]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
Merge tag 'v4.10-rc2' into drm-intel-next-queued
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32 return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37 return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42 return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47 if (i915_fence_signaled(fence))
48 return false;
49
50 intel_engine_enable_signaling(to_request(fence));
51 return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55 bool interruptible,
56 signed long timeout)
57 {
58 return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63 struct drm_i915_gem_request *req = to_request(fence);
64
65 /* The request is put onto a RCU freelist (i.e. the address
66 * is immediately reused), mark the fences as being freed now.
67 * Otherwise the debugobjects for the fences are only marked as
68 * freed when the slab cache itself is freed, and so we would get
69 * caught trying to reuse dead objects.
70 */
71 i915_sw_fence_fini(&req->submit);
72 i915_sw_fence_fini(&req->execute);
73
74 kmem_cache_free(req->i915->requests, req);
75 }
76
77 const struct dma_fence_ops i915_fence_ops = {
78 .get_driver_name = i915_fence_get_driver_name,
79 .get_timeline_name = i915_fence_get_timeline_name,
80 .enable_signaling = i915_fence_enable_signaling,
81 .signaled = i915_fence_signaled,
82 .wait = i915_fence_wait,
83 .release = i915_fence_release,
84 };
85
86 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
87 struct drm_file *file)
88 {
89 struct drm_i915_private *dev_private;
90 struct drm_i915_file_private *file_priv;
91
92 WARN_ON(!req || !file || req->file_priv);
93
94 if (!req || !file)
95 return -EINVAL;
96
97 if (req->file_priv)
98 return -EINVAL;
99
100 dev_private = req->i915;
101 file_priv = file->driver_priv;
102
103 spin_lock(&file_priv->mm.lock);
104 req->file_priv = file_priv;
105 list_add_tail(&req->client_list, &file_priv->mm.request_list);
106 spin_unlock(&file_priv->mm.lock);
107
108 return 0;
109 }
110
111 static inline void
112 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
113 {
114 struct drm_i915_file_private *file_priv = request->file_priv;
115
116 if (!file_priv)
117 return;
118
119 spin_lock(&file_priv->mm.lock);
120 list_del(&request->client_list);
121 request->file_priv = NULL;
122 spin_unlock(&file_priv->mm.lock);
123 }
124
125 static struct i915_dependency *
126 i915_dependency_alloc(struct drm_i915_private *i915)
127 {
128 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
129 }
130
131 static void
132 i915_dependency_free(struct drm_i915_private *i915,
133 struct i915_dependency *dep)
134 {
135 kmem_cache_free(i915->dependencies, dep);
136 }
137
138 static void
139 __i915_priotree_add_dependency(struct i915_priotree *pt,
140 struct i915_priotree *signal,
141 struct i915_dependency *dep,
142 unsigned long flags)
143 {
144 INIT_LIST_HEAD(&dep->dfs_link);
145 list_add(&dep->wait_link, &signal->waiters_list);
146 list_add(&dep->signal_link, &pt->signalers_list);
147 dep->signaler = signal;
148 dep->flags = flags;
149 }
150
151 static int
152 i915_priotree_add_dependency(struct drm_i915_private *i915,
153 struct i915_priotree *pt,
154 struct i915_priotree *signal)
155 {
156 struct i915_dependency *dep;
157
158 dep = i915_dependency_alloc(i915);
159 if (!dep)
160 return -ENOMEM;
161
162 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
163 return 0;
164 }
165
166 static void
167 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
168 {
169 struct i915_dependency *dep, *next;
170
171 GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
172
173 /* Everyone we depended upon (the fences we wait to be signaled)
174 * should retire before us and remove themselves from our list.
175 * However, retirement is run independently on each timeline and
176 * so we may be called out-of-order.
