315 pte |= HSW_WB_ELLC_LLC_AGE3;
316 break;
317 }
318
319 return pte;
320 }
321
322 static int __setup_page_dma(struct drm_i915_private *dev_priv,
323 struct i915_page_dma *p, gfp_t flags)
324 {
325 struct device *kdev = &dev_priv->drm.pdev->dev;
326
327 p->page = alloc_page(flags);
328 if (!p->page)
329 return -ENOMEM;
330
331 p->daddr = dma_map_page(kdev,
332 p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
333
334 if (dma_mapping_error(kdev, p->daddr)) {
335 __free_page(p->page);
336 return -EINVAL;
337 }
338
339 return 0;
340 }
341
342 static int setup_page_dma(struct drm_i915_private *dev_priv,
343 struct i915_page_dma *p)
344 {
345 return __setup_page_dma(dev_priv, p, I915_GFP_DMA);
346 }
347
348 static void cleanup_page_dma(struct drm_i915_private *dev_priv,
349 struct i915_page_dma *p)
350 {
351 struct pci_dev *pdev = dev_priv->drm.pdev;
352
353 if (WARN_ON(!p->page))
354 return;
355
356 dma_unmap_page(&pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
357 __free_page(p->page);
358 memset(p, 0, sizeof(*p));
359 }
360
361 static void *kmap_page_dma(struct i915_page_dma *p)
362 {
363 return kmap_atomic(p->page);
364 }
365
366 /* We use the flushing unmap only with ppgtt structures:
367 * page directories, page tables and scratch pages.
368 */
369 static void kunmap_page_dma(struct drm_i915_private *dev_priv, void *vaddr)
370 {
371 /* There are only few exceptions for gen >=6. chv and bxt.
372 * And we are not sure about the latter so play safe for now.
373 */
374 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
375 drm_clflush_virt_range(vaddr, PAGE_SIZE);
376
377 kunmap_atomic(vaddr);
378 }
379
380 #define kmap_px(px) kmap_page_dma(px_base(px))
381 #define kunmap_px(ppgtt, vaddr) \
382 kunmap_page_dma((ppgtt)->base.i915, (vaddr))
383
384 #define setup_px(dev_priv, px) setup_page_dma((dev_priv), px_base(px))
385 #define cleanup_px(dev_priv, px) cleanup_page_dma((dev_priv), px_base(px))
386 #define fill_px(dev_priv, px, v) fill_page_dma((dev_priv), px_base(px), (v))
387 #define fill32_px(dev_priv, px, v) \
388 fill_page_dma_32((dev_priv), px_base(px), (v))
389
390 static void fill_page_dma(struct drm_i915_private *dev_priv,
391 struct i915_page_dma *p, const uint64_t val)
392 {
393 int i;
394 uint64_t * const vaddr = kmap_page_dma(p);
395
396 for (i = 0; i < 512; i++)
397 vaddr[i] = val;
398
399 kunmap_page_dma(dev_priv, vaddr);
400 }
401
402 static void fill_page_dma_32(struct drm_i915_private *dev_priv,
403 struct i915_page_dma *p, const uint32_t val32)
404 {
405 uint64_t v = val32;
406
407 v = v << 32 | val32;
408
409 fill_page_dma(dev_priv, p, v);
410 }
411
412 static int
413 setup_scratch_page(struct drm_i915_private *dev_priv,
414 struct i915_page_dma *scratch,
415 gfp_t gfp)
416 {
417 return __setup_page_dma(dev_priv, scratch, gfp | __GFP_ZERO);
418 }
419
420 static void cleanup_scratch_page(struct drm_i915_private *dev_priv,
421 struct i915_page_dma *scratch)
422 {
423 cleanup_page_dma(dev_priv, scratch);
424 }
425
426 static struct i915_page_table *alloc_pt(struct drm_i915_private *dev_priv)
427 {
428 struct i915_page_table *pt;
429 const size_t count = INTEL_GEN(dev_priv) >= 8 ? GEN8_PTES : GEN6_PTES;
430 int ret = -ENOMEM;
431
432 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
433 if (!pt)
434 return ERR_PTR(-ENOMEM);
435
436 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
437 GFP_KERNEL);
438
439 if (!pt->used_ptes)
440 goto fail_bitmap;
441
442 ret = setup_px(dev_priv, pt);
443 if (ret)
444 goto fail_page_m;
445
446 return pt;
447
448 fail_page_m:
449 kfree(pt->used_ptes);
450 fail_bitmap:
451 kfree(pt);
452
453 return ERR_PTR(ret);
454 }
455
456 static void free_pt(struct drm_i915_private *dev_priv,
457 struct i915_page_table *pt)
458 {
459 cleanup_px(dev_priv, pt);
460 kfree(pt->used_ptes);
461 kfree(pt);
462 }
463
464 static void gen8_initialize_pt(struct i915_address_space *vm,
465 struct i915_page_table *pt)
466 {
467 gen8_pte_t scratch_pte;
468
469 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
470 I915_CACHE_LLC);
471
472 fill_px(vm->i915, pt, scratch_pte);
473 }
474
475 static void gen6_initialize_pt(struct i915_address_space *vm,
476 struct i915_page_table *pt)
477 {
478 gen6_pte_t scratch_pte;
479
480 WARN_ON(vm->scratch_page.daddr == 0);
481
482 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
483 I915_CACHE_LLC, 0);
484
485 fill32_px(vm->i915, pt, scratch_pte);
486 }
487
488 static struct i915_page_directory *alloc_pd(struct drm_i915_private *dev_priv)
489 {
490 struct i915_page_directory *pd;
491 int ret = -ENOMEM;
492
493 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
494 if (!pd)
495 return ERR_PTR(-ENOMEM);
496
497 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
498 sizeof(*pd->used_pdes), GFP_KERNEL);
499 if (!pd->used_pdes)
500 goto fail_bitmap;
501
502 ret = setup_px(dev_priv, pd);
503 if (ret)
504 goto fail_page_m;
505
506 return pd;
507
508 fail_page_m:
509 kfree(pd->used_pdes);
510 fail_bitmap:
511 kfree(pd);
512
513 return ERR_PTR(ret);
514 }
515
516 static void free_pd(struct drm_i915_private *dev_priv,
517 struct i915_page_directory *pd)
518 {
519 if (px_page(pd)) {
520 cleanup_px(dev_priv, pd);
521 kfree(pd->used_pdes);
522 kfree(pd);
523 }
524 }
525
526 static void gen8_initialize_pd(struct i915_address_space *vm,
527 struct i915_page_directory *pd)
528 {
529 gen8_pde_t scratch_pde;
530
531 scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
532
533 fill_px(vm->i915, pd, scratch_pde);
534 }
535
536 static int __pdp_init(struct drm_i915_private *dev_priv,
537 struct i915_page_directory_pointer *pdp)
538 {
539 size_t pdpes = I915_PDPES_PER_PDP(dev_priv);
540
541 pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
542 sizeof(unsigned long),
543 GFP_KERNEL);
544 if (!pdp->used_pdpes)
545 return -ENOMEM;
546
547 pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
548 GFP_KERNEL);
549 if (!pdp->page_directory) {
550 kfree(pdp->used_pdpes);
551 /* the PDP might be the statically allocated top level. Keep it
552 * as clean as possible */
553 pdp->used_pdpes = NULL;
554 return -ENOMEM;
555 }
556
557 return 0;
558 }
559
560 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
561 {
562 kfree(pdp->used_pdpes);
563 kfree(pdp->page_directory);
564 pdp->page_directory = NULL;
565 }
566
567 static struct
568 i915_page_directory_pointer *alloc_pdp(struct drm_i915_private *dev_priv)
569 {
570 struct i915_page_directory_pointer *pdp;
571 int ret = -ENOMEM;
572
573 WARN_ON(!USES_FULL_48BIT_PPGTT(dev_priv));
574
575 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
576 if (!pdp)
577 return ERR_PTR(-ENOMEM);
578
579 ret = __pdp_init(dev_priv, pdp);
580 if (ret)
581 goto fail_bitmap;
582
583 ret = setup_px(dev_priv, pdp);
584 if (ret)
585 goto fail_page_m;
586
587 return pdp;
588
589 fail_page_m:
590 __pdp_fini(pdp);
591 fail_bitmap:
592 kfree(pdp);
593
594 return ERR_PTR(ret);
595 }
596
597 static void free_pdp(struct drm_i915_private *dev_priv,
598 struct i915_page_directory_pointer *pdp)
599 {
600 __pdp_fini(pdp);
601 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
602 cleanup_px(dev_priv, pdp);
603 kfree(pdp);
604 }
605 }
606
607 static void gen8_initialize_pdp(struct i915_address_space *vm,
608 struct i915_page_directory_pointer *pdp)
609 {
610 gen8_ppgtt_pdpe_t scratch_pdpe;
611
612 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
613
614 fill_px(vm->i915, pdp, scratch_pdpe);
615 }
616
617 static void gen8_initialize_pml4(struct i915_address_space *vm,
618 struct i915_pml4 *pml4)
619 {
620 gen8_ppgtt_pml4e_t scratch_pml4e;
621
622 scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
623 I915_CACHE_LLC);
624
625 fill_px(vm->i915, pml4, scratch_pml4e);
626 }
627
628 static void
629 gen8_setup_pdpe(struct i915_hw_ppgtt *ppgtt,
630 struct i915_page_directory_pointer *pdp,
631 struct i915_page_directory *pd,
632 int index)
633 {
634 gen8_ppgtt_pdpe_t *page_directorypo;
635
636 if (!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)))
637 return;
638
639 page_directorypo = kmap_px(pdp);
640 page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
641 kunmap_px(ppgtt, page_directorypo);
642 }
643
644 static void
645 gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
646 struct i915_pml4 *pml4,
647 struct i915_page_directory_pointer *pdp,
648 int index)
649 {
650 gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
651
652 WARN_ON(!USES_FULL_48BIT_PPGTT(to_i915(ppgtt->base.dev)));
653 pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
654 kunmap_px(ppgtt, pagemap);
655 }
656
657 /* Broadwell Page Directory Pointer Descriptors */
658 static int gen8_write_pdp(struct drm_i915_gem_request *req,
659 unsigned entry,
660 dma_addr_t addr)
661 {
662 struct intel_ring *ring = req->ring;
663 struct intel_engine_cs *engine = req->engine;
664 int ret;
665
666 BUG_ON(entry >= 4);
667
668 ret = intel_ring_begin(req, 6);
669 if (ret)
670 return ret;
671
672 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
673 intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(engine, entry));
674 intel_ring_emit(ring, upper_32_bits(addr));
675 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
676 intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(engine, entry));
677 intel_ring_emit(ring, lower_32_bits(addr));
678 intel_ring_advance(ring);
679
680 return 0;
681 }
682
683 static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
684 struct drm_i915_gem_request *req)
685 {
686 int i, ret;
687
688 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
689 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
690
691 ret = gen8_write_pdp(req, i, pd_daddr);
692 if (ret)
693 return ret;
694 }
695
696 return 0;
697 }
698
699 static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
700 struct drm_i915_gem_request *req)
701 {
702 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
703 }
704
705 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
706 * the page table structures, we mark them dirty so that
707 * context switching/execlist queuing code takes extra steps
708 * to ensure that tlbs are flushed.
709 */
710 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
711 {
712 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
713 }
714
715 /* Removes entries from a single page table, releasing it if it's empty.
716 * Caller can use the return value to update higher-level entries.
717 */
718 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
719 struct i915_page_table *pt,
720 uint64_t start,
721 uint64_t length)
722 {
723 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
724 unsigned int num_entries = gen8_pte_count(start, length);
725 unsigned int pte = gen8_pte_index(start);
726 unsigned int pte_end = pte + num_entries;
727 gen8_pte_t *pt_vaddr;
728 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
729 I915_CACHE_LLC);
730
731 if (WARN_ON(!px_page(pt)))
732 return false;
733
734 GEM_BUG_ON(pte_end > GEN8_PTES);
735
736 bitmap_clear(pt->used_ptes, pte, num_entries);
737
738 if (bitmap_empty(pt->used_ptes, GEN8_PTES))
739 return true;
740
741 pt_vaddr = kmap_px(pt);
742
743 while (pte < pte_end)
744 pt_vaddr[pte++] = scratch_pte;
745
746 kunmap_px(ppgtt, pt_vaddr);
747
748 return false;
749 }
750
751 /* Removes entries from a single page dir, releasing it if it's empty.
