]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
sched/headers: Prepare for the reduction of <linux/sched.h>'s signal API dependency
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35 return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40 return to_request(fence)->timeline->common->name;
41 }
42
43 static bool i915_fence_signaled(struct dma_fence *fence)
44 {
45 return i915_gem_request_completed(to_request(fence));
46 }
47
48 static bool i915_fence_enable_signaling(struct dma_fence *fence)
49 {
50 if (i915_fence_signaled(fence))
51 return false;
52
53 intel_engine_enable_signaling(to_request(fence));
54 return true;
55 }
56
57 static signed long i915_fence_wait(struct dma_fence *fence,
58 bool interruptible,
59 signed long timeout)
60 {
61 return i915_wait_request(to_request(fence), interruptible, timeout);
62 }
63
64 static void i915_fence_release(struct dma_fence *fence)
65 {
66 struct drm_i915_gem_request *req = to_request(fence);
67
68 /* The request is put onto a RCU freelist (i.e. the address
69 * is immediately reused), mark the fences as being freed now.
70 * Otherwise the debugobjects for the fences are only marked as
71 * freed when the slab cache itself is freed, and so we would get
72 * caught trying to reuse dead objects.
73 */
74 i915_sw_fence_fini(&req->submit);
75 i915_sw_fence_fini(&req->execute);
76
77 kmem_cache_free(req->i915->requests, req);
78 }
79
80 const struct dma_fence_ops i915_fence_ops = {
81 .get_driver_name = i915_fence_get_driver_name,
82 .get_timeline_name = i915_fence_get_timeline_name,
83 .enable_signaling = i915_fence_enable_signaling,
84 .signaled = i915_fence_signaled,
85 .wait = i915_fence_wait,
86 .release = i915_fence_release,
87 };
88
89 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
90 struct drm_file *file)
91 {
92 struct drm_i915_private *dev_private;
93 struct drm_i915_file_private *file_priv;
94
95 WARN_ON(!req || !file || req->file_priv);
96
97 if (!req || !file)
98 return -EINVAL;
99
100 if (req->file_priv)
101 return -EINVAL;
102
103 dev_private = req->i915;
104 file_priv = file->driver_priv;
105
106 spin_lock(&file_priv->mm.lock);
107 req->file_priv = file_priv;
108 list_add_tail(&req->client_list, &file_priv->mm.request_list);
109 spin_unlock(&file_priv->mm.lock);
110
111 return 0;
112 }
113
114 static inline void
115 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
116 {
117 struct drm_i915_file_private *file_priv = request->file_priv;
118
119 if (!file_priv)
120 return;
121
122 spin_lock(&file_priv->mm.lock);
123 list_del(&request->client_list);
124 request->file_priv = NULL;
125 spin_unlock(&file_priv->mm.lock);
126 }
127
128 static struct i915_dependency *
129 i915_dependency_alloc(struct drm_i915_private *i915)
130 {
131 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
132 }
133
134 static void
135 i915_dependency_free(struct drm_i915_private *i915,
136 struct i915_dependency *dep)
137 {
138 kmem_cache_free(i915->dependencies, dep);
139 }
140
141 static void
142 __i915_priotree_add_dependency(struct i915_priotree *pt,
143 struct i915_priotree *signal,
144 struct i915_dependency *dep,
145 unsigned long flags)
146 {
147 INIT_LIST_HEAD(&dep->dfs_link);
148 list_add(&dep->wait_link, &signal->waiters_list);
149 list_add(&dep->signal_link, &pt->signalers_list);
150 dep->signaler = signal;
151 dep->flags = flags;
152 }
153
154 static int
155 i915_priotree_add_dependency(struct drm_i915_private *i915,
156 struct i915_priotree *pt,
157 struct i915_priotree *signal)
158 {
159 struct i915_dependency *dep;
160
161 dep = i915_dependency_alloc(i915);
162 if (!dep)
163 return -ENOMEM;
164
165 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
166 return 0;
167 }
168
169 static void
170 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
171 {
172 struct i915_dependency *dep, *next;
173
174 GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
175
176 /* Everyone we depended upon (the fences we wait to be signaled)
177 * should retire before us and remove themselves from our list.
178 * However, retirement is run independently on each timeline and
179 * so we may be called out-of-order.
