]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem_request.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27
28 #include "i915_drv.h"
29
30 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
31 {
32 return "i915";
33 }
34
35 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
36 {
37 return to_request(fence)->timeline->common->name;
38 }
39
40 static bool i915_fence_signaled(struct dma_fence *fence)
41 {
42 return i915_gem_request_completed(to_request(fence));
43 }
44
45 static bool i915_fence_enable_signaling(struct dma_fence *fence)
46 {
47 if (i915_fence_signaled(fence))
48 return false;
49
50 intel_engine_enable_signaling(to_request(fence));
51 return true;
52 }
53
54 static signed long i915_fence_wait(struct dma_fence *fence,
55 bool interruptible,
56 signed long timeout)
57 {
58 return i915_wait_request(to_request(fence), interruptible, timeout);
59 }
60
61 static void i915_fence_release(struct dma_fence *fence)
62 {
63 struct drm_i915_gem_request *req = to_request(fence);
64
65 kmem_cache_free(req->i915->requests, req);
66 }
67
68 const struct dma_fence_ops i915_fence_ops = {
69 .get_driver_name = i915_fence_get_driver_name,
70 .get_timeline_name = i915_fence_get_timeline_name,
71 .enable_signaling = i915_fence_enable_signaling,
72 .signaled = i915_fence_signaled,
73 .wait = i915_fence_wait,
74 .release = i915_fence_release,
75 };
76
77 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
78 struct drm_file *file)
79 {
80 struct drm_i915_private *dev_private;
81 struct drm_i915_file_private *file_priv;
82
83 WARN_ON(!req || !file || req->file_priv);
84
85 if (!req || !file)
86 return -EINVAL;
87
88 if (req->file_priv)
89 return -EINVAL;
90
91 dev_private = req->i915;
92 file_priv = file->driver_priv;
93
94 spin_lock(&file_priv->mm.lock);
95 req->file_priv = file_priv;
96 list_add_tail(&req->client_list, &file_priv->mm.request_list);
97 spin_unlock(&file_priv->mm.lock);
98
99 return 0;
100 }
101
102 static inline void
103 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
104 {
105 struct drm_i915_file_private *file_priv = request->file_priv;
106
107 if (!file_priv)
108 return;
109
110 spin_lock(&file_priv->mm.lock);
111 list_del(&request->client_list);
112 request->file_priv = NULL;
113 spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124 struct i915_dependency *dep)
125 {
126 kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 struct i915_priotree *signal,
132 struct i915_dependency *dep,
133 unsigned long flags)
134 {
135 INIT_LIST_HEAD(&dep->dfs_link);
136 list_add(&dep->wait_link, &signal->waiters_list);
137 list_add(&dep->signal_link, &pt->signalers_list);
138 dep->signaler = signal;
139 dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 struct i915_priotree *pt,
145 struct i915_priotree *signal)
146 {
147 struct i915_dependency *dep;
148
149 dep = i915_dependency_alloc(i915);
150 if (!dep)
151 return -ENOMEM;
152
153 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160 struct i915_dependency *dep, *next;
161
162 GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
163
164 /* Everyone we depended upon (the fences we wait to be signaled)
165 * should retire before us and remove themselves from our list.
166 * However, retirement is run independently on each timeline and
167 * so we may be called out-of-order.
168 */
169 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 list_del(&dep->wait_link);
171 if (dep->flags & I915_DEPENDENCY_ALLOC)
172 i915_dependency_free(i915, dep);
173 }
174
175 /* Remove ourselves from everyone who depends upon us */
176 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 list_del(&dep->signal_link);
178 if (dep->flags & I915_DEPENDENCY_ALLOC)
179 i915_dependency_free(i915, dep);
180 }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186 INIT_LIST_HEAD(&pt->signalers_list);
187 INIT_LIST_HEAD(&pt->waiters_list);
188 RB_CLEAR_NODE(&pt->node);
189 pt->priority = INT_MIN;
190 }
191
192 void i915_gem_retire_noop(struct i915_gem_active *active,
193 struct drm_i915_gem_request *request)
194 {
195 /* Space left intentionally blank */
196 }
197
198 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
199 {
200 struct i915_gem_active *active, *next;
201
202 lockdep_assert_held(&request->i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
204 GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
205 GEM_BUG_ON(!i915_gem_request_completed(request));
206 GEM_BUG_ON(!request->i915->gt.active_requests);
207
208 trace_i915_gem_request_retire(request);
209
210 spin_lock_irq(&request->engine->timeline->lock);
211 list_del_init(&request->link);
212 spin_unlock_irq(&request->engine->timeline->lock);
213
214 /* We know the GPU must have read the request to have
215 * sent us the seqno + interrupt, so use the position
216 * of tail of the request to update the last known position
217 * of the GPU head.