752 * Caller can use the return value to update higher-level entries
753 */
754 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
755 struct i915_page_directory *pd,
756 uint64_t start,
757 uint64_t length)
758 {
759 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
760 struct i915_page_table *pt;
761 uint64_t pde;
762 gen8_pde_t *pde_vaddr;
763 gen8_pde_t scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt),
764 I915_CACHE_LLC);
765
766 gen8_for_each_pde(pt, pd, start, length, pde) {
767 if (WARN_ON(!pd->page_table[pde]))
768 break;
769
770 if (gen8_ppgtt_clear_pt(vm, pt, start, length)) {
771 __clear_bit(pde, pd->used_pdes);
772 pde_vaddr = kmap_px(pd);
773 pde_vaddr[pde] = scratch_pde;
774 kunmap_px(ppgtt, pde_vaddr);
775 free_pt(vm->i915, pt);
776 }
777 }
778
779 if (bitmap_empty(pd->used_pdes, I915_PDES))
780 return true;
781
782 return false;
783 }
784
785 /* Removes entries from a single page dir pointer, releasing it if it's empty.
786 * Caller can use the return value to update higher-level entries
787 */
788 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
789 struct i915_page_directory_pointer *pdp,
790 uint64_t start,
791 uint64_t length)
792 {
793 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
794 struct i915_page_directory *pd;
795 uint64_t pdpe;
796 gen8_ppgtt_pdpe_t *pdpe_vaddr;
797 gen8_ppgtt_pdpe_t scratch_pdpe =
798 gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
799
800 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
801 if (WARN_ON(!pdp->page_directory[pdpe]))
802 break;
803
804 if (gen8_ppgtt_clear_pd(vm, pd, start, length)) {
805 __clear_bit(pdpe, pdp->used_pdpes);
806 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
807 pdpe_vaddr = kmap_px(pdp);
808 pdpe_vaddr[pdpe] = scratch_pdpe;
809 kunmap_px(ppgtt, pdpe_vaddr);
810 }
811 free_pd(vm->i915, pd);
812 }
813 }
814
815 mark_tlbs_dirty(ppgtt);
816
817 if (bitmap_empty(pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)))
818 return true;
819
820 return false;
821 }
822
823 /* Removes entries from a single pml4.
824 * This is the top-level structure in 4-level page tables used on gen8+.
825 * Empty entries are always scratch pml4e.
826 */
827 static void gen8_ppgtt_clear_pml4(struct i915_address_space *vm,
828 struct i915_pml4 *pml4,
829 uint64_t start,
830 uint64_t length)
831 {
832 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
833 struct i915_page_directory_pointer *pdp;
834 uint64_t pml4e;
835 gen8_ppgtt_pml4e_t *pml4e_vaddr;
836 gen8_ppgtt_pml4e_t scratch_pml4e =
837 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC);
838
839 GEM_BUG_ON(!USES_FULL_48BIT_PPGTT(vm->i915));
840
841 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
842 if (WARN_ON(!pml4->pdps[pml4e]))
843 break;
844
845 if (gen8_ppgtt_clear_pdp(vm, pdp, start, length)) {
846 __clear_bit(pml4e, pml4->used_pml4es);
847 pml4e_vaddr = kmap_px(pml4);
848 pml4e_vaddr[pml4e] = scratch_pml4e;
849 kunmap_px(ppgtt, pml4e_vaddr);
850 free_pdp(vm->i915, pdp);
851 }
852 }
853 }
854
855 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
856 uint64_t start, uint64_t length)
857 {
858 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
859
860 if (USES_FULL_48BIT_PPGTT(vm->i915))
861 gen8_ppgtt_clear_pml4(vm, &ppgtt->pml4, start, length);
862 else
863 gen8_ppgtt_clear_pdp(vm, &ppgtt->pdp, start, length);
864 }
865
866 static void
867 gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
868 struct i915_page_directory_pointer *pdp,
869 struct sg_page_iter *sg_iter,
870 uint64_t start,
871 enum i915_cache_level cache_level)
872 {
873 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
874 gen8_pte_t *pt_vaddr;
875 unsigned pdpe = gen8_pdpe_index(start);
876 unsigned pde = gen8_pde_index(start);
877 unsigned pte = gen8_pte_index(start);
878
879 pt_vaddr = NULL;
880
881 while (__sg_page_iter_next(sg_iter)) {
882 if (pt_vaddr == NULL) {
883 struct i915_page_directory *pd = pdp->page_directory[pdpe];
884 struct i915_page_table *pt = pd->page_table[pde];
885 pt_vaddr = kmap_px(pt);
886 }
887
888 pt_vaddr[pte] =
889 gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
890 cache_level);
891 if (++pte == GEN8_PTES) {
892 kunmap_px(ppgtt, pt_vaddr);
893 pt_vaddr = NULL;
894 if (++pde == I915_PDES) {
895 if (++pdpe == I915_PDPES_PER_PDP(vm->i915))
896 break;
897 pde = 0;
898 }
899 pte = 0;
900 }
901 }
902
903 if (pt_vaddr)
904 kunmap_px(ppgtt, pt_vaddr);
905 }
906
907 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
908 struct sg_table *pages,
909 uint64_t start,
910 enum i915_cache_level cache_level,
911 u32 unused)
912 {
913 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
914 struct sg_page_iter sg_iter;
915
916 __sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
917
918 if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
919 gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
920 cache_level);
921 } else {
922 struct i915_page_directory_pointer *pdp;
923 uint64_t pml4e;
924 uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
925
926 gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
927 gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
928 start, cache_level);
929 }
930 }
931 }
932
933 static void gen8_free_page_tables(struct drm_i915_private *dev_priv,
934 struct i915_page_directory *pd)
935 {
936 int i;
937
938 if (!px_page(pd))
939 return;
940
941 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
942 if (WARN_ON(!pd->page_table[i]))
943 continue;
944
945 free_pt(dev_priv, pd->page_table[i]);
946 pd->page_table[i] = NULL;
947 }
948 }
949
950 static int gen8_init_scratch(struct i915_address_space *vm)
951 {
952 struct drm_i915_private *dev_priv = vm->i915;
953 int ret;
954
955 ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
956 if (ret)
957 return ret;
958
959 vm->scratch_pt = alloc_pt(dev_priv);
960 if (IS_ERR(vm->scratch_pt)) {
961 ret = PTR_ERR(vm->scratch_pt);
962 goto free_scratch_page;
963 }
964
965 vm->scratch_pd = alloc_pd(dev_priv);
966 if (IS_ERR(vm->scratch_pd)) {
967 ret = PTR_ERR(vm->scratch_pd);
968 goto free_pt;
969 }
970
971 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
972 vm->scratch_pdp = alloc_pdp(dev_priv);
973 if (IS_ERR(vm->scratch_pdp)) {
974 ret = PTR_ERR(vm->scratch_pdp);
975 goto free_pd;
976 }
977 }
978
979 gen8_initialize_pt(vm, vm->scratch_pt);
980 gen8_initialize_pd(vm, vm->scratch_pd);
981 if (USES_FULL_48BIT_PPGTT(dev_priv))
982 gen8_initialize_pdp(vm, vm->scratch_pdp);
983
984 return 0;
985
986 free_pd:
987 free_pd(dev_priv, vm->scratch_pd);
988 free_pt:
989 free_pt(dev_priv, vm->scratch_pt);
990 free_scratch_page:
991 cleanup_scratch_page(dev_priv, &vm->scratch_page);
992
993 return ret;
994 }
995
996 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
997 {
998 enum vgt_g2v_type msg;
999 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1000 int i;
1001
1002 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1003 u64 daddr = px_dma(&ppgtt->pml4);
1004
1005 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1006 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1007
1008 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1009 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1010 } else {
1011 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
1012 u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1013
1014 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1015 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1016 }
1017
1018 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1019 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1020 }
1021
1022 I915_WRITE(vgtif_reg(g2v_notify), msg);
1023
1024 return 0;
1025 }
1026
1027 static void gen8_free_scratch(struct i915_address_space *vm)
1028 {
1029 struct drm_i915_private *dev_priv = vm->i915;
1030
1031 if (USES_FULL_48BIT_PPGTT(dev_priv))
1032 free_pdp(dev_priv, vm->scratch_pdp);
1033 free_pd(dev_priv, vm->scratch_pd);
1034 free_pt(dev_priv, vm->scratch_pt);
1035 cleanup_scratch_page(dev_priv, &vm->scratch_page);
1036 }
1037
1038 static void gen8_ppgtt_cleanup_3lvl(struct drm_i915_private *dev_priv,
1039 struct i915_page_directory_pointer *pdp)
1040 {
1041 int i;
1042
1043 for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev_priv)) {
1044 if (WARN_ON(!pdp->page_directory[i]))
1045 continue;
1046
1047 gen8_free_page_tables(dev_priv, pdp->page_directory[i]);
1048 free_pd(dev_priv, pdp->page_directory[i]);
1049 }
1050
1051 free_pdp(dev_priv, pdp);
1052 }
1053
1054 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1055 {
1056 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1057 int i;
1058
1059 for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
1060 if (WARN_ON(!ppgtt->pml4.pdps[i]))
1061 continue;
1062
1063 gen8_ppgtt_cleanup_3lvl(dev_priv, ppgtt->pml4.pdps[i]);
1064 }
1065
1066 cleanup_px(dev_priv, &ppgtt->pml4);
1067 }
1068
1069 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1070 {
1071 struct drm_i915_private *dev_priv = vm->i915;
1072 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1073
1074 if (intel_vgpu_active(dev_priv))
1075 gen8_ppgtt_notify_vgt(ppgtt, false);
1076
1077 if (!USES_FULL_48BIT_PPGTT(dev_priv))
1078 gen8_ppgtt_cleanup_3lvl(dev_priv, &ppgtt->pdp);
1079 else
1080 gen8_ppgtt_cleanup_4lvl(ppgtt);
1081
1082 gen8_free_scratch(vm);
1083 }
1084
1085 /**
1086 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1087 * @vm: Master vm structure.
1088 * @pd: Page directory for this address range.
1089 * @start: Starting virtual address to begin allocations.
1090 * @length: Size of the allocations.
1091 * @new_pts: Bitmap set by function with new allocations. Likely used by the
1092 * caller to free on error.
1093 *
1094 * Allocate the required number of page tables. Extremely similar to
1095 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1096 * the page directory boundary (instead of the page directory pointer). That
1097 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1098 * possible, and likely that the caller will need to use multiple calls of this
1099 * function to achieve the appropriate allocation.
1100 *
1101 * Return: 0 if success; negative error code otherwise.
1102 */
1103 static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1104 struct i915_page_directory *pd,
1105 uint64_t start,
1106 uint64_t length,
1107 unsigned long *new_pts)
1108 {
1109 struct drm_i915_private *dev_priv = vm->i915;
1110 struct i915_page_table *pt;
1111 uint32_t pde;
1112
1113 gen8_for_each_pde(pt, pd, start, length, pde) {
1114 /* Don't reallocate page tables */
1115 if (test_bit(pde, pd->used_pdes)) {
1116 /* Scratch is never allocated this way */
1117 WARN_ON(pt == vm->scratch_pt);
1118 continue;
1119 }
1120
1121 pt = alloc_pt(dev_priv);
1122 if (IS_ERR(pt))
1123 goto unwind_out;
1124
1125 gen8_initialize_pt(vm, pt);
1126 pd->page_table[pde] = pt;
1127 __set_bit(pde, new_pts);
1128 trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1129 }
1130
1131 return 0;
1132
1133 unwind_out:
1134 for_each_set_bit(pde, new_pts, I915_PDES)
1135 free_pt(dev_priv, pd->page_table[pde]);
1136
1137 return -ENOMEM;
1138 }
1139
1140 /**
1141 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1142 * @vm: Master vm structure.