177 */
178 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
179 list_del(&dep->wait_link);
180 if (dep->flags & I915_DEPENDENCY_ALLOC)
181 i915_dependency_free(i915, dep);
182 }
183
184 /* Remove ourselves from everyone who depends upon us */
185 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
186 list_del(&dep->signal_link);
187 if (dep->flags & I915_DEPENDENCY_ALLOC)
188 i915_dependency_free(i915, dep);
189 }
190 }
191
192 static void
193 i915_priotree_init(struct i915_priotree *pt)
194 {
195 INIT_LIST_HEAD(&pt->signalers_list);
196 INIT_LIST_HEAD(&pt->waiters_list);
197 RB_CLEAR_NODE(&pt->node);
198 pt->priority = INT_MIN;
199 }
200
201 void i915_gem_retire_noop(struct i915_gem_active *active,
202 struct drm_i915_gem_request *request)
203 {
204 /* Space left intentionally blank */
205 }
206
207 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
208 {
209 struct intel_engine_cs *engine = request->engine;
210 struct i915_gem_active *active, *next;
211
212 lockdep_assert_held(&request->i915->drm.struct_mutex);
213 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
214 GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
215 GEM_BUG_ON(!i915_gem_request_completed(request));
216 GEM_BUG_ON(!request->i915->gt.active_requests);
217
218 trace_i915_gem_request_retire(request);
219
220 spin_lock_irq(&engine->timeline->lock);
221 list_del_init(&request->link);
222 spin_unlock_irq(&engine->timeline->lock);
223
224 /* We know the GPU must have read the request to have
225 * sent us the seqno + interrupt, so use the position
226 * of tail of the request to update the last known position
227 * of the GPU head.
228 *
229 * Note this requires that we are always called in request
230 * completion order.
231 */
232 list_del(&request->ring_link);
233 request->ring->last_retired_head = request->postfix;
234 if (!--request->i915->gt.active_requests) {
235 GEM_BUG_ON(!request->i915->gt.awake);
236 mod_delayed_work(request->i915->wq,
237 &request->i915->gt.idle_work,
238 msecs_to_jiffies(100));
239 }
240
241 /* Walk through the active list, calling retire on each. This allows
242 * objects to track their GPU activity and mark themselves as idle
243 * when their *last* active request is completed (updating state
244 * tracking lists for eviction, active references for GEM, etc).
245 *
246 * As the ->retire() may free the node, we decouple it first and
247 * pass along the auxiliary information (to avoid dereferencing
248 * the node after the callback).
249 */
250 list_for_each_entry_safe(active, next, &request->active_list, link) {
251 /* In microbenchmarks or focusing upon time inside the kernel,
252 * we may spend an inordinate amount of time simply handling
253 * the retirement of requests and processing their callbacks.
254 * Of which, this loop itself is particularly hot due to the
255 * cache misses when jumping around the list of i915_gem_active.
256 * So we try to keep this loop as streamlined as possible and
257 * also prefetch the next i915_gem_active to try and hide
258 * the likely cache miss.
259 */
260 prefetchw(next);
261
262 INIT_LIST_HEAD(&active->link);
263 RCU_INIT_POINTER(active->request, NULL);
264
265 active->retire(active, request);
266 }
267
268 i915_gem_request_remove_from_client(request);
269
270 /* Retirement decays the ban score as it is a sign of ctx progress */
271 if (request->ctx->ban_score > 0)
272 request->ctx->ban_score--;
273
274 /* The backing object for the context is done after switching to the
275 * *next* context. Therefore we cannot retire the previous context until
276 * the next context has already started running. However, since we
277 * cannot take the required locks at i915_gem_request_submit() we
278 * defer the unpinning of the active context to now, retirement of
279 * the subsequent request.
280 */
281 if (engine->last_retired_context)
282 engine->context_unpin(engine, engine->last_retired_context);
283 engine->last_retired_context = request->ctx;
284
285 dma_fence_signal(&request->fence);
286
287 i915_priotree_fini(request->i915, &request->priotree);
288 i915_gem_request_put(request);
289 }
290
291 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
292 {
293 struct intel_engine_cs *engine = req->engine;
294 struct drm_i915_gem_request *tmp;
295
296 lockdep_assert_held(&req->i915->drm.struct_mutex);
297 GEM_BUG_ON(!i915_gem_request_completed(req));
298
299 if (list_empty(&req->link))
300 return;
301
302 do {
303 tmp = list_first_entry(&engine->timeline->requests,
304 typeof(*tmp), link);
305
306 i915_gem_request_retire(tmp);
307 } while (tmp != req);
308 }
309
310 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
311 {
312 struct i915_gpu_error *error = &dev_priv->gpu_error;
313
314 if (i915_terminally_wedged(error))
315 return -EIO;
316
317 if (i915_reset_in_progress(error)) {
318 /* Non-interruptible callers can't handle -EAGAIN, hence return
319 * -EIO unconditionally for these.
