]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_gtt.h
drm/i915: add support for 64K scratch page
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_gtt.h
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34 #ifndef __I915_GEM_GTT_H__
35 #define __I915_GEM_GTT_H__
36
37 #include <linux/io-mapping.h>
38 #include <linux/mm.h>
39 #include <linux/pagevec.h>
40
41 #include "i915_gem_timeline.h"
42 #include "i915_gem_request.h"
43 #include "i915_selftest.h"
44
45 #define I915_GTT_PAGE_SIZE_4K BIT(12)
46 #define I915_GTT_PAGE_SIZE_64K BIT(16)
47 #define I915_GTT_PAGE_SIZE_2M BIT(21)
48
49 #define I915_GTT_PAGE_SIZE I915_GTT_PAGE_SIZE_4K
50 #define I915_GTT_MAX_PAGE_SIZE I915_GTT_PAGE_SIZE_2M
51
52 #define I915_GTT_MIN_ALIGNMENT I915_GTT_PAGE_SIZE
53
54 #define I915_FENCE_REG_NONE -1
55 #define I915_MAX_NUM_FENCES 32
56 /* 32 fences + sign bit for FENCE_REG_NONE */
57 #define I915_MAX_NUM_FENCE_BITS 6
58
59 struct drm_i915_file_private;
60 struct drm_i915_fence_reg;
61
62 typedef u32 gen6_pte_t;
63 typedef u64 gen8_pte_t;
64 typedef u64 gen8_pde_t;
65 typedef u64 gen8_ppgtt_pdpe_t;
66 typedef u64 gen8_ppgtt_pml4e_t;
67
68 #define ggtt_total_entries(ggtt) ((ggtt)->base.total >> PAGE_SHIFT)
69
70 /* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
71 #define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
72 #define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
73 #define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
74 #define GEN6_PTE_CACHE_LLC (2 << 1)
75 #define GEN6_PTE_UNCACHED (1 << 1)
76 #define GEN6_PTE_VALID (1 << 0)
77
78 #define I915_PTES(pte_len) ((unsigned int)(PAGE_SIZE / (pte_len)))
79 #define I915_PTE_MASK(pte_len) (I915_PTES(pte_len) - 1)
80 #define I915_PDES 512
81 #define I915_PDE_MASK (I915_PDES - 1)
82 #define NUM_PTE(pde_shift) (1 << (pde_shift - PAGE_SHIFT))
83
84 #define GEN6_PTES I915_PTES(sizeof(gen6_pte_t))
85 #define GEN6_PD_SIZE (I915_PDES * PAGE_SIZE)
86 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
87 #define GEN6_PDE_SHIFT 22
88 #define GEN6_PDE_VALID (1 << 0)
89
90 #define GEN7_PTE_CACHE_L3_LLC (3 << 1)
91
92 #define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
93 #define BYT_PTE_WRITEABLE (1 << 1)
94
95 /* Cacheability Control is a 4-bit value. The low three bits are stored in bits
96 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
97 */
98 #define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
99 (((bits) & 0x8) << (11 - 3)))
100 #define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
101 #define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
102 #define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
103 #define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
104 #define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
105 #define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
106 #define HSW_PTE_UNCACHED (0)
107 #define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
108 #define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
109
110 /* GEN8 32b style address is defined as a 3 level page table:
111 * 31:30 | 29:21 | 20:12 | 11:0
112 * PDPE | PDE | PTE | offset
113 * The difference as compared to normal x86 3 level page table is the PDPEs are
114 * programmed via register.