1143 * @pdp: Page directory pointer for this address range.
1144 * @start: Starting virtual address to begin allocations.
1145 * @length: Size of the allocations.
1146 * @new_pds: Bitmap set by function with new allocations. Likely used by the
1147 * caller to free on error.
1148 *
1149 * Allocate the required number of page directories starting at the pde index of
1150 * @start, and ending at the pde index @start + @length. This function will skip
1151 * over already allocated page directories within the range, and only allocate
1152 * new ones, setting the appropriate pointer within the pdp as well as the
1153 * correct position in the bitmap @new_pds.
1154 *
1155 * The function will only allocate the pages within the range for a give page
1156 * directory pointer. In other words, if @start + @length straddles a virtually
1157 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1158 * required by the caller, This is not currently possible, and the BUG in the
1159 * code will prevent it.
1160 *
1161 * Return: 0 if success; negative error code otherwise.
1162 */
1163 static int
1164 gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1165 struct i915_page_directory_pointer *pdp,
1166 uint64_t start,
1167 uint64_t length,
1168 unsigned long *new_pds)
1169 {
1170 struct drm_i915_private *dev_priv = vm->i915;
1171 struct i915_page_directory *pd;
1172 uint32_t pdpe;
1173 uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1174
1175 WARN_ON(!bitmap_empty(new_pds, pdpes));
1176
1177 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1178 if (test_bit(pdpe, pdp->used_pdpes))
1179 continue;
1180
1181 pd = alloc_pd(dev_priv);
1182 if (IS_ERR(pd))
1183 goto unwind_out;
1184
1185 gen8_initialize_pd(vm, pd);
1186 pdp->page_directory[pdpe] = pd;
1187 __set_bit(pdpe, new_pds);
1188 trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1189 }
1190
1191 return 0;
1192
1193 unwind_out:
1194 for_each_set_bit(pdpe, new_pds, pdpes)
1195 free_pd(dev_priv, pdp->page_directory[pdpe]);
1196
1197 return -ENOMEM;
1198 }
1199
1200 /**
1201 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1202 * @vm: Master vm structure.
1203 * @pml4: Page map level 4 for this address range.
1204 * @start: Starting virtual address to begin allocations.
1205 * @length: Size of the allocations.
1206 * @new_pdps: Bitmap set by function with new allocations. Likely used by the
1207 * caller to free on error.
1208 *
1209 * Allocate the required number of page directory pointers. Extremely similar to
1210 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1211 * The main difference is here we are limited by the pml4 boundary (instead of
1212 * the page directory pointer).
1213 *
1214 * Return: 0 if success; negative error code otherwise.
1215 */
1216 static int
1217 gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1218 struct i915_pml4 *pml4,
1219 uint64_t start,
1220 uint64_t length,
1221 unsigned long *new_pdps)
1222 {
1223 struct drm_i915_private *dev_priv = vm->i915;
1224 struct i915_page_directory_pointer *pdp;
1225 uint32_t pml4e;
1226
1227 WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1228
1229 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1230 if (!test_bit(pml4e, pml4->used_pml4es)) {
1231 pdp = alloc_pdp(dev_priv);
1232 if (IS_ERR(pdp))
1233 goto unwind_out;
1234
1235 gen8_initialize_pdp(vm, pdp);
1236 pml4->pdps[pml4e] = pdp;
1237 __set_bit(pml4e, new_pdps);
1238 trace_i915_page_directory_pointer_entry_alloc(vm,
1239 pml4e,
1240 start,
1241 GEN8_PML4E_SHIFT);
1242 }
1243 }
1244
1245 return 0;
1246
1247 unwind_out:
1248 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1249 free_pdp(dev_priv, pml4->pdps[pml4e]);
1250
1251 return -ENOMEM;
1252 }
1253
1254 static void
1255 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1256 {
1257 kfree(new_pts);
1258 kfree(new_pds);
1259 }
1260
1261 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1262 * of these are based on the number of PDPEs in the system.
1263 */
1264 static
1265 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1266 unsigned long **new_pts,
1267 uint32_t pdpes)
1268 {
1269 unsigned long *pds;
1270 unsigned long *pts;
1271
1272 pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1273 if (!pds)
1274 return -ENOMEM;
1275
1276 pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1277 GFP_TEMPORARY);
1278 if (!pts)
1279 goto err_out;
1280
1281 *new_pds = pds;
1282 *new_pts = pts;
1283
1284 return 0;
1285
1286 err_out:
1287 free_gen8_temp_bitmaps(pds, pts);
1288 return -ENOMEM;
1289 }
1290
1291 static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1292 struct i915_page_directory_pointer *pdp,
1293 uint64_t start,
1294 uint64_t length)
1295 {
1296 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1297 unsigned long *new_page_dirs, *new_page_tables;
1298 struct drm_i915_private *dev_priv = vm->i915;
1299 struct i915_page_directory *pd;
1300 const uint64_t orig_start = start;
1301 const uint64_t orig_length = length;
1302 uint32_t pdpe;
1303 uint32_t pdpes = I915_PDPES_PER_PDP(dev_priv);
1304 int ret;
1305
1306 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1307 if (ret)
1308 return ret;
1309
1310 /* Do the allocations first so we can easily bail out */
1311 ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1312 new_page_dirs);
1313 if (ret) {
1314 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1315 return ret;
1316 }
1317
1318 /* For every page directory referenced, allocate page tables */
1319 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1320 ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1321 new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1322 if (ret)
1323 goto err_out;
1324 }
1325
1326 start = orig_start;
1327 length = orig_length;
1328
1329 /* Allocations have completed successfully, so set the bitmaps, and do
1330 * the mappings. */
1331 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1332 gen8_pde_t *const page_directory = kmap_px(pd);
1333 struct i915_page_table *pt;
1334 uint64_t pd_len = length;
1335 uint64_t pd_start = start;
1336 uint32_t pde;
1337
1338 /* Every pd should be allocated, we just did that above. */
1339 WARN_ON(!pd);
1340
1341 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1342 /* Same reasoning as pd */
1343 WARN_ON(!pt);
1344 WARN_ON(!pd_len);
1345 WARN_ON(!gen8_pte_count(pd_start, pd_len));
1346
1347 /* Set our used ptes within the page table */
1348 bitmap_set(pt->used_ptes,
1349 gen8_pte_index(pd_start),
1350 gen8_pte_count(pd_start, pd_len));
1351
1352 /* Our pde is now pointing to the pagetable, pt */
1353 __set_bit(pde, pd->used_pdes);
1354
1355 /* Map the PDE to the page table */
1356 page_directory[pde] = gen8_pde_encode(px_dma(pt),
1357 I915_CACHE_LLC);
1358 trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1359 gen8_pte_index(start),
1360 gen8_pte_count(start, length),
1361 GEN8_PTES);
1362
1363 /* NB: We haven't yet mapped ptes to pages. At this
1364 * point we're still relying on insert_entries() */
1365 }
1366
1367 kunmap_px(ppgtt, page_directory);
1368 __set_bit(pdpe, pdp->used_pdpes);
1369 gen8_setup_pdpe(ppgtt, pdp, pd, pdpe);
1370 }
1371
1372 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1373 mark_tlbs_dirty(ppgtt);
1374 return 0;
1375
1376 err_out:
1377 while (pdpe--) {
1378 unsigned long temp;
1379
1380 for_each_set_bit(temp, new_page_tables + pdpe *
1381 BITS_TO_LONGS(I915_PDES), I915_PDES)
1382 free_pt(dev_priv,
1383 pdp->page_directory[pdpe]->page_table[temp]);
1384 }
1385
1386 for_each_set_bit(pdpe, new_page_dirs, pdpes)
1387 free_pd(dev_priv, pdp->page_directory[pdpe]);
1388
1389 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1390 mark_tlbs_dirty(ppgtt);
1391 return ret;
1392 }
1393
1394 static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1395 struct i915_pml4 *pml4,
1396 uint64_t start,
1397 uint64_t length)
1398 {
1399 DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1400 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1401 struct i915_page_directory_pointer *pdp;
1402 uint64_t pml4e;
1403 int ret = 0;
1404
1405 /* Do the pml4 allocations first, so we don't need to track the newly
1406 * allocated tables below the pdp */
1407 bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1408
1409 /* The pagedirectory and pagetable allocations are done in the shared 3
1410 * and 4 level code. Just allocate the pdps.
1411 */
1412 ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1413 new_pdps);
1414 if (ret)
1415 return ret;
1416
1417 WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1418 "The allocation has spanned more than 512GB. "
1419 "It is highly likely this is incorrect.");
1420
1421 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1422 WARN_ON(!pdp);
1423
1424 ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1425 if (ret)
1426 goto err_out;
1427
1428 gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1429 }
1430
1431 bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1432 GEN8_PML4ES_PER_PML4);
1433
1434 return 0;
1435
1436 err_out:
1437 for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1438 gen8_ppgtt_cleanup_3lvl(vm->i915, pml4->pdps[pml4e]);
1439
1440 return ret;
1441 }
1442
1443 static int gen8_alloc_va_range(struct i915_address_space *vm,
1444 uint64_t start, uint64_t length)
1445 {
1446 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1447
1448 if (USES_FULL_48BIT_PPGTT(vm->i915))
1449 return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1450 else
1451 return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1452 }
1453
1454 static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1455 uint64_t start, uint64_t length,
1456 gen8_pte_t scratch_pte,
1457 struct seq_file *m)
1458 {
1459 struct i915_page_directory *pd;
1460 uint32_t pdpe;
1461
1462 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1463 struct i915_page_table *pt;
1464 uint64_t pd_len = length;
1465 uint64_t pd_start = start;
1466 uint32_t pde;
1467
1468 if (!test_bit(pdpe, pdp->used_pdpes))
1469 continue;
1470
1471 seq_printf(m, "\tPDPE #%d\n", pdpe);
1472 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1473 uint32_t pte;
1474 gen8_pte_t *pt_vaddr;
1475
1476 if (!test_bit(pde, pd->used_pdes))
1477 continue;
1478
1479 pt_vaddr = kmap_px(pt);
1480 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1481 uint64_t va =
1482 (pdpe << GEN8_PDPE_SHIFT) |
1483 (pde << GEN8_PDE_SHIFT) |
1484 (pte << GEN8_PTE_SHIFT);
1485 int i;
1486 bool found = false;
1487
1488 for (i = 0; i < 4; i++)
1489 if (pt_vaddr[pte + i] != scratch_pte)
1490 found = true;
1491 if (!found)
1492 continue;
1493
1494 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1495 for (i = 0; i < 4; i++) {
1496 if (pt_vaddr[pte + i] != scratch_pte)
1497 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1498 else
1499 seq_puts(m, " SCRATCH ");
1500 }
1501 seq_puts(m, "\n");
1502 }
1503 /* don't use kunmap_px, it could trigger
1504 * an unnecessary flush.
1505 */
1506 kunmap_atomic(pt_vaddr);
1507 }
1508 }
1509 }
1510
1511 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1512 {
1513 struct i915_address_space *vm = &ppgtt->base;
1514 uint64_t start = ppgtt->base.start;
1515 uint64_t length = ppgtt->base.total;
1516 gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
1517 I915_CACHE_LLC);
1518
1519 if (!USES_FULL_48BIT_PPGTT(vm->i915)) {
1520 gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1521 } else {
1522 uint64_t pml4e;
1523 struct i915_pml4 *pml4 = &ppgtt->pml4;
1524 struct i915_page_directory_pointer *pdp;
1525
1526 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1527 if (!test_bit(pml4e, pml4->used_pml4es))
1528 continue;
1529
1530 seq_printf(m, " PML4E #%llu\n", pml4e);
1531 gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1532 }
1533 }
1534 }
1535
1536 static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1537 {
1538 unsigned long *new_page_dirs, *new_page_tables;
1539 uint32_t pdpes = I915_PDPES_PER_PDP(to_i915(ppgtt->base.dev));
1540 int ret;
1541
1542 /* We allocate temp bitmap for page tables for no gain
1543 * but as this is for init only, lets keep the things simple
1544 */
1545 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1546 if (ret)
1547 return ret;
1548
1549 /* Allocate for all pdps regardless of how the ppgtt
1550 * was defined.