180 */
181 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
182 list_del(&dep->wait_link);
183 if (dep->flags & I915_DEPENDENCY_ALLOC)
184 i915_dependency_free(i915, dep);
185 }
186
187 /* Remove ourselves from everyone who depends upon us */
188 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
189 list_del(&dep->signal_link);
190 if (dep->flags & I915_DEPENDENCY_ALLOC)
191 i915_dependency_free(i915, dep);
192 }
193 }
194
195 static void
196 i915_priotree_init(struct i915_priotree *pt)
197 {
198 INIT_LIST_HEAD(&pt->signalers_list);
199 INIT_LIST_HEAD(&pt->waiters_list);
200 RB_CLEAR_NODE(&pt->node);
201 pt->priority = INT_MIN;
202 }
203
204 void i915_gem_retire_noop(struct i915_gem_active *active,
205 struct drm_i915_gem_request *request)
206 {
207 /* Space left intentionally blank */
208 }
209
210 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
211 {
212 struct intel_engine_cs *engine = request->engine;
213 struct i915_gem_active *active, *next;
214
215 lockdep_assert_held(&request->i915->drm.struct_mutex);
216 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
217 GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
218 GEM_BUG_ON(!i915_gem_request_completed(request));
219 GEM_BUG_ON(!request->i915->gt.active_requests);
220
221 trace_i915_gem_request_retire(request);
222
223 spin_lock_irq(&engine->timeline->lock);
224 list_del_init(&request->link);
225 spin_unlock_irq(&engine->timeline->lock);
226
227 /* We know the GPU must have read the request to have
228 * sent us the seqno + interrupt, so use the position
229 * of tail of the request to update the last known position
230 * of the GPU head.
231 *
232 * Note this requires that we are always called in request
233 * completion order.
234 */
235 list_del(&request->ring_link);
236 request->ring->last_retired_head = request->postfix;
237 if (!--request->i915->gt.active_requests) {
238 GEM_BUG_ON(!request->i915->gt.awake);
239 mod_delayed_work(request->i915->wq,
240 &request->i915->gt.idle_work,
241 msecs_to_jiffies(100));
242 }
243
244 /* Walk through the active list, calling retire on each. This allows
245 * objects to track their GPU activity and mark themselves as idle
246 * when their *last* active request is completed (updating state
247 * tracking lists for eviction, active references for GEM, etc).
248 *
249 * As the ->retire() may free the node, we decouple it first and
250 * pass along the auxiliary information (to avoid dereferencing
251 * the node after the callback).
252 */
253 list_for_each_entry_safe(active, next, &request->active_list, link) {
254 /* In microbenchmarks or focusing upon time inside the kernel,
255 * we may spend an inordinate amount of time simply handling
256 * the retirement of requests and processing their callbacks.
257 * Of which, this loop itself is particularly hot due to the
258 * cache misses when jumping around the list of i915_gem_active.
259 * So we try to keep this loop as streamlined as possible and
260 * also prefetch the next i915_gem_active to try and hide
261 * the likely cache miss.
262 */
263 prefetchw(next);
264
265 INIT_LIST_HEAD(&active->link);
266 RCU_INIT_POINTER(active->request, NULL);
267
268 active->retire(active, request);
269 }
270
271 i915_gem_request_remove_from_client(request);
272
273 /* Retirement decays the ban score as it is a sign of ctx progress */
274 if (request->ctx->ban_score > 0)
275 request->ctx->ban_score--;
276
277 /* The backing object for the context is done after switching to the
278 * *next* context. Therefore we cannot retire the previous context until
279 * the next context has already started running. However, since we
280 * cannot take the required locks at i915_gem_request_submit() we
281 * defer the unpinning of the active context to now, retirement of
282 * the subsequent request.
