]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
Merge tag 'drm-intel-next-2017-07-17' of git://anongit.freedesktop.org/git/drm-intel...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 /* The timeline struct (as part of the ppgtt underneath a context)
41 * may be freed when the request is no longer in use by the GPU.
42 * We could extend the life of a context to beyond that of all
43 * fences, possibly keeping the hw resource around indefinitely,
44 * or we just give them a false name. Since
45 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 * lie seems justifiable.
47 */
48 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49 return "signaled";
50
51 return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56 return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61 if (i915_fence_signaled(fence))
62 return false;
63
64 intel_engine_enable_signaling(to_request(fence), true);
65 return !i915_fence_signaled(fence);
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69 bool interruptible,
70 signed long timeout)
71 {
72 return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77 struct drm_i915_gem_request *req = to_request(fence);
78
79 /* The request is put onto a RCU freelist (i.e. the address
80 * is immediately reused), mark the fences as being freed now.
81 * Otherwise the debugobjects for the fences are only marked as
82 * freed when the slab cache itself is freed, and so we would get
83 * caught trying to reuse dead objects.
84 */
85 i915_sw_fence_fini(&req->submit);
86
87 kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91 .get_driver_name = i915_fence_get_driver_name,
92 .get_timeline_name = i915_fence_get_timeline_name,
93 .enable_signaling = i915_fence_enable_signaling,
94 .signaled = i915_fence_signaled,
95 .wait = i915_fence_wait,
96 .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102 struct drm_i915_file_private *file_priv;
103
104 file_priv = request->file_priv;
105 if (!file_priv)
106 return;
107
108 spin_lock(&file_priv->mm.lock);
109 if (request->file_priv) {
110 list_del(&request->client_link);
111 request->file_priv = NULL;
112 }
113 spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124 struct i915_dependency *dep)
125 {
126 kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 struct i915_priotree *signal,
132 struct i915_dependency *dep,
133 unsigned long flags)
134 {
135 INIT_LIST_HEAD(&dep->dfs_link);
136 list_add(&dep->wait_link, &signal->waiters_list);
137 list_add(&dep->signal_link, &pt->signalers_list);
138 dep->signaler = signal;
139 dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 struct i915_priotree *pt,
145 struct i915_priotree *signal)
146 {
147 struct i915_dependency *dep;
148
149 dep = i915_dependency_alloc(i915);
150 if (!dep)
151 return -ENOMEM;
152
153 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160 struct i915_dependency *dep, *next;
161
162 GEM_BUG_ON(!list_empty(&pt->link));
163
164 /* Everyone we depended upon (the fences we wait to be signaled)
165 * should retire before us and remove themselves from our list.
166 * However, retirement is run independently on each timeline and
167 * so we may be called out-of-order.
168 */
169 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 list_del(&dep->wait_link);
171 if (dep->flags & I915_DEPENDENCY_ALLOC)
172 i915_dependency_free(i915, dep);
173 }
174
175 /* Remove ourselves from everyone who depends upon us */
176 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 list_del(&dep->signal_link);
178 if (dep->flags & I915_DEPENDENCY_ALLOC)
179 i915_dependency_free(i915, dep);
180 }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186 INIT_LIST_HEAD(&pt->signalers_list);
187 INIT_LIST_HEAD(&pt->waiters_list);
188 INIT_LIST_HEAD(&pt->link);
189 pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194 struct intel_engine_cs *engine;
195 enum intel_engine_id id;
196 int ret;
197
198 /* Carefully retire all requests without writing to the rings */
199 ret = i915_gem_wait_for_idle(i915,
200 I915_WAIT_INTERRUPTIBLE |
201 I915_WAIT_LOCKED);
202 if (ret)
203 return ret;
204
205 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206 for_each_engine(engine, i915, id) {
207 struct i915_gem_timeline *timeline;
208 struct intel_timeline *tl = engine->timeline;
209
210 if (!i915_seqno_passed(seqno, tl->seqno)) {
211 /* spin until threads are complete */
212 while (intel_breadcrumbs_busy(engine))
213 cond_resched();
214 }
215
216 /* Finally reset hw state */
217 intel_engine_init_global_seqno(engine, seqno);
218 tl->seqno = seqno;
219
220 list_for_each_entry(timeline, &i915->gt.timelines, link)
221 memset(timeline->engine[id].global_sync, 0,
222 sizeof(timeline->engine[id].global_sync));
223 }
224
225 return 0;
226 }
227
228 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
229 {
230 struct drm_i915_private *dev_priv = to_i915(dev);
231
232 lockdep_assert_held(&dev_priv->drm.struct_mutex);
233
234 if (seqno == 0)
235 return -EINVAL;
236
237 /* HWS page needs to be set less than what we
238 * will inject to ring
239 */
240 return reset_all_global_seqno(dev_priv, seqno - 1);
241 }
242
243 static int reserve_seqno(struct intel_engine_cs *engine)
244 {
245 u32 active = ++engine->timeline->inflight_seqnos;
246 u32 seqno = engine->timeline->seqno;
247 int ret;
248
249 /* Reservation is fine until we need to wrap around */
250 if (likely(!add_overflows(seqno, active)))
251 return 0;
252
253 ret = reset_all_global_seqno(engine->i915, 0);
254 if (ret) {
255 engine->timeline->inflight_seqnos--;
256 return ret;
257 }
258
259 return 0;
260 }
261
262 static void unreserve_seqno(struct intel_engine_cs *engine)
263 {
264 GEM_BUG_ON(!engine->timeline->inflight_seqnos);
265 engine->timeline->inflight_seqnos--;
266 }
267
268 void i915_gem_retire_noop(struct i915_gem_active *active,
269 struct drm_i915_gem_request *request)
270 {
271 /* Space left intentionally blank */
272 }
273
274 static void advance_ring(struct drm_i915_gem_request *request)
275 {
276 unsigned int tail;
277
278 /* We know the GPU must have read the request to have
279 * sent us the seqno + interrupt, so use the position
280 * of tail of the request to update the last known position
281 * of the GPU head.
