]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.c
drm/i915/sdvo: Check error return from intel_sdvo_get_value()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36
37 #include "i915_drv.h"
38 #include "i915_vgpu.h"
39 #include "i915_trace.h"
40 #include "intel_drv.h"
41 #include "intel_frontbuffer.h"
42
43 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
44
45 /**
46 * DOC: Global GTT views
47 *
48 * Background and previous state
49 *
50 * Historically objects could exists (be bound) in global GTT space only as
51 * singular instances with a view representing all of the object's backing pages
52 * in a linear fashion. This view will be called a normal view.
53 *
54 * To support multiple views of the same object, where the number of mapped
55 * pages is not equal to the backing store, or where the layout of the pages
56 * is not linear, concept of a GGTT view was added.
57 *
58 * One example of an alternative view is a stereo display driven by a single
59 * image. In this case we would have a framebuffer looking like this
60 * (2x2 pages):
61 *
62 * 12
63 * 34
64 *
65 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
66 * rendering. In contrast, fed to the display engine would be an alternative
67 * view which could look something like this:
68 *
69 * 1212
70 * 3434
71 *
72 * In this example both the size and layout of pages in the alternative view is
73 * different from the normal view.
74 *
75 * Implementation and usage
76 *
77 * GGTT views are implemented using VMAs and are distinguished via enum
78 * i915_ggtt_view_type and struct i915_ggtt_view.
79 *
80 * A new flavour of core GEM functions which work with GGTT bound objects were
81 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
82 * renaming in large amounts of code. They take the struct i915_ggtt_view
83 * parameter encapsulating all metadata required to implement a view.
84 *
85 * As a helper for callers which are only interested in the normal view,
86 * globally const i915_ggtt_view_normal singleton instance exists. All old core
87 * GEM API functions, the ones not taking the view parameter, are operating on,
88 * or with the normal GGTT view.
89 *
90 * Code wanting to add or use a new GGTT view needs to:
91 *
92 * 1. Add a new enum with a suitable name.
93 * 2. Extend the metadata in the i915_ggtt_view structure if required.
94 * 3. Add support to i915_get_vma_pages().
95 *
96 * New views are required to build a scatter-gather table from within the
97 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
98 * exists for the lifetime of an VMA.
99 *
100 * Core API is designed to have copy semantics which means that passed in
101 * struct i915_ggtt_view does not need to be persistent (left around after
102 * calling the core API functions).
103 *
104 */
105
106 static int
107 i915_get_ggtt_vma_pages(struct i915_vma *vma);
108
109 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
110 {
111 /* Note that as an uncached mmio write, this should flush the
112 * WCB of the writes into the GGTT before it triggers the invalidate.
113 */
114 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
115 }
116
117 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
118 {
119 gen6_ggtt_invalidate(dev_priv);
120 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
121 }
122
123 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
124 {
125 intel_gtt_chipset_flush();
126 }
127
128 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
129 {
130 i915->ggtt.invalidate(i915);
131 }
132
133 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
134 int enable_ppgtt)
135 {
136 bool has_aliasing_ppgtt;
137 bool has_full_ppgtt;
138 bool has_full_48bit_ppgtt;
139
140 has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
141 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
142 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
143
144 if (intel_vgpu_active(dev_priv)) {
145 /* emulation is too hard */
146 has_full_ppgtt = false;
147 has_full_48bit_ppgtt = false;
148 }
149
150 if (!has_aliasing_ppgtt)
151 return 0;
152
153 /*
154 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155 * execlists, the sole mechanism available to submit work.
156 */
157 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158 return 0;
159
160 if (enable_ppgtt == 1)
161 return 1;
162
163 if (enable_ppgtt == 2 && has_full_ppgtt)
164 return 2;
165
166 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167 return 3;
168
169 #ifdef CONFIG_INTEL_IOMMU
170 /* Disable ppgtt on SNB if VT-d is on. */
171 if (IS_GEN6(dev_priv) && intel_iommu_gfx_mapped) {
172 DRM_INFO("Disabling PPGTT because VT-d is on\n");
173 return 0;
174 }
175 #endif
176
177 /* Early VLV doesn't have this */
178 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180 return 0;
181 }
182
183 if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists && has_full_ppgtt)
184 return has_full_48bit_ppgtt ? 3 : 2;
185 else
186 return has_aliasing_ppgtt ? 1 : 0;
187 }
188
189 static int ppgtt_bind_vma(struct i915_vma *vma,
190 enum i915_cache_level cache_level,
191 u32 unused)
192 {
193 u32 pte_flags;
194 int ret;
195
196 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size);
197 if (ret)
198 return ret;
199
200 vma->pages = vma->obj->mm.pages;
201
202 /* Currently applicable only to VLV */
203 pte_flags = 0;
204 if (vma->obj->gt_ro)
205 pte_flags |= PTE_READ_ONLY;
206
207 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
208 cache_level, pte_flags);
209
210 return 0;
211 }
212
213 static void ppgtt_unbind_vma(struct i915_vma *vma)
214 {
215 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
216 }
217
218 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
219 enum i915_cache_level level)
220 {
221 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
222 pte |= addr;
223
224 switch (level) {
225 case I915_CACHE_NONE:
226 pte |= PPAT_UNCACHED_INDEX;
227 break;
228 case I915_CACHE_WT:
229 pte |= PPAT_DISPLAY_ELLC_INDEX;
230 break;
231 default:
232 pte |= PPAT_CACHED_INDEX;
233 break;
234 }
235
236 return pte;
237 }
238
239 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
240 const enum i915_cache_level level)
241 {
242 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
243 pde |= addr;
244 if (level != I915_CACHE_NONE)
245 pde |= PPAT_CACHED_PDE_INDEX;
246 else
247 pde |= PPAT_UNCACHED_INDEX;
248 return pde;
249 }
250
251 #define gen8_pdpe_encode gen8_pde_encode
252 #define gen8_pml4e_encode gen8_pde_encode
253
254 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
255 enum i915_cache_level level,
256 u32 unused)
257 {
258 gen6_pte_t pte = GEN6_PTE_VALID;
259 pte |= GEN6_PTE_ADDR_ENCODE(addr);
260
261 switch (level) {
262 case I915_CACHE_L3_LLC:
263 case I915_CACHE_LLC:
264 pte |= GEN6_PTE_CACHE_LLC;
265 break;
266 case I915_CACHE_NONE:
267 pte |= GEN6_PTE_UNCACHED;
268 break;
269 default:
270 MISSING_CASE(level);
271 }
272
273 return pte;
274 }
275
276 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
277 enum i915_cache_level level,
278 u32 unused)
279 {
280 gen6_pte_t pte = GEN6_PTE_VALID;
281 pte |= GEN6_PTE_ADDR_ENCODE(addr);
282
283 switch (level) {
284 case I915_CACHE_L3_LLC:
285 pte |= GEN7_PTE_CACHE_L3_LLC;
286 break;
287 case I915_CACHE_LLC:
288 pte |= GEN6_PTE_CACHE_LLC;
289 break;
290 case I915_CACHE_NONE:
291 pte |= GEN6_PTE_UNCACHED;
292 break;
293 default:
294 MISSING_CASE(level);
295 }
296
297 return pte;
298 }
299
300 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
301 enum i915_cache_level level,
302 u32 flags)
303 {
304 gen6_pte_t pte = GEN6_PTE_VALID;
305 pte |= GEN6_PTE_ADDR_ENCODE(addr);
306
307 if (!(flags & PTE_READ_ONLY))
308 pte |= BYT_PTE_WRITEABLE;
309
310 if (level != I915_CACHE_NONE)
311 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
312
313 return pte;
314 }
315
316 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
317 enum i915_cache_level level,
318 u32 unused)
319 {
320 gen6_pte_t pte = GEN6_PTE_VALID;
321 pte |= HSW_PTE_ADDR_ENCODE(addr);
322
323 if (level != I915_CACHE_NONE)
324 pte |= HSW_WB_LLC_AGE3;
325
326 return pte;
327 }
328
329 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
330 enum i915_cache_level level,
331 u32 unused)
332 {
333 gen6_pte_t pte = GEN6_PTE_VALID;
334 pte |= HSW_PTE_ADDR_ENCODE(addr);
335
336 switch (level) {
337 case I915_CACHE_NONE:
338 break;
339 case I915_CACHE_WT:
340 pte |= HSW_WT_ELLC_LLC_AGE3;
341 break;
342 default:
343 pte |= HSW_WB_ELLC_LLC_AGE3;
344 break;
345 }
346
347 return pte;
348 }
349
350 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
351 {
352 struct page *page;
353
354 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
355 i915_gem_shrink_all(vm->i915);
356
357 if (vm->free_pages.nr)
358 return vm->free_pages.pages[--vm->free_pages.nr];
359
360 page = alloc_page(gfp);
361 if (!page)
362 return NULL;
363
364 if (vm->pt_kmap_wc)
365 set_pages_array_wc(&page, 1);
366
367 return page;
368 }
369
370 static void vm_free_pages_release(struct i915_address_space *vm)
371 {
372 GEM_BUG_ON(!pagevec_count(&vm->free_pages));
373
374 if (vm->pt_kmap_wc)
375 set_pages_array_wb(vm->free_pages.pages,
376 pagevec_count(&vm->free_pages));
377
378 __pagevec_release(&vm->free_pages);
379 }
380
381 static void vm_free_page(struct i915_address_space *vm, struct page *page)
382 {
383 if (!pagevec_add(&vm->free_pages, page))
384 vm_free_pages_release(vm);
385 }
386
387 static int __setup_page_dma(struct i915_address_space *vm,
388 struct i915_page_dma *p,
389 gfp_t gfp)
390 {
391 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
392 if (unlikely(!p->page))
393 return -ENOMEM;
394
395 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
396 PCI_DMA_BIDIRECTIONAL);
397 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
398 vm_free_page(vm, p->page);
399 return -ENOMEM;
400 }
401
402 return 0;
403 }
404
405 static int setup_page_dma(struct i915_address_space *vm,
406 struct i915_page_dma *p)
407 {
408 return __setup_page_dma(vm, p, I915_GFP_DMA);
409 }
410
411 static void cleanup_page_dma(struct i915_address_space *vm,
412 struct i915_page_dma *p)
413 {
414 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
415 vm_free_page(vm, p->page);
416 }
417
418 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
419
420 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
421 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
422 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
423 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
424
425 static void fill_page_dma(struct i915_address_space *vm,
426 struct i915_page_dma *p,
427 const u64 val)
428 {
429 u64 * const vaddr = kmap_atomic(p->page);
430 int i;
431
432 for (i = 0; i < 512; i++)
433 vaddr[i] = val;
434
435 kunmap_atomic(vaddr);
436 }
437
438 static void fill_page_dma_32(struct i915_address_space *vm,
439 struct i915_page_dma *p,
440 const u32 v)
441 {
442 fill_page_dma(vm, p, (u64)v << 32 | v);
443 }
444
445 static int
446 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
447 {
448 return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
449 }
450
451 static void cleanup_scratch_page(struct i915_address_space *vm)
452 {
453 cleanup_page_dma(vm, &vm->scratch_page);
454 }
455
456 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
457 {
458 struct i915_page_table *pt;
459
460 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