320 */
321 if (!dev_priv->mm.interruptible)
322 return -EIO;
323
324 return -EAGAIN;
325 }
326
327 return 0;
328 }
329
330 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
331 {
332 struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
333 struct intel_engine_cs *engine;
334 enum intel_engine_id id;
335 int ret;
336
337 /* Carefully retire all requests without writing to the rings */
338 ret = i915_gem_wait_for_idle(i915,
339 I915_WAIT_INTERRUPTIBLE |
340 I915_WAIT_LOCKED);
341 if (ret)
342 return ret;
343
344 i915_gem_retire_requests(i915);
345 GEM_BUG_ON(i915->gt.active_requests > 1);
346
347 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
348 if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
349 while (intel_breadcrumbs_busy(i915))
350 cond_resched(); /* spin until threads are complete */
351 }
352 atomic_set(&timeline->seqno, seqno);
353
354 /* Finally reset hw state */
355 for_each_engine(engine, i915, id)
356 intel_engine_init_global_seqno(engine, seqno);
357
358 list_for_each_entry(timeline, &i915->gt.timelines, link) {
359 for_each_engine(engine, i915, id) {
360 struct intel_timeline *tl = &timeline->engine[id];
361
362 memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
363 }
364 }
365
366 return 0;
367 }
368
369 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
370 {
371 struct drm_i915_private *dev_priv = to_i915(dev);
372
373 lockdep_assert_held(&dev_priv->drm.struct_mutex);
374
375 if (seqno == 0)
376 return -EINVAL;
377
378 /* HWS page needs to be set less than what we
379 * will inject to ring
380 */
381 return i915_gem_init_global_seqno(dev_priv, seqno - 1);
382 }
383
384 static int reserve_global_seqno(struct drm_i915_private *i915)
385 {
386 u32 active_requests = ++i915->gt.active_requests;
387 u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
388 int ret;
389
390 /* Reservation is fine until we need to wrap around */
391 if (likely(seqno + active_requests > seqno))
392 return 0;
393
394 ret = i915_gem_init_global_seqno(i915, 0);
395 if (ret) {
396 i915->gt.active_requests--;
397 return ret;
398 }
399
400 return 0;
401 }
402
403 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
404 {
405 /* seqno only incremented under a mutex */
406 return ++tl->seqno.counter;
407 }
408
409 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
410 {
411 return atomic_inc_return(&tl->seqno);
412 }
413
414 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
415 {
416 struct intel_engine_cs *engine = request->engine;
417 struct intel_timeline *timeline;
418 u32 seqno;
419
420 /* Transfer from per-context onto the global per-engine timeline */
421 timeline = engine->timeline;
422 GEM_BUG_ON(timeline == request->timeline);
423 assert_spin_locked(&timeline->lock);
424
425 seqno = timeline_get_seqno(timeline->common);
426 GEM_BUG_ON(!seqno);
427 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
428
429 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
430 request->previous_seqno = timeline->last_submitted_seqno;
431 timeline->last_submitted_seqno = seqno;
432
433 /* We may be recursing from the signal callback of another i915 fence */
434 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
435 request->global_seqno = seqno;
436 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
437 intel_engine_enable_signaling(request);
438 spin_unlock(&request->lock);
439
440 GEM_BUG_ON(!request->global_seqno);
441 engine->emit_breadcrumb(request,
442 request->ring->vaddr + request->postfix);
443
444 spin_lock(&request->timeline->lock);
445 list_move_tail(&request->link, &timeline->requests);
446 spin_unlock(&request->timeline->lock);
447
448 i915_sw_fence_commit(&request->execute);
449 }
450
451 void i915_gem_request_submit(struct drm_i915_gem_request *request)
452 {
453 struct intel_engine_cs *engine = request->engine;
454 unsigned long flags;
455
456 /* Will be called from irq-context when using foreign fences. */
457 spin_lock_irqsave(&engine->timeline->lock, flags);
458
459 __i915_gem_request_submit(request);
460
461 spin_unlock_irqrestore(&engine->timeline->lock, flags);
462 }
463
464 static int __i915_sw_fence_call
465 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
466 {
467 struct drm_i915_gem_request *request =
468 container_of(fence, typeof(*request), submit);
469
470 switch (state) {
471 case FENCE_COMPLETE:
472 request->engine->submit_request(request);
473 break;
474
475 case FENCE_FREE:
476 i915_gem_request_put(request);
477 break;
478 }
479
480 return NOTIFY_DONE;
481 }
482
483 static int __i915_sw_fence_call
484 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
485 {
486 struct drm_i915_gem_request *request =
487 container_of(fence, typeof(*request), execute);
488
489 switch (state) {
490 case FENCE_COMPLETE:
491 break;
492
493 case FENCE_FREE:
494 i915_gem_request_put(request);
495 break;
496 }
497
498 return NOTIFY_DONE;
499 }
500
501 /**
502 * i915_gem_request_alloc - allocate a request structure
503 *
504 * @engine: engine that we wish to issue the request on.
