]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
drm/i915: Split i915_ppgtt_init_hw() in half - generic and per ring
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/seq_file.h>
27 #include <drm/drmP.h>
28 #include <drm/i915_drm.h>
29 #include "i915_drv.h"
30 #include "i915_vgpu.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33
34 /**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 * 12
52 * 34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 * 1212
59 * 3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95 static int
96 i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98 const struct i915_ggtt_view i915_ggtt_view_normal;
99 const struct i915_ggtt_view i915_ggtt_view_rotated = {
100 .type = I915_GGTT_VIEW_ROTATED
101 };
102
103 static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104 {
105 bool has_aliasing_ppgtt;
106 bool has_full_ppgtt;
107
108 has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109 has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111 if (intel_vgpu_active(dev))
112 has_full_ppgtt = false; /* emulation is too hard */
113
114 /*
115 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116 * execlists, the sole mechanism available to submit work.
117 */
118 if (INTEL_INFO(dev)->gen < 9 &&
119 (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120 return 0;
121
122 if (enable_ppgtt == 1)
123 return 1;
124
125 if (enable_ppgtt == 2 && has_full_ppgtt)
126 return 2;
127
128 #ifdef CONFIG_INTEL_IOMMU
129 /* Disable ppgtt on SNB if VT-d is on. */
130 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131 DRM_INFO("Disabling PPGTT because VT-d is on\n");
132 return 0;
133 }
134 #endif
135
136 /* Early VLV doesn't have this */
137 if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138 dev->pdev->revision < 0xb) {
139 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140 return 0;
141 }
142
143 if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144 return 2;
145 else
146 return has_aliasing_ppgtt ? 1 : 0;
147 }
148
149 static int ppgtt_bind_vma(struct i915_vma *vma,
150 enum i915_cache_level cache_level,
151 u32 unused)
152 {
153 u32 pte_flags = 0;
154
155 /* Currently applicable only to VLV */
156 if (vma->obj->gt_ro)
157 pte_flags |= PTE_READ_ONLY;
158
159 vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160 cache_level, pte_flags);
161
162 return 0;
163 }
164
165 static void ppgtt_unbind_vma(struct i915_vma *vma)
166 {
167 vma->vm->clear_range(vma->vm,
168 vma->node.start,
169 vma->obj->base.size,
170 true);
171 }
172
173 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174 enum i915_cache_level level,
175 bool valid)
176 {
177 gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178 pte |= addr;
179
180 switch (level) {
181 case I915_CACHE_NONE:
182 pte |= PPAT_UNCACHED_INDEX;
183 break;
184 case I915_CACHE_WT:
185 pte |= PPAT_DISPLAY_ELLC_INDEX;
186 break;
187 default:
188 pte |= PPAT_CACHED_INDEX;
189 break;
190 }
191
192 return pte;
193 }
194
195 static gen8_pde_t gen8_pde_encode(struct drm_device *dev,
196 dma_addr_t addr,
197 enum i915_cache_level level)
198 {
199 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
200 pde |= addr;
201 if (level != I915_CACHE_NONE)
202 pde |= PPAT_CACHED_PDE_INDEX;
203 else
204 pde |= PPAT_UNCACHED_INDEX;
205 return pde;
206 }
207
208 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
209 enum i915_cache_level level,
210 bool valid, u32 unused)
211 {
212 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
213 pte |= GEN6_PTE_ADDR_ENCODE(addr);
214
215 switch (level) {
216 case I915_CACHE_L3_LLC:
217 case I915_CACHE_LLC:
218 pte |= GEN6_PTE_CACHE_LLC;
219 break;
220 case I915_CACHE_NONE:
221 pte |= GEN6_PTE_UNCACHED;
222 break;
223 default:
224 MISSING_CASE(level);
225 }
226
227 return pte;
228 }
229
230 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
231 enum i915_cache_level level,
232 bool valid, u32 unused)
233 {
234 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
235 pte |= GEN6_PTE_ADDR_ENCODE(addr);
236
237 switch (level) {
238 case I915_CACHE_L3_LLC:
239 pte |= GEN7_PTE_CACHE_L3_LLC;
240 break;
241 case I915_CACHE_LLC:
242 pte |= GEN6_PTE_CACHE_LLC;
243 break;
244 case I915_CACHE_NONE:
245 pte |= GEN6_PTE_UNCACHED;
246 break;
247 default:
248 MISSING_CASE(level);
249 }
250
251 return pte;
252 }
253
254 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
255 enum i915_cache_level level,
256 bool valid, u32 flags)
257 {
258 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
259 pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261 if (!(flags & PTE_READ_ONLY))
262 pte |= BYT_PTE_WRITEABLE;
263
264 if (level != I915_CACHE_NONE)
265 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
266
267 return pte;
268 }
269
270 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
271 enum i915_cache_level level,
272 bool valid, u32 unused)
273 {
274 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
275 pte |= HSW_PTE_ADDR_ENCODE(addr);
276
277 if (level != I915_CACHE_NONE)
278 pte |= HSW_WB_LLC_AGE3;
279
280 return pte;
281 }
282
283 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
284 enum i915_cache_level level,
285 bool valid, u32 unused)
286 {
287 gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
288 pte |= HSW_PTE_ADDR_ENCODE(addr);
289
290 switch (level) {
291 case I915_CACHE_NONE:
292 break;
293 case I915_CACHE_WT:
294 pte |= HSW_WT_ELLC_LLC_AGE3;
295 break;
296 default:
297 pte |= HSW_WB_ELLC_LLC_AGE3;
298 break;
299 }
300
301 return pte;
302 }
303
304 #define i915_dma_unmap_single(px, dev) \
305 __i915_dma_unmap_single((px)->daddr, dev)
306
307 static void __i915_dma_unmap_single(dma_addr_t daddr,
308 struct drm_device *dev)
309 {
310 struct device *device = &dev->pdev->dev;
311
312 dma_unmap_page(device, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
313 }
314
315 /**
316 * i915_dma_map_single() - Create a dma mapping for a page table/dir/etc.
317 * @px: Page table/dir/etc to get a DMA map for
318 * @dev: drm device
319 *
320 * Page table allocations are unified across all gens. They always require a
321 * single 4k allocation, as well as a DMA mapping. If we keep the structs
322 * symmetric here, the simple macro covers us for every page table type.
323 *
324 * Return: 0 if success.
325 */
326 #define i915_dma_map_single(px, dev) \
327 i915_dma_map_page_single((px)->page, (dev), &(px)->daddr)
328
329 static int i915_dma_map_page_single(struct page *page,
330 struct drm_device *dev,
331 dma_addr_t *daddr)
332 {
333 struct device *device = &dev->pdev->dev;
334
335 *daddr = dma_map_page(device, page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
336 if (dma_mapping_error(device, *daddr))
337 return -ENOMEM;
338
339 return 0;
340 }
341
342 static void unmap_and_free_pt(struct i915_page_table *pt,
343 struct drm_device *dev)
344 {
345 if (WARN_ON(!pt->page))
346 return;
347
348 i915_dma_unmap_single(pt, dev);
349 __free_page(pt->page);
350 kfree(pt->used_ptes);
351 kfree(pt);
352 }
353
354 static void gen8_initialize_pt(struct i915_address_space *vm,
355 struct i915_page_table *pt)
356 {
357 gen8_pte_t *pt_vaddr, scratch_pte;
358 int i;
359
360 pt_vaddr = kmap_atomic(pt->page);
361 scratch_pte = gen8_pte_encode(vm->scratch.addr,
362 I915_CACHE_LLC, true);
363
364 for (i = 0; i < GEN8_PTES; i++)
365 pt_vaddr[i] = scratch_pte;
366
367 if (!HAS_LLC(vm->dev))
368 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
369 kunmap_atomic(pt_vaddr);
370 }
371
372 static struct i915_page_table *alloc_pt(struct drm_device *dev)
373 {
374 struct i915_page_table *pt;
375 const size_t count = INTEL_INFO(dev)->gen >= 8 ?