461 if (unlikely(!pt))
462 return ERR_PTR(-ENOMEM);
463
464 if (unlikely(setup_px(vm, pt))) {
465 kfree(pt);
466 return ERR_PTR(-ENOMEM);
467 }
468
469 pt->used_ptes = 0;
470 return pt;
471 }
472
473 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
474 {
475 cleanup_px(vm, pt);
476 kfree(pt);
477 }
478
479 static void gen8_initialize_pt(struct i915_address_space *vm,
480 struct i915_page_table *pt)
481 {
482 fill_px(vm, pt,
483 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
484 }
485
486 static void gen6_initialize_pt(struct i915_address_space *vm,
487 struct i915_page_table *pt)
488 {
489 fill32_px(vm, pt,
490 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
491 }
492
493 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
494 {
495 struct i915_page_directory *pd;
496
497 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
498 if (unlikely(!pd))
499 return ERR_PTR(-ENOMEM);
500
501 if (unlikely(setup_px(vm, pd))) {
502 kfree(pd);
503 return ERR_PTR(-ENOMEM);
504 }
505
506 pd->used_pdes = 0;
507 return pd;
508 }
509
510 static void free_pd(struct i915_address_space *vm,
511 struct i915_page_directory *pd)
512 {
513 cleanup_px(vm, pd);
514 kfree(pd);
515 }
516
517 static void gen8_initialize_pd(struct i915_address_space *vm,
518 struct i915_page_directory *pd)
519 {
520 unsigned int i;
521
522 fill_px(vm, pd,
523 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
524 for (i = 0; i < I915_PDES; i++)
525 pd->page_table[i] = vm->scratch_pt;
526 }
527
528 static int __pdp_init(struct i915_address_space *vm,
529 struct i915_page_directory_pointer *pdp)
530 {
531 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
532 unsigned int i;
533
534 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
535 GFP_KERNEL | __GFP_NOWARN);
536 if (unlikely(!pdp->page_directory))
537 return -ENOMEM;
538
539 for (i = 0; i < pdpes; i++)
540 pdp->page_directory[i] = vm->scratch_pd;
541
542 return 0;
543 }
544
545 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
546 {
547 kfree(pdp->page_directory);
548 pdp->page_directory = NULL;
549 }
550
551 static inline bool use_4lvl(const struct i915_address_space *vm)
552 {
553 return i915_vm_is_48bit(vm);
554 }
555
556 static struct i915_page_directory_pointer *
557 alloc_pdp(struct i915_address_space *vm)
558 {
559 struct i915_page_directory_pointer *pdp;
560 int ret = -ENOMEM;
561
562 WARN_ON(!use_4lvl(vm));
563
564 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
565 if (!pdp)
566 return ERR_PTR(-ENOMEM);
567
568 ret = __pdp_init(vm, pdp);
569 if (ret)
570 goto fail_bitmap;
571
572 ret = setup_px(vm, pdp);
573 if (ret)
574 goto fail_page_m;
575
576 return pdp;
577
578 fail_page_m:
579 __pdp_fini(pdp);
580 fail_bitmap:
581 kfree(pdp);
582
583 return ERR_PTR(ret);
584 }
585
586 static void free_pdp(struct i915_address_space *vm,
587 struct i915_page_directory_pointer *pdp)
588 {
589 __pdp_fini(pdp);
590
591 if (!use_4lvl(vm))
592 return;
593
594 cleanup_px(vm, pdp);
595 kfree(pdp);
596 }
597
598 static void gen8_initialize_pdp(struct i915_address_space *vm,
599 struct i915_page_directory_pointer *pdp)
600 {
601 gen8_ppgtt_pdpe_t scratch_pdpe;
602
603 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
604
605 fill_px(vm, pdp, scratch_pdpe);
606 }
607
608 static void gen8_initialize_pml4(struct i915_address_space *vm,
609 struct i915_pml4 *pml4)
610 {
611 unsigned int i;
612
613 fill_px(vm, pml4,
614 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
615 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
616 pml4->pdps[i] = vm->scratch_pdp;
617 }
618
619 /* Broadwell Page Directory Pointer Descriptors */
620 static int gen8_write_pdp(struct drm_i915_gem_request *req,
621 unsigned entry,
622 dma_addr_t addr)
623 {
624 struct intel_engine_cs *engine = req->engine;
625 u32 *cs;
626
627 BUG_ON(entry >= 4);
628
629 cs = intel_ring_begin(req, 6);
630 if (IS_ERR(cs))
631 return PTR_ERR(cs);
632
633 *cs++ = MI_LOAD_REGISTER_IMM(1);
634 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
635 *cs++ = upper_32_bits(addr);
636 *cs++ = MI_LOAD_REGISTER_IMM(1);
637 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
638 *cs++ = lower_32_bits(addr);
639 intel_ring_advance(req, cs);
640
641 return 0;
642 }
643
644 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
645 struct drm_i915_gem_request *req)
646 {
647 int i, ret;
648
649 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
650 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
651
652 ret = gen8_write_pdp(req, i, pd_daddr);
653 if (ret)
654 return ret;
655 }
656
657 return 0;
658 }
659
660 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
661 struct drm_i915_gem_request *req)
662 {
663 return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
664 }
665
666 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
667 * the page table structures, we mark them dirty so that
668 * context switching/execlist queuing code takes extra steps
669 * to ensure that tlbs are flushed.
670 */
671 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
672 {
673 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
674 }
675
676 /* Removes entries from a single page table, releasing it if it's empty.
677 * Caller can use the return value to update higher-level entries.
678 */
679 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
680 struct i915_page_table *pt,
681 u64 start, u64 length)
682 {
683 unsigned int num_entries = gen8_pte_count(start, length);
684 unsigned int pte = gen8_pte_index(start);
685 unsigned int pte_end = pte + num_entries;
686 const gen8_pte_t scratch_pte =
687 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
688 gen8_pte_t *vaddr;
689
690 GEM_BUG_ON(num_entries > pt->used_ptes);
691
692 pt->used_ptes -= num_entries;
693 if (!pt->used_ptes)
694 return true;
695
696 vaddr = kmap_atomic_px(pt);
697 while (pte < pte_end)
698 vaddr[pte++] = scratch_pte;
699 kunmap_atomic(vaddr);
700
701 return false;
702 }
703
704 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
705 struct i915_page_directory *pd,
706 struct i915_page_table *pt,
707 unsigned int pde)
708 {
709 gen8_pde_t *vaddr;
710
711 pd->page_table[pde] = pt;
712
713 vaddr = kmap_atomic_px(pd);
714 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
715 kunmap_atomic(vaddr);
716 }
717
718 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
719 struct i915_page_directory *pd,
720 u64 start, u64 length)
721 {
722 struct i915_page_table *pt;
723 u32 pde;
724
725 gen8_for_each_pde(pt, pd, start, length, pde) {
726 GEM_BUG_ON(pt == vm->scratch_pt);
727
728 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
729 continue;
730
731 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
732 GEM_BUG_ON(!pd->used_pdes);
733 pd->used_pdes--;
734
735 free_pt(vm, pt);
736 }
737
738 return !pd->used_pdes;
739 }
740
741 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
742 struct i915_page_directory_pointer *pdp,
743 struct i915_page_directory *pd,
744 unsigned int pdpe)
745 {
746 gen8_ppgtt_pdpe_t *vaddr;
747
748 pdp->page_directory[pdpe] = pd;
749 if (!use_4lvl(vm))
750 return;
751
752 vaddr = kmap_atomic_px(pdp);
753 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
754 kunmap_atomic(vaddr);
755 }
756
757 /* Removes entries from a single page dir pointer, releasing it if it's empty.
758 * Caller can use the return value to update higher-level entries
759 */
760 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
761 struct i915_page_directory_pointer *pdp,
762 u64 start, u64 length)
763 {
764 struct i915_page_directory *pd;
765 unsigned int pdpe;
766
767 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
768 GEM_BUG_ON(pd == vm->scratch_pd);
769
770 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
771 continue;
772
773 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
774 GEM_BUG_ON(!pdp->used_pdpes);
775 pdp->used_pdpes--;
776
777 free_pd(vm, pd);
778 }
779
780 return !pdp->used_pdpes;
781 }
782
783 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
784 u64 start, u64 length)
785 {
786 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
787 }
788
789 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
790 struct i915_page_directory_pointer *pdp,
791 unsigned int pml4e)
792 {
793 gen8_ppgtt_pml4e_t *vaddr;
794
795 pml4->pdps[pml4e] = pdp;
796
797 vaddr = kmap_atomic_px(pml4);
798 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
799 kunmap_atomic(vaddr);
800 }
801
802 /* Removes entries from a single pml4.
803 * This is the top-level structure in 4-level page tables used on gen8+.
804 * Empty entries are always scratch pml4e.
805 */
806 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
807 u64 start, u64 length)
808 {
809 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
810 struct i915_pml4 *pml4 = &ppgtt->pml4;
811 struct i915_page_directory_pointer *pdp;
812 unsigned int pml4e;
813
814 GEM_BUG_ON(!use_4lvl(vm));
815
816 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
817 GEM_BUG_ON(pdp == vm->scratch_pdp);
818
819 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
820 continue;
821
822 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
823
824 free_pdp(vm, pdp);
825 }
826 }
827
828 struct sgt_dma {
829 struct scatterlist *sg;
830 dma_addr_t dma, max;
831 };
832
833 struct gen8_insert_pte {
834 u16 pml4e;
835 u16 pdpe;
836 u16 pde;
837 u16 pte;
838 };
839
840 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
841 {
842 return (struct gen8_insert_pte) {
843 gen8_pml4e_index(start),
844 gen8_pdpe_index(start),
845 gen8_pde_index(start),
846 gen8_pte_index(start),
847 };
848 }
849
850 static __always_inline bool
851 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
852 struct i915_page_directory_pointer *pdp,
853 struct sgt_dma *iter,
854 struct gen8_insert_pte *idx,
855 enum i915_cache_level cache_level)
856 {
857 struct i915_page_directory *pd;
858 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
859 gen8_pte_t *vaddr;
860 bool ret;
861
862 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
863 pd = pdp->page_directory[idx->pdpe];
864 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
865 do {
866 vaddr[idx->pte] = pte_encode | iter->dma;
867
868 iter->dma += PAGE_SIZE;
869 if (iter->dma >= iter->max) {
870 iter->sg = __sg_next(iter->sg);
871 if (!iter->sg) {
872 ret = false;
873 break;
874 }
875
876 iter->dma = sg_dma_address(iter->sg);
877 iter->max = iter->dma + iter->sg->length;
878 }
879
880 if (++idx->pte == GEN8_PTES) {
881 idx->pte = 0;
882
883 if (++idx->pde == I915_PDES) {
884 idx->pde = 0;
885
886 /* Limited by sg length for 3lvl */
887 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
888 idx->pdpe = 0;
889 ret = true;
890 break;
891 }
892
893 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
894 pd = pdp->page_directory[idx->pdpe];
895 }
896
897 kunmap_atomic(vaddr);
898 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
899 }
900 } while (1);
901 kunmap_atomic(vaddr);
902
903 return ret;
904 }
905
906 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
907 struct sg_table *pages,
908 u64 start,
909 enum i915_cache_level cache_level,
910 u32 unused)
911 {
912 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
913 struct sgt_dma iter = {
914 .sg = pages->sgl,
915 .dma = sg_dma_address(iter.sg),