505 * @ctx: context that the request will be associated with.
506 * This can be NULL if the request is not directly related to
507 * any specific user context, in which case this function will
508 * choose an appropriate context to use.
509 *
510 * Returns a pointer to the allocated request if successful,
511 * or an error code if not.
512 */
513 struct drm_i915_gem_request *
514 i915_gem_request_alloc(struct intel_engine_cs *engine,
515 struct i915_gem_context *ctx)
516 {
517 struct drm_i915_private *dev_priv = engine->i915;
518 struct drm_i915_gem_request *req;
519 int ret;
520
521 lockdep_assert_held(&dev_priv->drm.struct_mutex);
522
523 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
524 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
525 * and restart.
526 */
527 ret = i915_gem_check_wedge(dev_priv);
528 if (ret)
529 return ERR_PTR(ret);
530
531 /* Pinning the contexts may generate requests in order to acquire
532 * GGTT space, so do this first before we reserve a seqno for
533 * ourselves.
534 */
535 ret = engine->context_pin(engine, ctx);
536 if (ret)
537 return ERR_PTR(ret);
538
539 ret = reserve_global_seqno(dev_priv);
540 if (ret)
541 goto err_unpin;
542
543 /* Move the oldest request to the slab-cache (if not in use!) */
544 req = list_first_entry_or_null(&engine->timeline->requests,
545 typeof(*req), link);
546 if (req && __i915_gem_request_completed(req))
547 i915_gem_request_retire(req);
548
549 /* Beware: Dragons be flying overhead.
550 *
551 * We use RCU to look up requests in flight. The lookups may
552 * race with the request being allocated from the slab freelist.
553 * That is the request we are writing to here, may be in the process
554 * of being read by __i915_gem_active_get_rcu(). As such,
555 * we have to be very careful when overwriting the contents. During
556 * the RCU lookup, we change chase the request->engine pointer,
557 * read the request->global_seqno and increment the reference count.
558 *
559 * The reference count is incremented atomically. If it is zero,
560 * the lookup knows the request is unallocated and complete. Otherwise,
561 * it is either still in use, or has been reallocated and reset
562 * with dma_fence_init(). This increment is safe for release as we
563 * check that the request we have a reference to and matches the active
564 * request.
565 *
566 * Before we increment the refcount, we chase the request->engine
567 * pointer. We must not call kmem_cache_zalloc() or else we set
568 * that pointer to NULL and cause a crash during the lookup. If
569 * we see the request is completed (based on the value of the
570 * old engine and seqno), the lookup is complete and reports NULL.
571 * If we decide the request is not completed (new engine or seqno),
572 * then we grab a reference and double check that it is still the
573 * active request - which it won't be and restart the lookup.
574 *
575 * Do not use kmem_cache_zalloc() here!
576 */
577 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
578 if (!req) {
579 ret = -ENOMEM;
580 goto err_unreserve;
581 }
582
583 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
584 GEM_BUG_ON(req->timeline == engine->timeline);
585
586 spin_lock_init(&req->lock);
587 dma_fence_init(&req->fence,
588 &i915_fence_ops,
589 &req->lock,
590 req->timeline->fence_context,
591 __timeline_get_seqno(req->timeline->common));
592
593 /* We bump the ref for the fence chain */
594 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
595 i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
596
597 /* Ensure that the execute fence completes after the submit fence -
598 * as we complete the execute fence from within the submit fence
599 * callback, its completion would otherwise be visible first.
600 */
601 i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
602
603 i915_priotree_init(&req->priotree);
604
605 INIT_LIST_HEAD(&req->active_list);
606 req->i915 = dev_priv;
607 req->engine = engine;
608 req->ctx = ctx;
609
610 /* No zalloc, must clear what we need by hand */
611 req->global_seqno = 0;
612 req->file_priv = NULL;
613 req->batch = NULL;
614
615 /*
616 * Reserve space in the ring buffer for all the commands required to
617 * eventually emit this request. This is to guarantee that the
618 * i915_add_request() call can't fail. Note that the reserve may need
619 * to be redone if the request is not actually submitted straight
620 * away, e.g. because a GPU scheduler has deferred it.
