]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
drm/i915: Disable waitboosting for fence_wait()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "i915_drv.h"
26
27 static const char *i915_fence_get_driver_name(struct fence *fence)
28 {
29 return "i915";
30 }
31
32 static const char *i915_fence_get_timeline_name(struct fence *fence)
33 {
34 /* Timelines are bound by eviction to a VM. However, since
35 * we only have a global seqno at the moment, we only have
36 * a single timeline. Note that each timeline will have
37 * multiple execution contexts (fence contexts) as we allow
38 * engines within a single timeline to execute in parallel.
39 */
40 return "global";
41 }
42
43 static bool i915_fence_signaled(struct fence *fence)
44 {
45 return i915_gem_request_completed(to_request(fence));
46 }
47
48 static bool i915_fence_enable_signaling(struct fence *fence)
49 {
50 if (i915_fence_signaled(fence))
51 return false;
52
53 intel_engine_enable_signaling(to_request(fence));
54 return true;
55 }
56
57 static signed long i915_fence_wait(struct fence *fence,
58 bool interruptible,
59 signed long timeout_jiffies)
60 {
61 s64 timeout_ns, *timeout;
62 int ret;
63
64 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT) {
65 timeout_ns = jiffies_to_nsecs(timeout_jiffies);
66 timeout = &timeout_ns;
67 } else {
68 timeout = NULL;
69 }
70
71 ret = __i915_wait_request(to_request(fence),
72 interruptible, timeout,
73 NO_WAITBOOST);
74 if (ret == -ETIME)
75 return 0;
76
77 if (ret < 0)
78 return ret;
79
80 if (timeout_jiffies != MAX_SCHEDULE_TIMEOUT)
81 timeout_jiffies = nsecs_to_jiffies(timeout_ns);
82
83 return timeout_jiffies;
84 }
85
86 static void i915_fence_value_str(struct fence *fence, char *str, int size)
87 {
88 snprintf(str, size, "%u", fence->seqno);
89 }
90
91 static void i915_fence_timeline_value_str(struct fence *fence, char *str,
92 int size)
93 {
94 snprintf(str, size, "%u",
95 intel_engine_get_seqno(to_request(fence)->engine));
96 }
97
98 static void i915_fence_release(struct fence *fence)
99 {
100 struct drm_i915_gem_request *req = to_request(fence);
101
102 kmem_cache_free(req->i915->requests, req);
103 }
104
105 const struct fence_ops i915_fence_ops = {
106 .get_driver_name = i915_fence_get_driver_name,
107 .get_timeline_name = i915_fence_get_timeline_name,
108 .enable_signaling = i915_fence_enable_signaling,
109 .signaled = i915_fence_signaled,
110 .wait = i915_fence_wait,
111 .release = i915_fence_release,
112 .fence_value_str = i915_fence_value_str,
113 .timeline_value_str = i915_fence_timeline_value_str,
114 };
115
116 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
117 struct drm_file *file)
118 {
119 struct drm_i915_private *dev_private;
120 struct drm_i915_file_private *file_priv;
121
122 WARN_ON(!req || !file || req->file_priv);
123
124 if (!req || !file)
125 return -EINVAL;
126
127 if (req->file_priv)
128 return -EINVAL;
129
130 dev_private = req->i915;
131 file_priv = file->driver_priv;
132
133 spin_lock(&file_priv->mm.lock);
134 req->file_priv = file_priv;
135 list_add_tail(&req->client_list, &file_priv->mm.request_list);
136 spin_unlock(&file_priv->mm.lock);
137
138 req->pid = get_pid(task_pid(current));
139
140 return 0;
141 }
142
143 static inline void
144 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
145 {
146 struct drm_i915_file_private *file_priv = request->file_priv;
147
148 if (!file_priv)
149 return;
150
151 spin_lock(&file_priv->mm.lock);
152 list_del(&request->client_list);
153 request->file_priv = NULL;
154 spin_unlock(&file_priv->mm.lock);
155
156 put_pid(request->pid);
157 request->pid = NULL;
158 }
159
160 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
161 {
162 trace_i915_gem_request_retire(request);
163 list_del_init(&request->list);
164
165 /* We know the GPU must have read the request to have
166 * sent us the seqno + interrupt, so use the position
167 * of tail of the request to update the last known position
168 * of the GPU head.
169 *
170 * Note this requires that we are always called in request
171 * completion order.