376 GEN8_PTES : GEN6_PTES;
377 int ret = -ENOMEM;
378
379 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
380 if (!pt)
381 return ERR_PTR(-ENOMEM);
382
383 pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
384 GFP_KERNEL);
385
386 if (!pt->used_ptes)
387 goto fail_bitmap;
388
389 pt->page = alloc_page(GFP_KERNEL);
390 if (!pt->page)
391 goto fail_page;
392
393 ret = i915_dma_map_single(pt, dev);
394 if (ret)
395 goto fail_dma;
396
397 return pt;
398
399 fail_dma:
400 __free_page(pt->page);
401 fail_page:
402 kfree(pt->used_ptes);
403 fail_bitmap:
404 kfree(pt);
405
406 return ERR_PTR(ret);
407 }
408
409 static void unmap_and_free_pd(struct i915_page_directory *pd,
410 struct drm_device *dev)
411 {
412 if (pd->page) {
413 i915_dma_unmap_single(pd, dev);
414 __free_page(pd->page);
415 kfree(pd->used_pdes);
416 kfree(pd);
417 }
418 }
419
420 static struct i915_page_directory *alloc_pd(struct drm_device *dev)
421 {
422 struct i915_page_directory *pd;
423 int ret = -ENOMEM;
424
425 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
426 if (!pd)
427 return ERR_PTR(-ENOMEM);
428
429 pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
430 sizeof(*pd->used_pdes), GFP_KERNEL);
431 if (!pd->used_pdes)
432 goto free_pd;
433
434 pd->page = alloc_page(GFP_KERNEL);
435 if (!pd->page)
436 goto free_bitmap;
437
438 ret = i915_dma_map_single(pd, dev);
439 if (ret)
440 goto free_page;
441
442 return pd;
443
444 free_page:
445 __free_page(pd->page);
446 free_bitmap:
447 kfree(pd->used_pdes);
448 free_pd:
449 kfree(pd);
450
451 return ERR_PTR(ret);
452 }
453
454 /* Broadwell Page Directory Pointer Descriptors */
455 static int gen8_write_pdp(struct intel_engine_cs *ring,
456 unsigned entry,
457 dma_addr_t addr)
458 {
459 int ret;
460
461 BUG_ON(entry >= 4);
462
463 ret = intel_ring_begin(ring, 6);
464 if (ret)
465 return ret;
466
467 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
468 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
469 intel_ring_emit(ring, upper_32_bits(addr));
470 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
471 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
472 intel_ring_emit(ring, lower_32_bits(addr));
473 intel_ring_advance(ring);
474
475 return 0;
476 }
477
478 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
479 struct intel_engine_cs *ring)
480 {
481 int i, ret;
482
483 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
484 struct i915_page_directory *pd = ppgtt->pdp.page_directory[i];
485 dma_addr_t pd_daddr = pd ? pd->daddr : ppgtt->scratch_pd->daddr;
486 /* The page directory might be NULL, but we need to clear out
487 * whatever the previous context might have used. */
488 ret = gen8_write_pdp(ring, i, pd_daddr);
489 if (ret)
490 return ret;
491 }
492
493 return 0;
494 }
495
496 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
497 uint64_t start,
498 uint64_t length,
499 bool use_scratch)
500 {
501 struct i915_hw_ppgtt *ppgtt =
502 container_of(vm, struct i915_hw_ppgtt, base);
503 gen8_pte_t *pt_vaddr, scratch_pte;
504 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
505 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
506 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
507 unsigned num_entries = length >> PAGE_SHIFT;
508 unsigned last_pte, i;
509
510 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
511 I915_CACHE_LLC, use_scratch);
512
513 while (num_entries) {
514 struct i915_page_directory *pd;
515 struct i915_page_table *pt;
516 struct page *page_table;
517
518 if (WARN_ON(!ppgtt->pdp.page_directory[pdpe]))
519 continue;
520
521 pd = ppgtt->pdp.page_directory[pdpe];
522
523 if (WARN_ON(!pd->page_table[pde]))
524 continue;
525
526 pt = pd->page_table[pde];
527
528 if (WARN_ON(!pt->page))
529 continue;
530
531 page_table = pt->page;
532
533 last_pte = pte + num_entries;
534 if (last_pte > GEN8_PTES)
535 last_pte = GEN8_PTES;
536
537 pt_vaddr = kmap_atomic(page_table);
538
539 for (i = pte; i < last_pte; i++) {
540 pt_vaddr[i] = scratch_pte;
541 num_entries--;
542 }
543
544 if (!HAS_LLC(ppgtt->base.dev))
545 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
546 kunmap_atomic(pt_vaddr);
547
548 pte = 0;
549 if (++pde == I915_PDES) {
550 pdpe++;
551 pde = 0;
552 }
553 }
554 }
555
556 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
557 struct sg_table *pages,
558 uint64_t start,
559 enum i915_cache_level cache_level, u32 unused)
560 {
561 struct i915_hw_ppgtt *ppgtt =
562 container_of(vm, struct i915_hw_ppgtt, base);
563 gen8_pte_t *pt_vaddr;
564 unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
565 unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
566 unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
567 struct sg_page_iter sg_iter;
568
569 pt_vaddr = NULL;
570
571 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
572 if (WARN_ON(pdpe >= GEN8_LEGACY_PDPES))
573 break;
574
575 if (pt_vaddr == NULL) {
576 struct i915_page_directory *pd = ppgtt->pdp.page_directory[pdpe];
577 struct i915_page_table *pt = pd->page_table[pde];
578 struct page *page_table = pt->page;
579
580 pt_vaddr = kmap_atomic(page_table);
581 }
582
583 pt_vaddr[pte] =
584 gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
585 cache_level, true);
586 if (++pte == GEN8_PTES) {
587 if (!HAS_LLC(ppgtt->base.dev))
588 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
589 kunmap_atomic(pt_vaddr);
590 pt_vaddr = NULL;
591 if (++pde == I915_PDES) {
592 pdpe++;
593 pde = 0;
594 }
595 pte = 0;
596 }
597 }
598 if (pt_vaddr) {
599 if (!HAS_LLC(ppgtt->base.dev))
600 drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
601 kunmap_atomic(pt_vaddr);
602 }
603 }
604
605 static void __gen8_do_map_pt(gen8_pde_t * const pde,
606 struct i915_page_table *pt,
607 struct drm_device *dev)
608 {
609 gen8_pde_t entry =
610 gen8_pde_encode(dev, pt->daddr, I915_CACHE_LLC);
611 *pde = entry;
612 }
613
614 static void gen8_initialize_pd(struct i915_address_space *vm,
615 struct i915_page_directory *pd)
616 {
617 struct i915_hw_ppgtt *ppgtt =
618 container_of(vm, struct i915_hw_ppgtt, base);
619 gen8_pde_t *page_directory;
620 struct i915_page_table *pt;
621 int i;
622
623 page_directory = kmap_atomic(pd->page);
624 pt = ppgtt->scratch_pt;
625 for (i = 0; i < I915_PDES; i++)
626 /* Map the PDE to the page table */
627 __gen8_do_map_pt(page_directory + i, pt, vm->dev);
628
629 if (!HAS_LLC(vm->dev))
630 drm_clflush_virt_range(page_directory, PAGE_SIZE);
631 kunmap_atomic(page_directory);
632 }
633
634 static void gen8_free_page_tables(struct i915_page_directory *pd, struct drm_device *dev)
635 {
636 int i;
637
638 if (!pd->page)
639 return;
640
641 for_each_set_bit(i, pd->used_pdes, I915_PDES) {
642 if (WARN_ON(!pd->page_table[i]))
643 continue;
644
645 unmap_and_free_pt(pd->page_table[i], dev);
646 pd->page_table[i] = NULL;
647 }
648 }
649
650 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
651 {
652 struct i915_hw_ppgtt *ppgtt =
653 container_of(vm, struct i915_hw_ppgtt, base);
654 int i;
655
656 for_each_set_bit(i, ppgtt->pdp.used_pdpes, GEN8_LEGACY_PDPES) {
657 if (WARN_ON(!ppgtt->pdp.page_directory[i]))
658 continue;
659
660 gen8_free_page_tables(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
661 unmap_and_free_pd(ppgtt->pdp.page_directory[i], ppgtt->base.dev);
662 }
663
664 unmap_and_free_pd(ppgtt->scratch_pd, ppgtt->base.dev);
665 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
666 }
667
668 /**
669 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
670 * @ppgtt: Master ppgtt structure.
671 * @pd: Page directory for this address range.
672 * @start: Starting virtual address to begin allocations.
673 * @length Size of the allocations.
674 * @new_pts: Bitmap set by function with new allocations. Likely used by the
675 * caller to free on error.
676 *
677 * Allocate the required number of page tables. Extremely similar to
678 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
679 * the page directory boundary (instead of the page directory pointer). That
680 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
681 * possible, and likely that the caller will need to use multiple calls of this
682 * function to achieve the appropriate allocation.
683 *
684 * Return: 0 if success; negative error code otherwise.
685 */
686 static int gen8_ppgtt_alloc_pagetabs(struct i915_hw_ppgtt *ppgtt,
687 struct i915_page_directory *pd,
688 uint64_t start,
689 uint64_t length,
690 unsigned long *new_pts)
691 {
692 struct drm_device *dev = ppgtt->base.dev;
693 struct i915_page_table *pt;
694 uint64_t temp;
695 uint32_t pde;
696
697 gen8_for_each_pde(pt, pd, start, length, temp, pde) {
698 /* Don't reallocate page tables */
699 if (pt) {
700 /* Scratch is never allocated this way */
701 WARN_ON(pt == ppgtt->scratch_pt);
702 continue;
703 }
704
705 pt = alloc_pt(dev);
706 if (IS_ERR(pt))
707 goto unwind_out;
708
709 gen8_initialize_pt(&ppgtt->base, pt);
710 pd->page_table[pde] = pt;
711 set_bit(pde, new_pts);
712 }
713
714 return 0;
715
716 unwind_out:
717 for_each_set_bit(pde, new_pts, I915_PDES)
718 unmap_and_free_pt(pd->page_table[pde], dev);
719
720 return -ENOMEM;
721 }
722
723 /**
724 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
725 * @ppgtt: Master ppgtt structure.
726 * @pdp: Page directory pointer for this address range.
727 * @start: Starting virtual address to begin allocations.
728 * @length Size of the allocations.
729 * @new_pds Bitmap set by function with new allocations. Likely used by the
730 * caller to free on error.
731 *
732 * Allocate the required number of page directories starting at the pde index of
733 * @start, and ending at the pde index @start + @length. This function will skip
734 * over already allocated page directories within the range, and only allocate
735 * new ones, setting the appropriate pointer within the pdp as well as the
736 * correct position in the bitmap @new_pds.
737 *
738 * The function will only allocate the pages within the range for a give page
739 * directory pointer. In other words, if @start + @length straddles a virtually
740 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
741 * required by the caller, This is not currently possible, and the BUG in the
742 * code will prevent it.
743 *
744 * Return: 0 if success; negative error code otherwise.
745 */
746 static int gen8_ppgtt_alloc_page_directories(struct i915_hw_ppgtt *ppgtt,
747 struct i915_page_directory_pointer *pdp,
748 uint64_t start,
749 uint64_t length,
750 unsigned long *new_pds)
751 {
752 struct drm_device *dev = ppgtt->base.dev;
753 struct i915_page_directory *pd;
754 uint64_t temp;
755 uint32_t pdpe;
756
757 WARN_ON(!bitmap_empty(new_pds, GEN8_LEGACY_PDPES));
758
759 /* FIXME: upper bound must not overflow 32 bits */
760 WARN_ON((start + length) > (1ULL << 32));
761
762 gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
763 if (pd)
764 continue;
765
766 pd = alloc_pd(dev);
767 if (IS_ERR(pd))
768 goto unwind_out;
769
770 gen8_initialize_pd(&ppgtt->base, pd);
771 pdp->page_directory[pdpe] = pd;
772 set_bit(pdpe, new_pds);
773 }
774
775 return 0;
776
777 unwind_out:
778 for_each_set_bit(pdpe, new_pds, GEN8_LEGACY_PDPES)
779 unmap_and_free_pd(pdp->page_directory[pdpe], dev);
780
781 return -ENOMEM;
782 }
783
784 static void
785 free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long **new_pts)
786 {
787 int i;
788
789 for (i = 0; i < GEN8_LEGACY_PDPES; i++)
790 kfree(new_pts[i]);
791 kfree(new_pts);
792 kfree(new_pds);
793 }
794
795 /* Fills in the page directory bitmap, and the array of page tables bitmap. Both
796 * of these are based on the number of PDPEs in the system.
797 */
798 static
799 int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
800 unsigned long ***new_pts)
801 {
802 int i;
803 unsigned long *pds;
804 unsigned long **pts;
805
806 pds = kcalloc(BITS_TO_LONGS(GEN8_LEGACY_PDPES), sizeof(unsigned long), GFP_KERNEL);
807 if (!pds)
808 return -ENOMEM;
809
810 pts = kcalloc(GEN8_LEGACY_PDPES, sizeof(unsigned long *), GFP_KERNEL);
811 if (!pts) {
812 kfree(pds);
813 return -ENOMEM;
814 }
815
816 for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
817 pts[i] = kcalloc(BITS_TO_LONGS(I915_PDES),
818 sizeof(unsigned long), GFP_KERNEL);
819 if (!pts[i])
820 goto err_out;
821 }
822
823 *new_pds = pds;
824 *new_pts = pts;
825
826 return 0;
827
828 err_out:
829 free_gen8_temp_bitmaps(pds, pts);
830 return -ENOMEM;
831 }
832
833 static int gen8_alloc_va_range(struct i915_address_space *vm,
834 uint64_t start,
835 uint64_t length)
836 {
837 struct i915_hw_ppgtt *ppgtt =
838 container_of(vm, struct i915_hw_ppgtt, base);
839 unsigned long *new_page_dirs, **new_page_tables;
840 struct i915_page_directory *pd;
841 const uint64_t orig_start = start;
842 const uint64_t orig_length = length;
843 uint64_t temp;
844 uint32_t pdpe;
845 int ret;
846
847 /* Wrap is never okay since we can only represent 48b, and we don't
848 * actually use the other side of the canonical address space.