621 */
622 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
623 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
624
625 ret = engine->request_alloc(req);
626 if (ret)
627 goto err_ctx;
628
629 /* Record the position of the start of the request so that
630 * should we detect the updated seqno part-way through the
631 * GPU processing the request, we never over-estimate the
632 * position of the head.
633 */
634 req->head = req->ring->tail;
635
636 return req;
637
638 err_ctx:
639 /* Make sure we didn't add ourselves to external state before freeing */
640 GEM_BUG_ON(!list_empty(&req->active_list));
641 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
642 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
643
644 kmem_cache_free(dev_priv->requests, req);
645 err_unreserve:
646 dev_priv->gt.active_requests--;
647 err_unpin:
648 engine->context_unpin(engine, ctx);
649 return ERR_PTR(ret);
650 }
651
652 static int
653 i915_gem_request_await_request(struct drm_i915_gem_request *to,
654 struct drm_i915_gem_request *from)
655 {
656 int ret;
657
658 GEM_BUG_ON(to == from);
659
660 if (to->engine->schedule) {
661 ret = i915_priotree_add_dependency(to->i915,
662 &to->priotree,
663 &from->priotree);
664 if (ret < 0)
665 return ret;
666 }
667
668 if (to->timeline == from->timeline)
669 return 0;
670
671 if (to->engine == from->engine) {
672 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
673 &from->submit,
674 GFP_KERNEL);
675 return ret < 0 ? ret : 0;
676 }
677
678 if (!from->global_seqno) {
679 ret = i915_sw_fence_await_dma_fence(&to->submit,
680 &from->fence, 0,
681 GFP_KERNEL);
682 return ret < 0 ? ret : 0;
683 }
684
685 if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
686 return 0;
687
688 trace_i915_gem_ring_sync_to(to, from);
689 if (!i915.semaphores) {
690 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
691 ret = i915_sw_fence_await_dma_fence(&to->submit,
692 &from->fence, 0,
693 GFP_KERNEL);
694 if (ret < 0)
695 return ret;
696 }
697 } else {
698 ret = to->engine->semaphore.sync_to(to, from);
699 if (ret)
700 return ret;
701 }
702
703 to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
704 return 0;
705 }
706
707 int
708 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
709 struct dma_fence *fence)
710 {
711 struct dma_fence_array *array;
712 int ret;
713 int i;
714
715 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
716 return 0;
717
718 if (dma_fence_is_i915(fence))
719 return i915_gem_request_await_request(req, to_request(fence));
720
721 if (!dma_fence_is_array(fence)) {
722 ret = i915_sw_fence_await_dma_fence(&req->submit,
723 fence, I915_FENCE_TIMEOUT,
724 GFP_KERNEL);
725 return ret < 0 ? ret : 0;
726 }
727
728 /* Note that if the fence-array was created in signal-on-any mode,
729 * we should *not* decompose it into its individual fences. However,
730 * we don't currently store which mode the fence-array is operating
731 * in. Fortunately, the only user of signal-on-any is private to
732 * amdgpu and we should not see any incoming fence-array from
733 * sync-file being in signal-on-any mode.
734 */
735
736 array = to_dma_fence_array(fence);
737 for (i = 0; i < array->num_fences; i++) {
738 struct dma_fence *child = array->fences[i];
739
740 if (dma_fence_is_i915(child))
741 ret = i915_gem_request_await_request(req,
742 to_request(child));
743 else
744 ret = i915_sw_fence_await_dma_fence(&req->submit,
745 child, I915_FENCE_TIMEOUT,
746 GFP_KERNEL);
747 if (ret < 0)
748 return ret;
749 }
750
751 return 0;
752 }
753
754 /**
755 * i915_gem_request_await_object - set this request to (async) wait upon a bo
756 *
757 * @to: request we are wishing to use
758 * @obj: object which may be in use on another ring.
759 *
760 * This code is meant to abstract object synchronization with the GPU.
761 * Conceptually we serialise writes between engines inside the GPU.
762 * We only allow one engine to write into a buffer at any time, but
763 * multiple readers. To ensure each has a coherent view of memory, we must:
764 *
765 * - If there is an outstanding write request to the object, the new
766 * request must wait for it to complete (either CPU or in hw, requests
767 * on the same ring will be naturally ordered).
768 *
769 * - If we are a write request (pending_write_domain is set), the new
770 * request must wait for outstanding read requests to complete.
771 *
772 * Returns 0 if successful, else propagates up the lower layer error.