283 */
284 if (engine->last_retired_context)
285 engine->context_unpin(engine, engine->last_retired_context);
286 engine->last_retired_context = request->ctx;
287
288 dma_fence_signal(&request->fence);
289
290 i915_priotree_fini(request->i915, &request->priotree);
291 i915_gem_request_put(request);
292 }
293
294 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
295 {
296 struct intel_engine_cs *engine = req->engine;
297 struct drm_i915_gem_request *tmp;
298
299 lockdep_assert_held(&req->i915->drm.struct_mutex);
300 GEM_BUG_ON(!i915_gem_request_completed(req));
301
302 if (list_empty(&req->link))
303 return;
304
305 do {
306 tmp = list_first_entry(&engine->timeline->requests,
307 typeof(*tmp), link);
308
309 i915_gem_request_retire(tmp);
310 } while (tmp != req);
311 }
312
313 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
314 {
315 struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
316 struct intel_engine_cs *engine;
317 enum intel_engine_id id;
318 int ret;
319
320 /* Carefully retire all requests without writing to the rings */
321 ret = i915_gem_wait_for_idle(i915,
322 I915_WAIT_INTERRUPTIBLE |
323 I915_WAIT_LOCKED);
324 if (ret)
325 return ret;
326
327 i915_gem_retire_requests(i915);
328 GEM_BUG_ON(i915->gt.active_requests > 1);
329
330 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
331 if (!i915_seqno_passed(seqno, atomic_read(&timeline->seqno))) {
332 while (intel_breadcrumbs_busy(i915))
333 cond_resched(); /* spin until threads are complete */
334 }
335 atomic_set(&timeline->seqno, seqno);
336
337 /* Finally reset hw state */
338 for_each_engine(engine, i915, id)
339 intel_engine_init_global_seqno(engine, seqno);
340
341 list_for_each_entry(timeline, &i915->gt.timelines, link) {
342 for_each_engine(engine, i915, id) {
343 struct intel_timeline *tl = &timeline->engine[id];
344
345 memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
346 }
347 }
348
349 return 0;
350 }
351
352 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
353 {
354 struct drm_i915_private *dev_priv = to_i915(dev);
355
356 lockdep_assert_held(&dev_priv->drm.struct_mutex);
357
358 if (seqno == 0)
359 return -EINVAL;
360
361 /* HWS page needs to be set less than what we
362 * will inject to ring
363 */
364 return i915_gem_init_global_seqno(dev_priv, seqno - 1);
365 }
366
367 static int reserve_global_seqno(struct drm_i915_private *i915)
368 {
369 u32 active_requests = ++i915->gt.active_requests;
370 u32 seqno = atomic_read(&i915->gt.global_timeline.seqno);
371 int ret;
372
373 /* Reservation is fine until we need to wrap around */
374 if (likely(seqno + active_requests > seqno))
375 return 0;
376
377 ret = i915_gem_init_global_seqno(i915, 0);
378 if (ret) {
379 i915->gt.active_requests--;
380 return ret;
381 }
382
383 return 0;
384 }
385
386 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
387 {
388 /* seqno only incremented under a mutex */
389 return ++tl->seqno.counter;
390 }
391
392 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
393 {
394 return atomic_inc_return(&tl->seqno);
395 }
396
397 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
398 {
399 struct intel_engine_cs *engine = request->engine;
400 struct intel_timeline *timeline;
401 u32 seqno;
402
403 /* Transfer from per-context onto the global per-engine timeline */
404 timeline = engine->timeline;
405 GEM_BUG_ON(timeline == request->timeline);
406 assert_spin_locked(&timeline->lock);
407
408 seqno = timeline_get_seqno(timeline->common);
409 GEM_BUG_ON(!seqno);
410 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
411
412 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
413 request->previous_seqno = timeline->last_submitted_seqno;
414 timeline->last_submitted_seqno = seqno;
415
416 /* We may be recursing from the signal callback of another i915 fence */
417 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
418 request->global_seqno = seqno;
419 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
420 intel_engine_enable_signaling(request);
421 spin_unlock(&request->lock);
422
423 GEM_BUG_ON(!request->global_seqno);
424 engine->emit_breadcrumb(request,
425 request->ring->vaddr + request->postfix);
426
427 spin_lock(&request->timeline->lock);
428 list_move_tail(&request->link, &timeline->requests);
429 spin_unlock(&request->timeline->lock);
430
431 i915_sw_fence_commit(&request->execute);
432 }
433
434 void i915_gem_request_submit(struct drm_i915_gem_request *request)
435 {
436 struct intel_engine_cs *engine = request->engine;
437 unsigned long flags;
438
439 /* Will be called from irq-context when using foreign fences. */
440 spin_lock_irqsave(&engine->timeline->lock, flags);
441
442 __i915_gem_request_submit(request);
443
444 spin_unlock_irqrestore(&engine->timeline->lock, flags);
445 }
446
447 static int __i915_sw_fence_call
448 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
449 {
450 struct drm_i915_gem_request *request =
451 container_of(fence, typeof(*request), submit);
452
453 switch (state) {
454 case FENCE_COMPLETE:
455 request->engine->submit_request(request);
456 break;
457
458 case FENCE_FREE:
459 i915_gem_request_put(request);
460 break;
461 }
462
463 return NOTIFY_DONE;
464 }
465
466 static int __i915_sw_fence_call
467 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
468 {
469 struct drm_i915_gem_request *request =
470 container_of(fence, typeof(*request), execute);
471
472 switch (state) {
473 case FENCE_COMPLETE:
474 break;
475
476 case FENCE_FREE:
477 i915_gem_request_put(request);
478 break;
479 }
480
481 return NOTIFY_DONE;
482 }
483
484 /**
485 * i915_gem_request_alloc - allocate a request structure
486 *
487 * @engine: engine that we wish to issue the request on.