282 *
283 * Note this requires that we are always called in request
284 * completion order.
285 */
286 if (list_is_last(&request->ring_link, &request->ring->request_list)) {
287 /* We may race here with execlists resubmitting this request
288 * as we retire it. The resubmission will move the ring->tail
289 * forwards (to request->wa_tail). We either read the
290 * current value that was written to hw, or the value that
291 * is just about to be. Either works, if we miss the last two
292 * noops - they are safe to be replayed on a reset.
293 */
294 tail = READ_ONCE(request->ring->tail);
295 } else {
296 tail = request->postfix;
297 }
298 list_del(&request->ring_link);
299
300 request->ring->head = tail;
301 }
302
303 static void free_capture_list(struct drm_i915_gem_request *request)
304 {
305 struct i915_gem_capture_list *capture;
306
307 capture = request->capture_list;
308 while (capture) {
309 struct i915_gem_capture_list *next = capture->next;
310
311 kfree(capture);
312 capture = next;
313 }
314 }
315
316 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
317 {
318 struct intel_engine_cs *engine = request->engine;
319 struct i915_gem_active *active, *next;
320
321 lockdep_assert_held(&request->i915->drm.struct_mutex);
322 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
323 GEM_BUG_ON(!i915_gem_request_completed(request));
324 GEM_BUG_ON(!request->i915->gt.active_requests);
325
326 trace_i915_gem_request_retire(request);
327
328 spin_lock_irq(&engine->timeline->lock);
329 list_del_init(&request->link);
330 spin_unlock_irq(&engine->timeline->lock);
331
332 if (!--request->i915->gt.active_requests) {
333 GEM_BUG_ON(!request->i915->gt.awake);
334 mod_delayed_work(request->i915->wq,
335 &request->i915->gt.idle_work,
336 msecs_to_jiffies(100));
337 }
338 unreserve_seqno(request->engine);
339 advance_ring(request);
340
341 free_capture_list(request);
342
343 /* Walk through the active list, calling retire on each. This allows
344 * objects to track their GPU activity and mark themselves as idle
345 * when their *last* active request is completed (updating state
346 * tracking lists for eviction, active references for GEM, etc).
347 *
348 * As the ->retire() may free the node, we decouple it first and
349 * pass along the auxiliary information (to avoid dereferencing
350 * the node after the callback).
351 */
352 list_for_each_entry_safe(active, next, &request->active_list, link) {
353 /* In microbenchmarks or focusing upon time inside the kernel,
354 * we may spend an inordinate amount of time simply handling
355 * the retirement of requests and processing their callbacks.
356 * Of which, this loop itself is particularly hot due to the
357 * cache misses when jumping around the list of i915_gem_active.
358 * So we try to keep this loop as streamlined as possible and
359 * also prefetch the next i915_gem_active to try and hide
360 * the likely cache miss.
361 */
362 prefetchw(next);
363
364 INIT_LIST_HEAD(&active->link);
365 RCU_INIT_POINTER(active->request, NULL);
366
367 active->retire(active, request);
368 }
369
370 i915_gem_request_remove_from_client(request);
371
372 /* Retirement decays the ban score as it is a sign of ctx progress */
373 if (request->ctx->ban_score > 0)
374 request->ctx->ban_score--;
375
376 /* The backing object for the context is done after switching to the
377 * *next* context. Therefore we cannot retire the previous context until
378 * the next context has already started running. However, since we
379 * cannot take the required locks at i915_gem_request_submit() we
380 * defer the unpinning of the active context to now, retirement of
381 * the subsequent request.