773 */
774 int
775 i915_gem_request_await_object(struct drm_i915_gem_request *to,
776 struct drm_i915_gem_object *obj,
777 bool write)
778 {
779 struct dma_fence *excl;
780 int ret = 0;
781
782 if (write) {
783 struct dma_fence **shared;
784 unsigned int count, i;
785
786 ret = reservation_object_get_fences_rcu(obj->resv,
787 &excl, &count, &shared);
788 if (ret)
789 return ret;
790
791 for (i = 0; i < count; i++) {
792 ret = i915_gem_request_await_dma_fence(to, shared[i]);
793 if (ret)
794 break;
795
796 dma_fence_put(shared[i]);
797 }
798
799 for (; i < count; i++)
800 dma_fence_put(shared[i]);
801 kfree(shared);
802 } else {
803 excl = reservation_object_get_excl_rcu(obj->resv);
804 }
805
806 if (excl) {
807 if (ret == 0)
808 ret = i915_gem_request_await_dma_fence(to, excl);
809
810 dma_fence_put(excl);
811 }
812
813 return ret;
814 }
815
816 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
817 {
818 struct drm_i915_private *dev_priv = engine->i915;
819
820 if (dev_priv->gt.awake)
821 return;
822
823 GEM_BUG_ON(!dev_priv->gt.active_requests);
824
825 intel_runtime_pm_get_noresume(dev_priv);
826 dev_priv->gt.awake = true;
827
828 intel_enable_gt_powersave(dev_priv);
829 i915_update_gfx_val(dev_priv);
830 if (INTEL_GEN(dev_priv) >= 6)
831 gen6_rps_busy(dev_priv);
832
833 queue_delayed_work(dev_priv->wq,
834 &dev_priv->gt.retire_work,
835 round_jiffies_up_relative(HZ));
836 }
837
838 /*
839 * NB: This function is not allowed to fail. Doing so would mean the the
840 * request is not being tracked for completion but the work itself is
841 * going to happen on the hardware. This would be a Bad Thing(tm).
842 */
843 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
844 {
845 struct intel_engine_cs *engine = request->engine;
846 struct intel_ring *ring = request->ring;
847 struct intel_timeline *timeline = request->timeline;
848 struct drm_i915_gem_request *prev;
849 int err;
850
851 lockdep_assert_held(&request->i915->drm.struct_mutex);
852 trace_i915_gem_request_add(request);
853
854 /*
855 * To ensure that this call will not fail, space for its emissions
856 * should already have been reserved in the ring buffer. Let the ring
857 * know that it is time to use that space up.
858 */
859 request->reserved_space = 0;
860
861 /*
862 * Emit any outstanding flushes - execbuf can fail to emit the flush
863 * after having emitted the batchbuffer command. Hence we need to fix
864 * things up similar to emitting the lazy request. The difference here
865 * is that the flush _must_ happen before the next request, no matter
866 * what.
867 */
868 if (flush_caches) {
869 err = engine->emit_flush(request, EMIT_FLUSH);
870
871 /* Not allowed to fail! */
872 WARN(err, "engine->emit_flush() failed: %d!\n", err);
873 }
874
875 /* Record the position of the start of the breadcrumb so that
876 * should we detect the updated seqno part-way through the
877 * GPU processing the request, we never over-estimate the
878 * position of the ring's HEAD.
879 */
880 err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
881 GEM_BUG_ON(err);
882 request->postfix = ring->tail;
883 ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
884
885 /* Seal the request and mark it as pending execution. Note that
886 * we may inspect this state, without holding any locks, during
887 * hangcheck. Hence we apply the barrier to ensure that we do not
888 * see a more recent value in the hws than we are tracking.
889 */
890
891 prev = i915_gem_active_raw(&timeline->last_request,
892 &request->i915->drm.struct_mutex);
893 if (prev) {
894 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
895 &request->submitq);
896 if (engine->schedule)
897 __i915_priotree_add_dependency(&request->priotree,
898 &prev->priotree,
899 &request->dep,
900 0);
901 }
902
903 spin_lock_irq(&timeline->lock);
904 list_add_tail(&request->link, &timeline->requests);
905 spin_unlock_irq(&timeline->lock);
906
907 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
908 request->fence.seqno));
909
910 timeline->last_submitted_seqno = request->fence.seqno;
911 i915_gem_active_set(&timeline->last_request, request);
912
913 list_add_tail(&request->ring_link, &ring->request_list);
914 request->emitted_jiffies = jiffies;
915
916 i915_gem_mark_busy(engine);
917
918 /* Let the backend know a new request has arrived that may need
919 * to adjust the existing execution schedule due to a high priority
920 * request - i.e. we may want to preempt the current request in order
921 * to run a high priority dependency chain *before* we can execute this
922 * request.