488 * @ctx: context that the request will be associated with.
489 * This can be NULL if the request is not directly related to
490 * any specific user context, in which case this function will
491 * choose an appropriate context to use.
492 *
493 * Returns a pointer to the allocated request if successful,
494 * or an error code if not.
495 */
496 struct drm_i915_gem_request *
497 i915_gem_request_alloc(struct intel_engine_cs *engine,
498 struct i915_gem_context *ctx)
499 {
500 struct drm_i915_private *dev_priv = engine->i915;
501 struct drm_i915_gem_request *req;
502 int ret;
503
504 lockdep_assert_held(&dev_priv->drm.struct_mutex);
505
506 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
507 * EIO if the GPU is already wedged.
508 */
509 if (i915_terminally_wedged(&dev_priv->gpu_error))
510 return ERR_PTR(-EIO);
511
512 /* Pinning the contexts may generate requests in order to acquire
513 * GGTT space, so do this first before we reserve a seqno for
514 * ourselves.
515 */
516 ret = engine->context_pin(engine, ctx);
517 if (ret)
518 return ERR_PTR(ret);
519
520 ret = reserve_global_seqno(dev_priv);
521 if (ret)
522 goto err_unpin;
523
524 /* Move the oldest request to the slab-cache (if not in use!) */
525 req = list_first_entry_or_null(&engine->timeline->requests,
526 typeof(*req), link);
527 if (req && __i915_gem_request_completed(req))
528 i915_gem_request_retire(req);
529
530 /* Beware: Dragons be flying overhead.
531 *
532 * We use RCU to look up requests in flight. The lookups may
533 * race with the request being allocated from the slab freelist.
534 * That is the request we are writing to here, may be in the process
535 * of being read by __i915_gem_active_get_rcu(). As such,
536 * we have to be very careful when overwriting the contents. During
537 * the RCU lookup, we change chase the request->engine pointer,
538 * read the request->global_seqno and increment the reference count.
539 *
540 * The reference count is incremented atomically. If it is zero,
541 * the lookup knows the request is unallocated and complete. Otherwise,
542 * it is either still in use, or has been reallocated and reset
543 * with dma_fence_init(). This increment is safe for release as we
544 * check that the request we have a reference to and matches the active
545 * request.
546 *
547 * Before we increment the refcount, we chase the request->engine
548 * pointer. We must not call kmem_cache_zalloc() or else we set
549 * that pointer to NULL and cause a crash during the lookup. If
550 * we see the request is completed (based on the value of the
551 * old engine and seqno), the lookup is complete and reports NULL.
552 * If we decide the request is not completed (new engine or seqno),
553 * then we grab a reference and double check that it is still the
554 * active request - which it won't be and restart the lookup.
555 *
556 * Do not use kmem_cache_zalloc() here!
557 */
558 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
559 if (!req) {
560 ret = -ENOMEM;
561 goto err_unreserve;
562 }
563
564 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
565 GEM_BUG_ON(req->timeline == engine->timeline);
566
567 spin_lock_init(&req->lock);
568 dma_fence_init(&req->fence,
569 &i915_fence_ops,
570 &req->lock,
571 req->timeline->fence_context,
572 __timeline_get_seqno(req->timeline->common));
573
574 /* We bump the ref for the fence chain */
575 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
576 i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
577
578 /* Ensure that the execute fence completes after the submit fence -
579 * as we complete the execute fence from within the submit fence
580 * callback, its completion would otherwise be visible first.
581 */
582 i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
583
584 i915_priotree_init(&req->priotree);
585
586 INIT_LIST_HEAD(&req->active_list);
587 req->i915 = dev_priv;
588 req->engine = engine;
589 req->ctx = ctx;
590
591 /* No zalloc, must clear what we need by hand */
592 req->global_seqno = 0;
593 req->file_priv = NULL;
594 req->batch = NULL;
595
596 /*
597 * Reserve space in the ring buffer for all the commands required to
598 * eventually emit this request. This is to guarantee that the
599 * i915_add_request() call can't fail. Note that the reserve may need
600 * to be redone if the request is not actually submitted straight
601 * away, e.g. because a GPU scheduler has deferred it.
602 */
603 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
604 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
605
606 ret = engine->request_alloc(req);
607 if (ret)
608 goto err_ctx;
609
610 /* Record the position of the start of the request so that
611 * should we detect the updated seqno part-way through the
612 * GPU processing the request, we never over-estimate the
613 * position of the head.
