]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.h
drm/i915/gen8: Initialize PDPs and PML4
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 struct drm_i915_file_private;
38
39 typedef uint32_t gen6_pte_t;
40 typedef uint64_t gen8_pte_t;
41 typedef uint64_t gen8_pde_t;
42 typedef uint64_t gen8_ppgtt_pdpe_t;
43 typedef uint64_t gen8_ppgtt_pml4e_t;
44
45 #define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
46
47
48 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
49 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
50 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
51 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
52 #define GEN6_PTE_CACHE_LLC (2 << 1)
53 #define GEN6_PTE_UNCACHED (1 << 1)
54 #define GEN6_PTE_VALID (1 << 0)
55
56 #define I915_PTES(pte_len) (PAGE_SIZE / (pte_len))
57 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
58 #define I915_PDES 512
59 #define I915_PDE_MASK (I915_PDES - 1)
60 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
61
62 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
63 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
64 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
65 #define GEN6_PDE_SHIFT 22
66 #define GEN6_PDE_VALID (1 << 0)
67
68 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
69
70 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
71 #define BYT_PTE_WRITEABLE (1 << 1)
72
73 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
74 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
75 */
76 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
77 (((bits) & 0x8) << (11 - 3)))
78 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
79 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
80 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
81 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
82 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
83 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
84 #define HSW_PTE_UNCACHED (0)
85 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
86 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
87
88 /* GEN8 legacy style address is defined as a 3 level page table:
89 * 31:30 | 29:21 | 20:12 | 11:0
90 * PDPE | PDE | PTE | offset
91 * The difference as compared to normal x86 3 level page table is the PDPEs are
92 * programmed via register.
93 *
94 * GEN8 48b legacy style address is defined as a 4 level page table:
95 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
96 * PML4E | PDPE | PDE | PTE | offset
97 */
98 #define GEN8_PML4ES_PER_PML4 512
99 #define GEN8_PML4E_SHIFT 39
100 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
101 #define GEN8_PDPE_SHIFT 30
102 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
103 * tables */
104 #define GEN8_PDPE_MASK 0x1ff
105 #define GEN8_PDE_SHIFT 21
106 #define GEN8_PDE_MASK 0x1ff
107 #define GEN8_PTE_SHIFT 12
108 #define GEN8_PTE_MASK 0x1ff
109 #define GEN8_LEGACY_PDPES 4
110 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
111
112 #define I915_PDPES_PER_PDP(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
113 GEN8_PML4ES_PER_PML4 : GEN8_LEGACY_PDPES)
114
115 #define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
116 #define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
117 #define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
118 #define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
119
120 #define CHV_PPAT_SNOOP (1<<6)
121 #define GEN8_PPAT_AGE(x) (x<<4)
122 #define GEN8_PPAT_LLCeLLC (3<<2)
123 #define GEN8_PPAT_LLCELLC (2<<2)
124 #define GEN8_PPAT_LLC (1<<2)
125 #define GEN8_PPAT_WB (3<<0)
126 #define GEN8_PPAT_WT (2<<0)
127 #define GEN8_PPAT_WC (1<<0)
128 #define GEN8_PPAT_UC (0<<0)
129 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
130 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
131
132 enum i915_ggtt_view_type {
133 I915_GGTT_VIEW_NORMAL = 0,
134 I915_GGTT_VIEW_ROTATED,
135 I915_GGTT_VIEW_PARTIAL,
136 };
137
138 struct intel_rotation_info {
139 unsigned int height;
140 unsigned int pitch;
141 uint32_t pixel_format;
142 uint64_t fb_modifier;
143 unsigned int width_pages, height_pages;
144 uint64_t size;
145 };
146
147 struct i915_ggtt_view {
148 enum i915_ggtt_view_type type;
149
150 union {
151 struct {
152 unsigned long offset;
153 unsigned int size;
154 } partial;
155 } params;
156
157 struct sg_table *pages;
158
159 union {
160 struct intel_rotation_info rotation_info;
161 };
162 };
163
164 extern const struct i915_ggtt_view i915_ggtt_view_normal;
165 extern const struct i915_ggtt_view i915_ggtt_view_rotated;
166
167 enum i915_cache_level;
168
169 /**
170 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
171 * VMA's presence cannot be guaranteed before binding, or after unbinding the
172 * object into/from the address space.