916 .max = iter.dma + iter.sg->length,
917 };
918 struct gen8_insert_pte idx = gen8_insert_pte(start);
919
920 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
921 cache_level);
922 }
923
924 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
925 struct sg_table *pages,
926 u64 start,
927 enum i915_cache_level cache_level,
928 u32 unused)
929 {
930 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
931 struct sgt_dma iter = {
932 .sg = pages->sgl,
933 .dma = sg_dma_address(iter.sg),
934 .max = iter.dma + iter.sg->length,
935 };
936 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
937 struct gen8_insert_pte idx = gen8_insert_pte(start);
938
939 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
940 &idx, cache_level))
941 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
942 }
943
944 static void gen8_free_page_tables(struct i915_address_space *vm,
945 struct i915_page_directory *pd)
946 {
947 int i;
948
949 if (!px_page(pd))
950 return;
951
952 for (i = 0; i < I915_PDES; i++) {
953 if (pd->page_table[i] != vm->scratch_pt)
954 free_pt(vm, pd->page_table[i]);
955 }
956 }
957
958 static int gen8_init_scratch(struct i915_address_space *vm)
959 {
960 int ret;
961
962 ret = setup_scratch_page(vm, I915_GFP_DMA);
963 if (ret)
964 return ret;
965
966 vm->scratch_pt = alloc_pt(vm);
967 if (IS_ERR(vm->scratch_pt)) {
968 ret = PTR_ERR(vm->scratch_pt);
969 goto free_scratch_page;
970 }
971
972 vm->scratch_pd = alloc_pd(vm);
973 if (IS_ERR(vm->scratch_pd)) {
974 ret = PTR_ERR(vm->scratch_pd);
975 goto free_pt;
976 }
977
978 if (use_4lvl(vm)) {
979 vm->scratch_pdp = alloc_pdp(vm);
980 if (IS_ERR(vm->scratch_pdp)) {
981 ret = PTR_ERR(vm->scratch_pdp);
982 goto free_pd;
983 }
984 }
985
986 gen8_initialize_pt(vm, vm->scratch_pt);
987 gen8_initialize_pd(vm, vm->scratch_pd);
988 if (use_4lvl(vm))
989 gen8_initialize_pdp(vm, vm->scratch_pdp);
990
991 return 0;
992
993 free_pd:
994 free_pd(vm, vm->scratch_pd);
995 free_pt:
996 free_pt(vm, vm->scratch_pt);
997 free_scratch_page:
998 cleanup_scratch_page(vm);
999
1000 return ret;
1001 }
1002
1003 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1004 {
1005 struct i915_address_space *vm = &ppgtt->base;
1006 struct drm_i915_private *dev_priv = vm->i915;
1007 enum vgt_g2v_type msg;
1008 int i;
1009
1010 if (use_4lvl(vm)) {
1011 const u64 daddr = px_dma(&ppgtt->pml4);
1012
1013 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1014 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1015
1016 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1017 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1018 } else {
1019 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1020 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1021
1022 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1023 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1024 }
1025
1026 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1027 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1028 }
1029
1030 I915_WRITE(vgtif_reg(g2v_notify), msg);
1031
1032 return 0;
1033 }
1034
1035 static void gen8_free_scratch(struct i915_address_space *vm)
1036 {
1037 if (use_4lvl(vm))
1038 free_pdp(vm, vm->scratch_pdp);
1039 free_pd(vm, vm->scratch_pd);
1040 free_pt(vm, vm->scratch_pt);
1041 cleanup_scratch_page(vm);
1042 }
1043
1044 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1045 struct i915_page_directory_pointer *pdp)
1046 {
1047 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1048 int i;
1049
1050 for (i = 0; i < pdpes; i++) {
1051 if (pdp->page_directory[i] == vm->scratch_pd)
1052 continue;
1053
1054 gen8_free_page_tables(vm, pdp->page_directory[i]);
1055 free_pd(vm, pdp->page_directory[i]);
1056 }
1057
1058 free_pdp(vm, pdp);
1059 }
1060
1061 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1062 {
1063 int i;
1064
1065 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1066 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1067 continue;
1068
1069 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1070 }
1071
1072 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1073 }
1074
1075 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1076 {
1077 struct drm_i915_private *dev_priv = vm->i915;
1078 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1079
1080 if (intel_vgpu_active(dev_priv))
1081 gen8_ppgtt_notify_vgt(ppgtt, false);
1082
1083 if (use_4lvl(vm))
1084 gen8_ppgtt_cleanup_4lvl(ppgtt);
1085 else
1086 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1087
1088 gen8_free_scratch(vm);
1089 }
1090
1091 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1092 struct i915_page_directory *pd,
1093 u64 start, u64 length)
1094 {
1095 struct i915_page_table *pt;
1096 u64 from = start;
1097 unsigned int pde;
1098
1099 gen8_for_each_pde(pt, pd, start, length, pde) {
1100 if (pt == vm->scratch_pt) {
1101 pt = alloc_pt(vm);
1102 if (IS_ERR(pt))
1103 goto unwind;
1104
1105 gen8_initialize_pt(vm, pt);
1106
1107 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1108 pd->used_pdes++;
1109 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1110 }
1111
1112 pt->used_ptes += gen8_pte_count(start, length);
1113 }
1114 return 0;
1115
1116 unwind:
1117 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1118 return -ENOMEM;
1119 }
1120
1121 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1122 struct i915_page_directory_pointer *pdp,
1123 u64 start, u64 length)
1124 {
1125 struct i915_page_directory *pd;
1126 u64 from = start;
1127 unsigned int pdpe;
1128 int ret;
1129
1130 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1131 if (pd == vm->scratch_pd) {
1132 pd = alloc_pd(vm);
1133 if (IS_ERR(pd))
1134 goto unwind;
1135
1136 gen8_initialize_pd(vm, pd);
1137 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1138 pdp->used_pdpes++;
1139 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1140
1141 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1142 }
1143
1144 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1145 if (unlikely(ret))
1146 goto unwind_pd;
1147 }
1148
1149 return 0;
1150
1151 unwind_pd:
1152 if (!pd->used_pdes) {
1153 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1154 GEM_BUG_ON(!pdp->used_pdpes);
1155 pdp->used_pdpes--;
1156 free_pd(vm, pd);
1157 }
1158 unwind:
1159 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1160 return -ENOMEM;
1161 }
1162
1163 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1164 u64 start, u64 length)
1165 {
1166 return gen8_ppgtt_alloc_pdp(vm,
1167 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1168 }
1169
1170 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1171 u64 start, u64 length)
1172 {
1173 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1174 struct i915_pml4 *pml4 = &ppgtt->pml4;
1175 struct i915_page_directory_pointer *pdp;
1176 u64 from = start;
1177 u32 pml4e;
1178 int ret;
1179
1180 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1181 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1182 pdp = alloc_pdp(vm);
1183 if (IS_ERR(pdp))
1184 goto unwind;
1185
1186 gen8_initialize_pdp(vm, pdp);
1187 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1188 }
1189
1190 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1191 if (unlikely(ret))
1192 goto unwind_pdp;
1193 }
1194
1195 return 0;
1196
1197 unwind_pdp:
1198 if (!pdp->used_pdpes) {
1199 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1200 free_pdp(vm, pdp);
1201 }
1202 unwind:
1203 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1204 return -ENOMEM;
1205 }
1206
1207 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1208 struct i915_page_directory_pointer *pdp,
1209 u64 start, u64 length,
1210 gen8_pte_t scratch_pte,
1211 struct seq_file *m)
1212 {
1213 struct i915_address_space *vm = &ppgtt->base;
1214 struct i915_page_directory *pd;
1215 u32 pdpe;
1216
1217 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1218 struct i915_page_table *pt;
1219 u64 pd_len = length;
1220 u64 pd_start = start;
1221 u32 pde;
1222
1223 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1224 continue;
1225
1226 seq_printf(m, "\tPDPE #%d\n", pdpe);
1227 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1228 u32 pte;
1229 gen8_pte_t *pt_vaddr;
1230
1231 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1232 continue;
1233
1234 pt_vaddr = kmap_atomic_px(pt);
1235 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1236 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1237 pde << GEN8_PDE_SHIFT |
1238 pte << GEN8_PTE_SHIFT);
1239 int i;
1240 bool found = false;
1241
1242 for (i = 0; i < 4; i++)
1243 if (pt_vaddr[pte + i] != scratch_pte)
1244 found = true;
1245 if (!found)
1246 continue;
1247
1248 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1249 for (i = 0; i < 4; i++) {
1250 if (pt_vaddr[pte + i] != scratch_pte)
1251 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1252 else
1253 seq_puts(m, " SCRATCH ");
1254 }
1255 seq_puts(m, "\n");
1256 }
1257 kunmap_atomic(pt_vaddr);
1258 }
1259 }
1260 }
1261
1262 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1263 {
1264 struct i915_address_space *vm = &ppgtt->base;
1265 const gen8_pte_t scratch_pte =
1266 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1267 u64 start = 0, length = ppgtt->base.total;
1268
1269 if (use_4lvl(vm)) {
1270 u64 pml4e;
1271 struct i915_pml4 *pml4 = &ppgtt->pml4;
1272 struct i915_page_directory_pointer *pdp;
1273
1274 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1275 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1276 continue;
1277
1278 seq_printf(m, " PML4E #%llu\n", pml4e);
1279 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1280 }
1281 } else {
1282 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1283 }
1284 }
1285
1286 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1287 {
1288 struct i915_address_space *vm = &ppgtt->base;
1289 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1290 struct i915_page_directory *pd;
1291 u64 start = 0, length = ppgtt->base.total;
1292 u64 from = start;
1293 unsigned int pdpe;
1294
1295 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1296 pd = alloc_pd(vm);
1297 if (IS_ERR(pd))
1298 goto unwind;
1299
1300 gen8_initialize_pd(vm, pd);
1301 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1302 pdp->used_pdpes++;
1303 }
1304
1305 pdp->used_pdpes++; /* never remove */
1306 return 0;
1307
1308 unwind:
1309 start -= from;
1310 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1311 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1312 free_pd(vm, pd);
1313 }
1314 pdp->used_pdpes = 0;
1315 return -ENOMEM;
1316 }
1317
1318 /*
1319 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1320 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1321 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1322 * space.
1323 *
1324 */
1325 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1326 {
1327 struct i915_address_space *vm = &ppgtt->base;
1328 struct drm_i915_private *dev_priv = vm->i915;
1329 int ret;
1330
1331 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1332 1ULL << 48 :
1333 1ULL << 32;
1334
1335 ret = gen8_init_scratch(&ppgtt->base);
1336 if (ret) {
1337 ppgtt->base.total = 0;
1338 return ret;
1339 }
1340
1341 /* There are only few exceptions for gen >=6. chv and bxt.
1342 * And we are not sure about the latter so play safe for now.