218 *
219 * Note this requires that we are always called in request
220 * completion order.
221 */
222 list_del(&request->ring_link);
223 request->ring->last_retired_head = request->postfix;
224 if (!--request->i915->gt.active_requests) {
225 GEM_BUG_ON(!request->i915->gt.awake);
226 mod_delayed_work(request->i915->wq,
227 &request->i915->gt.idle_work,
228 msecs_to_jiffies(100));
229 }
230
231 /* Walk through the active list, calling retire on each. This allows
232 * objects to track their GPU activity and mark themselves as idle
233 * when their *last* active request is completed (updating state
234 * tracking lists for eviction, active references for GEM, etc).
235 *
236 * As the ->retire() may free the node, we decouple it first and
237 * pass along the auxiliary information (to avoid dereferencing
238 * the node after the callback).
239 */
240 list_for_each_entry_safe(active, next, &request->active_list, link) {
241 /* In microbenchmarks or focusing upon time inside the kernel,
242 * we may spend an inordinate amount of time simply handling
243 * the retirement of requests and processing their callbacks.
244 * Of which, this loop itself is particularly hot due to the
245 * cache misses when jumping around the list of i915_gem_active.
246 * So we try to keep this loop as streamlined as possible and
247 * also prefetch the next i915_gem_active to try and hide
248 * the likely cache miss.
249 */
250 prefetchw(next);
251
252 INIT_LIST_HEAD(&active->link);
253 RCU_INIT_POINTER(active->request, NULL);
254
255 active->retire(active, request);
256 }
257
258 i915_gem_request_remove_from_client(request);
259
260 if (request->previous_context) {
261 if (i915.enable_execlists)
262 intel_lr_context_unpin(request->previous_context,
263 request->engine);
264 }
265
266 i915_gem_context_put(request->ctx);
267
268 dma_fence_signal(&request->fence);
269
270 i915_priotree_fini(request->i915, &request->priotree);
271 i915_gem_request_put(request);
272 }
273
274 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
275 {
276 struct intel_engine_cs *engine = req->engine;
277 struct drm_i915_gem_request *tmp;
278
279 lockdep_assert_held(&req->i915->drm.struct_mutex);
280 if (list_empty(&req->link))
281 return;
282
283 do {
284 tmp = list_first_entry(&engine->timeline->requests,
285 typeof(*tmp), link);
286
287 i915_gem_request_retire(tmp);
288 } while (tmp != req);
289 }
290
291 static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
292 {
293 struct i915_gpu_error *error = &dev_priv->gpu_error;
294
295 if (i915_terminally_wedged(error))
296 return -EIO;
297
298 if (i915_reset_in_progress(error)) {
299 /* Non-interruptible callers can't handle -EAGAIN, hence return
300 * -EIO unconditionally for these.