614 */
615 req->head = req->ring->tail;
616
617 return req;
618
619 err_ctx:
620 /* Make sure we didn't add ourselves to external state before freeing */
621 GEM_BUG_ON(!list_empty(&req->active_list));
622 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
623 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
624
625 kmem_cache_free(dev_priv->requests, req);
626 err_unreserve:
627 dev_priv->gt.active_requests--;
628 err_unpin:
629 engine->context_unpin(engine, ctx);
630 return ERR_PTR(ret);
631 }
632
633 static int
634 i915_gem_request_await_request(struct drm_i915_gem_request *to,
635 struct drm_i915_gem_request *from)
636 {
637 int ret;
638
639 GEM_BUG_ON(to == from);
640
641 if (to->engine->schedule) {
642 ret = i915_priotree_add_dependency(to->i915,
643 &to->priotree,
644 &from->priotree);
645 if (ret < 0)
646 return ret;
647 }
648
649 if (to->timeline == from->timeline)
650 return 0;
651
652 if (to->engine == from->engine) {
653 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
654 &from->submit,
655 GFP_KERNEL);
656 return ret < 0 ? ret : 0;
657 }
658
659 if (!from->global_seqno) {
660 ret = i915_sw_fence_await_dma_fence(&to->submit,
661 &from->fence, 0,
662 GFP_KERNEL);
663 return ret < 0 ? ret : 0;
664 }
665
666 if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
667 return 0;
668
669 trace_i915_gem_ring_sync_to(to, from);
670 if (!i915.semaphores) {
671 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
672 ret = i915_sw_fence_await_dma_fence(&to->submit,
673 &from->fence, 0,
674 GFP_KERNEL);
675 if (ret < 0)
676 return ret;
677 }
678 } else {
679 ret = to->engine->semaphore.sync_to(to, from);
680 if (ret)
681 return ret;
682 }
683
684 to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
685 return 0;
686 }
687
688 int
689 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
690 struct dma_fence *fence)
691 {
692 struct dma_fence_array *array;
693 int ret;
694 int i;
695
696 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
697 return 0;
698
699 if (dma_fence_is_i915(fence))
700 return i915_gem_request_await_request(req, to_request(fence));
701
702 if (!dma_fence_is_array(fence)) {
703 ret = i915_sw_fence_await_dma_fence(&req->submit,
704 fence, I915_FENCE_TIMEOUT,
705 GFP_KERNEL);
706 return ret < 0 ? ret : 0;
707 }
708
709 /* Note that if the fence-array was created in signal-on-any mode,
710 * we should *not* decompose it into its individual fences. However,
711 * we don't currently store which mode the fence-array is operating
712 * in. Fortunately, the only user of signal-on-any is private to
713 * amdgpu and we should not see any incoming fence-array from
714 * sync-file being in signal-on-any mode.
715 */
716
717 array = to_dma_fence_array(fence);
718 for (i = 0; i < array->num_fences; i++) {
719 struct dma_fence *child = array->fences[i];
720
721 if (dma_fence_is_i915(child))
722 ret = i915_gem_request_await_request(req,
723 to_request(child));
724 else
725 ret = i915_sw_fence_await_dma_fence(&req->submit,
726 child, I915_FENCE_TIMEOUT,
727 GFP_KERNEL);
728 if (ret < 0)
729 return ret;
730 }
731
732 return 0;
733 }
734
735 /**
736 * i915_gem_request_await_object - set this request to (async) wait upon a bo
737 *
738 * @to: request we are wishing to use
739 * @obj: object which may be in use on another ring.
740 *
741 * This code is meant to abstract object synchronization with the GPU.
742 * Conceptually we serialise writes between engines inside the GPU.
743 * We only allow one engine to write into a buffer at any time, but
744 * multiple readers. To ensure each has a coherent view of memory, we must:
745 *
746 * - If there is an outstanding write request to the object, the new
747 * request must wait for it to complete (either CPU or in hw, requests
748 * on the same ring will be naturally ordered).
749 *
750 * - If we are a write request (pending_write_domain is set), the new
751 * request must wait for outstanding read requests to complete.
752 *
753 * Returns 0 if successful, else propagates up the lower layer error.