849 */
850 if (WARN_ON(start + length < start))
851 return -ERANGE;
852
853 ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables);
854 if (ret)
855 return ret;
856
857 /* Do the allocations first so we can easily bail out */
858 ret = gen8_ppgtt_alloc_page_directories(ppgtt, &ppgtt->pdp, start, length,
859 new_page_dirs);
860 if (ret) {
861 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
862 return ret;
863 }
864
865 /* For every page directory referenced, allocate page tables */
866 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
867 ret = gen8_ppgtt_alloc_pagetabs(ppgtt, pd, start, length,
868 new_page_tables[pdpe]);
869 if (ret)
870 goto err_out;
871 }
872
873 start = orig_start;
874 length = orig_length;
875
876 /* Allocations have completed successfully, so set the bitmaps, and do
877 * the mappings. */
878 gen8_for_each_pdpe(pd, &ppgtt->pdp, start, length, temp, pdpe) {
879 gen8_pde_t *const page_directory = kmap_atomic(pd->page);
880 struct i915_page_table *pt;
881 uint64_t pd_len = gen8_clamp_pd(start, length);
882 uint64_t pd_start = start;
883 uint32_t pde;
884
885 /* Every pd should be allocated, we just did that above. */
886 WARN_ON(!pd);
887
888 gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
889 /* Same reasoning as pd */
890 WARN_ON(!pt);
891 WARN_ON(!pd_len);
892 WARN_ON(!gen8_pte_count(pd_start, pd_len));
893
894 /* Set our used ptes within the page table */
895 bitmap_set(pt->used_ptes,
896 gen8_pte_index(pd_start),
897 gen8_pte_count(pd_start, pd_len));
898
899 /* Our pde is now pointing to the pagetable, pt */
900 set_bit(pde, pd->used_pdes);
901
902 /* Map the PDE to the page table */
903 __gen8_do_map_pt(page_directory + pde, pt, vm->dev);
904
905 /* NB: We haven't yet mapped ptes to pages. At this
906 * point we're still relying on insert_entries() */
907 }
908
909 if (!HAS_LLC(vm->dev))
910 drm_clflush_virt_range(page_directory, PAGE_SIZE);
911
912 kunmap_atomic(page_directory);
913
914 set_bit(pdpe, ppgtt->pdp.used_pdpes);
915 }
916
917 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
918 return 0;
919
920 err_out:
921 while (pdpe--) {
922 for_each_set_bit(temp, new_page_tables[pdpe], I915_PDES)
923 unmap_and_free_pt(ppgtt->pdp.page_directory[pdpe]->page_table[temp], vm->dev);
924 }
925
926 for_each_set_bit(pdpe, new_page_dirs, GEN8_LEGACY_PDPES)
927 unmap_and_free_pd(ppgtt->pdp.page_directory[pdpe], vm->dev);
928
929 free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
930 return ret;
931 }
932
933 /*
934 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
935 * with a net effect resembling a 2-level page table in normal x86 terms. Each
936 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
937 * space.
938 *
939 */
940 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
941 {
942 ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
943 if (IS_ERR(ppgtt->scratch_pt))
944 return PTR_ERR(ppgtt->scratch_pt);
945
946 ppgtt->scratch_pd = alloc_pd(ppgtt->base.dev);
947 if (IS_ERR(ppgtt->scratch_pd))
948 return PTR_ERR(ppgtt->scratch_pd);
949
950 gen8_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
951 gen8_initialize_pd(&ppgtt->base, ppgtt->scratch_pd);
952
953 ppgtt->base.start = 0;
954 ppgtt->base.total = 1ULL << 32;
955 if (IS_ENABLED(CONFIG_X86_32))
956 /* While we have a proliferation of size_t variables
957 * we cannot represent the full ppgtt size on 32bit,
958 * so limit it to the same size as the GGTT (currently
959 * 2GiB).
960 */
961 ppgtt->base.total = to_i915(ppgtt->base.dev)->gtt.base.total;
962 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
963 ppgtt->base.allocate_va_range = gen8_alloc_va_range;
964 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
965 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
966 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
967 ppgtt->base.bind_vma = ppgtt_bind_vma;
968
969 ppgtt->switch_mm = gen8_mm_switch;
970
971 return 0;
972 }
973
974 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
975 {
976 struct i915_address_space *vm = &ppgtt->base;
977 struct i915_page_table *unused;
978 gen6_pte_t scratch_pte;
979 uint32_t pd_entry;
980 uint32_t pte, pde, temp;
981 uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
982
983 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
984
985 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
986 u32 expected;
987 gen6_pte_t *pt_vaddr;
988 dma_addr_t pt_addr = ppgtt->pd.page_table[pde]->daddr;
989 pd_entry = readl(ppgtt->pd_addr + pde);
990 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
991
992 if (pd_entry != expected)
993 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
994 pde,
995 pd_entry,
996 expected);
997 seq_printf(m, "\tPDE: %x\n", pd_entry);
998
999 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[pde]->page);
1000 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1001 unsigned long va =
1002 (pde * PAGE_SIZE * GEN6_PTES) +
1003 (pte * PAGE_SIZE);
1004 int i;
1005 bool found = false;
1006 for (i = 0; i < 4; i++)
1007 if (pt_vaddr[pte + i] != scratch_pte)
1008 found = true;
1009 if (!found)
1010 continue;
1011
1012 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1013 for (i = 0; i < 4; i++) {
1014 if (pt_vaddr[pte + i] != scratch_pte)
1015 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1016 else
1017 seq_puts(m, " SCRATCH ");
1018 }
1019 seq_puts(m, "\n");
1020 }
1021 kunmap_atomic(pt_vaddr);
1022 }
1023 }
1024
1025 /* Write pde (index) from the page directory @pd to the page table @pt */
1026 static void gen6_write_pde(struct i915_page_directory *pd,
1027 const int pde, struct i915_page_table *pt)
1028 {
1029 /* Caller needs to make sure the write completes if necessary */
1030 struct i915_hw_ppgtt *ppgtt =
1031 container_of(pd, struct i915_hw_ppgtt, pd);
1032 u32 pd_entry;
1033
1034 pd_entry = GEN6_PDE_ADDR_ENCODE(pt->daddr);
1035 pd_entry |= GEN6_PDE_VALID;
1036
1037 writel(pd_entry, ppgtt->pd_addr + pde);
1038 }
1039
1040 /* Write all the page tables found in the ppgtt structure to incrementing page
1041 * directories. */
1042 static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1043 struct i915_page_directory *pd,
1044 uint32_t start, uint32_t length)
1045 {
1046 struct i915_page_table *pt;
1047 uint32_t pde, temp;
1048
1049 gen6_for_each_pde(pt, pd, start, length, temp, pde)
1050 gen6_write_pde(pd, pde, pt);
1051
1052 /* Make sure write is complete before other code can use this page
1053 * table. Also require for WC mapped PTEs */
1054 readl(dev_priv->gtt.gsm);
1055 }
1056
1057 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1058 {
1059 BUG_ON(ppgtt->pd.pd_offset & 0x3f);
1060
1061 return (ppgtt->pd.pd_offset / 64) << 16;
1062 }
1063
1064 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1065 struct intel_engine_cs *ring)
1066 {
1067 int ret;
1068
1069 /* NB: TLBs must be flushed and invalidated before a switch */
1070 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1071 if (ret)
1072 return ret;
1073
1074 ret = intel_ring_begin(ring, 6);
1075 if (ret)
1076 return ret;
1077
1078 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1079 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1080 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1081 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1082 intel_ring_emit(ring, get_pd_offset(ppgtt));
1083 intel_ring_emit(ring, MI_NOOP);
1084 intel_ring_advance(ring);
1085
1086 return 0;
1087 }
1088
1089 static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1090 struct intel_engine_cs *ring)
1091 {
1092 struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1093
1094 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1095 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1096 return 0;
1097 }
1098
1099 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1100 struct intel_engine_cs *ring)
1101 {
1102 int ret;
1103
1104 /* NB: TLBs must be flushed and invalidated before a switch */
1105 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1106 if (ret)
1107 return ret;
1108
1109 ret = intel_ring_begin(ring, 6);
1110 if (ret)
1111 return ret;
1112
1113 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1114 intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1115 intel_ring_emit(ring, PP_DIR_DCLV_2G);
1116 intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1117 intel_ring_emit(ring, get_pd_offset(ppgtt));
1118 intel_ring_emit(ring, MI_NOOP);
1119 intel_ring_advance(ring);
1120
1121 /* XXX: RCS is the only one to auto invalidate the TLBs? */