301 */
302 if (!dev_priv->mm.interruptible)
303 return -EIO;
304
305 return -EAGAIN;
306 }
307
308 return 0;
309 }
310
311 static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
312 {
313 struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
314 struct intel_engine_cs *engine;
315 enum intel_engine_id id;
316 int ret;
317
318 /* Carefully retire all requests without writing to the rings */
319 ret = i915_gem_wait_for_idle(i915,
320 I915_WAIT_INTERRUPTIBLE |
321 I915_WAIT_LOCKED);
322 if (ret)
323 return ret;
324
325 i915_gem_retire_requests(i915);
326 GEM_BUG_ON(i915->gt.active_requests > 1);
327
328 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
329 if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
330 while (intel_breadcrumbs_busy(i915))
331 cond_resched(); /* spin until threads are complete */
332 }
333 atomic_set(&timeline->next_seqno, seqno);
334
335 /* Finally reset hw state */
336 for_each_engine(engine, i915, id)
337 intel_engine_init_global_seqno(engine, seqno);
338
339 list_for_each_entry(timeline, &i915->gt.timelines, link) {
340 for_each_engine(engine, i915, id) {
341 struct intel_timeline *tl = &timeline->engine[id];
342
343 memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
344 }
345 }
346
347 return 0;
348 }
349
350 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
351 {
352 struct drm_i915_private *dev_priv = to_i915(dev);
353
354 lockdep_assert_held(&dev_priv->drm.struct_mutex);
355
356 if (seqno == 0)
357 return -EINVAL;
358
359 /* HWS page needs to be set less than what we
360 * will inject to ring
361 */
362 return i915_gem_init_global_seqno(dev_priv, seqno - 1);
363 }
364
365 static int reserve_global_seqno(struct drm_i915_private *i915)
366 {
367 u32 active_requests = ++i915->gt.active_requests;
368 u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
369 int ret;
370
371 /* Reservation is fine until we need to wrap around */
372 if (likely(next_seqno + active_requests > next_seqno))
373 return 0;
374
375 ret = i915_gem_init_global_seqno(i915, 0);
376 if (ret) {
377 i915->gt.active_requests--;
378 return ret;
379 }
380
381 return 0;
382 }
383
384 static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
385 {
386 /* next_seqno only incremented under a mutex */
387 return ++tl->next_seqno.counter;
388 }
389
390 static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
391 {
392 return atomic_inc_return(&tl->next_seqno);
393 }
394
395 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
396 {
397 struct intel_engine_cs *engine = request->engine;
398 struct intel_timeline *timeline;
399 u32 seqno;
400
401 /* Transfer from per-context onto the global per-engine timeline */
402 timeline = engine->timeline;
403 GEM_BUG_ON(timeline == request->timeline);
404 assert_spin_locked(&timeline->lock);
405
406 seqno = timeline_get_seqno(timeline->common);
407 GEM_BUG_ON(!seqno);
408 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
409
410 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
411 request->previous_seqno = timeline->last_submitted_seqno;
412 timeline->last_submitted_seqno = seqno;
413
414 /* We may be recursing from the signal callback of another i915 fence */
415 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
416 request->global_seqno = seqno;
417 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
418 intel_engine_enable_signaling(request);
419 spin_unlock(&request->lock);
420
421 GEM_BUG_ON(!request->global_seqno);
422 engine->emit_breadcrumb(request,
423 request->ring->vaddr + request->postfix);
424
425 spin_lock(&request->timeline->lock);
426 list_move_tail(&request->link, &timeline->requests);
427 spin_unlock(&request->timeline->lock);
428
429 i915_sw_fence_commit(&request->execute);
430 }
431
432 void i915_gem_request_submit(struct drm_i915_gem_request *request)
433 {
434 struct intel_engine_cs *engine = request->engine;
435 unsigned long flags;
436
437 /* Will be called from irq-context when using foreign fences. */
438 spin_lock_irqsave(&engine->timeline->lock, flags);
439
440 __i915_gem_request_submit(request);
441
442 spin_unlock_irqrestore(&engine->timeline->lock, flags);
443 }
444
445 static int __i915_sw_fence_call
446 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
447 {
448 struct drm_i915_gem_request *request =
449 container_of(fence, typeof(*request), submit);
450
451 switch (state) {
452 case FENCE_COMPLETE:
453 request->engine->submit_request(request);
454 break;
455
456 case FENCE_FREE:
457 i915_gem_request_put(request);
458 break;
459 }
460
461 return NOTIFY_DONE;
462 }
463
464 static int __i915_sw_fence_call
465 execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
466 {
467 struct drm_i915_gem_request *request =
468 container_of(fence, typeof(*request), execute);
469
470 switch (state) {
471 case FENCE_COMPLETE:
472 break;
473
474 case FENCE_FREE:
475 i915_gem_request_put(request);
476 break;
477 }
478
479 return NOTIFY_DONE;
480 }
481
482 /**
483 * i915_gem_request_alloc - allocate a request structure
484 *
485 * @engine: engine that we wish to issue the request on.
486 * @ctx: context that the request will be associated with.
487 * This can be NULL if the request is not directly related to
488 * any specific user context, in which case this function will
489 * choose an appropriate context to use.
490 *
491 * Returns a pointer to the allocated request if successful,
492 * or an error code if not.