1551 */
1552 ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1553 0, 1ULL << 32,
1554 new_page_dirs);
1555 if (!ret)
1556 *ppgtt->pdp.used_pdpes = *new_page_dirs;
1557
1558 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1559
1560 return ret;
1561 }
1562
1563 /*
1564 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1565 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1566 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1567 * space.
1568 *
1569 */
1570 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1571 {
1572 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1573 int ret;
1574
1575 ret = gen8_init_scratch(&ppgtt->base);
1576 if (ret)
1577 return ret;
1578
1579 ppgtt->base.start = 0;
1580 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1581 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1582 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1583 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1584 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1585 ppgtt->base.bind_vma = ppgtt_bind_vma;
1586 ppgtt->debug_dump = gen8_dump_ppgtt;
1587
1588 if (USES_FULL_48BIT_PPGTT(dev_priv)) {
1589 ret = setup_px(dev_priv, &ppgtt->pml4);
1590 if (ret)
1591 goto free_scratch;
1592
1593 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1594
1595 ppgtt->base.total = 1ULL << 48;
1596 ppgtt->switch_mm = gen8_48b_mm_switch;
1597 } else {
1598 ret = __pdp_init(dev_priv, &ppgtt->pdp);
1599 if (ret)
1600 goto free_scratch;
1601
1602 ppgtt->base.total = 1ULL << 32;
1603 ppgtt->switch_mm = gen8_legacy_mm_switch;
1604 trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1605 0, 0,
1606 GEN8_PML4E_SHIFT);
1607
1608 if (intel_vgpu_active(dev_priv)) {
1609 ret = gen8_preallocate_top_level_pdps(ppgtt);
1610 if (ret)
1611 goto free_scratch;
1612 }
1613 }
1614
1615 if (intel_vgpu_active(dev_priv))
1616 gen8_ppgtt_notify_vgt(ppgtt, true);
1617
1618 return 0;
1619
1620 free_scratch:
1621 gen8_free_scratch(&ppgtt->base);
1622 return ret;
1623 }
1624
1625 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1626 {
1627 struct i915_address_space *vm = &ppgtt->base;
1628 struct i915_page_table *unused;
1629 gen6_pte_t scratch_pte;
1630 uint32_t pd_entry;
1631 uint32_t pte, pde;
1632 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1633
1634 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1635 I915_CACHE_LLC, 0);
1636
1637 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1638 u32 expected;
1639 gen6_pte_t *pt_vaddr;
1640 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1641 pd_entry = readl(ppgtt->pd_addr + pde);
1642 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1643
1644 if (pd_entry != expected)
1645 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1646 pde,
1647 pd_entry,
1648 expected);
1649 seq_printf(m, "\tPDE: %x\n", pd_entry);
1650
1651 pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1652
1653 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1654 unsigned long va =
1655 (pde * PAGE_SIZE * GEN6_PTES) +
1656 (pte * PAGE_SIZE);
1657 int i;
1658 bool found = false;
1659 for (i = 0; i < 4; i++)
1660 if (pt_vaddr[pte + i] != scratch_pte)
1661 found = true;
1662 if (!found)
1663 continue;
1664
1665 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1666 for (i = 0; i < 4; i++) {
1667 if (pt_vaddr[pte + i] != scratch_pte)
1668 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1669 else
1670 seq_puts(m, " SCRATCH ");
1671 }
1672 seq_puts(m, "\n");
1673 }
1674 kunmap_px(ppgtt, pt_vaddr);
1675 }
1676 }
1677
1678 /* Write pde (index) from the page directory @pd to the page table @pt */
1679 static void gen6_write_pde(struct i915_page_directory *pd,
1680 const int pde, struct i915_page_table *pt)
1681 {
1682 /* Caller needs to make sure the write completes if necessary */
1683 struct i915_hw_ppgtt *ppgtt =
1684 container_of(pd, struct i915_hw_ppgtt, pd);
1685 u32 pd_entry;
1686
1687 pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1688 pd_entry |= GEN6_PDE_VALID;
1689
1690 writel(pd_entry, ppgtt->pd_addr + pde);
1691 }
1692
1693 /* Write all the page tables found in the ppgtt structure to incrementing page
1694 * directories. */
1695 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1696 struct i915_page_directory *pd,
1697 uint32_t start, uint32_t length)
1698 {
1699 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1700 struct i915_page_table *pt;
1701 uint32_t pde;
1702
1703 gen6_for_each_pde(pt, pd, start, length, pde)
1704 gen6_write_pde(pd, pde, pt);
1705
1706 /* Make sure write is complete before other code can use this page
1707 * table. Also require for WC mapped PTEs */
1708 readl(ggtt->gsm);
1709 }
1710
1711 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1712 {
1713 BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1714
1715 return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1716 }
1717
1718 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1719 struct drm_i915_gem_request *req)
1720 {
1721 struct intel_ring *ring = req->ring;
1722 struct intel_engine_cs *engine = req->engine;
1723 int ret;
1724
1725 /* NB: TLBs must be flushed and invalidated before a switch */
1726 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1727 if (ret)
1728 return ret;
1729
1730 ret = intel_ring_begin(req, 6);
1731 if (ret)
1732 return ret;
1733
1734 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1735 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1736 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1737 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1738 intel_ring_emit(ring, get_pd_offset(ppgtt));
1739 intel_ring_emit(ring, MI_NOOP);
1740 intel_ring_advance(ring);
1741
1742 return 0;
1743 }
1744
1745 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1746 struct drm_i915_gem_request *req)
1747 {
1748 struct intel_ring *ring = req->ring;
1749 struct intel_engine_cs *engine = req->engine;
1750 int ret;
1751
1752 /* NB: TLBs must be flushed and invalidated before a switch */
1753 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1754 if (ret)
1755 return ret;
1756
1757 ret = intel_ring_begin(req, 6);
1758 if (ret)
1759 return ret;
1760
1761 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1762 intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(engine));
1763 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1764 intel_ring_emit_reg(ring, RING_PP_DIR_BASE(engine));
1765 intel_ring_emit(ring, get_pd_offset(ppgtt));
1766 intel_ring_emit(ring, MI_NOOP);
1767 intel_ring_advance(ring);
1768
1769 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1770 if (engine->id != RCS) {
1771 ret = engine->emit_flush(req, EMIT_INVALIDATE | EMIT_FLUSH);
1772 if (ret)
1773 return ret;
1774 }
1775
1776 return 0;
1777 }
1778
1779 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1780 struct drm_i915_gem_request *req)
1781 {
1782 struct intel_engine_cs *engine = req->engine;
1783 struct drm_i915_private *dev_priv = req->i915;
1784
1785 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1786 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1787 return 0;
1788 }
1789
1790 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1791 {
1792 struct intel_engine_cs *engine;
1793 enum intel_engine_id id;
1794
1795 for_each_engine(engine, dev_priv, id) {
1796 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1797 GEN8_GFX_PPGTT_48B : 0;
1798 I915_WRITE(RING_MODE_GEN7(engine),
1799 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1800 }
1801 }
1802
1803 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1804 {
1805 struct intel_engine_cs *engine;
1806 uint32_t ecochk, ecobits;
1807 enum intel_engine_id id;
1808
1809 ecobits = I915_READ(GAC_ECO_BITS);
1810 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1811
1812 ecochk = I915_READ(GAM_ECOCHK);
1813 if (IS_HASWELL(dev_priv)) {
1814 ecochk |= ECOCHK_PPGTT_WB_HSW;
1815 } else {
1816 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1817 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1818 }
1819 I915_WRITE(GAM_ECOCHK, ecochk);
1820
1821 for_each_engine(engine, dev_priv, id) {
1822 /* GFX_MODE is per-ring on gen7+ */
1823 I915_WRITE(RING_MODE_GEN7(engine),
1824 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1825 }
1826 }
1827
1828 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1829 {
1830 uint32_t ecochk, gab_ctl, ecobits;
1831
1832 ecobits = I915_READ(GAC_ECO_BITS);
1833 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1834 ECOBITS_PPGTT_CACHE64B);
1835
1836 gab_ctl = I915_READ(GAB_CTL);
1837 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1838
1839 ecochk = I915_READ(GAM_ECOCHK);
1840 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1841
1842 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1843 }
1844
1845 /* PPGTT support for Sandybdrige/Gen6 and later */
1846 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1847 uint64_t start,
1848 uint64_t length)
1849 {
1850 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1851 gen6_pte_t *pt_vaddr, scratch_pte;
1852 unsigned first_entry = start >> PAGE_SHIFT;
1853 unsigned num_entries = length >> PAGE_SHIFT;
1854 unsigned act_pt = first_entry / GEN6_PTES;
1855 unsigned first_pte = first_entry % GEN6_PTES;
1856 unsigned last_pte, i;
1857
1858 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1859 I915_CACHE_LLC, 0);
1860
1861 while (num_entries) {
1862 last_pte = first_pte + num_entries;
1863 if (last_pte > GEN6_PTES)
1864 last_pte = GEN6_PTES;
1865
1866 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1867
1868 for (i = first_pte; i < last_pte; i++)
1869 pt_vaddr[i] = scratch_pte;
1870
1871 kunmap_px(ppgtt, pt_vaddr);
1872
1873 num_entries -= last_pte - first_pte;
1874 first_pte = 0;
1875 act_pt++;
1876 }
1877 }
1878
1879 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1880 struct sg_table *pages,
1881 uint64_t start,
1882 enum i915_cache_level cache_level, u32 flags)
1883 {
1884 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1885 unsigned first_entry = start >> PAGE_SHIFT;
1886 unsigned act_pt = first_entry / GEN6_PTES;
1887 unsigned act_pte = first_entry % GEN6_PTES;
1888 gen6_pte_t *pt_vaddr = NULL;
1889 struct sgt_iter sgt_iter;
1890 dma_addr_t addr;
1891
1892 for_each_sgt_dma(addr, sgt_iter, pages) {
1893 if (pt_vaddr == NULL)
1894 pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1895
1896 pt_vaddr[act_pte] =
1897 vm->pte_encode(addr, cache_level, flags);
1898
1899 if (++act_pte == GEN6_PTES) {
1900 kunmap_px(ppgtt, pt_vaddr);
1901 pt_vaddr = NULL;
1902 act_pt++;
1903 act_pte = 0;
1904 }
1905 }
1906
1907 if (pt_vaddr)
1908 kunmap_px(ppgtt, pt_vaddr);
1909 }
1910
1911 static int gen6_alloc_va_range(struct i915_address_space *vm,
1912 uint64_t start_in, uint64_t length_in)
1913 {
1914 DECLARE_BITMAP(new_page_tables, I915_PDES);
1915 struct drm_i915_private *dev_priv = vm->i915;
1916 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1917 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1918 struct i915_page_table *pt;
1919 uint32_t start, length, start_save, length_save;
1920 uint32_t pde;
1921 int ret;
1922
1923 start = start_save = start_in;
1924 length = length_save = length_in;
1925
1926 bitmap_zero(new_page_tables, I915_PDES);
1927
1928 /* The allocation is done in two stages so that we can bail out with
1929 * minimal amount of pain. The first stage finds new page tables that
1930 * need allocation. The second stage marks use ptes within the page
1931 * tables.