115 */
116 #define GEN8_3LVL_PDPES 4
117 #define GEN8_PDE_SHIFT 21
118 #define GEN8_PDE_MASK 0x1ff
119 #define GEN8_PTE_SHIFT 12
120 #define GEN8_PTE_MASK 0x1ff
121 #define GEN8_PTES I915_PTES(sizeof(gen8_pte_t))
122
123 /* GEN8 48b style address is defined as a 4 level page table:
124 * 47:39 | 38:30 | 29:21 | 20:12 | 11:0
125 * PML4E | PDPE | PDE | PTE | offset
126 */
127 #define GEN8_PML4ES_PER_PML4 512
128 #define GEN8_PML4E_SHIFT 39
129 #define GEN8_PML4E_MASK (GEN8_PML4ES_PER_PML4 - 1)
130 #define GEN8_PDPE_SHIFT 30
131 /* NB: GEN8_PDPE_MASK is untrue for 32b platforms, but it has no impact on 32b page
132 * tables */
133 #define GEN8_PDPE_MASK 0x1ff
134
135 #define PPAT_UNCACHED (_PAGE_PWT | _PAGE_PCD)
136 #define PPAT_CACHED_PDE 0 /* WB LLC */
137 #define PPAT_CACHED _PAGE_PAT /* WB LLCeLLC */
138 #define PPAT_DISPLAY_ELLC _PAGE_PCD /* WT eLLC */
139
140 #define CHV_PPAT_SNOOP (1<<6)
141 #define GEN8_PPAT_AGE(x) ((x)<<4)
142 #define GEN8_PPAT_LLCeLLC (3<<2)
143 #define GEN8_PPAT_LLCELLC (2<<2)
144 #define GEN8_PPAT_LLC (1<<2)
145 #define GEN8_PPAT_WB (3<<0)
146 #define GEN8_PPAT_WT (2<<0)
147 #define GEN8_PPAT_WC (1<<0)
148 #define GEN8_PPAT_UC (0<<0)
149 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
150 #define GEN8_PPAT(i, x) ((u64)(x) << ((i) * 8))
151
152 #define GEN8_PPAT_GET_CA(x) ((x) & 3)
153 #define GEN8_PPAT_GET_TC(x) ((x) & (3 << 2))
154 #define GEN8_PPAT_GET_AGE(x) ((x) & (3 << 4))
155 #define CHV_PPAT_GET_SNOOP(x) ((x) & (1 << 6))
156
157 #define GEN8_PDE_PS_2M BIT(7)
158
159 struct sg_table;
160
161 struct intel_rotation_info {
162 struct intel_rotation_plane_info {
163 /* tiles */
164 unsigned int width, height, stride, offset;
165 } plane[2];
166 } __packed;
167
168 static inline void assert_intel_rotation_info_is_packed(void)
169 {
170 BUILD_BUG_ON(sizeof(struct intel_rotation_info) != 8*sizeof(unsigned int));
171 }
172
173 struct intel_partial_info {
174 u64 offset;
175 unsigned int size;
176 } __packed;
177
178 static inline void assert_intel_partial_info_is_packed(void)
179 {
180 BUILD_BUG_ON(sizeof(struct intel_partial_info) != sizeof(u64) + sizeof(unsigned int));
181 }
182
183 enum i915_ggtt_view_type {
184 I915_GGTT_VIEW_NORMAL = 0,
185 I915_GGTT_VIEW_ROTATED = sizeof(struct intel_rotation_info),
186 I915_GGTT_VIEW_PARTIAL = sizeof(struct intel_partial_info),
187 };
188
189 static inline void assert_i915_ggtt_view_type_is_unique(void)
190 {
191 /* As we encode the size of each branch inside the union into its type,
192 * we have to be careful that each branch has a unique size.