1343 */
1344 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1345 ppgtt->base.pt_kmap_wc = true;
1346
1347 if (use_4lvl(vm)) {
1348 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1349 if (ret)
1350 goto free_scratch;
1351
1352 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1353
1354 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1355 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1356 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1357 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1358 } else {
1359 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1360 if (ret)
1361 goto free_scratch;
1362
1363 if (intel_vgpu_active(dev_priv)) {
1364 ret = gen8_preallocate_top_level_pdp(ppgtt);
1365 if (ret) {
1366 __pdp_fini(&ppgtt->pdp);
1367 goto free_scratch;
1368 }
1369 }
1370
1371 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1372 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1373 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1374 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1375 }
1376
1377 if (intel_vgpu_active(dev_priv))
1378 gen8_ppgtt_notify_vgt(ppgtt, true);
1379
1380 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1381 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1382 ppgtt->base.bind_vma = ppgtt_bind_vma;
1383 ppgtt->debug_dump = gen8_dump_ppgtt;
1384
1385 return 0;
1386
1387 free_scratch:
1388 gen8_free_scratch(&ppgtt->base);
1389 return ret;
1390 }
1391
1392 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1393 {
1394 struct i915_address_space *vm = &ppgtt->base;
1395 struct i915_page_table *unused;
1396 gen6_pte_t scratch_pte;
1397 u32 pd_entry, pte, pde;
1398 u32 start = 0, length = ppgtt->base.total;
1399
1400 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1401 I915_CACHE_LLC, 0);
1402
1403 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1404 u32 expected;
1405 gen6_pte_t *pt_vaddr;
1406 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1407 pd_entry = readl(ppgtt->pd_addr + pde);
1408 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1409
1410 if (pd_entry != expected)
1411 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1412 pde,
1413 pd_entry,
1414 expected);
1415 seq_printf(m, "\tPDE: %x\n", pd_entry);
1416
1417 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1418
1419 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1420 unsigned long va =
1421 (pde * PAGE_SIZE * GEN6_PTES) +
1422 (pte * PAGE_SIZE);
1423 int i;
1424 bool found = false;
1425 for (i = 0; i < 4; i++)
1426 if (pt_vaddr[pte + i] != scratch_pte)
1427 found = true;
1428 if (!found)
1429 continue;
1430
1431 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1432 for (i = 0; i < 4; i++) {
1433 if (pt_vaddr[pte + i] != scratch_pte)
1434 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1435 else
1436 seq_puts(m, " SCRATCH ");
1437 }
1438 seq_puts(m, "\n");
1439 }
1440 kunmap_atomic(pt_vaddr);
1441 }
1442 }
1443
1444 /* Write pde (index) from the page directory @pd to the page table @pt */
1445 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1446 const unsigned int pde,
1447 const struct i915_page_table *pt)
1448 {
1449 /* Caller needs to make sure the write completes if necessary */
1450 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1451 ppgtt->pd_addr + pde);
1452 }
1453
1454 /* Write all the page tables found in the ppgtt structure to incrementing page
1455 * directories. */
1456 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1457 u32 start, u32 length)
1458 {
1459 struct i915_page_table *pt;
1460 unsigned int pde;
1461
1462 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1463 gen6_write_pde(ppgtt, pde, pt);
1464
1465 mark_tlbs_dirty(ppgtt);
1466 wmb();
1467 }
1468
1469 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1470 {
1471 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1472 return ppgtt->pd.base.ggtt_offset << 10;
1473 }
1474
1475 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1476 struct drm_i915_gem_request *req)
1477 {
1478 struct intel_engine_cs *engine = req->engine;
1479 u32 *cs;
1480
1481 /* NB: TLBs must be flushed and invalidated before a switch */
1482 cs = intel_ring_begin(req, 6);
1483 if (IS_ERR(cs))
1484 return PTR_ERR(cs);
1485
1486 *cs++ = MI_LOAD_REGISTER_IMM(2);
1487 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1488 *cs++ = PP_DIR_DCLV_2G;
1489 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1490 *cs++ = get_pd_offset(ppgtt);
1491 *cs++ = MI_NOOP;
1492 intel_ring_advance(req, cs);
1493
1494 return 0;
1495 }
1496
1497 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1498 struct drm_i915_gem_request *req)
1499 {
1500 struct intel_engine_cs *engine = req->engine;
1501 u32 *cs;
1502
1503 /* NB: TLBs must be flushed and invalidated before a switch */
1504 cs = intel_ring_begin(req, 6);
1505 if (IS_ERR(cs))
1506 return PTR_ERR(cs);
1507
1508 *cs++ = MI_LOAD_REGISTER_IMM(2);
1509 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1510 *cs++ = PP_DIR_DCLV_2G;
1511 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1512 *cs++ = get_pd_offset(ppgtt);
1513 *cs++ = MI_NOOP;
1514 intel_ring_advance(req, cs);
1515
1516 return 0;
1517 }
1518
1519 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1520 struct drm_i915_gem_request *req)
1521 {
1522 struct intel_engine_cs *engine = req->engine;
1523 struct drm_i915_private *dev_priv = req->i915;
1524
1525 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1526 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1527 return 0;
1528 }
1529
1530 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1531 {
1532 struct intel_engine_cs *engine;
1533 enum intel_engine_id id;
1534
1535 for_each_engine(engine, dev_priv, id) {
1536 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1537 GEN8_GFX_PPGTT_48B : 0;
1538 I915_WRITE(RING_MODE_GEN7(engine),
1539 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1540 }
1541 }
1542
1543 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1544 {
1545 struct intel_engine_cs *engine;
1546 u32 ecochk, ecobits;
1547 enum intel_engine_id id;
1548
1549 ecobits = I915_READ(GAC_ECO_BITS);
1550 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1551
1552 ecochk = I915_READ(GAM_ECOCHK);
1553 if (IS_HASWELL(dev_priv)) {
1554 ecochk |= ECOCHK_PPGTT_WB_HSW;
1555 } else {
1556 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1557 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1558 }
1559 I915_WRITE(GAM_ECOCHK, ecochk);
1560
1561 for_each_engine(engine, dev_priv, id) {
1562 /* GFX_MODE is per-ring on gen7+ */
1563 I915_WRITE(RING_MODE_GEN7(engine),
1564 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1565 }
1566 }
1567
1568 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1569 {
1570 u32 ecochk, gab_ctl, ecobits;
1571
1572 ecobits = I915_READ(GAC_ECO_BITS);
1573 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1574 ECOBITS_PPGTT_CACHE64B);
1575
1576 gab_ctl = I915_READ(GAB_CTL);
1577 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1578
1579 ecochk = I915_READ(GAM_ECOCHK);
1580 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1581
1582 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1583 }
1584
1585 /* PPGTT support for Sandybdrige/Gen6 and later */
1586 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1587 u64 start, u64 length)
1588 {
1589 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1590 unsigned int first_entry = start >> PAGE_SHIFT;
1591 unsigned int pde = first_entry / GEN6_PTES;
1592 unsigned int pte = first_entry % GEN6_PTES;
1593 unsigned int num_entries = length >> PAGE_SHIFT;
1594 gen6_pte_t scratch_pte =
1595 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1596
1597 while (num_entries) {
1598 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1599 unsigned int end = min(pte + num_entries, GEN6_PTES);
1600 gen6_pte_t *vaddr;
1601
1602 num_entries -= end - pte;
1603
1604 /* Note that the hw doesn't support removing PDE on the fly
1605 * (they are cached inside the context with no means to
1606 * invalidate the cache), so we can only reset the PTE
1607 * entries back to scratch.
1608 */
1609
1610 vaddr = kmap_atomic_px(pt);
1611 do {
1612 vaddr[pte++] = scratch_pte;
1613 } while (pte < end);
1614 kunmap_atomic(vaddr);
1615
1616 pte = 0;
1617 }
1618 }
1619
1620 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1621 struct sg_table *pages,
1622 u64 start,
1623 enum i915_cache_level cache_level,
1624 u32 flags)
1625 {
1626 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1627 unsigned first_entry = start >> PAGE_SHIFT;
1628 unsigned act_pt = first_entry / GEN6_PTES;
1629 unsigned act_pte = first_entry % GEN6_PTES;
1630 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1631 struct sgt_dma iter;
1632 gen6_pte_t *vaddr;
1633
1634 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1635 iter.sg = pages->sgl;
1636 iter.dma = sg_dma_address(iter.sg);
1637 iter.max = iter.dma + iter.sg->length;
1638 do {
1639 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1640
1641 iter.dma += PAGE_SIZE;
1642 if (iter.dma == iter.max) {
1643 iter.sg = __sg_next(iter.sg);
1644 if (!iter.sg)
1645 break;
1646
1647 iter.dma = sg_dma_address(iter.sg);
1648 iter.max = iter.dma + iter.sg->length;
1649 }
1650
1651 if (++act_pte == GEN6_PTES) {
1652 kunmap_atomic(vaddr);
1653 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1654 act_pte = 0;
1655 }
1656 } while (1);
1657 kunmap_atomic(vaddr);
1658 }
1659
1660 static int gen6_alloc_va_range(struct i915_address_space *vm,
1661 u64 start, u64 length)
1662 {
1663 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1664 struct i915_page_table *pt;
1665 u64 from = start;
1666 unsigned int pde;
1667 bool flush = false;
1668
1669 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1670 if (pt == vm->scratch_pt) {
1671 pt = alloc_pt(vm);
1672 if (IS_ERR(pt))
1673 goto unwind_out;
1674
1675 gen6_initialize_pt(vm, pt);
1676 ppgtt->pd.page_table[pde] = pt;
1677 gen6_write_pde(ppgtt, pde, pt);
1678 flush = true;
1679 }
1680 }
1681
1682 if (flush) {
1683 mark_tlbs_dirty(ppgtt);
1684 wmb();
1685 }
1686
1687 return 0;
1688
1689 unwind_out:
1690 gen6_ppgtt_clear_range(vm, from, start);
1691 return -ENOMEM;
1692 }
1693
1694 static int gen6_init_scratch(struct i915_address_space *vm)
1695 {
1696 int ret;
1697
1698 ret = setup_scratch_page(vm, I915_GFP_DMA);
1699 if (ret)
1700 return ret;
1701
1702 vm->scratch_pt = alloc_pt(vm);
1703 if (IS_ERR(vm->scratch_pt)) {
1704 cleanup_scratch_page(vm);
1705 return PTR_ERR(vm->scratch_pt);
1706 }
1707
1708 gen6_initialize_pt(vm, vm->scratch_pt);
1709
1710 return 0;
1711 }
1712
1713 static void gen6_free_scratch(struct i915_address_space *vm)
1714 {
1715 free_pt(vm, vm->scratch_pt);
1716 cleanup_scratch_page(vm);
1717 }
1718
1719 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1720 {
1721 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1722 struct i915_page_directory *pd = &ppgtt->pd;
1723 struct i915_page_table *pt;
1724 u32 pde;
1725
1726 drm_mm_remove_node(&ppgtt->node);
1727
1728 gen6_for_all_pdes(pt, pd, pde)
1729 if (pt != vm->scratch_pt)
1730 free_pt(vm, pt);
1731
1732 gen6_free_scratch(vm);
1733 }
1734
1735 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1736 {
1737 struct i915_address_space *vm = &ppgtt->base;
1738 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1739 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1740 int ret;
1741
1742 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1743 * allocator works in address space sizes, so it's multiplied by page
1744 * size. We allocate at the top of the GTT to avoid fragmentation.
1745 */
1746 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1747
1748 ret = gen6_init_scratch(vm);
1749 if (ret)
1750 return ret;
1751
1752 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1753 GEN6_PD_SIZE, GEN6_PD_ALIGN,
1754 I915_COLOR_UNEVICTABLE,
1755 0, ggtt->base.total,
1756 PIN_HIGH);
1757 if (ret)
1758 goto err_out;
1759
1760 if (ppgtt->node.start < ggtt->mappable_end)
1761 DRM_DEBUG("Forced to use aperture for PDEs\n");
1762
1763 ppgtt->pd.base.ggtt_offset =
1764 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1765
1766 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1767 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1768
1769 return 0;
1770
1771 err_out:
1772 gen6_free_scratch(vm);
1773 return ret;
1774 }
1775
1776 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1777 {
1778 return gen6_ppgtt_allocate_page_directories(ppgtt);
1779 }
1780
1781 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1782 u64 start, u64 length)
1783 {
1784 struct i915_page_table *unused;
1785 u32 pde;
1786
1787 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1788 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1789 }
1790
1791 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1792 {
1793 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1794 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1795 int ret;
1796
1797 ppgtt->base.pte_encode = ggtt->base.pte_encode;
1798 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1799 ppgtt->switch_mm = gen6_mm_switch;
1800 else if (IS_HASWELL(dev_priv))
1801 ppgtt->switch_mm = hsw_mm_switch;
1802 else if (IS_GEN7(dev_priv))
1803 ppgtt->switch_mm = gen7_mm_switch;
1804 else
1805 BUG();
1806
1807 ret = gen6_ppgtt_alloc(ppgtt);
1808 if (ret)
1809 return ret;
1810
1811 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1812
1813 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1814 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1815
1816 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1817 if (ret) {
1818 gen6_ppgtt_cleanup(&ppgtt->base);
1819 return ret;
1820 }
1821
1822 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1823 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1824 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1825 ppgtt->base.bind_vma = ppgtt_bind_vma;
1826 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1827 ppgtt->debug_dump = gen6_dump_ppgtt;
1828
1829 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1830 ppgtt->node.size >> 20,
1831 ppgtt->node.start / PAGE_SIZE);
1832
1833 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1834 ppgtt->pd.base.ggtt_offset << 10);
1835
1836 return 0;
1837 }
1838
1839 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1840 struct drm_i915_private *dev_priv)
1841 {
1842 ppgtt->base.i915 = dev_priv;
1843 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1844
1845 if (INTEL_INFO(dev_priv)->gen < 8)
1846 return gen6_ppgtt_init(ppgtt);
1847 else
1848 return gen8_ppgtt_init(ppgtt);
1849 }
1850
1851 static void i915_address_space_init(struct i915_address_space *vm,
1852 struct drm_i915_private *dev_priv,
1853 const char *name)
1854 {
1855 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1856
1857 drm_mm_init(&vm->mm, 0, vm->total);
1858 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1859
1860 INIT_LIST_HEAD(&vm->active_list);
1861 INIT_LIST_HEAD(&vm->inactive_list);
1862 INIT_LIST_HEAD(&vm->unbound_list);
1863
1864 list_add_tail(&vm->global_link, &dev_priv->vm_list);
1865 pagevec_init(&vm->free_pages, false);
1866 }
1867
1868 static void i915_address_space_fini(struct i915_address_space *vm)
1869 {
1870 if (pagevec_count(&vm->free_pages))
1871 vm_free_pages_release(vm);
1872
1873 i915_gem_timeline_fini(&vm->timeline);
1874 drm_mm_takedown(&vm->mm);
1875 list_del(&vm->global_link);
1876 }
1877
1878 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1879 {
1880 /* This function is for gtt related workarounds. This function is
1881 * called on driver load and after a GPU reset, so you can place
1882 * workarounds here even if they get overwritten by GPU reset.