382 */
383 if (engine->last_retired_context)
384 engine->context_unpin(engine, engine->last_retired_context);
385 engine->last_retired_context = request->ctx;
386
387 spin_lock_irq(&request->lock);
388 if (request->waitboost)
389 atomic_dec(&request->i915->rps.num_waiters);
390 dma_fence_signal_locked(&request->fence);
391 spin_unlock_irq(&request->lock);
392
393 i915_priotree_fini(request->i915, &request->priotree);
394 i915_gem_request_put(request);
395 }
396
397 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
398 {
399 struct intel_engine_cs *engine = req->engine;
400 struct drm_i915_gem_request *tmp;
401
402 lockdep_assert_held(&req->i915->drm.struct_mutex);
403 GEM_BUG_ON(!i915_gem_request_completed(req));
404
405 if (list_empty(&req->link))
406 return;
407
408 do {
409 tmp = list_first_entry(&engine->timeline->requests,
410 typeof(*tmp), link);
411
412 i915_gem_request_retire(tmp);
413 } while (tmp != req);
414 }
415
416 static u32 timeline_get_seqno(struct intel_timeline *tl)
417 {
418 return ++tl->seqno;
419 }
420
421 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
422 {
423 struct intel_engine_cs *engine = request->engine;
424 struct intel_timeline *timeline;
425 u32 seqno;
426
427 GEM_BUG_ON(!irqs_disabled());
428 lockdep_assert_held(&engine->timeline->lock);
429
430 trace_i915_gem_request_execute(request);
431
432 /* Transfer from per-context onto the global per-engine timeline */
433 timeline = engine->timeline;
434 GEM_BUG_ON(timeline == request->timeline);
435
436 seqno = timeline_get_seqno(timeline);
437 GEM_BUG_ON(!seqno);
438 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
439
440 /* We may be recursing from the signal callback of another i915 fence */
441 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
442 request->global_seqno = seqno;
443 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
444 intel_engine_enable_signaling(request, false);
445 spin_unlock(&request->lock);
446
447 engine->emit_breadcrumb(request,
448 request->ring->vaddr + request->postfix);
449
450 spin_lock(&request->timeline->lock);
451 list_move_tail(&request->link, &timeline->requests);
452 spin_unlock(&request->timeline->lock);
453
454 wake_up_all(&request->execute);
455 }
456
457 void i915_gem_request_submit(struct drm_i915_gem_request *request)
458 {
459 struct intel_engine_cs *engine = request->engine;
460 unsigned long flags;
461
462 /* Will be called from irq-context when using foreign fences. */
463 spin_lock_irqsave(&engine->timeline->lock, flags);
464
465 __i915_gem_request_submit(request);
466
467 spin_unlock_irqrestore(&engine->timeline->lock, flags);
468 }
469
470 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
471 {
472 struct intel_engine_cs *engine = request->engine;
473 struct intel_timeline *timeline;
474
475 GEM_BUG_ON(!irqs_disabled());
476 lockdep_assert_held(&engine->timeline->lock);
477
478 /* Only unwind in reverse order, required so that the per-context list
479 * is kept in seqno/ring order.
480 */
481 GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
482 engine->timeline->seqno--;
483
484 /* We may be recursing from the signal callback of another i915 fence */
485 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
486 request->global_seqno = 0;
487 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
488 intel_engine_cancel_signaling(request);
489 spin_unlock(&request->lock);
490
491 /* Transfer back from the global per-engine timeline to per-context */
492 timeline = request->timeline;
493 GEM_BUG_ON(timeline == engine->timeline);
494
495 spin_lock(&timeline->lock);
496 list_move(&request->link, &timeline->requests);
497 spin_unlock(&timeline->lock);
498
499 /* We don't need to wake_up any waiters on request->execute, they
500 * will get woken by any other event or us re-adding this request
501 * to the engine timeline (__i915_gem_request_submit()). The waiters
502 * should be quite adapt at finding that the request now has a new
503 * global_seqno to the one they went to sleep on.
504 */
505 }
506
507 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
508 {
509 struct intel_engine_cs *engine = request->engine;
510 unsigned long flags;
511
512 /* Will be called from irq-context when using foreign fences. */
513 spin_lock_irqsave(&engine->timeline->lock, flags);
514
515 __i915_gem_request_unsubmit(request);
516
517 spin_unlock_irqrestore(&engine->timeline->lock, flags);
518 }
519
520 static int __i915_sw_fence_call
521 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
522 {
523 struct drm_i915_gem_request *request =
524 container_of(fence, typeof(*request), submit);
525
526 switch (state) {
527 case FENCE_COMPLETE:
528 trace_i915_gem_request_submit(request);
529 request->engine->submit_request(request);
530 break;
531
532 case FENCE_FREE:
533 i915_gem_request_put(request);
534 break;
535 }
536
537 return NOTIFY_DONE;
538 }
539
540 /**
541 * i915_gem_request_alloc - allocate a request structure
542 *
543 * @engine: engine that we wish to issue the request on.