923 *
924 * This is called before the request is ready to run so that we can
925 * decide whether to preempt the entire chain so that it is ready to
926 * run at the earliest possible convenience.
927 */
928 if (engine->schedule)
929 engine->schedule(request, request->ctx->priority);
930
931 local_bh_disable();
932 i915_sw_fence_commit(&request->submit);
933 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
934 }
935
936 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
937 {
938 unsigned long flags;
939
940 spin_lock_irqsave(&q->lock, flags);
941 if (list_empty(&wait->task_list))
942 __add_wait_queue(q, wait);
943 spin_unlock_irqrestore(&q->lock, flags);
944 }
945
946 static unsigned long local_clock_us(unsigned int *cpu)
947 {
948 unsigned long t;
949
950 /* Cheaply and approximately convert from nanoseconds to microseconds.
951 * The result and subsequent calculations are also defined in the same
952 * approximate microseconds units. The principal source of timing
953 * error here is from the simple truncation.
954 *
955 * Note that local_clock() is only defined wrt to the current CPU;
956 * the comparisons are no longer valid if we switch CPUs. Instead of
957 * blocking preemption for the entire busywait, we can detect the CPU
958 * switch and use that as indicator of system load and a reason to
959 * stop busywaiting, see busywait_stop().
960 */
961 *cpu = get_cpu();
962 t = local_clock() >> 10;
963 put_cpu();
964
965 return t;
966 }
967
968 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
969 {
970 unsigned int this_cpu;
971
972 if (time_after(local_clock_us(&this_cpu), timeout))
973 return true;
974
975 return this_cpu != cpu;
976 }
977
978 bool __i915_spin_request(const struct drm_i915_gem_request *req,
979 int state, unsigned long timeout_us)
980 {
981 unsigned int cpu;
982
983 /* When waiting for high frequency requests, e.g. during synchronous
984 * rendering split between the CPU and GPU, the finite amount of time
985 * required to set up the irq and wait upon it limits the response
986 * rate. By busywaiting on the request completion for a short while we
987 * can service the high frequency waits as quick as possible. However,
988 * if it is a slow request, we want to sleep as quickly as possible.
989 * The tradeoff between waiting and sleeping is roughly the time it
990 * takes to sleep on a request, on the order of a microsecond.
991 */
992
993 timeout_us += local_clock_us(&cpu);
994 do {
995 if (__i915_gem_request_completed(req))
996 return true;
997
998 if (signal_pending_state(state, current))
999 break;
1000
1001 if (busywait_stop(timeout_us, cpu))
1002 break;
1003
1004 cpu_relax();
1005 } while (!need_resched());
1006
1007 return false;
1008 }
1009
1010 static long
1011 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
1012 unsigned int flags,
1013 long timeout)
1014 {
1015 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1016 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1017 wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
1018 DEFINE_WAIT(reset);
1019 DEFINE_WAIT(wait);
1020
1021 if (flags & I915_WAIT_LOCKED)
1022 add_wait_queue(q, &reset);
1023
1024 do {
1025 prepare_to_wait(&request->execute.wait, &wait, state);
1026
1027 if (i915_sw_fence_done(&request->execute))
1028 break;
1029
1030 if (flags & I915_WAIT_LOCKED &&
1031 i915_reset_in_progress(&request->i915->gpu_error)) {
1032 __set_current_state(TASK_RUNNING);
1033 i915_reset(request->i915);
1034 reset_wait_queue(q, &reset);
1035 continue;
1036 }
1037
1038 if (signal_pending_state(state, current)) {
1039 timeout = -ERESTARTSYS;
1040 break;
1041 }
1042
1043 timeout = io_schedule_timeout(timeout);
1044 } while (timeout);
1045 finish_wait(&request->execute.wait, &wait);
1046
1047 if (flags & I915_WAIT_LOCKED)
1048 remove_wait_queue(q, &reset);
1049
1050 return timeout;
1051 }
1052
1053 /**
1054 * i915_wait_request - wait until execution of request has finished
1055 * @req: the request to wait upon
1056 * @flags: how to wait
1057 * @timeout: how long to wait in jiffies
1058 *
1059 * i915_wait_request() waits for the request to be completed, for a
1060 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1061 * unbounded wait).
1062 *
1063 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1064 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1065 * must not specify that the wait is locked.