1932 */
1933 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1934 if (pt != vm->scratch_pt) {
1935 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1936 continue;
1937 }
1938
1939 /* We've already allocated a page table */
1940 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1941
1942 pt = alloc_pt(dev_priv);
1943 if (IS_ERR(pt)) {
1944 ret = PTR_ERR(pt);
1945 goto unwind_out;
1946 }
1947
1948 gen6_initialize_pt(vm, pt);
1949
1950 ppgtt->pd.page_table[pde] = pt;
1951 __set_bit(pde, new_page_tables);
1952 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1953 }
1954
1955 start = start_save;
1956 length = length_save;
1957
1958 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1959 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1960
1961 bitmap_zero(tmp_bitmap, GEN6_PTES);
1962 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1963 gen6_pte_count(start, length));
1964
1965 if (__test_and_clear_bit(pde, new_page_tables))
1966 gen6_write_pde(&ppgtt->pd, pde, pt);
1967
1968 trace_i915_page_table_entry_map(vm, pde, pt,
1969 gen6_pte_index(start),
1970 gen6_pte_count(start, length),
1971 GEN6_PTES);
1972 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1973 GEN6_PTES);
1974 }
1975
1976 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1977
1978 /* Make sure write is complete before other code can use this page
1979 * table. Also require for WC mapped PTEs */
1980 readl(ggtt->gsm);
1981
1982 mark_tlbs_dirty(ppgtt);
1983 return 0;
1984
1985 unwind_out:
1986 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1987 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1988
1989 ppgtt->pd.page_table[pde] = vm->scratch_pt;
1990 free_pt(dev_priv, pt);
1991 }
1992
1993 mark_tlbs_dirty(ppgtt);
1994 return ret;
1995 }
1996
1997 static int gen6_init_scratch(struct i915_address_space *vm)
1998 {
1999 struct drm_i915_private *dev_priv = vm->i915;
2000 int ret;
2001
2002 ret = setup_scratch_page(dev_priv, &vm->scratch_page, I915_GFP_DMA);
2003 if (ret)
2004 return ret;
2005
2006 vm->scratch_pt = alloc_pt(dev_priv);
2007 if (IS_ERR(vm->scratch_pt)) {
2008 cleanup_scratch_page(dev_priv, &vm->scratch_page);
2009 return PTR_ERR(vm->scratch_pt);
2010 }
2011
2012 gen6_initialize_pt(vm, vm->scratch_pt);
2013
2014 return 0;
2015 }
2016
2017 static void gen6_free_scratch(struct i915_address_space *vm)
2018 {
2019 struct drm_i915_private *dev_priv = vm->i915;
2020
2021 free_pt(dev_priv, vm->scratch_pt);
2022 cleanup_scratch_page(dev_priv, &vm->scratch_page);
2023 }
2024
2025 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2026 {
2027 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
2028 struct i915_page_directory *pd = &ppgtt->pd;
2029 struct drm_i915_private *dev_priv = vm->i915;
2030 struct i915_page_table *pt;
2031 uint32_t pde;
2032
2033 drm_mm_remove_node(&ppgtt->node);
2034
2035 gen6_for_all_pdes(pt, pd, pde)
2036 if (pt != vm->scratch_pt)
2037 free_pt(dev_priv, pt);
2038
2039 gen6_free_scratch(vm);
2040 }
2041
2042 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
2043 {
2044 struct i915_address_space *vm = &ppgtt->base;
2045 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2046 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2047 bool retried = false;
2048 int ret;
2049
2050 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2051 * allocator works in address space sizes, so it's multiplied by page
2052 * size. We allocate at the top of the GTT to avoid fragmentation.
2053 */
2054 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2055
2056 ret = gen6_init_scratch(vm);
2057 if (ret)
2058 return ret;
2059
2060 alloc:
2061 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm, &ppgtt->node,
2062 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2063 I915_COLOR_UNEVICTABLE,
2064 0, ggtt->base.total,
2065 DRM_MM_TOPDOWN);
2066 if (ret == -ENOSPC && !retried) {
2067 ret = i915_gem_evict_something(&ggtt->base,
2068 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2069 I915_COLOR_UNEVICTABLE,
2070 0, ggtt->base.total,
2071 0);
2072 if (ret)
2073 goto err_out;
2074
2075 retried = true;
2076 goto alloc;
2077 }
2078
2079 if (ret)
2080 goto err_out;
2081
2082
2083 if (ppgtt->node.start < ggtt->mappable_end)
2084 DRM_DEBUG("Forced to use aperture for PDEs\n");
2085
2086 return 0;
2087
2088 err_out:
2089 gen6_free_scratch(vm);
2090 return ret;
2091 }
2092
2093 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2094 {
2095 return gen6_ppgtt_allocate_page_directories(ppgtt);
2096 }
2097
2098 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2099 uint64_t start, uint64_t length)
2100 {
2101 struct i915_page_table *unused;
2102 uint32_t pde;
2103
2104 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2105 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2106 }
2107
2108 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2109 {
2110 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2111 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2112 int ret;
2113
2114 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2115 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2116 ppgtt->switch_mm = gen6_mm_switch;
2117 else if (IS_HASWELL(dev_priv))
2118 ppgtt->switch_mm = hsw_mm_switch;
2119 else if (IS_GEN7(dev_priv))
2120 ppgtt->switch_mm = gen7_mm_switch;
2121 else
2122 BUG();
2123
2124 ret = gen6_ppgtt_alloc(ppgtt);
2125 if (ret)
2126 return ret;
2127
2128 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2129 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2130 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2131 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2132 ppgtt->base.bind_vma = ppgtt_bind_vma;
2133 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2134 ppgtt->base.start = 0;
2135 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2136 ppgtt->debug_dump = gen6_dump_ppgtt;
2137
2138 ppgtt->pd.base.ggtt_offset =
2139 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2140
2141 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2142 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2143
2144 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2145
2146 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2147
2148 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2149 ppgtt->node.size >> 20,
2150 ppgtt->node.start / PAGE_SIZE);
2151
2152 DRM_DEBUG("Adding PPGTT at offset %x\n",
2153 ppgtt->pd.base.ggtt_offset << 10);
2154
2155 return 0;
2156 }
2157
2158 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2159 struct drm_i915_private *dev_priv)
2160 {
2161 ppgtt->base.i915 = dev_priv;
2162
2163 if (INTEL_INFO(dev_priv)->gen < 8)
2164 return gen6_ppgtt_init(ppgtt);
2165 else
2166 return gen8_ppgtt_init(ppgtt);
2167 }
2168
2169 static void i915_address_space_init(struct i915_address_space *vm,
2170 struct drm_i915_private *dev_priv,
2171 const char *name)
2172 {
2173 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2174 drm_mm_init(&vm->mm, vm->start, vm->total);
2175 INIT_LIST_HEAD(&vm->active_list);
2176 INIT_LIST_HEAD(&vm->inactive_list);
2177 INIT_LIST_HEAD(&vm->unbound_list);
2178 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2179 }
2180
2181 static void i915_address_space_fini(struct i915_address_space *vm)
2182 {
2183 i915_gem_timeline_fini(&vm->timeline);
2184 drm_mm_takedown(&vm->mm);
2185 list_del(&vm->global_link);
2186 }
2187
2188 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2189 {
2190 /* This function is for gtt related workarounds. This function is
2191 * called on driver load and after a GPU reset, so you can place
2192 * workarounds here even if they get overwritten by GPU reset.
2193 */
2194 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2195 if (IS_BROADWELL(dev_priv))
2196 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2197 else if (IS_CHERRYVIEW(dev_priv))
2198 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2199 else if (IS_SKYLAKE(dev_priv))
2200 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2201 else if (IS_BROXTON(dev_priv))
2202 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2203 }
2204
2205 static int i915_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2206 struct drm_i915_private *dev_priv,
2207 struct drm_i915_file_private *file_priv,
2208 const char *name)
2209 {
2210 int ret;
2211
2212 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2213 if (ret == 0) {
2214 kref_init(&ppgtt->ref);
2215 i915_address_space_init(&ppgtt->base, dev_priv, name);
2216 ppgtt->base.file = file_priv;
2217 }
2218
2219 return ret;
2220 }
2221
2222 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2223 {
2224 gtt_write_workarounds(dev_priv);
2225
2226 /* In the case of execlists, PPGTT is enabled by the context descriptor
2227 * and the PDPs are contained within the context itself. We don't
2228 * need to do anything here. */
2229 if (i915.enable_execlists)
2230 return 0;
2231
2232 if (!USES_PPGTT(dev_priv))
2233 return 0;
2234
2235 if (IS_GEN6(dev_priv))
2236 gen6_ppgtt_enable(dev_priv);
2237 else if (IS_GEN7(dev_priv))
2238 gen7_ppgtt_enable(dev_priv);
2239 else if (INTEL_GEN(dev_priv) >= 8)
2240 gen8_ppgtt_enable(dev_priv);
2241 else
2242 MISSING_CASE(INTEL_GEN(dev_priv));
2243
2244 return 0;
2245 }
2246
2247 struct i915_hw_ppgtt *
2248 i915_ppgtt_create(struct drm_i915_private *dev_priv,
2249 struct drm_i915_file_private *fpriv,
2250 const char *name)
2251 {
2252 struct i915_hw_ppgtt *ppgtt;
2253 int ret;
2254
2255 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2256 if (!ppgtt)
2257 return ERR_PTR(-ENOMEM);
2258
2259 ret = i915_ppgtt_init(ppgtt, dev_priv, fpriv, name);
2260 if (ret) {
2261 kfree(ppgtt);
2262 return ERR_PTR(ret);
2263 }
2264
2265 trace_i915_ppgtt_create(&ppgtt->base);
2266
2267 return ppgtt;
2268 }
2269
2270 void i915_ppgtt_release(struct kref *kref)
2271 {
2272 struct i915_hw_ppgtt *ppgtt =
2273 container_of(kref, struct i915_hw_ppgtt, ref);
2274
2275 trace_i915_ppgtt_release(&ppgtt->base);
2276
2277 /* vmas should already be unbound and destroyed */
2278 WARN_ON(!list_empty(&ppgtt->base.active_list));
2279 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2280 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
2281
2282 i915_address_space_fini(&ppgtt->base);
2283
2284 ppgtt->base.cleanup(&ppgtt->base);
2285 kfree(ppgtt);
2286 }
2287
2288 /* Certain Gen5 chipsets require require idling the GPU before
2289 * unmapping anything from the GTT when VT-d is enabled.
2290 */
2291 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2292 {
2293 #ifdef CONFIG_INTEL_IOMMU
2294 /* Query intel_iommu to see if we need the workaround. Presumably that
2295 * was loaded first.
2296 */
2297 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
2298 return true;
2299 #endif
2300 return false;
2301 }
2302
2303 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2304 {
2305 struct intel_engine_cs *engine;
2306 enum intel_engine_id id;
2307
2308 if (INTEL_INFO(dev_priv)->gen < 6)
2309 return;
2310
2311 for_each_engine(engine, dev_priv, id) {
2312 u32 fault_reg;
2313 fault_reg = I915_READ(RING_FAULT_REG(engine));
2314 if (fault_reg & RING_FAULT_VALID) {
2315 DRM_DEBUG_DRIVER("Unexpected fault\n"
2316 "\tAddr: 0x%08lx\n"
2317 "\tAddress space: %s\n"
2318 "\tSource ID: %d\n"
2319 "\tType: %d\n",
2320 fault_reg & PAGE_MASK,
2321 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2322 RING_FAULT_SRCID(fault_reg),
2323 RING_FAULT_FAULT_TYPE(fault_reg));
2324 I915_WRITE(RING_FAULT_REG(engine),
2325 fault_reg & ~RING_FAULT_VALID);
2326 }
2327 }
2328
2329 /* Engine specific init may not have been done till this point. */
2330 if (dev_priv->engine[RCS])
2331 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2332 }
2333
2334 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2335 {
2336 if (INTEL_INFO(dev_priv)->gen < 6) {
2337 intel_gtt_chipset_flush();
2338 } else {
2339 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2340 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2341 }
2342 }
2343
2344 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2345 {
2346 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2347
2348 /* Don't bother messing with faults pre GEN6 as we have little
2349 * documentation supporting that it's a good idea.
2350 */
2351 if (INTEL_GEN(dev_priv) < 6)
2352 return;
2353
2354 i915_check_and_clear_faults(dev_priv);
2355
2356 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
2357
2358 i915_ggtt_flush(dev_priv);
2359 }
2360
2361 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2362 struct sg_table *pages)
2363 {
2364 do {
2365 if (dma_map_sg(&obj->base.dev->pdev->dev,
2366 pages->sgl, pages->nents,
2367 PCI_DMA_BIDIRECTIONAL))
2368 return 0;
2369
2370 /* If the DMA remap fails, one cause can be that we have
2371 * too many objects pinned in a small remapping table,
2372 * such as swiotlb. Incrementally purge all other objects and
2373 * try again - if there are no more pages to remove from
2374 * the DMA remapper, i915_gem_shrink will return 0.