493 */
494 struct drm_i915_gem_request *
495 i915_gem_request_alloc(struct intel_engine_cs *engine,
496 struct i915_gem_context *ctx)
497 {
498 struct drm_i915_private *dev_priv = engine->i915;
499 struct drm_i915_gem_request *req;
500 int ret;
501
502 lockdep_assert_held(&dev_priv->drm.struct_mutex);
503
504 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
505 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
506 * and restart.
507 */
508 ret = i915_gem_check_wedge(dev_priv);
509 if (ret)
510 return ERR_PTR(ret);
511
512 ret = reserve_global_seqno(dev_priv);
513 if (ret)
514 return ERR_PTR(ret);
515
516 /* Move the oldest request to the slab-cache (if not in use!) */
517 req = list_first_entry_or_null(&engine->timeline->requests,
518 typeof(*req), link);
519 if (req && __i915_gem_request_completed(req))
520 i915_gem_request_retire(req);
521
522 /* Beware: Dragons be flying overhead.
523 *
524 * We use RCU to look up requests in flight. The lookups may
525 * race with the request being allocated from the slab freelist.
526 * That is the request we are writing to here, may be in the process
527 * of being read by __i915_gem_active_get_rcu(). As such,
528 * we have to be very careful when overwriting the contents. During
529 * the RCU lookup, we change chase the request->engine pointer,
530 * read the request->global_seqno and increment the reference count.
531 *
532 * The reference count is incremented atomically. If it is zero,
533 * the lookup knows the request is unallocated and complete. Otherwise,
534 * it is either still in use, or has been reallocated and reset
535 * with dma_fence_init(). This increment is safe for release as we
536 * check that the request we have a reference to and matches the active
537 * request.
538 *
539 * Before we increment the refcount, we chase the request->engine
540 * pointer. We must not call kmem_cache_zalloc() or else we set
541 * that pointer to NULL and cause a crash during the lookup. If
542 * we see the request is completed (based on the value of the
543 * old engine and seqno), the lookup is complete and reports NULL.
544 * If we decide the request is not completed (new engine or seqno),
545 * then we grab a reference and double check that it is still the
546 * active request - which it won't be and restart the lookup.
547 *
548 * Do not use kmem_cache_zalloc() here!
549 */
550 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
551 if (!req) {
552 ret = -ENOMEM;
553 goto err_unreserve;
554 }
555
556 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
557 GEM_BUG_ON(req->timeline == engine->timeline);
558
559 spin_lock_init(&req->lock);
560 dma_fence_init(&req->fence,
561 &i915_fence_ops,
562 &req->lock,
563 req->timeline->fence_context,
564 __timeline_get_seqno(req->timeline->common));
565
566 /* We bump the ref for the fence chain */
567 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
568 i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
569
570 /* Ensure that the execute fence completes after the submit fence -
571 * as we complete the execute fence from within the submit fence
572 * callback, its completion would otherwise be visible first.
573 */
574 i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
575
576 i915_priotree_init(&req->priotree);
577
578 INIT_LIST_HEAD(&req->active_list);
579 req->i915 = dev_priv;
580 req->engine = engine;
581 req->ctx = i915_gem_context_get(ctx);
582
583 /* No zalloc, must clear what we need by hand */
584 req->global_seqno = 0;
585 req->previous_context = NULL;
586 req->file_priv = NULL;
587 req->batch = NULL;
588
589 /*
590 * Reserve space in the ring buffer for all the commands required to
591 * eventually emit this request. This is to guarantee that the
592 * i915_add_request() call can't fail. Note that the reserve may need
593 * to be redone if the request is not actually submitted straight
594 * away, e.g. because a GPU scheduler has deferred it.
595 */
596 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
597 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
598
599 if (i915.enable_execlists)
600 ret = intel_logical_ring_alloc_request_extras(req);
601 else
602 ret = intel_ring_alloc_request_extras(req);
603 if (ret)
604 goto err_ctx;
605
606 /* Record the position of the start of the request so that
607 * should we detect the updated seqno part-way through the
608 * GPU processing the request, we never over-estimate the
609 * position of the head.