172 */
173 request->ringbuf->last_retired_head = request->postfix;
174
175 i915_gem_request_remove_from_client(request);
176
177 if (request->previous_context) {
178 if (i915.enable_execlists)
179 intel_lr_context_unpin(request->previous_context,
180 request->engine);
181 }
182
183 i915_gem_context_unreference(request->ctx);
184 i915_gem_request_unreference(request);
185 }
186
187 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
188 {
189 struct intel_engine_cs *engine = req->engine;
190 struct drm_i915_gem_request *tmp;
191
192 lockdep_assert_held(&req->i915->drm.struct_mutex);
193
194 if (list_empty(&req->list))
195 return;
196
197 do {
198 tmp = list_first_entry(&engine->request_list,
199 typeof(*tmp), list);
200
201 i915_gem_request_retire(tmp);
202 } while (tmp != req);
203
204 WARN_ON(i915_verify_lists(engine->dev));
205 }
206
207 static int i915_gem_check_wedge(unsigned int reset_counter, bool interruptible)
208 {
209 if (__i915_terminally_wedged(reset_counter))
210 return -EIO;
211
212 if (__i915_reset_in_progress(reset_counter)) {
213 /* Non-interruptible callers can't handle -EAGAIN, hence return
214 * -EIO unconditionally for these.
215 */
216 if (!interruptible)
217 return -EIO;
218
219 return -EAGAIN;
220 }
221
222 return 0;
223 }
224
225 static int i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
226 {
227 struct intel_engine_cs *engine;
228 int ret;
229
230 /* Carefully retire all requests without writing to the rings */
231 for_each_engine(engine, dev_priv) {
232 ret = intel_engine_idle(engine);
233 if (ret)
234 return ret;
235 }
236 i915_gem_retire_requests(dev_priv);
237
238 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
239 if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
240 while (intel_kick_waiters(dev_priv) ||
241 intel_kick_signalers(dev_priv))
242 yield();
243 }
244
245 /* Finally reset hw state */
246 for_each_engine(engine, dev_priv)
247 intel_ring_init_seqno(engine, seqno);
248
249 return 0;
250 }
251
252 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
253 {
254 struct drm_i915_private *dev_priv = to_i915(dev);
255 int ret;
256
257 if (seqno == 0)
258 return -EINVAL;
259
260 /* HWS page needs to be set less than what we
261 * will inject to ring
262 */
263 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
264 if (ret)
265 return ret;
266
267 /* Carefully set the last_seqno value so that wrap
268 * detection still works
269 */
270 dev_priv->next_seqno = seqno;
271 dev_priv->last_seqno = seqno - 1;
272 if (dev_priv->last_seqno == 0)
273 dev_priv->last_seqno--;
274
275 return 0;
276 }
277
278 static int i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
279 {
280 /* reserve 0 for non-seqno */
281 if (unlikely(dev_priv->next_seqno == 0)) {
282 int ret;
283
284 ret = i915_gem_init_seqno(dev_priv, 0);
285 if (ret)
286 return ret;
287
288 dev_priv->next_seqno = 1;
289 }
290
291 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
292 return 0;
293 }
294
295 static inline int
296 __i915_gem_request_alloc(struct intel_engine_cs *engine,
297 struct i915_gem_context *ctx,
298 struct drm_i915_gem_request **req_out)
299 {
300 struct drm_i915_private *dev_priv = engine->i915;
301 unsigned int reset_counter = i915_reset_counter(&dev_priv->gpu_error);
302 struct drm_i915_gem_request *req;
303 u32 seqno;
304 int ret;
305
306 if (!req_out)
307 return -EINVAL;
308
309 *req_out = NULL;
310
311 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
312 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
313 * and restart.
314 */
315 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
316 if (ret)
317 return ret;
318
319 /* Move the oldest request to the slab-cache (if not in use!) */
320 if (!list_empty(&engine->request_list)) {
321 req = list_first_entry(&engine->request_list,
322 typeof(*req), list);
323 if (i915_gem_request_completed(req))
324 i915_gem_request_retire(req);
325 }
326
327 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
328 if (!req)
329 return -ENOMEM;
330
331 ret = i915_gem_get_seqno(dev_priv, &seqno);
332 if (ret)
333 goto err;
334
335 spin_lock_init(&req->lock);
336 fence_init(&req->fence,
337 &i915_fence_ops,
338 &req->lock,
339 engine->fence_context,
340 seqno);
341
342 req->i915 = dev_priv;
343 req->engine = engine;
344 req->ctx = ctx;
345 i915_gem_context_reference(ctx);
346
347 /*
348 * Reserve space in the ring buffer for all the commands required to
349 * eventually emit this request. This is to guarantee that the
350 * i915_add_request() call can't fail. Note that the reserve may need
351 * to be redone if the request is not actually submitted straight
352 * away, e.g. because a GPU scheduler has deferred it.