1122 if (ring->id != RCS) {
1123 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 return 0;
1129 }
1130
1131 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1132 struct intel_engine_cs *ring)
1133 {
1134 struct drm_device *dev = ppgtt->base.dev;
1135 struct drm_i915_private *dev_priv = dev->dev_private;
1136
1137
1138 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1139 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1140
1141 POSTING_READ(RING_PP_DIR_DCLV(ring));
1142
1143 return 0;
1144 }
1145
1146 static void gen8_ppgtt_enable(struct drm_device *dev)
1147 {
1148 struct drm_i915_private *dev_priv = dev->dev_private;
1149 struct intel_engine_cs *ring;
1150 int j;
1151
1152 for_each_ring(ring, dev_priv, j) {
1153 I915_WRITE(RING_MODE_GEN7(ring),
1154 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1155 }
1156 }
1157
1158 static void gen7_ppgtt_enable(struct drm_device *dev)
1159 {
1160 struct drm_i915_private *dev_priv = dev->dev_private;
1161 struct intel_engine_cs *ring;
1162 uint32_t ecochk, ecobits;
1163 int i;
1164
1165 ecobits = I915_READ(GAC_ECO_BITS);
1166 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1167
1168 ecochk = I915_READ(GAM_ECOCHK);
1169 if (IS_HASWELL(dev)) {
1170 ecochk |= ECOCHK_PPGTT_WB_HSW;
1171 } else {
1172 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1173 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1174 }
1175 I915_WRITE(GAM_ECOCHK, ecochk);
1176
1177 for_each_ring(ring, dev_priv, i) {
1178 /* GFX_MODE is per-ring on gen7+ */
1179 I915_WRITE(RING_MODE_GEN7(ring),
1180 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1181 }
1182 }
1183
1184 static void gen6_ppgtt_enable(struct drm_device *dev)
1185 {
1186 struct drm_i915_private *dev_priv = dev->dev_private;
1187 uint32_t ecochk, gab_ctl, ecobits;
1188
1189 ecobits = I915_READ(GAC_ECO_BITS);
1190 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1191 ECOBITS_PPGTT_CACHE64B);
1192
1193 gab_ctl = I915_READ(GAB_CTL);
1194 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1195
1196 ecochk = I915_READ(GAM_ECOCHK);
1197 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1198
1199 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1200 }
1201
1202 /* PPGTT support for Sandybdrige/Gen6 and later */
1203 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1204 uint64_t start,
1205 uint64_t length,
1206 bool use_scratch)
1207 {
1208 struct i915_hw_ppgtt *ppgtt =
1209 container_of(vm, struct i915_hw_ppgtt, base);
1210 gen6_pte_t *pt_vaddr, scratch_pte;
1211 unsigned first_entry = start >> PAGE_SHIFT;
1212 unsigned num_entries = length >> PAGE_SHIFT;
1213 unsigned act_pt = first_entry / GEN6_PTES;
1214 unsigned first_pte = first_entry % GEN6_PTES;
1215 unsigned last_pte, i;
1216
1217 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0);
1218
1219 while (num_entries) {
1220 last_pte = first_pte + num_entries;
1221 if (last_pte > GEN6_PTES)
1222 last_pte = GEN6_PTES;
1223
1224 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1225
1226 for (i = first_pte; i < last_pte; i++)
1227 pt_vaddr[i] = scratch_pte;
1228
1229 kunmap_atomic(pt_vaddr);
1230
1231 num_entries -= last_pte - first_pte;
1232 first_pte = 0;
1233 act_pt++;
1234 }
1235 }
1236
1237 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1238 struct sg_table *pages,
1239 uint64_t start,
1240 enum i915_cache_level cache_level, u32 flags)
1241 {
1242 struct i915_hw_ppgtt *ppgtt =
1243 container_of(vm, struct i915_hw_ppgtt, base);
1244 gen6_pte_t *pt_vaddr;
1245 unsigned first_entry = start >> PAGE_SHIFT;
1246 unsigned act_pt = first_entry / GEN6_PTES;
1247 unsigned act_pte = first_entry % GEN6_PTES;
1248 struct sg_page_iter sg_iter;
1249
1250 pt_vaddr = NULL;
1251 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1252 if (pt_vaddr == NULL)
1253 pt_vaddr = kmap_atomic(ppgtt->pd.page_table[act_pt]->page);
1254
1255 pt_vaddr[act_pte] =
1256 vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1257 cache_level, true, flags);
1258
1259 if (++act_pte == GEN6_PTES) {
1260 kunmap_atomic(pt_vaddr);
1261 pt_vaddr = NULL;
1262 act_pt++;
1263 act_pte = 0;
1264 }
1265 }
1266 if (pt_vaddr)
1267 kunmap_atomic(pt_vaddr);
1268 }
1269
1270 /* PDE TLBs are a pain invalidate pre GEN8. It requires a context reload. If we
1271 * are switching between contexts with the same LRCA, we also must do a force
1272 * restore.
1273 */
1274 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1275 {
1276 /* If current vm != vm, */
1277 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1278 }
1279
1280 static void gen6_initialize_pt(struct i915_address_space *vm,
1281 struct i915_page_table *pt)
1282 {
1283 gen6_pte_t *pt_vaddr, scratch_pte;
1284 int i;
1285
1286 WARN_ON(vm->scratch.addr == 0);
1287
1288 scratch_pte = vm->pte_encode(vm->scratch.addr,
1289 I915_CACHE_LLC, true, 0);
1290
1291 pt_vaddr = kmap_atomic(pt->page);
1292
1293 for (i = 0; i < GEN6_PTES; i++)
1294 pt_vaddr[i] = scratch_pte;
1295
1296 kunmap_atomic(pt_vaddr);
1297 }
1298
1299 static int gen6_alloc_va_range(struct i915_address_space *vm,
1300 uint64_t start, uint64_t length)
1301 {
1302 DECLARE_BITMAP(new_page_tables, I915_PDES);
1303 struct drm_device *dev = vm->dev;
1304 struct drm_i915_private *dev_priv = dev->dev_private;
1305 struct i915_hw_ppgtt *ppgtt =
1306 container_of(vm, struct i915_hw_ppgtt, base);
1307 struct i915_page_table *pt;
1308 const uint32_t start_save = start, length_save = length;
1309 uint32_t pde, temp;
1310 int ret;
1311
1312 WARN_ON(upper_32_bits(start));
1313
1314 bitmap_zero(new_page_tables, I915_PDES);
1315
1316 /* The allocation is done in two stages so that we can bail out with
1317 * minimal amount of pain. The first stage finds new page tables that
1318 * need allocation. The second stage marks use ptes within the page
1319 * tables.
1320 */
1321 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1322 if (pt != ppgtt->scratch_pt) {
1323 WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1324 continue;
1325 }
1326
1327 /* We've already allocated a page table */
1328 WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1329
1330 pt = alloc_pt(dev);
1331 if (IS_ERR(pt)) {
1332 ret = PTR_ERR(pt);
1333 goto unwind_out;
1334 }
1335
1336 gen6_initialize_pt(vm, pt);
1337
1338 ppgtt->pd.page_table[pde] = pt;
1339 set_bit(pde, new_page_tables);
1340 trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1341 }
1342
1343 start = start_save;
1344 length = length_save;
1345
1346 gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1347 DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1348
1349 bitmap_zero(tmp_bitmap, GEN6_PTES);
1350 bitmap_set(tmp_bitmap, gen6_pte_index(start),
1351 gen6_pte_count(start, length));
1352
1353 if (test_and_clear_bit(pde, new_page_tables))
1354 gen6_write_pde(&ppgtt->pd, pde, pt);
1355
1356 trace_i915_page_table_entry_map(vm, pde, pt,
1357 gen6_pte_index(start),
1358 gen6_pte_count(start, length),
1359 GEN6_PTES);
1360 bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1361 GEN6_PTES);
1362 }
1363
1364 WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1365
1366 /* Make sure write is complete before other code can use this page
1367 * table. Also require for WC mapped PTEs */
1368 readl(dev_priv->gtt.gsm);
1369
1370 mark_tlbs_dirty(ppgtt);
1371 return 0;
1372
1373 unwind_out:
1374 for_each_set_bit(pde, new_page_tables, I915_PDES) {
1375 struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1376
1377 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1378 unmap_and_free_pt(pt, vm->dev);
1379 }
1380
1381 mark_tlbs_dirty(ppgtt);
1382 return ret;
1383 }
1384
1385 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1386 {
1387 struct i915_hw_ppgtt *ppgtt =
1388 container_of(vm, struct i915_hw_ppgtt, base);
1389 struct i915_page_table *pt;
1390 uint32_t pde;
1391
1392
1393 drm_mm_remove_node(&ppgtt->node);
1394
1395 gen6_for_all_pdes(pt, ppgtt, pde) {
1396 if (pt != ppgtt->scratch_pt)
1397 unmap_and_free_pt(pt, ppgtt->base.dev);
1398 }
1399
1400 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1401 unmap_and_free_pd(&ppgtt->pd, ppgtt->base.dev);
1402 }
1403
1404 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1405 {
1406 struct drm_device *dev = ppgtt->base.dev;
1407 struct drm_i915_private *dev_priv = dev->dev_private;
1408 bool retried = false;
1409 int ret;
1410
1411 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1412 * allocator works in address space sizes, so it's multiplied by page
1413 * size. We allocate at the top of the GTT to avoid fragmentation.