544 * @ctx: context that the request will be associated with.
545 *
546 * Returns a pointer to the allocated request if successful,
547 * or an error code if not.
548 */
549 struct drm_i915_gem_request *
550 i915_gem_request_alloc(struct intel_engine_cs *engine,
551 struct i915_gem_context *ctx)
552 {
553 struct drm_i915_private *dev_priv = engine->i915;
554 struct drm_i915_gem_request *req;
555 struct intel_ring *ring;
556 int ret;
557
558 lockdep_assert_held(&dev_priv->drm.struct_mutex);
559
560 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
561 * EIO if the GPU is already wedged.
562 */
563 if (i915_terminally_wedged(&dev_priv->gpu_error))
564 return ERR_PTR(-EIO);
565
566 /* Pinning the contexts may generate requests in order to acquire
567 * GGTT space, so do this first before we reserve a seqno for
568 * ourselves.
569 */
570 ring = engine->context_pin(engine, ctx);
571 if (IS_ERR(ring))
572 return ERR_CAST(ring);
573 GEM_BUG_ON(!ring);
574
575 ret = reserve_seqno(engine);
576 if (ret)
577 goto err_unpin;
578
579 /* Move the oldest request to the slab-cache (if not in use!) */
580 req = list_first_entry_or_null(&engine->timeline->requests,
581 typeof(*req), link);
582 if (req && i915_gem_request_completed(req))
583 i915_gem_request_retire(req);
584
585 /* Beware: Dragons be flying overhead.
586 *
587 * We use RCU to look up requests in flight. The lookups may
588 * race with the request being allocated from the slab freelist.
589 * That is the request we are writing to here, may be in the process
590 * of being read by __i915_gem_active_get_rcu(). As such,
591 * we have to be very careful when overwriting the contents. During
592 * the RCU lookup, we change chase the request->engine pointer,
593 * read the request->global_seqno and increment the reference count.
594 *
595 * The reference count is incremented atomically. If it is zero,
596 * the lookup knows the request is unallocated and complete. Otherwise,
597 * it is either still in use, or has been reallocated and reset
598 * with dma_fence_init(). This increment is safe for release as we
599 * check that the request we have a reference to and matches the active
600 * request.
601 *
602 * Before we increment the refcount, we chase the request->engine
603 * pointer. We must not call kmem_cache_zalloc() or else we set
604 * that pointer to NULL and cause a crash during the lookup. If
605 * we see the request is completed (based on the value of the
606 * old engine and seqno), the lookup is complete and reports NULL.
607 * If we decide the request is not completed (new engine or seqno),
608 * then we grab a reference and double check that it is still the
609 * active request - which it won't be and restart the lookup.
610 *
611 * Do not use kmem_cache_zalloc() here!
612 */
613 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
614 if (!req) {
615 ret = -ENOMEM;
616 goto err_unreserve;
617 }
618
619 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
620 GEM_BUG_ON(req->timeline == engine->timeline);
621
622 spin_lock_init(&req->lock);
623 dma_fence_init(&req->fence,
624 &i915_fence_ops,
625 &req->lock,
626 req->timeline->fence_context,
627 timeline_get_seqno(req->timeline));
628
629 /* We bump the ref for the fence chain */
630 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
631 init_waitqueue_head(&req->execute);
632
633 i915_priotree_init(&req->priotree);
634
635 INIT_LIST_HEAD(&req->active_list);
636 req->i915 = dev_priv;
637 req->engine = engine;
638 req->ctx = ctx;
639 req->ring = ring;
640
641 /* No zalloc, must clear what we need by hand */
642 req->global_seqno = 0;
643 req->file_priv = NULL;
644 req->batch = NULL;
645 req->capture_list = NULL;
646 req->waitboost = false;
647
648 /*
649 * Reserve space in the ring buffer for all the commands required to
650 * eventually emit this request. This is to guarantee that the
651 * i915_add_request() call can't fail. Note that the reserve may need
652 * to be redone if the request is not actually submitted straight
653 * away, e.g. because a GPU scheduler has deferred it.
654 */
655 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
656 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
657
658 ret = engine->request_alloc(req);
659 if (ret)
660 goto err_ctx;
661
662 /* Record the position of the start of the request so that
663 * should we detect the updated seqno part-way through the
664 * GPU processing the request, we never over-estimate the
665 * position of the head.