353 */
354 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
355
356 if (i915.enable_execlists)
357 ret = intel_logical_ring_alloc_request_extras(req);
358 else
359 ret = intel_ring_alloc_request_extras(req);
360 if (ret)
361 goto err_ctx;
362
363 *req_out = req;
364 return 0;
365
366 err_ctx:
367 i915_gem_context_unreference(ctx);
368 err:
369 kmem_cache_free(dev_priv->requests, req);
370 return ret;
371 }
372
373 /**
374 * i915_gem_request_alloc - allocate a request structure
375 *
376 * @engine: engine that we wish to issue the request on.
377 * @ctx: context that the request will be associated with.
378 * This can be NULL if the request is not directly related to
379 * any specific user context, in which case this function will
380 * choose an appropriate context to use.
381 *
382 * Returns a pointer to the allocated request if successful,
383 * or an error code if not.
384 */
385 struct drm_i915_gem_request *
386 i915_gem_request_alloc(struct intel_engine_cs *engine,
387 struct i915_gem_context *ctx)
388 {
389 struct drm_i915_gem_request *req;
390 int err;
391
392 if (!ctx)
393 ctx = engine->i915->kernel_context;
394 err = __i915_gem_request_alloc(engine, ctx, &req);
395 return err ? ERR_PTR(err) : req;
396 }
397
398 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
399 {
400 struct drm_i915_private *dev_priv = engine->i915;
401
402 dev_priv->gt.active_engines |= intel_engine_flag(engine);
403 if (dev_priv->gt.awake)
404 return;
405
406 intel_runtime_pm_get_noresume(dev_priv);
407 dev_priv->gt.awake = true;
408
409 intel_enable_gt_powersave(dev_priv);
410 i915_update_gfx_val(dev_priv);
411 if (INTEL_GEN(dev_priv) >= 6)
412 gen6_rps_busy(dev_priv);
413
414 queue_delayed_work(dev_priv->wq,
415 &dev_priv->gt.retire_work,
416 round_jiffies_up_relative(HZ));
417 }
418
419 /*
420 * NB: This function is not allowed to fail. Doing so would mean the the
421 * request is not being tracked for completion but the work itself is
422 * going to happen on the hardware. This would be a Bad Thing(tm).
423 */
424 void __i915_add_request(struct drm_i915_gem_request *request,
425 struct drm_i915_gem_object *obj,
426 bool flush_caches)
427 {
428 struct intel_engine_cs *engine;
429 struct intel_ringbuffer *ringbuf;
430 u32 request_start;
431 u32 reserved_tail;
432 int ret;
433
434 if (WARN_ON(!request))
435 return;
436
437 engine = request->engine;
438 ringbuf = request->ringbuf;
439
440 /*
441 * To ensure that this call will not fail, space for its emissions
442 * should already have been reserved in the ring buffer. Let the ring
443 * know that it is time to use that space up.
444 */
445 request_start = intel_ring_get_tail(ringbuf);
446 reserved_tail = request->reserved_space;
447 request->reserved_space = 0;
448
449 /*
450 * Emit any outstanding flushes - execbuf can fail to emit the flush
451 * after having emitted the batchbuffer command. Hence we need to fix
452 * things up similar to emitting the lazy request. The difference here
453 * is that the flush _must_ happen before the next request, no matter
454 * what.
455 */
456 if (flush_caches) {
457 if (i915.enable_execlists)
458 ret = logical_ring_flush_all_caches(request);
459 else
460 ret = intel_ring_flush_all_caches(request);
461 /* Not allowed to fail! */
462 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
463 }
464
465 trace_i915_gem_request_add(request);
466
467 request->head = request_start;
468
469 /* Whilst this request exists, batch_obj will be on the
470 * active_list, and so will hold the active reference. Only when this
471 * request is retired will the the batch_obj be moved onto the
472 * inactive_list and lose its active reference. Hence we do not need
473 * to explicitly hold another reference here.
474 */
475 request->batch_obj = obj;
476
477 /* Seal the request and mark it as pending execution. Note that
478 * we may inspect this state, without holding any locks, during
479 * hangcheck. Hence we apply the barrier to ensure that we do not
480 * see a more recent value in the hws than we are tracking.