173 *
174 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
175 * will always be <= an objects lifetime. So object refcounting should cover us.
176 */
177 struct i915_vma {
178 struct drm_mm_node node;
179 struct drm_i915_gem_object *obj;
180 struct i915_address_space *vm;
181
182 /** Flags and address space this VMA is bound to */
183 #define GLOBAL_BIND (1<<0)
184 #define LOCAL_BIND (1<<1)
185 unsigned int bound : 4;
186
187 /**
188 * Support different GGTT views into the same object.
189 * This means there can be multiple VMA mappings per object and per VM.
190 * i915_ggtt_view_type is used to distinguish between those entries.
191 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
192 * assumed in GEM functions which take no ggtt view parameter.
193 */
194 struct i915_ggtt_view ggtt_view;
195
196 /** This object's place on the active/inactive lists */
197 struct list_head mm_list;
198
199 struct list_head vma_link; /* Link in the object's VMA list */
200
201 /** This vma's place in the batchbuffer or on the eviction list */
202 struct list_head exec_list;
203
204 /**
205 * Used for performing relocations during execbuffer insertion.
206 */
207 struct hlist_node exec_node;
208 unsigned long exec_handle;
209 struct drm_i915_gem_exec_object2 *exec_entry;
210
211 /**
212 * How many users have pinned this object in GTT space. The following
213 * users can each hold at most one reference: pwrite/pread, execbuffer
214 * (objects are not allowed multiple times for the same batchbuffer),
215 * and the framebuffer code. When switching/pageflipping, the
216 * framebuffer code has at most two buffers pinned per crtc.
217 *
218 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
219 * bits with absolutely no headroom. So use 4 bits. */
220 unsigned int pin_count:4;
221 #define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
222 };
223
224 struct i915_page_dma {
225 struct page *page;
226 union {
227 dma_addr_t daddr;
228
229 /* For gen6/gen7 only. This is the offset in the GGTT
230 * where the page directory entries for PPGTT begin
231 */
232 uint32_t ggtt_offset;
233 };
234 };
235
236 #define px_base(px) (&(px)->base)
237 #define px_page(px) (px_base(px)->page)
238 #define px_dma(px) (px_base(px)->daddr)
239
240 struct i915_page_scratch {
241 struct i915_page_dma base;
242 };
243
244 struct i915_page_table {
245 struct i915_page_dma base;
246
247 unsigned long *used_ptes;
248 };
249
250 struct i915_page_directory {
251 struct i915_page_dma base;
252
253 unsigned long *used_pdes;
254 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
255 };
256
257 struct i915_page_directory_pointer {
258 struct i915_page_dma base;
259
260 unsigned long *used_pdpes;
261 struct i915_page_directory **page_directory;
262 };
263
264 struct i915_pml4 {
265 struct i915_page_dma base;
266
267 DECLARE_BITMAP(used_pml4es, GEN8_PML4ES_PER_PML4);
268 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
269 };
270
271 struct i915_address_space {
272 struct drm_mm mm;
273 struct drm_device *dev;
274 struct list_head global_link;
275 u64 start; /* Start offset always 0 for dri2 */
276 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
277
278 struct i915_page_scratch *scratch_page;
279 struct i915_page_table *scratch_pt;
280 struct i915_page_directory *scratch_pd;
281 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
282
283 /**
284 * List of objects currently involved in rendering.
285 *
286 * Includes buffers having the contents of their GPU caches
287 * flushed, not necessarily primitives. last_read_req
288 * represents when the rendering involved will be completed.
289 *
290 * A reference is held on the buffer while on this list.
291 */
292 struct list_head active_list;
293
294 /**
295 * LRU list of objects which are not in the ringbuffer and
296 * are ready to unbind, but are still in the GTT.
297 *
298 * last_read_req is NULL while an object is in this list.
299 *
300 * A reference is not held on the buffer while on this list,
301 * as merely being GTT-bound shouldn't prevent its being
302 * freed, and we'll pull it off the list in the free path.