666 */
667 req->head = req->ring->emit;
668
669 /* Check that we didn't interrupt ourselves with a new request */
670 GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
671 return req;
672
673 err_ctx:
674 /* Make sure we didn't add ourselves to external state before freeing */
675 GEM_BUG_ON(!list_empty(&req->active_list));
676 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
677 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
678
679 kmem_cache_free(dev_priv->requests, req);
680 err_unreserve:
681 unreserve_seqno(engine);
682 err_unpin:
683 engine->context_unpin(engine, ctx);
684 return ERR_PTR(ret);
685 }
686
687 static int
688 i915_gem_request_await_request(struct drm_i915_gem_request *to,
689 struct drm_i915_gem_request *from)
690 {
691 int ret;
692
693 GEM_BUG_ON(to == from);
694 GEM_BUG_ON(to->timeline == from->timeline);
695
696 if (i915_gem_request_completed(from))
697 return 0;
698
699 if (to->engine->schedule) {
700 ret = i915_priotree_add_dependency(to->i915,
701 &to->priotree,
702 &from->priotree);
703 if (ret < 0)
704 return ret;
705 }
706
707 if (to->engine == from->engine) {
708 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
709 &from->submit,
710 GFP_KERNEL);
711 return ret < 0 ? ret : 0;
712 }
713
714 if (to->engine->semaphore.sync_to) {
715 u32 seqno;
716
717 GEM_BUG_ON(!from->engine->semaphore.signal);
718
719 seqno = i915_gem_request_global_seqno(from);
720 if (!seqno)
721 goto await_dma_fence;
722
723 if (seqno <= to->timeline->global_sync[from->engine->id])
724 return 0;
725
726 trace_i915_gem_ring_sync_to(to, from);
727 ret = to->engine->semaphore.sync_to(to, from);
728 if (ret)
729 return ret;
730
731 to->timeline->global_sync[from->engine->id] = seqno;
732 return 0;
733 }
734
735 await_dma_fence:
736 ret = i915_sw_fence_await_dma_fence(&to->submit,
737 &from->fence, 0,
738 GFP_KERNEL);
739 return ret < 0 ? ret : 0;
740 }
741
742 int
743 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
744 struct dma_fence *fence)
745 {
746 struct dma_fence **child = &fence;
747 unsigned int nchild = 1;
748 int ret;
749
750 /* Note that if the fence-array was created in signal-on-any mode,
751 * we should *not* decompose it into its individual fences. However,
752 * we don't currently store which mode the fence-array is operating
753 * in. Fortunately, the only user of signal-on-any is private to
754 * amdgpu and we should not see any incoming fence-array from
755 * sync-file being in signal-on-any mode.
756 */
757 if (dma_fence_is_array(fence)) {
758 struct dma_fence_array *array = to_dma_fence_array(fence);
759
760 child = array->fences;
761 nchild = array->num_fences;
762 GEM_BUG_ON(!nchild);
763 }
764
765 do {
766 fence = *child++;
767 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
768 continue;
769
770 /*
771 * Requests on the same timeline are explicitly ordered, along
772 * with their dependencies, by i915_add_request() which ensures
773 * that requests are submitted in-order through each ring.
774 */
775 if (fence->context == req->fence.context)
776 continue;
777
778 /* Squash repeated waits to the same timelines */
779 if (fence->context != req->i915->mm.unordered_timeline &&
780 intel_timeline_sync_is_later(req->timeline, fence))
781 continue;
782
783 if (dma_fence_is_i915(fence))
784 ret = i915_gem_request_await_request(req,
785 to_request(fence));
786 else
787 ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
788 I915_FENCE_TIMEOUT,
789 GFP_KERNEL);
790 if (ret < 0)
791 return ret;
792
793 /* Record the latest fence used against each timeline */
794 if (fence->context != req->i915->mm.unordered_timeline)
795 intel_timeline_sync_set(req->timeline, fence);
796 } while (--nchild);
797
798 return 0;
799 }
800
801 /**
802 * i915_gem_request_await_object - set this request to (async) wait upon a bo
803 *
804 * @to: request we are wishing to use
805 * @obj: object which may be in use on another ring.
806 *
807 * This code is meant to abstract object synchronization with the GPU.
808 * Conceptually we serialise writes between engines inside the GPU.
809 * We only allow one engine to write into a buffer at any time, but
810 * multiple readers. To ensure each has a coherent view of memory, we must:
811 *
812 * - If there is an outstanding write request to the object, the new
813 * request must wait for it to complete (either CPU or in hw, requests
814 * on the same ring will be naturally ordered).
815 *
816 * - If we are a write request (pending_write_domain is set), the new
817 * request must wait for outstanding read requests to complete.
818 *
819 * Returns 0 if successful, else propagates up the lower layer error.