193 */
194 switch ((enum i915_ggtt_view_type)0) {
195 case I915_GGTT_VIEW_NORMAL:
196 case I915_GGTT_VIEW_PARTIAL:
197 case I915_GGTT_VIEW_ROTATED:
198 /* gcc complains if these are identical cases */
199 break;
200 }
201 }
202
203 struct i915_ggtt_view {
204 enum i915_ggtt_view_type type;
205 union {
206 /* Members need to contain no holes/padding */
207 struct intel_partial_info partial;
208 struct intel_rotation_info rotated;
209 };
210 };
211
212 enum i915_cache_level;
213
214 struct i915_vma;
215
216 struct i915_page_dma {
217 struct page *page;
218 int order;
219 union {
220 dma_addr_t daddr;
221
222 /* For gen6/gen7 only. This is the offset in the GGTT
223 * where the page directory entries for PPGTT begin
224 */
225 u32 ggtt_offset;
226 };
227 };
228
229 #define px_base(px) (&(px)->base)
230 #define px_page(px) (px_base(px)->page)
231 #define px_dma(px) (px_base(px)->daddr)
232
233 struct i915_page_table {
234 struct i915_page_dma base;
235 unsigned int used_ptes;
236 };
237
238 struct i915_page_directory {
239 struct i915_page_dma base;
240
241 struct i915_page_table *page_table[I915_PDES]; /* PDEs */
242 unsigned int used_pdes;
243 };
244
245 struct i915_page_directory_pointer {
246 struct i915_page_dma base;
247 struct i915_page_directory **page_directory;
248 unsigned int used_pdpes;
249 };
250
251 struct i915_pml4 {
252 struct i915_page_dma base;
253 struct i915_page_directory_pointer *pdps[GEN8_PML4ES_PER_PML4];
254 };
255
256 struct i915_address_space {
257 struct drm_mm mm;
258 struct i915_gem_timeline timeline;
259 struct drm_i915_private *i915;
260 struct device *dma;
261 /* Every address space belongs to a struct file - except for the global
262 * GTT that is owned by the driver (and so @file is set to NULL). In
263 * principle, no information should leak from one context to another
264 * (or between files/processes etc) unless explicitly shared by the
265 * owner. Tracking the owner is important in order to free up per-file
266 * objects along with the file, to aide resource tracking, and to
267 * assign blame.
268 */
269 struct drm_i915_file_private *file;
270 struct list_head global_link;
271 u64 total; /* size addr space maps (ex. 2GB for ggtt) */
272 u64 reserved; /* size addr space reserved */
273
274 bool closed;
275
276 struct i915_page_dma scratch_page;
277 struct i915_page_table *scratch_pt;
278 struct i915_page_directory *scratch_pd;
279 struct i915_page_directory_pointer *scratch_pdp; /* GEN8+ & 48b PPGTT */
280
281 /**
282 * List of objects currently involved in rendering.
283 *
284 * Includes buffers having the contents of their GPU caches
285 * flushed, not necessarily primitives. last_read_req
286 * represents when the rendering involved will be completed.
287 *
288 * A reference is held on the buffer while on this list.
289 */
290 struct list_head active_list;
291
292 /**
293 * LRU list of objects which are not in the ringbuffer and
294 * are ready to unbind, but are still in the GTT.
295 *
296 * last_read_req is NULL while an object is in this list.
297 *
298 * A reference is not held on the buffer while on this list,
299 * as merely being GTT-bound shouldn't prevent its being
300 * freed, and we'll pull it off the list in the free path.
301 */
302 struct list_head inactive_list;
303
304 /**
305 * List of vma that have been unbound.
306 *
307 * A reference is not held on the buffer while on this list.