1414 */
1415 BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
1416 ppgtt->scratch_pt = alloc_pt(ppgtt->base.dev);
1417 if (IS_ERR(ppgtt->scratch_pt))
1418 return PTR_ERR(ppgtt->scratch_pt);
1419
1420 gen6_initialize_pt(&ppgtt->base, ppgtt->scratch_pt);
1421
1422 alloc:
1423 ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
1424 &ppgtt->node, GEN6_PD_SIZE,
1425 GEN6_PD_ALIGN, 0,
1426 0, dev_priv->gtt.base.total,
1427 DRM_MM_TOPDOWN);
1428 if (ret == -ENOSPC && !retried) {
1429 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
1430 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1431 I915_CACHE_NONE,
1432 0, dev_priv->gtt.base.total,
1433 0);
1434 if (ret)
1435 goto err_out;
1436
1437 retried = true;
1438 goto alloc;
1439 }
1440
1441 if (ret)
1442 goto err_out;
1443
1444
1445 if (ppgtt->node.start < dev_priv->gtt.mappable_end)
1446 DRM_DEBUG("Forced to use aperture for PDEs\n");
1447
1448 return 0;
1449
1450 err_out:
1451 unmap_and_free_pt(ppgtt->scratch_pt, ppgtt->base.dev);
1452 return ret;
1453 }
1454
1455 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1456 {
1457 return gen6_ppgtt_allocate_page_directories(ppgtt);
1458 }
1459
1460 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1461 uint64_t start, uint64_t length)
1462 {
1463 struct i915_page_table *unused;
1464 uint32_t pde, temp;
1465
1466 gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
1467 ppgtt->pd.page_table[pde] = ppgtt->scratch_pt;
1468 }
1469
1470 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1471 {
1472 struct drm_device *dev = ppgtt->base.dev;
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474 int ret;
1475
1476 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
1477 if (IS_GEN6(dev)) {
1478 ppgtt->switch_mm = gen6_mm_switch;
1479 } else if (IS_HASWELL(dev)) {
1480 ppgtt->switch_mm = hsw_mm_switch;
1481 } else if (IS_GEN7(dev)) {
1482 ppgtt->switch_mm = gen7_mm_switch;
1483 } else
1484 BUG();
1485
1486 if (intel_vgpu_active(dev))
1487 ppgtt->switch_mm = vgpu_mm_switch;
1488
1489 ret = gen6_ppgtt_alloc(ppgtt);
1490 if (ret)
1491 return ret;
1492
1493 ppgtt->base.allocate_va_range = gen6_alloc_va_range;
1494 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1495 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1496 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1497 ppgtt->base.bind_vma = ppgtt_bind_vma;
1498 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1499 ppgtt->base.start = 0;
1500 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1501 ppgtt->debug_dump = gen6_dump_ppgtt;
1502
1503 ppgtt->pd.pd_offset =
1504 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1505
1506 ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
1507 ppgtt->pd.pd_offset / sizeof(gen6_pte_t);
1508
1509 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1510
1511 gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
1512
1513 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1514 ppgtt->node.size >> 20,
1515 ppgtt->node.start / PAGE_SIZE);
1516
1517 DRM_DEBUG("Adding PPGTT at offset %x\n",
1518 ppgtt->pd.pd_offset << 10);
1519
1520 return 0;
1521 }
1522
1523 static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1524 {
1525 struct drm_i915_private *dev_priv = dev->dev_private;
1526
1527 ppgtt->base.dev = dev;
1528 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
1529
1530 if (INTEL_INFO(dev)->gen < 8)
1531 return gen6_ppgtt_init(ppgtt);
1532 else
1533 return gen8_ppgtt_init(ppgtt);
1534 }
1535 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
1536 {
1537 struct drm_i915_private *dev_priv = dev->dev_private;
1538 int ret = 0;
1539
1540 ret = __hw_ppgtt_init(dev, ppgtt);
1541 if (ret == 0) {
1542 kref_init(&ppgtt->ref);
1543 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
1544 ppgtt->base.total);
1545 i915_init_vm(dev_priv, &ppgtt->base);
1546 }
1547
1548 return ret;
1549 }
1550
1551 int i915_ppgtt_init_hw(struct drm_device *dev)
1552 {
1553 /* In the case of execlists, PPGTT is enabled by the context descriptor
1554 * and the PDPs are contained within the context itself. We don't
1555 * need to do anything here. */
1556 if (i915.enable_execlists)
1557 return 0;
1558
1559 if (!USES_PPGTT(dev))
1560 return 0;
1561
1562 if (IS_GEN6(dev))
1563 gen6_ppgtt_enable(dev);
1564 else if (IS_GEN7(dev))
1565 gen7_ppgtt_enable(dev);
1566 else if (INTEL_INFO(dev)->gen >= 8)
1567 gen8_ppgtt_enable(dev);
1568 else
1569 MISSING_CASE(INTEL_INFO(dev)->gen);
1570
1571 return 0;
1572 }
1573
1574 int i915_ppgtt_init_ring(struct intel_engine_cs *ring)
1575 {
1576 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1577 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
1578
1579 if (i915.enable_execlists)
1580 return 0;
1581
1582 if (!ppgtt)
1583 return 0;
1584
1585 return ppgtt->switch_mm(ppgtt, ring);
1586 }
1587
1588 struct i915_hw_ppgtt *
1589 i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
1590 {
1591 struct i915_hw_ppgtt *ppgtt;
1592 int ret;
1593
1594 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1595 if (!ppgtt)
1596 return ERR_PTR(-ENOMEM);
1597
1598 ret = i915_ppgtt_init(dev, ppgtt);
1599 if (ret) {
1600 kfree(ppgtt);
1601 return ERR_PTR(ret);
1602 }
1603
1604 ppgtt->file_priv = fpriv;
1605
1606 trace_i915_ppgtt_create(&ppgtt->base);
1607
1608 return ppgtt;
1609 }
1610
1611 void i915_ppgtt_release(struct kref *kref)
1612 {
1613 struct i915_hw_ppgtt *ppgtt =
1614 container_of(kref, struct i915_hw_ppgtt, ref);
1615
1616 trace_i915_ppgtt_release(&ppgtt->base);
1617
1618 /* vmas should already be unbound */
1619 WARN_ON(!list_empty(&ppgtt->base.active_list));
1620 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1621
1622 list_del(&ppgtt->base.global_link);
1623 drm_mm_takedown(&ppgtt->base.mm);
1624
1625 ppgtt->base.cleanup(&ppgtt->base);
1626 kfree(ppgtt);
1627 }
1628
1629 extern int intel_iommu_gfx_mapped;
1630 /* Certain Gen5 chipsets require require idling the GPU before
1631 * unmapping anything from the GTT when VT-d is enabled.
1632 */
1633 static bool needs_idle_maps(struct drm_device *dev)
1634 {
1635 #ifdef CONFIG_INTEL_IOMMU
1636 /* Query intel_iommu to see if we need the workaround. Presumably that
1637 * was loaded first.
1638 */
1639 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
1640 return true;
1641 #endif
1642 return false;
1643 }
1644
1645 static bool do_idling(struct drm_i915_private *dev_priv)
1646 {
1647 bool ret = dev_priv->mm.interruptible;
1648
1649 if (unlikely(dev_priv->gtt.do_idle_maps)) {
1650 dev_priv->mm.interruptible = false;
1651 if (i915_gpu_idle(dev_priv->dev)) {
1652 DRM_ERROR("Couldn't idle GPU\n");
1653 /* Wait a bit, in hopes it avoids the hang */
1654 udelay(10);
1655 }
1656 }
1657
1658 return ret;
1659 }
1660
1661 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
1662 {
1663 if (unlikely(dev_priv->gtt.do_idle_maps))
1664 dev_priv->mm.interruptible = interruptible;
1665 }
1666
1667 void i915_check_and_clear_faults(struct drm_device *dev)
1668 {
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 struct intel_engine_cs *ring;
1671 int i;
1672
1673 if (INTEL_INFO(dev)->gen < 6)
1674 return;
1675
1676 for_each_ring(ring, dev_priv, i) {
1677 u32 fault_reg;
1678 fault_reg = I915_READ(RING_FAULT_REG(ring));
1679 if (fault_reg & RING_FAULT_VALID) {
1680 DRM_DEBUG_DRIVER("Unexpected fault\n"
1681 "\tAddr: 0x%08lx\n"
1682 "\tAddress space: %s\n"
1683 "\tSource ID: %d\n"
1684 "\tType: %d\n",
1685 fault_reg & PAGE_MASK,
1686 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1687 RING_FAULT_SRCID(fault_reg),
1688 RING_FAULT_FAULT_TYPE(fault_reg));
1689 I915_WRITE(RING_FAULT_REG(ring),
1690 fault_reg & ~RING_FAULT_VALID);
1691 }
1692 }
1693 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1694 }
1695
1696 static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
1697 {
1698 if (INTEL_INFO(dev_priv->dev)->gen < 6) {
1699 intel_gtt_chipset_flush();
1700 } else {
1701 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1702 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1703 }
1704 }
1705
1706 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1707 {
1708 struct drm_i915_private *dev_priv = dev->dev_private;
1709
1710 /* Don't bother messing with faults pre GEN6 as we have little
1711 * documentation supporting that it's a good idea.
1712 */
1713 if (INTEL_INFO(dev)->gen < 6)
1714 return;
1715
1716 i915_check_and_clear_faults(dev);
1717
1718 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1719 dev_priv->gtt.base.start,
1720 dev_priv->gtt.base.total,
1721 true);
1722
1723 i915_ggtt_flush(dev_priv);
1724 }
1725
1726 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1727 {
1728 if (obj->has_dma_mapping)
1729 return 0;
1730
1731 if (!dma_map_sg(&obj->base.dev->pdev->dev,
1732 obj->pages->sgl, obj->pages->nents,
1733 PCI_DMA_BIDIRECTIONAL))
1734 return -ENOSPC;
1735
1736 return 0;
1737 }
1738
1739 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
1740 {
1741 #ifdef writeq
1742 writeq(pte, addr);
1743 #else
1744 iowrite32((u32)pte, addr);
1745 iowrite32(pte >> 32, addr + 4);
1746 #endif
1747 }
1748
1749 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1750 struct sg_table *st,
1751 uint64_t start,
1752 enum i915_cache_level level, u32 unused)
1753 {
1754 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1755 unsigned first_entry = start >> PAGE_SHIFT;
1756 gen8_pte_t __iomem *gtt_entries =
1757 (gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1758 int i = 0;
1759 struct sg_page_iter sg_iter;
1760 dma_addr_t addr = 0; /* shut up gcc */
1761
1762 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1763 addr = sg_dma_address(sg_iter.sg) +
1764 (sg_iter.sg_pgoffset << PAGE_SHIFT);
1765 gen8_set_pte(&gtt_entries[i],
1766 gen8_pte_encode(addr, level, true));
1767 i++;
1768 }
1769
1770 /*
1771 * XXX: This serves as a posting read to make sure that the PTE has
1772 * actually been updated. There is some concern that even though
1773 * registers and PTEs are within the same BAR that they are potentially
1774 * of NUMA access patterns. Therefore, even with the way we assume
1775 * hardware should work, we must keep this posting read for paranoia.
1776 */
1777 if (i != 0)
1778 WARN_ON(readq(&gtt_entries[i-1])
1779 != gen8_pte_encode(addr, level, true));
1780
1781 /* This next bit makes the above posting read even more important. We
1782 * want to flush the TLBs only after we're certain all the PTE updates
1783 * have finished.
1784 */
1785 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1786 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1787 }
1788
1789 /*
1790 * Binds an object into the global gtt with the specified cache level. The object
1791 * will be accessible to the GPU via commands whose operands reference offsets
1792 * within the global GTT as well as accessible by the GPU through the GMADR
1793 * mapped BAR (dev_priv->mm.gtt->gtt).
1794 */
1795 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1796 struct sg_table *st,
1797 uint64_t start,
1798 enum i915_cache_level level, u32 flags)
1799 {
1800 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1801 unsigned first_entry = start >> PAGE_SHIFT;
1802 gen6_pte_t __iomem *gtt_entries =
1803 (gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1804 int i = 0;
1805 struct sg_page_iter sg_iter;
1806 dma_addr_t addr = 0;
1807
1808 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1809 addr = sg_page_iter_dma_address(&sg_iter);
1810 iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
1811 i++;
1812 }
1813
1814 /* XXX: This serves as a posting read to make sure that the PTE has
1815 * actually been updated. There is some concern that even though
1816 * registers and PTEs are within the same BAR that they are potentially
1817 * of NUMA access patterns. Therefore, even with the way we assume
1818 * hardware should work, we must keep this posting read for paranoia.
1819 */
1820 if (i != 0) {
1821 unsigned long gtt = readl(&gtt_entries[i-1]);
1822 WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
1823 }
1824
1825 /* This next bit makes the above posting read even more important. We
1826 * want to flush the TLBs only after we're certain all the PTE updates
1827 * have finished.