820 */
821 int
822 i915_gem_request_await_object(struct drm_i915_gem_request *to,
823 struct drm_i915_gem_object *obj,
824 bool write)
825 {
826 struct dma_fence *excl;
827 int ret = 0;
828
829 if (write) {
830 struct dma_fence **shared;
831 unsigned int count, i;
832
833 ret = reservation_object_get_fences_rcu(obj->resv,
834 &excl, &count, &shared);
835 if (ret)
836 return ret;
837
838 for (i = 0; i < count; i++) {
839 ret = i915_gem_request_await_dma_fence(to, shared[i]);
840 if (ret)
841 break;
842
843 dma_fence_put(shared[i]);
844 }
845
846 for (; i < count; i++)
847 dma_fence_put(shared[i]);
848 kfree(shared);
849 } else {
850 excl = reservation_object_get_excl_rcu(obj->resv);
851 }
852
853 if (excl) {
854 if (ret == 0)
855 ret = i915_gem_request_await_dma_fence(to, excl);
856
857 dma_fence_put(excl);
858 }
859
860 return ret;
861 }
862
863 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
864 {
865 struct drm_i915_private *dev_priv = engine->i915;
866
867 if (dev_priv->gt.awake)
868 return;
869
870 GEM_BUG_ON(!dev_priv->gt.active_requests);
871
872 intel_runtime_pm_get_noresume(dev_priv);
873 dev_priv->gt.awake = true;
874
875 intel_enable_gt_powersave(dev_priv);
876 i915_update_gfx_val(dev_priv);
877 if (INTEL_GEN(dev_priv) >= 6)
878 gen6_rps_busy(dev_priv);
879
880 queue_delayed_work(dev_priv->wq,
881 &dev_priv->gt.retire_work,
882 round_jiffies_up_relative(HZ));
883 }
884
885 /*
886 * NB: This function is not allowed to fail. Doing so would mean the the
887 * request is not being tracked for completion but the work itself is
888 * going to happen on the hardware. This would be a Bad Thing(tm).
889 */
890 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
891 {
892 struct intel_engine_cs *engine = request->engine;
893 struct intel_ring *ring = request->ring;
894 struct intel_timeline *timeline = request->timeline;
895 struct drm_i915_gem_request *prev;
896 u32 *cs;
897 int err;
898
899 lockdep_assert_held(&request->i915->drm.struct_mutex);
900 trace_i915_gem_request_add(request);
901
902 /* Make sure that no request gazumped us - if it was allocated after
903 * our i915_gem_request_alloc() and called __i915_add_request() before
904 * us, the timeline will hold its seqno which is later than ours.
905 */
906 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
907
908 /*
909 * To ensure that this call will not fail, space for its emissions
910 * should already have been reserved in the ring buffer. Let the ring
911 * know that it is time to use that space up.
912 */
913 request->reserved_space = 0;
914
915 /*
916 * Emit any outstanding flushes - execbuf can fail to emit the flush
917 * after having emitted the batchbuffer command. Hence we need to fix
918 * things up similar to emitting the lazy request. The difference here
919 * is that the flush _must_ happen before the next request, no matter
920 * what.
921 */
922 if (flush_caches) {
923 err = engine->emit_flush(request, EMIT_FLUSH);
924
925 /* Not allowed to fail! */
926 WARN(err, "engine->emit_flush() failed: %d!\n", err);
927 }
928
929 /* Record the position of the start of the breadcrumb so that
930 * should we detect the updated seqno part-way through the
931 * GPU processing the request, we never over-estimate the
932 * position of the ring's HEAD.
933 */
934 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
935 GEM_BUG_ON(IS_ERR(cs));
936 request->postfix = intel_ring_offset(request, cs);
937
938 /* Seal the request and mark it as pending execution. Note that
939 * we may inspect this state, without holding any locks, during
940 * hangcheck. Hence we apply the barrier to ensure that we do not
941 * see a more recent value in the hws than we are tracking.
942 */
943
944 prev = i915_gem_active_raw(&timeline->last_request,
945 &request->i915->drm.struct_mutex);
946 if (prev) {
947 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
948 &request->submitq);
949 if (engine->schedule)
950 __i915_priotree_add_dependency(&request->priotree,
951 &prev->priotree,
952 &request->dep,
953 0);
954 }
955
956 spin_lock_irq(&timeline->lock);
957 list_add_tail(&request->link, &timeline->requests);
958 spin_unlock_irq(&timeline->lock);
959
960 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
961 i915_gem_active_set(&timeline->last_request, request);
962
963 list_add_tail(&request->ring_link, &ring->request_list);
964 request->emitted_jiffies = jiffies;
965
966 if (!request->i915->gt.active_requests++)
967 i915_gem_mark_busy(engine);
968
969 /* Let the backend know a new request has arrived that may need
970 * to adjust the existing execution schedule due to a high priority
971 * request - i.e. we may want to preempt the current request in order
972 * to run a high priority dependency chain *before* we can execute this
973 * request.