610 */
611 req->head = req->ring->tail;
612
613 return req;
614
615 err_ctx:
616 i915_gem_context_put(ctx);
617 kmem_cache_free(dev_priv->requests, req);
618 err_unreserve:
619 dev_priv->gt.active_requests--;
620 return ERR_PTR(ret);
621 }
622
623 static int
624 i915_gem_request_await_request(struct drm_i915_gem_request *to,
625 struct drm_i915_gem_request *from)
626 {
627 int ret;
628
629 GEM_BUG_ON(to == from);
630
631 if (to->engine->schedule) {
632 ret = i915_priotree_add_dependency(to->i915,
633 &to->priotree,
634 &from->priotree);
635 if (ret < 0)
636 return ret;
637 }
638
639 if (to->timeline == from->timeline)
640 return 0;
641
642 if (to->engine == from->engine) {
643 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
644 &from->submit,
645 GFP_KERNEL);
646 return ret < 0 ? ret : 0;
647 }
648
649 if (!from->global_seqno) {
650 ret = i915_sw_fence_await_dma_fence(&to->submit,
651 &from->fence, 0,
652 GFP_KERNEL);
653 return ret < 0 ? ret : 0;
654 }
655
656 if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
657 return 0;
658
659 trace_i915_gem_ring_sync_to(to, from);
660 if (!i915.semaphores) {
661 if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
662 ret = i915_sw_fence_await_dma_fence(&to->submit,
663 &from->fence, 0,
664 GFP_KERNEL);
665 if (ret < 0)
666 return ret;
667 }
668 } else {
669 ret = to->engine->semaphore.sync_to(to, from);
670 if (ret)
671 return ret;
672 }
673
674 to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
675 return 0;
676 }
677
678 int
679 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
680 struct dma_fence *fence)
681 {
682 struct dma_fence_array *array;
683 int ret;
684 int i;
685
686 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
687 return 0;
688
689 if (dma_fence_is_i915(fence))
690 return i915_gem_request_await_request(req, to_request(fence));
691
692 if (!dma_fence_is_array(fence)) {
693 ret = i915_sw_fence_await_dma_fence(&req->submit,
694 fence, I915_FENCE_TIMEOUT,
695 GFP_KERNEL);
696 return ret < 0 ? ret : 0;
697 }
698
699 /* Note that if the fence-array was created in signal-on-any mode,
700 * we should *not* decompose it into its individual fences. However,
701 * we don't currently store which mode the fence-array is operating
702 * in. Fortunately, the only user of signal-on-any is private to
703 * amdgpu and we should not see any incoming fence-array from
704 * sync-file being in signal-on-any mode.
705 */
706
707 array = to_dma_fence_array(fence);
708 for (i = 0; i < array->num_fences; i++) {
709 struct dma_fence *child = array->fences[i];
710
711 if (dma_fence_is_i915(child))
712 ret = i915_gem_request_await_request(req,
713 to_request(child));
714 else
715 ret = i915_sw_fence_await_dma_fence(&req->submit,
716 child, I915_FENCE_TIMEOUT,
717 GFP_KERNEL);
718 if (ret < 0)
719 return ret;
720 }
721
722 return 0;
723 }
724
725 /**
726 * i915_gem_request_await_object - set this request to (async) wait upon a bo
727 *
728 * @to: request we are wishing to use
729 * @obj: object which may be in use on another ring.
730 *
731 * This code is meant to abstract object synchronization with the GPU.
732 * Conceptually we serialise writes between engines inside the GPU.
733 * We only allow one engine to write into a buffer at any time, but
734 * multiple readers. To ensure each has a coherent view of memory, we must:
735 *
736 * - If there is an outstanding write request to the object, the new
737 * request must wait for it to complete (either CPU or in hw, requests
738 * on the same ring will be naturally ordered).
739 *
740 * - If we are a write request (pending_write_domain is set), the new
741 * request must wait for outstanding read requests to complete.
742 *
743 * Returns 0 if successful, else propagates up the lower layer error.