1883 */
1884 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk */
1885 if (IS_BROADWELL(dev_priv))
1886 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1887 else if (IS_CHERRYVIEW(dev_priv))
1888 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1889 else if (IS_GEN9_BC(dev_priv))
1890 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1891 else if (IS_GEN9_LP(dev_priv))
1892 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1893 }
1894
1895 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1896 {
1897 gtt_write_workarounds(dev_priv);
1898
1899 /* In the case of execlists, PPGTT is enabled by the context descriptor
1900 * and the PDPs are contained within the context itself. We don't
1901 * need to do anything here. */
1902 if (i915.enable_execlists)
1903 return 0;
1904
1905 if (!USES_PPGTT(dev_priv))
1906 return 0;
1907
1908 if (IS_GEN6(dev_priv))
1909 gen6_ppgtt_enable(dev_priv);
1910 else if (IS_GEN7(dev_priv))
1911 gen7_ppgtt_enable(dev_priv);
1912 else if (INTEL_GEN(dev_priv) >= 8)
1913 gen8_ppgtt_enable(dev_priv);
1914 else
1915 MISSING_CASE(INTEL_GEN(dev_priv));
1916
1917 return 0;
1918 }
1919
1920 struct i915_hw_ppgtt *
1921 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1922 struct drm_i915_file_private *fpriv,
1923 const char *name)
1924 {
1925 struct i915_hw_ppgtt *ppgtt;
1926 int ret;
1927
1928 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1929 if (!ppgtt)
1930 return ERR_PTR(-ENOMEM);
1931
1932 ret = __hw_ppgtt_init(ppgtt, dev_priv);
1933 if (ret) {
1934 kfree(ppgtt);
1935 return ERR_PTR(ret);
1936 }
1937
1938 kref_init(&ppgtt->ref);
1939 i915_address_space_init(&ppgtt->base, dev_priv, name);
1940 ppgtt->base.file = fpriv;
1941
1942 trace_i915_ppgtt_create(&ppgtt->base);
1943
1944 return ppgtt;
1945 }
1946
1947 void i915_ppgtt_close(struct i915_address_space *vm)
1948 {
1949 struct list_head *phases[] = {
1950 &vm->active_list,
1951 &vm->inactive_list,
1952 &vm->unbound_list,
1953 NULL,
1954 }, **phase;
1955
1956 GEM_BUG_ON(vm->closed);
1957 vm->closed = true;
1958
1959 for (phase = phases; *phase; phase++) {
1960 struct i915_vma *vma, *vn;
1961
1962 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1963 if (!i915_vma_is_closed(vma))
1964 i915_vma_close(vma);
1965 }
1966 }
1967
1968 void i915_ppgtt_release(struct kref *kref)
1969 {
1970 struct i915_hw_ppgtt *ppgtt =
1971 container_of(kref, struct i915_hw_ppgtt, ref);
1972
1973 trace_i915_ppgtt_release(&ppgtt->base);
1974
1975 /* vmas should already be unbound and destroyed */
1976 WARN_ON(!list_empty(&ppgtt->base.active_list));
1977 WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1978 WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1979
1980 ppgtt->base.cleanup(&ppgtt->base);
1981 i915_address_space_fini(&ppgtt->base);
1982 kfree(ppgtt);
1983 }
1984
1985 /* Certain Gen5 chipsets require require idling the GPU before
1986 * unmapping anything from the GTT when VT-d is enabled.
1987 */
1988 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1989 {
1990 #ifdef CONFIG_INTEL_IOMMU
1991 /* Query intel_iommu to see if we need the workaround. Presumably that
1992 * was loaded first.
1993 */
1994 if (IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_iommu_gfx_mapped)
1995 return true;
1996 #endif
1997 return false;
1998 }
1999
2000 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2001 {
2002 struct intel_engine_cs *engine;
2003 enum intel_engine_id id;
2004
2005 if (INTEL_INFO(dev_priv)->gen < 6)
2006 return;
2007
2008 for_each_engine(engine, dev_priv, id) {
2009 u32 fault_reg;
2010 fault_reg = I915_READ(RING_FAULT_REG(engine));
2011 if (fault_reg & RING_FAULT_VALID) {
2012 DRM_DEBUG_DRIVER("Unexpected fault\n"
2013 "\tAddr: 0x%08lx\n"
2014 "\tAddress space: %s\n"
2015 "\tSource ID: %d\n"
2016 "\tType: %d\n",
2017 fault_reg & PAGE_MASK,
2018 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2019 RING_FAULT_SRCID(fault_reg),
2020 RING_FAULT_FAULT_TYPE(fault_reg));
2021 I915_WRITE(RING_FAULT_REG(engine),
2022 fault_reg & ~RING_FAULT_VALID);
2023 }
2024 }
2025
2026 /* Engine specific init may not have been done till this point. */
2027 if (dev_priv->engine[RCS])
2028 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2029 }
2030
2031 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2032 {
2033 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2034
2035 /* Don't bother messing with faults pre GEN6 as we have little
2036 * documentation supporting that it's a good idea.
2037 */
2038 if (INTEL_GEN(dev_priv) < 6)
2039 return;
2040
2041 i915_check_and_clear_faults(dev_priv);
2042
2043 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2044
2045 i915_ggtt_invalidate(dev_priv);
2046 }
2047
2048 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2049 struct sg_table *pages)
2050 {
2051 do {
2052 if (dma_map_sg(&obj->base.dev->pdev->dev,
2053 pages->sgl, pages->nents,
2054 PCI_DMA_BIDIRECTIONAL))
2055 return 0;
2056
2057 /* If the DMA remap fails, one cause can be that we have
2058 * too many objects pinned in a small remapping table,
2059 * such as swiotlb. Incrementally purge all other objects and
2060 * try again - if there are no more pages to remove from
2061 * the DMA remapper, i915_gem_shrink will return 0.
2062 */
2063 GEM_BUG_ON(obj->mm.pages == pages);
2064 } while (i915_gem_shrink(to_i915(obj->base.dev),
2065 obj->base.size >> PAGE_SHIFT,
2066 I915_SHRINK_BOUND |
2067 I915_SHRINK_UNBOUND |
2068 I915_SHRINK_ACTIVE));
2069
2070 return -ENOSPC;
2071 }
2072
2073 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2074 {
2075 writeq(pte, addr);
2076 }
2077
2078 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2079 dma_addr_t addr,
2080 u64 offset,
2081 enum i915_cache_level level,
2082 u32 unused)
2083 {
2084 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2085 gen8_pte_t __iomem *pte =
2086 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2087
2088 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2089
2090 ggtt->invalidate(vm->i915);
2091 }
2092
2093 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2094 struct sg_table *st,
2095 u64 start,
2096 enum i915_cache_level level,
2097 u32 unused)
2098 {
2099 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2100 struct sgt_iter sgt_iter;
2101 gen8_pte_t __iomem *gtt_entries;
2102 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2103 dma_addr_t addr;
2104
2105 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2106 gtt_entries += start >> PAGE_SHIFT;
2107 for_each_sgt_dma(addr, sgt_iter, st)
2108 gen8_set_pte(gtt_entries++, pte_encode | addr);
2109
2110 wmb();
2111
2112 /* This next bit makes the above posting read even more important. We
2113 * want to flush the TLBs only after we're certain all the PTE updates
2114 * have finished.
2115 */
2116 ggtt->invalidate(vm->i915);
2117 }
2118
2119 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2120 dma_addr_t addr,
2121 u64 offset,
2122 enum i915_cache_level level,
2123 u32 flags)
2124 {
2125 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2126 gen6_pte_t __iomem *pte =
2127 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2128
2129 iowrite32(vm->pte_encode(addr, level, flags), pte);
2130
2131 ggtt->invalidate(vm->i915);
2132 }
2133
2134 /*
2135 * Binds an object into the global gtt with the specified cache level. The object
2136 * will be accessible to the GPU via commands whose operands reference offsets
2137 * within the global GTT as well as accessible by the GPU through the GMADR
2138 * mapped BAR (dev_priv->mm.gtt->gtt).
2139 */
2140 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2141 struct sg_table *st,
2142 u64 start,
2143 enum i915_cache_level level,
2144 u32 flags)
2145 {
2146 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2147 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2148 unsigned int i = start >> PAGE_SHIFT;
2149 struct sgt_iter iter;
2150 dma_addr_t addr;
2151 for_each_sgt_dma(addr, iter, st)
2152 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2153 wmb();
2154
2155 /* This next bit makes the above posting read even more important. We
2156 * want to flush the TLBs only after we're certain all the PTE updates
2157 * have finished.
2158 */
2159 ggtt->invalidate(vm->i915);
2160 }
2161
2162 static void nop_clear_range(struct i915_address_space *vm,
2163 u64 start, u64 length)
2164 {
2165 }
2166
2167 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2168 u64 start, u64 length)
2169 {
2170 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2171 unsigned first_entry = start >> PAGE_SHIFT;
2172 unsigned num_entries = length >> PAGE_SHIFT;
2173 const gen8_pte_t scratch_pte =
2174 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2175 gen8_pte_t __iomem *gtt_base =
2176 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2177 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2178 int i;
2179
2180 if (WARN(num_entries > max_entries,
2181 "First entry = %d; Num entries = %d (max=%d)\n",
2182 first_entry, num_entries, max_entries))
2183 num_entries = max_entries;
2184
2185 for (i = 0; i < num_entries; i++)
2186 gen8_set_pte(&gtt_base[i], scratch_pte);
2187 }
2188
2189 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2190 u64 start, u64 length)
2191 {
2192 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2193 unsigned first_entry = start >> PAGE_SHIFT;
2194 unsigned num_entries = length >> PAGE_SHIFT;
2195 gen6_pte_t scratch_pte, __iomem *gtt_base =
2196 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2197 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2198 int i;
2199
2200 if (WARN(num_entries > max_entries,
2201 "First entry = %d; Num entries = %d (max=%d)\n",
2202 first_entry, num_entries, max_entries))
2203 num_entries = max_entries;
2204
2205 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2206 I915_CACHE_LLC, 0);
2207
2208 for (i = 0; i < num_entries; i++)
2209 iowrite32(scratch_pte, &gtt_base[i]);
2210 }
2211
2212 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2213 dma_addr_t addr,
2214 u64 offset,
2215 enum i915_cache_level cache_level,
2216 u32 unused)
2217 {
2218 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2219 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2220
2221 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2222 }
2223
2224 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2225 struct sg_table *pages,
2226 u64 start,
2227 enum i915_cache_level cache_level,
2228 u32 unused)
2229 {
2230 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2231 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2232
2233 intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2234 }
2235
2236 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2237 u64 start, u64 length)
2238 {
2239 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2240 }
2241
2242 static int ggtt_bind_vma(struct i915_vma *vma,
2243 enum i915_cache_level cache_level,
2244 u32 flags)
2245 {
2246 struct drm_i915_private *i915 = vma->vm->i915;
2247 struct drm_i915_gem_object *obj = vma->obj;
2248 u32 pte_flags;
2249
2250 if (unlikely(!vma->pages)) {
2251 int ret = i915_get_ggtt_vma_pages(vma);
2252 if (ret)
2253 return ret;
2254 }
2255
2256 /* Currently applicable only to VLV */
2257 pte_flags = 0;
2258 if (obj->gt_ro)
2259 pte_flags |= PTE_READ_ONLY;
2260
2261 intel_runtime_pm_get(i915);
2262 vma->vm->insert_entries(vma->vm, vma->pages, vma->node.start,
2263 cache_level, pte_flags);
2264 intel_runtime_pm_put(i915);
2265
2266 /*
2267 * Without aliasing PPGTT there's no difference between
2268 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2269 * upgrade to both bound if we bind either to avoid double-binding.