974 *
975 * This is called before the request is ready to run so that we can
976 * decide whether to preempt the entire chain so that it is ready to
977 * run at the earliest possible convenience.
978 */
979 if (engine->schedule)
980 engine->schedule(request, request->ctx->priority);
981
982 local_bh_disable();
983 i915_sw_fence_commit(&request->submit);
984 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
985 }
986
987 static unsigned long local_clock_us(unsigned int *cpu)
988 {
989 unsigned long t;
990
991 /* Cheaply and approximately convert from nanoseconds to microseconds.
992 * The result and subsequent calculations are also defined in the same
993 * approximate microseconds units. The principal source of timing
994 * error here is from the simple truncation.
995 *
996 * Note that local_clock() is only defined wrt to the current CPU;
997 * the comparisons are no longer valid if we switch CPUs. Instead of
998 * blocking preemption for the entire busywait, we can detect the CPU
999 * switch and use that as indicator of system load and a reason to
1000 * stop busywaiting, see busywait_stop().
1001 */
1002 *cpu = get_cpu();
1003 t = local_clock() >> 10;
1004 put_cpu();
1005
1006 return t;
1007 }
1008
1009 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1010 {
1011 unsigned int this_cpu;
1012
1013 if (time_after(local_clock_us(&this_cpu), timeout))
1014 return true;
1015
1016 return this_cpu != cpu;
1017 }
1018
1019 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1020 u32 seqno, int state, unsigned long timeout_us)
1021 {
1022 struct intel_engine_cs *engine = req->engine;
1023 unsigned int irq, cpu;
1024
1025 /* When waiting for high frequency requests, e.g. during synchronous
1026 * rendering split between the CPU and GPU, the finite amount of time
1027 * required to set up the irq and wait upon it limits the response
1028 * rate. By busywaiting on the request completion for a short while we
1029 * can service the high frequency waits as quick as possible. However,
1030 * if it is a slow request, we want to sleep as quickly as possible.
1031 * The tradeoff between waiting and sleeping is roughly the time it
1032 * takes to sleep on a request, on the order of a microsecond.
1033 */
1034
1035 irq = atomic_read(&engine->irq_count);
1036 timeout_us += local_clock_us(&cpu);
1037 do {
1038 if (seqno != i915_gem_request_global_seqno(req))
1039 break;
1040
1041 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1042 seqno))
1043 return true;
1044
1045 /* Seqno are meant to be ordered *before* the interrupt. If
1046 * we see an interrupt without a corresponding seqno advance,
1047 * assume we won't see one in the near future but require
1048 * the engine->seqno_barrier() to fixup coherency.
1049 */
1050 if (atomic_read(&engine->irq_count) != irq)
1051 break;
1052
1053 if (signal_pending_state(state, current))
1054 break;
1055
1056 if (busywait_stop(timeout_us, cpu))
1057 break;
1058
1059 cpu_relax();
1060 } while (!need_resched());
1061
1062 return false;
1063 }
1064
1065 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1066 {
1067 if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1068 return false;
1069
1070 __set_current_state(TASK_RUNNING);
1071 i915_reset(request->i915);
1072 return true;
1073 }
1074
1075 /**
1076 * i915_wait_request - wait until execution of request has finished
1077 * @req: the request to wait upon
1078 * @flags: how to wait
1079 * @timeout: how long to wait in jiffies
1080 *
1081 * i915_wait_request() waits for the request to be completed, for a
1082 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1083 * unbounded wait).
1084 *
1085 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1086 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1087 * must not specify that the wait is locked.
1088 *
1089 * Returns the remaining time (in jiffies) if the request completed, which may
1090 * be zero or -ETIME if the request is unfinished after the timeout expires.
1091 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1092 * pending before the request completes.