744 */
745 int
746 i915_gem_request_await_object(struct drm_i915_gem_request *to,
747 struct drm_i915_gem_object *obj,
748 bool write)
749 {
750 struct dma_fence *excl;
751 int ret = 0;
752
753 if (write) {
754 struct dma_fence **shared;
755 unsigned int count, i;
756
757 ret = reservation_object_get_fences_rcu(obj->resv,
758 &excl, &count, &shared);
759 if (ret)
760 return ret;
761
762 for (i = 0; i < count; i++) {
763 ret = i915_gem_request_await_dma_fence(to, shared[i]);
764 if (ret)
765 break;
766
767 dma_fence_put(shared[i]);
768 }
769
770 for (; i < count; i++)
771 dma_fence_put(shared[i]);
772 kfree(shared);
773 } else {
774 excl = reservation_object_get_excl_rcu(obj->resv);
775 }
776
777 if (excl) {
778 if (ret == 0)
779 ret = i915_gem_request_await_dma_fence(to, excl);
780
781 dma_fence_put(excl);
782 }
783
784 return ret;
785 }
786
787 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
788 {
789 struct drm_i915_private *dev_priv = engine->i915;
790
791 if (dev_priv->gt.awake)
792 return;
793
794 GEM_BUG_ON(!dev_priv->gt.active_requests);
795
796 intel_runtime_pm_get_noresume(dev_priv);
797 dev_priv->gt.awake = true;
798
799 intel_enable_gt_powersave(dev_priv);
800 i915_update_gfx_val(dev_priv);
801 if (INTEL_GEN(dev_priv) >= 6)
802 gen6_rps_busy(dev_priv);
803
804 queue_delayed_work(dev_priv->wq,
805 &dev_priv->gt.retire_work,
806 round_jiffies_up_relative(HZ));
807 }
808
809 /*
810 * NB: This function is not allowed to fail. Doing so would mean the the
811 * request is not being tracked for completion but the work itself is
812 * going to happen on the hardware. This would be a Bad Thing(tm).
813 */
814 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
815 {
816 struct intel_engine_cs *engine = request->engine;
817 struct intel_ring *ring = request->ring;
818 struct intel_timeline *timeline = request->timeline;
819 struct drm_i915_gem_request *prev;
820 int err;
821
822 lockdep_assert_held(&request->i915->drm.struct_mutex);
823 trace_i915_gem_request_add(request);
824
825 /*
826 * To ensure that this call will not fail, space for its emissions
827 * should already have been reserved in the ring buffer. Let the ring
828 * know that it is time to use that space up.
829 */
830 request->reserved_space = 0;
831
832 /*
833 * Emit any outstanding flushes - execbuf can fail to emit the flush
834 * after having emitted the batchbuffer command. Hence we need to fix
835 * things up similar to emitting the lazy request. The difference here
836 * is that the flush _must_ happen before the next request, no matter
837 * what.
838 */
839 if (flush_caches) {
840 err = engine->emit_flush(request, EMIT_FLUSH);
841
842 /* Not allowed to fail! */
843 WARN(err, "engine->emit_flush() failed: %d!\n", err);
844 }
845
846 /* Record the position of the start of the breadcrumb so that
847 * should we detect the updated seqno part-way through the
848 * GPU processing the request, we never over-estimate the
849 * position of the ring's HEAD.
850 */
851 err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
852 GEM_BUG_ON(err);
853 request->postfix = ring->tail;
854 ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
855
856 /* Seal the request and mark it as pending execution. Note that
857 * we may inspect this state, without holding any locks, during
858 * hangcheck. Hence we apply the barrier to ensure that we do not
859 * see a more recent value in the hws than we are tracking.
860 */
861
862 prev = i915_gem_active_raw(&timeline->last_request,
863 &request->i915->drm.struct_mutex);
864 if (prev) {
865 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
866 &request->submitq);
867 if (engine->schedule)
868 __i915_priotree_add_dependency(&request->priotree,
869 &prev->priotree,
870 &request->dep,
871 0);
872 }
873
874 spin_lock_irq(&timeline->lock);
875 list_add_tail(&request->link, &timeline->requests);
876 spin_unlock_irq(&timeline->lock);
877
878 GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
879 request->fence.seqno));
880
881 timeline->last_submitted_seqno = request->fence.seqno;
882 i915_gem_active_set(&timeline->last_request, request);
883
884 list_add_tail(&request->ring_link, &ring->request_list);
885 request->emitted_jiffies = jiffies;
886
887 i915_gem_mark_busy(engine);
888
889 /* Let the backend know a new request has arrived that may need
890 * to adjust the existing execution schedule due to a high priority
891 * request - i.e. we may want to preempt the current request in order
892 * to run a high priority dependency chain *before* we can execute this
893 * request.
894 *
895 * This is called before the request is ready to run so that we can
896 * decide whether to preempt the entire chain so that it is ready to
897 * run at the earliest possible convenience.