2270 */
2271 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2272
2273 return 0;
2274 }
2275
2276 static void ggtt_unbind_vma(struct i915_vma *vma)
2277 {
2278 struct drm_i915_private *i915 = vma->vm->i915;
2279
2280 intel_runtime_pm_get(i915);
2281 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2282 intel_runtime_pm_put(i915);
2283 }
2284
2285 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2286 enum i915_cache_level cache_level,
2287 u32 flags)
2288 {
2289 struct drm_i915_private *i915 = vma->vm->i915;
2290 u32 pte_flags;
2291 int ret;
2292
2293 if (unlikely(!vma->pages)) {
2294 ret = i915_get_ggtt_vma_pages(vma);
2295 if (ret)
2296 return ret;
2297 }
2298
2299 /* Currently applicable only to VLV */
2300 pte_flags = 0;
2301 if (vma->obj->gt_ro)
2302 pte_flags |= PTE_READ_ONLY;
2303
2304 if (flags & I915_VMA_LOCAL_BIND) {
2305 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2306
2307 if (appgtt->base.allocate_va_range) {
2308 ret = appgtt->base.allocate_va_range(&appgtt->base,
2309 vma->node.start,
2310 vma->node.size);
2311 if (ret)
2312 goto err_pages;
2313 }
2314
2315 appgtt->base.insert_entries(&appgtt->base,
2316 vma->pages, vma->node.start,
2317 cache_level, pte_flags);
2318 }
2319
2320 if (flags & I915_VMA_GLOBAL_BIND) {
2321 intel_runtime_pm_get(i915);
2322 vma->vm->insert_entries(vma->vm,
2323 vma->pages, vma->node.start,
2324 cache_level, pte_flags);
2325 intel_runtime_pm_put(i915);
2326 }
2327
2328 return 0;
2329
2330 err_pages:
2331 if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2332 if (vma->pages != vma->obj->mm.pages) {
2333 GEM_BUG_ON(!vma->pages);
2334 sg_free_table(vma->pages);
2335 kfree(vma->pages);
2336 }
2337 vma->pages = NULL;
2338 }
2339 return ret;
2340 }
2341
2342 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2343 {
2344 struct drm_i915_private *i915 = vma->vm->i915;
2345
2346 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2347 intel_runtime_pm_get(i915);
2348 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2349 intel_runtime_pm_put(i915);
2350 }
2351
2352 if (vma->flags & I915_VMA_LOCAL_BIND) {
2353 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2354
2355 vm->clear_range(vm, vma->node.start, vma->size);
2356 }
2357 }
2358
2359 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2360 struct sg_table *pages)
2361 {
2362 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2363 struct device *kdev = &dev_priv->drm.pdev->dev;
2364 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2365
2366 if (unlikely(ggtt->do_idle_maps)) {
2367 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2368 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2369 /* Wait a bit, in hopes it avoids the hang */
2370 udelay(10);
2371 }
2372 }
2373
2374 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2375 }
2376
2377 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2378 unsigned long color,
2379 u64 *start,
2380 u64 *end)
2381 {
2382 if (node->allocated && node->color != color)
2383 *start += I915_GTT_PAGE_SIZE;
2384
2385 /* Also leave a space between the unallocated reserved node after the
2386 * GTT and any objects within the GTT, i.e. we use the color adjustment
2387 * to insert a guard page to prevent prefetches crossing over the
2388 * GTT boundary.
2389 */
2390 node = list_next_entry(node, node_list);
2391 if (node->color != color)
2392 *end -= I915_GTT_PAGE_SIZE;
2393 }
2394
2395 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2396 {
2397 struct i915_ggtt *ggtt = &i915->ggtt;
2398 struct i915_hw_ppgtt *ppgtt;
2399 int err;
2400
2401 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2402 if (IS_ERR(ppgtt))
2403 return PTR_ERR(ppgtt);
2404
2405 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2406 err = -ENODEV;
2407 goto err_ppgtt;
2408 }
2409
2410 if (ppgtt->base.allocate_va_range) {
2411 /* Note we only pre-allocate as far as the end of the global
2412 * GTT. On 48b / 4-level page-tables, the difference is very,
2413 * very significant! We have to preallocate as GVT/vgpu does
2414 * not like the page directory disappearing.
2415 */
2416 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2417 0, ggtt->base.total);
2418 if (err)
2419 goto err_ppgtt;
2420 }
2421
2422 i915->mm.aliasing_ppgtt = ppgtt;
2423
2424 WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2425 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2426
2427 WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2428 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2429
2430 return 0;
2431
2432 err_ppgtt:
2433 i915_ppgtt_put(ppgtt);
2434 return err;
2435 }
2436
2437 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2438 {
2439 struct i915_ggtt *ggtt = &i915->ggtt;
2440 struct i915_hw_ppgtt *ppgtt;
2441
2442 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2443 if (!ppgtt)
2444 return;
2445
2446 i915_ppgtt_put(ppgtt);
2447
2448 ggtt->base.bind_vma = ggtt_bind_vma;
2449 ggtt->base.unbind_vma = ggtt_unbind_vma;
2450 }
2451
2452 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2453 {
2454 /* Let GEM Manage all of the aperture.
2455 *
2456 * However, leave one page at the end still bound to the scratch page.
2457 * There are a number of places where the hardware apparently prefetches
2458 * past the end of the object, and we've seen multiple hangs with the
2459 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2460 * aperture. One page should be enough to keep any prefetching inside
2461 * of the aperture.
2462 */
2463 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2464 unsigned long hole_start, hole_end;
2465 struct drm_mm_node *entry;
2466 int ret;
2467
2468 ret = intel_vgt_balloon(dev_priv);
2469 if (ret)
2470 return ret;
2471
2472 /* Reserve a mappable slot for our lockless error capture */
2473 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2474 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2475 0, ggtt->mappable_end,
2476 DRM_MM_INSERT_LOW);
2477 if (ret)
2478 return ret;
2479
2480 /* Clear any non-preallocated blocks */
2481 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2482 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2483 hole_start, hole_end);
2484 ggtt->base.clear_range(&ggtt->base, hole_start,
2485 hole_end - hole_start);
2486 }
2487
2488 /* And finally clear the reserved guard page */
2489 ggtt->base.clear_range(&ggtt->base,
2490 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2491
2492 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2493 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2494 if (ret)
2495 goto err;
2496 }
2497
2498 return 0;
2499
2500 err:
2501 drm_mm_remove_node(&ggtt->error_capture);
2502 return ret;
2503 }
2504
2505 /**
2506 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2507 * @dev_priv: i915 device
2508 */
2509 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2510 {
2511 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2512 struct i915_vma *vma, *vn;
2513
2514 ggtt->base.closed = true;
2515
2516 mutex_lock(&dev_priv->drm.struct_mutex);
2517 WARN_ON(!list_empty(&ggtt->base.active_list));
2518 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2519 WARN_ON(i915_vma_unbind(vma));
2520 mutex_unlock(&dev_priv->drm.struct_mutex);
2521
2522 i915_gem_cleanup_stolen(&dev_priv->drm);
2523
2524 mutex_lock(&dev_priv->drm.struct_mutex);
2525 i915_gem_fini_aliasing_ppgtt(dev_priv);
2526
2527 if (drm_mm_node_allocated(&ggtt->error_capture))
2528 drm_mm_remove_node(&ggtt->error_capture);
2529
2530 if (drm_mm_initialized(&ggtt->base.mm)) {
2531 intel_vgt_deballoon(dev_priv);
2532 i915_address_space_fini(&ggtt->base);
2533 }
2534
2535 ggtt->base.cleanup(&ggtt->base);
2536 mutex_unlock(&dev_priv->drm.struct_mutex);
2537
2538 arch_phys_wc_del(ggtt->mtrr);
2539 io_mapping_fini(&ggtt->mappable);
2540 }
2541
2542 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2543 {
2544 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2545 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2546 return snb_gmch_ctl << 20;
2547 }
2548
2549 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2550 {
2551 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2552 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2553 if (bdw_gmch_ctl)
2554 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2555
2556 #ifdef CONFIG_X86_32
2557 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2558 if (bdw_gmch_ctl > 4)
2559 bdw_gmch_ctl = 4;
2560 #endif
2561
2562 return bdw_gmch_ctl << 20;
2563 }
2564
2565 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2566 {
2567 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2568 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2569
2570 if (gmch_ctrl)
2571 return 1 << (20 + gmch_ctrl);
2572
2573 return 0;
2574 }
2575
2576 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2577 {
2578 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2579 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2580 return snb_gmch_ctl << 25; /* 32 MB units */
2581 }
2582
2583 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2584 {
2585 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2586 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2587 return bdw_gmch_ctl << 25; /* 32 MB units */
2588 }
2589
2590 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2591 {
2592 gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2593 gmch_ctrl &= SNB_GMCH_GMS_MASK;
2594
2595 /*
2596 * 0x0 to 0x10: 32MB increments starting at 0MB
2597 * 0x11 to 0x16: 4MB increments starting at 8MB
2598 * 0x17 to 0x1d: 4MB increments start at 36MB
2599 */
2600 if (gmch_ctrl < 0x11)
2601 return gmch_ctrl << 25;
2602 else if (gmch_ctrl < 0x17)
2603 return (gmch_ctrl - 0x11 + 2) << 22;
2604 else
2605 return (gmch_ctrl - 0x17 + 9) << 22;
2606 }
2607
2608 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2609 {
2610 gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2611 gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2612
2613 if (gen9_gmch_ctl < 0xf0)
2614 return gen9_gmch_ctl << 25; /* 32 MB units */
2615 else
2616 /* 4MB increments starting at 0xf0 for 4MB */
2617 return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2618 }
2619
2620 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2621 {
2622 struct drm_i915_private *dev_priv = ggtt->base.i915;
2623 struct pci_dev *pdev = dev_priv->drm.pdev;
2624 phys_addr_t phys_addr;
2625 int ret;
2626
2627 /* For Modern GENs the PTEs and register space are split in the BAR */
2628 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2629
2630 /*
2631 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2632 * dropped. For WC mappings in general we have 64 byte burst writes
2633 * when the WC buffer is flushed, so we can't use it, but have to
2634 * resort to an uncached mapping. The WC issue is easily caught by the
2635 * readback check when writing GTT PTE entries.
2636 */
2637 if (IS_GEN9_LP(dev_priv))
2638 ggtt->gsm = ioremap_nocache(phys_addr, size);
2639 else
2640 ggtt->gsm = ioremap_wc(phys_addr, size);
2641 if (!ggtt->gsm) {
2642 DRM_ERROR("Failed to map the ggtt page table\n");
2643 return -ENOMEM;
2644 }
2645
2646 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2647 if (ret) {
2648 DRM_ERROR("Scratch setup failed\n");
2649 /* iounmap will also get called at remove, but meh */
2650 iounmap(ggtt->gsm);
2651 return ret;
2652 }
2653
2654 return 0;
2655 }
2656
2657 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2658 * bits. When using advanced contexts each context stores its own PAT, but
2659 * writing this data shouldn't be harmful even in those cases. */
2660 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2661 {
2662 u64 pat;
2663
2664 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
2665 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2666 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2667 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
2668 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2669 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2670 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2671 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2672
2673 if (!USES_PPGTT(dev_priv))
2674 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2675 * so RTL will always use the value corresponding to
2676 * pat_sel = 000".
2677 * So let's disable cache for GGTT to avoid screen corruptions.
2678 * MOCS still can be used though.
2679 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2680 * before this patch, i.e. the same uncached + snooping access
2681 * like on gen6/7 seems to be in effect.