1828 */
1829 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1830 POSTING_READ(GFX_FLSH_CNTL_GEN6);
1831 }
1832
1833 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1834 uint64_t start,
1835 uint64_t length,
1836 bool use_scratch)
1837 {
1838 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1839 unsigned first_entry = start >> PAGE_SHIFT;
1840 unsigned num_entries = length >> PAGE_SHIFT;
1841 gen8_pte_t scratch_pte, __iomem *gtt_base =
1842 (gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1843 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1844 int i;
1845
1846 if (WARN(num_entries > max_entries,
1847 "First entry = %d; Num entries = %d (max=%d)\n",
1848 first_entry, num_entries, max_entries))
1849 num_entries = max_entries;
1850
1851 scratch_pte = gen8_pte_encode(vm->scratch.addr,
1852 I915_CACHE_LLC,
1853 use_scratch);
1854 for (i = 0; i < num_entries; i++)
1855 gen8_set_pte(&gtt_base[i], scratch_pte);
1856 readl(gtt_base);
1857 }
1858
1859 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1860 uint64_t start,
1861 uint64_t length,
1862 bool use_scratch)
1863 {
1864 struct drm_i915_private *dev_priv = vm->dev->dev_private;
1865 unsigned first_entry = start >> PAGE_SHIFT;
1866 unsigned num_entries = length >> PAGE_SHIFT;
1867 gen6_pte_t scratch_pte, __iomem *gtt_base =
1868 (gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1869 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1870 int i;
1871
1872 if (WARN(num_entries > max_entries,
1873 "First entry = %d; Num entries = %d (max=%d)\n",
1874 first_entry, num_entries, max_entries))
1875 num_entries = max_entries;
1876
1877 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0);
1878
1879 for (i = 0; i < num_entries; i++)
1880 iowrite32(scratch_pte, &gtt_base[i]);
1881 readl(gtt_base);
1882 }
1883
1884 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1885 struct sg_table *pages,
1886 uint64_t start,
1887 enum i915_cache_level cache_level, u32 unused)
1888 {
1889 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1890 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1891
1892 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
1893
1894 }
1895
1896 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1897 uint64_t start,
1898 uint64_t length,
1899 bool unused)
1900 {
1901 unsigned first_entry = start >> PAGE_SHIFT;
1902 unsigned num_entries = length >> PAGE_SHIFT;
1903 intel_gtt_clear_range(first_entry, num_entries);
1904 }
1905
1906 static int ggtt_bind_vma(struct i915_vma *vma,
1907 enum i915_cache_level cache_level,
1908 u32 flags)
1909 {
1910 struct drm_device *dev = vma->vm->dev;
1911 struct drm_i915_private *dev_priv = dev->dev_private;
1912 struct drm_i915_gem_object *obj = vma->obj;
1913 struct sg_table *pages = obj->pages;
1914 u32 pte_flags = 0;
1915 int ret;
1916
1917 ret = i915_get_ggtt_vma_pages(vma);
1918 if (ret)
1919 return ret;
1920 pages = vma->ggtt_view.pages;
1921
1922 /* Currently applicable only to VLV */
1923 if (obj->gt_ro)
1924 pte_flags |= PTE_READ_ONLY;
1925
1926
1927 if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1928 vma->vm->insert_entries(vma->vm, pages,
1929 vma->node.start,
1930 cache_level, pte_flags);
1931 }
1932
1933 if (dev_priv->mm.aliasing_ppgtt && flags & LOCAL_BIND) {
1934 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1935 appgtt->base.insert_entries(&appgtt->base, pages,
1936 vma->node.start,
1937 cache_level, pte_flags);
1938 }
1939
1940 return 0;
1941 }
1942
1943 static void ggtt_unbind_vma(struct i915_vma *vma)
1944 {
1945 struct drm_device *dev = vma->vm->dev;
1946 struct drm_i915_private *dev_priv = dev->dev_private;
1947 struct drm_i915_gem_object *obj = vma->obj;
1948 const uint64_t size = min_t(uint64_t,
1949 obj->base.size,
1950 vma->node.size);
1951
1952 if (vma->bound & GLOBAL_BIND) {
1953 vma->vm->clear_range(vma->vm,
1954 vma->node.start,
1955 size,
1956 true);
1957 }
1958
1959 if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
1960 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1961
1962 appgtt->base.clear_range(&appgtt->base,
1963 vma->node.start,
1964 size,
1965 true);
1966 }
1967 }
1968
1969 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1970 {
1971 struct drm_device *dev = obj->base.dev;
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 bool interruptible;
1974
1975 interruptible = do_idling(dev_priv);
1976
1977 if (!obj->has_dma_mapping)
1978 dma_unmap_sg(&dev->pdev->dev,
1979 obj->pages->sgl, obj->pages->nents,
1980 PCI_DMA_BIDIRECTIONAL);
1981
1982 undo_idling(dev_priv, interruptible);
1983 }
1984
1985 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1986 unsigned long color,
1987 u64 *start,
1988 u64 *end)
1989 {
1990 if (node->color != color)
1991 *start += 4096;
1992
1993 if (!list_empty(&node->node_list)) {
1994 node = list_entry(node->node_list.next,
1995 struct drm_mm_node,
1996 node_list);
1997 if (node->allocated && node->color != color)
1998 *end -= 4096;
1999 }
2000 }
2001
2002 static int i915_gem_setup_global_gtt(struct drm_device *dev,
2003 unsigned long start,
2004 unsigned long mappable_end,
2005 unsigned long end)
2006 {
2007 /* Let GEM Manage all of the aperture.
2008 *
2009 * However, leave one page at the end still bound to the scratch page.
2010 * There are a number of places where the hardware apparently prefetches
2011 * past the end of the object, and we've seen multiple hangs with the
2012 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2013 * aperture. One page should be enough to keep any prefetching inside
2014 * of the aperture.
2015 */
2016 struct drm_i915_private *dev_priv = dev->dev_private;
2017 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2018 struct drm_mm_node *entry;
2019 struct drm_i915_gem_object *obj;
2020 unsigned long hole_start, hole_end;
2021 int ret;
2022
2023 BUG_ON(mappable_end > end);
2024
2025 /* Subtract the guard page ... */
2026 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
2027
2028 dev_priv->gtt.base.start = start;
2029 dev_priv->gtt.base.total = end - start;
2030
2031 if (intel_vgpu_active(dev)) {
2032 ret = intel_vgt_balloon(dev);
2033 if (ret)
2034 return ret;
2035 }
2036
2037 if (!HAS_LLC(dev))
2038 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
2039
2040 /* Mark any preallocated objects as occupied */
2041 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2042 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2043
2044 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
2045 i915_gem_obj_ggtt_offset(obj), obj->base.size);
2046
2047 WARN_ON(i915_gem_obj_ggtt_bound(obj));
2048 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2049 if (ret) {
2050 DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2051 return ret;
2052 }
2053 vma->bound |= GLOBAL_BIND;
2054 }
2055
2056 /* Clear any non-preallocated blocks */
2057 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2058 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2059 hole_start, hole_end);
2060 ggtt_vm->clear_range(ggtt_vm, hole_start,
2061 hole_end - hole_start, true);
2062 }
2063
2064 /* And finally clear the reserved guard page */
2065 ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2066
2067 if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2068 struct i915_hw_ppgtt *ppgtt;
2069
2070 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2071 if (!ppgtt)
2072 return -ENOMEM;
2073
2074 ret = __hw_ppgtt_init(dev, ppgtt);
2075 if (ret) {
2076 ppgtt->base.cleanup(&ppgtt->base);
2077 kfree(ppgtt);
2078 return ret;
2079 }
2080
2081 if (ppgtt->base.allocate_va_range)
2082 ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2083 ppgtt->base.total);
2084 if (ret) {
2085 ppgtt->base.cleanup(&ppgtt->base);
2086 kfree(ppgtt);
2087 return ret;
2088 }
2089
2090 ppgtt->base.clear_range(&ppgtt->base,
2091 ppgtt->base.start,
2092 ppgtt->base.total,
2093 true);
2094
2095 dev_priv->mm.aliasing_ppgtt = ppgtt;
2096 }
2097
2098 return 0;
2099 }
2100
2101 void i915_gem_init_global_gtt(struct drm_device *dev)
2102 {
2103 struct drm_i915_private *dev_priv = dev->dev_private;
2104 unsigned long gtt_size, mappable_size;
2105
2106 gtt_size = dev_priv->gtt.base.total;
2107 mappable_size = dev_priv->gtt.mappable_end;
2108
2109 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2110 }
2111
2112 void i915_global_gtt_cleanup(struct drm_device *dev)
2113 {
2114 struct drm_i915_private *dev_priv = dev->dev_private;
2115 struct i915_address_space *vm = &dev_priv->gtt.base;
2116
2117 if (dev_priv->mm.aliasing_ppgtt) {
2118 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2119
2120 ppgtt->base.cleanup(&ppgtt->base);
2121 }
2122
2123 if (drm_mm_initialized(&vm->mm)) {
2124 if (intel_vgpu_active(dev))
2125 intel_vgt_deballoon();
2126
2127 drm_mm_takedown(&vm->mm);
2128 list_del(&vm->global_link);
2129 }
2130
2131 vm->cleanup(vm);
2132 }
2133
2134 static int setup_scratch_page(struct drm_device *dev)
2135 {
2136 struct drm_i915_private *dev_priv = dev->dev_private;
2137 struct page *page;
2138 dma_addr_t dma_addr;
2139
2140 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
2141 if (page == NULL)
2142 return -ENOMEM;
2143 set_pages_uc(page, 1);
2144
2145 #ifdef CONFIG_INTEL_IOMMU
2146 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
2147 PCI_DMA_BIDIRECTIONAL);
2148 if (pci_dma_mapping_error(dev->pdev, dma_addr)) {
2149 __free_page(page);
2150 return -EINVAL;
2151 }
2152 #else
2153 dma_addr = page_to_phys(page);
2154 #endif
2155 dev_priv->gtt.base.scratch.page = page;
2156 dev_priv->gtt.base.scratch.addr = dma_addr;
2157
2158 return 0;
2159 }
2160
2161 static void teardown_scratch_page(struct drm_device *dev)
2162 {
2163 struct drm_i915_private *dev_priv = dev->dev_private;
2164 struct page *page = dev_priv->gtt.base.scratch.page;
2165
2166 set_pages_wb(page, 1);
2167 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
2168 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
2169 __free_page(page);
2170 }
2171
2172 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2173 {
2174 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2175 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2176 return snb_gmch_ctl << 20;
2177 }
2178
2179 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2180 {
2181 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2182 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2183 if (bdw_gmch_ctl)
2184 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2185
2186 #ifdef CONFIG_X86_32
2187 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2188 if (bdw_gmch_ctl > 4)
2189 bdw_gmch_ctl = 4;
2190 #endif
2191
2192 return bdw_gmch_ctl << 20;
2193 }
2194
2195 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2196 {
2197 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2198 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2199
2200 if (gmch_ctrl)
2201 return 1 << (20 + gmch_ctrl);
2202
2203 return 0;
2204 }
2205
2206 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2207 {
2208 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2209 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2210 return snb_gmch_ctl << 25; /* 32 MB units */
2211 }
2212
2213 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2214 {
2215 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2216 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2217 return bdw_gmch_ctl << 25; /* 32 MB units */
2218 }
2219
2220 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2221 {
2222 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2223 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2224
2225 /*
2226 * 0x0 to 0x10: 32MB increments starting at 0MB
2227 * 0x11 to 0x16: 4MB increments starting at 8MB
2228 * 0x17 to 0x1d: 4MB increments start at 36MB
2229 */
2230 if (gmch_ctrl < 0x11)
2231 return gmch_ctrl << 25;
2232 else if (gmch_ctrl < 0x17)
2233 return (gmch_ctrl - 0x11 + 2) << 22;
2234 else
2235 return (gmch_ctrl - 0x17 + 9) << 22;
2236 }
2237
2238 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2239 {
2240 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2241 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2242
2243 if (gen9_gmch_ctl < 0xf0)
2244 return gen9_gmch_ctl << 25; /* 32 MB units */
2245 else
2246 /* 4MB increments starting at 0xf0 for 4MB */
2247 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2248 }
2249
2250 static int ggtt_probe_common(struct drm_device *dev,
2251 size_t gtt_size)
2252 {
2253 struct drm_i915_private *dev_priv = dev->dev_private;
2254 phys_addr_t gtt_phys_addr;
2255 int ret;
2256
2257 /* For Modern GENs the PTEs and register space are split in the BAR */
2258 gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2259 (pci_resource_len(dev->pdev, 0) / 2);
2260
2261 /*
2262 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2263 * dropped. For WC mappings in general we have 64 byte burst writes
2264 * when the WC buffer is flushed, so we can't use it, but have to
2265 * resort to an uncached mapping. The WC issue is easily caught by the
2266 * readback check when writing GTT PTE entries.