898 */
899 if (engine->schedule)
900 engine->schedule(request, request->ctx->priority);
901
902 local_bh_disable();
903 i915_sw_fence_commit(&request->submit);
904 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
905 }
906
907 static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
908 {
909 unsigned long flags;
910
911 spin_lock_irqsave(&q->lock, flags);
912 if (list_empty(&wait->task_list))
913 __add_wait_queue(q, wait);
914 spin_unlock_irqrestore(&q->lock, flags);
915 }
916
917 static unsigned long local_clock_us(unsigned int *cpu)
918 {
919 unsigned long t;
920
921 /* Cheaply and approximately convert from nanoseconds to microseconds.
922 * The result and subsequent calculations are also defined in the same
923 * approximate microseconds units. The principal source of timing
924 * error here is from the simple truncation.
925 *
926 * Note that local_clock() is only defined wrt to the current CPU;
927 * the comparisons are no longer valid if we switch CPUs. Instead of
928 * blocking preemption for the entire busywait, we can detect the CPU
929 * switch and use that as indicator of system load and a reason to
930 * stop busywaiting, see busywait_stop().
931 */
932 *cpu = get_cpu();
933 t = local_clock() >> 10;
934 put_cpu();
935
936 return t;
937 }
938
939 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
940 {
941 unsigned int this_cpu;
942
943 if (time_after(local_clock_us(&this_cpu), timeout))
944 return true;
945
946 return this_cpu != cpu;
947 }
948
949 bool __i915_spin_request(const struct drm_i915_gem_request *req,
950 int state, unsigned long timeout_us)
951 {
952 unsigned int cpu;
953
954 /* When waiting for high frequency requests, e.g. during synchronous
955 * rendering split between the CPU and GPU, the finite amount of time
956 * required to set up the irq and wait upon it limits the response
957 * rate. By busywaiting on the request completion for a short while we
958 * can service the high frequency waits as quick as possible. However,
959 * if it is a slow request, we want to sleep as quickly as possible.
960 * The tradeoff between waiting and sleeping is roughly the time it
961 * takes to sleep on a request, on the order of a microsecond.
962 */
963
964 timeout_us += local_clock_us(&cpu);
965 do {
966 if (__i915_gem_request_completed(req))
967 return true;
968
969 if (signal_pending_state(state, current))
970 break;
971
972 if (busywait_stop(timeout_us, cpu))
973 break;
974
975 cpu_relax();
976 } while (!need_resched());
977
978 return false;
979 }
980
981 static long
982 __i915_request_wait_for_execute(struct drm_i915_gem_request *request,
983 unsigned int flags,
984 long timeout)
985 {
986 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
987 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
988 wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
989 DEFINE_WAIT(reset);
990 DEFINE_WAIT(wait);
991
992 if (flags & I915_WAIT_LOCKED)
993 add_wait_queue(q, &reset);
994
995 do {
996 prepare_to_wait(&request->execute.wait, &wait, state);
997
998 if (i915_sw_fence_done(&request->execute))
999 break;
1000
1001 if (flags & I915_WAIT_LOCKED &&
1002 i915_reset_in_progress(&request->i915->gpu_error)) {
1003 __set_current_state(TASK_RUNNING);
1004 i915_reset(request->i915);
1005 reset_wait_queue(q, &reset);
1006 continue;
1007 }
1008
1009 if (signal_pending_state(state, current)) {
1010 timeout = -ERESTARTSYS;
1011 break;
1012 }
1013
1014 timeout = io_schedule_timeout(timeout);
1015 } while (timeout);
1016 finish_wait(&request->execute.wait, &wait);
1017
1018 if (flags & I915_WAIT_LOCKED)
1019 remove_wait_queue(q, &reset);
1020
1021 return timeout;
1022 }
1023
1024 /**
1025 * i915_wait_request - wait until execution of request has finished
1026 * @req: the request to wait upon
1027 * @flags: how to wait
1028 * @timeout: how long to wait in jiffies
1029 *
1030 * i915_wait_request() waits for the request to be completed, for a
1031 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1032 * unbounded wait).
1033 *
1034 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1035 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1036 * must not specify that the wait is locked.
1037 *
1038 * Returns the remaining time (in jiffies) if the request completed, which may
1039 * be zero or -ETIME if the request is unfinished after the timeout expires.
1040 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1041 * pending before the request completes.