308 */
309 struct list_head unbound_list;
310
311 struct pagevec free_pages;
312 bool pt_kmap_wc;
313
314 /* FIXME: Need a more generic return type */
315 gen6_pte_t (*pte_encode)(dma_addr_t addr,
316 enum i915_cache_level level,
317 u32 flags); /* Create a valid PTE */
318 /* flags for pte_encode */
319 #define PTE_READ_ONLY (1<<0)
320 int (*allocate_va_range)(struct i915_address_space *vm,
321 u64 start, u64 length);
322 void (*clear_range)(struct i915_address_space *vm,
323 u64 start, u64 length);
324 void (*insert_page)(struct i915_address_space *vm,
325 dma_addr_t addr,
326 u64 offset,
327 enum i915_cache_level cache_level,
328 u32 flags);
329 void (*insert_entries)(struct i915_address_space *vm,
330 struct i915_vma *vma,
331 enum i915_cache_level cache_level,
332 u32 flags);
333 void (*cleanup)(struct i915_address_space *vm);
334 /** Unmap an object from an address space. This usually consists of
335 * setting the valid PTE entries to a reserved scratch page. */
336 void (*unbind_vma)(struct i915_vma *vma);
337 /* Map an object into an address space with the given cache flags. */
338 int (*bind_vma)(struct i915_vma *vma,
339 enum i915_cache_level cache_level,
340 u32 flags);
341 int (*set_pages)(struct i915_vma *vma);
342 void (*clear_pages)(struct i915_vma *vma);
343
344 I915_SELFTEST_DECLARE(struct fault_attr fault_attr);
345 };
346
347 #define i915_is_ggtt(V) (!(V)->file)
348
349 static inline bool
350 i915_vm_is_48bit(const struct i915_address_space *vm)
351 {
352 return (vm->total - 1) >> 32;
353 }
354
355 /* The Graphics Translation Table is the way in which GEN hardware translates a
356 * Graphics Virtual Address into a Physical Address. In addition to the normal
357 * collateral associated with any va->pa translations GEN hardware also has a
358 * portion of the GTT which can be mapped by the CPU and remain both coherent
359 * and correct (in cases like swizzling). That region is referred to as GMADR in
360 * the spec.
361 */
362 struct i915_ggtt {
363 struct i915_address_space base;
364 struct io_mapping mappable; /* Mapping to our CPU mappable region */
365
366 phys_addr_t mappable_base; /* PA of our GMADR */
367 u64 mappable_end; /* End offset that we can CPU map */
368
369 /* Stolen memory is segmented in hardware with different portions
370 * offlimits to certain functions.
371 *
372 * The drm_mm is initialised to the total accessible range, as found
373 * from the PCI config. On Broadwell+, this is further restricted to
374 * avoid the first page! The upper end of stolen memory is reserved for
375 * hardware functions and similarly removed from the accessible range.
376 */
377 u32 stolen_size; /* Total size of stolen memory */
378 u32 stolen_usable_size; /* Total size minus reserved ranges */
379 u32 stolen_reserved_base;
380 u32 stolen_reserved_size;
381
382 /** "Graphics Stolen Memory" holds the global PTEs */
383 void __iomem *gsm;
384 void (*invalidate)(struct drm_i915_private *dev_priv);
385
386 bool do_idle_maps;
387
388 int mtrr;
389
390 struct drm_mm_node error_capture;
391 };
392
393 struct i915_hw_ppgtt {
394 struct i915_address_space base;
395 struct kref ref;
396 struct drm_mm_node node;
397 unsigned long pd_dirty_rings;
398 union {
399 struct i915_pml4 pml4; /* GEN8+ & 48b PPGTT */
400 struct i915_page_directory_pointer pdp; /* GEN8+ */
401 struct i915_page_directory pd; /* GEN6-7 */
402 };
403
404 gen6_pte_t __iomem *pd_addr;
405
406 int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
407 struct drm_i915_gem_request *req);
408 void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
409 };
410
411 /*
412 * gen6_for_each_pde() iterates over every pde from start until start+length.
413 * If start and start+length are not perfectly divisible, the macro will round
414 * down and up as needed. Start=0 and length=2G effectively iterates over
415 * every PDE in the system. The macro modifies ALL its parameters except 'pd',
416 * so each of the other parameters should preferably be a simple variable, or
417 * at most an lvalue with no side-effects!