2375 */
2376 GEM_BUG_ON(obj->mm.pages == pages);
2377 } while (i915_gem_shrink(to_i915(obj->base.dev),
2378 obj->base.size >> PAGE_SHIFT,
2379 I915_SHRINK_BOUND |
2380 I915_SHRINK_UNBOUND |
2381 I915_SHRINK_ACTIVE));
2382
2383 return -ENOSPC;
2384 }
2385
2386 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2387 {
2388 writeq(pte, addr);
2389 }
2390
2391 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2392 dma_addr_t addr,
2393 uint64_t offset,
2394 enum i915_cache_level level,
2395 u32 unused)
2396 {
2397 struct drm_i915_private *dev_priv = vm->i915;
2398 gen8_pte_t __iomem *pte =
2399 (gen8_pte_t __iomem *)dev_priv->ggtt.gsm +
2400 (offset >> PAGE_SHIFT);
2401
2402 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2403
2404 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2405 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2406 }
2407
2408 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2409 struct sg_table *st,
2410 uint64_t start,
2411 enum i915_cache_level level, u32 unused)
2412 {
2413 struct drm_i915_private *dev_priv = vm->i915;
2414 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2415 struct sgt_iter sgt_iter;
2416 gen8_pte_t __iomem *gtt_entries;
2417 gen8_pte_t gtt_entry;
2418 dma_addr_t addr;
2419 int i = 0;
2420
2421 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2422
2423 for_each_sgt_dma(addr, sgt_iter, st) {
2424 gtt_entry = gen8_pte_encode(addr, level);
2425 gen8_set_pte(&gtt_entries[i++], gtt_entry);
2426 }
2427
2428 /*
2429 * XXX: This serves as a posting read to make sure that the PTE has
2430 * actually been updated. There is some concern that even though
2431 * registers and PTEs are within the same BAR that they are potentially
2432 * of NUMA access patterns. Therefore, even with the way we assume
2433 * hardware should work, we must keep this posting read for paranoia.
2434 */
2435 if (i != 0)
2436 WARN_ON(readq(&gtt_entries[i-1]) != gtt_entry);
2437
2438 /* This next bit makes the above posting read even more important. We
2439 * want to flush the TLBs only after we're certain all the PTE updates
2440 * have finished.
2441 */
2442 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2443 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2444 }
2445
2446 struct insert_entries {
2447 struct i915_address_space *vm;
2448 struct sg_table *st;
2449 uint64_t start;
2450 enum i915_cache_level level;
2451 u32 flags;
2452 };
2453
2454 static int gen8_ggtt_insert_entries__cb(void *_arg)
2455 {
2456 struct insert_entries *arg = _arg;
2457 gen8_ggtt_insert_entries(arg->vm, arg->st,
2458 arg->start, arg->level, arg->flags);
2459 return 0;
2460 }
2461
2462 static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2463 struct sg_table *st,
2464 uint64_t start,
2465 enum i915_cache_level level,
2466 u32 flags)
2467 {
2468 struct insert_entries arg = { vm, st, start, level, flags };
2469 stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2470 }
2471
2472 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2473 dma_addr_t addr,
2474 uint64_t offset,
2475 enum i915_cache_level level,
2476 u32 flags)
2477 {
2478 struct drm_i915_private *dev_priv = vm->i915;
2479 gen6_pte_t __iomem *pte =
2480 (gen6_pte_t __iomem *)dev_priv->ggtt.gsm +
2481 (offset >> PAGE_SHIFT);
2482
2483 iowrite32(vm->pte_encode(addr, level, flags), pte);
2484
2485 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2486 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2487 }
2488
2489 /*
2490 * Binds an object into the global gtt with the specified cache level. The object
2491 * will be accessible to the GPU via commands whose operands reference offsets
2492 * within the global GTT as well as accessible by the GPU through the GMADR
2493 * mapped BAR (dev_priv->mm.gtt->gtt).
2494 */
2495 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2496 struct sg_table *st,
2497 uint64_t start,
2498 enum i915_cache_level level, u32 flags)
2499 {
2500 struct drm_i915_private *dev_priv = vm->i915;
2501 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2502 struct sgt_iter sgt_iter;
2503 gen6_pte_t __iomem *gtt_entries;
2504 gen6_pte_t gtt_entry;
2505 dma_addr_t addr;
2506 int i = 0;
2507
2508 gtt_entries = (gen6_pte_t __iomem *)ggtt->gsm + (start >> PAGE_SHIFT);
2509
2510 for_each_sgt_dma(addr, sgt_iter, st) {
2511 gtt_entry = vm->pte_encode(addr, level, flags);
2512 iowrite32(gtt_entry, &gtt_entries[i++]);
2513 }
2514
2515 /* XXX: This serves as a posting read to make sure that the PTE has
2516 * actually been updated. There is some concern that even though
2517 * registers and PTEs are within the same BAR that they are potentially
2518 * of NUMA access patterns. Therefore, even with the way we assume
2519 * hardware should work, we must keep this posting read for paranoia.
2520 */
2521 if (i != 0)
2522 WARN_ON(readl(&gtt_entries[i-1]) != gtt_entry);
2523
2524 /* This next bit makes the above posting read even more important. We
2525 * want to flush the TLBs only after we're certain all the PTE updates
2526 * have finished.
2527 */
2528 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2529 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2530 }
2531
2532 static void nop_clear_range(struct i915_address_space *vm,
2533 uint64_t start, uint64_t length)
2534 {
2535 }
2536
2537 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2538 uint64_t start, uint64_t length)
2539 {
2540 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2541 unsigned first_entry = start >> PAGE_SHIFT;
2542 unsigned num_entries = length >> PAGE_SHIFT;
2543 gen8_pte_t scratch_pte, __iomem *gtt_base =
2544 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2545 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2546 int i;
2547
2548 if (WARN(num_entries > max_entries,
2549 "First entry = %d; Num entries = %d (max=%d)\n",
2550 first_entry, num_entries, max_entries))
2551 num_entries = max_entries;
2552
2553 scratch_pte = gen8_pte_encode(vm->scratch_page.daddr,
2554 I915_CACHE_LLC);
2555 for (i = 0; i < num_entries; i++)
2556 gen8_set_pte(&gtt_base[i], scratch_pte);
2557 readl(gtt_base);
2558 }
2559
2560 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2561 uint64_t start,
2562 uint64_t length)
2563 {
2564 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2565 unsigned first_entry = start >> PAGE_SHIFT;
2566 unsigned num_entries = length >> PAGE_SHIFT;
2567 gen6_pte_t scratch_pte, __iomem *gtt_base =
2568 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2569 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2570 int i;
2571
2572 if (WARN(num_entries > max_entries,
2573 "First entry = %d; Num entries = %d (max=%d)\n",
2574 first_entry, num_entries, max_entries))
2575 num_entries = max_entries;
2576
2577 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2578 I915_CACHE_LLC, 0);
2579
2580 for (i = 0; i < num_entries; i++)
2581 iowrite32(scratch_pte, &gtt_base[i]);
2582 readl(gtt_base);
2583 }
2584
2585 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2586 dma_addr_t addr,
2587 uint64_t offset,
2588 enum i915_cache_level cache_level,
2589 u32 unused)
2590 {
2591 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2592 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2593
2594 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2595 }
2596
2597 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2598 struct sg_table *pages,
2599 uint64_t start,
2600 enum i915_cache_level cache_level, u32 unused)
2601 {
2602 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2603 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2604
2605 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2606
2607 }
2608
2609 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2610 uint64_t start,
2611 uint64_t length)
2612 {
2613 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2614 }
2615
2616 static int ggtt_bind_vma(struct i915_vma *vma,
2617 enum i915_cache_level cache_level,
2618 u32 flags)
2619 {
2620 struct drm_i915_private *i915 = vma->vm->i915;
2621 struct drm_i915_gem_object *obj = vma->obj;
2622 u32 pte_flags = 0;
2623 int ret;
2624
2625 ret = i915_get_ggtt_vma_pages(vma);
2626 if (ret)
2627 return ret;
2628
2629 /* Currently applicable only to VLV */
2630 if (obj->gt_ro)
2631 pte_flags |= PTE_READ_ONLY;
2632
2633 intel_runtime_pm_get(i915);
2634 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2635 cache_level, pte_flags);
2636 intel_runtime_pm_put(i915);
2637
2638 /*
2639 * Without aliasing PPGTT there's no difference between
2640 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2641 * upgrade to both bound if we bind either to avoid double-binding.
2642 */
2643 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2644
2645 return 0;
2646 }
2647
2648 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2649 enum i915_cache_level cache_level,
2650 u32 flags)
2651 {
2652 struct drm_i915_private *i915 = vma->vm->i915;
2653 u32 pte_flags;
2654 int ret;
2655
2656 ret = i915_get_ggtt_vma_pages(vma);
2657 if (ret)
2658 return ret;
2659
2660 /* Currently applicable only to VLV */
2661 pte_flags = 0;
2662 if (vma->obj->gt_ro)
2663 pte_flags |= PTE_READ_ONLY;
2664
2665
2666 if (flags & I915_VMA_GLOBAL_BIND) {
2667 intel_runtime_pm_get(i915);
2668 vma->vm->insert_entries(vma->vm,
2669 vma->pages, vma->node.start,
2670 cache_level, pte_flags);
2671 intel_runtime_pm_put(i915);
2672 }
2673
2674 if (flags & I915_VMA_LOCAL_BIND) {
2675 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2676 appgtt->base.insert_entries(&appgtt->base,
2677 vma->pages, vma->node.start,
2678 cache_level, pte_flags);
2679 }
2680
2681 return 0;
2682 }
2683
2684 static void ggtt_unbind_vma(struct i915_vma *vma)
2685 {
2686 struct drm_i915_private *i915 = vma->vm->i915;
2687 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2688 const u64 size = min(vma->size, vma->node.size);
2689
2690 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2691 intel_runtime_pm_get(i915);
2692 vma->vm->clear_range(vma->vm,
2693 vma->node.start, size);
2694 intel_runtime_pm_put(i915);
2695 }
2696
2697 if (vma->flags & I915_VMA_LOCAL_BIND && appgtt)
2698 appgtt->base.clear_range(&appgtt->base,
2699 vma->node.start, size);
2700 }
2701
2702 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2703 struct sg_table *pages)
2704 {
2705 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2706 struct device *kdev = &dev_priv->drm.pdev->dev;
2707 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2708
2709 if (unlikely(ggtt->do_idle_maps)) {
2710 if (i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED)) {
2711 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2712 /* Wait a bit, in hopes it avoids the hang */
2713 udelay(10);
2714 }
2715 }
2716
2717 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2718 }
2719
2720 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2721 unsigned long color,
2722 u64 *start,
2723 u64 *end)
2724 {
2725 if (node->color != color)
2726 *start += 4096;
2727
2728 node = list_next_entry(node, node_list);
2729 if (node->allocated && node->color != color)
2730 *end -= 4096;
2731 }
2732
2733 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2734 {
2735 /* Let GEM Manage all of the aperture.
2736 *
2737 * However, leave one page at the end still bound to the scratch page.
2738 * There are a number of places where the hardware apparently prefetches
2739 * past the end of the object, and we've seen multiple hangs with the
2740 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2741 * aperture. One page should be enough to keep any prefetching inside
2742 * of the aperture.