303 */
304 struct list_head inactive_list;
305
306 /* FIXME: Need a more generic return type */
307 gen6_pte_t (*pte_encode)(dma_addr_t addr,
308 enum i915_cache_level level,
309 bool valid, u32 flags); /* Create a valid PTE */
310 /* flags for pte_encode */
311 #define PTE_READ_ONLY (1<<0)
312 int (*allocate_va_range)(struct i915_address_space *vm,
313 uint64_t start,
314 uint64_t length);
315 void (*clear_range)(struct i915_address_space *vm,
316 uint64_t start,
317 uint64_t length,
318 bool use_scratch);
319 void (*insert_entries)(struct i915_address_space *vm,
320 struct sg_table *st,
321 uint64_t start,
322 enum i915_cache_level cache_level, u32 flags);
323 void (*cleanup)(struct i915_address_space *vm);
324 /** Unmap an object from an address space. This usually consists of
325 * setting the valid PTE entries to a reserved scratch page. */
326 void (*unbind_vma)(struct i915_vma *vma);
327 /* Map an object into an address space with the given cache flags. */
328 int (*bind_vma)(struct i915_vma *vma,
329 enum i915_cache_level cache_level,
330 u32 flags);
331 };
332
333 /* The Graphics Translation Table is the way in which GEN hardware translates a
334 * Graphics Virtual Address into a Physical Address. In addition to the normal
335 * collateral associated with any va->pa translations GEN hardware also has a
336 * portion of the GTT which can be mapped by the CPU and remain both coherent
337 * and correct (in cases like swizzling). That region is referred to as GMADR in
338 * the spec.
339 */
340 struct i915_gtt {
341 struct i915_address_space base;
342
343 size_t stolen_size; /* Total size of stolen memory */
344 u64 mappable_end; /* End offset that we can CPU map */
345 struct io_mapping *mappable; /* Mapping to our CPU mappable region */
346 phys_addr_t mappable_base; /* PA of our GMADR */
347
348 /** "Graphics Stolen Memory" holds the global PTEs */
349 void __iomem *gsm;
350
351 bool do_idle_maps;
352
353 int mtrr;
354
355 /* global gtt ops */
356 int (*gtt_probe)(struct drm_device *dev, u64 *gtt_total,
357 size_t *stolen, phys_addr_t *mappable_base,
358 u64 *mappable_end);
359 };
360
361 struct i915_hw_ppgtt {
362 struct i915_address_space base;
363 struct kref ref;
364 struct drm_mm_node node;
365 unsigned long pd_dirty_rings;
366 union {
367 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
368 struct i915_page_directory_pointer pdp; /* GEN8+ */
369 struct i915_page_directory pd; /* GEN6-7 */
370 };
371
372 struct drm_i915_file_private *file_priv;
373
374 gen6_pte_t __iomem *pd_addr;
375
376 int (*enable)(struct i915_hw_ppgtt *ppgtt);
377 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
378 struct drm_i915_gem_request *req);
379 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
380 };
381
382 /* For each pde iterates over every pde between from start until start + length.
383 * If start, and start+length are not perfectly divisible, the macro will round
384 * down, and up as needed. The macro modifies pde, start, and length. Dev is
385 * only used to differentiate shift values. Temp is temp. On gen6/7, start = 0,
386 * and length = 2G effectively iterates over every PDE in the system.
387 *
388 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
389 */
390 #define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
391 for (iter = gen6_pde_index(start); \
392 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
393 iter++, \
394 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
395 temp = min_t(unsigned, temp, length), \
396 start += temp, length -= temp)
397
398 #define gen6_for_all_pdes(pt, ppgtt, iter) \
399 for (iter = 0; \
400 pt = ppgtt->pd.page_table[iter], iter < I915_PDES; \
401 iter++)
402
403 static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
404 {
405 const uint32_t mask = NUM_PTE(pde_shift) - 1;
406
407 return (address >> PAGE_SHIFT) & mask;
408 }
409
410 /* Helper to counts the number of PTEs within the given length. This count
411 * does not cross a page table boundary, so the max value would be
412 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
413 */
414 static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
415 uint32_t pde_shift)
416 {
417 const uint64_t mask = ~((1 << pde_shift) - 1);
418 uint64_t end;
419
420 WARN_ON(length == 0);
421 WARN_ON(offset_in_page(addr|length));
422
423 end = addr + length;
424
425 if ((addr & mask) != (end & mask))
426 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
427
428 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
429 }
430
431 static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
432 {
433 return (addr >> shift) & I915_PDE_MASK;
434 }
435
436 static inline uint32_t gen6_pte_index(uint32_t addr)
437 {
438 return i915_pte_index(addr, GEN6_PDE_SHIFT);
439 }
440
441 static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
442 {
443 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
444 }
445
446 static inline uint32_t gen6_pde_index(uint32_t addr)
447 {
448 return i915_pde_index(addr, GEN6_PDE_SHIFT);
449 }
450
451 /* Equivalent to the gen6 version, For each pde iterates over every pde
452 * between from start until start + length. On gen8+ it simply iterates
453 * over every page directory entry in a page directory.