481 */
482 request->emitted_jiffies = jiffies;
483 request->previous_seqno = engine->last_submitted_seqno;
484 smp_store_mb(engine->last_submitted_seqno, request->fence.seqno);
485 list_add_tail(&request->list, &engine->request_list);
486
487 /* Record the position of the start of the request so that
488 * should we detect the updated seqno part-way through the
489 * GPU processing the request, we never over-estimate the
490 * position of the head.
491 */
492 request->postfix = intel_ring_get_tail(ringbuf);
493
494 if (i915.enable_execlists) {
495 ret = engine->emit_request(request);
496 } else {
497 ret = engine->add_request(request);
498
499 request->tail = intel_ring_get_tail(ringbuf);
500 }
501 /* Not allowed to fail! */
502 WARN(ret, "emit|add_request failed: %d!\n", ret);
503 /* Sanity check that the reserved size was large enough. */
504 ret = intel_ring_get_tail(ringbuf) - request_start;
505 if (ret < 0)
506 ret += ringbuf->size;
507 WARN_ONCE(ret > reserved_tail,
508 "Not enough space reserved (%d bytes) "
509 "for adding the request (%d bytes)\n",
510 reserved_tail, ret);
511
512 i915_gem_mark_busy(engine);
513 }
514
515 static unsigned long local_clock_us(unsigned int *cpu)
516 {
517 unsigned long t;
518
519 /* Cheaply and approximately convert from nanoseconds to microseconds.
520 * The result and subsequent calculations are also defined in the same
521 * approximate microseconds units. The principal source of timing
522 * error here is from the simple truncation.
523 *
524 * Note that local_clock() is only defined wrt to the current CPU;
525 * the comparisons are no longer valid if we switch CPUs. Instead of
526 * blocking preemption for the entire busywait, we can detect the CPU
527 * switch and use that as indicator of system load and a reason to
528 * stop busywaiting, see busywait_stop().
529 */
530 *cpu = get_cpu();
531 t = local_clock() >> 10;
532 put_cpu();
533
534 return t;
535 }
536
537 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
538 {
539 unsigned int this_cpu;
540
541 if (time_after(local_clock_us(&this_cpu), timeout))
542 return true;
543
544 return this_cpu != cpu;
545 }
546
547 bool __i915_spin_request(const struct drm_i915_gem_request *req,
548 int state, unsigned long timeout_us)
549 {
550 unsigned int cpu;
551
552 /* When waiting for high frequency requests, e.g. during synchronous
553 * rendering split between the CPU and GPU, the finite amount of time
554 * required to set up the irq and wait upon it limits the response
555 * rate. By busywaiting on the request completion for a short while we
556 * can service the high frequency waits as quick as possible. However,
557 * if it is a slow request, we want to sleep as quickly as possible.
558 * The tradeoff between waiting and sleeping is roughly the time it
559 * takes to sleep on a request, on the order of a microsecond.
560 */
561
562 timeout_us += local_clock_us(&cpu);
563 do {
564 if (i915_gem_request_completed(req))
565 return true;
566
567 if (signal_pending_state(state, current))
568 break;
569
570 if (busywait_stop(timeout_us, cpu))
571 break;
572
573 cpu_relax_lowlatency();
574 } while (!need_resched());
575
576 return false;
577 }
578
579 /**
580 * __i915_wait_request - wait until execution of request has finished
581 * @req: duh!
582 * @interruptible: do an interruptible wait (normally yes)
583 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
584 * @rps: client to charge for RPS boosting
585 *
586 * Note: It is of utmost importance that the passed in seqno and reset_counter
587 * values have been read by the caller in an smp safe manner. Where read-side
588 * locks are involved, it is sufficient to read the reset_counter before
589 * unlocking the lock that protects the seqno. For lockless tricks, the
590 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
591 * inserted.
592 *
593 * Returns 0 if the request was found within the alloted time. Else returns the
594 * errno with remaining time filled in timeout argument.
595 */
596 int __i915_wait_request(struct drm_i915_gem_request *req,
597 bool interruptible,
598 s64 *timeout,
599 struct intel_rps_client *rps)
600 {
601 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
602 DEFINE_WAIT(reset);
603 struct intel_wait wait;
604 unsigned long timeout_remain;
605 int ret = 0;
606
607 might_sleep();
608
609 if (list_empty(&req->list))
610 return 0;
611
612 if (i915_gem_request_completed(req))
613 return 0;
614
615 timeout_remain = MAX_SCHEDULE_TIMEOUT;
616 if (timeout) {
617 if (WARN_ON(*timeout < 0))
618 return -EINVAL;
619
620 if (*timeout == 0)
621 return -ETIME;
622
623 /* Record current time in case interrupted, or wedged */
624 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
625 *timeout += ktime_get_raw_ns();
626 }
627
628 trace_i915_gem_request_wait_begin(req);
629
630 /* This client is about to stall waiting for the GPU. In many cases
631 * this is undesirable and limits the throughput of the system, as
632 * many clients cannot continue processing user input/output whilst
633 * blocked. RPS autotuning may take tens of milliseconds to respond
634 * to the GPU load and thus incurs additional latency for the client.