2743 */
2744 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2745 unsigned long hole_start, hole_end;
2746 struct i915_hw_ppgtt *ppgtt;
2747 struct drm_mm_node *entry;
2748 int ret;
2749
2750 ret = intel_vgt_balloon(dev_priv);
2751 if (ret)
2752 return ret;
2753
2754 /* Reserve a mappable slot for our lockless error capture */
2755 ret = drm_mm_insert_node_in_range_generic(&ggtt->base.mm,
2756 &ggtt->error_capture,
2757 4096, 0,
2758 I915_COLOR_UNEVICTABLE,
2759 0, ggtt->mappable_end,
2760 0, 0);
2761 if (ret)
2762 return ret;
2763
2764 /* Clear any non-preallocated blocks */
2765 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2766 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767 hole_start, hole_end);
2768 ggtt->base.clear_range(&ggtt->base, hole_start,
2769 hole_end - hole_start);
2770 }
2771
2772 /* And finally clear the reserved guard page */
2773 ggtt->base.clear_range(&ggtt->base,
2774 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2775
2776 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2777 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2778 if (!ppgtt) {
2779 ret = -ENOMEM;
2780 goto err;
2781 }
2782
2783 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2784 if (ret)
2785 goto err_ppgtt;
2786
2787 if (ppgtt->base.allocate_va_range) {
2788 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2789 ppgtt->base.total);
2790 if (ret)
2791 goto err_ppgtt_cleanup;
2792 }
2793
2794 ppgtt->base.clear_range(&ppgtt->base,
2795 ppgtt->base.start,
2796 ppgtt->base.total);
2797
2798 dev_priv->mm.aliasing_ppgtt = ppgtt;
2799 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2800 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2801 }
2802
2803 return 0;
2804
2805 err_ppgtt_cleanup:
2806 ppgtt->base.cleanup(&ppgtt->base);
2807 err_ppgtt:
2808 kfree(ppgtt);
2809 err:
2810 drm_mm_remove_node(&ggtt->error_capture);
2811 return ret;
2812 }
2813
2814 /**
2815 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2816 * @dev_priv: i915 device
2817 */
2818 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2819 {
2820 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2821
2822 if (dev_priv->mm.aliasing_ppgtt) {
2823 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2824 ppgtt->base.cleanup(&ppgtt->base);
2825 kfree(ppgtt);
2826 }
2827
2828 i915_gem_cleanup_stolen(&dev_priv->drm);
2829
2830 if (drm_mm_node_allocated(&ggtt->error_capture))
2831 drm_mm_remove_node(&ggtt->error_capture);
2832
2833 if (drm_mm_initialized(&ggtt->base.mm)) {
2834 intel_vgt_deballoon(dev_priv);
2835
2836 mutex_lock(&dev_priv->drm.struct_mutex);
2837 i915_address_space_fini(&ggtt->base);
2838 mutex_unlock(&dev_priv->drm.struct_mutex);
2839 }
2840
2841 ggtt->base.cleanup(&ggtt->base);
2842
2843 arch_phys_wc_del(ggtt->mtrr);
2844 io_mapping_fini(&ggtt->mappable);
2845 }
2846
2847 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2848 {
2849 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2850 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2851 return snb_gmch_ctl << 20;
2852 }
2853
2854 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2855 {
2856 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2857 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2858 if (bdw_gmch_ctl)
2859 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2860
2861 #ifdef CONFIG_X86_32
2862 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2863 if (bdw_gmch_ctl > 4)
2864 bdw_gmch_ctl = 4;
2865 #endif
2866
2867 return bdw_gmch_ctl << 20;
2868 }
2869
2870 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2871 {
2872 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2873 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2874
2875 if (gmch_ctrl)
2876 return 1 << (20 + gmch_ctrl);
2877
2878 return 0;
2879 }
2880
2881 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2882 {
2883 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2884 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2885 return snb_gmch_ctl << 25; /* 32 MB units */
2886 }
2887
2888 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2889 {
2890 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2891 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2892 return bdw_gmch_ctl << 25; /* 32 MB units */
2893 }
2894
2895 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2896 {
2897 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2898 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2899
2900 /*
2901 * 0x0 to 0x10: 32MB increments starting at 0MB
2902 * 0x11 to 0x16: 4MB increments starting at 8MB
2903 * 0x17 to 0x1d: 4MB increments start at 36MB
2904 */
2905 if (gmch_ctrl < 0x11)
2906 return gmch_ctrl << 25;
2907 else if (gmch_ctrl < 0x17)
2908 return (gmch_ctrl - 0x11 + 2) << 22;
2909 else
2910 return (gmch_ctrl - 0x17 + 9) << 22;
2911 }
2912
2913 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2914 {
2915 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2916 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2917
2918 if (gen9_gmch_ctl < 0xf0)
2919 return gen9_gmch_ctl << 25; /* 32 MB units */
2920 else
2921 /* 4MB increments starting at 0xf0 for 4MB */
2922 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2923 }
2924
2925 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2926 {
2927 struct drm_i915_private *dev_priv = ggtt->base.i915;
2928 struct pci_dev *pdev = dev_priv->drm.pdev;
2929 phys_addr_t phys_addr;
2930 int ret;
2931
2932 /* For Modern GENs the PTEs and register space are split in the BAR */
2933 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2934
2935 /*
2936 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937 * dropped. For WC mappings in general we have 64 byte burst writes
2938 * when the WC buffer is flushed, so we can't use it, but have to
2939 * resort to an uncached mapping. The WC issue is easily caught by the
2940 * readback check when writing GTT PTE entries.
2941 */
2942 if (IS_GEN9_LP(dev_priv))
2943 ggtt->gsm = ioremap_nocache(phys_addr, size);
2944 else
2945 ggtt->gsm = ioremap_wc(phys_addr, size);
2946 if (!ggtt->gsm) {
2947 DRM_ERROR("Failed to map the ggtt page table\n");
2948 return -ENOMEM;
2949 }
2950
2951 ret = setup_scratch_page(dev_priv, &ggtt->base.scratch_page, GFP_DMA32);
2952 if (ret) {
2953 DRM_ERROR("Scratch setup failed\n");
2954 /* iounmap will also get called at remove, but meh */
2955 iounmap(ggtt->gsm);
2956 return ret;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2963 * bits. When using advanced contexts each context stores its own PAT, but
2964 * writing this data shouldn't be harmful even in those cases. */
2965 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2966 {
2967 uint64_t pat;
2968
2969 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2970 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2971 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2972 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2973 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2974 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2975 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2976 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2977
2978 if (!USES_PPGTT(dev_priv))
2979 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2980 * so RTL will always use the value corresponding to
2981 * pat_sel = 000".
2982 * So let's disable cache for GGTT to avoid screen corruptions.
2983 * MOCS still can be used though.
2984 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2985 * before this patch, i.e. the same uncached + snooping access
2986 * like on gen6/7 seems to be in effect.
2987 * - So this just fixes blitter/render access. Again it looks
2988 * like it's not just uncached access, but uncached + snooping.
2989 * So we can still hold onto all our assumptions wrt cpu
2990 * clflushing on LLC machines.
2991 */
2992 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2993
2994 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2995 * write would work. */
2996 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2997 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2998 }
2999
3000 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3001 {
3002 uint64_t pat;
3003
3004 /*
3005 * Map WB on BDW to snooped on CHV.
3006 *
3007 * Only the snoop bit has meaning for CHV, the rest is
3008 * ignored.
3009 *
3010 * The hardware will never snoop for certain types of accesses:
3011 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3012 * - PPGTT page tables
3013 * - some other special cycles
3014 *
3015 * As with BDW, we also need to consider the following for GT accesses:
3016 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3017 * so RTL will always use the value corresponding to
3018 * pat_sel = 000".
3019 * Which means we must set the snoop bit in PAT entry 0
3020 * in order to keep the global status page working.
3021 */
3022 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3023 GEN8_PPAT(1, 0) |
3024 GEN8_PPAT(2, 0) |
3025 GEN8_PPAT(3, 0) |
3026 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3027 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3028 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3029 GEN8_PPAT(7, CHV_PPAT_SNOOP);
3030
3031 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3032 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3033 }
3034
3035 static void gen6_gmch_remove(struct i915_address_space *vm)
3036 {
3037 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3038
3039 iounmap(ggtt->gsm);
3040 cleanup_scratch_page(vm->i915, &vm->scratch_page);
3041 }
3042
3043 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3044 {
3045 struct drm_i915_private *dev_priv = ggtt->base.i915;
3046 struct pci_dev *pdev = dev_priv->drm.pdev;
3047 unsigned int size;
3048 u16 snb_gmch_ctl;
3049
3050 /* TODO: We're not aware of mappable constraints on gen8 yet */
3051 ggtt->mappable_base = pci_resource_start(pdev, 2);
3052 ggtt->mappable_end = pci_resource_len(pdev, 2);
3053
3054 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
3055 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3056
3057 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3058
3059 if (INTEL_GEN(dev_priv) >= 9) {
3060 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
3061 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3062 } else if (IS_CHERRYVIEW(dev_priv)) {
3063 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
3064 size = chv_get_total_gtt_size(snb_gmch_ctl);
3065 } else {
3066 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
3067 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3068 }
3069
3070 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3071
3072 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3073 chv_setup_private_ppat(dev_priv);
3074 else
3075 bdw_setup_private_ppat(dev_priv);
3076
3077 ggtt->base.cleanup = gen6_gmch_remove;
3078 ggtt->base.bind_vma = ggtt_bind_vma;
3079 ggtt->base.unbind_vma = ggtt_unbind_vma;
3080 ggtt->base.insert_page = gen8_ggtt_insert_page;
3081 ggtt->base.clear_range = nop_clear_range;
3082 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3083 ggtt->base.clear_range = gen8_ggtt_clear_range;
3084
3085 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3086 if (IS_CHERRYVIEW(dev_priv))
3087 ggtt->base.insert_entries = gen8_ggtt_insert_entries__BKL;
3088
3089 return ggtt_probe_common(ggtt, size);
3090 }
3091
3092 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3093 {
3094 struct drm_i915_private *dev_priv = ggtt->base.i915;
3095 struct pci_dev *pdev = dev_priv->drm.pdev;
3096 unsigned int size;
3097 u16 snb_gmch_ctl;
3098
3099 ggtt->mappable_base = pci_resource_start(pdev, 2);
3100 ggtt->mappable_end = pci_resource_len(pdev, 2);
3101
3102 /* 64/512MB is the current min/max we actually know of, but this is just
3103 * a coarse sanity check.
3104 */
3105 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3106 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
3107 return -ENXIO;
3108 }
3109
3110 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
3111 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3112 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3113
3114 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
3115
3116 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3117 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3118
3119 ggtt->base.clear_range = gen6_ggtt_clear_range;
3120 ggtt->base.insert_page = gen6_ggtt_insert_page;
3121 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3122 ggtt->base.bind_vma = ggtt_bind_vma;
3123 ggtt->base.unbind_vma = ggtt_unbind_vma;
3124 ggtt->base.cleanup = gen6_gmch_remove;
3125
3126 if (HAS_EDRAM(dev_priv))
3127 ggtt->base.pte_encode = iris_pte_encode;
3128 else if (IS_HASWELL(dev_priv))
3129 ggtt->base.pte_encode = hsw_pte_encode;
3130 else if (IS_VALLEYVIEW(dev_priv))
3131 ggtt->base.pte_encode = byt_pte_encode;
3132 else if (INTEL_GEN(dev_priv) >= 7)
3133 ggtt->base.pte_encode = ivb_pte_encode;
3134 else
3135 ggtt->base.pte_encode = snb_pte_encode;
3136
3137 return ggtt_probe_common(ggtt, size);
3138 }
3139
3140 static void i915_gmch_remove(struct i915_address_space *vm)
3141 {
3142 intel_gmch_remove();
3143 }
3144
3145 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3146 {
3147 struct drm_i915_private *dev_priv = ggtt->base.i915;
3148 int ret;
3149
3150 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3151 if (!ret) {
3152 DRM_ERROR("failed to set up gmch\n");
3153 return -EIO;
3154 }
3155
3156 intel_gtt_get(&ggtt->base.total,
3157 &ggtt->stolen_size,
3158 &ggtt->mappable_base,
3159 &ggtt->mappable_end);
3160
3161 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3162 ggtt->base.insert_page = i915_ggtt_insert_page;
3163 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3164 ggtt->base.clear_range = i915_ggtt_clear_range;
3165 ggtt->base.bind_vma = ggtt_bind_vma;
3166 ggtt->base.unbind_vma = ggtt_unbind_vma;
3167 ggtt->base.cleanup = i915_gmch_remove;
3168
3169 if (unlikely(ggtt->do_idle_maps))
3170 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3171
3172 return 0;
3173 }
3174
3175 /**
3176 * i915_ggtt_probe_hw - Probe GGTT hardware location
3177 * @dev_priv: i915 device
3178 */
3179 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3180 {
3181 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3182 int ret;
3183
3184 ggtt->base.i915 = dev_priv;
3185
3186 if (INTEL_GEN(dev_priv) <= 5)
3187 ret = i915_gmch_probe(ggtt);
3188 else if (INTEL_GEN(dev_priv) < 8)
3189 ret = gen6_gmch_probe(ggtt);
3190 else
3191 ret = gen8_gmch_probe(ggtt);
3192 if (ret)
3193 return ret;
3194
3195 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3196 * This is easier than doing range restriction on the fly, as we
3197 * currently don't have any bits spare to pass in this upper
3198 * restriction!