2267 */
2268 if (IS_BROXTON(dev))
2269 dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2270 else
2271 dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2272 if (!dev_priv->gtt.gsm) {
2273 DRM_ERROR("Failed to map the gtt page table\n");
2274 return -ENOMEM;
2275 }
2276
2277 ret = setup_scratch_page(dev);
2278 if (ret) {
2279 DRM_ERROR("Scratch setup failed\n");
2280 /* iounmap will also get called at remove, but meh */
2281 iounmap(dev_priv->gtt.gsm);
2282 }
2283
2284 return ret;
2285 }
2286
2287 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2288 * bits. When using advanced contexts each context stores its own PAT, but
2289 * writing this data shouldn't be harmful even in those cases. */
2290 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2291 {
2292 uint64_t pat;
2293
2294 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2295 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2296 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2297 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2298 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2299 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2300 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2301 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2302
2303 if (!USES_PPGTT(dev_priv->dev))
2304 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2305 * so RTL will always use the value corresponding to
2306 * pat_sel = 000".
2307 * So let's disable cache for GGTT to avoid screen corruptions.
2308 * MOCS still can be used though.
2309 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2310 * before this patch, i.e. the same uncached + snooping access
2311 * like on gen6/7 seems to be in effect.
2312 * - So this just fixes blitter/render access. Again it looks
2313 * like it's not just uncached access, but uncached + snooping.
2314 * So we can still hold onto all our assumptions wrt cpu
2315 * clflushing on LLC machines.
2316 */
2317 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2318
2319 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2320 * write would work. */
2321 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2322 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2323 }
2324
2325 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2326 {
2327 uint64_t pat;
2328
2329 /*
2330 * Map WB on BDW to snooped on CHV.
2331 *
2332 * Only the snoop bit has meaning for CHV, the rest is
2333 * ignored.
2334 *
2335 * The hardware will never snoop for certain types of accesses:
2336 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2337 * - PPGTT page tables
2338 * - some other special cycles
2339 *
2340 * As with BDW, we also need to consider the following for GT accesses:
2341 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2342 * so RTL will always use the value corresponding to
2343 * pat_sel = 000".
2344 * Which means we must set the snoop bit in PAT entry 0
2345 * in order to keep the global status page working.
2346 */
2347 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2348 GEN8_PPAT(1, 0) |
2349 GEN8_PPAT(2, 0) |
2350 GEN8_PPAT(3, 0) |
2351 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2352 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2353 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2354 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2355
2356 I915_WRITE(GEN8_PRIVATE_PAT, pat);
2357 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
2358 }
2359
2360 static int gen8_gmch_probe(struct drm_device *dev,
2361 size_t *gtt_total,
2362 size_t *stolen,
2363 phys_addr_t *mappable_base,
2364 unsigned long *mappable_end)
2365 {
2366 struct drm_i915_private *dev_priv = dev->dev_private;
2367 unsigned int gtt_size;
2368 u16 snb_gmch_ctl;
2369 int ret;
2370
2371 /* TODO: We're not aware of mappable constraints on gen8 yet */
2372 *mappable_base = pci_resource_start(dev->pdev, 2);
2373 *mappable_end = pci_resource_len(dev->pdev, 2);
2374
2375 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2376 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2377
2378 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2379
2380 if (INTEL_INFO(dev)->gen >= 9) {
2381 *stolen = gen9_get_stolen_size(snb_gmch_ctl);
2382 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2383 } else if (IS_CHERRYVIEW(dev)) {
2384 *stolen = chv_get_stolen_size(snb_gmch_ctl);
2385 gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2386 } else {
2387 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
2388 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2389 }
2390
2391 *gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2392
2393 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2394 chv_setup_private_ppat(dev_priv);
2395 else
2396 bdw_setup_private_ppat(dev_priv);
2397
2398 ret = ggtt_probe_common(dev, gtt_size);
2399
2400 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2401 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2402 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2403 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2404
2405 return ret;
2406 }
2407
2408 static int gen6_gmch_probe(struct drm_device *dev,
2409 size_t *gtt_total,
2410 size_t *stolen,
2411 phys_addr_t *mappable_base,
2412 unsigned long *mappable_end)
2413 {
2414 struct drm_i915_private *dev_priv = dev->dev_private;
2415 unsigned int gtt_size;
2416 u16 snb_gmch_ctl;
2417 int ret;
2418
2419 *mappable_base = pci_resource_start(dev->pdev, 2);
2420 *mappable_end = pci_resource_len(dev->pdev, 2);
2421
2422 /* 64/512MB is the current min/max we actually know of, but this is just
2423 * a coarse sanity check.
2424 */
2425 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
2426 DRM_ERROR("Unknown GMADR size (%lx)\n",
2427 dev_priv->gtt.mappable_end);
2428 return -ENXIO;
2429 }
2430
2431 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
2432 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
2433 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2434
2435 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
2436
2437 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
2438 *gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2439
2440 ret = ggtt_probe_common(dev, gtt_size);
2441
2442 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
2443 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
2444 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2445 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2446
2447 return ret;
2448 }
2449
2450 static void gen6_gmch_remove(struct i915_address_space *vm)
2451 {
2452
2453 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
2454
2455 iounmap(gtt->gsm);
2456 teardown_scratch_page(vm->dev);
2457 }
2458
2459 static int i915_gmch_probe(struct drm_device *dev,
2460 size_t *gtt_total,
2461 size_t *stolen,
2462 phys_addr_t *mappable_base,
2463 unsigned long *mappable_end)
2464 {
2465 struct drm_i915_private *dev_priv = dev->dev_private;
2466 int ret;
2467
2468 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
2469 if (!ret) {
2470 DRM_ERROR("failed to set up gmch\n");
2471 return -EIO;
2472 }
2473
2474 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
2475
2476 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
2477 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
2478 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
2479 dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2480 dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2481
2482 if (unlikely(dev_priv->gtt.do_idle_maps))
2483 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2484
2485 return 0;
2486 }
2487
2488 static void i915_gmch_remove(struct i915_address_space *vm)
2489 {
2490 intel_gmch_remove();
2491 }
2492
2493 int i915_gem_gtt_init(struct drm_device *dev)
2494 {
2495 struct drm_i915_private *dev_priv = dev->dev_private;
2496 struct i915_gtt *gtt = &dev_priv->gtt;
2497 int ret;
2498
2499 if (INTEL_INFO(dev)->gen <= 5) {
2500 gtt->gtt_probe = i915_gmch_probe;
2501 gtt->base.cleanup = i915_gmch_remove;
2502 } else if (INTEL_INFO(dev)->gen < 8) {
2503 gtt->gtt_probe = gen6_gmch_probe;
2504 gtt->base.cleanup = gen6_gmch_remove;
2505 if (IS_HASWELL(dev) && dev_priv->ellc_size)
2506 gtt->base.pte_encode = iris_pte_encode;
2507 else if (IS_HASWELL(dev))
2508 gtt->base.pte_encode = hsw_pte_encode;
2509 else if (IS_VALLEYVIEW(dev))
2510 gtt->base.pte_encode = byt_pte_encode;
2511 else if (INTEL_INFO(dev)->gen >= 7)
2512 gtt->base.pte_encode = ivb_pte_encode;
2513 else
2514 gtt->base.pte_encode = snb_pte_encode;
2515 } else {
2516 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
2517 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
2518 }
2519
2520 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
2521 &gtt->mappable_base, &gtt->mappable_end);
2522 if (ret)
2523 return ret;
2524
2525 gtt->base.dev = dev;
2526
2527 /* GMADR is the PCI mmio aperture into the global GTT. */
2528 DRM_INFO("Memory usable by graphics device = %zdM\n",
2529 gtt->base.total >> 20);
2530 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
2531 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
2532 #ifdef CONFIG_INTEL_IOMMU
2533 if (intel_iommu_gfx_mapped)
2534 DRM_INFO("VT-d active for gfx access\n");
2535 #endif
2536 /*
2537 * i915.enable_ppgtt is read-only, so do an early pass to validate the
2538 * user's requested state against the hardware/driver capabilities. We
2539 * do this now so that we can print out any log messages once rather
2540 * than every time we check intel_enable_ppgtt().