1066 *
1067 * Returns the remaining time (in jiffies) if the request completed, which may
1068 * be zero or -ETIME if the request is unfinished after the timeout expires.
1069 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1070 * pending before the request completes.
1071 */
1072 long i915_wait_request(struct drm_i915_gem_request *req,
1073 unsigned int flags,
1074 long timeout)
1075 {
1076 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1077 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1078 DEFINE_WAIT(reset);
1079 struct intel_wait wait;
1080
1081 might_sleep();
1082 #if IS_ENABLED(CONFIG_LOCKDEP)
1083 GEM_BUG_ON(debug_locks &&
1084 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1085 !!(flags & I915_WAIT_LOCKED));
1086 #endif
1087 GEM_BUG_ON(timeout < 0);
1088
1089 if (i915_gem_request_completed(req))
1090 return timeout;
1091
1092 if (!timeout)
1093 return -ETIME;
1094
1095 trace_i915_gem_request_wait_begin(req);
1096
1097 if (!i915_sw_fence_done(&req->execute)) {
1098 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1099 if (timeout < 0)
1100 goto complete;
1101
1102 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1103 }
1104 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1105 GEM_BUG_ON(!req->global_seqno);
1106
1107 /* Optimistic short spin before touching IRQs */
1108 if (i915_spin_request(req, state, 5))
1109 goto complete;
1110
1111 set_current_state(state);
1112 if (flags & I915_WAIT_LOCKED)
1113 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1114
1115 intel_wait_init(&wait, req->global_seqno);
1116 if (intel_engine_add_wait(req->engine, &wait))
1117 /* In order to check that we haven't missed the interrupt
1118 * as we enabled it, we need to kick ourselves to do a
1119 * coherent check on the seqno before we sleep.
1120 */
1121 goto wakeup;
1122
1123 for (;;) {
1124 if (signal_pending_state(state, current)) {
1125 timeout = -ERESTARTSYS;
1126 break;
1127 }
1128
1129 if (!timeout) {
1130 timeout = -ETIME;
1131 break;
1132 }
1133
1134 timeout = io_schedule_timeout(timeout);
1135
1136 if (intel_wait_complete(&wait))
1137 break;
1138
1139 set_current_state(state);
1140
1141 wakeup:
1142 /* Carefully check if the request is complete, giving time
1143 * for the seqno to be visible following the interrupt.
1144 * We also have to check in case we are kicked by the GPU
1145 * reset in order to drop the struct_mutex.
1146 */
1147 if (__i915_request_irq_complete(req))
1148 break;
1149
1150 /* If the GPU is hung, and we hold the lock, reset the GPU
1151 * and then check for completion. On a full reset, the engine's
1152 * HW seqno will be advanced passed us and we are complete.
1153 * If we do a partial reset, we have to wait for the GPU to
1154 * resume and update the breadcrumb.
1155 *
1156 * If we don't hold the mutex, we can just wait for the worker
1157 * to come along and update the breadcrumb (either directly
1158 * itself, or indirectly by recovering the GPU).
1159 */
1160 if (flags & I915_WAIT_LOCKED &&
1161 i915_reset_in_progress(&req->i915->gpu_error)) {
1162 __set_current_state(TASK_RUNNING);
1163 i915_reset(req->i915);
1164 reset_wait_queue(&req->i915->gpu_error.wait_queue,
1165 &reset);
1166 continue;
1167 }
1168
1169 /* Only spin if we know the GPU is processing this request */
1170 if (i915_spin_request(req, state, 2))
1171 break;
1172 }
1173
1174 intel_engine_remove_wait(req->engine, &wait);
1175 if (flags & I915_WAIT_LOCKED)
1176 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1177 __set_current_state(TASK_RUNNING);
1178
1179 complete:
1180 trace_i915_gem_request_wait_end(req);
1181
1182 return timeout;
1183 }
1184
1185 static void engine_retire_requests(struct intel_engine_cs *engine)
1186 {
1187 struct drm_i915_gem_request *request, *next;
1188
1189 list_for_each_entry_safe(request, next,
1190 &engine->timeline->requests, link) {
1191 if (!__i915_gem_request_completed(request))
1192 return;
1193
1194 i915_gem_request_retire(request);
1195 }
1196 }
1197
1198 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1199 {
1200 struct intel_engine_cs *engine;
1201 enum intel_engine_id id;
1202
1203 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1204
1205 if (!dev_priv->gt.active_requests)
1206 return;
1207
1208 for_each_engine(engine, dev_priv, id)
1209 engine_retire_requests(engine);
1210 }