1042 */
1043 long i915_wait_request(struct drm_i915_gem_request *req,
1044 unsigned int flags,
1045 long timeout)
1046 {
1047 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1048 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1049 DEFINE_WAIT(reset);
1050 struct intel_wait wait;
1051
1052 might_sleep();
1053 #if IS_ENABLED(CONFIG_LOCKDEP)
1054 GEM_BUG_ON(debug_locks &&
1055 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1056 !!(flags & I915_WAIT_LOCKED));
1057 #endif
1058 GEM_BUG_ON(timeout < 0);
1059
1060 if (i915_gem_request_completed(req))
1061 return timeout;
1062
1063 if (!timeout)
1064 return -ETIME;
1065
1066 trace_i915_gem_request_wait_begin(req);
1067
1068 if (!i915_sw_fence_done(&req->execute)) {
1069 timeout = __i915_request_wait_for_execute(req, flags, timeout);
1070 if (timeout < 0)
1071 goto complete;
1072
1073 GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1074 }
1075 GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1076 GEM_BUG_ON(!req->global_seqno);
1077
1078 /* Optimistic short spin before touching IRQs */
1079 if (i915_spin_request(req, state, 5))
1080 goto complete;
1081
1082 set_current_state(state);
1083 if (flags & I915_WAIT_LOCKED)
1084 add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1085
1086 intel_wait_init(&wait, req->global_seqno);
1087 if (intel_engine_add_wait(req->engine, &wait))
1088 /* In order to check that we haven't missed the interrupt
1089 * as we enabled it, we need to kick ourselves to do a
1090 * coherent check on the seqno before we sleep.
1091 */
1092 goto wakeup;
1093
1094 for (;;) {
1095 if (signal_pending_state(state, current)) {
1096 timeout = -ERESTARTSYS;
1097 break;
1098 }
1099
1100 if (!timeout) {
1101 timeout = -ETIME;
1102 break;
1103 }
1104
1105 timeout = io_schedule_timeout(timeout);
1106
1107 if (intel_wait_complete(&wait))
1108 break;
1109
1110 set_current_state(state);
1111
1112 wakeup:
1113 /* Carefully check if the request is complete, giving time
1114 * for the seqno to be visible following the interrupt.
1115 * We also have to check in case we are kicked by the GPU
1116 * reset in order to drop the struct_mutex.
1117 */
1118 if (__i915_request_irq_complete(req))
1119 break;
1120
1121 /* If the GPU is hung, and we hold the lock, reset the GPU
1122 * and then check for completion. On a full reset, the engine's
1123 * HW seqno will be advanced passed us and we are complete.
1124 * If we do a partial reset, we have to wait for the GPU to
1125 * resume and update the breadcrumb.
1126 *
1127 * If we don't hold the mutex, we can just wait for the worker
1128 * to come along and update the breadcrumb (either directly
1129 * itself, or indirectly by recovering the GPU).
1130 */
1131 if (flags & I915_WAIT_LOCKED &&
1132 i915_reset_in_progress(&req->i915->gpu_error)) {
1133 __set_current_state(TASK_RUNNING);
1134 i915_reset(req->i915);
1135 reset_wait_queue(&req->i915->gpu_error.wait_queue,
1136 &reset);
1137 continue;
1138 }
1139
1140 /* Only spin if we know the GPU is processing this request */
1141 if (i915_spin_request(req, state, 2))
1142 break;
1143 }
1144
1145 intel_engine_remove_wait(req->engine, &wait);
1146 if (flags & I915_WAIT_LOCKED)
1147 remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1148 __set_current_state(TASK_RUNNING);
1149
1150 complete:
1151 trace_i915_gem_request_wait_end(req);
1152
1153 return timeout;
1154 }
1155
1156 static void engine_retire_requests(struct intel_engine_cs *engine)
1157 {
1158 struct drm_i915_gem_request *request, *next;
1159
1160 list_for_each_entry_safe(request, next,
1161 &engine->timeline->requests, link) {
1162 if (!__i915_gem_request_completed(request))
1163 return;
1164
1165 i915_gem_request_retire(request);
1166 }
1167 }
1168
1169 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1170 {
1171 struct intel_engine_cs *engine;
1172 enum intel_engine_id id;
1173
1174 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1175
1176 if (!dev_priv->gt.active_requests)
1177 return;
1178
1179 for_each_engine(engine, dev_priv, id)
1180 engine_retire_requests(engine);
1181 }