754 */
755 int
756 i915_gem_request_await_object(struct drm_i915_gem_request *to,
757 struct drm_i915_gem_object *obj,
758 bool write)
759 {
760 struct dma_fence *excl;
761 int ret = 0;
762
763 if (write) {
764 struct dma_fence **shared;
765 unsigned int count, i;
766
767 ret = reservation_object_get_fences_rcu(obj->resv,
768 &excl, &count, &shared);
769 if (ret)
770 return ret;
771
772 for (i = 0; i < count; i++) {
773 ret = i915_gem_request_await_dma_fence(to, shared[i]);
774 if (ret)
775 break;
776
777 dma_fence_put(shared[i]);
778 }
779
780 for (; i < count; i++)
781 dma_fence_put(shared[i]);
782 kfree(shared);
783 } else {
784 excl = reservation_object_get_excl_rcu(obj->resv);
785 }
786
787 if (excl) {
788 if (ret == 0)
789 ret = i915_gem_request_await_dma_fence(to, excl);
790
791 dma_fence_put(excl);
792 }
793
794 return ret;
795 }
796
797 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
798 {
799 struct drm_i915_private *dev_priv = engine->i915;
800
801 if (dev_priv->gt.awake)
802 return;
803
804 GEM_BUG_ON(!dev_priv->gt.active_requests);
805
806 intel_runtime_pm_get_noresume(dev_priv);
807 dev_priv->gt.awake = true;
808
809 intel_enable_gt_powersave(dev_priv);
810 i915_update_gfx_val(dev_priv);
811 if (INTEL_GEN(dev_priv) >= 6)
812 gen6_rps_busy(dev_priv);
813
814 queue_delayed_work(dev_priv->wq,
815 &dev_priv->gt.retire_work,
816 round_jiffies_up_relative(HZ));
817 }
818
819 /*
820 * NB: This function is not allowed to fail. Doing so would mean the the
821 * request is not being tracked for completion but the work itself is
822 * going to happen on the hardware. This would be a Bad Thing(tm).
823 */
824 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
825 {
826 struct intel_engine_cs *engine = request->engine;
827 struct intel_ring *ring = request->ring;
828 struct intel_timeline *timeline = request->timeline;
829 struct drm_i915_gem_request *prev;
830 int err;
831
832 lockdep_assert_held(&request->i915->drm.struct_mutex);
833 trace_i915_gem_request_add(request);
834
835 /* Make sure that no request gazumped us - if it was allocated after
836 * our i915_gem_request_alloc() and called __i915_add_request() before
837 * us, the timeline will hold its seqno which is later than ours.
838 */
839 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
840 request->fence.seqno));
841
842 /*
843 * To ensure that this call will not fail, space for its emissions
844 * should already have been reserved in the ring buffer. Let the ring
845 * know that it is time to use that space up.
846 */
847 request->reserved_space = 0;
848
849 /*
850 * Emit any outstanding flushes - execbuf can fail to emit the flush
851 * after having emitted the batchbuffer command. Hence we need to fix
852 * things up similar to emitting the lazy request. The difference here
853 * is that the flush _must_ happen before the next request, no matter
854 * what.
855 */
856 if (flush_caches) {
857 err = engine->emit_flush(request, EMIT_FLUSH);
858
859 /* Not allowed to fail! */
860 WARN(err, "engine->emit_flush() failed: %d!\n", err);
861 }
862
863 /* Record the position of the start of the breadcrumb so that
864 * should we detect the updated seqno part-way through the
865 * GPU processing the request, we never over-estimate the
866 * position of the ring's HEAD.
867 */
868 err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
869 GEM_BUG_ON(err);
870 request->postfix = ring->tail;
871 ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
872
873 /* Seal the request and mark it as pending execution. Note that
874 * we may inspect this state, without holding any locks, during
875 * hangcheck. Hence we apply the barrier to ensure that we do not
876 * see a more recent value in the hws than we are tracking.
877 */
878
879 prev = i915_gem_active_raw(&timeline->last_request,
880 &request->i915->drm.struct_mutex);
881 if (prev) {
882 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
883 &request->submitq);
884 if (engine->schedule)
885 __i915_priotree_add_dependency(&request->priotree,
886 &prev->priotree,
887 &request->dep,
888 0);
889 }
890
891 spin_lock_irq(&timeline->lock);
892 list_add_tail(&request->link, &timeline->requests);
893 spin_unlock_irq(&timeline->lock);
894
895 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
896 request->fence.seqno));
897
898 timeline->last_submitted_seqno = request->fence.seqno;
899 i915_gem_active_set(&timeline->last_request, request);
900
901 list_add_tail(&request->ring_link, &ring->request_list);
902 request->emitted_jiffies = jiffies;
903
904 i915_gem_mark_busy(engine);
905
906 /* Let the backend know a new request has arrived that may need
907 * to adjust the existing execution schedule due to a high priority
908 * request - i.e. we may want to preempt the current request in order
909 * to run a high priority dependency chain *before* we can execute this
910 * request.