3199 */
3200 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3201 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3202 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3203 }
3204
3205 if ((ggtt->base.total - 1) >> 32) {
3206 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3207 " of address space! Found %lldM!\n",
3208 ggtt->base.total >> 20);
3209 ggtt->base.total = 1ULL << 32;
3210 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3211 }
3212
3213 if (ggtt->mappable_end > ggtt->base.total) {
3214 DRM_ERROR("mappable aperture extends past end of GGTT,"
3215 " aperture=%llx, total=%llx\n",
3216 ggtt->mappable_end, ggtt->base.total);
3217 ggtt->mappable_end = ggtt->base.total;
3218 }
3219
3220 /* GMADR is the PCI mmio aperture into the global GTT. */
3221 DRM_INFO("Memory usable by graphics device = %lluM\n",
3222 ggtt->base.total >> 20);
3223 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3224 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3225 #ifdef CONFIG_INTEL_IOMMU
3226 if (intel_iommu_gfx_mapped)
3227 DRM_INFO("VT-d active for gfx access\n");
3228 #endif
3229
3230 return 0;
3231 }
3232
3233 /**
3234 * i915_ggtt_init_hw - Initialize GGTT hardware
3235 * @dev_priv: i915 device
3236 */
3237 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3238 {
3239 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3240 int ret;
3241
3242 INIT_LIST_HEAD(&dev_priv->vm_list);
3243
3244 /* Subtract the guard page before address space initialization to
3245 * shrink the range used by drm_mm.
3246 */
3247 mutex_lock(&dev_priv->drm.struct_mutex);
3248 ggtt->base.total -= PAGE_SIZE;
3249 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3250 ggtt->base.total += PAGE_SIZE;
3251 if (!HAS_LLC(dev_priv))
3252 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3253 mutex_unlock(&dev_priv->drm.struct_mutex);
3254
3255 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3256 dev_priv->ggtt.mappable_base,
3257 dev_priv->ggtt.mappable_end)) {
3258 ret = -EIO;
3259 goto out_gtt_cleanup;
3260 }
3261
3262 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3263
3264 /*
3265 * Initialise stolen early so that we may reserve preallocated
3266 * objects for the BIOS to KMS transition.
3267 */
3268 ret = i915_gem_init_stolen(dev_priv);
3269 if (ret)
3270 goto out_gtt_cleanup;
3271
3272 return 0;
3273
3274 out_gtt_cleanup:
3275 ggtt->base.cleanup(&ggtt->base);
3276 return ret;
3277 }
3278
3279 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3280 {
3281 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3282 return -EIO;
3283
3284 return 0;
3285 }
3286
3287 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3288 {
3289 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3290 struct drm_i915_gem_object *obj, *on;
3291
3292 i915_check_and_clear_faults(dev_priv);
3293
3294 /* First fill our portion of the GTT with scratch pages */
3295 ggtt->base.clear_range(&ggtt->base, ggtt->base.start, ggtt->base.total);
3296
3297 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3298
3299 /* clflush objects bound into the GGTT and rebind them. */
3300 list_for_each_entry_safe(obj, on,
3301 &dev_priv->mm.bound_list, global_link) {
3302 bool ggtt_bound = false;
3303 struct i915_vma *vma;
3304
3305 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3306 if (vma->vm != &ggtt->base)
3307 continue;
3308
3309 if (!i915_vma_unbind(vma))
3310 continue;
3311
3312 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3313 PIN_UPDATE));
3314 ggtt_bound = true;
3315 }
3316
3317 if (ggtt_bound)
3318 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3319 }
3320
3321 ggtt->base.closed = false;
3322
3323 if (INTEL_GEN(dev_priv) >= 8) {
3324 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3325 chv_setup_private_ppat(dev_priv);
3326 else
3327 bdw_setup_private_ppat(dev_priv);
3328
3329 return;
3330 }
3331
3332 if (USES_PPGTT(dev_priv)) {
3333 struct i915_address_space *vm;
3334
3335 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3336 /* TODO: Perhaps it shouldn't be gen6 specific */
3337
3338 struct i915_hw_ppgtt *ppgtt;
3339
3340 if (i915_is_ggtt(vm))
3341 ppgtt = dev_priv->mm.aliasing_ppgtt;
3342 else
3343 ppgtt = i915_vm_to_ppgtt(vm);
3344
3345 gen6_write_page_range(dev_priv, &ppgtt->pd,
3346 0, ppgtt->base.total);
3347 }
3348 }
3349
3350 i915_ggtt_flush(dev_priv);
3351 }
3352
3353 struct i915_vma *
3354 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3355 struct i915_address_space *vm,
3356 const struct i915_ggtt_view *view)
3357 {
3358 struct rb_node *rb;
3359
3360 rb = obj->vma_tree.rb_node;
3361 while (rb) {
3362 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
3363 long cmp;
3364
3365 cmp = i915_vma_compare(vma, vm, view);
3366 if (cmp == 0)
3367 return vma;
3368
3369 if (cmp < 0)
3370 rb = rb->rb_right;
3371 else
3372 rb = rb->rb_left;
3373 }
3374
3375 return NULL;
3376 }
3377
3378 struct i915_vma *
3379 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3380 struct i915_address_space *vm,
3381 const struct i915_ggtt_view *view)
3382 {
3383 struct i915_vma *vma;
3384
3385 lockdep_assert_held(&obj->base.dev->struct_mutex);
3386 GEM_BUG_ON(view && !i915_is_ggtt(vm));
3387
3388 vma = i915_gem_obj_to_vma(obj, vm, view);
3389 if (!vma) {
3390 vma = i915_vma_create(obj, vm, view);
3391 GEM_BUG_ON(vma != i915_gem_obj_to_vma(obj, vm, view));
3392 }
3393
3394 GEM_BUG_ON(i915_vma_is_closed(vma));
3395 return vma;
3396 }
3397
3398 static struct scatterlist *
3399 rotate_pages(const dma_addr_t *in, unsigned int offset,
3400 unsigned int width, unsigned int height,
3401 unsigned int stride,
3402 struct sg_table *st, struct scatterlist *sg)
3403 {
3404 unsigned int column, row;
3405 unsigned int src_idx;
3406
3407 for (column = 0; column < width; column++) {
3408 src_idx = stride * (height - 1) + column;
3409 for (row = 0; row < height; row++) {
3410 st->nents++;
3411 /* We don't need the pages, but need to initialize
3412 * the entries so the sg list can be happily traversed.
3413 * The only thing we need are DMA addresses.
3414 */
3415 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3416 sg_dma_address(sg) = in[offset + src_idx];
3417 sg_dma_len(sg) = PAGE_SIZE;
3418 sg = sg_next(sg);
3419 src_idx -= stride;
3420 }
3421 }
3422
3423 return sg;
3424 }
3425
3426 static struct sg_table *
3427 intel_rotate_fb_obj_pages(const struct intel_rotation_info *rot_info,
3428 struct drm_i915_gem_object *obj)
3429 {
3430 const size_t n_pages = obj->base.size / PAGE_SIZE;
3431 unsigned int size = intel_rotation_info_size(rot_info);
3432 struct sgt_iter sgt_iter;
3433 dma_addr_t dma_addr;
3434 unsigned long i;
3435 dma_addr_t *page_addr_list;
3436 struct sg_table *st;
3437 struct scatterlist *sg;
3438 int ret = -ENOMEM;
3439
3440 /* Allocate a temporary list of source pages for random access. */
3441 page_addr_list = drm_malloc_gfp(n_pages,
3442 sizeof(dma_addr_t),
3443 GFP_TEMPORARY);
3444 if (!page_addr_list)
3445 return ERR_PTR(ret);
3446
3447 /* Allocate target SG list. */
3448 st = kmalloc(sizeof(*st), GFP_KERNEL);
3449 if (!st)
3450 goto err_st_alloc;
3451
3452 ret = sg_alloc_table(st, size, GFP_KERNEL);
3453 if (ret)
3454 goto err_sg_alloc;
3455
3456 /* Populate source page list from the object. */
3457 i = 0;
3458 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3459 page_addr_list[i++] = dma_addr;
3460
3461 GEM_BUG_ON(i != n_pages);
3462 st->nents = 0;
3463 sg = st->sgl;
3464
3465 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3466 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3467 rot_info->plane[i].width, rot_info->plane[i].height,
3468 rot_info->plane[i].stride, st, sg);
3469 }
3470
3471 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3472 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3473
3474 drm_free_large(page_addr_list);
3475
3476 return st;
3477
3478 err_sg_alloc:
3479 kfree(st);
3480 err_st_alloc:
3481 drm_free_large(page_addr_list);
3482
3483 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3484 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3485
3486 return ERR_PTR(ret);
3487 }
3488
3489 static struct sg_table *
3490 intel_partial_pages(const struct i915_ggtt_view *view,
3491 struct drm_i915_gem_object *obj)
3492 {
3493 struct sg_table *st;
3494 struct scatterlist *sg, *iter;
3495 unsigned int count = view->params.partial.size;
3496 unsigned int offset;
3497 int ret = -ENOMEM;
3498
3499 st = kmalloc(sizeof(*st), GFP_KERNEL);
3500 if (!st)
3501 goto err_st_alloc;
3502
3503 ret = sg_alloc_table(st, count, GFP_KERNEL);
3504 if (ret)
3505 goto err_sg_alloc;
3506
3507 iter = i915_gem_object_get_sg(obj,
3508 view->params.partial.offset,
3509 &offset);
3510 GEM_BUG_ON(!iter);
3511
3512 sg = st->sgl;
3513 st->nents = 0;
3514 do {
3515 unsigned int len;
3516
3517 len = min(iter->length - (offset << PAGE_SHIFT),
3518 count << PAGE_SHIFT);
3519 sg_set_page(sg, NULL, len, 0);
3520 sg_dma_address(sg) =
3521 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3522 sg_dma_len(sg) = len;
3523
3524 st->nents++;
3525 count -= len >> PAGE_SHIFT;
3526 if (count == 0) {
3527 sg_mark_end(sg);
3528 return st;
3529 }
3530
3531 sg = __sg_next(sg);
3532 iter = __sg_next(iter);
3533 offset = 0;
3534 } while (1);
3535
3536 err_sg_alloc:
3537 kfree(st);
3538 err_st_alloc:
3539 return ERR_PTR(ret);
3540 }
3541
3542 static int
3543 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3544 {
3545 int ret = 0;
3546
3547 /* The vma->pages are only valid within the lifespan of the borrowed
3548 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3549 * must be the vma->pages. A simple rule is that vma->pages must only
3550 * be accessed when the obj->mm.pages are pinned.
3551 */
3552 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3553
3554 if (vma->pages)
3555 return 0;
3556
3557 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3558 vma->pages = vma->obj->mm.pages;
3559 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3560 vma->pages =
3561 intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3562 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3563 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3564 else
3565 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3566 vma->ggtt_view.type);
3567
3568 if (!vma->pages) {
3569 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3570 vma->ggtt_view.type);
3571 ret = -EINVAL;
3572 } else if (IS_ERR(vma->pages)) {
3573 ret = PTR_ERR(vma->pages);
3574 vma->pages = NULL;
3575 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3576 vma->ggtt_view.type, ret);
3577 }
3578
3579 return ret;
3580 }
3581