454 */
455 #define gen8_for_each_pde(pt, pd, start, length, temp, iter) \
456 for (iter = gen8_pde_index(start); \
457 pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
458 iter++, \
459 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT) - start, \
460 temp = min(temp, length), \
461 start += temp, length -= temp)
462
463 #define gen8_for_each_pdpe(pd, pdp, start, length, temp, iter) \
464 for (iter = gen8_pdpe_index(start); \
465 pd = (pdp)->page_directory[iter], \
466 length > 0 && (iter < I915_PDPES_PER_PDP(dev)); \
467 iter++, \
468 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT) - start, \
469 temp = min(temp, length), \
470 start += temp, length -= temp)
471
472 #define gen8_for_each_pml4e(pdp, pml4, start, length, temp, iter) \
473 for (iter = gen8_pml4e_index(start); \
474 pdp = (pml4)->pdps[iter], \
475 length > 0 && iter < GEN8_PML4ES_PER_PML4; \
476 iter++, \
477 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT) - start, \
478 temp = min(temp, length), \
479 start += temp, length -= temp)
480
481 static inline uint32_t gen8_pte_index(uint64_t address)
482 {
483 return i915_pte_index(address, GEN8_PDE_SHIFT);
484 }
485
486 static inline uint32_t gen8_pde_index(uint64_t address)
487 {
488 return i915_pde_index(address, GEN8_PDE_SHIFT);
489 }
490
491 static inline uint32_t gen8_pdpe_index(uint64_t address)
492 {
493 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
494 }
495
496 static inline uint32_t gen8_pml4e_index(uint64_t address)
497 {
498 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
499 }
500
501 static inline size_t gen8_pte_count(uint64_t address, uint64_t length)
502 {
503 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
504 }
505
506 static inline dma_addr_t
507 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
508 {
509 return test_bit(n, ppgtt->pdp.used_pdpes) ?
510 px_dma(ppgtt->pdp.page_directory[n]) :
511 px_dma(ppgtt->base.scratch_pd);
512 }
513
514 int i915_gem_gtt_init(struct drm_device *dev);
515 void i915_gem_init_global_gtt(struct drm_device *dev);
516 void i915_global_gtt_cleanup(struct drm_device *dev);
517
518
519 int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
520 int i915_ppgtt_init_hw(struct drm_device *dev);
521 int i915_ppgtt_init_ring(struct drm_i915_gem_request *req);
522 void i915_ppgtt_release(struct kref *kref);
523 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
524 struct drm_i915_file_private *fpriv);
525 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
526 {
527 if (ppgtt)
528 kref_get(&ppgtt->ref);
529 }
530 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
531 {
532 if (ppgtt)
533 kref_put(&ppgtt->ref, i915_ppgtt_release);
534 }
535
536 void i915_check_and_clear_faults(struct drm_device *dev);
537 void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
538 void i915_gem_restore_gtt_mappings(struct drm_device *dev);
539
540 int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
541 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
542
543 static inline bool
544 i915_ggtt_view_equal(const struct i915_ggtt_view *a,
545 const struct i915_ggtt_view *b)
546 {
547 if (WARN_ON(!a || !b))
548 return false;
549
550 if (a->type != b->type)
551 return false;
552 if (a->type == I915_GGTT_VIEW_PARTIAL)
553 return !memcmp(&a->params, &b->params, sizeof(a->params));
554 return true;
555 }
556
557 size_t
558 i915_ggtt_view_size(struct drm_i915_gem_object *obj,
559 const struct i915_ggtt_view *view);
560
561 #endif