911 *
912 * This is called before the request is ready to run so that we can
913 * decide whether to preempt the entire chain so that it is ready to
914 * run at the earliest possible convenience.
915 */
916 if (engine->schedule)
917 engine->schedule(request, request->ctx->priority);
918
919 local_bh_disable();
920 i915_sw_fence_commit(&request->submit);
921 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
922 }
923
924 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
925 {
926 unsigned long flags;
927
928 spin_lock_irqsave(&q->lock, flags);
929 if (list_empty(&wait->task_list))
930 __add_wait_queue(q, wait);
931 spin_unlock_irqrestore(&q->lock, flags);
932 }
933
934 static unsigned long local_clock_us(unsigned int *cpu)
935 {
936 unsigned long t;
937
938 /* Cheaply and approximately convert from nanoseconds to microseconds.
939 * The result and subsequent calculations are also defined in the same
940 * approximate microseconds units. The principal source of timing
941 * error here is from the simple truncation.
942 *
943 * Note that local_clock() is only defined wrt to the current CPU;
944 * the comparisons are no longer valid if we switch CPUs. Instead of
945 * blocking preemption for the entire busywait, we can detect the CPU
946 * switch and use that as indicator of system load and a reason to
947 * stop busywaiting, see busywait_stop().
948 */
949 *cpu = get_cpu();
950 t = local_clock() >> 10;
951 put_cpu();
952
953 return t;
954 }
955
956 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
957 {
958 unsigned int this_cpu;
959
960 if (time_after(local_clock_us(&this_cpu), timeout))
961 return true;
962
963 return this_cpu != cpu;
964 }
965
966 bool __i915_spin_request(const struct drm_i915_gem_request *req,
967 int state, unsigned long timeout_us)
968 {
969 unsigned int cpu;
970
971 /* When waiting for high frequency requests, e.g. during synchronous
972 * rendering split between the CPU and GPU, the finite amount of time
973 * required to set up the irq and wait upon it limits the response
974 * rate. By busywaiting on the request completion for a short while we
975 * can service the high frequency waits as quick as possible. However,
976 * if it is a slow request, we want to sleep as quickly as possible.
977 * The tradeoff between waiting and sleeping is roughly the time it
978 * takes to sleep on a request, on the order of a microsecond.
979 */
980
981 timeout_us += local_clock_us(&cpu);
982 do {
983 if (__i915_gem_request_completed(req))
984 return true;
985
986 if (signal_pending_state(state, current))
987 break;
988
989 if (busywait_stop(timeout_us, cpu))
990 break;
991
992 cpu_relax();
993 } while (!need_resched());
994
995 return false;
996 }
997
998 static long
999 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
1000 unsigned int flags,
1001 long timeout)
1002 {
1003 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1004 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1005 wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
1006 DEFINE_WAIT(reset);
1007 DEFINE_WAIT(wait);
1008
1009 if (flags & I915_WAIT_LOCKED)
1010 add_wait_queue(q, &reset);
1011
1012 do {
1013 prepare_to_wait(&request->execute.wait, &wait, state);
1014
1015 if (i915_sw_fence_done(&request->execute))
1016 break;
1017
1018 if (flags & I915_WAIT_LOCKED &&
1019 i915_reset_in_progress(&request->i915->gpu_error)) {
1020 __set_current_state(TASK_RUNNING);
1021 i915_reset(request->i915);
1022 reset_wait_queue(q, &reset);
1023 continue;
1024 }
1025
1026 if (signal_pending_state(state, current)) {
1027 timeout = -ERESTARTSYS;
1028 break;
1029 }
1030
1031 if (!timeout) {
1032 timeout = -ETIME;
1033 break;
1034 }
1035
1036 timeout = io_schedule_timeout(timeout);
1037 } while (1);
1038 finish_wait(&request->execute.wait, &wait);
1039
1040 if (flags & I915_WAIT_LOCKED)
1041 remove_wait_queue(q, &reset);
1042
1043 return timeout;
1044 }
1045
1046 /**
1047 * i915_wait_request - wait until execution of request has finished
1048 * @req: the request to wait upon
1049 * @flags: how to wait
1050 * @timeout: how long to wait in jiffies
1051 *
1052 * i915_wait_request() waits for the request to be completed, for a
1053 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1054 * unbounded wait).
1055 *
1056 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1057 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1058 * must not specify that the wait is locked.