635 * We can circumvent that by promoting the GPU frequency to maximum
636 * before we wait. This makes the GPU throttle up much more quickly
637 * (good for benchmarks and user experience, e.g. window animations),
638 * but at a cost of spending more power processing the workload
639 * (bad for battery). Not all clients even want their results
640 * immediately and for them we should just let the GPU select its own
641 * frequency to maximise efficiency. To prevent a single client from
642 * forcing the clocks too high for the whole system, we only allow
643 * each client to waitboost once in a busy period.
644 */
645 if (IS_RPS_CLIENT(rps) && INTEL_GEN(req->i915) >= 6)
646 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
647
648 /* Optimistic spin for the next ~jiffie before touching IRQs */
649 if (i915_spin_request(req, state, 5))
650 goto complete;
651
652 set_current_state(state);
653 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
654
655 intel_wait_init(&wait, req->fence.seqno);
656 if (intel_engine_add_wait(req->engine, &wait))
657 /* In order to check that we haven't missed the interrupt
658 * as we enabled it, we need to kick ourselves to do a
659 * coherent check on the seqno before we sleep.
660 */
661 goto wakeup;
662
663 for (;;) {
664 if (signal_pending_state(state, current)) {
665 ret = -ERESTARTSYS;
666 break;
667 }
668
669 timeout_remain = io_schedule_timeout(timeout_remain);
670 if (timeout_remain == 0) {
671 ret = -ETIME;
672 break;
673 }
674
675 if (intel_wait_complete(&wait))
676 break;
677
678 set_current_state(state);
679
680 wakeup:
681 /* Carefully check if the request is complete, giving time
682 * for the seqno to be visible following the interrupt.
683 * We also have to check in case we are kicked by the GPU
684 * reset in order to drop the struct_mutex.
685 */
686 if (__i915_request_irq_complete(req))
687 break;
688
689 /* Only spin if we know the GPU is processing this request */
690 if (i915_spin_request(req, state, 2))
691 break;
692 }
693 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
694
695 intel_engine_remove_wait(req->engine, &wait);
696 __set_current_state(TASK_RUNNING);
697 complete:
698 trace_i915_gem_request_wait_end(req);
699
700 if (timeout) {
701 *timeout -= ktime_get_raw_ns();
702 if (*timeout < 0)
703 *timeout = 0;
704
705 /*
706 * Apparently ktime isn't accurate enough and occasionally has a
707 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
708 * things up to make the test happy. We allow up to 1 jiffy.
709 *
710 * This is a regrssion from the timespec->ktime conversion.
711 */
712 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
713 *timeout = 0;
714 }
715
716 if (IS_RPS_USER(rps) &&
717 req->fence.seqno == req->engine->last_submitted_seqno) {
718 /* The GPU is now idle and this client has stalled.
719 * Since no other client has submitted a request in the
720 * meantime, assume that this client is the only one
721 * supplying work to the GPU but is unable to keep that
722 * work supplied because it is waiting. Since the GPU is
723 * then never kept fully busy, RPS autoclocking will
724 * keep the clocks relatively low, causing further delays.
725 * Compensate by giving the synchronous client credit for
726 * a waitboost next time.
727 */
728 spin_lock(&req->i915->rps.client_lock);
729 list_del_init(&rps->link);
730 spin_unlock(&req->i915->rps.client_lock);
731 }
732
733 return ret;
734 }
735
736 /**
737 * Waits for a request to be signaled, and cleans up the
738 * request and object lists appropriately for that event.
739 */
740 int i915_wait_request(struct drm_i915_gem_request *req)
741 {
742 int ret;
743
744 GEM_BUG_ON(!req);
745 lockdep_assert_held(&req->i915->drm.struct_mutex);
746
747 ret = __i915_wait_request(req, req->i915->mm.interruptible, NULL, NULL);
748 if (ret)
749 return ret;
750
751 /* If the GPU hung, we want to keep the requests to find the guilty. */
752 if (!i915_reset_in_progress(&req->i915->gpu_error))
753 i915_gem_request_retire_upto(req);
754
755 return 0;
756 }