2541 */
2542 i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
2543 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
2544
2545 return 0;
2546 }
2547
2548 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
2549 {
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551 struct drm_i915_gem_object *obj;
2552 struct i915_address_space *vm;
2553
2554 i915_check_and_clear_faults(dev);
2555
2556 /* First fill our portion of the GTT with scratch pages */
2557 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2558 dev_priv->gtt.base.start,
2559 dev_priv->gtt.base.total,
2560 true);
2561
2562 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2563 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
2564 &dev_priv->gtt.base);
2565 if (!vma)
2566 continue;
2567
2568 i915_gem_clflush_object(obj, obj->pin_display);
2569 WARN_ON(i915_vma_bind(vma, obj->cache_level, PIN_UPDATE));
2570 }
2571
2572
2573 if (INTEL_INFO(dev)->gen >= 8) {
2574 if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2575 chv_setup_private_ppat(dev_priv);
2576 else
2577 bdw_setup_private_ppat(dev_priv);
2578
2579 return;
2580 }
2581
2582 if (USES_PPGTT(dev)) {
2583 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2584 /* TODO: Perhaps it shouldn't be gen6 specific */
2585
2586 struct i915_hw_ppgtt *ppgtt =
2587 container_of(vm, struct i915_hw_ppgtt,
2588 base);
2589
2590 if (i915_is_ggtt(vm))
2591 ppgtt = dev_priv->mm.aliasing_ppgtt;
2592
2593 gen6_write_page_range(dev_priv, &ppgtt->pd,
2594 0, ppgtt->base.total);
2595 }
2596 }
2597
2598 i915_ggtt_flush(dev_priv);
2599 }
2600
2601 static struct i915_vma *
2602 __i915_gem_vma_create(struct drm_i915_gem_object *obj,
2603 struct i915_address_space *vm,
2604 const struct i915_ggtt_view *ggtt_view)
2605 {
2606 struct i915_vma *vma;
2607
2608 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
2609 return ERR_PTR(-EINVAL);
2610
2611 vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
2612 if (vma == NULL)
2613 return ERR_PTR(-ENOMEM);
2614
2615 INIT_LIST_HEAD(&vma->vma_link);
2616 INIT_LIST_HEAD(&vma->mm_list);
2617 INIT_LIST_HEAD(&vma->exec_list);
2618 vma->vm = vm;
2619 vma->obj = obj;
2620
2621 if (i915_is_ggtt(vm))
2622 vma->ggtt_view = *ggtt_view;
2623
2624 list_add_tail(&vma->vma_link, &obj->vma_list);
2625 if (!i915_is_ggtt(vm))
2626 i915_ppgtt_get(i915_vm_to_ppgtt(vm));
2627
2628 return vma;
2629 }
2630
2631 struct i915_vma *
2632 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2633 struct i915_address_space *vm)
2634 {
2635 struct i915_vma *vma;
2636
2637 vma = i915_gem_obj_to_vma(obj, vm);
2638 if (!vma)
2639 vma = __i915_gem_vma_create(obj, vm,
2640 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
2641
2642 return vma;
2643 }
2644
2645 struct i915_vma *
2646 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
2647 const struct i915_ggtt_view *view)
2648 {
2649 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
2650 struct i915_vma *vma;
2651
2652 if (WARN_ON(!view))
2653 return ERR_PTR(-EINVAL);
2654
2655 vma = i915_gem_obj_to_ggtt_view(obj, view);
2656
2657 if (IS_ERR(vma))
2658 return vma;
2659
2660 if (!vma)
2661 vma = __i915_gem_vma_create(obj, ggtt, view);
2662
2663 return vma;
2664
2665 }
2666
2667 static void
2668 rotate_pages(dma_addr_t *in, unsigned int width, unsigned int height,
2669 struct sg_table *st)
2670 {
2671 unsigned int column, row;
2672 unsigned int src_idx;
2673 struct scatterlist *sg = st->sgl;
2674
2675 st->nents = 0;
2676
2677 for (column = 0; column < width; column++) {
2678 src_idx = width * (height - 1) + column;
2679 for (row = 0; row < height; row++) {
2680 st->nents++;
2681 /* We don't need the pages, but need to initialize
2682 * the entries so the sg list can be happily traversed.
2683 * The only thing we need are DMA addresses.
2684 */
2685 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2686 sg_dma_address(sg) = in[src_idx];
2687 sg_dma_len(sg) = PAGE_SIZE;
2688 sg = sg_next(sg);
2689 src_idx -= width;
2690 }
2691 }
2692 }
2693
2694 static struct sg_table *
2695 intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
2696 struct drm_i915_gem_object *obj)
2697 {
2698 struct drm_device *dev = obj->base.dev;
2699 struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
2700 unsigned long size, pages, rot_pages;
2701 struct sg_page_iter sg_iter;
2702 unsigned long i;
2703 dma_addr_t *page_addr_list;
2704 struct sg_table *st;
2705 unsigned int tile_pitch, tile_height;
2706 unsigned int width_pages, height_pages;
2707 int ret = -ENOMEM;
2708
2709 pages = obj->base.size / PAGE_SIZE;
2710
2711 /* Calculate tiling geometry. */
2712 tile_height = intel_tile_height(dev, rot_info->pixel_format,
2713 rot_info->fb_modifier);
2714 tile_pitch = PAGE_SIZE / tile_height;
2715 width_pages = DIV_ROUND_UP(rot_info->pitch, tile_pitch);
2716 height_pages = DIV_ROUND_UP(rot_info->height, tile_height);
2717 rot_pages = width_pages * height_pages;
2718 size = rot_pages * PAGE_SIZE;
2719
2720 /* Allocate a temporary list of source pages for random access. */
2721 page_addr_list = drm_malloc_ab(pages, sizeof(dma_addr_t));
2722 if (!page_addr_list)
2723 return ERR_PTR(ret);
2724
2725 /* Allocate target SG list. */
2726 st = kmalloc(sizeof(*st), GFP_KERNEL);
2727 if (!st)
2728 goto err_st_alloc;
2729
2730 ret = sg_alloc_table(st, rot_pages, GFP_KERNEL);
2731 if (ret)
2732 goto err_sg_alloc;
2733
2734 /* Populate source page list from the object. */
2735 i = 0;
2736 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2737 page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
2738 i++;
2739 }
2740
2741 /* Rotate the pages. */
2742 rotate_pages(page_addr_list, width_pages, height_pages, st);
2743
2744 DRM_DEBUG_KMS(
2745 "Created rotated page mapping for object size %lu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages).\n",
2746 size, rot_info->pitch, rot_info->height,
2747 rot_info->pixel_format, width_pages, height_pages,
2748 rot_pages);
2749
2750 drm_free_large(page_addr_list);
2751
2752 return st;
2753
2754 err_sg_alloc:
2755 kfree(st);
2756 err_st_alloc:
2757 drm_free_large(page_addr_list);
2758
2759 DRM_DEBUG_KMS(
2760 "Failed to create rotated mapping for object size %lu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %lu pages)\n",
2761 size, ret, rot_info->pitch, rot_info->height,
2762 rot_info->pixel_format, width_pages, height_pages,
2763 rot_pages);
2764 return ERR_PTR(ret);
2765 }
2766
2767 static struct sg_table *
2768 intel_partial_pages(const struct i915_ggtt_view *view,
2769 struct drm_i915_gem_object *obj)
2770 {
2771 struct sg_table *st;
2772 struct scatterlist *sg;
2773 struct sg_page_iter obj_sg_iter;
2774 int ret = -ENOMEM;
2775
2776 st = kmalloc(sizeof(*st), GFP_KERNEL);
2777 if (!st)
2778 goto err_st_alloc;
2779
2780 ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
2781 if (ret)
2782 goto err_sg_alloc;
2783
2784 sg = st->sgl;
2785 st->nents = 0;
2786 for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
2787 view->params.partial.offset)
2788 {
2789 if (st->nents >= view->params.partial.size)
2790 break;
2791
2792 sg_set_page(sg, NULL, PAGE_SIZE, 0);
2793 sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
2794 sg_dma_len(sg) = PAGE_SIZE;
2795
2796 sg = sg_next(sg);
2797 st->nents++;
2798 }
2799
2800 return st;
2801
2802 err_sg_alloc:
2803 kfree(st);
2804 err_st_alloc:
2805 return ERR_PTR(ret);
2806 }
2807
2808 static int
2809 i915_get_ggtt_vma_pages(struct i915_vma *vma)
2810 {
2811 int ret = 0;
2812
2813 if (vma->ggtt_view.pages)
2814 return 0;
2815
2816 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
2817 vma->ggtt_view.pages = vma->obj->pages;
2818 else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
2819 vma->ggtt_view.pages =
2820 intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
2821 else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
2822 vma->ggtt_view.pages =
2823 intel_partial_pages(&vma->ggtt_view, vma->obj);
2824 else
2825 WARN_ONCE(1, "GGTT view %u not implemented!\n",
2826 vma->ggtt_view.type);
2827
2828 if (!vma->ggtt_view.pages) {
2829 DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
2830 vma->ggtt_view.type);
2831 ret = -EINVAL;
2832 } else if (IS_ERR(vma->ggtt_view.pages)) {
2833 ret = PTR_ERR(vma->ggtt_view.pages);
2834 vma->ggtt_view.pages = NULL;
2835 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
2836 vma->ggtt_view.type, ret);
2837 }
2838
2839 return ret;
2840 }
2841
2842 /**
2843 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
2844 * @vma: VMA to map
2845 * @cache_level: mapping cache level
2846 * @flags: flags like global or local mapping
2847 *
2848 * DMA addresses are taken from the scatter-gather table of this object (or of
2849 * this VMA in case of non-default GGTT views) and PTE entries set up.
2850 * Note that DMA addresses are also the only part of the SG table we care about.
2851 */
2852 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2853 u32 flags)
2854 {
2855 int ret;
2856 u32 bind_flags;
2857
2858 if (WARN_ON(flags == 0))
2859 return -EINVAL;
2860
2861 bind_flags = 0;
2862 if (flags & PIN_GLOBAL)
2863 bind_flags |= GLOBAL_BIND;
2864 if (flags & PIN_USER)
2865 bind_flags |= LOCAL_BIND;
2866
2867 if (flags & PIN_UPDATE)
2868 bind_flags |= vma->bound;
2869 else
2870 bind_flags &= ~vma->bound;
2871
2872 if (bind_flags == 0)
2873 return 0;
2874
2875 if (vma->bound == 0 && vma->vm->allocate_va_range) {
2876 trace_i915_va_alloc(vma->vm,
2877 vma->node.start,
2878 vma->node.size,
2879 VM_TO_TRACE_NAME(vma->vm));
2880
2881 ret = vma->vm->allocate_va_range(vma->vm,
2882 vma->node.start,
2883 vma->node.size);
2884 if (ret)
2885 return ret;
2886 }
2887
2888 ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
2889 if (ret)
2890 return ret;
2891
2892 vma->bound |= bind_flags;
2893
2894 return 0;
2895 }
2896
2897 /**
2898 * i915_ggtt_view_size - Get the size of a GGTT view.
2899 * @obj: Object the view is of.
2900 * @view: The view in question.
2901 *
2902 * @return The size of the GGTT view in bytes.
2903 */
2904 size_t
2905 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
2906 const struct i915_ggtt_view *view)
2907 {
2908 if (view->type == I915_GGTT_VIEW_NORMAL ||
2909 view->type == I915_GGTT_VIEW_ROTATED) {
2910 return obj->base.size;
2911 } else if (view->type == I915_GGTT_VIEW_PARTIAL) {
2912 return view->params.partial.size << PAGE_SHIFT;
2913 } else {
2914 WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
2915 return obj->base.size;
2916 }
2917 }