1059 *
1060 * Returns the remaining time (in jiffies) if the request completed, which may
1061 * be zero or -ETIME if the request is unfinished after the timeout expires.
1062 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1063 * pending before the request completes.
1064 */
1065 long i915_wait_request(struct drm_i915_gem_request *req,
1066 unsigned int flags,
1067 long timeout)
1068 {
1069 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1070 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1071 DEFINE_WAIT(reset);
1072 struct intel_wait wait;
1073
1074 might_sleep();
1075 #if IS_ENABLED(CONFIG_LOCKDEP)
1076 GEM_BUG_ON(debug_locks &&
1077 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1078 !!(flags & I915_WAIT_LOCKED));
1079 #endif
1080 GEM_BUG_ON(timeout < 0);
1081
1082 if (i915_gem_request_completed(req))
1083 return timeout;
1084
1085 if (!timeout)
1086 return -ETIME;
1087
1088 trace_i915_gem_request_wait_begin(req);
1089
1090 if (!i915_sw_fence_done(&req->execute)) {
1091 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1092 if (timeout < 0)
1093 goto complete;
1094
1095 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1096 }
1097 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1098 GEM_BUG_ON(!req->global_seqno);
1099
1100 /* Optimistic short spin before touching IRQs */
1101 if (i915_spin_request(req, state, 5))
1102 goto complete;
1103
1104 set_current_state(state);
1105 if (flags & I915_WAIT_LOCKED)
1106 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1107
1108 intel_wait_init(&wait, req->global_seqno);
1109 if (intel_engine_add_wait(req->engine, &wait))
1110 /* In order to check that we haven't missed the interrupt
1111 * as we enabled it, we need to kick ourselves to do a
1112 * coherent check on the seqno before we sleep.
1113 */
1114 goto wakeup;
1115
1116 for (;;) {
1117 if (signal_pending_state(state, current)) {
1118 timeout = -ERESTARTSYS;
1119 break;
1120 }
1121
1122 if (!timeout) {
1123 timeout = -ETIME;
1124 break;
1125 }
1126
1127 timeout = io_schedule_timeout(timeout);
1128
1129 if (intel_wait_complete(&wait))
1130 break;
1131
1132 set_current_state(state);
1133
1134 wakeup:
1135 /* Carefully check if the request is complete, giving time
1136 * for the seqno to be visible following the interrupt.
1137 * We also have to check in case we are kicked by the GPU
1138 * reset in order to drop the struct_mutex.
1139 */
1140 if (__i915_request_irq_complete(req))
1141 break;
1142
1143 /* If the GPU is hung, and we hold the lock, reset the GPU
1144 * and then check for completion. On a full reset, the engine's
1145 * HW seqno will be advanced passed us and we are complete.
1146 * If we do a partial reset, we have to wait for the GPU to
1147 * resume and update the breadcrumb.
1148 *
1149 * If we don't hold the mutex, we can just wait for the worker
1150 * to come along and update the breadcrumb (either directly
1151 * itself, or indirectly by recovering the GPU).
1152 */
1153 if (flags & I915_WAIT_LOCKED &&
1154 i915_reset_in_progress(&req->i915->gpu_error)) {
1155 __set_current_state(TASK_RUNNING);
1156 i915_reset(req->i915);
1157 reset_wait_queue(&req->i915->gpu_error.wait_queue,
1158 &reset);
1159 continue;
1160 }
1161
1162 /* Only spin if we know the GPU is processing this request */
1163 if (i915_spin_request(req, state, 2))
1164 break;
1165 }
1166
1167 intel_engine_remove_wait(req->engine, &wait);
1168 if (flags & I915_WAIT_LOCKED)
1169 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1170 __set_current_state(TASK_RUNNING);
1171
1172 complete:
1173 trace_i915_gem_request_wait_end(req);
1174
1175 return timeout;
1176 }
1177
1178 static void engine_retire_requests(struct intel_engine_cs *engine)
1179 {
1180 struct drm_i915_gem_request *request, *next;
1181
1182 list_for_each_entry_safe(request, next,
1183 &engine->timeline->requests, link) {
1184 if (!__i915_gem_request_completed(request))
1185 return;
1186
1187 i915_gem_request_retire(request);
1188 }
1189 }
1190
1191 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1192 {
1193 struct intel_engine_cs *engine;
1194 enum intel_engine_id id;
1195
1196 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1197
1198 if (!dev_priv->gt.active_requests)
1199 return;
1200
1201 for_each_engine(engine, dev_priv, id)
1202 engine_retire_requests(engine);
1203 }