1093 */
1094 long i915_wait_request(struct drm_i915_gem_request *req,
1095 unsigned int flags,
1096 long timeout)
1097 {
1098 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1099 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1100 wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1101 DEFINE_WAIT_FUNC(reset, default_wake_function);
1102 DEFINE_WAIT_FUNC(exec, default_wake_function);
1103 struct intel_wait wait;
1104
1105 might_sleep();
1106 #if IS_ENABLED(CONFIG_LOCKDEP)
1107 GEM_BUG_ON(debug_locks &&
1108 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1109 !!(flags & I915_WAIT_LOCKED));
1110 #endif
1111 GEM_BUG_ON(timeout < 0);
1112
1113 if (i915_gem_request_completed(req))
1114 return timeout;
1115
1116 if (!timeout)
1117 return -ETIME;
1118
1119 trace_i915_gem_request_wait_begin(req, flags);
1120
1121 add_wait_queue(&req->execute, &exec);
1122 if (flags & I915_WAIT_LOCKED)
1123 add_wait_queue(errq, &reset);
1124
1125 intel_wait_init(&wait, req);
1126
1127 restart:
1128 do {
1129 set_current_state(state);
1130 if (intel_wait_update_request(&wait, req))
1131 break;
1132
1133 if (flags & I915_WAIT_LOCKED &&
1134 __i915_wait_request_check_and_reset(req))
1135 continue;
1136
1137 if (signal_pending_state(state, current)) {
1138 timeout = -ERESTARTSYS;
1139 goto complete;
1140 }
1141
1142 if (!timeout) {
1143 timeout = -ETIME;
1144 goto complete;
1145 }
1146
1147 timeout = io_schedule_timeout(timeout);
1148 } while (1);
1149
1150 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1151 GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1152
1153 /* Optimistic short spin before touching IRQs */
1154 if (i915_spin_request(req, state, 5))
1155 goto complete;
1156
1157 set_current_state(state);
1158 if (intel_engine_add_wait(req->engine, &wait))
1159 /* In order to check that we haven't missed the interrupt
1160 * as we enabled it, we need to kick ourselves to do a
1161 * coherent check on the seqno before we sleep.
1162 */
1163 goto wakeup;
1164
1165 if (flags & I915_WAIT_LOCKED)
1166 __i915_wait_request_check_and_reset(req);
1167
1168 for (;;) {
1169 if (signal_pending_state(state, current)) {
1170 timeout = -ERESTARTSYS;
1171 break;
1172 }
1173
1174 if (!timeout) {
1175 timeout = -ETIME;
1176 break;
1177 }
1178
1179 timeout = io_schedule_timeout(timeout);
1180
1181 if (intel_wait_complete(&wait) &&
1182 intel_wait_check_request(&wait, req))
1183 break;
1184
1185 set_current_state(state);
1186
1187 wakeup:
1188 /* Carefully check if the request is complete, giving time
1189 * for the seqno to be visible following the interrupt.
1190 * We also have to check in case we are kicked by the GPU
1191 * reset in order to drop the struct_mutex.
1192 */
1193 if (__i915_request_irq_complete(req))
1194 break;
1195
1196 /* If the GPU is hung, and we hold the lock, reset the GPU
1197 * and then check for completion. On a full reset, the engine's
1198 * HW seqno will be advanced passed us and we are complete.
1199 * If we do a partial reset, we have to wait for the GPU to
1200 * resume and update the breadcrumb.
1201 *
1202 * If we don't hold the mutex, we can just wait for the worker
1203 * to come along and update the breadcrumb (either directly
1204 * itself, or indirectly by recovering the GPU).
1205 */
1206 if (flags & I915_WAIT_LOCKED &&
1207 __i915_wait_request_check_and_reset(req))
1208 continue;
1209
1210 /* Only spin if we know the GPU is processing this request */
1211 if (i915_spin_request(req, state, 2))
1212 break;
1213
1214 if (!intel_wait_check_request(&wait, req)) {
1215 intel_engine_remove_wait(req->engine, &wait);
1216 goto restart;
1217 }
1218 }
1219
1220 intel_engine_remove_wait(req->engine, &wait);
1221 complete:
1222 __set_current_state(TASK_RUNNING);
1223 if (flags & I915_WAIT_LOCKED)
1224 remove_wait_queue(errq, &reset);
1225 remove_wait_queue(&req->execute, &exec);
1226 trace_i915_gem_request_wait_end(req);
1227
1228 return timeout;
1229 }
1230
1231 static void engine_retire_requests(struct intel_engine_cs *engine)
1232 {
1233 struct drm_i915_gem_request *request, *next;
1234 u32 seqno = intel_engine_get_seqno(engine);
1235 LIST_HEAD(retire);
1236
1237 spin_lock_irq(&engine->timeline->lock);
1238 list_for_each_entry_safe(request, next,
1239 &engine->timeline->requests, link) {
1240 if (!i915_seqno_passed(seqno, request->global_seqno))
1241 break;
1242
1243 list_move_tail(&request->link, &retire);
1244 }
1245 spin_unlock_irq(&engine->timeline->lock);
1246
1247 list_for_each_entry_safe(request, next, &retire, link)
1248 i915_gem_request_retire(request);
1249 }
1250
1251 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1252 {
1253 struct intel_engine_cs *engine;
1254 enum intel_engine_id id;
1255
1256 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1257
1258 if (!dev_priv->gt.active_requests)
1259 return;
1260
1261 for_each_engine(engine, dev_priv, id)
1262 engine_retire_requests(engine);
1263 }
1264
1265 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1266 #include "selftests/mock_request.c"
1267 #include "selftests/i915_gem_request.c"
1268 #endif