418 */
419 #define gen6_for_each_pde(pt, pd, start, length, iter) \
420 for (iter = gen6_pde_index(start); \
421 length > 0 && iter < I915_PDES && \
422 (pt = (pd)->page_table[iter], true); \
423 ({ u32 temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT); \
424 temp = min(temp - start, length); \
425 start += temp, length -= temp; }), ++iter)
426
427 #define gen6_for_all_pdes(pt, pd, iter) \
428 for (iter = 0; \
429 iter < I915_PDES && \
430 (pt = (pd)->page_table[iter], true); \
431 ++iter)
432
433 static inline u32 i915_pte_index(u64 address, unsigned int pde_shift)
434 {
435 const u32 mask = NUM_PTE(pde_shift) - 1;
436
437 return (address >> PAGE_SHIFT) & mask;
438 }
439
440 /* Helper to counts the number of PTEs within the given length. This count
441 * does not cross a page table boundary, so the max value would be
442 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
443 */
444 static inline u32 i915_pte_count(u64 addr, u64 length, unsigned int pde_shift)
445 {
446 const u64 mask = ~((1ULL << pde_shift) - 1);
447 u64 end;
448
449 WARN_ON(length == 0);
450 WARN_ON(offset_in_page(addr|length));
451
452 end = addr + length;
453
454 if ((addr & mask) != (end & mask))
455 return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
456
457 return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
458 }
459
460 static inline u32 i915_pde_index(u64 addr, u32 shift)
461 {
462 return (addr >> shift) & I915_PDE_MASK;
463 }
464
465 static inline u32 gen6_pte_index(u32 addr)
466 {
467 return i915_pte_index(addr, GEN6_PDE_SHIFT);
468 }
469
470 static inline u32 gen6_pte_count(u32 addr, u32 length)
471 {
472 return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
473 }
474
475 static inline u32 gen6_pde_index(u32 addr)
476 {
477 return i915_pde_index(addr, GEN6_PDE_SHIFT);
478 }
479
480 static inline unsigned int
481 i915_pdpes_per_pdp(const struct i915_address_space *vm)
482 {
483 if (i915_vm_is_48bit(vm))
484 return GEN8_PML4ES_PER_PML4;
485
486 return GEN8_3LVL_PDPES;
487 }
488
489 /* Equivalent to the gen6 version, For each pde iterates over every pde
490 * between from start until start + length. On gen8+ it simply iterates
491 * over every page directory entry in a page directory.
492 */
493 #define gen8_for_each_pde(pt, pd, start, length, iter) \
494 for (iter = gen8_pde_index(start); \
495 length > 0 && iter < I915_PDES && \
496 (pt = (pd)->page_table[iter], true); \
497 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDE_SHIFT); \
498 temp = min(temp - start, length); \
499 start += temp, length -= temp; }), ++iter)
500
501 #define gen8_for_each_pdpe(pd, pdp, start, length, iter) \
502 for (iter = gen8_pdpe_index(start); \
503 length > 0 && iter < i915_pdpes_per_pdp(vm) && \
504 (pd = (pdp)->page_directory[iter], true); \
505 ({ u64 temp = ALIGN(start+1, 1 << GEN8_PDPE_SHIFT); \
506 temp = min(temp - start, length); \
507 start += temp, length -= temp; }), ++iter)
508
509 #define gen8_for_each_pml4e(pdp, pml4, start, length, iter) \
510 for (iter = gen8_pml4e_index(start); \
511 length > 0 && iter < GEN8_PML4ES_PER_PML4 && \
512 (pdp = (pml4)->pdps[iter], true); \
513 ({ u64 temp = ALIGN(start+1, 1ULL << GEN8_PML4E_SHIFT); \
514 temp = min(temp - start, length); \
515 start += temp, length -= temp; }), ++iter)
516
517 static inline u32 gen8_pte_index(u64 address)
518 {
519 return i915_pte_index(address, GEN8_PDE_SHIFT);
520 }
521
522 static inline u32 gen8_pde_index(u64 address)
523 {
524 return i915_pde_index(address, GEN8_PDE_SHIFT);
525 }
526
527 static inline u32 gen8_pdpe_index(u64 address)
528 {
529 return (address >> GEN8_PDPE_SHIFT) & GEN8_PDPE_MASK;
530 }
531
532 static inline u32 gen8_pml4e_index(u64 address)
533 {
534 return (address >> GEN8_PML4E_SHIFT) & GEN8_PML4E_MASK;
535 }
536