2682 * - So this just fixes blitter/render access. Again it looks
2683 * like it's not just uncached access, but uncached + snooping.
2684 * So we can still hold onto all our assumptions wrt cpu
2685 * clflushing on LLC machines.
2686 */
2687 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2688
2689 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2690 * write would work. */
2691 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2692 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2693 }
2694
2695 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2696 {
2697 u64 pat;
2698
2699 /*
2700 * Map WB on BDW to snooped on CHV.
2701 *
2702 * Only the snoop bit has meaning for CHV, the rest is
2703 * ignored.
2704 *
2705 * The hardware will never snoop for certain types of accesses:
2706 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2707 * - PPGTT page tables
2708 * - some other special cycles
2709 *
2710 * As with BDW, we also need to consider the following for GT accesses:
2711 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2712 * so RTL will always use the value corresponding to
2713 * pat_sel = 000".
2714 * Which means we must set the snoop bit in PAT entry 0
2715 * in order to keep the global status page working.
2716 */
2717 pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2718 GEN8_PPAT(1, 0) |
2719 GEN8_PPAT(2, 0) |
2720 GEN8_PPAT(3, 0) |
2721 GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2722 GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2723 GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2724 GEN8_PPAT(7, CHV_PPAT_SNOOP);
2725
2726 I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2727 I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2728 }
2729
2730 static void gen6_gmch_remove(struct i915_address_space *vm)
2731 {
2732 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2733
2734 iounmap(ggtt->gsm);
2735 cleanup_scratch_page(vm);
2736 }
2737
2738 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2739 {
2740 struct drm_i915_private *dev_priv = ggtt->base.i915;
2741 struct pci_dev *pdev = dev_priv->drm.pdev;
2742 unsigned int size;
2743 u16 snb_gmch_ctl;
2744
2745 /* TODO: We're not aware of mappable constraints on gen8 yet */
2746 ggtt->mappable_base = pci_resource_start(pdev, 2);
2747 ggtt->mappable_end = pci_resource_len(pdev, 2);
2748
2749 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(39)))
2750 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2751
2752 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2753
2754 if (INTEL_GEN(dev_priv) >= 9) {
2755 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2756 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2757 } else if (IS_CHERRYVIEW(dev_priv)) {
2758 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2759 size = chv_get_total_gtt_size(snb_gmch_ctl);
2760 } else {
2761 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2762 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2763 }
2764
2765 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2766
2767 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2768 chv_setup_private_ppat(dev_priv);
2769 else
2770 bdw_setup_private_ppat(dev_priv);
2771
2772 ggtt->base.cleanup = gen6_gmch_remove;
2773 ggtt->base.bind_vma = ggtt_bind_vma;
2774 ggtt->base.unbind_vma = ggtt_unbind_vma;
2775 ggtt->base.insert_page = gen8_ggtt_insert_page;
2776 ggtt->base.clear_range = nop_clear_range;
2777 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2778 ggtt->base.clear_range = gen8_ggtt_clear_range;
2779
2780 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2781
2782 ggtt->invalidate = gen6_ggtt_invalidate;
2783
2784 return ggtt_probe_common(ggtt, size);
2785 }
2786
2787 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2788 {
2789 struct drm_i915_private *dev_priv = ggtt->base.i915;
2790 struct pci_dev *pdev = dev_priv->drm.pdev;
2791 unsigned int size;
2792 u16 snb_gmch_ctl;
2793
2794 ggtt->mappable_base = pci_resource_start(pdev, 2);
2795 ggtt->mappable_end = pci_resource_len(pdev, 2);
2796
2797 /* 64/512MB is the current min/max we actually know of, but this is just
2798 * a coarse sanity check.
2799 */
2800 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2801 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2802 return -ENXIO;
2803 }
2804
2805 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
2806 pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2807 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2808
2809 ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2810
2811 size = gen6_get_total_gtt_size(snb_gmch_ctl);
2812 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2813
2814 ggtt->base.clear_range = gen6_ggtt_clear_range;
2815 ggtt->base.insert_page = gen6_ggtt_insert_page;
2816 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2817 ggtt->base.bind_vma = ggtt_bind_vma;
2818 ggtt->base.unbind_vma = ggtt_unbind_vma;
2819 ggtt->base.cleanup = gen6_gmch_remove;
2820
2821 ggtt->invalidate = gen6_ggtt_invalidate;
2822
2823 if (HAS_EDRAM(dev_priv))
2824 ggtt->base.pte_encode = iris_pte_encode;
2825 else if (IS_HASWELL(dev_priv))
2826 ggtt->base.pte_encode = hsw_pte_encode;
2827 else if (IS_VALLEYVIEW(dev_priv))
2828 ggtt->base.pte_encode = byt_pte_encode;
2829 else if (INTEL_GEN(dev_priv) >= 7)
2830 ggtt->base.pte_encode = ivb_pte_encode;
2831 else
2832 ggtt->base.pte_encode = snb_pte_encode;
2833
2834 return ggtt_probe_common(ggtt, size);
2835 }
2836
2837 static void i915_gmch_remove(struct i915_address_space *vm)
2838 {
2839 intel_gmch_remove();
2840 }
2841
2842 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2843 {
2844 struct drm_i915_private *dev_priv = ggtt->base.i915;
2845 int ret;
2846
2847 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2848 if (!ret) {
2849 DRM_ERROR("failed to set up gmch\n");
2850 return -EIO;
2851 }
2852
2853 intel_gtt_get(&ggtt->base.total,
2854 &ggtt->stolen_size,
2855 &ggtt->mappable_base,
2856 &ggtt->mappable_end);
2857
2858 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2859 ggtt->base.insert_page = i915_ggtt_insert_page;
2860 ggtt->base.insert_entries = i915_ggtt_insert_entries;
2861 ggtt->base.clear_range = i915_ggtt_clear_range;
2862 ggtt->base.bind_vma = ggtt_bind_vma;
2863 ggtt->base.unbind_vma = ggtt_unbind_vma;
2864 ggtt->base.cleanup = i915_gmch_remove;
2865
2866 ggtt->invalidate = gmch_ggtt_invalidate;
2867
2868 if (unlikely(ggtt->do_idle_maps))
2869 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2870
2871 return 0;
2872 }
2873
2874 /**
2875 * i915_ggtt_probe_hw - Probe GGTT hardware location
2876 * @dev_priv: i915 device
2877 */
2878 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
2879 {
2880 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2881 int ret;
2882
2883 ggtt->base.i915 = dev_priv;
2884 ggtt->base.dma = &dev_priv->drm.pdev->dev;
2885
2886 if (INTEL_GEN(dev_priv) <= 5)
2887 ret = i915_gmch_probe(ggtt);
2888 else if (INTEL_GEN(dev_priv) < 8)
2889 ret = gen6_gmch_probe(ggtt);
2890 else
2891 ret = gen8_gmch_probe(ggtt);
2892 if (ret)
2893 return ret;
2894
2895 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
2896 * This is easier than doing range restriction on the fly, as we
2897 * currently don't have any bits spare to pass in this upper
2898 * restriction!
2899 */
2900 if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
2901 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
2902 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2903 }
2904
2905 if ((ggtt->base.total - 1) >> 32) {
2906 DRM_ERROR("We never expected a Global GTT with more than 32bits"
2907 " of address space! Found %lldM!\n",
2908 ggtt->base.total >> 20);
2909 ggtt->base.total = 1ULL << 32;
2910 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
2911 }
2912
2913 if (ggtt->mappable_end > ggtt->base.total) {
2914 DRM_ERROR("mappable aperture extends past end of GGTT,"
2915 " aperture=%llx, total=%llx\n",
2916 ggtt->mappable_end, ggtt->base.total);
2917 ggtt->mappable_end = ggtt->base.total;
2918 }
2919
2920 /* GMADR is the PCI mmio aperture into the global GTT. */
2921 DRM_INFO("Memory usable by graphics device = %lluM\n",
2922 ggtt->base.total >> 20);
2923 DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
2924 DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
2925 #ifdef CONFIG_INTEL_IOMMU
2926 if (intel_iommu_gfx_mapped)
2927 DRM_INFO("VT-d active for gfx access\n");
2928 #endif
2929
2930 return 0;
2931 }
2932
2933 /**
2934 * i915_ggtt_init_hw - Initialize GGTT hardware
2935 * @dev_priv: i915 device
2936 */
2937 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
2938 {
2939 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2940 int ret;
2941
2942 INIT_LIST_HEAD(&dev_priv->vm_list);
2943
2944 /* Note that we use page colouring to enforce a guard page at the
2945 * end of the address space. This is required as the CS may prefetch
2946 * beyond the end of the batch buffer, across the page boundary,
2947 * and beyond the end of the GTT if we do not provide a guard.
2948 */
2949 mutex_lock(&dev_priv->drm.struct_mutex);
2950 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
2951 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
2952 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
2953 mutex_unlock(&dev_priv->drm.struct_mutex);
2954
2955 if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
2956 dev_priv->ggtt.mappable_base,
2957 dev_priv->ggtt.mappable_end)) {
2958 ret = -EIO;
2959 goto out_gtt_cleanup;
2960 }
2961
2962 ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
2963
2964 /*
2965 * Initialise stolen early so that we may reserve preallocated
2966 * objects for the BIOS to KMS transition.
2967 */
2968 ret = i915_gem_init_stolen(dev_priv);
2969 if (ret)
2970 goto out_gtt_cleanup;
2971
2972 return 0;
2973
2974 out_gtt_cleanup:
2975 ggtt->base.cleanup(&ggtt->base);
2976 return ret;
2977 }
2978
2979 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
2980 {
2981 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
2982 return -EIO;
2983
2984 return 0;
2985 }
2986
2987 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
2988 {
2989 i915->ggtt.invalidate = guc_ggtt_invalidate;
2990 }
2991
2992 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
2993 {
2994 i915->ggtt.invalidate = gen6_ggtt_invalidate;
2995 }
2996
2997 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
2998 {
2999 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3000 struct drm_i915_gem_object *obj, *on;
3001
3002 i915_check_and_clear_faults(dev_priv);
3003
3004 /* First fill our portion of the GTT with scratch pages */
3005 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3006
3007 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3008
3009 /* clflush objects bound into the GGTT and rebind them. */
3010 list_for_each_entry_safe(obj, on,
3011 &dev_priv->mm.bound_list, global_link) {
3012 bool ggtt_bound = false;
3013 struct i915_vma *vma;
3014
3015 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3016 if (vma->vm != &ggtt->base)
3017 continue;
3018
3019 if (!i915_vma_unbind(vma))
3020 continue;
3021
3022 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3023 PIN_UPDATE));
3024 ggtt_bound = true;
3025 }
3026
3027 if (ggtt_bound)
3028 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3029 }
3030
3031 ggtt->base.closed = false;
3032
3033 if (INTEL_GEN(dev_priv) >= 8) {
3034 if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3035 chv_setup_private_ppat(dev_priv);
3036 else
3037 bdw_setup_private_ppat(dev_priv);
3038
3039 return;
3040 }
3041
3042 if (USES_PPGTT(dev_priv)) {
3043 struct i915_address_space *vm;
3044
3045 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3046 struct i915_hw_ppgtt *ppgtt;
3047
3048 if (i915_is_ggtt(vm))
3049 ppgtt = dev_priv->mm.aliasing_ppgtt;
3050 else
3051 ppgtt = i915_vm_to_ppgtt(vm);
3052
3053 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3054 }
3055 }
3056
3057 i915_ggtt_invalidate(dev_priv);
3058 }
3059
3060 static struct scatterlist *
3061 rotate_pages(const dma_addr_t *in, unsigned int offset,
3062 unsigned int width, unsigned int height,
3063 unsigned int stride,
3064 struct sg_table *st, struct scatterlist *sg)
3065 {
3066 unsigned int column, row;
3067 unsigned int src_idx;
3068
3069 for (column = 0; column < width; column++) {
3070 src_idx = stride * (height - 1) + column;
3071 for (row = 0; row < height; row++) {
3072 st->nents++;
3073 /* We don't need the pages, but need to initialize
3074 * the entries so the sg list can be happily traversed.
3075 * The only thing we need are DMA addresses.
3076 */
3077 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3078 sg_dma_address(sg) = in[offset + src_idx];
3079 sg_dma_len(sg) = PAGE_SIZE;
3080 sg = sg_next(sg);
3081 src_idx -= stride;
3082 }
3083 }
3084
3085 return sg;
3086 }
3087
3088 static noinline struct sg_table *
3089 intel_rotate_pages(struct intel_rotation_info *rot_info,
3090 struct drm_i915_gem_object *obj)
3091 {
3092 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3093 unsigned int size = intel_rotation_info_size(rot_info);
3094 struct sgt_iter sgt_iter;
3095 dma_addr_t dma_addr;
3096 unsigned long i;
3097 dma_addr_t *page_addr_list;
3098 struct sg_table *st;
3099 struct scatterlist *sg;
3100 int ret = -ENOMEM;
3101
3102 /* Allocate a temporary list of source pages for random access. */
3103 page_addr_list = drm_malloc_gfp(n_pages,
3104 sizeof(dma_addr_t),
3105 GFP_TEMPORARY);
3106 if (!page_addr_list)
3107 return ERR_PTR(ret);
3108
3109 /* Allocate target SG list. */
3110 st = kmalloc(sizeof(*st), GFP_KERNEL);
3111 if (!st)
3112 goto err_st_alloc;
3113
3114 ret = sg_alloc_table(st, size, GFP_KERNEL);
3115 if (ret)
3116 goto err_sg_alloc;
3117
3118 /* Populate source page list from the object. */
3119 i = 0;
3120 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3121 page_addr_list[i++] = dma_addr;
3122
3123 GEM_BUG_ON(i != n_pages);
3124 st->nents = 0;
3125 sg = st->sgl;
3126
3127 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3128 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3129 rot_info->plane[i].width, rot_info->plane[i].height,
3130 rot_info->plane[i].stride, st, sg);
3131 }
3132
3133 DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3134 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3135
3136 drm_free_large(page_addr_list);
3137
3138 return st;
3139
3140 err_sg_alloc:
3141 kfree(st);
3142 err_st_alloc:
3143 drm_free_large(page_addr_list);
3144
3145 DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3146 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3147
3148 return ERR_PTR(ret);
3149 }
3150
3151 static noinline struct sg_table *
3152 intel_partial_pages(const struct i915_ggtt_view *view,
3153 struct drm_i915_gem_object *obj)
3154 {
3155 struct sg_table *st;
3156 struct scatterlist *sg, *iter;
3157 unsigned int count = view->partial.size;
3158 unsigned int offset;
3159 int ret = -ENOMEM;
3160
3161 st = kmalloc(sizeof(*st), GFP_KERNEL);
3162 if (!st)
3163 goto err_st_alloc;
3164
3165 ret = sg_alloc_table(st, count, GFP_KERNEL);
3166 if (ret)
3167 goto err_sg_alloc;
3168
3169 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3170 GEM_BUG_ON(!iter);
3171
3172 sg = st->sgl;
3173 st->nents = 0;
3174 do {
3175 unsigned int len;
3176
3177 len = min(iter->length - (offset << PAGE_SHIFT),
3178 count << PAGE_SHIFT);
3179 sg_set_page(sg, NULL, len, 0);
3180 sg_dma_address(sg) =
3181 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3182 sg_dma_len(sg) = len;
3183
3184 st->nents++;
3185 count -= len >> PAGE_SHIFT;
3186 if (count == 0) {
3187 sg_mark_end(sg);
3188 return st;
3189 }
3190
3191 sg = __sg_next(sg);
3192 iter = __sg_next(iter);
3193 offset = 0;
3194 } while (1);
3195
3196 err_sg_alloc:
3197 kfree(st);
3198 err_st_alloc:
3199 return ERR_PTR(ret);
3200 }
3201
3202 static int
3203 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3204 {
3205 int ret;
3206
3207 /* The vma->pages are only valid within the lifespan of the borrowed
3208 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3209 * must be the vma->pages. A simple rule is that vma->pages must only
3210 * be accessed when the obj->mm.pages are pinned.
3211 */
3212 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3213
3214 switch (vma->ggtt_view.type) {
3215 case I915_GGTT_VIEW_NORMAL:
3216 vma->pages = vma->obj->mm.pages;
3217 return 0;
3218
3219 case I915_GGTT_VIEW_ROTATED:
3220 vma->pages =
3221 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3222 break;
3223
3224 case I915_GGTT_VIEW_PARTIAL:
3225 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3226 break;
3227
3228 default:
3229 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3230 vma->ggtt_view.type);
3231 return -EINVAL;
3232 }
3233
3234 ret = 0;
3235 if (unlikely(IS_ERR(vma->pages))) {
3236 ret = PTR_ERR(vma->pages);
3237 vma->pages = NULL;
3238 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3239 vma->ggtt_view.type, ret);
3240 }
3241 return ret;
3242 }
3243
3244 /**
3245 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3246 * @vm: the &struct i915_address_space
3247 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3248 * @size: how much space to allocate inside the GTT,
3249 * must be #I915_GTT_PAGE_SIZE aligned
3250 * @offset: where to insert inside the GTT,
3251 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3252 * (@offset + @size) must fit within the address space
3253 * @color: color to apply to node, if this node is not from a VMA,
3254 * color must be #I915_COLOR_UNEVICTABLE
3255 * @flags: control search and eviction behaviour
3256 *
3257 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3258 * the address space (using @size and @color). If the @node does not fit, it
3259 * tries to evict any overlapping nodes from the GTT, including any
3260 * neighbouring nodes if the colors do not match (to ensure guard pages between
3261 * differing domains). See i915_gem_evict_for_node() for the gory details
3262 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3263 * evicting active overlapping objects, and any overlapping node that is pinned
3264 * or marked as unevictable will also result in failure.
3265 *
3266 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3267 * asked to wait for eviction and interrupted.
3268 */
3269 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3270 struct drm_mm_node *node,
3271 u64 size, u64 offset, unsigned long color,
3272 unsigned int flags)
3273 {
3274 int err;
3275
3276 GEM_BUG_ON(!size);
3277 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3278 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3279 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3280 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3281 GEM_BUG_ON(drm_mm_node_allocated(node));
3282
3283 node->size = size;
3284 node->start = offset;
3285 node->color = color;
3286
3287 err = drm_mm_reserve_node(&vm->mm, node);
3288 if (err != -ENOSPC)
3289 return err;
3290
3291 err = i915_gem_evict_for_node(vm, node, flags);
3292 if (err == 0)
3293 err = drm_mm_reserve_node(&vm->mm, node);
3294
3295 return err;
3296 }
3297
3298 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3299 {
3300 u64 range, addr;
3301
3302 GEM_BUG_ON(range_overflows(start, len, end));
3303 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3304
3305 range = round_down(end - len, align) - round_up(start, align);
3306 if (range) {
3307 if (sizeof(unsigned long) == sizeof(u64)) {
3308 addr = get_random_long();
3309 } else {
3310 addr = get_random_int();
3311 if (range > U32_MAX) {
3312 addr <<= 32;
3313 addr |= get_random_int();
3314 }
3315 }
3316 div64_u64_rem(addr, range, &addr);
3317 start += addr;
3318 }
3319
3320 return round_up(start, align);
3321 }
3322
3323 /**
3324 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3325 * @vm: the &struct i915_address_space
3326 * @node: the &struct drm_mm_node (typically i915_vma.node)
3327 * @size: how much space to allocate inside the GTT,
3328 * must be #I915_GTT_PAGE_SIZE aligned
3329 * @alignment: required alignment of starting offset, may be 0 but
3330 * if specified, this must be a power-of-two and at least
3331 * #I915_GTT_MIN_ALIGNMENT
3332 * @color: color to apply to node
3333 * @start: start of any range restriction inside GTT (0 for all),
3334 * must be #I915_GTT_PAGE_SIZE aligned
3335 * @end: end of any range restriction inside GTT (U64_MAX for all),
3336 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3337 * @flags: control search and eviction behaviour
3338 *
3339 * i915_gem_gtt_insert() first searches for an available hole into which
3340 * is can insert the node. The hole address is aligned to @alignment and
3341 * its @size must then fit entirely within the [@start, @end] bounds. The
3342 * nodes on either side of the hole must match @color, or else a guard page
3343 * will be inserted between the two nodes (or the node evicted). If no
3344 * suitable hole is found, first a victim is randomly selected and tested
3345 * for eviction, otherwise then the LRU list of objects within the GTT
3346 * is scanned to find the first set of replacement nodes to create the hole.
3347 * Those old overlapping nodes are evicted from the GTT (and so must be
3348 * rebound before any future use). Any node that is currently pinned cannot
3349 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3350 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3351 * searching for an eviction candidate. See i915_gem_evict_something() for
3352 * the gory details on the eviction algorithm.
3353 *
3354 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3355 * asked to wait for eviction and interrupted.
3356 */
3357 int i915_gem_gtt_insert(struct i915_address_space *vm,
3358 struct drm_mm_node *node,
3359 u64 size, u64 alignment, unsigned long color,
3360 u64 start, u64 end, unsigned int flags)
3361 {
3362 enum drm_mm_insert_mode mode;
3363 u64 offset;
3364 int err;
3365
3366 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3367 GEM_BUG_ON(!size);
3368 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3369 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3370 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3371 GEM_BUG_ON(start >= end);
3372 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3373 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3374 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3375 GEM_BUG_ON(drm_mm_node_allocated(node));
3376
3377 if (unlikely(range_overflows(start, size, end)))
3378 return -ENOSPC;
3379
3380 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3381 return -ENOSPC;
3382
3383 mode = DRM_MM_INSERT_BEST;
3384 if (flags & PIN_HIGH)
3385 mode = DRM_MM_INSERT_HIGH;
3386 if (flags & PIN_MAPPABLE)
3387 mode = DRM_MM_INSERT_LOW;
3388
3389 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3390 * so we know that we always have a minimum alignment of 4096.
3391 * The drm_mm range manager is optimised to return results
3392 * with zero alignment, so where possible use the optimal
3393 * path.
3394 */
3395 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3396 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3397 alignment = 0;
3398
3399 err = drm_mm_insert_node_in_range(&vm->mm, node,
3400 size, alignment, color,
3401 start, end, mode);
3402 if (err != -ENOSPC)
3403 return err;
3404
3405 /* No free space, pick a slot at random.
3406 *
3407 * There is a pathological case here using a GTT shared between
3408 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3409 *
3410 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3411 * (64k objects) (448k objects)
3412 *
3413 * Now imagine that the eviction LRU is ordered top-down (just because
3414 * pathology meets real life), and that we need to evict an object to
3415 * make room inside the aperture. The eviction scan then has to walk
3416 * the 448k list before it finds one within range. And now imagine that
3417 * it has to search for a new hole between every byte inside the memcpy,
3418 * for several simultaneous clients.
3419 *
3420 * On a full-ppgtt system, if we have run out of available space, there
3421 * will be lots and lots of objects in the eviction list! Again,
3422 * searching that LRU list may be slow if we are also applying any
3423 * range restrictions (e.g. restriction to low 4GiB) and so, for
3424 * simplicity and similarilty between different GTT, try the single
3425 * random replacement first.
3426 */
3427 offset = random_offset(start, end,
3428 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3429 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3430 if (err != -ENOSPC)
3431 return err;
3432
3433 /* Randomly selected placement is pinned, do a search */
3434 err = i915_gem_evict_something(vm, size, alignment, color,
3435 start, end, flags);
3436 if (err)
3437 return err;
3438
3439 return drm_mm_insert_node_in_range(&vm->mm, node,
3440 size, alignment, color,
3441 start, end, DRM_MM_INSERT_EVICT);
3442 }
3443
3444 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3445 #include "selftests/mock_gtt.c"
3446 #include "selftests/i915_gem_gtt.c"
3447 #endif