537 static inline u64 gen8_pte_count(u64 address, u64 length)
538 {
539 return i915_pte_count(address, length, GEN8_PDE_SHIFT);
540 }
541
542 static inline dma_addr_t
543 i915_page_dir_dma_addr(const struct i915_hw_ppgtt *ppgtt, const unsigned n)
544 {
545 return px_dma(ppgtt->pdp.page_directory[n]);
546 }
547
548 static inline struct i915_ggtt *
549 i915_vm_to_ggtt(struct i915_address_space *vm)
550 {
551 GEM_BUG_ON(!i915_is_ggtt(vm));
552 return container_of(vm, struct i915_ggtt, base);
553 }
554
555 #define INTEL_MAX_PPAT_ENTRIES 8
556 #define INTEL_PPAT_PERFECT_MATCH (~0U)
557
558 struct intel_ppat;
559
560 struct intel_ppat_entry {
561 struct intel_ppat *ppat;
562 struct kref ref;
563 u8 value;
564 };
565
566 struct intel_ppat {
567 struct intel_ppat_entry entries[INTEL_MAX_PPAT_ENTRIES];
568 DECLARE_BITMAP(used, INTEL_MAX_PPAT_ENTRIES);
569 DECLARE_BITMAP(dirty, INTEL_MAX_PPAT_ENTRIES);
570 unsigned int max_entries;
571 u8 clear_value;
572 /*
573 * Return a score to show how two PPAT values match,
574 * a INTEL_PPAT_PERFECT_MATCH indicates a perfect match
575 */
576 unsigned int (*match)(u8 src, u8 dst);
577 void (*update_hw)(struct drm_i915_private *i915);
578
579 struct drm_i915_private *i915;
580 };
581
582 const struct intel_ppat_entry *
583 intel_ppat_get(struct drm_i915_private *i915, u8 value);
584 void intel_ppat_put(const struct intel_ppat_entry *entry);
585
586 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915);
587 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915);
588
589 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv);
590 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv);
591 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv);
592 void i915_ggtt_enable_guc(struct drm_i915_private *i915);
593 void i915_ggtt_disable_guc(struct drm_i915_private *i915);
594 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv);
595 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv);
596
597 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv);
598 void i915_ppgtt_release(struct kref *kref);
599 struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_i915_private *dev_priv,
600 struct drm_i915_file_private *fpriv,
601 const char *name);
602 void i915_ppgtt_close(struct i915_address_space *vm);
603 static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
604 {
605 if (ppgtt)
606 kref_get(&ppgtt->ref);
607 }
608 static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
609 {
610 if (ppgtt)
611 kref_put(&ppgtt->ref, i915_ppgtt_release);
612 }
613
614 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv);
615 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv);
616 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv);
617
618 int __must_check i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
619 struct sg_table *pages);
620 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
621 struct sg_table *pages);
622
623 int i915_gem_gtt_reserve(struct i915_address_space *vm,
624 struct drm_mm_node *node,
625 u64 size, u64 offset, unsigned long color,
626 unsigned int flags);
627
628 int i915_gem_gtt_insert(struct i915_address_space *vm,
629 struct drm_mm_node *node,
630 u64 size, u64 alignment, unsigned long color,
631 u64 start, u64 end, unsigned int flags);
632
633 /* Flags used by pin/bind&friends. */
634 #define PIN_NONBLOCK BIT(0)
635 #define PIN_MAPPABLE BIT(1)
636 #define PIN_ZONE_4G BIT(2)
637 #define PIN_NONFAULT BIT(3)
638 #define PIN_NOEVICT BIT(4)
639
640 #define PIN_MBZ BIT(5) /* I915_VMA_PIN_OVERFLOW */
641 #define PIN_GLOBAL BIT(6) /* I915_VMA_GLOBAL_BIND */
642 #define PIN_USER BIT(7) /* I915_VMA_LOCAL_BIND */
643 #define PIN_UPDATE BIT(8)
644
645 #define PIN_HIGH BIT(9)
646 #define PIN_OFFSET_BIAS BIT(10)
647 #define PIN_OFFSET_FIXED BIT(11)
648 #define PIN_OFFSET_MASK (-I915_GTT_PAGE_SIZE)
649
650 #endif